
When TCP Meets Reconfigurations: A
Comprehensive Measurement Study

Kaan Aykurt∗, Johannes Zerwas∗, Andreas Blenk∗†, Wolfgang Kellerer∗
∗Chair of Communication Networks, Technical University of Munich, Germany

†Siemens AG, Munich, Germany

Abstract—The diversity of deployed applications in data cen-
ters leads to a complex traffic mix in the network. Reconfigurable
Data Center Networks (RDCNs) have been designed to fulfill the
demanding requirements of ever-changing data center traffic.
However, they pose new challenges for network traffic engineer-
ing, e.g., interference between reconfigurations, transport layer
protocols, and congestion control (CC) algorithms. This raises a
fundamental research problem: can the current transport layer
protocols handle frequent network updates?

This paper focuses on TCP and presents a measurement study
of TCP performance in RDCNs. In particular, it evaluates diverse
traffic mixes combining TCP variants, UDP, and QUIC transport
protocols. The quantitative analysis of the measurements shows
that migrated TCP flows suffer from frequent reconfigurations.
The effect of reconfigurations on the cost, e.g. increased Flow
Completion Time (FCT), depending on the traffic mix is modeled
with Machine Learning (ML) methods. The availability of such
a model will provide insights into the relationship between the
reconfiguration settings and the FCT. Our model explains 88% of
the variance in the FCT increase under different reconfiguration
settings.

Index Terms—reconfigurable data center networks, TCP mea-
surements, QUIC measurements

I. INTRODUCTION

Over the past decades, the introduction of cloud computing
transformed a significant portion of the information technolo-
gies industry [1]. With this transformation, many new appli-
cations appeared in DCNs with different requirements. For
instance, distributed machine learning applications demand
high bandwidth to transmit large amounts of data while other
applications need to fulfill strict latency and high availability
constraints such as deployments of 6G core networks [2].

As a result, the bandwidth and latency requirements of
modern data center networks are far more different than those
of conventional infrastructures. Conventional fully provisioned
static DCNs are either too costly or fail to meet this chal-
lenging demand since it is not feasible to create permanent
high bandwidth links across the racks [3]. Therefore, the
research community has introduced reconfigurable network
elements, such as Optical Circuit Switches (OCS), to enable
temporary high bandwidth connections between source and
destination pairs on demand, and thereby, meet the challenging
demands [3]–[7]. The adaptation of the topology, i.e., the
creation and destruction of new links, causes the flows to be
re-routed and to be migrated to different links without the
knowledge of the receiver or sender. The frequencies of these
migrations depend on the reconfiguration scheme of the OCS.

The RDCNs enable better performance for DCNs by estab-
lishing low latency and high throughput. However, they also
present a research question: what is the effect of introducing
temporary paths with different provisioning periods on the
FCT performance?

The performance analysis of RDCNs exists in the liter-
ature to some extent [3], [5]–[8]. However, these analyses
mainly take into account the flow-level analysis [3], [5]–[7]
or take a more theoretical perspective [5], [8]. In reality,
the consideration of packet-level characteristics may pose a
challenge to utilize the full potential of RDCNs. Combinations
of high-bandwidth circuit networks and traditional packet-
switched networks introduce non-trivial problems such as flow
interruptions due to reconfiguration downtimes and bandwidth
fluctuations [9]. Consequently, the changes in the bottleneck
link capacity that emerge from path reconfigurations, pose a
problem for end-to-end network connections: can transport
layer protocols utilize the congested link capacity efficiently
with rapid fluctuations in the available bandwidth?

The heterogeneity of network traffic loads, the dynamic
nature of modern data centers, and the existence of complex,
diverse paths between two end-hosts make the role of network
transport protocols more critical for ensuring seamless end-
to-end connectivity. Transmission Control Protocol (TCP) is
the current de facto standard transport protocol of modern
DCN architectures. TCP connections adjust their sending rates
according to the available bandwidth. The rate limitations, in
general, are modeled with the consideration of the capacity of
a bottleneck link and a particular Round Trip Time (RTT).
The networking community has analyzed TCP behavior in
static environments [10]–[13]. However, in public cloud envi-
ronments, multiple tenants can co-exist and the performance
requirements, e.g. low-latency or high throughput, for them
may differ from one another. To meet the performance goals,
tenants may prefer different CC algorithms that lead to a
shared network of different applications and interference of
various CC algorithms [14]–[16]. The changing nature of such
DCNs means that a mix of transport layer protocols and their
variants can coexist [17], [18]. Some examples of these are
TCP variants (CUBIC, Reno, BBR, Westwood, etc.), User
Datagram Protocol (UDP), and QUIC. While the available
studies for measuring the interaction between TCP and QUIC
include performance benchmarks and analyze the interaction
of TCP and QUIC in a static link [19], [20], they do not include
dynamic scenarios in their analyses. Additionally, available



studies for TCP performance in dynamic environments are
also limited and lack the interaction of co-existing variants and
congestion [9]. Specifically, the existing work does not include
an in-depth analysis of various coexisting CC algorithms in
a testbed environment. To the best of our knowledge, per-
formance analysis of TCP behavior on dynamic architectures
with coexisting flows of different natures is not yet available.

This paper analyzes the FCT performance of various TCP
variants and QUIC under different reconfiguration schemes,
measured in a testbed environment. In particular, loss-based,
capacity-based, hybrid, and ECN-based CC is evaluated. The
measurement results are used to model the effect of frequent
path migrations on the migrated flow. In particular, this model
predicts the increase of the FCT given the reconfiguration
settings and involved TCP variants. The outcomes of the model
provide insights into the interaction between the reconfigura-
tion scenarios and the FCT. Additionally, a model to classify
the TCP variants is introduced to enable network operators to
gain insights into the traffic mix in their RDCNs.

This work contributes to the networking community by
shedding light on the interactions of various TCP variants
and transport layer protocols in a dynamic environment. The
findings of this paper indicate that both the traffic mix and the
reconfiguration period in a dynamic environment affect TCP
performance.

Initial results of this paper have been presented at IEEE
CNSM 2022 [21]. In this journal version, we extend our
measurement framework with the inclusion of DCTCP, UDP,
and QUIC in the traffic mix. Additionally, we present an
analysis with more than two flows and extend our modeling to
cover TCP variant classification. Our extended findings show
that in addition to the CC algorithm, its implementation also
plays an important role in TCP performance.

The remainder is structured as follows: Sec. II gives a brief
overview of RDCN and widely used transport layer protocols.
Sec. III lists related measurement studies. Sec. IV describes
the testbed and measurement procedure. Sec. V presents the
analysis of flow migrations under different reconfiguration
scenarios. Finally, Sec. VI introduces an ML model to predict
the FCT prolongation and TCP variant classification. We
conclude and discuss future work in Sec VII.

II. BACKGROUND

This section gives an introduction to RDCNs, briefly pro-
vides an overview of widely utilized TCP variants, and intro-
duces UDP and QUIC.

A. Reconfigurable Data Center Networks

Fig. 1 shows a hybrid RDCN with N racks. The traditional,
static packet-switched network is augmented by a circuit-
switching element to provide rack-level direct connectivity.
The packet network is a static environment, where the topology
cannot be configured. The circuit switch, typically realized by
a reconfigurable device such as an OCS, introduces dynamicity
to an RDCN. In a typical setup, all racks are connected via the
packet network permanently to provide basic connectivity for

Rack 1 Rack 2 Rack 3 Rack N

Circuit Switch

Packet Network

Fig. 1. Overview of an RDCN. A circuit switch is present to introduce
dynamicity in addition to the conventional packet network.

latency-sensitive flows [4]. Additionally, the circuit switch, e,g.
OCS, creates temporary links between rack pairs on demand.
Limited availability on ports of the circuit switch and the
high financial costs of full provisioning means that the high
bandwidth network cannot be utilized all the time by the
racks. Therefore, a scheduling algorithm for the circuit switch
network is required to connect rack pairs on demand [3], [22].

The authors of [23], [24] showed that during circuit re-
configuration, no circuit links can be used, which causes a
reconfiguration downtime. In RDCNs, a typical circuit recon-
figuration schedule consists of 90% circuit up-times and a 10%
circuit downtime [22]. We refer to circuit up-time as the day
time and downtime as the night time.

Flow-level simulation studies of RDCNs have shown that
their performance is superior in comparison to the static
topologies, e.g., [3], [4]. However, these analyses consider
100% link utilization immediately after reconfigurations and
do not consider the mix of TCP variants in the traffic pat-
tern. When packet-level traffic characteristics are taken into
account, the assumption of efficient and fair link usage may
not hold. Therefore, the real cost of frequent reconfigurations
on RDCN performance requires the analysis of transport layer
protocols and their behavior under frequent reconfigurations.

B. TCP

The TCP/IP stack, which is still a part of today’s internet,
was introduced back in the 1980s [25]. The transport layer
presented in the modern TCP/IP stack is implemented in the
operating system kernel and has an end-to-end view of the
connection, which considers only a single logical link between
the two endpoints [26]. However, particular characteristics
of individual links in each hop between the endpoints may
influence the transport protocol’s behavior.

