
Technische Universität München 
TUM School of Computation, Information and Technology 

Guiding the Practical Adoption of 

Federated Machine Learning in Organizations 

Tobias Müller 

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology 

der Technischen Universität München zur Erlangung eines 

Doktors der Naturwissenschaften (Dr. rer. nat.) 

genehmigten Dissertation. 

Vorsitz:       Prof. Dr. Jens Großklags 

Prüfende der Dissertation: 

1. Prof. Dr. Florian Matthes

2. Prof. Dr.-Ing. Stefan Tai

Die Dissertation wurde am 08.11.2023 bei der Technischen Universität München eingereicht 

und durch die TUM School of Computation, Information and Technology am 07.05.2024 

angenommen. 



II



Abstract

Problem Statement: The ever-increasing wealth of digitized data powers the disruptive po-
tential of Machine Learning (ML) and its immense economic impact. Still, a significant amount
of the world’s data is scattered and locked in data silos. Accessing the siloed data becomes
more difficult with privacy concerns and legal regulations, which leaves the full potential and
therefore economic opportunity of the stored data largely untapped. Federated Machine Learn-
ing (FedML) is a novel model-to-data approach that enables the training of ML models on
decentralized, potentially siloed data without the need for direct data sharing. Despite its po-
tential, most FedML projects remain as prototypes or simulations and do not lead to a productive
use of the technology. This dissertation investigates this challenge and offers a qualitative explo-
ration of the practical adoption of FedML in organizations. In particular, we address research
themes that have not been investigated in previous literature: the influencing factors for a suc-
cessful practical adoption, the socio-technical aspects of FedML collaborations, and its software
development life cycle.

Research Design: We follow an inductive, qualitative research strategy. First, we built on
an expert interview study with a reflexive thematic data analysis strategy to explore the influ-
encing factors for the practical adoption of FedML. The resulting insights demonstrated the
need to investigate research gaps regarding collaborations in the ML domain and the complex
FedML implementation process. Consequently, we investigated the socio-technical challenges of
collaborative FedML through a systematic literature review, focus group discussions, and semi-
structured expert interviews. Finally, we followed the design science research strategy to develop
a high-level process model and detailed activity models for the FedML software development life
cycle. Herein, we conducted literature reviews, focus groups, and expert interviews to build our
knowledge base, gather requirements, and collect feedback.

Results: First, we reveal the reasons practitioners leverage FedML and offer an exhaustive
overview of the risks, challenges, and factors that influence the successful practical adoption of
FedML in organizations. Second, this dissertation provides a comprehensive overview of the
socio-technical challenges that arise due to the decentralized and collaborative characteristics of
FedML. Thereby, we compiled a catalog of guiding questions that need to be considered in the
collaboration creation within FedML projects. Third, we developed a high-level process model
to provide a comprehensible understanding of the project flow and interrelations within FedML
projects. Fourth, we designed detailed activity models to structure and guide practitioners
through the corresponding process.

Contribution: This thesis offers qualitative insights into the organizational adoption of FedML
and contributes to various literature streams on FedML, ML adoption, and ML software devel-
opment life cycles. First, we identified the influencing factors for the organizational adoption
of FedML. Thereby, we uncovered novel factors specific to FedML and demonstrated how its
decentralized paradigm affects prevalent ML adoption factors. Practitioners can leverage these
insights to counteract potential challenges preemptively and actively drive the successful adop-
tion of FedML through better-informed decisions. The results also showcase potential research
avenues for future work. Second, we compiled a comprehensive overview of the socio-technical
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challenges related to collaborations within FedML projects. Organizations can use these results
as a reference book for the relevant aspects in the creation of collaboration agreements within
FedML projects. Third, we constructed a representation of the FedML software development
life cycle and complemented extant ML development life cycles with a perspective on FedML.
Practitioners can utilize these artifacts as guidance to enhance their understanding of the project
structure and interdependencies. Furthermore, the artifacts can aid practitioners in planning
their projects, tracking progress, and identifying the next steps.

Limitations: Our research has several limitations. The conducted literature reviews may be
subject to shortcomings since the search process might not cover all relevant papers and the
coding might be biased. We mitigated these risks, by establishing rigorous search procedures,
performing comprehensive forward as well as backward searches, and letting multiple researchers
code the articles independently. As for the focus groups and expert interviews, the researchers
might be susceptible to bias and we could only identify a limited sample size. Although we
involved a diverse variety of voices and only closed studies after reaching theoretical saturation,
the sample sizes limit generalizability. We minimized subjective bias by ensuring observer and
data triangulation. Additionally, the evaluation of our artifacts comes with limitations since we
could not assess the performance of the artifacts in varying scenarios. Lastly, the scope of our
models is tailored to the most prevalent FedML architectural pattern.

Future Research: As our work is exploratory, we encourage future researchers to conduct
follow-up studies to quantitatively validate, refine, and extend our results. For example, future
studies could determine the significance and correlation of the influencing factors or focus on
selected challenges. On this note, we argue that advances on the challenges of data interoper-
ability or clarifying the legal situation of FedML would make a significant contribution to the
widespread adoption of FedML. Also, while we identified a multitude of socio-technical chal-
lenges, practitioners still lack guidance on how to address these challenges. Hence, performing
observational studies and deriving best practices of how current first or early adopters handle
these challenges would be a promising avenue for future work. Given the limited scope, our
models focus on server-client architectures with a central orchestrating server. As this only
represents a fraction of possible architectural patterns, researchers could further investigate how
other patterns influence the development process and designing corresponding models.
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Zusammenfassung

Motivation: Die ständig wachsende Menge an digitalisierten Daten bildet die Grundlage für den
disruptiven Erfolg von Machine Learning (ML) und dessen enormen wirtschaftlichen Auswirkun-
gen. Dennoch ist ein großer Teil der weltweiten Daten verstreut und in Datensilos isoliert.
Die Nutzung dieser Daten wird durch Datenschutzbedenken und gesetzliche Vorschriften er-
schwert, wodurch das volle Potenzial und damit die wirtschaftlichen Möglichkeiten der gespe-
icherten Daten weitgehend ungenutzt bleiben. Federated Machine Learning (FedML) ist ein
neuartiger Ansatz, der es ermöglicht, ML-Modelle auf dezentralen, möglicherweise isolierten
Daten zu trainieren, ohne die Daten selbst zu teilen. Trotz dieses Potenzials verbleiben die
meisten FedML-Projekte als Prototypen oder Simulationen und führen nicht zu einer produk-
tiven Nutzung der Technologie. Diese Dissertation versucht diese Forschungslücke zu schließen
und bietet eine qualitative Untersuchung der praktischen Anwendung von FedML in Organisa-
tionen. Angesichts dessen untersuchen wir Forschungsthemen, die in der bisherigen Literatur
wenig berücksichtigt wurden: die Einflussfaktoren für eine erfolgreiche praktische Umsetzung,
die sozio-technischen Aspekte von FedML Kollaborationen und den Softwareentwicklungsleben-
szyklus von FedML Systemen.

Forschungsdesign: In dieser Arbeit verfolgen wir eine induktive, qualitative Forschungsstrate-
gie. Mit Hilfe von Experteninterviewstudie mit einer reflexiven thematischen Datenanalyses-
trategie haben wir die Einflussfaktoren für die praktische Anwendung von FedML untersucht.
Unsere Ergebnisse zeigen, dass die meisten Projekte aufgrund von Problemen scheitern, welche
durch die Kollaboration und den komplexen FedML Implementierungsprozess entstehen. Da-
raufhin haben wir die sozio-technischen Herausforderungen von FedML Kollaborationen durch
eine systematische Literaturrecherche, Fokusgruppen und Experteninterviews analysiert. Weit-
erhin nutzten wir Design Science Research für die Entwicklung eines Prozessmodells sowie detail-
lierte Aktivitätsmodelle für die Softwareentwicklung. Hierfür führten wir Literaturrecherchen,
Fokusgruppen und Experteninterviews durch, um unsere Wissensbasis aufzubauen, Anforderun-
gen zu sammeln und Feedback einzuholen.

Ergebnisse: Zunächst beleuchten wir die Gründe, warum Organisationen FedML einsetzen,
und bieten einen umfassenden Überblick über die Risiken, Herausforderungen und Faktoren, die
den erfolgreichen Einsatz von FedML in Unternehmen beeinflussen. Außerdem geben wir einen
umfangreichen Einblick in die sozio-technischen Herausforderungen, die sich aus den dezentralen
und kollaborativen Aspekten von FedML ergeben. Dabei haben wir eine Liste von Leitfragen
zusammengestellt, die bei der Gestaltung von Kooperationsvereinbarungen in FedML-Projekten
berücksichtigt werden sollten. Zusätzlich entwickelten wir ein Prozessmodell, das den Projek-
tablauf und die Zusammehänge in FedML-Projekten transparent machent. Abschließen erstell-
ten wir detaillierte Aktivitätsmodelle, um Organisationen bei der Umsetzung zu unterstützen.

Beitrag: Diese Arbeit liefert qualitative Einblicke zur organisatorischen Umsetzung
von FedML und trägt zur Forschung im Bereich von FedML, ML-Einführung, ML-
Softwareentwicklungszyklen bei. Zunächst haben wir die Einflussfaktoren für die organ-
isatorische Umsetzung von FedML identifiziert, wobei wir neue, FedML-spezifische Faktoren
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hervorgehoben haben und aufzeigten, wie die Dezentralität von FedML herkömmliche ML-
Einführungsfaktoren beeinflusst. Diese Erkenntnisse dienen dazu, potenziellen Herausforderun-
gen proaktiv entgegenzuwirken und die erfolgreiche Umsetzung durch informierte Entscheidun-
gen zu fördern. Außerdem bieten wir einen umfassenden Überblick über die sozio-technischen
Herausforderungen in FedML Kollaborationen. Organisationen können diese Ergebnisse bei der
Gestaltung von Kooperationsvereinbarungen nutzen, um alle relevanten Aspekte zu berück-
sichtigen. Schließlich erstellten wir Darstellungen des FedML-Softwareentwicklungslebenszyklus
und ergänzten bestehende ML-Entwicklungslebenszyklen um FedML-spezifische Aspekte. Diese
Artefakte helfen Organisationen, um Projekte besser zu strukturieren und um Abhängigkeiten
zu identifizieren. Darüber hinaus helfen die Artefakte bei der Projektplanung, der Überwachung
des Fortschritts und der Planung nächster Schritte.

Limitationen: Unsere Forschung unterliegt mehreren Einschränkungen. Die durchgeführten
Literaturrecherchen könnten möglicherweise nicht alle relevanten Artikel erfasst haben und
die Kodierung könnte subjektiv sein. Um dem entgegenzuwirken haben wir Suchverfahren
vordefiniert, umfassende Vorwärts- und Rückwärtssuchen durchgeführt und mehrere Forscher
unabhängig voneinander kodieren lassen. Hinsichtlich Fokusgruppen und Experteninterviews,
könnten die Forscher subjektiv gehandelt haben und unsere Stichprobengröße war begrenzt.
Obwohl wir eine hohe Diversität von Stimmen einbezogen und die Studien erst nach Erre-
ichen theoretischer Sättigung abgeschlossen wurden, ist die Verallgemeinerbarkeit aufgrund der
begrenzten Stichprobengröße limitiert. Durch die Triangulation von Beobachtern und Daten,
probierten wir mögliche subjektive Verzerrungen zu minimieren. Darüber hinaus ist die Evalu-
ation unserer Artefakte eingeschränkt, da wir die Artefakte nicht in unterschiedlichen Anwen-
dungsszenarien testen konnten. Außerdem sind unsere Modelle auf das am häufigsten verwendete
FedML-Architekturmuster ausgerichtet.

Ausblick: Da unsere Arbeit explorativ ist, könnten zukünftige Forscher Folgestudien durch-
führen, um unsere Ergebnisse quantitativ zu validieren, zu verfeinern und zu erweitern.
Beispielsweise könnten zukünftige Studien die Signifikanz einzelner Einflussfaktoren, sowie
deren Korrelation bestimmen oder sich auf ausgewählte Herausforderungen konzentrieren.
Vor allem Fortschritte bezüglich Dateninteroperabilität oder Transparenz der rechtlichen Sit-
uation von FedML könnten einen wesentlichen Beitrag zur Einführung von FedML leisten
würden. Des Weiteren haben wir eine Vielzahl soziotechnischer Herausforderungen identi-
fiziert, aber fehlt es noch an klaren Anleitungen, wie man diesen Herausforderungen begeg-
nen kann. Daher könnten künftige Arbeiten Beobachtungsstudien durchführen und daraus
ableiten, wie Anwender mit diesen Herausforderungen umgehen. Angesichts des begrenzten
Umfangs konzentrieren sich unsere Modelle auf Server-Client-Architekturen mit einem zentralen
Orchestrierungsserver. Da dies nur einen Bruchteil der möglichen Architekturmuster darstellt,
könnte weitere Forschung analysiere, wie andere Architekturmuster den Entwicklungsprozess
beeinflussen und entsprechende Modelle entwerfen.
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CHAPTER 1

Introduction

"Pressure on businesses to keep delivering is immense — and only collaborating
and building ecosystems will ensure that growth and innovation persist." [For23]

This quote from the World Economic Forum [For23] illustrates that collaboration is key to fos-
tering innovativeness and ensuring the growth of organizations. In this dissertation, we explore
collaborations of organizations within the Machine Learning (ML) domain. More specifically,
we take a step beyond traditional centralized ML systems and empirically analyze the organiza-
tional adoption of the decentralized paradigm Federated Machine Learning (FedML). First, we
investigate the crucial factors for the successful adoption of FedML in organizations. Motivated
by the insights, we acquire an understanding of the socio-technical challenges that result from
collaboration in the ML domain. Moreover, we analyze how the decentralized paradigm affects
the Software Development Life Cycle (SDLC) and develop a corresponding process model.

Following, we start by motivating and introducing the topic of this dissertation (see Section 1.1).
Subsequently, we outline the research gaps and present the accompanying Research Questions
(RQs) that guide this thesis (see Section 1.2) and outline the structure of this dissertation
including a summary of the embedded publication (see Section 1.3).

1.1. Motivation

In recent years, technological advances sparked a widespread interest in the field of ML. Unmis-
takably, ML systems had an immense effect on the economy [FS19] and played a pivotal role in
business model innovation [LSRB19]. The integration of ML in organizations has proven to un-
lock unprecedented value by providing decision support, automating processes, driving customer
and employee engagement, as well as enabling new products and services [BLS+21]. Considered
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1. Introduction

a true General Purpose Technology (GPT) [Ras20, GTT23], ML has applications in a variety
of use cases across all industries [RKGR17], but as a GPT, the complete spectrum of poten-
tial applications remains currently unknown. Some studies anticipate that ML will attain full
efficacy within the next decades and substantially impact nearly all aspects of our lives similar
to the previous industrial revolutions [Mak17, Lou18]. Regardless of its actual influence, ML is
expected to have one of the largest technological impacts in the next years [RFGG21].

The primary catalyst behind this disruptive technology is the rise of big data, serving as the fun-
damental basis for ML systems. However, the lack of available and suitable training data also re-
mains a persisting barrier to the implementation of ML systems [PFW+21, BvDK20, HAAY+23].
Even though the volume of data is constantly growing, around 80% of industrial data is never
used and therefore its economic potential never realized [Uni22]. Often referred to as the data
silo issue [KHC+16], a significant portion of the unused data usually remains isolated and is
hardly accessible. This problem is strengthened by various challenges such as privacy con-
cerns [VPPE+14], data security issues [SLZ20] and legal regulations [KHC+16] like the General
Data Protection Regulation or the California Consumer Privacy Act. These regulations seek to
safeguard individuals’ privacy, however, further restrict the exchange of data between different
organizations [LZZ+22] and thereby strengthen data silos.

From a technical perspective, the emerging ML paradigm FedML has the capability to train
ML systems on distributed data silos from multiple sources without the need for data sharing
[LDCH22]. Thereby, it has the technical potential to overcome the data silo issue. FedML was
first introduced by McMahan et al. [MMR+17] with the goal of utilizing local data sets on mobile
phones for training a ML model while keeping the data private. Hereby, the authors proposed
a novel decentralized ML paradigm that adheres to the following procedure: First, a global ML
model is distributed across all participating clients and each mobile device receives the current
model version. Then, each client individually improves the model by locally training it on the
phone’s individual dataset. The changes to the model are summarized and only this update is
sent to the cloud, where it is averaged with updates from other users to improve the global model.
Through this communication protocol and on-device learning, multiple distributed data sets can
be leveraged while all training data remains at its source. With this model-to-data approach,
FedML promises to enhance privacy by design, achieve higher utility, enhance communication
efficiency, and reduce computational overhead [YML+22].