TCP is one of the most popular transport layer protocols. It
enables as fast as possible message exchange across network-
ing entities with guaranteed delivery and reliability through the
acknowledgment mechanism [25]. Although the mechanism
appears to be straightforward, there are essential parameters
in a TCP connection. One of these parameters is the ordering
of the packets received. The burst of packets may change the
order of sending during transmission in the link and cause
overhead to the receiver. These packets have to be reassembled



in the receiver. The other important aspect is the size of the
group of packets transmitted in each period before waiting for
an ACK from the receiver. This is referred to as the bytes-
in-flight or the congestion window size in the literature. The
determination of this parameter is essential for ensuring fast
delivery. A smaller congestion window size leads to slower
transmission, whereas a larger congestion window size may
cause packet losses. The packet losses incurred by the TCP
connection cause retransmissions. Missing packets that are not
successfully received by the receiver have to be retransmitted
by the TCP protocol to successfully deliver a message stream.

The availability of a set of parameters enables flexibility
in design for various TCP implementations. The trade-off
between latency and reliability allows for different TCP CC
designs. Additionally, these algorithms also determine the dis-
tribution of the available bandwidth between flows. Therefore,
in a broader sense, the goal of TCP CC is to maximize the
sending rate while ensuring reliable and fair communication.
Based on their nature, TCP variants can be categorized into
five groups: loss-based, delay-based, capacity-based, hybrid,
and explicit feedback-based CC.
Loss-based CC: Packet losses are one of the most commonly
used congestion signals. The detection of a packet loss triggers
the loss-based algorithms to adjust their congestion window
size. The investigated loss-based TCP variants in this paper
are CUBIC [27] and Reno [28]. These algorithms grow their
congestion window sizes until a packet loss occurs. If a loss
occurs after the growth period, this indicates congestion in the
link. This causes the congestion window size to shrink. Dif-
ferent implementations use different approaches for increasing
and decreasing the window size. CUBIC estimates the packet
loss with a cubic function of the last time since a packet
loss occurred. In contrast, Reno employs an Additive Increase,
Multiplicative Decrease (AIMD) scheme.
Delay-based CC: Another technique for detecting congestion
is continuously monitoring packets’ RTT. An increase in RTT
is used to indicate queue buildup in the network. Pure RTT-
based congestion detection, such as TCP Vegas [29] introduces
a fairness problem. RTT is the first parameter that increases
if more than two flows compete on the same link since the
queues build up before a packet loss happens. This introduces
a problem for competition for delay-based CC algorithms and
causes them to suffer in terms of achieved throughput. This
paper omits the analysis of delay-based algorithms, as they
are known to compete poorly with more aggressive, loss-based
schemes [30].
Capacity-based CC: The links have limited capacity, and
they need to be shared between multiple flows in general.
One of the methods of adjusting congestion window size is to
estimate the available capacity. The capacity-based algorithms
track the estimated bandwidth to adapt the congestion window
size after a loss [26]. The estimation phase is determined in
the start phase and updated throughout the serving process.
An example of this implementation investigated in this paper
is TCP Westwood [31].
Hybrid CC: One other alternative to detect congestion is to

combine more than one metric. TCP BBR [32] is an example
of the category of hybrid CC mechanism which continuously
measures RTT and link capacity to determine the congestion
window size. The capacity estimation relies on predicting the
Bandwidth-Delay Product (BDP). BDP is the product of a
link’s capacity and the RTT. The consideration of these two
parameters enables a hybrid mechanism to detect congestion.
Our analysis focuses on TCP BBR v1 in the remainder of this
paper.
Explicit Feedback-based CC: Finally, a subset of TCP
variants relies explicitly on feedback from the network to
detect congestion. While TCP is implemented in the operating
system kernel, the availability of an external notification field
that indicates congestion helps detection much easier and more
efficiently. DCTCP [33], PowerTCP [34], and XCP [35] are
manifestations of the explicit feedback-based CC category.
Analysis has shown that explicit feedback can benefit conges-
tion window size adjustment significantly in controlled DCN
environments [36]. This paper focuses on the investigation of
DCTCP [33].

C. UDP

UDP is one of the core transport layer implementations as
an alternative to TCP. In comparison to TCP, UDP speeds
up transmission by transferring data without establishing a
successful connection, i.e., it is connectionless. This means
that UDP does not provide guarantees for packet delivery.
Therefore it is mainly used for loss-tolerating connections that
require low latency. This paper uses UDP as background traffic
and measures the impact of UDP traffic on TCP performance
in the presence of reconfigurations.

D. QUIC

QUIC [37] protocol was developed by Google in 2012.
It was deployed in the Chromium source code and has
gained popularity since then. It is estimated that over 40%
of Google’s traffic uses QUIC [38]. QUIC is implemented
in user space on top of UDP. Although it is built on top of
UDP, it also provides TCP’s reliable transmission guarantees.
However, the user space implementation means that QUIC
can be customized and tailored to application needs. Among
many existing implementations, we focus on LiteSpeed QUIC
(LSQUIC) [39] due to its high rate transmission performance
in the remainder of this paper.

III. RELATED WORK

We are not aware of any thorough analysis of TCP flows
subject to frequent migrations. However, several related works
exist, which investigate TCP behavior under different sce-
narios. Most of the existing TCP analyses focus on static
DCN topologies and employ simulation studies. The analysis
of widely used TCP variants in static DCNs is presented
in [36]. The performance analysis of coexisting DCTCP and
other TCP variants are investigated in [14]. Improvements to
DCTCP and an overview of existing CC implementations are
discussed in [40]. Jain et al. discuss the TCP implementations



focusing on wireless and, in general, low-bandwidth lossy
links [41]. TCP performance in static DCNs under different
CC schemes is analyzed in [42], [43]. The benchmark of TCP
and QUIC in isolated settings are also analyzed in-depth in
the literature [19]. Additionally, the literature has also focused
on measuring TCP performance when there are also QUIC
flows in the traffic mix [20]. However, none of these works
considers flow migrations. Overall, these papers do not take
into account the dynamic nature of RDCNs.

In RDCNs, the effect of packet re-ordering on TCP through-
put has also been analyzed and known for a very long period
of time [44]. Recently, Cârpa et al. have built on top of this
work and analyzed the effect of switch reconfigurations on
TCP performance [45]. This work considers multiple flows
competing on the same bottleneck. However, it only focuses
on TCP CUBIC and lacks a variation of CC algorithms.

Mukerjee et al. [9] use an open-source RDCN emulator to
analyze the performance of TCP variants under reconfigura-
tions. Specifically, they investigate the TCP variants’ ability
to ramp up their sending rate after frequent reconfigurations.
They suggest an adaptation of TCP to account for short-term
link capacity changes. However, this work lacks the interaction
of different TCP variants, transport protocols, and does not
consider heterogeneous traffic mixes. Moreover, they consider
the migration of all the flows to an uncongested link, whereas
in a real RDCN environment, congestion in the static packet
network is also likely to occur. Existing works do not reflect
real-world network environments’ complex nature. To close
this gap, we present a comprehensive testbed measurement
study to investigate the behavior of CC algorithms subject to
frequent reconfigurations with varying traffic mixes.

In addition to empirical measurement findings, the suc-
cessful modeling of TCP throughput may benefit the CC
algorithms. Prophet [46] framework provides a model to
predict the throughput of TCP flows under static DCNs and
strict conditions. Authors of [47] build an ML model to infer
TCP characteristics from a set of passive measurements in
static DCNs. CCAC [48] tool relies on theoretical analysis and
presents a model to verify certain properties of CC algorithms
before deployment and lacks modeling of multiple flows
competing on the same bottleneck. The existing ML models
predict the throughput to enable better congestion window
size adjustment in static DCNs. However, these analyses have
a limitation to their approach. The generalized prediction of
these models to RDCNs does not hold. In order to close this
gap, this paper proposes an ML model to relate the TCP
variants and reconfiguration settings to the FCT.

IV. MEASUREMENT SETUP

The goal of this paper is to compare the network utilization
of flows under varying reconfiguration scenarios on a small
representative setup. This section establishes a programmable
data plane that emulates an OCS and describes the measure-
ment settings.

Tofino Switch (P4)

Server 2

Controller

Measurement Server 

SmartNIC

Server 1

Trafficgen. Sm
ar

tN
IC

Si
nk

Intel N
IC

Optical Fiber
Taps

Fig. 2. Testbed overview.

A. Testbed

Fig. 2 shows the testbed. It consists of three servers,
a Switch and a Controller. The servers are running
Ubuntu 18.04 (4.15.0-173-generic kernel) and this study uses
the official CC implementations available in the Linux Kernel.
Server 1 and Server 2 are connected to the Switch via
two 10Gbps optical cables (black solid lines). The existence
of two separate physical links allows packet generation of up
to 20Gbps in Server 1 without facing a bottleneck in the
uplink to the Switch. The server CPU and bus are capable
of handling speeds up to 40Gbps, and hence 20Gbps traffic
generation can be achieved. Four ports of the Switch are
connected via loopback cables (green lines). The objective
of these links is to introduce congestion of packets only in
the loopback link. With this setup, a typical OCS behavior is
emulated where the congestion vanishes when the flows are
migrated to a newly set up dedicated link and it increases when
the OCS link is torn down. The Measurement Server
is connected to the optical taps in the loopback links. The
Controller has 1Gbps connection with all the entities to
orchestrate the experiment.

The traffic is generated by using iPerf version 2.0.10 [49]
for flows greater than 1GB in Server 1. Smaller flows
are generated via conventional server-client fashion HTTP file
transfer. The packet sizes are set to 9000Bytes, to reduce the
overhead of packet processing and collection. As for the NIC,
Netronome Agilio SmartNIC NFP-4000 [50] is used without
any custom P4 programs. Server 2 is designated as the
traffic sink, and two separate server processes are being run
on two different ports of the Intel X710 series NIC [51].

The incoming packets from Server 1 to the Switch are
initially configured to traverse the color-coded loopback links
on the Switch. The forwarding rules are installed manually.
The outgoing direction of the loopback links is tapped, and the
data packets are collected in the Measurement Server.
The Switch is then programmed to forward data packets
coming from the loopback links to their final destination
on Server 2. With this architecture, the traffic is tapped
passively and the state of TCP is preserved on separate
physical ports of Server 2.



The Measurement Server features a SmartNIC with
two ports. A custom P4 program is loaded to SmartNIC to
forward incoming packets from physical ports to a virtual
interface. During the forwarding process, the IP ToS field of
the packets is modified to distinguish the incoming packets
from different physical interfaces, as it is not possible to
differentiate from the virtual interface otherwise. TCPDUMP
traffic collection is run on the virtual interface, and all the data
packets are collected with software timestamping.

The Controller is present to orchestrate the mea-
surement process. In addition to the remote experiment
Controller shown in Fig 2, the Switch has its own
local controller component that translates commands from the
experiment controller. The local manager of the Switch is
instantiated with the remote Controller at the beginning of
the experiment and it allows for reconfiguring of the Switch
with microsecond precision. We implement the local manager
as a C++ program that receives high-level commands from the
overall experiment controller and modifies the configuration of
the P4 program or table entries accordingly. With the provided
Software Development Emulator (SDE) by Intel, we utilize
C++ bindings to control the programmable ASIC, e.g., to
create new entries in match-action tables or to read/modify
register values. Specifically, our local manager implements the
loop that modifies the forwarding table entries to migrate the
flows back and forth.

B. Measurement Procedure

Unless stated otherwise, the flows are created in the
Server 1 at the same time. In the initial state, packets arriv-
ing at the Switch are forwarded to green and blue (dashed)
loopback links such that they follow completely separated
paths in the loopback link. In the second state (after one
reconfiguration), blue packets traversing the blue loopback link
are migrated to the green loopback link, causing congestion.
The rules differentiating packets leaving the Switch to the
destination server are kept intact during the rule update. With
this approach, the migration takes place only in the loopback
links independent of the flow source and destination. This
reconfiguration scheme is then applied back and forth with
a pre-defined reconfiguration period.

ARP entries to Server 1 and Server 2 are installed
prior to the measurement. Therefore no ARP broadcasting and
messages are being forwarded via the Switch. Moreover, the
Switch is using a single buffer for all the incoming packets
from all the ports and hence making the likelihood of ACK
packet drops very high. Therefore, unlike the data packets in
the outgoing direction, TCP ACK packets originating from
Server 2 are routed around the Switch, meaning that they
do not trace the loopback link. By bypassing the loopback
link, ACK packets are transported instantly, hence reducing the
likelihood of ACK packet drops. This behavior emulates the
asymmetric routing in RDCNs, where large flows are mainly
subject to migration and small flows are served via the static
topology [4].

TABLE I
SUMMARY OF THE INVESTIGATED SCENARIOS.

Values

Transport Protocols TCP, UDP, QUIC

TCP Variants CUBIC, BBR, Reno, Westwood, DCTCP
Reconfiguration

Periods
None, 1ms, 5ms, 10ms
25ms, 50ms, 100ms

Reconfiguration
Downtimes None, 1ms, 2ms, 5ms, 10ms

Number of Flows 1, 2, 8, 10, 20

Flow Sizes 2n MB for n in [0, 8], 2GB, 4GB

The summary of analyzed scenarios, parametrized by the
TCP variant, reconfiguration period, reconfiguration down-
time, number of flows, and flow sizes are presented in Table I.
The values column shows the available settings and the com-
plete list of scenarios includes the combination of the specified
settings. The most popular TCP variants from different CC
categories are selected for investigation. Reconfiguration pe-
riods range from 0 to 100ms to account for accurate OCS
reconfiguration scenarios in RDCNs [52]. Reconfiguration
downtimes reflect the widely proposed values in the literature
and reconfiguration periods are configured to result in a 90%
duty cycle which is the common choice in the literature [3]–
[8]. Flow sizes are selected to cover elephant (2GB and 4GB)
and mice flows. The number of flows represents anticipated
edge cases: a single flow, 2 competing flows as well as multiple
flows.

V. EVALUATION

Frequent migrations of the flows are expected to affect the
achieved throughput of the flows and hence the FCT. The
intuition behind this expectation stems from the fact that the
flows might take some time to ramp up their sending rates (due
to TCP CC algorithm behavior) after the reconfigurations and
lead to the under-utilization of the links. In this section, we
analyze the packet traces collected during the measurement
process to investigate the effect of the reconfiguration period
on TCP performance. The results report averages and 95%
confidence intervals from 30 measurement runs.

The evaluations are structured as follows: Sec. V-A es-
tablishes the benchmark of the testbed with a single flow.
Sec. V-B analyzes two competing TCP flows using the same
CC algorithm. Sec. V-C evaluates the competition of two
different TCP variants. Sec. V-D investigates the performance
of DCTCP. Sec. V-E measures the effect of reconfiguration
downtime on TCP performance. Sec. V-F considers the sce-
narios consisting of many small flows. Sec. V-G analyzes TCP
behavior when UDP traffic is present in the background with
bursts. Sec. V-H sheds light on the results when there are more
than two flows in the traffic mix. Finally, Sec. V-I presents TCP
performance when interacting with QUIC traffic.



0 1 2 3 4
0

5

10
CUBIC

0 1 2 3 4
0

5

10
BBR

0 1 2 3 4
0

5

10
Reno

0 1 2 3 4
0

5

10
Westwood

Time [s]

Th
ro

ug
hp

ut
[G

bp
s]

None 50ms 10ms

Fig. 3. Average throughput comparison of a single TCP flow under frequent
reconfigurations. In the absence of congestion, there is no effect on the FCT.

A. Benchmark of the Testbed

In order to establish a benchmark of the testbed for compar-
ing flow behavior in case of congestion, a single TCP flow with
4GB volume is considered. This flow is migrated between two
links with a fixed reconfiguration period for each measurement
scenario. The measurement scenarios for benchmarking the
testbed include reconfiguration periods of 10ms, 50ms, and
no migration at all. The benchmark of the testbed indicates
that the minimum average RTT 300 us is achieved with BBR,
whereas the other variants’ RTT is between 1ms and 2.5ms
depending on the congestion window size.

Fig. 3 shows the achieved throughput for each TCP variant
with respect to time and reconfiguration period. The 95%
confidence intervals are also plotted with less opacity in the
background with matching colors. However, it is not visible
since the variance between the distinct measurement runs
is very low. The results indicate that all the TCP variants
achieve maximum theoretical throughput in less than 10ms.
Regardless of the reconfiguration period, the flows can achieve
10Gbps throughput and the flows are complete in 3.47 s
as expected by theoretical calculations (also considering the
headers in addition to the payload). Since the throughput is not
affected by the reconfiguration period, the benchmarks indicate
that the Switch does not drop packets during reconfiguration,
and in the absence of congestion frequent path migrations do
not affect the FCT.

B. Competition of Two Flows: Same TCP Variant

Congestion is likely to occur in a DCN environment, where
multiple flows coexist. Accordingly, we investigate a scenario
with two flows of 2GB each. One of these flows is referred
to as the migrated flow, which is periodically migrated in the
loopback link shown in Fig. 2. The other flow (main flow) is
served on the same link, which is shown by the green link in
Fig. 2. Our migration approach, as introduced in Sec. IV-B,
introduces periodic congestion in the loopback link, and after
re-migration, the congestion vanishes.

Throughput: Fig. 4 shows the average throughput of the
main and migrated flow with TCP CUBIC under different

reconfiguration periods. With 50ms reconfiguration period, the
main and migrated flow’s FCTs do not differ significantly.
A jigsaw pattern of the throughput between 10Gbps and
5Gbps is evident. This indicates that during the congestion
period, the rate is allocated fairly, and 50ms gives enough
time for TCP CUBIC to ramp up its sending rate on the
uncongested link. However, at 25ms, a decrease in the average
throughput of the migrated flow is observed. This directly
translates into an increase in the migrated flow’s FCT. Below
10ms, the magnitude of the FCT increase grows and the 95%
confidence intervals of the throughput do not overlap anymore.
At 1ms, the growth of the TCP congestion window after
reconfiguration is not fast enough and, hence the migrated flow
achieves less throughput consistently. The findings indicate
that the FCT prolongation and the reconfiguration period are
inversely related, which confirms the observations of Mukerjee
et al. [9]. Although not shown in this figure, an increased
FCT for the migrated flow is similarly observed for the other
TCP variants as well. These extensive measurements serve as a
baseline for network operators to fine-tune the reconfiguration
period for fair bandwidth allocation.