Since the first emergence of FedML, researchers have investigated FedML from various perspec-
tives: from FedML algorithms [NSU+18], incentive mechanisms [ZZH+21] or domain-specific
applications [AAdCK+22, KSH+21] to research on its privacy and security [MPP+21]. Despite
increasing interest and its potential to enable novel business applications [BAA+22], FedML has
seen a relatively low adoption rate in organizations, and most projects do not evolve beyond
the prototype or simulation stage [LLW+21]. The missing operationalization and low organiza-
tional adoption of FedML remain largely unexplored and the current ML and FedML literature
corpus shows corresponding research gaps. First, extensive work has been done on the factors
that influence the adoption of ML [ACM19, PTH19, CRDB21, HAAY+23, KKG21, BKKP22].
However, extant literature does not offer an understanding on the barriers and success factors
for the organizational adoption of FedML. Second, despite significant work on value drivers and
business model innovation of traditional ML applications [LSRB19, RÅE20, MT21, ÅRP22],
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1. Introduction

current literature does not offer information on the dynamics of joint value creation and col-
laboration management within FedML. Third, compared to the growing body of knowledge in
the standards, processes, and methodologies underpinning the development of ML applications
[WH00, ABB+19, SBD+21, LBM+22, KKH23], there is no such perspective on FedML. Within
the scope of this dissertation, we aim to address these research gaps.

1.2. Research Questions

The following outlines the research gaps and motivates the RQs that guide this dissertation.

Research Gap 1: Currently, most FedML projects do not evolve beyond the prototype stage.
While research on ML adoption grows, there is a lack of understanding of the barriers and success
factors for the organizational adoption of FedML.

The adoption of novel technologies needs to be approached from a socio-technical and multidis-
ciplinary perspective since it is dependent on the needs of a diverse range of stakeholders and is
subject to a large variety of influences [BvHS05, KVSO13, MNH21]. Thus, organizations need
to take a multidisciplinary view beyond the technical dimension to successfully utilize emerging
technologies. In the case of ML, organizations face a new realm of challenges that is different
from the adoption of previous technologies due to their non-deterministic behavior [CHTB20].
Furthermore, exacerbating the situation, FedML incorporates the stochastic behavior of ML and
additionally introduces another layer of complexity due to its decentralized paradigm. While
previous literature provides insights into the drivers and barriers of successful ML adoption
[ACM19, PTH19, CRDB21, HAAY+23], it remains unclear which novel aspects result from the
decentralized characteristics of FedML and how it affects currently known influences. Therefore,
it is required to revisit the adoption factors in the context of FedML to ensure that organizations
have an overview of what factors influence a successful adoption. Consequently, we articulate
the first RQ:

Research Question 1 (RQ1)

What are the major factors influencing the successful adoption of
Federated Machine Learning systems in organizations?

We fill this research gap by leveraging established Technology Adoption Frameworks and con-
ducting an expert interview study to draw relevant practitioners in the field. Thereby, we aim to
identify the main challenges, risks, and influencing factors regarding the organizational adoption
of FedML. We structure the resulting insights according to their technological, environmental,
and organizational context. This approach allows us to provide a systemized overview of the
factors that influence a successful adoption and to uncover novel aspects that are unique to
FedML. It shows that the success of a FedML project is mainly dependent on factors regarding
the collaboration of multiple organizations, its complex technical implementation, and regu-
latory uncertainties. Given the permanence of legal and regulatory frameworks, we opted to
focus on research gaps regarding collaboration in the ML domain (see RQ2) and the complex
implementation process (see RQ3).
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1. Introduction

Research Gap 2: Current literature offers little knowledge on the dynamics of joint value
creation and collaboration management in the ML domain.

The increasing interest in ML-based systems also led to a growing literature corpus on how or-
ganizations create value and leverage ML as a catalyst for business model innovation [LSRB19,
RÅE20, MT21, ÅRP22]. Hereby, FedML constitutes a distinctive case which requires further
considerations beyond traditional ML systems. With its privacy-enhancing features, FedML has
the potential to overcome data silos and to drive unprecedented use cases [BKB20]. However,
overcoming data silos requires the collaboration of multiple parties, and consequently the for-
mulation of a collaboration agreement including a business model for the joint endeavor. Hence,
to create value from FedML, organizations need to mitigate challenges of both domains: ML
and inter-organizational collaborations. While extant literature offers information on the socio-
technical factors either regarding ML-enabled business cases [BPLW21, DVPHE20, JYK+23] or
collaborative business models [PLAK21, CCM15, RBBC+14, DC18], none studied the intersec-
tion of both domains. Thus, current literature does not offer an overview of the socio-technical
aspects regarding joint value creation in the ML context. We aim to fill this research gap and
thereby follow the call of Enholm et al. [EPMK22] to investigate the dynamics and potential
conflicts of interest in collaborations around ML. Therefore, we raise the following RQ:

Research Question 2 (RQ2)

What are the distinct socio-technical challenges of
collaborative Federated Machine Learning projects?

To investigate this research gap, we employ a three-step approach. First, we systemize knowl-
edge on the socio-technical challenges of prevailing collaborative business models. Second, we
conduct a focus group discussion to initially explore the challenges regarding the collaborative
characteristics of FedML. Third, we complement previous insights through expert interviews.
Thereby, we provide a holistic overview of general and FedML-specific socio-technical aspects
that need to be considered in the collaboration agreement within FedML projects.

Research Gap 3: The existing studies do not report on the standards and processes of FedML
systems development.

Although many organizations are eager to adopt ML systems to improve their performance
through novel unprecedented business opportunities [BLS+21], some experience difficulties due
to the lack of standards and guidance of the development process [RKW20, ADD21, SBD+21].
Motivated by this, researchers have investigated best practices regarding ML development and
proposed a set of ML life cycles models [WH00, ABB+19, SBD+21, LBM+22, KKH23] or domain-
specific activity models [TWN19, KBM+20, VHC+20]. However, in contrast to traditional ML
pipelines, FedML trains a joint model across multiple clients through a model-to-data approach
in an iterative and decentralized process. Accordingly, FedML also requires software system de-
signs that differ from traditional ML system architectures [LLZ+22] which postulates adaptations
to the development process. While current literature on FedML offers information on architec-
tural patterns and system designs of the training process [BEG+19, AAdCK+22, LLZ+22], it
does not report on the corresponding development process and holistic project life cycle. Yet,
considering all life cycle stages is a crucial and existing problem for the implementation of
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industrial-level FedML systems [ZBO20]. Accordingly, it is necessary to investigate the SDLC
of FedML projects which yields the following RQ:

Research Question 3 (RQ3)

What is the software development life cycle of Federated Machine Learning projects?

We address this RQ by following the Design Science Research (DSR) [HMPR04, PTRC07]
methodology to conceptualize a process model and detailed activity models of an end-to-end
FedML project life cycle. The models incorporate best practices from literature on SDLC, ML
life cycles, and FedML as well as the expertise and feedback of project teams and experts.

1.3. Structure of the Dissertation

This thesis consists of three parts and comprises four publications that answer the three RQs.
Figure 1.1 illustrates the logical flow and structure of this publication-based dissertation.

Part A consists of three chapters. Chapter 1 begins with the overall motivation of the research
problem (see Section 1.1), summarizes the research gap by presenting the three RQs (see Section
1.2) and explains the outline of this thesis with an overview of the embedded publications (see
Section 1.3). Chapter 2 introduces the theoretical background of the concepts that were applied
in the embedded publications. Hereby, we explain the fundamentals related to FedML (see
Section 2.1), Technology Adoption Models (see Section 2.2), and Machine Learning Systems
Development (see Section 2.3). Chapter 3 concludes Part A with a description of the underlying
research paradigm (see Section 3.1) and applied research methods (see Section 3.2).

Part B provides an overview and fact sheets of the four publications included in this thesis. The
published papers can be found in their original format in Appendix A. The first publication (P1)
offers results for RQ1 and analyzes the reasons, challenges, risks, and influencing factors for the
practical adoption of FedML in organizations (see Section 4.1). The second publication (P2)
aims to answer RQ2 by identifying and systemizing the socio-technical challenges regarding the
collaborative characteristics of FedML (see Section 4.2). The two subsequent publications (P3,
P4) address RQ3 and propose a process model of an end-to-end FedML SDLC (see Section 4.3)
and detailed activity models (see Section 4.4).

Part C comprises four chapters and concludes this dissertation. Chapter 5 summarizes the
results of each RQ and discusses the findings in relation to extant literature. In Chapter 6,
we presents the contributions and implications for research (see Section 6.1) and practice (see
Section 6.2). Subsequently, Chapter 7 delineates the limitations of the embedded publications
and therefore this dissertation regarding the research approach and scope. Lastly, Chapter 8
closes this thesis by reflecting the formulated RQs with corresponding results (see Section 8.1)
and outlining potential directions for future research activities (see Section 8.2).
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1. Introduction

In the following, we present an overview of the published papers that are embedded in Part B.
For each publication (P), we outline the underlying research problem, research method, and main
contribution. Furthermore, we elaborate on additional publications that have been conducted
within the course of this thesis. Table 1.1 gives an overview of the embedded and additional
studies in relation to the RQs.

P1: Revealing the Impacting Factors for the Adoption of Federated Machine Learn-

ing in Organizations. While the body of knowledge on ML adoption grows, it remains unclear
how the decentralized characteristics of FedML affect the adoption in organizations. This pub-
lication [MZM24] addresses this knowledge gap. Through an expert interview study, this article
compiles a comprehensive overview of 19 influencing factors for the organizational adoption of
FedML. The identified factors are structured according to their technological, organizational, or
environmental context. The insights coincide with known factors on ML adoption and addition-
ally uncovered novel factors that are specific to FedML projects. Moreover, this article reveals
the practitioner’s reasons for utilizing FedML and describes their main encountered challenges
and risks. Overall, this publication extends the current literature on ML adoption with a view
on FedML and aids practitioners to preemptively counteract pitfalls throughout the project life
cycle. The study showed that practitioners are currently mainly challenged by issues regarding
collaboration, the complex technical implementation of FedML, and regulatory uncertainties.
Given the immutability of legal and regulatory frameworks, these insights provided the motiva-
tion to focus on the collaboration of multiple organizations within the ML domain (P2) and to
facilitate the complex implementation process (P3, P4).

P2: Unlocking the Potential of Collaborative AI - On the Socio-Technical Challenges

of Federated Machine Learning. FedML enables organizations to overcome data silos and
jointly train a ML model across company boundaries. However, this requires collaboration be-
tween the companies, and consequently the formulation of a collaboration agreement including
a respective collaborative business model. Hereby, the participants need to agree on various as-
pects regarding the scope, financials, and distribution of responsibilities. While extant literature
studies collaborative business models and the accompanying socio-technical challenges, there is
no guidance regarding collaborations in the ML domain. The first publication [MZM23d] ad-
dresses this knowledge gap and investigates the socio-technical challenges of collaborative FedML
projects. This paper systemizes current knowledge of the challenges of collaborative business
models and subsequently explores challenges related to collaborative FedML through a focus
group discussion and semi-structured expert interviews. Thereby, this article provides a sys-
temized overview of the identified challenges and unveils novel aspects related to collaborative
FedML projects. Based on these insights, this study presents a comprehensive set of guiding
questions to assist practitioners in the creation of a collaboration agreement. Amongst others,
this study revealed the difficulty of assigning responsibilities and accountabilities among the
participants. This challenge strengthened the motivation for the two subsequent publications
(P3, P4).

P3: A Process Model for the Practical Adoption of Federated Machine Learning.

The second publication [MZM23c] focuses on aiding practitioners with the division and commu-
nication of responsibilities and accountabilities. A dedicated focus group discussion confirmed
that this challenge prevents many FedML projects from leaving the prototype stage. Hereby,
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the barriers arise in the project initiation and planning phase. This study [MZM23c] focuses on
the project initiation stage while P3 addresses the planning stage. The focus group concluded
that an end-to-end process model could facilitate the challenge of structuring the process flow
and communicating responsibilities during the project initiation phase. By following the DSR
approach, this study designs a corresponding model with an abstract overview of the process
flow with the interrelations of the required resources, resulting artifacts, roles, and activities.
Thereby, this article provides a holistic overview of the FedML SDLC and takes an initial step
toward standards for the FedML development process. From a practical view, business stake-
holders and solution architects can use the models as a basis to outline their project plan in the
project initiation phase and to facilitate communication with potential participants.

P4: A Pathway for the Practical Adoption of Federated Machine Learning Projects.

As already recognized in P3, barriers during the project initiation and project planning stage
inhibit FedML projects to evolve beyond prototypes. This study [MZM23b] addresses issues
related to the project planning phase. Hereby, practitioners are challenged by the intricated
implementation process due to the decentralized and collaborative paradigm of FedML. The
focus group stated that a detailed step-by-step model that depicts the sequence of activities
could provide guidance for the planning of the implementation process. This study follows a
DSR approach to construct corresponding activity models and thereby complements the process
model of P3. The evaluation showed that the activity models aid product owners and project
managers in understanding the required steps of the development process and making better-
informed decisions. While P3 and P4 offer representations of the FedML project flow on different
dimensions, P1 provides additional information on the critical factors that influence the adoption
of FedML, and P2 provides guidelines for the creation of the collaboration agreement.

Additional Publications. In addition to the four embedded publications, this research en-
deavor produced four additional studies. Although the additional studies provide complemen-
tary insights to the discussed topics and RQs, we did not select these publications as the core
contributions of this dissertation. The following will give a short overview of the additional
publications.

The first position paper (P5) [MGVM22] was created during the first stages of a large industrial
lighthouse project and aimed to discuss the challenges of FedML adoption that arose within
the project. In the starting phase of this project, we noted that practitioners were challenged
with the cumbersome implementation and customizability of Privay-Enhancing Technologies
(PETs) in the FedML context which resulted in the termination of various FedML endeavors.
However, the discussed concerns of this article were rendered obsolete by subsequent studies
(P2, P3, P4, P8). Within a follow-up position paper (P8) [MZM23a] we discuss the empirically
grounded observations that current project teams are missing clarity over the dependencies
and interrelations within FedML projects. Therefore, we make a case for the need for a process
model. This position paper marked the starting point of P3 and P4. In retrospect, our embedded
publications validated the observations of P8.

Related to RQ1, we conducted a Systematization of Knowledge (SoK) of the literature corpus on
applied FedML (P6) [MSG+23]. Thereby, we analyzed 74 papers and systemized information on
the stated motivational drivers, application domains, and encountered challenges. Additionally,
we derived trends and characteristics regarding the distribution of the published papers, publi-
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cation channels, affiliated countries, and research types. Our report suggests that the interest
in applied FedML has risen significantly in recent years, with China and the United States as
the most active countries and conferences as the most prevalent publication channel. Hereby,
the majority of work proposes technological solutions and utilizes various neural network archi-
tectures as preferred predictive models. The literature predominantly states that privacy is the
main motivational driver and that FedML is mostly used within the medicine sector. The stated
challenges were mostly of a technological nature and revolved around system heterogeneity,
scalability, privacy, hardware restrictions, and the sophisticated communication protocol.

Lastly, we published a study on the design of a technology selection tool (P7) [ZMM24]. The
tool aims to support managerial decision-making and to avoid an inappropriate fit between the
technology and the use case. This tool was developed following the DSR methodology and is
divided into two steps. The first step is based on a decision tree that evaluates the reasonability
and necessity of utilizing FedML within the use case. The second step consists of a survey with
a scoring system that helps practitioners assess the complexity of implementing FedML within
their given use case and framework.

For the sake of completeness, it should be mentioned that we have also contributed to various
publications that are not related to this thesis [MSS+21, MRSA21, ASS+23].
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CHAPTER 2

Theoretical Background

This chapter entails three sections and describes the theoretical background that forms the
fundamental basis of this dissertation and all embedded publications. First, we introduce the
concept of Federated Machine Learning (see Section 2.1). Thereafter, we present Technology
Adoption Frameworks (see Section 2.2) as the foundation of P1. Lastly, we describe the relevant
background on Machine Learning Systems Development (see Section 2.3), which builds the
groundwork mainly for P3 and P4.

2.1. Federated Machine Learning

FedML is a novel ML paradigm that was introduced in 2016 by McMahan et al. [MMR+17] and
varies from conventional ML approaches. In traditional ML systems, training data is usually
accumulated in a central location, where the ML model is subsequently trained. For this cen-
tralization of individual datasets into a single repository, data owners are required to share their
data with a central server. By that, data owners sacrifice their data sovereignty, which leads to
an increased dependency on third parties and a potential loss of Intellectual Property (IP).

In contrast to traditional ML systems, FedML allows the training of ML models on decentralized
data without the need for direct data sharing. Originally introduced in 2016, McMahan et al.
[MMR+17] followed a model-to-data approach to train a language model on a loose federation
of mobile devices. By eliminating the requirement for sharing training data, FedML enables the
privacy-enhancing usage of siloed data and thereby has also the potential to enable collaborations
across different organizations [TSP22]. Since its emergence, FedML has sparked large research
interest which resulted in a high variety of methods, architectural patterns, and theoretical
concepts [WMOT21, LLZ+22].
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2. Theoretical Background

The following Section 2.1.1 first introduces the fundamental methods behind FedML. Subse-
quently, Section 2.1.2 presents an overview of possible FedML system variants.

2.1.1. Training Process

Formally, FedML is concerned with the problem of learning a joint predictive model by multiple
parties who own separate sets of data. The original algorithm follows a model-to-data approach
to enable the collaborative learning of a global ML model while keeping their data locally stored
[MMR+17]. Generally, the basic FedML training process can be summarized into four distinct
steps:

1. The server specifies the structure of the global model, which will be used across all clients.
The design of this initial global model should be suitable for the use case and underlying
data structure. Additionally, this model can be pre-trained on an initial dataset.

2. The server distributes the global model amongst all clients. This model will be the starting
point for the local model training.

3. Each client trains the received model on their own locally stored dataset. This local
training step is similar to conventional ML training, where data is used to update the
model’s parameters through an optimization algorithm. Each client stores the resulting
parameter updates (gradients).

4. The clients send their individually computed gradients back to the server. These gradients
are then aggregated based on a pre-defined aggregation scheme to create an updated global
model.

Steps 2-4 can be repeated over several iterations until a certain accuracy level is reached or until
the accuracy converges. This process is illustrated in Figure 2.1.
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Figure 2.1.: Simplified illustration of the FedML training process (own work).

2.1.2. Variations of Federated Learning

Depending on the modality and system characteristics, FedML systems can be divided into dif-
ferent categories. Current literature proposes a multitude of different taxonomies, each with a
varying focus. However, based on [LLW+21], the variations of FedML systems are most com-
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monly differentiated regarding the Scale of Federation, Data Partitioning, and Communication
Architecture.

Scale of Federation. FedML systems can be implemented in two settings: cross-device or
cross-silo [LWW+23]. Cross-device FedML refers to settings with a large number of participating
clients, in which each party has a relatively small amount of data as well as computational power.
In contrast, cross-silo FedML describes settings with a relatively small number of participants.
Here, each party has a comparably large amount of data and computational power.

Data Partitioning. Based on the data partitioning regarding features and sample space across
the participants, FedML systems can be divided into three categories: horizontal, vertical and
transfer [RAA+21]. In horizontal FedML, datasets A and B share similar features but differ
in data samples. If instead, the same samples are present in all datasets but feature spaces are
heterogeneous, the setup is known as vertical FedML. Highly heterogeneous settings with dif-
ferent sample and feature spaces across participants are referred to as transfer FedML. Transfer
FedML is inspired by transfer learning, where already learned knowledge is re-used for a related
task via feature extraction and/or fine-tuning [TSK+18]. The difference between the data par-
titioning variants can be seen in Figure 2.2. Most research considers horizontal FedML systems
[LWW+23].
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Figure 2.2.: Illustration of data partitioning variants (own work based on [RAA+21]).

Communication Architecture. While conventional FedML operates on a client-server ar-
chitecture, alternatives have been proposed that do not rely on a central orchestrating server
[LLZ+22]. Classified according to their network topology, these FedML systems can be grouped
into client-server, partially-connected or peer-to-peer architectures [RAA+21, BPS+23]. Figure
2.3 illustrates the different architectures. The client-server architecture consists of several clients,
which perform local training, and a central orchestrating server for aggregation. Each client is
only directly connected to the central server. Opposed to partially-connected architectures, in
which a subset of clients are capable of communicating through direct links. Finally, peer-to-peer
architectures eliminate an orchestrating server by establishing a peer-to-peer network amongst
all clients. Currently, most implementations use client-server architectures [RAA+21].

Further Considerations. Apart from these categorizations, further characteristics have
been used to group FedML systems. Some studies additionally classified FedML systems ac-
cording to the underlying ML algorithms [LWW+23, JSD22, KSH+21], privacy mechanism
[LWW+23, JSD22, BPS+23, KSH+21], or business-related aspects such as incentivization mech-
anism [KSH+21]. However, these additional categories vary depending on the emphasis of the
present study and are not considered in the majority of the literature corpus on FedML tax-
onomies. Consequently, we also only focus on the characteristics presented above.
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Figure 2.3.: Illustration of the FedML architectural patterns (own work based on [BPS+23]).

In this dissertation, we aim to provide guidance for the practical adoption of FedML in orga-
nizations. Therefore, we mainly target the most widely used system configuration. According
to current literature, a large majority of the work solely considers client-server architectures
[RAA+21] with horizontal data partitioning [LWW+23]. Hence, if not stated otherwise, we
refer to horizontal, client-server FedML systems in the following. Furthermore, we consider
intra-organizational FedML systems as cross-device, and inter-organizational FedML as cross-
silo.

2.2. Technology Adoption Models

The process of adopting innovative technologies has been a widely studied area within
Information Systems (IS). Research in this domain yielded a variety of different models and
theories with the goal of identifying, predicting, and describing the variables that affect adop-
tion behavior [DEZ20]. These models can be grouped according to their objective, depending on
whether they study the adoption behavior of groups, individuals, or organizations [LMJ08].

Most prominent models, such as the Technology Acceptance Model [Dav85] or Theory of Planned
Behavior [Ajz85], were originally developed to target the individual level [LMJ08]. Even though
some adaptations and novel theories were proposed to analyze group behavior [KTB11, SVS05],
literature on group models is relatively sparse [LMJ08]. From an organizational perspective,
the most widely used models include the Diffusion of Innovation (DOI) theory [Rog83b] and
Technology-Organization-Environment (TOE) Framework [TF90] [MJ17]. Since this dissertation
investigates the adoption of FedML in organizations, we will only focus on organizational-based
frameworks. The following introduces DOI theory and the TOE framework.

2.2.1. Diffusion of Innovation

The DOI by Rogers [Rog83b] is a theory that investigates how, why, and at what rates innova-
tions and new technologies are adopted at an individual and firm level. More specifically, Rogers
[Rog83b] defines diffusion as "[...] the process by which an innovation is communicated through
certain channels over time among the members of a social system". Hence, per definition, DOI
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theory focuses on innovation, communication channels, time, and social systems as the four key
components that influence the innovation-decision process.

2.2.1.1. Innovation-Decision Process

As illustrated in Figure 2.4, the innovation-decision process follows the five steps from knowledge,
persuasion, decision, implementation to confirmation in a sequential manner [Rog83c].

Knowledge Persuasion Decision Implementation Confirmation
Characteristics of
the Social System

Characteristics of
the Decision-
Making Unit

(Organizations)

Perceived
Characteristics of

the Innocation

Communication Channels

Change Agents

Adoption

Rejection

Continued Adoption
Later Adoption
Discontinuance
Continued Rejection

Figure 2.4.: Five stages in the Innovation-Decision-Process (own work based on [Rog83c, Sah06]).

(1) Knowledge Stage. In the first stage, individuals and organizations learn about the ex-
istence of an innovation and aim to determine [...] what the innovation is and how and why it
works" [Rog83c]. This step is influenced by the nature of the social systems and therefore by
their norms, previous practices, subjective needs, problems, and innovativeness. Additionally,
the knowledge stage is impacted by the characteristics of the decision-making unit. In an or-
ganizational context, this can be translated to characteristics of organizational innovativeness.
Section 2.2.1.2 will go into more detail about the factors that influence the innovativeness of an
organization.

(2) Persuasion Stage. The persuasion stage forms the attitude toward an innovative tech-
nology and shapes the decision for the adoption or rejection of an innovation. However, Rogers
[Rog83c] emphasizes, that a favorable or unfavorable attitude does not directly or indirectly
lead to a decision regarding the adoption. The persuasion stage is impacted by the perceived
characteristics of the innovation. Section 2.2.1.2 elaborates on these factors.

(3) Decision Stage. After learning about the innovation and forming an attitude, the or-
ganization (or individual) makes a decision about the adoption or rejection of the innovation.
Usually, an innovation is adopted more quickly if it has a partial trial bias [Sah06]. It is im-
portant to note, that rejection is possible in every stage of the process, not only in the decision
stage. The decision might be confirmed or revised in the fifth stage.

(4) Implementation Stage. In the fourth stage, the innovation is implemented and put into
practice. Due to the novelty of innovation, there is a degree of uncertainty about the outcomes,
which might force an organization to modify the planned way of implementation.
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(5) Confirmation Stage. Lastly, the organization (or individual) looks for support and re-
inforcement of the made decision. Depending on the received feedback, the decision can be
reversed. Thereby, a later adoption of the innovation can be triggered or an already adopted
technology can be discontinued.

2.2.1.2. Rate of Adoption and Organizational Innovativeness

There is a multitude of varying factors, which influence the five stages of the innovation-decision
process and accordingly the rate of adoption. Overall, these factors can be grouped into aspects
regarding the perceived attributes of the innovation, type of innovation-decision, communication
channel, change agents, and characteristics of the decision-making unit. In an organizational
context, the characteristics of the decision-making unit can be translated to the factors regarding
organizational innovativeness. An overview of the variables, which determine the diffusion of
innovation in organizations can be seen in Figure 2.5. Based on [Rog83a, Rog83d, Sah06], the
following elaborates on each category.

Variables Determining the Diffusion of Innovation in Organizations

Perceived Attributes
of Innovation

Type of 
Innovation-Decision

Communication
Channel 

Nature of 
Social System Change Agents Organizational
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Collective

Authority
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Interpersonal

...

Norms

...

Attitude Toward Change 

...

Centralization

Complexity

Formalization

Interconnectedness

Organizational Slack

Size

System Openness

...

Figure 2.5.: Factors influencing the diffusion of innovation in organizations (own work based on
[Rog83a, Rog83d]).

Perceived Attributes of Innovation. According to Rogers [Rog83a], there are five perceived
attributes of innovations: relative advantage, compatibility, complexity, trialability, and observ-
ability. It is important to note that the perception of the organization (or individual) about the
characteristics influences the rate of adoption.

Regarding relative advantage, cost and social status are the main drivers for quick adoption.
Innovators are usually more status-motivated, while status is less significant for the late majority.
Similarly, financial incentives which can be achieved directly or indirectly through the innovation
can increase its rate of adoption. The adoption can be further accelerated if the innovative
technology is compatible with current infrastructure, practices, and social systems. Additionally,
low complexity as well as the possibility to try and observe the implications of the technology
reinforces a positive choice in favor of the innovation.

Innovation-Decision. DOI differentiates between optional, collective, and authoritative deci-
sions. The fastest rate of adoption is usually achieved through authoritarian decisions. Optional
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(or individual) decisions can be made faster than collective decisions with multiple individu-
als. However, authoritative decisions tend to be circumvented during implementation. In an
organizational setting, the type of decision is usually either collective or authoritative.

Communication Channel. The type of communication channels determines how participants
create and share information with each other to reach a mutual understanding and influences
each stage of the innovation-decision process. Here, two prominent channels are mass media
and interpersonal communication. The influence of each type differs on the characteristics of
the situation. While mass media is suitable to eliminate a deficit of awareness, interpersonal
communication results in a bigger change of prevailing attitudes [Orr03].

Nature of Social System. The social system is defined as "[...] a set of interrelated units en-
gaged in joint problem solving to accomplish a common goal" [Rog83b]. Hence, the social system
has current practices and aims to solve a common problem with specific needs. Additionally,
social systems are influenced by their norms and degree of innovativeness. Naturally, the rate
of adoption is quicker if the innovative technology ties into their norms, current practices and
solves the problem of the social systems.

Change Agents. During implementation, change agents can help to reduce the degree of uncer-
tainty about the results and consequences of the innovation decision. Thereby, the involvement
of change agents such as external consultants increases the rate of adoption.

Organizational Innovativeness. The organizational innovativeness heavily influences
whether an innovation is adopted and is determined by independent variables regarding the
individual (leader) characteristics, internal structures, and external characteristics of the orga-
nization [Rog83d, OM11]. A positive attitude toward change from an individual (or leader)
strengthens the decision in favor of adoption. Regarding the internal organizational structure, a
great extent of centralization and formalization are usually correlated with less innovativeness. In
contrast, a higher degree of organizational complexity, interconnectedness, organizational slack,
and larger size are found in more innovative organizations. In terms of external characteristics,
more system openness corresponds positively with organizational innovativeness.

2.2.2. Technology-Organization-Environment Model

The TOE framework by Tornatzki and Fleischer [TF90] aims to investigate how the context of the
organization influences the adoption of innovations [Bak12]. TOE thereby focuses on higher-level
attributes instead of detailed behaviors and explains adoption decisions through three different
elements of an organization’s context: technological context, organizational context, and the
environmental context [TF90, Bak12]. As illustrated in Figure 2.6, each context is influenced
by the others and the sum of all three contexts set "[...] constraints and opportunities for
technological innovation" [TF90]. The following introduces the three aspects.

Technological Context. The technological context describes all relevant technologies to the
firm. This includes internal technologies, which are already in use, as well as external tech-
nologies which are not in use but available in the marketplace [TF90, Hag80, Sta76]. The
internal technologies set a broad limit on the scope, showcase the technological context, and
correspondingly set the pace of technological change within the organization [CHH88]. More-
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over, the externally available technologies demonstrate the innovation possibilities and how the
organization could evolve through innovations [Bak12].

Organizational Context. The organizational context incorporates all descriptive measures
about an organization [TF90], which also corresponds to the characteristics of organizational in-
novativeness as described by DOI [OM11]. Hence, this context refers to factors such as intra-firm
communication processes, size, organizational slack, or the degree of centralization [Bak12].

Environmental Context. The environmental context refers to all external forces such as
the structure of the industry, competitors, governmental influence, or legal regulations [TF90,
OM11, Bak12].

Overall, the TOE framework is consistent with DOI theory on how, why, and at what rate
innovations are diffused within organizations. Both frameworks include individual, internal, and
external characteristics of an organization as the influencing factors for its technology adoption
and innovativeness [OM11]. TOE additionally considers environmental factors as an important
aspect of the innovativeness of an organization. For example, competition usually increases the
incentive to invest in research, thereby fostering innovation [Gil06], whereas legal regulations
could potentially hinder the adoption of technologies. Therefore, TOE is considered to make
DOI theory more complete to explain organizational innovation adoption [HKD06]. Summarized,
TOE describes a holistic and frequently used analytical tool in IS research to understand the
process of innovation adoption in organizations through these three dimensions [OM11].

Internal Technologies
External Technologies
Availability
...

Technology

Competitors
Legal Regulations
Governmental Influence
...

Environment

Size
Formalization
Organizational Slack
...

Organization

Technological Innovation
Decision-Making 

Figure 2.6.: Technology-Organization-Environment framework (own work based on [TF90,
OM11]).
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2.3. Machine Learning Systems Development

The data-driven and stochastic characteristics of ML systems with their uncertainty in prelim-
inary experiments and non-deterministic outcomes require a shift of mindset in software devel-
opment practices [WXLM21]. Since ML capabilities are usually served as part of large software-
intensive systems, practitioners are faced with the problem of implementing non-deterministic
ML systems into traditional, deterministic software products [Gir21]. Necessarily, organizations
are forced to evolve their development process and interweave ML-specific procedures, such as
the process of feature engineering, into their current practices [ABB+19]. Similarly, the produc-
tization of ML systems requires the field of ML to progress beyond mere ML model development
to entire life cycle activities [LRC+20]. To alleviate these challenges, many organizations rely on
Cross-Industry Standard Process for Data Mining (CRISP-DM) [WH00], which is the de-facto
standard in the industry [SKMG21]. Accordingly, our endeavor to provide guidance for the
adoption of FedML systems in organizations builds heavily on CRISP-DM and the correspond-
ing software engineering best practices.

The following lays the theoretical groundwork for traditional software development life cycles in
Section 2.3.1. Subsequently, we elaborate on CRISP-DM in Section 2.3.2.

2.3.1. Software Development Life Cycles

A well-articulated SDLC model details the phases from requirements analysis to the final fin-
ished product and aids in improving the development process [AOO+20]. By breaking down
increasingly complex tasks into smaller subtasks, SDLC models help to plan and monitor work
as well as support cooperation and communication between team members to ensure efficient
development of high-quality software [Kne17]. Each life cycle model defines the development
process differently and has varying goals, advantages, and drawbacks. The selection and usage
of a suitable SDLC is a challenging task, but highly significant to deliver high-quality software,
that fulfills customer requirements within a given schedule and budget [MNB12, AOO+20].
According to Benediktsson et al. [BDT06], typical SDLCs can be categorized into sequential,
incremental, evolutionary, and agile approaches. The following will give a short description of
the categories with exemplary SDLC models.

Sequential. Sequential approaches, such as the Waterfall Model [Roy87] or V-Model [Boe79],
follow a sequential path of executing software development processes [BDT06]. The system devel-
opment process is separated into distinct phases, whereas each phase should be completed before
proceeding with the subsequent phase [MOJ05]. The progress is linear and reaching pre-defined
milestones determines when a phase is considered accomplished and the next phase should be
started. Thereby, sequential approaches are highly structured with a maximum amount of con-
trol over the process. Strictly following sequential approaches makes the software development
process inflexible and resistant to change [MOJ05, BDT06].

Incremental. Incremental approaches, such as the correspondent Incremental Model, follow a
phased development and develop elements in stages by splitting a plan into smaller segments.
These segments (increments) are seen as isolated, meaningful subsets of the project, that can
be developed, tested, and implemented independently from the remaining segments. Hence,
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each increment is implemented comparably to a "mini-waterfall" process [MG10]. These distinct
increments are developed in multiple, parallel mini-cycles [BDT06]. Each mini-cycle adds further
functionalities and capabilities, which slowly builds the system incrementally [LB03]. In contrast
to evolutionary or agile methods, the increments have pre-defined specifications followed by time-
boxed development [LB03, AB15].