Congestion Window Size: In order to elaborate on the
analysis of varying FCTs with different reconfiguration sce-
narios, Fig. 5 shows the congestion window size of both
flows. A baseline (from the measurements in Sec. V-A) of
the congestion window size is also plotted to outline the
benchmark values. The ideal CC behavior is to ramp up the
maximum size and keep it constant throughout the transmis-
sion to achieve a small FCT. For our specific testbed environ-
ment, the maximum allowable congestion window size without
encountering a packet loss is determined as around 3000KB
from baseline measurements. Since TCP CUBIC uses a cubic
function to estimate the congestion window size, a concave
component where the window size ramps up sharply and a
convex component where CUBIC slowly probes for more
bandwidth can be observed in the baseline measurements.
At 50ms reconfiguration period, the congestion window size
of CUBIC indicates a pattern with peaks and valleys. The
valleys correspond to the immediate decrease in the congestion
window size after reconfiguration, hence encountering a packet
loss due to congestion. The peaks align with the time instances
just before reconfiguration, where the algorithm is trying to
ramp up its maximum allowable bytes in flight. However,
even at 50ms, the peaks are only at 60% of the baseline
values , and the convex shape cannot be observed in the
periodic congestion event. As the reconfiguration period is
decreased further, the jigsaw pattern consisting of peaks and
valleys becomes less evident and the migrated flow suffers
significantly from small congestion window size. Overall, the
analysis of congestion window size yields results parallel to
the throughput observations and serves as an explanatory fac-
tor for increased FCT of the migrated flow with a decreasing
reconfiguration period.



0 1 2 3 4
0

5

10

CUBIC (50ms)

0 1 2 3 4
0

5

10

CUBIC (25ms)

0 1 2 3 4
0

5

10

CUBIC (10ms)

0 1 2 3 4
0

5

10

CUBIC (1ms)

Time [s]

Th
ro

ug
hp

ut
[G

bp
s]

Migrated Main

Fig. 4. Average throughput of TCP CUBIC flows with varying reconfiguration periods. 95% confidence intervals are presented in the background with
matching colors. The migrated flows ramp up their sending rate after the main flows finish. Overall, decreasing the reconfiguration period increases the
migrated flow’s FCT.

0 1 2 3 4
0

1500

3000
50ms

0 1 2 3 4
0

1500

3000
25ms

0 1 2 3 4
0

1500

3000
10ms

0 1 2 3 4
0

1500

3000

1ms

Time [s]

C
w

nd
Si

ze
[K

B
]

Migrated Main Baseline

Fig. 5. Average congestion window size of TCP CUBIC under different
reconfiguration periods. The congestion introduced by frequent migrations
hinders TCP CUBIC’s ability to ramp up its congestion window size. The
migrated flow can only ramp up its congestion window size after the main
flow finishes at around t = 2 s.

C. Competition of Two Flows: Different TCP Variants

Previous studies have shown that many TCP variants coexist
alongside each other [9], [14]. The goal of comparing two
different TCP variants is to shed light on the scenarios
involving the interaction of different TCP variants. Fig. 6
shows the average throughput of migrated and main flows
of different TCP variants. Similar to the previous sections,
it presents the mean throughput and 95% confidence interval
per time instance for 30 different measurement runs.

Fig. 6(a) presents the interaction of a migrated flow using
CUBIC with main flows that use other variants and a recon-
figuration period of 50ms. Unlike for two competing TCP
CUBIC flows, the bandwidth is not shared fairly. The actual
bandwidth distribution depends on the traffic mix.

The first sub-figure of Fig. 6(a) shows the main flow using
BBR. It can be seen from the figure that although being
migrated, CUBIC consistently receives higher throughput than
BBR. The ideal case for all the scenarios would be that the
flows share equal percentages of the available bandwidth.
However, this plot shows that BBR becomes too passive by
trying to be fair against CUBIC even when it is being mi-
grated. Moreover, it can be seen that during the period where

congestion is absent, BBR cannot ramp up its sending rate to
the link’s capacity (10Gbps). The peaks are constant around
5Gbps link utilization. Also, after the CUBIC flow finishes,
BBR continues to utilize only 50% of the available bandwidth.
This indicates that the BDP calculation is not updated after
the initialization phase, leading to inefficiency even after the
competing flow vanishes. The inefficient bandwidth utilization
of BBR and its fairness property causes its FCT to be much
higher.

The competition between CUBIC and Reno, presented in
the second subfigure of Fig. 6(a), has the fairest allocation
among all scenarios. CUBIC and Reno, both loss-based CC
schemes, behave similarly. Finally, Westwood (last sub-figure
of Fig. 6(a)), a variant designed mainly for wireless, unreliable,
and lossy links, dominates the other variants in terms of
throughput competition.

Since the CC algorithms of the variants are different from
one another, their interaction exhibits different characteristics
than the competition of the same variants. An aggressive
congestion window growth rate leads to a higher share of
the available bandwidth than the other variant. In contrast,
a conservative congestion window growth rate may lead the
flow to under-utilize the link.

Furthermore, when compared to a smaller reconfiguration
period (presented in Fig. 6(b)), the flow behavior is observed
to be similar. While the magnitude of the FCT difference is
not the same, the overall behavior is similar. This indicates
that in addition to the reconfiguration period, the interacting
TCP variants also play a role in determining the effect on the
FCT.

D. Analysis of DCTCP

DCTCP is a CC algorithm that is specifically designed
for DCNs. It relies on the ECN field in the IPv4 header.
The switches mark a packet as congested, i.e., set the ECN
field to 2b11, if the queue depth exceeds a certain threshold.
Depending on the ECN field, DCTCP adjusts its congestion
window size. The queue depth threshold is a configurable
parameter. For a rule of thumb, the switches mark a packet
if the egress queue has more than 17% of BDP [33]. In our
setup, the queue depth is read when enqueuing a packet in
the egress queue. We vary the queue depth threshold with



0 1 2 3 4
0

5

10
CUBIC vs. BBR

0 1 2 3 4
0

5

10
CUBIC vs. Reno

0 1 2 3 4
0

5

10
CUBIC vs. Westwood

Time [s]

Th
ro

ug
hp

ut
[G

bp
s]

Migrated Main

(a) Reconfiguration Period: 50ms.

0 1 2 3 4
0

5

10
CUBIC vs. BBR

0 1 2 3 4
0

5

10
CUBIC vs. Reno

0 1 2 3 4
0

5

10
CUBIC vs. Westwood

Time [s]

Th
ro

ug
hp

ut
[G

bp
s]

Migrated Main

(b) Reconfiguration Period: 10ms.

Fig. 6. Average throughput of one migrated and one static (main) flow. The first TCP variant in each title refers to the migrated flow and the second one
indicates the main flow. Moreover, 95% confidence intervals are presented in the background with matching colors. In addition to the reconfiguration period,
the mix of interacting TCP variants affects the achieved throughput as well.

5 10 15 20 25
0%

5%

10%

15%

P
er

ce
n
ta

ge
of

E
C

N
-C

E
T

ag
ge

d
P

ac
ke

ts

5 10 15 20 25
0

1

2

N
o.

R
et

ra
n

sm
is

si
on

s
(i

n
th

ou
sa

n
d

s)

Queue Depth Threshold [KB]

10ms 25ms 50ms

Fig. 7. Analysis of different queue depth thresholds with varying reconfigura-
tion periods. The investigated metrics are the percentage of ECN-CE marked
packets and the number of retransmissions. The results are obtained from the
competition of two DCTCP flows and averages of 30 distinct measurement
runs are reported. Increasing the queue depth threshold leads to less number
of tagged packets, hence leading to more packet losses.

respect to reconfiguration periods and determine the best-
suiting threshold.

Fig. 7 shows a bar plot comparing the percentage of ECN
Congestion Experienced (CE) packets and the number of
retransmitted packets for various queue depth thresholds and
different reconfiguration periods. In order to fine-tune the
threshold, we swipe the threshold from 5KB to 25KB with
5KB increments.

The first subplot of Fig. 7 indicates the percentage of ECN-
CE marked packets. When the threshold is set to 5KB, around
15% of the packets are marked. Intuitively, the number of
marked packets decreases when the threshold is increased.
For a given threshold, decreasing the reconfiguration period
leads to more marked packets, which is in parallel to our
observations that decreasing the reconfiguration period leads
to more congestion, and hence, more tagged packets.

The second subplot of Fig. 7 shows the number of retrans-
mitted packets for various threshold values and reconfiguration
periods. When analyzed together with the percentage of ECN
marked packets, there seems to be a negative correlation
between the number of marked packets and retransmissions.
However, no clear consistent observation for retransmissions
can be observed. Upon analyzing various thresholds, we select
5KB as the ECN marking since it leads to the least number
of retransmission and the ratio of marked packets are in line
with previous analysis [36].

Fig. 8 visualizes the throughput of two competing flows.

Fig. 8(a) analyzes the competition of two DCTCP flows,
whereas Fig. 8(b) investigates the competing CUBIC and
DCTCP flows with reconfiguration periods of 50ms and
10ms. Fig. 8(a) shows that two DCTCP flows can share
the available bandwidth during congested periods and they
can ramp up to the full link capacity in case of 50ms
reconfiguration period. Unlike the previous observations with
TCP CUBIC, DCTCP can ramp up its sending rate when the
congestion vanishes even in the case of 10ms reconfiguration
period. As a result, it fairly shares the bandwidth between the
main and the migrated flow.

Fig. 8(b) illustrates that when a CUBIC flow is migrated
to a static link with DCTCP flow, CUBIC aggressively gains
over 90% of the bandwidth and causes the DCTCP flow to
suffer in terms of achieved bandwidth. Since more packets are
ECN marked, DCTCP fails to ramp up its sending rate upon
the detection of congestion. Our observations confirm that in
controlled RDCN environments, DCTCP CC might be the best
choice in terms of fair allocation of bandwidth, however, in
uncontrolled environments, DCTCP performance is subject to
degradation.