Evolutionary. In contrast to incremental approaches, the requirements and specifications for
the increments are not fully pre-determined before implementation but might evolve during
the development process [BDT06]. Hence, evolutionary approaches, such as the Evolutionary
Prototyping Model [Jal12], start with an initial estimate and preliminary specification but allow
for details to be throughout during the process. These approaches are feedback-driven and the
finite goals evolve based on user needs and changes along the development, which allows for fast
adaptations in change-intensive projects [MZ96, PSDB20].

Agile. Agile development approaches are a group of methods based on incremental and iterative
development [LLTT12, BM12]. Through a certain set of principles and values, agile approaches
aim to reduce software development overhead and allow to adapt to quick changes [ASSA20].
This set of principles and values originated through an official alliance of 17 software engineering
consultants, which published the Agile Software Development Manifesto [BBVB+01] in 2001.
The manifesto prioritizes the response to change in the development life cycle rather than strictly
following a defined plan [ASSA20], where the requirements evolve through user feedback and
the collective endeavor of self-organizing cross-functional teams [GG17]. Summarized, in agile
approaches, the team should self-organize, adjust to requirement changes at any stage, actively
involve customers, and work at a pace best for their creativity and productivity [DNBM12].
Currently, the most widely adopted agile methods are Scrum and Extreme Programming [HA13,
GG17].

The variety of existing SDLC approaches breaks down complex tasks into smaller subtasks and
determines how teams develop software. Even though each model describes the development
process differently, they usually all include phases regarding the requirements analysis, design,
implementation, testing, maintenance, and deployment [AOO+20]. One iteration of the major
phases of SDLC models is illustrated in Figure 2.7. In which of the described modalities these
stages are approached, if the development process incorporates further stages, or if there is a
specific focus on certain stages, depends on the chosen SDLC.

Requirements 
Analysis

Architecture 
Design    Implementation Testing Deployment Maintenance

Major SDLC Stages

Figure 2.7.: Major software development life cycle stages (own work based on [AOO+20]).

In addition to the development process, each process model usually defines an abstract represen-
tation of participating roles, activities, and resulting artifacts [CKO92]. The role descriptions
help to understand the involvement of participating entities and provide information about their
distinct set of behaviors and responsibilities. Similarly, the activity aims to summarize the units
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of work that are performed by a role during a certain stage. The artifact description provides
information on the tangible by-products that are produced, modified, or used by a process
[Anw14]. Again, the set of participating roles, required activities, and resulting artifacts are
dependent on the chosen SDLC. For example, Scrum [SS11] requires specific roles such as the
Scrum master which are not required in other SDLC models.

2.3.2. Cross-Industry Standard Process for Data Mining

Developing ML-enabled applications require the integration of non-deterministic ML systems
into algorithms that were "hard-coded" by humans [Gir21]. However, the unique characteristics
of ML systems demand specific background knowledge, skills, and particular approaches, which
collide with traditional software development practices [Gir21, LRB+19]. The self-learning and
stochastical nature of ML adds uncertainty to the systems, which not only require additional
knowledge of statistics and information theory from practitioners but also change several SDLC
stages [WXLM21]. For example, collecting requirements involves comparably more preliminary
experiments, data needs to be thoroughly preprocessed, and testing becomes non-deterministic
[ASM+19, Gir21, LRB+19, WXLM21].

Against this backdrop, Wirth and Hipp [WH00] argued that a common process model increases
the chance of the project’s success by helping to link people with diverse skills together to form an
efficient and effective project. Moreover, a process model helps to structure the project, provides
advice for each task, and gives guidance to practitioners, especially novices. Thereupon, the
authors proposed a Cross-Industry Standard Process for Data Mining (CRISP-DM),
an industry- and technology-agnostic standard process for data mining projects. Since then, a
multitude of varying ML process models have been proposed based on CRISP-DM. However,
CRISP-DM is still the current de-facto industry standard for applying data mining and therefore
ML projects [SKMG21]. CRISP-DM can be separated into a Reference Model and a User Guide
[WH00].

2.3.2.1. Reference Model

The CRISP-DM Reference Model describes what to do in data mining projects and provides
an overview of the project’s life cycle. The overall life cycle is broken down into six distinct
phases, whereas each phase comprises a set of tasks and their corresponding outputs. The
authors emphasized, that the sequence of the phases is not strict and that the outcome of each
phase determines which phase has to be performed next [WH00]. However, the most frequent
dependencies between phases are illustrated in Figure 2.8. Overall, CRISP-DM follows a cyclic
approach and provides possibilities for the iterative refinement of each phase and respectively
the whole project cycle. The following will give a short description of the CRISP-DM phases
as described by the originally proposed reference model [WH00] and CRISP-DM consortium
[CCK+00].

Business Understanding. In the first phase, practitioners focus on determining the business
objective including the project requirements, and success criteria. This step involves assessing
the current situation by analyzing the resource inventory, project requirements, assumptions,
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Business
Understanding

Data 
Understanding

Data 
Preparation Modelling Evaluation Deployment

Data Mining Project Life Cycle

Figure 2.8.: Phases of the CRISP-DM process model (own work based on [WH00]).

constraints, risks, costs, and benefits. Thereupon, business objectives can be translated into
data mining problems and a data mining goal. Finally, a project plan can be derived.

Data Understanding. After collecting an initial dataset, practitioners first aim to understand
the coarse properties of the available data, such as the data format, quantity, and attributes.
Subsequently, the available data is explored more thoroughly through querying, visualization,
and reporting. These analyses should address directly the data mining goal and provide insights
regarding data quality, potential subsets, hidden information, or distribution of key attributes.

The first and second phases are closely linked. It is required to understand the available data
to a certain degree in order to formulate the business and data mining goals in the previous
phase. Hence, as illustrated in Figure 2.8, there are frequent dependencies between Business
Understanding and Data Understanding.

Data Preparation. This phase constructs the final dataset, which will be used for model train-
ing. Data preparation includes steps such as data selection, data cleaning, reduction to relevant
attributes, data transformation, and feature engineering. These steps are usually performed over
multiple iterations without any pre-defined order.

Modeling. The modeling phase generates the data mining tool (e.g., the ML model). Usually,
various models are selected and applied to the prepared dataset to test the model’s quality and
validity. The varying models are compared through a pre-defined test procedure with quality
criteria. The design of this test procedure varies depending on the use case, dataset, and
modeling technique. Accordingly, the parameter settings of the models are calibrated to optimal
values based on the test design as well as the domain knowledge of the expert.

As illustrated in Figure 2.8, the Data Preparation and Modeling phases are frequently linked.
Data problems may only occur during modeling or the modeling phase provides inspiration for
new features. Therefore, these two phases are often performed iteratively.

Evaluation. Before deployment, it is required to evaluate the results of the final model and to
review the approved model as well as the process that was needed to construct the model. This
phase assesses whether the model properly achieves the business objectives or if an important
business goal can not be sufficiently addressed. Finally, a decision on the deployment is being
made.

Deployment. Finally, the model is being deployed. This can take various forms such as
a productized ML model, a repeatable data mining process, or simply a generated report of
the results. A deployment plan as well as model monitoring and maintenance help to make
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appropriate use of the model. Lastly, the project is reviewed, documented, and organized in a
way that the customer can use it.

2.3.2.2. User Guide

The CRISP-DM User Guide describes how to do data mining projects with detailed tips for
each phase and task [WH00, CCK+00]. The user guide goes beyond the descriptions of the ref-
erence model and provides comprehensive guidance on how to perform the different tasks. For
each phase, the User Guide is structured into multiple task descriptions. These descriptions are
accompanied by the corresponding rationale, desired output, required activities, hints at pitfalls
and problem areas, as well as tips for the process. This advice may also take the form of check-
lists, questionnaires, tools, techniques, sequences of steps, and decision points. Additionally, the
CRISP-DM User Guide provides descriptions of the desired outputs and contents for the most
important reports. The User Guide is available at a generic level in [CCK+00].

2.3.2.3. Extensions and Variations

In recent years, many extensions and variations of CRISP-DM have been proposed that are
tailored to specific focus topics. Some studies aimed to address shortcomings of CRISP-DM and
conceptualized models that specifically concentrate on integrating ML development with the
overall software engineering process [HSM+19], emphasizing requirements collection [ABB+19],
data infrastructure and monitoring [BCN+17], or focusing on quality assurance [SBD+21]. Ad-
ditionally, some companies introduced their own processes based on CRISP-DM, for example,
IBM uses Lightweight IBM Cloud Garage Method for Data Science1 or Microsoft utilizes their
own Team Data Science Process2 to provide a standardized life cycle to structure their data
science projects. So far, none of these models have been widely adopted and CRISP-DM is still
seen as the de-facto industry standard [SKMG21].

1https://developer.ibm.com/articles/the-lightweight-ibm-cloud-garage-method-for-data-science/
2https://learn.microsoft.com/en-us/azure/architecture/data-science-process/overview
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CHAPTER 3

Research Design

The research design represents an overall plan for the activities and procedures that need to
be performed to fulfill the research objectives adequately [Bha12, Cre09]. This plan involves
multiple decisions, from the broad assumptions of the research inquiry to the specific methods
that are used to collect and analyze data [Cre09]. Accordingly, the following sections elaborate
on the broad paradigm of our research (see Section 3.1) and correspondingly on the selected
research methods (see Section 3.2).

3.1. Research Paradigm

Depending on the research goal, the research endeavor can either be of inductive or deductive
nature [Bha12]. Inductive research aims to infer theoretical concepts and patterns from observed
data, whereas deductive research tests these already known theoretical concepts and patterns
through new empirical data [Bha12]. Following the described RQs, we pursue an inductive
research strategy. Hereby, data can be collected through qualitative, quantitative, and mixed
strategies [Cre09]:

• Qualitative strategies, such as expert interviews or focus groups [GSTC08], aim to un-
derstand and interpret complex social and organizational phenomena [SC14]. Qualitative
research does not aim at generalizing results since the complexity of the phenomena usually
delimits the available units of analysis [SC14].

• Quantitative strategies, such as surveys or experiments [Cre09], intend to explain phenom-
ena by collecting numerical data [Suk07]. Usually, the numerical data is then analyzed
through mathematically based methods such as statistics [Cre09].
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• Mixed strategies combine quantitative and qualitative methods with the goal of devel-
oping richer insights into phenomena, that cannot be understood through qualitative or
quantitative methods alone [VBB13].

In this work, we chose a qualitative strategy since we aim to understand the practical adoption
of FedML, a complex, emerging technology with limited units of analysis. Hence, we follow an
inductive, qualitative research approach.

3.2. Research Methods

In our studies, we mainly gathered data through expert interviews (P1, P2) and focus groups
(P1-P4). Additionally, we used literature reviews in all studies (P1-P4) to assimilate knowledge
and ground our research in current literature. We followed the Design Science Research (DSR)
methodology by Peffers et al. [PTRC07] for the design and creation of solution artifacts (P3,
P4). Table 3.1 provides an overview of methods that have been applied for each embedded
core contribution. The subsequent sections briefly introduce the four used methods: literature
reviews (see Section 3.2.1), focus groups (see Section 3.2.2), expert interviews (see Section 3.2.3),
and design science research (see Section 3.2.4). The specific application of each research method
is described in detail in each separate publication.

3.2.1. Literature Reviews

Literature reviews are an essential method that allows researchers to understand, synthesize, and
get an overview of the extant body of knowledge [Sch15, PTJK15]. By conducting literature
reviews, researchers can get a sound theoretical foundation for the intended research goal [Bak00]

No. Title Literature
Review

Focus
Group

Expert
Interviews

Design
Science

P1
Revealing the Impacting Factors for the
Adoption of Federated Machine Learning

in Organizations
� •

P2
Unlocking the Potential of Collaborative
AI - On the Socio-Technical Challenges

of Federated Machine Learning
• • •

P3 A Process Model for the Practical
Adoption of Federated Machine Learning � � •

P4 A Pathway for the Practical Adoption
of Federated Machine Learning Projects � � •

Legend:

• Primary Method Used in the Publication

� Secondary Method Used in the Publication

Table 3.1.: Overview of research methods applied in the embedded publications.
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and identify research gaps [vBSN+09, Row12]. Thereby, researchers can justify the proposed
study, and incrementally build on and extend the research of others [LE06, PTJK15]. Hence,
a literature review poses a relevant first step and essential feature when conducting a research
project [Bak00, WW02].

Depending on the research objective, a literature review can either seek to summarize prior
knowledge, aggregate/integrate data, build explanations, or critically assess extant literature
[PTJK15]. For the research goal of this dissertation, we leveraged literature reviews to summarize
prior knowledge, thereby building our knowledge base and theoretical foundation of our research
endeavor. Depending on the goal and search strategy, these literature reviews can either take the
form of a descriptive, narrative, or scoping review [PTJK15]. In the embedded core publications,
we conducted a structured descriptive review (P2) and multiple narrative reviews (P1, P3, P4).
Therefore, the following sections will elaborate on these types of literature reviews.

Descriptive Reviews. A descriptive review usually employs a structured search method
[PTJK15] and aims to reveal interpretable patterns from existing literature [GJK87]. Each
individual study is treated as one data point and used to identify patterns and trends amongst
the surveyed literature corpus [KH05, PTJK15]. Accordingly, descriptive reviews produce quan-
tification, such as frequency counts on research outcomes to determine the extent to which a
literature corpus reveals trends [GJK87, KH05]. The result of a descriptive review is usually
claimed to represent the state of the art in a research domain [KH05].

In P2, we used a descriptive literature review to identify, aggregate, and synthesize critical at-
tributes of business models for inter-organizational collaborations. We leveraged the resulting
insights as a fundamental basis to investigate the socio-technical challenges of FedML projects.
We employed the structured search strategy as proposed by Zhang et al. [ZBT11]. This research
strategy follows a five-step approach. First, the search process starts by identifying relevant pub-
lication venues and search engines. Thereupon, a subsequent manual search screens the resulting
papers and gathers a collection of relevant studies, thereby establishing a quasi-gold standard.
Thirdly, search strings for the automated search are elicited from the quasi-gold standard or
defined subjectively. Consequently, the selected digital libraries are searched automatically by
using the search strings. Finally, the search performance is evaluated in relation to the quasi-gold
standard [ZBT11].

Narrative Reviews. A narrative review usually does not follow a systematic search process
[Dav00] and aims to present a broad perspective on a given subject [GJA06, PTJK15]. Against
this backdrop, it is important to note, that a narrative review may be vulnerable to subjectivity
due to its unstructured nature [GJA06]. Often, narrative reviews do not seek to generalize
knowledge from the reviewed literature corpus [Dav00]. Thereby, narrative reviews are usually
opportunistic and intend to identify the diversity of the available literature, including selected
grey literature [Dav00]. Since there might be a long lag time between the submission and
publication of evidence, the inclusion of grey literature helps to ensure the most current picture
of a research subject [Pae17]. This makes narrative reviews suitable to provide up-to-date
knowledge about a specific topic [Rot07].

In P1, we used the findings of a narrative literature review on ML adoption studies to assess and
contextualize the results of an expert interview study. In P3 and P4, we built our knowledge
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base by conducting narrative literature reviews on SDLC models and ML life cycles. We assessed
which of the identified practices, procedures, and information is relevant and applicable to the
development of the FedML process model and the activity model.

3.2.2. Focus Groups

Focus group interviews are an effective qualitative data collection method to gather a broad range
and variety of views, attitudes, and ideas on a specific topic [MWM+05, AA05]. A focus group
consists of a small, relatively homogeneous group of six to nine people with relevant expertise
including at least one moderator [AA05, BWG20]. Led by the moderator, the focus groups
usually last 90-120 minutes and are carefully planned discussions that enable participants to build
on the responses of others [Den17]. Thereby focus groups leverage the group dynamic to increase
the richness of obtained information [KLB04, Den17]. A focus group usually incorporates the
following main steps [Mor88, KLB04, NWDM18]:

1. Define Research Problem: The first step defines the objectives of the study and identifies
participants. Additionally, it is required to select a suitable location [NWDM18].

2. Data Collection: Prior to the discussion, the moderator should get familiar with the script,
group dynamics, and the environment [NWDM18]. Then the discussion should comprise
a preliminary introduction, the discussion itself, and a conclusion [NWDM18]. Hereby,
the moderator should create a comfortable atmosphere, which fosters the discussion and
group dynamic [Den17]. The discussion should be recorded [BWG20] and the recording
can take the form of handwritten notes, transcripts, audio recordings, or video recordings
[KLB04, BWG20]

3. Data Analysis: After data collection, the recorded discussion and corresponding data will
be analyzed [NWDM18]. The method of analysis varies depending on the underlying form
of transcript [NWDM18].

4. Results and Reporting: Finally, the researcher needs to decide on the suitable target au-
dience and if the results should be reported to academics, policymakers, practitioners,
and/or the participants of the study [NWDM18].

The focus group method is suitable for types of research objectives that require exploring a new
topic, generating new ideas, and gathering information or feedback from practitioners [Edm99,
Bel12]. Therefore, focus groups can be a valuable tool for the initial evaluation of potential
solutions or to collect characterizing information about current practices or problems [KLB04].

In P2, we used the focus group method to initially explore the socio-technical challenges of
inter-organizational FedML projects due to the novelty of the topic. In P3 and P4, we leveraged
focus groups to explore the problem space, iteratively evaluate the current state of our solution,
and gather additional information on current practices of ML and FedML project life cycles.
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3.2.3. Expert Interviews

The qualitative interview is one of the most commonly used data collection techniques in
qualitative research [Sea99, MN07]. Interviews are often leveraged to collect opinions, expe-
riences, interpretative perspectives, and historical data from the memories of the interviewees
[Sea99, MWM+05]. An interview is usually an exchange between a researcher and an expert
on the investigated subject [KB18]. However, there are various types of qualitative interviews,
from group interviews with multiple interviewees, structured interviews with a complete inter-
view script to unstructured and semi-structured interviews with an incomplete script [FF00].
Hereof, semi-structured interview are the most used type of interviews in qualitative research in
IS [MN07]. The following will only focus on semi-structure interviews since this is the only type
of interview we conducted in our research.

The semi-structured interview is characterized by its incomplete interview guide with pre-defined
topics and open-ended questions [MN07, BWG20]. The interview study usually involves the
following steps [Ada15, Sea99]:

1. Selecting Respondents and Arranging Interviews: Depending on the research objective,
the size of the target group should represent a manageable random group of the stratified
sample [Ada15]. The identification and request of knowledgeable experts should be done
such that the overall interview group is a randomly chosen sample of experts that eliminates
the biasing effect of convenience samples [Ada15]. After identification and first contact,
an individual appointment should be scheduled [Ada15].

2. Drafting the Interview Guide: In semi-structured interviews, the interview guide should
be a more-or-less partially developed script with questions that was prepared beforehand
[MN07]. The interview guide should involve at least an introduction of the researcher,
the purpose of the interview, key questions regarding the research objective, and possible
follow-ups or ending questions [MN07, Ada15]. Since potentially all data is useful [Sea99],
the questionnaire should allow open-ended questions [BWG20].

3. Starting and Conducting the Interview: The interview should start with an introduction
of the researcher, a short explanation of the research objective, and the matter of confi-
dentiality should be discussed [Sea99, Ada15]. The call or meeting could be recorded or
the interviewer might take notes during the interview [Sea99, Ada15]. The interview and
interviewer must be flexible enough to allow unforeseen information and to judge if an
answer needs to be cut off in case the conversation has wandered too far [Sea99]. After
the interview, the data is coded and analyzed [Sea99].

In our studies, we followed the guidelines of Myers and Newman [MN07], who argue that the
qualitative interview is a social interaction that should be seen as a drama. Through the dra-
maturgical analogy, Myers and Newman [MN07] derive seven guidelines for conducting semi-
structured interviews: (1) The researcher should situate themselves as both, interviewer and
interviewee before the interview takes place. (2) Social dissonance should be minimized. More
specifically, the researcher should minimize anything that might make the interviewee feel un-
comfortable. Thereby, the quality of disclosure can be increased. (3) The researcher should
interview a variety of voices and bias should be avoided. (4) Also, each participant is a creative
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interpreter of their world. Therefore, an interview produces the creation of multiple texts (initial
transcript and its interpretation). (5) By mirroring parts and phrases of the interviewees’ com-
ments, the researcher could construct subsequent questions. Ideally, these questions are open
rather than closed and the questions should move from general to specific. (6) Due to the in-
complete script, the interviewer is required to be flexible, and open, and to be able to improvise
in relation to the interviewees’ attitudes. (7) Lastly, the collected data should be confidential as
agreed at the beginning of the interview. Figure 3.1 displays the interrelation and influence of
the described guidelines on the interviewer and interviewee in relation to the interview context
[MN07].

Interviewer Interviewee 

Physical, Social, and Cultural Context

Minimize 
Social Dissonance Use Mirroring Flexibility
2 5 6

Situating 
the Researcher

1

Everyone is 
an Interpreter

4

Represent 
Various Voices

3

Confidentiality
7

Figure 3.1.: Interrelation and influence of interview guidelines (based on [MN07]).

In P1, we used semi-structured interviews to collect data on the influencing factors for the adop-
tion of FedML in organizations. In our studies, we followed the guidelines of Myers and Newman
[MN07]. In P2, we conducted semi-structured expert interviews to draw from the experiences
of experts on the socio-technical challenges of FedML projects. Thereby, we complemented the
results of a focus group discussion, gathered more in-depth insights, and enriched the captured
variety of voices.

3.2.4. Design Science Research Methodology

DSR provides a methodical, rigorous approach for creating and evaluating innovative, purposeful
artifacts for a relevant organizational problem [HMPR04]. This research framework builds on
the business needs of an appropriate application domain (environment) to ensure relevance and
the applicable scientific foundation (knowledge base) to establish rigor [HMPR04]. The interplay
of the design activities with the environment is commonly referred to as the Relevance Cycle,
whereas the connection of the knowledge base with the design activities denotes the Rigor Cycle.
Additionally, iterating between the core activities of designing the artifact is referred to as the
Design Cycle [Hev07].
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Hevner et al. [HMPR04] proposed seven DSR guidelines to ensure scientific rigor for effective
DSR in IS: (1) DSR must produce a viable artifact in the form of a construct, model, method, or
instantiation. (2) This artifact should be a technology-based solution, which addresses a relevant
business problem and (3) it should be rigorously demonstrated through well-executed evaluation
methods. (4) Additionally, the design artifact, design foundations, or design methodologies must
provide a clear and verifiable research contribution. (5) The construction and evaluation of the
artifact must rely on the application of rigorous research methods and (6) should be appropriate
to the context of the environment. (7) The research must be effectively presented to technology-
oriented as well as management-oriented audiences.

Peffers et al. [PTRC07] proposed a DSR methodology for IS research that incorporates these
guidelines, principles, and procedures. The DSR methodology process is as follows [PTRC07]:

1. Problem Identification and Motivation: The first step aims to clarify the problem and
highlights the importance of finding a solution.

2. Objectives of a Solution: Based on the identified problem, the objectives of a solution
should be inferred rationally.

3. Design and Development: Following the preparatory activities, the third stage is the core
of design science and aims to generate the artifact. This step includes the specification of
the desired functionalities, the artifact architecture, and finally its creation.

4. Demonstration: Subsequently, the use of the artifact should be demonstrated in one or
more instances of the problem to showcase its ability to solve the identified problem.

5. Evaluation: More comprehensively, this step evaluates how well the artifact supports a
solution to the problem by comparing the objectives of a solution to the actual observed
results. After evaluation and interpretation of the results, practitioners could iterate back
to step 2 or 3 to refine the process and improve the effectiveness of the artifact.

6. Communication: Finally, the practitioners communicate the problem and the designed
artifact including its relevance, utility, design process, and effectiveness. This information
should be communicated to other researchers and further relevant audiences. Therefore,
communication requires knowledge of the research domain and its disciplinary culture.

As displayed in Figure 3.2, the DSR process is not necessarily nominally sequential but can
comprise iterations and a researcher could start at almost any step [PTRC07].

Problem
Identification and

Motivation
Objectives of a

Solution
Design and

Development Demonstration Evaluation Communication

Potential Entry Points

Figure 3.2.: Design science research process in Information Systems (based on [PTRC07]).

In P3, we followed the DSR methodology to develop a process model of an end-to-end FedML
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project life cycle. In P4, we used DSR to provide comprehensive activity models that outline
the required tasks in the development of FedML systems. Both publications adhere to the seven
guidelines of effective DSR as proposed by Hevner et al. [HMPR04].
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CHAPTER 4

Core Contributions

The publication-based dissertation comprises the following publications (P1-P4):

(P1) Müller, T., Zahn, M., and Matthes, F. (2024). Revealing the Impacting Factors for
the Adoption of Federated Machine Learning in Organizations. Proceedings of the 57th
Hawaii International Conference on System Sciences. 7343-7352.

(P2) Müller, T., Zahn, M., and Matthes, F. (2023). Unlocking the Potential of Collaborative
AI - On the Socio-Technical Challenges of Federated Machine Learning. Proceedings
of the 31st European Conference on Information Systems. Research Papers, 245.

(P3) Müller, T., Zahn, M., and Matthes, F. (2023). A Process Model for the Practical
Adoption of Federated Machine Learning. Proceedings of the 29th Americas Conference
on Information Systems, 1.

(P4) Müller, T., Zahn, M., and Matthes, F. (2023). A Pathway for the Practical Adoption of
Federated Machine Learning Projects. Proceedings of the 27th Pacific-Asia Conference
on Information Systems, 6.

The following sections give an overview of each publication via a fact sheet with key facts about
the publication and the abstract of the paper.
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Listed for completeness, the author contributed to the following publications during the time
of my doctoral studies. Insights from these studies complement the content of this dissertation,
however, are not part of the core contributions:

(P5) Müller, T.; Gärtner, N.; Verzano, N. and Matthes, F. (2022). Barriers to the Practical
Adoption of Federated Machine Learning in Cross-company Collaborations. Proceed-
ings of the 14th International Conference on Agents and Artificial Intelligence, pages
581-588.

(P6) Müller, T., Stäbler, M., Gascon, H., Köster, F., and Matthes, F. (2023). SoK: Assessing
the State of Applied Federated Machine Learning. arXiv.

(P7) Zahn, M., Müller, T., and Matthes, F. (2024). Supporting Managerial Decision-Making
for Federated Machine Learning: Design of a Technology Selection Tool. Proceedings
of the 57th Hawaii International Conference on System Sciences.

(P8) Müller, T.; Zahn, M.; and Matthes, F. (2023). On the Adoption of Federated Machine
Learning: Roles, Activities and Process Life Cycle. Proceedings of the 25th Interna-
tional Conference on Enterprise Information Systems, pages 525-531.
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4. Core Contributions

4.1. (P1) Revealing the Impacting Factors for the Adoption of

Federated Machine Learning in Organizations

Table 5.4. Fact sheet on publication P1
Authors Müller, Tobias*

Zahn, Milena*
Matthes, Florian*

*Technical University of Munich,
TUM School of Computation, Information and Technology
Chair of Software Engineering for Business Information Systems,
Boltzmannstraße 3,
D-85748 Garching, Germany

Outlet 57th Hawaii International Conference on System Sciences (HICSS-57)

Page Number 10

Status Published

Contribution of

first author

Problem definition, research design, data collection, data analysis,
interpretation, writing, reporting

Citation Müller, T., Zahn, M., and Matthes, F. (2024). Revealing the Im-
pacting Factors for the Adoption of Federated Machine Learning in
Organizations. Proceedings of the 57th Hawaii International Confer-
ence on System Sciences. 7343-7352.

Abstract. The success of Machine Learning is driven by the ever-increasing wealth of digitized
data. Still, a significant amount of the world’s data is scattered and locked in data silos, which
leaves its full potential and therefore economic value largely untapped. Federated Machine
Learning is a novel model-to-data approach that enables the training of Machine Learning models
on decentralized, potentially siloed data. Despite its potential, most Federated Machine Learning
projects fail to actualize. The current literature lacks an understanding of the crucial factors for
the adoption of Federated Machine Learning in organizations. We conducted an interview study
with 13 experts from seven organizations to close this research gap. Specifically, we draw on the
Technology-Organization-Environment framework and identified a total of 19 influencing factors.
Thereby, we intend to facilitate managerial decision-making, aid practitioners in avoiding pitfalls,
and thereby ease the successful implementation
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4. Core Contributions

4.2. (P2) Unlocking the Potential of Collaborative AI - On the

Socio-Technical Challenges of Federated Machine Learning

Table 5.1. Fact sheet on publication P2
Authors Müller, Tobias*

Zahn, Milena*
Matthes, Florian*

*Technical University of Munich,
TUM School of Computation, Information and Technology
Chair of Software Engineering for Business Information Systems,
Boltzmannstraße 3,
D-85748 Garching, Germany

Outlet 31st European Conference on Information Systems (ECIS 2023)

Page Number 14

Status Published

Contribution of

first author

Problem definition, research design, data collection, data analysis,
interpretation, writing, reporting

Citation Müller, T., Zahn, M., and Matthes, F. (2023). Unlocking the Po-
tential of Collaborative AI - On the Socio-Technical Challenges of
Federated Machine Learning. Proceedings of the 31st European Con-
ference on Information Systems. Research Papers, 245.

Abstract. The disruptive potential of AI systems roots in the emergence of big data. Yet, a
significant portion is scattered and locked in data silos, leaving its potential untapped. Federated
Machine Learning is a novel AI paradigm enabling the creation of AI models from decentralized,
potentially siloed data. Hence, Federated Machine Learning could technically open data silos
and therefore unlock economic potential. However, this requires collaboration between multiple
parties owning data silos. Setting up collaborative business models is complex and often a reason
for failure. Current literature lacks guidelines on which aspects must be considered to success-
fully realize collaborative AI projects. This research investigates the challenges of prevailing
collaborative business models and distinct aspects of Federated Machine Learning. Through a
systematic literature review, focus group, and expert interviews, we provide a systemized collec-
tion of socio-technical challenges and an extended Business Model Canvas for the initial viability
assessment of collaborative AI projects.
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4. Core Contributions

4.3. (P3) A Process Model for the Practical Adoption of

Federated Machine Learning

Table 5.2. Fact sheet on publication P3
Authors Müller, Tobias*

Zahn, Milena*
Matthes, Florian*

*Technical University of Munich,
TUM School of Computation, Information and Technology
Chair of Software Engineering for Business Information Systems,
Boltzmannstraße 3,
D-85748 Garching, Germany

Outlet 29th Americas Conference on Information Systems (AMCIS 2023)

Page Number 10

Status Published

Contribution of

first author

Problem definition, research design, data collection, data analysis,
interpretation, artifact design, verification, writing, reporting

Citation Müller, T., Zahn, M., and Matthes, F. (2023). A Process Model for
the Practical Adoption of Federated Machine Learning. Proceedings
of the 29th Americas Conference on Information Systems, 1.

Abstract. The wealth of digitized data forms the fundamental basis for the disruptive impact
of Machine Learning. Yet a significant amount of data is scattered and locked in data silos,
leaving its full potential untouched. Federated Machine Learning is a novel Machine Learning
paradigm with the ability to overcome data silos by enabling the training of Machine Learning
models on decentralized, potentially siloed data. Despite its advantages, most Federated Machine
Learning projects fail in the project initiation phase due to their decentralized structure and
incomprehension interrelations. The current literature lacks a comprehensible overview of the
complex project structure. Through a Design Science Research approach, we provide a process
model of a Federated Machine Learning life cycle including required activities, roles, resources,
artifacts, and interrelations. Thereby, we aim to aid practitioners in the project initiation phase
by providing transparency and facilitating comprehensibility over the entire project life cycle.
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4.4. (P4) A Pathway for the Practical Adoption of Federated

Machine Learning Projects

Table 5.3. Fact sheet on publication P4
Authors Müller, Tobias*

Zahn, Milena*
Matthes, Florian*

*Technical University of Munich,
TUM School of Computation, Information and Technology
Chair of Software Engineering for Business Information Systems,
Boltzmannstraße 3,
D-85748 Garching, Germany

Outlet 27th Pacific Asia Conference on Information Systems (PACIS 2023)

Page Number 16

Status Published

Contribution of

first author

Problem definition, research design, data collection, data analysis,
interpretation, artifact design, verification, writing, reporting

Citation Müller, T., Zahn, M., and Matthes, F. (2023). A Pathway for the
Practical Adoption of Federated Machine Learning Projects. Pro-
ceedings of the 27th Pacific-Asia Conference on Information Systems,
6.

Abstract. Big data forms the fundamental basis for the success of Machine Learning. Yet, a
large amount of the world’s digitized data is locked up in data silos, leaving its potential un-
tapped. Federated Machine Learning is a novel Machine Learning paradigm with the potential to
overcome data silos by enabling the decentralized training of Machine Learning models through
a model-to-data approach. Despite its potential advantages, most Federated Machine Learning
projects fail to actualize due to their decentralized structure and incomprehensive interrelations.
Current literature lacks clear guidelines on which steps need to be performed to successfully
implement Federated Machine Learning projects. This study aims to close this research gap.
Through a design science research approach, we provide three distinct activity models which
outline required tasks in the development of Federated Machine Learning systems. Thereby, we
aim to reduce complexity and ease the implementation process by guiding practitioners through
the project life cycle.
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CHAPTER 5

Summary of Results and Discussion

This dissertation entails four publications that address the three RQs. In this chapter, we sum-
marize the key results and discuss how the publications contribute to answering the RQs. We
give a brief resume of the research process and then present the key findings. We start by sum-
marizing the insights on RQ1 and the influencing factors for FedML adoption (see Section 5.1).
Subsequently, we describe the main results of RQ2 and address the socio-technical challenges
of FedML (see Section 5.2). Finally, we present the findings on RQ3 and the FedML SDLC
(see Section 5.3). Additionally, every section discusses the findings in relation to the existing
literature. All key findings are summarized in Table 5.2.

5.1. RQ1: Influencing Factors for the Organizational Adoption

Research Question 1 (RQ1)

What are the major factors influencing the successful adoption of
Federated Machine Learning systems in organizations?