E. Reconfiguration Downtime

The scenarios so far considered an instantaneous reconfig-
uration of the circuits and re-routing of the flows. However,
OCS generally incur a reconfiguration cost [22], [52], [53].
This means that the circuit is destroyed during a reconfigura-
tion process and the new circuit and link require some time to
be set up. Packets arriving during the reconfiguration process
are, in the worst case, dropped. Since the Switch does not
drop any packets during reconfiguration, the reconfiguration
downtime is emulated by inserting a rule to drop packets
during the downtime.

For reconfiguration downtime analysis, two flows with 2GB
sizes using TCP CUBIC are considered. One of them is
continuously migrated while the other one is served statically.
The reconfiguration period is varied across scenarios and a
standardized 10% duty cycle is investigated, e.g. 50ms day
time and 5ms night time.

Fig. 9 shows the average throughput of migrated and
main CUBIC flows under different reconfiguration settings.
Commercially available OCS have reconfiguration downtimes
in the order of milliseconds. Accordingly, we evaluate values



0 1 2
0

5

10

50ms

0 1 2
0

5

10

10ms

Time [s]

T
h

ro
u

gh
p

u
t

[G
b

p
s]

Migrated (DCTCP) Main (DCTCP)

(a) DCTCP vs. DCTCP.

0 1 2
0

5

10

50ms

0 1 2
0

5

10

10ms

Time [s]

T
h

ro
u

gh
p

u
t

[G
b

p
s]

Migrated (CUBIC) Main (DCTCP)

(b) CUBIC vs. DCTCP.

Fig. 8. Average throughput of one migrated and one static (main) TCP flow. Competing flows are indicated in the plot legends, whereas the titles show the
reconfiguration period. While two DCTCP flows can fair share the bandwidth even in the case of 10ms reconfiguration period, CUBIC gains an aggressive
share of the link rate when competing with DCTCP.

0 1 2 3 4
0

10
CUBIC (100ms)

0 1 2 3 4
0

10
CUBIC (50ms)

0 2 4 6 8 10
0

10
CUBIC (20ms)

0 10 20 30 40
0

10
CUBIC (10ms)

Time [s]

Th
ro

ug
hp

ut
[G

bp
s]

Migrated MainMigrated MainMigrated MainMigrated Main

Fig. 9. Average throughput of TCP CUBIC flows with varying reconfiguration
downtimes. Reconfiguration periods are reported in the title and the duty cycle
is set to 90% in all scenarios. For instance, 10ms reconfiguration downtime is
created in case of a 100ms reconfiguration period. Dropping packets during
downtime increases the FCT of the migrated flow significantly.

of 1, 2, 5 and 10ms. The upper left sub-figure illustrates
the scenario where the circuit is provisioned for 90ms and
the reconfiguration incurs a downtime of 10ms. Unlike the
zero downtime case, it can be observed that even at 100ms
reconfiguration period migrated flow achieves consistently
lower throughput, and hence it translates into higher FCT for
the migrated flow. The following sub-figures further display
the low link utilization of the migrated flow.

The last sub-figure presents the most outstanding behavior
where the main flow achieves over 95% of the bandwidth
during congestion. After dropping packets, 9ms does not allow
enough time for TCP CUBIC to ramp up its sending rate.
Therefore, the migrated flow is unable to create congestion
that will reduce the throughput of the main flow. Moreover, it
can also be seen that even after the congestion vanishes, the
migrated flow suffers from migrations due to the reconfigu-
ration downtime. In this case, reconfiguration downtime not
only affects the migrated flow’s FCT negatively, but it also
affects the main flow’s FCT positively.

TABLE II
AVERAGE THROUGHPUT OF MIGRATED AND MAIN FLOWS.

Reconfiguration Period Migrated Flow Main Flow
50ms 1.43Gbps 1.24Gbps

25ms 1.39Gbps 1.28Gbps

10ms 1.31Gbps 1.27Gbps

F. Small Flows and Random Arrivals

Empirical studies of DCNs show that over 80% of the flows
are less than 10KB and inter-arrival time (IAT) of flows are in
the range of microseconds [54]. To improve scalability, RDCN
designs such as [3], [4], [7] target rack-to-rack circuits. In such
cases, the total rack-to-rack demand is considered and hence,
groups of multiple flows of different sizes become subject to
reconfigurations. In order to emulate this situation, we consider
a scenario with flows in the range of 2n MB for n in [0, 8].
The flows are separated into two groups: migrated and main.
The flow volumes are randomly selected from the available
volumes such that the total volume per group is 1GB. The
maximum allowed number of flows per group is set to 20.
Flows arrive in pairs (one migrated and one main) with periods
of 10ms. All flows use TCP CUBIC.

Table II shows the average throughput of flows in each
group under different reconfiguration periods. While the av-
erage throughput of the main flows varies less than 2%
across scenarios, the migrated flows’ throughput decreases
as the reconfiguration period is decreased. Overall, this hints
at the inefficient bandwidth utilization of flows when the
reconfiguration period is decreased.

G. UDP Background Traffic

Although, TCP is considered as de facto standard transport
protocol, there are also applications that use UDP, e.g., loss-
tolerating or latency-sensitive applications such as industrial
networks. The interaction of multiple TCP flows has been
analyzed in the previous sections. The continuous feedback
mechanism of TCP enables smoother interaction between
the variants. The variants are designed to consider fairness
between competing flows and guarantee minimal latency with
maximum throughput. However, UDP is a much more conven-



0 1 2 3

0

5

10

CUBIC

0 1 2 3

0

5

10

BBR

0 1 2 3

0

5

10

Reno

0 1 2 3

0

5

10

Westwood

Time [s]

T
h

ro
u

gh
p

u
t

[G
b

p
s]

Migrated Main UDP

Fig. 10. Average throughput of one migrated and one static (main) TCP flow where the main link is exposed to bursty UDP traffic. Competing flows use the
same TCP variants. Various TCP variants are plotted in different subplots. The reconfiguration period is set to 50ms. UDP bursts are sent with an inter-arrival
time of 25ms. The inclusion of bursty UDP traffic hinders TCP’s ability to adjust its sending rate. TCP BBR outperforms other variants in terms of adjusting
the rate to the available capacity.

tional protocol that does not control successful transmission.
UDP transfers packets without any control mechanism and it
does not account for other traffic on the same link. Therefore,
the interaction of TCP and UDP might differ from TCP to
TCP interaction.

There are two major scenarios for the interaction of a UDP
and a TCP stream: The first scenario considers a continuous
stream of UDP packets. Packets are sent at a constant rate,
i.e., there are no bursts of packets. The continuous stream
occupies a constant amount of the link’s capacity given by
the target rate of the UDP stream, and TCP tries to adjust its
sending rate up to the remaining capacity. Since UDP does not
consider successful packet transmission, this is the expected
behavior. Therefore, a more interesting analysis considers the
second scenario: bursty UDP background traffic.

The second scenario is created by sending UDP traffic in
bursts. The change in the available capacity in the link, which
is caused by the bursts, means that TCP needs to adjust its
sending rate to prevent packet loss. This scenario, including
background UDP traffic is created via the addition of another
server. The third server is configured to send 128 packets,
each of which is 9000 bytes, and the burst IAT is set to
25ms. UDP packet generation is achieved via MoonGen [55]
packet generator. The background traffic is introduced only
in the bottleneck link. TCP flow sizes are set to 2GB, and
the investigated reconfiguration period is 50ms without any
downtime. Therefore, the duration of traffic bursts equals half
of the migration period. This means that both the migrated
and the main TCP flow face a burst of UDP traffic for 25ms
during congestion. Additionally, the main flow faces a burst
of UDP traffic for 25ms in the absence of TCP congestion
(when the migrated and the main flow are served on separate
links).

Figure 10 shows the mean throughput of the TCP variants
when background traffic interference is present. Averages of
30 distinct measurements are plotted. The figure shows that
the link capacity occupied by UDP traffic forms around 10%
of the link capacity during burst periods. The existence of
background traffic in the congested links affects the TCP vari-
ants’ ability to adjust their sending rate. Since the background
traffic’s IAT is half of the reconfiguration period, the main

flow is expected to be affected more than the migrated flow
from the bursts. Hence, the theoretical FCT of the main flow
is expected to be higher than for the migrated flow. The
throughput plots for all the variants are in parallel with the
theoretical expectations. It can be seen that the main TCP
flows finish later than the main flow for all the variants.

For CUBIC and Reno, the inconsistency between the valleys
and the peaks indicates that packet losses trigger the loss-based
CC algorithm. These flows demonstrate an irregular pattern as
a result of the background traffic. The capacity limitations in
the bottleneck link favor the migrated TCP flow by allocating
it more bandwidth in general. For BBR, the jigsaw pattern is
much more evident than for the other variants. This is possible,
because of the available spaces in the buffers of the switch,
as BBR operates at the sending rate where the queues in the
path are empty. Hence, UDP packets do not create a packet
loss, so the sending rate is not affected. Westwood achieves
similar FCT for the migrated and the main flow, indicating that
it allocates the link capacity most fairly among other variants
in case of a bursty UDP background traffic.

In conclusion, the effect on CUBIC and Reno main flow is
much greater, while Westwood can allocate bandwidth fairly
across variants with the background traffic.

H. Competition of More than Two Flows

In a more realistic DCN environment, many flows coexist
alongside each other. Therefore, the analysis of the number
of flows in addition to the TCP variant analysis is beneficial
to understand if the observed patterns with two flows can
generalize to bigger scenarios.

Fig. 11 shows the throughput plots arising from the com-
petition of more than two flows. Specifically, we investigate
scenarios with 8 and 10 flows. The flow sizes are adjusted,
such that the total transmitted volume equals the analysis in
Sec. V-B, i.e. 4GB. The average throughput of each migrated
and main flow can be seen with transparent color-coded lines.
At 50ms reconfiguration period, CUBIC flows can adjust their
sending rate up to the link capacity both in the presence and in
the absence of congestion. However, at 10ms reconfiguration
period, the average achieved throughput of the migrated flow
is less. Finally, similar to the previous observations, 50ms



0 1 2

0

10
8 Flows (50ms)

0 1 2

0

10
8 Flows (10ms)

0 1 2

0

5

10 Flows (50ms)

0 1 2

0

10
10 Flows (10ms)

Time [s]

T
h

ro
u

g
h

p
u

t
[G

b
p

s]
Migrated Main

Fig. 11. Average throughput of migrated and main TCP CUBIC flows. The
titles report the total number of flows and reconfiguration periods. We consider
cases where migrated and main flows equally contribute to the total number
of flows, e.g. there are 4 migrated and 4 main flows in case of 8 flows
scenario. Each flow’s throughput is plotted separately with transparent colors.
Previously observed phenomena of migrated flow’s increased FCT generalize
to scenarios with more than 2 flows.

reconfiguration period does not affect the migrated CUBIC
flow’s FCT, whereas 10ms hinders the migrated flow’s ability
to adjust its sending rate during congestion. Therefore, we
conclude that our analysis of two flows can generalize to an
increased number of flows as well.

I. Interaction with QUIC

We investigate TCP performance, when there is also QUIC
traffic in the mix. For measuring a TCP flow’s performance
subject to frequent migrations, we migrate TCP traffic while
keeping the QUIC flow fixed as the main flow. Among many
existing QUIC implementations, we select LSQUIC, and all
the reported results are generated with this implementation. In
particular, we use LSQUIC v3.3.1 together with QUIC version
h3-29.

Our initial measurements have shown that QUIC is not
able to saturate a 10Gbps link. Therefore, for analyzing the
interaction of QUIC and TCP, the bottleneck link capacities are
adjusted to 1Gbps. Fig. 12 shows the measurement setup for
these measurements. Similar to the first testbed (Fig. 2), two
servers are present for creating and collecting the traffic. iPerf
version 2.0.10 [49] is used for generating TCP flows, whereas
QUIC traffic is generated via the example client and server
Docker container provided by the LSQUIC developers [39].

In addition to the Tofino Switch, the setup includes a
Dell S3048-ON OpenFlow-capable Switch, which
features 4x10G ports and 48x1G ports. The figure illustrates
10G ports with red and 1G ports with orange color. The goal
of the Dell Switch in this setup is to physically rate limit
the ports to 1Gbps, as the Tofino Switch does not have
ports with 1Gbps capacity. Although rate limiting can be
implemented artificially via token bucket filtering (as done in
downlink port to Server 2), in the case of flow migrations,
our benchmarks have shown that the measurement results show
a slight mismatch. Therefore, our setup includes a second
switch for pure rate-limiting purposes.

2 a b a
2 b

1

Tofino Switch (P4)

Server 2

Controller

Server 1

Trafficgen. Sm
ar

tN
IC

iP
er

f
(S

in
k)

Intel N
IC

DELL
S3048-ON

1

c d e f
c d e f

En
da

ce
 D

AG

M
ea

su
re

m
en

t S
er

ve
r

10G 1G

Fig. 12. Testbed overview for measuring TCP’s interaction with QUIC.

Finally, all the traffic is tapped via a copper tap, col-
lected, and timestamped in the Measurement Server via
Endace DAG 4x1G measurement card for analysis, and the
Controller is existent to orchestrate the experiment.

The procedure for the measurement includes the manual
installation of forwarding rules to both of the switches. The
manual forwarding rules are shown in the figure with letter
and number matchings. For example, the Dell Switch is
statically configured to forward packets incoming from the red
interface ’c’ to the orange interface ’c’. Similar to the previous
migration approach, a rule update in the Tofino Switch is
triggered with various reconfiguration periods. The rule update
takes place in numbered ports, i.e., the update triggers to for-
ward incoming packets from Port 2 to Port 1. This is repeated
periodically with varying reconfiguration periods. This rule
update causes congestion in the copper loopback links, which
are shown in red, on the Dell Switch indirectly due to
the manually and statically installed forwarding rules. Similar
to the previous approach, the packets sent by Server 2 are
routed around the Tofino Switch, meaning that they do
not trace the loopback links.

Fig. 13 presents the measurement results in case of 50ms
reconfiguration period. QUIC flow’s CC algorithm is set to
CUBIC and it is served constant on the static link as the
main flow, whereas TCP flow is being migrated. Different CC
algorithms of the TCP flow are plotted in different subplots.
Each plot shows 30 distinct measurement runs, and the runs
are plotted individually with transparency, i.e., there is one
line per run.

On the contrary to the observations of the competition of
two TCP flows, the upper left subplot shows that even at
50ms reconfiguration period, the migrated flow’s FCT is much
higher than the main QUIC flow. During the congested periods,
it is seen that the migrated flow achieves much less than
the fair-share bandwidth of 500Mbps, and this translates into
higher FCT. This observation is similar between TCP CUBIC
and TCP Reno.

TCP BBR shows a much more stable pattern, where the
jigsaw pattern is more evident, and in this case, the migrated
flow can achieve slightly higher bandwidth in comparison



0 1 2 3 4

0

1

CUBIC

0 1 2 3 4

0

1

BBR

0 1 2 3 4

0

1

Reno

0 1 2 3 4

0

1

Westwood

Time [s]

T
h

ro
u

gh
p

u
t

[G
b

p
s]

Migrated (TCP) Main (QUIC)

Fig. 13. Throughput of migrated TCP flows with varying CC algorithms
against a main QUIC flow with CUBIC CC. 30 runs are plotted individually
with transparent colors. The flow sizes are 128MB. The reconfiguration
period is set to 50ms. TCP CUBIC, Reno, and BBR suffer from competition
with QUIC significantly at 50ms reconfiguration period, whereas TCP
Westwood manages to compete with QUIC.

to TCP CUBIC and Reno. While the competition of a TCP
CUBIC and TCP BBR flow resulted in TCP CUBIC gaining
dominance over the link (Fig. 6(a)), it can be seen that a
migrated TCP BBR flow achieves a smaller FCT when com-
peting with a QUIC than TCP CUBIC or Reno. Finally, TCP
Westwood, which was observed to be the most dominant CC
algorithm among the investigated ones, manages to compete
with QUIC and achieves much better FCT than the other TCP
variants.

Fig. 14 presents the measurement results in case of 25ms
reconfiguration period. The results show that the observed
patterns are similar to the case of 50ms reconfiguration period
(Fig. 13), however, the magnitude of the effect is higher.
For TCP CUBIC and Reno, it can be seen that the migrated
TCP flow is suffering significantly during congestion (even
more than in the case of 50ms). For BBR and Westwood the
observed measurement results do not differ significantly.

Overall, the findings indicate that, in addition to the CC
algorithm, its implementation, e.g. Linux Kernel implementa-
tion and LSQUIC implementation, also plays an important
role. The previous findings reported from the competition of
two TCP CUBIC flows do not hold when a TCP CUBIC flow
is competing with a QUIC CUBIC flow.

VI. MODELING

The analysis of the measurements in Sec. V showed that,
in general, the migrated flow’s FCT increases when the
reconfiguration period decreases. This section extends the
evaluations to build up an ML model to predict the effect
of the reconfiguration period on the FCT prolongation of the
migrated flow. Additionally, it presents a model to predict
the TCP variant given the traffic patterns. The availability
of such models will enable the network operators to better
understand the traffic mix in their infrastructures, and hence
it will enable them to fine-tune their network management
algorithms accordingly.

0 1 2 3 4

0

1

CUBIC

0 1 2 3 4

0

1

BBR

0 1 2 3 4

0

1

Reno

0 1 2 3 4

0

1

Westwood

Time [s]

T
h

ro
u

gh
p

u
t

[G
b

p
s]

Migrated (TCP) Main (QUIC)

Fig. 14. Throughput of migrated TCP flows with varying CC algorithms
against a main QUIC flow with CUBIC CC. 30 runs are plotted individually
with transparent colors. The flow sizes are 128MB. The reconfiguration
period is set to 25ms. The magnitude of the impact of reconfigurations is
observed to be higher than 50ms.

A. Prediction of FCT Prolongation

The proposed model determines the factors of influence
on the FCT prolongation and formulates a prediction. The
insights gained from the predictions of the model will serve as
a tool to estimate the cost of reconfiguration scenarios on the
FCT and enable the network operators to tune link-scheduling
algorithms according to the traffic mix and reconfiguration
scenario.

The FCT prolongation is defined as the time difference
between the migrated flow’s FCT and the main flow’s FCT.1

The target variable to predict in this model is the FCT prolon-
gation. The input variables for the model are the migrated TCP
variant, the main TCP variant, day time, and the night time. For
the dataset, TCP CUBIC, Reno, and Westwood measurements
with two flows with 2GB volume are used.

For better interpretability, a random forest model is used
for training [56]. The training dataset consists of the FCTs
measured from all of the scenarios introduced in Sec. IV.

The random forest model is optimized via a grid search
of over 288 combinations of model parameters and evaluated
using 10-fold cross-validation. The grid search returns the
best parameters as 500 estimators, bootstrapping enabled,
maximum tree depth of 100 with a minimum of two samples
per leaf and two samples to split at each internal node.