In P1, we conducted an expert interview study to gather the influencing factors for the adoption
of FedML in organizations and address RQ1. In the interview study, we gathered the experiences
of 13 relevant experts from seven organizations with a broad spectrum of backgrounds, job roles,
and experiences. Hereby, we first investigated why the practitioners adopted FedML (1) as
well as the overall challenges and risks (2). Subsequently, we drew from the TOE Framework
and specifically explored influencing factors regarding their Technological, Organizational, and
Environmental context (3). The data was coded according to the guidelines of the Reflexive
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Thematic Analysis process [BCHT18]. As illustrated in Figure 5.1, we identified a total of three
reasons for adoption, six overall challenges, and 19 TOE factors.

(1) Reasons of Adoption. Our results showcase three main reasons for the adoption of FedML.
Practitioners leverage FedML to overcome data privacy issues or to establish novel fields of
application by using currently untapped sensitive data. Also, the communication-efficient nature
of FedML is a major motivator for the usage of FedML.

(2) Challenges and Risks. Most experts stated that due to the novelty of the technology, most
organizations face challenges as first or early adopters. This means that organizations need to
tackle particularly complex compliance assessments and uncertainties regarding regulatory or
emerging standards. Additionally, first and early adopters need to develop novel business cases
and cannot rely on existing ones, making it difficult to allocate budget and get top management
support. Besides, organizations are currently mainly challenged by various aspects regarding the
collaboration with other organizations and by the complex technical implementation of FedML.
We aimed to facilitate the complex technical implementation through the artifacts of P3 and
P4.

(3) Technological, Organizational, and Environmental Factors. Through our study, we identi-
fied 19 influencing factors for the adoption of FedML in organizations and grouped these factors
according to the TOE framework. Out of the 19 influencing factors, we allocated nine factors
to the technological context, five factors to the organizational context, and five factors to the
environmental context. All experts unanimously agreed that collaboration management is an
essential and complex factor for the successful development of FedML projects. We specifically
addressed this challenge in P2. From an organizational perspective, the degree of top man-
agement support and expertise within the organization heavily impacts the success of FedML
projects. Regarding technological aspects, it is most important that organizations ensure high
data quality and the interoperability of the various data sources. As for the environmental fac-
tors, data privacy issues and the missing legal clarity impede the development FedML systems
the most. Figure 5.1 provides an overview of all 19 identified influencing factors.

Based on this study, we provide a thorough understanding of the risks and influencing factors in
the practical adoption of FedML. By revealing the critical factors, we hope to aid management-
oriented and technology-oriented audiences to avoid pitfalls and overcome challenges in the
planning and development process.

Discussion. ML is a general-purpose technology with the potential to transform current busi-
nesses [IL20, Cra21]. Hereby, the main value drivers of ML and thereby its reasons for adoption
are the possibility of unprecedented business opportunities, as well as the use of ML to provide
decision-support, drive customer engagement, and automate processes [BLS+21]. Our results
build on these insights and show that practitioners leverage FedML to establish further appli-
cation areas through collaboration and by overcoming data privacy issues (P1). Additionally,
we recognized that the communication efficiency of FedML is another main motivator for its
use (P1). Despite its advantages, ML and FedML systems show a relatively low organizational
adoption rate [ZKB+21, HN21, LLW+21].

Motivated by this, IS literature sparked various studies that investigate the influencing factors
for the organizational adoption of ML systems [ACM19, PTH19, CRDB21, HAAY+23]. We
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Organizational Adoption of Federated Machine Learning
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Figure 5.1.: Overview of insights for the organizational adoption of FedML (based on P1).

argue that the decentralized nature of FedML adds distinct influencing factors for its practical
adoption that needs to be investigated (P1). In accordance with current literature, our results
show that the degree of top management support, lack of expertise, infrastructure, as well as
data quality, and quantity are among the most critical influencing factors in the adoption of ML
[ACM19, KKG21, BKKP22] and FedML systems (P1). However, the novelty and decentraliza-
tion of FedML introduce additional technology-specific influencing factors. Organizations that
currently leverage FedML are early adopters that can not rely on best practices which yields
additional complex compliance assessments due to regulatory uncertainties and ambiguous legal
clarity regarding data privacy and antitrust laws (P1). Also, through the lack of best practices
practitioners are currently missing guidance for the implementation process which challenges the
successful realization of FedML projects (P1). In our studies P3 and P4, we aimed to address
this issue. The decentralized paradigm additionally requires the interoperability of data and
participating systems. Moreover, there is a need for collaboration and co-creation management
(P1), which we further analyze in P2.

Through P1, we confirmed the influencing factors for the adoption of ML systems and recognized
that FedML also incorporates the factors. However, we also found that FedML introduces further
impacting factors that need to be considered due to its novelty and decentralized setting.
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5.2. RQ2: Socio-Technical Challenges of Federated Machine

Learning

Research Question 2 (RQ2)

What are the distinct socio-technical challenges of
collaborative Federated Machine Learning projects?

In P2, we used a tripartite research approach to identify the socio-technical challenges of col-
laborative FedML projects and thereby address RQ2. While P1 considers the whole SDLC, this
study places a specific focus on collaboration creation. First, we performed a systematic litera-
ture review to gain an overview of the challenges of prevailing collaborative business models (1).
Subsequently, we explored the socio-technical challenges of collaborative FedML (2) through a
focus group discussion with five experts from two project teams that worked on cross-company
FedML projects. Finally, we complemented the insights through additional semi-structured ex-
pert interviews with five experts from three organizations. We closed the interview study after
reaching theoretical saturation.

(1) Challenges of Prevailing Collaborative Business Models. Based on a systematic literature
review, we compiled an extensive overview of the challenges of prevailing collaborative business
models. In the scope of our study, we explicitly focused on network-related challenges. Based
on Diirr and Cappelli [DC18], we grouped the identified network-related challenges into Man-
agement Challenges, Business Process Challenges, and Collaboration Challenges. Out of the 18
identified challenges, we assigned five management challenges, ten business process challenges,
and three collaboration challenges. Based on the number of occurrences, we recognized that the
lack of commitment and trust between participating organizations as well as the decision-making
and coordination slowness are the most critical challenges. Also, agreeing on the distribution
of financials and aligning the collaboration with the organizations’ own objectives, culture and
ethics are among the most important challenges in the creation of collaborative business mod-
els.

(2) Socio-Technical Challenges of Collaborative FedML Projects. Building on the previous in-
sights, we used a focus group discussion and expert interviews to specifically investigate the
socio-technical challenges of collaborative FedML projects. Through the socio-technical chal-
lenges, we provide a detailed understanding of the challenges that need to be addressed in the
creation of a business model in collaborative ML use cases. We proposed to structure the iden-
tified aspects into four distinct clusters: Collaboration Management, Co-Creation Management,
Co-Creation Practices, and FedML Product. Our findings reveal that most challenges occur re-
garding the Collaboration Management and Co-Creation Management. Thereby, we recognized
that the highest priority should be set on jointly clarifying the allocation of model ownership
with the accompanying accountabilities and responsibilities. This also goes along with a thor-
ough agreement on the IP management and distribution of financials. Regarding Collaboration
Management, it is essential to rigorously describe the collaboration structure and how decision-
making is handled and coordinated within the collaboration. Finally, we compiled an exhaustive
list of guiding questions to offer a list of aspects that need to be considered in the collaboration
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creation. Thereby, we assist practitioners in the creation of the collaboration agreement and
prepare them for challenges related to collaboration. Figure 5.2 provides an overview of all
identified socio-technical aspects and the set of FedML-specific guiding questions can be seen in
Appendix B.

Socio-Technical Challenges of Collaborations in the ML Domain
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Figure 5.2.: Overview of socio-technical challenges of collaborative ML projects (based on P2).

Discussion. The advent of ML systems transformed the business models of various domains,
from the insurance [ZC23] sector to health care [GL19] or education [RH20]. To leverage the
opportunities of ML and successfully create value, organizations need to develop a solid busi-
ness case [ACMA20]. The creation of these ML-enabled business cases is heavily dependent
on a variety of socio-technical factors that have been extensively studied in recent literature
[BPLW21, DVPHE20, JYK+23]. However, as compared to traditional ML systems, FedML
involves multiple clients that collaboratively train a ML model [KMA+21]. This implies that
the creation of FedML business cases also needs to consider challenges of collaborative business
models. Our results strengthen this assumption and show the significant intersection between
the persisting challenges regarding business models and collaborative FedML (P2). Consistent
with our findings on collaborative FedML (P2), prevailing collaborative business models are es-
pecially challenged by aspects such as participant management [PLAK21], change management
[CCM15, RBBC+14], or alignment on the quality of the product [DC18].

However, our study also identified distinct socio-technical challenges of collaborative FedML
systems and adaptations to previously known challenges. While the distribution of financials,
costs, and revenues is a known issue for collaborative business models [PLAK21, CCM15], these
challenges need to be revisited in the context of FedML (P2). For example, collaborators also
need to factor in the value of their data and its influence on the final model, when negotiating
and agreeing on the allocation of the ML model ownership and incentivization (P2). In this
context, the question of how data contributors can be adequately and fairly compensated for
their (processed) data sparked a multitude of studies [KXN+19, ZLQ+20, ZZH+21, OMY+22]
but still remains an open problem [YJLC22]. In sum, we argue that FedML introduces novel
socio-technical challenges that need to be further explored and addressed. In P2, we take an
initial step and reveal the socio-technical challenges for the collaboration creation of FedML
projects.
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5.3. RQ3: Software Development Life Cycle of Federated

Machine Learning Projects

Research Question 3 (RQ3)

What is the software development life cycle of Federated Machine Learning projects?

In P3 and P4, we investigated the software development life cycle of FedML projects and thereby
address RQ3. In both studies, we used DSR methodology to design a process model (1) as well
as an activity model (2) for the FedML SDLC. In the rigor cycle, we performed a literature
review on SDLCs, ML life cycles, as well as state-of-the-art FedML architectures and algorithms.
Additionally, we conducted iterative focus group discussions with varying participants to com-
plement our knowledge base and to ensure that our models are aligned with best practices and
meet the requirements of the practitioners. We demonstrated the models in two iterations of
demonstrations with subsequent survey-based evaluations. In total, each model was evaluated
by 14 experts from eight organizations. Hereby, the evaluation groups consisted of six technical
experts and eight target users.

Through an initial focus group discussion, we recognized the need for two distinct models, a
process model (P3) and activity models (P4), that address different target groups and serve
differing purposes. At this point, it is important to note the differences between the two models.
In the focus group discussion, we identified two reasons why FedML projects fail to actualize.
First, the project flow is complicated to understand, and the division of tasks is not clear. There-
fore, communicating the tasks throughout the team and potential collaborators is cumbersome.
Second, practitioners find it challenging to structure the complex implementation process due
to its decentralized and collaborative nature. The focus group participants concluded that a
process model, which gives a holistic overview of the process, and a detailed activity model with
a comprehensive sequence of tasks would alleviate both barriers. Against this backdrop, we
decided to conduct two distinct studies.

(1) Process Model. The process model (P3) provides a highly abstracted and holistic overview of
an end-to-end FedML project including the activities, required resources, role distributions, and
resulting artifacts. By providing a comprehensible overview of the sequence and interrelations of
these components, we aid business stakeholders and solution architects in the project initiation
phase outline the general project, and facilitate communication with potential participants.

Our study shows that the FedML development life cycle is divided into a total of five stages:
Project Initiation, Project Validation, Project Setup, System Design and Development, and De-
ployment and Maintenance. The System Design and Development stage contains the FedML
training process and is divided into three more sub-stages: Global Model Design, Local Model
Training, and Global Model Aggregation. An overview of the stages with the corresponding goals
can be seen in Table 5.1.

Additionally, we identified nine different roles that are required for FedML projects. Roles
with strategic responsibilities comprise Business Stakeholders, Project Managers, Subject Matter
Experts, Solution Architects. Operational roles are largely involved in the development process
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Stage Goal

Project Initiation This initial step lays the projects’ foundation by broadly defining
the goal of the project and its corresponding high-level requirements.

Project Validation Validates the feasibility from a business and technical perspective.

Project Setup
Preparing the project by arranging a potential collaboration and
setting up the technical foundation for the implementation of
the project.

Global Model
Design

Yields the data specifications and source code of the initial ML model
which will be the technical foundation of the FedML training process

Local Model
Training

Details activities regarding the local training on the data contributor’s
side. Each participant performs the local training and sends the
updates to the server.

Global Model
Aggregation

Performs the aggregation process and builds the updated global ML
model based on the collected model updates.

Deployment
and Maintenance

Deploys and maintains the packaged ML model and yields
the model service.

Table 5.1. Overview of FedML SDLC stages with their goals.

and encompass Data Scientists, Data Engineers, Software Engineers, Development-Operations
Engineers. Lastly, a Legal Representative needs to be involved. We provide role descriptions in
the embedded publication P3 with their mapping to the corresponding activities (see Appendix
A). We also showcased the required resources for each activity and the accompanying resulting
artifacts. Hereby, one of the critical and most complex FedML-specific activities is the creation
of a collaboration agreement. The previous study P2 offers a thorough analysis of its content and
provides assistance for practitioners. The final process model with the interrelations between
the stages, activities, roles, resources, and artifacts can be seen in Figure 5.3.

(2) Activity Model. The activity model (P4) provides a detailed activity sequence through
the needed steps of implementing a FedML project. These comprehensive activity descriptions
should guide product owners and project managers in the planning phase and the development
process. Overall, we proposed four activity models. The first activity model comprises all
relevant activities from the Project Initiation, Project Validation, and Project Setup stages.
Following, the second model describes the activity sequence of the Global Model Design stage,
whereas another model incorporates the Local Model Training and Global Model Aggregation
stage. The last model guides through the Deployment and Maintenance stage. Each model
displays one iteration of the consecutive activities within the stages, however, in practice the
stages are usually performed iterative to refine the process. To increase comprehensiveness and
for the sake of simplicity, we did not display the iterations between the activity models. These
relations are illustrated in the process model (P3). The resulting activity models can be seen in
the embedded publication P4 (see Appendix A).

Overall, we investigated the SDLC of a FedML project by developing an abstracted process
model and detailed activity models that further specify the process model. The FedML SDLC is
divided into a total of seven stages. As seen in the process model, the FedML SDLC is inherently
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5. Summary of Results and Discussion

iterative with multiple iteration loops. However, as shown in the activity models, some activities
need to be performed consecutively. With a combination of both artifacts from P3 and P4, we
reconstructed the entire FedML SDLC. The suitability, completeness, and usefulness of the tool
are shown based on two rounds of demonstrations and evaluations with technical experts and
target users. The findings for RQ3 are summarized in Table 5.2.

Discussion. The integration of ML capabilities into larger software-intensive systems re-
quires the alignment of traditional software engineering processes with the unique character-
istics of ML [Gir21]. These unique characteristics not only require additional skill sets and roles
[KZDB16, LERH20] but also adaptations in the SDLC [IY19, WXLM19]. This challenge be-
comes more difficult with the current lack of standards and development processes that guide
practitioners through the ML-specific SDLC [RKW20, ADD21, SBD+21]. Similarly, for FedML,
we recognized that many FedML projects come to a halt since practitioners struggle to structure
the project flow with the corresponding development process and division of tasks (P3, P4). In
addition to the characteristics of ML, FedML incorporates another layer of complexity due to
its decentralized paradigm which further complicates the multi-faceted process flow. As most
FedML projects fail to actualize and never leave the prototype or simulation stage [LLW+21],
we argue that this can be attributed to a lack of guidance and standards. Therefore, the devel-
opment of a standard process might alleviate this challenge and facilitate the implementation of
production-ready FedML applications (P3, P4).

For traditional ML systems, CRISP-DM [WH00] is used as the current de-facto industry
standard process model [SKMG21] to guide practitioners through the ML development pro-
cess. Since CRISP-DM was developed in 2000 [WH00] and mainly focuses on data min-
ing without explicitly covering ML scenarios, practitioners see the need for revised standard
processes and life cycle models with a distinct focus on ML applications [SBD+21]. Ac-
cordingly, multiple life cycle models for ML projects have been proposed in recent literature
[BCN+17, ABB+19, SBD+21, LBM+22, KKH23]. Due to the collaborative nature of FedML
that alters the development process, we argue that distinct process models for FedML projects
are required (P3, P4). Institute of Electrical and Electronics Engineers (IEEE) also recognized
this need and published a "IEEE Guide for Architectural Framework and Application of Feder-
ated Machine Learning" [Gro21]. This guide focuses on the FedML training process but does
not consider the whole project life cycle. Our work complements existing ML life cycle models
with a perspective on FedML systems as well as the IEEE guide through a holistic view of the
whole life cycle (P3, P4).