Overall, the model predicts the FCT prolongation with a
Mean Squared Error (MSE) of 4.4 s2. Moreover, the R2 of
the model is 0.88, which indicates that 88% of the variance in
the results can be explained via this model. The unexplained
variance is mainly related to the scenario with 10ms recon-
figuration period and 1ms night time. Since the actual FCTs
vary significantly in these scenarios, many outliers exist and
the model performs worse.

Fig. 15 presents the scatter plot of the predictions of the
best-performing model and the actual FCT prolongations. The

1Since the difference between the migrated flow’s and the main flow’s FCT
is always positive in our case, there is no difference to using the absolute
difference.



1 5 10 20 25 50 100
Reconfiguration Period [ms]

0

10

20

30

40

FC
T

Pr
ol

on
ga

ti
on

[s
]

Predicted
Actual

Night Time [ms]
0 1 2 5 10

Night Time [ms]
0 1 2 5 10

Fig. 15. Scatter plot of the predicted and actual FCT prolongations. The actual
and predicted FCTs are plotted with different markers side-to-side with each
other. The prediction is achieved with an MSE of 4.4 s2.

prolongation values range from no prolongation to as high as
40 s.

The prolongation effect is significant when the night time
is 1ms and the day time is 9ms. Reconfiguration downtime
has an important effect on FCT prolongation. However, the
primary determinant is the day time in which a flow is served
via the provisioned link. This effect is also shown clearly in
the figure. At 2ms night time with 20ms day time, the FCT
prolongation effect is much less. The model predicts the effect
of the reconfiguration period on the FCT prolongation with
considerable performance.

B. TCP Variant Classification

The model presented for FCT prolongation prediction relied
on the knowledge of a TCP variant. To relax this assumption,
we provide a model to classify a TCP variant from a traffic
trace. Additionally, such a model will enable the network
operators to gain insights into the traffic mix in their DCNs.
The classification of TCP variants in wireless and static
DCN architectures has been analyzed to some extent in the
literature [57].

The input variables to our model are the congestion window
size and RTT of the flow for 500ms with respect to time.
Hence, the model is able to make a decision within 500ms in
a live trace. The target variable is the TCP variant, an integer-
encoded variable in the training dataset. The goal of the ML
algorithm is to predict the TCP variant given the congestion
window and RTT information which can be extracted from
traffic traces.

The classification of the TCP variant relies on an LSTM
model. The choice for LSTMs is based on the findings in [57]
which establishes that LSTMs are a better choice than random
forest for the classification of the TCP variant given the
traffic traces. The congestion window size and RTT values
are expressed in kilobytes and microseconds, respectively.
Therefore, the value range they can take is very diverse. As
suggested by [57], to overcome the effect of high variance in
the input layer, an embedding layer before the LSTM layer

TABLE III
CONFUSION MATRIX OF TCP VARIANT CLASSIFICATION.

Predicted
CUBIC BBR Reno Westwood

A
ct

ua
l

CUBIC 100 0 17 4

BBR 0 107 0 0

Reno 3 0 101 0

Westwood 1 0 4 95

is inserted into the neural network structure. The embedding
layer’s role is to reduce the dimension of the input space by
sampling the input. The next layer consists of an LSTM, and
the final layer is composed of a dense layer.

The traces from all measurements with two flows, excluding
DCTCP are used for modeling. Since the target variable is
a categorical variable with more than two classes, the neural
network is trained by minimizing the categorical cross-entropy
loss function. The hyperparameter optimization of the neural
network model is done by varying the embedding layer and
LSTM layer dimensions. Overall, the best-performing model
is trained for 250 epochs, and TCP variant classification is
achieved with 93.3% accuracy.

Table III presents the confusion matrix of the model. Each
row of the matrix represents the instances in an actual class,
while each column represents the instances in a predicted
class. The table shows that 29 variants out of 430 are classified
incorrectly. Classification of CUBIC has the most errors. The
model is prone to predict a CUBIC flow as Reno since the
behavior of CUBIC and Reno are very similar. It can be
seen that BBR has 100% classification accuracy. BBR is the
only variant in this mix that does not use the buffers of
the switch, and hence it demonstrates an entirely different
congestion window size and RTT behavior. This translates into
better classification performance. Finally, Reno and Westwood
are easier to detect than CUBIC, with better classification
accuracy.

In conclusion, the detection of TCP variants can shed light
on the traffic mix in a DCN. Overall, our models to predict the
FCT prolongation and classify TCP variants provide a proof-
of-concept methodology that network managers can employ
to better understand the TCP traffic mix in their DCNs and
fine-tune their architectures accordingly.

VII. CONCLUSION

Achieving the full performance of RDCNs depends on
TCP’s ability to utilize the temporary high bandwidth links
efficiently. Sub-millisecond reconfiguration periods, emerging
transport protocols, such as QUIC, pose a threat to the
performance of state-of-the-art TCP implementations. The
short duration of the high-bandwidth link provisioning periods
hinders TCP’s ability to ramp up its sending rate and leads to
lower link utilization with higher FCTs.

This paper analyzed the most popular TCP variants’ be-
havior and interaction with QUIC and UDP under different



reconfiguration scenarios. The findings indicate that reconfig-
uring the switch more frequently leads to a significant FCT
increase in the migrated flow and the magnitude of this effect
depends on the traffic mix. Inclusion of UDP and QUIC in the
traffic mix hinders TCP’s ability to adjust its sending rate in the
presence of reconfigurations. Finally, the proposed ML model
predicts the FCT prolongation and classifies TCP variants
in the traffic mix. It will benefit the networking society to
gain insights into the relationship between the reconfiguration
scenario and FCT.

A generalized model that will serve as a foundation for
predicting FCT prolongation with the incorporation of more
input DCN parameters, e.g., switch buffer sizes and cable
lengths is a direction for future work. The findings reported
in this paper outline the benchmarks and pave the way for
future work to design reconfiguration scenarios according to
the analyzed traffic mix and the proposed ML model.

ACKNOWLEDGMENTS

We acknowledge the financial support by the Federal Min-
istry of Education and Research of Germany (BMBF) in the
program of ”Souverän. Digital. Vernetzt.” joint project 6G-
life, project identification number 16KISK002 and Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
- 438892507.

REFERENCES

[1] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar,
J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson,
“Cloud programming simplified: A berkeley view on serverless
computing,” CoRR, vol. abs/1902.03383, 2019. [Online]. Available:
http://arxiv.org/abs/1902.03383

[2] V. Ziegler, H. Viswanathan, H. Flinck, M. Hoffmann, V. Räisänen, and
K. Hätönen, “6g architecture to connect the worlds,” IEEE Access, vol. 8,
pp. 173 508–173 520, 2020.

[3] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subra-
manya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid elec-
trical/optical switch architecture for modular data centers,” SIGCOMM
Comput. Commun. Rev., vol. 40, no. 4, p. 339–350, Aug. 2010.

[4] C. Griner, J. Zerwas, A. Blenk, M. Ghobadi, S. Schmid, and C. Avin,
“Cerberus: The power of choices in datacenter topology design-a
throughput perspective,” POMACS, vol. 5, no. 3, pp. 1–33, 2021.

[5] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage,
S. Seshan, G. M. Voelker, D. G. Andersen, M. Kaminsky et al.,
“Scheduling techniques for hybrid circuit/packet networks,” in Proc.
11th ACM CoNEXT, 2015, pp. 1–13.

[6] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,
G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper,
“Projector: Agile reconfigurable data center interconnect,” in Proc. ACM
SIGCOMM 2016. New York, NY, USA: Association for Computing
Machinery, 2016, p. 216–229.

[7] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” in Proc. 17th USENIX NSDI, 2020, pp. 1–18.

[8] K.-T. Foerster, M. Ghobadi, and S. Schmid, “Characterizing the al-
gorithmic complexity of reconfigurable data center architectures,” in
Proc. of the 2018 Symposium on Architectures for Networking and
Communications Systems, ser. ANCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 89–96.

[9] M. K. Mukerjee, C. Canel, W. Wang, D. Kim, S. Seshan,
and A. C. Snoeren, “Adapting TCP for reconfigurable datacenter
networks,” in USENIX NSDI. Santa Clara, CA: USENIX
Association, Feb. 2020, pp. 651–666. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/mukerjee

[10] M. T. Naing, T. T. Khaing, and A. H. Maw, “Evaluation of tcp and
udp traffic over software-defined networking,” in 2019 International
Conference on Advanced Information Technologies (ICAIT), 2019, pp.
7–12.

[11] K. Miyazawa, S. Yamaguchi, and A. Kobayashi, “Performance evalua-
tion of tcp bbr and cubic tcp in smart devices downloading on wi-fi,” in
2020 IEEE International Conference on Consumer Electronics - Taiwan
(ICCE-Taiwan), 2020, pp. 1–2.

[12] K. Ratna Pavani and N. Sreenath, “Performance evaluation of tcp-reno,
tcp-newreno and tcp-westwood on burstification in an obs network,” in
ADCOM, 2012, pp. 19–24.

[13] K. Sasaki, M. Hanai, K. Miyazawa, A. Kobayashi, N. Oda, and S. Yam-
aguchi, “Tcp fairness among modern tcp congestion control algorithms
including tcp bbr,” in 2018 IEEE 7th International Conference on Cloud
Networking (CloudNet), 2018, pp. 1–4.

[14] S. M. Irteza, A. Ahmed, S. Farrukh, B. N. Memon, and I. A. Qazi, “On
the coexistence of transport protocols in data centers,” in Proc. IEEE
ICC, 2014, pp. 3203–3208.

[15] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” ACM SIGCOMM computer communication review, vol. 45,
no. 4, pp. 183–197, 2015.

[16] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proceedings of the ACM SIGCOMM
2011 Conference, 2011, pp. 242–253.

[17] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy, “Virtualized congestion control,”
in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 230–243. [Online]. Available:
https://doi.org/10.1145/2934872.2934889

[18] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and
A. Akella, “Ac/dc tcp: Virtual congestion control enforcement for
datacenter networks,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 244–257. [Online]. Available:
https://doi.org/10.1145/2934872.2934903

[19] K. Nepomuceno, I. N. d. Oliveira, R. R. Aschoff, D. Bezerra, M. S. Ito,
W. Melo, D. Sadok, and G. Szabó, “Quic and tcp: A performance eval-
uation,” in 2018 IEEE Symposium on Computers and Communications
(ISCC), 2018, pp. 00 045–00 051.

[20] Y. Yu, M. Xu, and Y. Yang, “When quic meets tcp: An experimental
study,” in 2017 IEEE 36th International Performance Computing and
Communications Conference (IPCCC), 2017, pp. 1–8.

[21] K. Aykurt, J. Zerwas, A. Blenk, and W. Kellerer, “On the performance of
tcp in reconfigurable data center networks,” in 2022 18th International
Conference on Network and Service Management (CNSM), 2022, pp.
127–135.

[22] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proc. ACM SIGCOMM, 2017, p. 267–280.

[23] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker,
G. Papen, A. C. Snoeren, and G. Porter, “Circuit switching under the
radar with reactor,” in Proc. 11th USENIX NSDI, 2014, pp. 1–15.

[24] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage,
S. Seshan, G. M. Voelker, D. G. Andersen, M. Kaminsky et al.,
“Scheduling techniques for hybrid circuit/packet networks,” in Proc.
11th ACM ConNEXT, 2015, pp. 1–13.

[25] J. Postel, “Transmission control protocol,” Sep 1981. [Online].
Available: https://rfc-editor.org/rfc/rfc793.txt

[26] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella,
and M. Zorzi, “A survey on recent advances in transport layer
protocols,” CoRR, vol. abs/1810.03884, 2018. [Online]. Available:
http://arxiv.org/abs/1810.03884

[27] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS operating systems review, vol. 42, no. 5, pp.
64–74, 2008.

[28] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
computer communication review, vol. 18, no. 4, pp. 314–329, 1988.

[29] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “Tcp vegas: New
techniques for congestion detection and avoidance,” in Proceedings
of the conference on Communications architectures, protocols and
applications, 1994, pp. 24–35.



[30] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 537–550, 2015.

[31] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “Tcp
westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proceedings of the 7th annual international conference on
Mobile computing and networking, 2001, pp. 287–297.

[32] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: congestion-based congestion control,” Communications of the
ACM, vol. 60, no. 2, pp. 58–66, 2017.

[33] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in Proc.
ACM SIGCOMM, 2010, pp. 63–74.

[34] V. Addanki, O. Michel, and S. Schmid, “{PowerTCP}: Pushing the
performance limits of datacenter networks,” in Proc. USENIX NSDI,
2022, pp. 51–70.

[35] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, 2002, pp. 89–102.

[36] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of dctcp:
stability, convergence, and fairness,” ACM SIGMETRICS Performance
Evaluation Review, vol. 39, no. 1, pp. 73–84, 2011.

[37] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[38] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld, “A first look at QUIC in
the wild,” in Passive and Active Measurement. Springer International
Publishing, 2018, pp. 255–268.

[39] Litespeedtech, “Litespeedtech/lsquic: Litespeed quic and http/3 library.”
[Online]. Available: https://github.com/litespeedtech/lsquic

[40] T. Das and K. M. Sivalingam, “Tcp improvements for data center
networks,” in 2013 Fifth International Conference on Communication
Systems and Networks (COMSNETS), 2013, pp. 1–10.

[41] A. Jain, A. Pruthi, R. Thakur, and M. Bhatia, “Tcp analysis over wireless
mobile ad hoc networks,” in 2002 IEEE International Conference on
Personal Wireless Communications. IEEE, 2002, pp. 95–99.

[42] K. G. Tsiknas, P. I. Aidinidis, and K. E. Zoiros, “Performance evaluation
of transport protocols in cloud data center networks,” Photonic Network
Communications, 2021.

[43] A. Ganji, A. Singh, and M. Shahzad, “Characterizing the impact of tcp
coexistence in data center networks,” in 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), 2020, pp. 388–
398.

[44] J. Bennett, C. Partridge, and N. Shectman, “Packet reordering is not
pathological network behavior,” IEEE/ACM Transactions on Network-
ing, vol. 7, no. 6, pp. 789–798, 1999.

[45] R. Cârpa, M. D. de AssunçÃo, O. Glück, L. LefÈvre, and J.-C. Mignot,
“Evaluating the impact of sdn-induced frequent route changes on tcp
flows,” in Proc. IEEE CNSM, 2017, pp. 1–9.

[46] J. Zhang, K. Gao, Y. R. Yang, and J. Bi, “Prophet: Toward fast, error-
tolerant model-based throughput prediction for reactive flows in dc
networks,” IEEE/ACM Transactions on Networking, vol. 28, no. 6, pp.
2475–2488, 2020.

[47] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure, “General tcp state
inference model from passive measurements using machine learning
techniques,” IEEE Access, vol. 6, pp. 28 372–28 387, 2018.

[48] V. Arun, M. T. Arashloo, A. Saeed, M. Alizadeh, and H. Balakrishnan,
“Toward formally verifying congestion control behavior,” in Proc. ACM
SIGCOMM, ser. SIGCOMM ’21, 2021, p. 1–16.

[49] V. GUEANT, “Iperf - the ultimate speed test tool for tcp, udp and
sctptest the limits of your network + internet neutrality test.” [Online].
Available: https://iperf.fr/

[50] “Netronome agilio cx isa-4000-10-2-2: 2x 10g sfp+ smartnic.” [Online].
Available: https://stordirect.com/shop/adapter-cards/network-interface-
cards/netronome-agilio-cx-isa-4000-10-2-2-2x-10g-sfp-smartnic/

[51] “Intel® ethernet network adapter x710
product specifications.” [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/series/189530/intel-
ethernet-network-adapter-x710.html

[52] J. Zerwas, W. Kellerer, and A. Blenk, “What you need to know about
optical circuit reconfigurations in datacenter networks,” in 2021 33th
International Teletraffic Congress (ITC-33), 2021, pp. 1–9.

[53] K.-T. Foerster and S. Schmid, “Survey of reconfigurable data center net-
works: Enablers, algorithms, complexity,” ACM SIGACT News, vol. 50,
no. 2, pp. 62–79, 2019.

[54] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM SIGCOMM IMC, 2010, pp. 267–
280.

[55] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Internet
Measurement Conference 2015 (IMC’15), Tokyo, Japan, Oct. 2015.

[56] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning
interpretability: A survey on methods and metrics,” Electronics, vol. 8,
no. 8, 2019.

[57] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong, “The
great internet tcp congestion control census,” POMACS, vol. 3, no. 3,
pp. 1–24, 2019.

Kaan Aykurt received his M.Sc. degree in Commu-
nications Engineering from the Technical University
of Munich (TUM), Germany, in 2022. He joined the
Chair of Communication Networks at the TUM as
a research and teaching associate in May 2022. His
research is focused on data center networks, multi-
domain autonomous network management, and ap-
plications of machine learning in communication
networks.

Johannes Zerwas received his M.Sc. degree in
Electrical Engineering and Information Technology
from the Technical University of Munich (TUM),
Germany, in 2018. He joined the Chair of Commu-
nication Networks at the TUM as a research and
teaching associate in February 2018. His research
is focused on reconfigurable network topologies for
data center and wide area networks, and data-driven
networking algorithms.

Andreas Blenk is a Research Scientist at Siemens
AG, where he has been a part of the Industrial
Networks & Wireless group (T CED INW-DE) since
April 2022. In his current role, he is focused on
the automation, measurement, and validation of in-
dustrial networks, and is involved in defining and
writing blueprints for the Siemens AG networking
portfolio. Prior to joining Siemens AG, Andreas
was a member of the Chair of Communication
Networks, led by Prof. Wolfgang Kellerer, at the
Technische Universität München (TUM) beginning

in June 2012. He went on to receive his Doktor-Ingenieur (Dr.-Ing.) degree
from TUM in May 2018, achieving the highest distinction of summa cum
laude. From 2018 to 2022, Andreas continued his work at TUM as a Postdoc,
further honing his expertise in the field of communication networks. During
this time, he also served as a Senior Research Fellow at the Communication
Technologies Group within the Faculty of Computer Science at the University
of Vienna from March 2019 to January 2022.

Wolfgang Kellerer (M’96, SM’11) is a Full Profes-
sor with the Technical University of Munich (TUM),
heading the Chair of Communication Networks at
the Department of Electrical and Computer Engi-
neering. Before, he was for over ten years with
NTT DOCOMO’s European Research Laboratories.
He currently serves as an associate editor for IEEE
Transactions on Network and Service Management
and as the area editor for Network Virtualization for
IEEE Communications Surveys and Tutorials.