Consistent with our findings, novel ML process models such as CRISP-ML(Q) [SBD+21] build
on CRISP-DM [WH00] and incorporate emerging practices such as Machine Learning Opera-
tions (MLOps) processes as well as ML-specific iteration loops. Kreuzberger et al. [KKH23]
additionally compiled a list of roles that are necessary to realize ML projects within the MLOps
framework. We identified concurring roles for FedML systems (P3), which implies that FedML
does not require additional role profiles beyond regular ML systems. However, we still found that
practitioners are challenged by the novel, collaborative paradigm (P3, P4). To help practition-
ers, we proposed a high-level process model to provide a comprehensible overview of the holistic
project structure and interrelations (P3) with additional detailed activity sequence descriptions
(P4).
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RQ No. Key Findings
• Practitioners mainly adopt FedML to overcome data privacy issues,

establish novel fields of application, or due to communication efficiency
• Major challenges and risks arise due to its novelty and in collaborations
• Particularly, practitioners can not rely on best practices since currently

only a limited number of first or early adopters use FedML systems
� Most mentioned risks are: - Regulatory uncertainties and compliance

- Collaboration issues
- Complex technical implementation

• Identified 19 influencing factors for the organizational adoption of FedML
� Thereof: 9 technological, 5 organizational, 5 environmental factors

RQ1 P1

� Most mentioned factors are: - Collaboration management
- Top management support and expertise
- Quality and interoperability of data
- Potential data privacy concerns
- Missing legal clarity

• Identified 18 network-related challenges of collaborative business models
� Thereof: 5 management challenges, 10 business process challenges, and

3 collaboration challenges
� Most stated challenges are: - Lack of commitment and trust

- Slow decision-making and coordination
- Agreeing on the distribution of financials
- Aligning collaboration goals with own

objectives, culture, and ethics
• Identified 13 socio-technical challenges of collaborative ML projects

� Thereof: 3 collaboration management, 3 Co-creation management,
4 co-creation practice, 3 FedML product challenges

� Most stated challenges are: - Allocating model ownership with
responsibilities and accountabilities

- Agreement on IP management and
distribution of financials

- Clarifying the collaboration structure
- Establishing how decision-making is

handled and coordinated

RQ2 P2

• Compiled a set of guiding questions for the creation of FedML collaborations
• Practitioners struggle in structuring and communicate the project flow and

division of tasks within the team and with collaboration partners
� Creation of a process model to provide a comprehensible overview

• Practitioners have difficulties structuring the FedML development process
P3

� Creation of an activity model to provide a detailed activity sequence
• FedML SDLC consists of seven distinct stages
• FedML SDLC requires the involvement of nine roles

RQ3

P4 • The FedML SDLC is inherently iterative but encompasses linear and
consecutive activity sequences that are illustrated in the activity models

Table 5.2. Overview of key results.
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CHAPTER 6

Contributions and Implications

This dissertation and its embedded publications have several contributions and implications for
theory and practice. Overall, we offer the first exploration of the practical adoption of FedML in
organizations. Thereby, we contribute to the field of FedML, ML adoption, and ML SDLCs. The
following summarizes the most important theoretical (see Section 6.1) and practical implications
(see Section 6.2).

6.1. Theoretical Implications

First, our results have several implications for the literature on FedML in general. This thesis
initially advances the understanding of FedML by providing an extensive list of risks, challenges,
and influencing factors of FedML that have a direct or indirect impact on its organizational adop-
tion (P1). Our findings initially explore the adoption factors of FedML and additionally disclose
essential aspects that need to be clarified for its broad practical adoption. Thereby, we emphasize
the importance of best practices regarding technical implementation and collaboration manage-
ment. Also, compliance aspects and legal regulations are currently ambiguous and need to be
clarified (P1). Therefore, our insights provide a profound basis for future research on FedML
adoption. Subsequently, we investigated the socio-technical challenges that arise due to the col-
laborative and decentralized characteristics of FedML (P2). As a result, we synthesize empirical
knowledge from isolated studies on challenges of collaborative business models, complement these
insights with FedML-specific aspects, and elucidate the relationship between these challenges.
Our results show that FedML projects need to address the socio-technical challenges that can be
found in the literature on collaborative business models [PLAK21, CCM15, RBBC+14, DC18]
but also introduce further distinct challenges. The newly discovered factors shed light on the
challenges regarding collaboration management, co-creation management, co-creation practices,
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6. Contributions and Implications

and additional aspects for the resulting FedML product. Consequently, we provide a comprehen-
sive overview of relevant socio-technical challenges for FedML projects. Thereby, we enhance the
understanding of how closely technology and humans are intertwined in the context of FedML
and how collaboration affects this interrelation (P2). Moreover, we complement the literature
on FedML by providing a comprehensible representation of the FedML SDLC in the form of
an abstracted process model (P2) and detailed activity models (P3). Hereby, we structure the
implementation of FedML systems and reveal the dependencies and interrelations within the
project.

Second, we contribute the literature on ML adoption with a perspective on FedML by pro-
viding an itemized list of potential factors influencing the successful adoption of FedML in
organizations (P1). For this, the TOE framework [TF90] served as a basis that was populated
with empirically derived FedML-specific factors. Thereby, we obtained an inclusive list of tech-
nological, organizational, and environmental factors that apply to ML in general with further
aspects that are distinctly relevant to FedML. In alignment with studies on ML adoption factors
[ACM19, PTH19, CRDB21, HAAY+23], our results show that the degree of top management
support, lack of expertise as well as data quality and quantity remain the most critical factors for
the successful ML and FedML adoption. However, newly discovered factors that are specifically
important for FedML include aspects such as regulatory uncertainties, collaboration manage-
ment, or data interoperability (P1). Additionally, we recognized the importance of standards
regarding development processes and best practices (P3, P4) to help practitioners in the com-
plex technical implementation process (P1). These factors show how the decentralized process
of FedML adds complexity and changes the impacting factors for the organizational adoption of
ML. FedML systems can establish novel fields of application, enhance communication efficiency,
and overcome data privacy issues due to their model-to-data approach (P1). Summarized, we
are advancing the understanding of the current state, challenges, risks, and open problems of
organizationally applied FedML and thereby taking a step in maturing this line of research.

Third, our studies extend the literature on ML SDLCs. We observed that practitioners have dif-
ficulties structuring the FedML development process and confirm the need of ML-specific SDLC
[RKW20, ADD21, SBD+21] (P1, P3, P4). By following the design science research approach,
we constructed the FedML SDLC to provide structure to the development process. With these
models, we enhance the understanding of the interplay between the different components that are
required in the development process and showcase how the activities, interacting roles, required
resources, and resulting artifacts are interrelated. We incorporated best practices of prevailing
ML SDLCs [BCN+17, ABB+19, SBD+21, LBM+22, KKH23] and revealed how FedML differs
and changes known SDLCs. In total, we showed that an end-to-end FedML project consists of
seven distinct stages and involves a total of nine roles. Hence, we provide an outlook on the
development of decentralized ML systems, while extant literature focuses mostly on traditional,
centralized architectures.

6.2. Practical Implications

Adding to the theoretical contributions, this dissertation offers several implications for practice
and provides practitioners, decision-makers, and organizations with actionable insights into what
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is required for the adoption of FedML. Overall, this thesis aims to offer a guide for organizations
that plan to develop or are currently in the process of adopting FedML.

First, our findings reveal the influencing factors that need to be considered by practitioners for
the successful practical adoption of FedML in organizations. Through this systemized list, we
provide an overview of the various factors influencing the adoption of FedML in organizations
from a technological, organizational, and environmental perspective (P1). Through this study,
we present structured insights into the complex processes and the interrelation of technology
and humans in adopting FedML. These identified factors represent potential pitfalls for the
integration of FedML systems in organizations and help practitioners become aware of these
aspects. Hence, the insights can be used by organizations that are currently planning or devel-
oping FedML projects to identify and counteract challenges preemptively. In turn, these insights
also elucidate factors that could be enforced to actively drive the successful adoption of FedML
through better-informed decisions. More abstractly, organizations could also systematically as-
sess the provided factors to evaluate their maturity for FedML adoption. Thereby, organizations
can validate the viability of the project and identify potential areas of improvement that can be
addressed by decision-makers. Overall, our study provides practical guidance on how decision-
makers and practitioners can influence the adoption of FedML systems by creating awareness of
the technological, organizational, and environmental influencing factors.

Second, our results aid practitioners in the creation and management of collaborations with
different participants or organizations within FedML projects (P2). As seen in P1, all inter-
viewed experts unanimously stated that collaboration is one of the main challenges that in-
fluence the successful adoption of FedML. For this purpose, we compile a systemized list of
socio-technical challenges that represent critical aspects and potential pitfalls for collaborations
within the FedML context (P2). By this, we not only support organizations to identify poten-
tial collaboration-related challenges early but also allow for an initial viability assessment and
to counter potentially emerging challenges preemptively. Since FedML works in a decentral-
ized and potentially collaborative setting, participants need to define a collaboration agreement
before the development process can be initiated (P3). The extensive set of guiding questions
offers practical guidance for the creation of such an agreement and provides information on the
necessary aspects that need to be considered. This comprehensive list can be used as a reference
to help organizations consider the known relevant challenges of collaborative business models as
well as novel FedML-specific aspects (P2).

Third, this thesis illustrates how the FedML SDLC is structured (P3, P4). The results can
be used by practitioners and organizations as a blueprint for their implementation procedure
or as guidance for the project plan. Currently, practitioners are challenged by the complex
technical implementation process as well as a lack of standards, best practices, and guidance
(P1). We observed that this lack of guidance leads to complications in the project initiation and
project planning phase (P3, P4), which creates a barrier to the productization of FedML sys-
tems. Against this backdrop, we developed a high-level process model (P3) and detailed activity
models (P4) to initially provide a comprehensible and structured overview of the FedML SDLC.
The process model gives a holistic overview and can help practitioners gain an understanding
of the overall project structure with the interrelations of the different activities, roles, required
resources, and resulting artifacts. In P3, we showed that this structured and simplified illustra-
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tion, helps practitioners to communicate the distribution of tasks with potential collaboration
partners and thereby eases the project initiation phase. Additionally, the activity models offer
more in-depth descriptions of the activity sequences for the end-to-end FedML project. In P4,
the evaluation of the activity models with 14 experts (E1-E14) showed a multitude of practical
implications. The models aid in "[...] understanding the FedML process" (E12) and make the
FedML process for "[...] non-technically proficient shareholder easier to comprehend" (E11).
Consequently, the models "[...] help make better-informed decisions" (E9). Moreover, technical
practitioners can use the models to facilitate communication with stakeholders since "this is
very much what decision-makers would require from practitioners in order to understand what
needs to be done [...]" (E2). Thus, practitioners and non-technical stakeholders could use the
models for guidance in the project planning phase, track the development process, and identify
the next steps. Overall, the combination of the process model and activity models provides
an initial step toward a standard process for the development of FedML systems. Hereby, the
process model mainly intends to aid business stakeholders and solution architects in the project
initiation phase (P3), whereas the activity models target product owners and project managers
in the planning phase and the development process (P4).
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CHAPTER 7

Limitations

The embedded publications and thereby this dissertation are subject to several limitations.
While each publication offers a detailed discussion of its limitations, we will summarize and
discuss the most important limitations regarding our research methods, data sources, and scope
in the following.

Literature Reviews. All publications used literature reviews to build the theoretical founda-
tion for further research endeavors. Literature reviews are limited by their reliance on the search
and coding process. In this regard, our search process might not have covered all papers related
to the given topic since we might have missed alternative phrases for our search terms or relevant
outlets. We tried to mitigate this limitation by conducting comprehensive forward and backward
searches to identify further studies [WW02]. Additionally, we searched for articles in journals
and conference proceedings as well as grey literature from the computer science, social sciences,
and IS literature corpus. Thereby, we aimed to ensure the inclusion of all subject areas including
novel insights that have not been published. Moreover, the analysis of the literature review and
coding process is prone to bias as coding depends on the researcher’s subjective interpretation
of the interrelations. This applies especially to P2, where we contextualized and systemized
the challenges of collaborative business models from isolated empirical studies. To address this
issue, we introduced pre-defined selection criteria and multiple researchers independently coded
the relevant articles. All conflicts were mutually resolved through regular discussions.

Focus Groups. In P2, P3, and P4 we performed focus group discussions which were limited
by the data collection and analysis process. Here, the researcher is the primary means for
data collection and is therefore susceptible to bias. To minimize this problem, we ensured
observer triangulation by involving two participating researchers in each focus group [RH09].
Additionally, we were limited by the available number of experts. Since FedML is an emerging
technology, only first and early adopters leverage FedML in their organizations. As a result, we
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could only identify a limited amount of suitable experts and project teams. The participants
were mainly affiliated with larger enterprises, research institutes, or start-ups. Medium-sized
enterprises were only sparsely represented. Therefore, the findings could be biased and might
have led to results tailored to the participating affiliations that might not be fully generalizable to
medium-sized enterprises. We tried to counteract this bias by carefully selecting highly involved
experts with different backgrounds and affiliations from each enterprise size to maximize the
variety of voices to the best of our possibilities [MN07]. Similar to literature reviews, the coding
process also introduces potential bias and we mitigated this risk through data triangulation and
involving multiple researchers that coded the collected data.

Expert Interviews. There are also limitations to semi-structured expert interviews, which
we conducted in P1 and P2. Expert interviews introduce the same limitations as focus group
discussions. On this note, it is important to emphasize that our studies are based on the
experiences and expertise of a limited sample size due to the novelty of FedML. Even though
we only concluded our studies when theoretical saturation was reached, we cannot rule out
that further interviewees might have added more insights which might have altered our results.
Hence, more perspectives and consequently more data from a bigger and more diverse set of
interviewees might have enriched our results.

Design Science Research. Also, the use of design science research in P3 and P4 yields
some limitations. Here, our studies are mainly limited by researcher bias in the design process
and by the evaluation. We tried to mitigate potential researcher bias by establishing design
principles and iteratively assessing the artifacts with independent focus groups throughout the
design process. In IS literature, there is little guidance on how to evaluate the contributions of
DSR artifacts thoroughly, and describing the complexities of an artifact is only partly possible
[GH13, CW23]. In this regard, we focused on evaluating the artifacts’ technical completeness
and usability through demonstrations with subsequent survey-based evaluations within a large
industrial lighthouse project as part of a project ideation process. While this is a reasonable
evaluation method [PCWA14], we could not assess the performance of the artifacts in further
use cases. More rigorous case studies as well as additional iterations and user feedback might
be required. Therefore, we seek to evaluate the models in more scenarios and gather feedback
for improvement.

Scope. Regarding the scope, we mainly focused on FedML systems with a client-server architec-
ture and orchestrating server since this is the most widely used architectural pattern [LLW+21].
However, more architectural patterns such as completely decentralized peer-to-peer processes
were also suggested in recent literature [LLZ+22]. Therefore, the generalizability of the process
model (P3) and activity models (P4) is limited to the scope of this thesis. As discussed in P4, the
choice of architectural pattern only requires revisiting the models in the Local Model Training
and Global Model Aggregation stage, whereas the remainder of the models can be reused. Ad-
ditionally, we aimed at generically usable models that are not specific to use cases or domains.
To evaluate the generalizability, we gathered a diverse group of evaluation participants from
multiple areas, domains, enterprise sizes, and job profiles. However, we conceivably only depict
a subset of the potential user demographic and can not discount potentially missing domain-
dependent and process-specific characteristics. Nevertheless, the models are a reasonable basis
for extension and further development.
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CHAPTER 8

Conclusion and Future Work

With this chapter, we conclude this dissertation and outline future work. More specifically, we
will first recapitulate the research endeavor with concluding remarks (see Section 8.1) and finally
describe potential avenues for future research that emerged from the findings of this thesis (see
Section 8.2).

8.1. Conclusion

The lack of available and suitable training data is a persisting barrier to the implementation
of ML systems [PFW+21, BvDK20, HAAY+23]. Organizations could overcome this barrier by
voluntary data sharing and collaboration. However, the companies’ willingness to share data is
low due to privacy concerns and potential loss of IP [SLZ20]. FedML is an emerging ML paradigm
with the promise to enable the training of a joint ML model while keeping the contributor’s
data private [MMR+17]. Through its model-to-data approach, the training data remains within
company borders and thereby permits cross-company collaboration across multiple data silos
without having to share data. However, despite its potential, most FedML projects come to a halt
in the simulation or prototype stage and consequently fail to actualize [LLW+21]. Although there
is an increasing literature corpus on FedML [AAdCK+22], there is still no work investigating its
organizational adoption. Against this backdrop, the purpose of this dissertation was to close this
research gap and contribute to the existing body of knowledge by investigating three emergent
research questions regarding the organizational adoption of FedML: the influencing factors for
a successful organizational adoption (RQ1), its distinct socio-technical challenges related to the
unique characteristics of collaborative FedML (RQ2), and the FedML SDLC (RQ3).

Conclusion related to RQ1. This dissertation initially reveals the influencing factors for
the organizational adoption of FedML. We compiled a list of three main reasons for FedML
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adoption, six main risks, and 19 influencing factors. Thereby, we extend the literature corpus on
ML adoption with a view on FedML systems and enhance the understanding of how the decen-
tralized nature of FedML adds complexity and changes the impacting factors of ML adoption.
Researchers can use our findings as a basis for further investigation and to determine new best
practices for tackling identified novel challenges. Moreover, practitioners can utilize the insights
to become aware and avoid potential obstacles. Additionally, organizations could systematically
analyze the proposed list of influencing factors to determine their maturity regarding FedML
adoption and identify possible areas of improvement.

Conclusion related to RQ2. The findings of this dissertation provide a systemized overview
of the socio-technical challenges that emerge from the unique collaborative characteristics of
FedML. Through a systematic literature review, focus group discussions, and subsequent ex-
pert interviews, we compiled a list of novel socio-technical challenges and a set of corresponding
guiding questions. Thereby, we offer a better understanding of how collaboration affects the in-
terrelation of humans and technology within the ML context. Practitioners can use the obtained
results as a reference book for critical aspects and potential pitfalls. Thereby practitioners can
preemptively mitigate arising collaboration-related challenges. Additionally, the systemized list
can be leveraged as practical guidance for the creation of a collaboration agreement that needs
to be defined within FedML projects.

Conclusion related to RQ3. Through this dissertation, we illustrated the SDLC of FedML
projects through an abstracted process model and detailed activity models. We recognized that
practitioners are challenged by the complex implementation process and that standards or guid-
ance can facilitate this challenge. In this light, we designed a set of artifacts that structures,
simplifies, and provides guidance for the implementation process through a holistic overview of
the overall project flow and in-depth representations of the required activity sequences. Thereby,
we complemented the literature corpus on ML SDLCs with a perspective on FedML. Practition-
ers can utilize our results to gain an understanding of the project structure and interrelations
within the FedML projects, which eases the communication of technological-oriented practi-
tioners with non-technically proficient stakeholders. Moreover, practitioners can use our results
as guidance to plan the project, track progress, and identify the next steps. Overall, these
models offer a first step towards a standardized FedML development process and help make
better-informed decisions for project initiation and planning.

Overall, this dissertation takes a step toward an exploration of the adoption of FedML in orga-
nizations. We identified the distinct socio-technical challenges of collaborative FedML, proposed
FedML SDLCs, and revealed the influencing factors for its organizational adoption. Amongst
other things, practitioners can utilize our findings as guidance for their projects. Additionally,
organizations can use our results as a reference book for the creation of a collaboration agreement
and to avoid potential pitfalls during the project. Thereby, we also provide the fundamental
basis for future research endeavors within the field of organizational FedML adoption.
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8.2. Future Work

In the context of this work, several research gaps emerged that could not be addressed in the
scope of this thesis and provide promising avenues for future research. The following will outline
potential starting points for new research efforts and is summarized in Table 8.1.

Future research regarding RQ1. To explore the influencing factors for the adoption of
FedML, we followed a qualitative research approach across diverse sample demography. The
exploratory and qualitative approach of our study yields multiple promising possibilities for
future research. First, since we conducted a qualitative study with a limited sample size, it might
be interesting to perform follow-up studies to validate, extend, and quantify our results. Second,
we only revealed the influencing factors without putting the different factors in relation to each
other. Therefore, future research could empirically analyze the significance and correlation of the
identified adoption factors and determine correlation coefficients or weightings for the attributes.
Third, our work involves various industries and is by nature industry-agnostic. However, as seen
in Cubric et al. [Cub20], varying industries may introduce differing value drivers or barriers to
ML adoption. Thus, future research can build on our results and focus on distinct industries to
contrast the similarities and differences of FedML adoption across domains.

Additionally, the identified adoption factors offer the theoretical basis for a variety of potential
research opportunities. For example, one of the main challenges revolves around data quality and
how interoperability across participants can be assured. Against this backdrop, we encourage
researchers to study data quality, interoperability features and how corresponding assessments
can be conducted within the FedML context. These studies could additionally develop tools
to aid practitioners in the assessment. Also, practitioners are missing legal clarity (P1) and
there is still ambiguity regarding currently emerging legal frameworks such as the Artificial
Intelligence (AI) Act of the European Union or the United States Algorithmic Accountability
Act [VZB21, MJWF22] and how antitrust laws respond to FedML collaborations [MLP21]. As
an initial step, it might be interesting for future research to assess the current legal situation
and corollary open questions of FedML systems regarding AI regulations and antitrust laws. We
expect these results to be crucial for the broad adoption of FedML systems.

Future research regarding RQ2. The current research in the field of FedML is dominated by
work on challenges and problem statements with a technical focus [NDR20, ZXB+21, BAA+22].
However, the organizational adoption of novel technologies, such as FedML, is dependent on
more than the technical dimension [MSH91, GDR14]. With our work on the socio-technical
aspects of collaborative FedML, we took an initial step beyond technological aspects. As this
thesis is predominantly exploratory, we encourage researchers to perform follow-up studies to
quantitatively validate, refine, and extend our results. While we identified a multitude of chal-
lenges, current literature still lacks best practices to address these challenges. Therefore, we
motivate researchers to perform observational studies, identify success stories, and derive best
practices by investigating how current first and early adopters solve these challenges. In this
regard, one of the most cited challenges involved the distribution of model ownership and fi-
nancials. Correspondingly, investigating how production-level FedML systems deliver value and
understanding the accompanying value streams between organizations is a promising direction
for future research. Moreover, there are persisting issues regarding the collaboration structure,
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decision-making, and IP management. Thus, future work could analyze the underlying gover-
nance framework of current FedML systems and rigorously conceptualize possible governance
frameworks, methods, and tools.

Future research regarding RQ3. In this thesis, we designed a process model and activity
models to structure, simplify, and provide guidance for the implementation of FedML projects.
The models proved to be useful in our evaluations, however, we did not validate the models in
industrial projects due to the limited scope of this thesis. Therefore, we encourage researchers
and practitioners to apply the artifacts in case studies to further validate the model’s usefulness
and gather feedback for improvement. In our work, we focused on implementation projects with
a server-client architecture and a central orchestrating server. While this is the most prevalent
and utilized architectural pattern [LLW+21], other architectural patterns have been proposed
as well [LLZ+22]. Thus, future research could empirically evaluate the generalizability of our
proposed models and design models that are tailored to other architectural patterns, such as
partially connected architectures or completely decentralized peer-to-peer networks [BPS+23].
Since privacy is one main reason for adopting FedML, there is increasing research on the ad-
ditional implementation of PETs in FedML algorithms [WLD+20, ZLX+20, MPP+21, EOA22].
Similar to the previous point, future work could also contribute to this research stream with a
view on the engineering life cycle and investigate how the additional utilization of PETs alters
the FedML development process.

Through our models, we also recognized various opportunities to develop helpful tools and
aid practitioners through the development process. For example, our set of guiding questions
(P2) facilitates the creation of the collaboration agreement and in an additional publication, we
designed a design support tool for the technology selection process (see P7) [ZMM24]. Future
studies could complement this tool set to help practitioners through the development of FedML
projects. This research avenue can span from pattern catalogs that focus on stakeholder-related
concerns and patterns to technological frameworks or tools that automate incentive mechanisms
or establish governance.
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RQ No. Potential Research Avenues
• Perform quantitative studies to validate, refine, and extend our results
• Empirically study the significance and correlation of the adoption factors
• Investigate similarities and differences of adoption factors across domains
• Study data quality and interoperability features within the FedML

context and how corresponding assessments could be done
RQ1 P1

• Assess current legal situation and corollary open questions of FedML
systems regarding AI regulations and antitrust laws

• Perform quantitative studies to validate, refine, and extend our results
• Conduct case studies to identify success stories and derive best practices

that address the socio-technical challenges
• Investigate how production-level FedML systems deliver value and

understand the value streams between participating organizations
RQ2 P2

• Analyze underlying governance mechanisms of production-level FedML
systems and conceptualize governance frameworks, methods, and tools

• Apply models in case studies to further validate the usefulness of the
model’s gather feedback for improvement

P3 • Empirically evaluate the generalizability of our model and investigate
how other architectural patterns influence the development life cycle

• Develop process and activity models for other architectural patterns
• Analyze how the utilization of PETs alters the development process

RQ3

P4
• Rigorously develop tools that help practitioners through project stages

Table 8.1. Potential avenues for future research.
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Abstract

The success of Machine Learning is driven by
the ever-increasing wealth of digitized data. Still, a
significant amount of the world’s data is scattered and
locked in data silos, which leaves its full potential and
therefore economic value largely untapped. Federated
Machine Learning is a novel model-to-data approach
that enables the training of Machine Learning models
on decentralized, potentially siloed data. Despite its
potential, most Federated Machine Learning projects
fail to actualize. The current literature lacks an
understanding of the crucial factors for the adoption
of Federated Machine Learning in organizations. We
conducted an interview study with 13 experts from seven
organizations to close this research gap. Specifically,
we draw on the Technology-Organization-Environment
framework and identified a total of 19 influencing
factors. Thereby, we intend to facilitate managerial
decision-making, aid practitioners in avoiding pitfalls,
and thereby ease the successful implementation of
Federated Machine Learning projects.

Keywords: Federated Machine Learning, Technology
Adoption, TOE Framework, Interview Study

1. Introduction

The ever-increasing wealth of digitized data powers
the disruptive potential of Machine Learning (ML)
and its immense economic impact. Even though vast
amounts of data is freely available, extensive amounts
of already generated data is scattered, stored, and
locked up in decentralized devices and data silos.
Accessing these data silos becomes more difficult with
privacy concerns and legal regulations, which leaves the
economic potential of the stored data largely untapped.

Federated Machine Learning (FedML) is a novel
ML paradigm, with the promise to build prediction
models on decentralized data without the need for direct
data sharing (McMahan et al., 2016). Through its
model-to-data approach, FedML enables the usage of
siloed data without disclosing data to third parties.
Therefore, FedML has the potential to overcome data
silos, enable the usage of currently untapped data and
thereby be the catalyst for novel application fields
of ML. Despite its advantages, there are only a
few production-level applications and most work on
FedML comprises prototypes or simulations (Lo et al.,
2021). Investigating the challenges, success factors, and
influential factors for the adoption of FedML might offer
valuable insights into the missing operationalization of
FedML. A better understanding of these factors would
also aid practitioners to implement FedML projects and
thereby support its broader practical adoption.

In contrast to the literature on FedML, research
on traditional, centralized Artificial Intelligence (AI)
systems already provides relevant insights into the
challenges and success factors of AI adoption. For
example, research on AI adoption in the financial
services industry recognized a lack of AI-related
skills, missing top management support, market
regulations, and complex implementation as the
main challenges (Kruse et al., 2019). Similar
studies in the manufacturing and production domain
identified leadership support as a crucial success
factor (Demlehner and Laumer, 2020). Besides, the
complexity of an organization additionally hinders AI
adoption in manufacturing firms (Chatterjee et al.,
2021). Similar results have also been obtained for AI
adoption in public organizations (Neumann et al., 2022).

Organizations that are relatively inexperienced in
AI technologies depend on the initiatives of single
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employees or are able to successfully implement AI
projects with the help of external partners (Bauer
et al., 2020). However, top management support is
essential to support the allocation of key resources.
Once sufficient resources are available to develop AI
solutions, the intra-organizational diffusion of AI may
increase resistance due to conflicts between different
in-house units (Neumann et al., 2022). Further
studies confirm that organizational factors such as
top management support and thereby organizational
readiness are key factors in the adoption of AI in
organizations (Alsheibani and Messom, 2019; Dora
et al., 2022; Hamm and Klesel, 2021). For small and
medium-sized enterprises, the lack of ML know-how
poses an additional key challenge (Bauer et al., 2020).

However, FedML introduces another dimension
of complexity. Due to its collaborative nature, we
argue that FedML projects are additionally subject
to collaboration-related challenges. Specifically
addressing collaboration challenges in collaborative
engineering projects is crucial to projects’ efficiency
and success (Diirr and Cappelli, 2018; Pauna et al.,
2021). Since FedML works at the intersection of AI and
collaborative project management, its influential factors
for the adoption of FedML in organizations need to be
investigated.

The current literature lacks a structured overview of
the factors which influence the adoption of collaborative
AI paradigms, such as FedML. This work aims
towards closing this research gap. Through an expert
interview study, we aim to draw on the experiences and
expertise of practitioners to investigate the motivations,
challenges, and influential factors for the adoption of
FedML. Through the structured overview of influential
factors, we intend to guide managerial decision-making,
help practitioners avoid pitfalls, overcome challenges
and overcome risks at an early project stage. We aim
to achieve this goal by answering the following research
questions (RQs):

RQ1: What are the reasons for the adoption of
FedML in organizations and the accompanying main
challenges and risks?

RQ2: Which factors influence the practical adoption
of FedML in organizations?

2. Theoretical Background

In the following, we will describe the theoretical
background of FedML as well as the basis of technology
adoption frameworks.

2.1. Federated Machine Learning

FedML is an innovative ML technique that enables
the collaborative training of a joint ML model on
distributed datasets without the need of sharing data. In
traditional ML settings, the data is usually accumulated
in a central location, where the ML model is
subsequently trained. Hence, data owners need to share
their data with a central server and thereby risk losing
their Intellectual Property (IP). FedML counteracts
this need of sharing datasets through a model-to-data
approach.

First introduced by McMahan et al. (2016), FedML
can be divided into four distinct steps. These steps
are illustrated in Figure 1. The server initially chooses
a global model which is suitable for the use case and
underlying data structure. In this step, the initial global
model can be pre-trained by the server. Secondly, the
global model is distributed amongst all participating
clients. Thirdly, each client trains the global model
on its own local dataset and stores the resulting update
gradient. Thereby, each client owns a customized
version of the global model based on the clients’
individual, local dataset. Lastly, each client sends
their stored update gradients back to the server, which
are collected and aggregated based on a pre-defined
protocol. The aggregate of the individual update
gradients is then used to update the global model. These
steps can be repeated until a certain accuracy level is
reached or until the accuracy converges.

Figure 1. Federated Machine Learning process.

2.2. Technology Adoption Frameworks

The process of adopting innovative technologies in
organizations has been a widely studied area within
information systems and sparked a multitude of different
technology adoption models. These models aim to
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identify, predict, and describe the variables that affect
adoption behavior in institutions (Dube et al., 2020).
Technology adoption frameworks can be classified by
their adoption context and categorized into groups of
models that aim to study the adoption behavior of
groups, individuals, or organizations (Liu et al., 2008).

In this work, we investigate the organizational
adoption of FedML and therefore focus on
organizational-based technology adoption frameworks.
Consequently, models and frameworks which focus
on the individual or group level were not considered
in our study. On an organizational level, the Diffusion
on Innovations (DOI) (Rogers, 2003) theory and
the Technology-Organization-Environment (TOE)
(Tornatzky et al., 1990) framework are the two most
prominent models to measure the organizational
readiness and acceptable use of innovative technologies.

The TOE framework is consistent with the
DOI theory. Both emphasize individual, internal,
and external characteristics of the organization as
influencing factors for the organization’s innovativeness.
Compared to DOI, TOE additionally considers
environmental factors in the technology adoption of
organizations. Therefore TOE is considered more
complete to explain intra-firm innovation adoption
(Oliveira and Martins, 2011). In summary, TOE
enables a comprehensive understanding of innovative
technology decisions by considering the aspects from
a technological, organizational, and environmental
perspective.

3. Research Methodology

To explore the influencing factors for the adoption
of FedML in organizations, we followed a qualitative
research approach by conducting semi-structured
interviews and drawing on the experiences of experts.
The following sections describe the study design, data
collection, and data analysis of our research.

3.1. Study Design

To answer our RQs, we collected data through
semi-structured interviews. First, we identified potential
interviewees working with FedML either in business
or applied research through pre-saved contacts of
prior research, referrals, or top search results (e.g., via
LinkedIn). We then contacted the identified experts
either via email or direct message and scheduled
the interview after a positive response. Prior to the
scheduled interview, we presented the research purpose,
content, and structure to allow for impromptu follow-up
questions.

We based our questionnaire on the TOE framework
since it provides a solid theoretical and empirically
supported structure of the influencing factors for the
organizational adoption of innovative technologies, such
as FedML. Through leveraging the provided TOE
structure, we deem to gather a holistic overview of the
influential factors for the practical adoption of FedML
in organizations.

In our study, we only included interviewees that
had sufficient topic-related knowledge. For the
semi-structured interviews, we followed the guidelines
proposed by Myers and Newman (2007). Each
interview was recorded, transcribed, and coded. The
results were iteratively compared with the insights
from previous interviews until we reached theoretical
saturation, allowing us to close the interview study.

In total, we conducted interviews with 13 experts
from seven different organizations. Table 1 provides
a codified overview of our resulting sample, including
the participants’ relevant information, such as their
position, organization, and experience in their current
position. From hereon, we refer to the experts by
their corresponding participant identifier (ID). The
interviewee demographic indicates a large variety of
”voices” (Myers and Newman, 2007) and comprises
a broad spectrum of backgrounds, job roles, and
experience, thereby covering multiple viewpoints.

3.2. Data Collection

The interviews were conducted via videotelephony
in February 2023, each with two participating
researchers to ensure observer triangulation (Runeson
and Höst, 2009). We presented a set of pre-defined
questions to each interview partner. Each interview
had the same outline, and the questions remained
unchanged, however, due to the nature and flexibility of
semi-structured interviews, slight variations regarding
the order of questions or wording occurred. At the
start of each interview, the research goal was recalled,
and the interview structure was presented to alleviate
misunderstandings before we proceeded to the interview
questions. The interview guideline was developed based
on the RQs and consisted of four different sections.
The first section aimed to gather information about the
participants’ professional backgrounds and experiences
with FedML projects. This was followed by general,
open questions about their reason for adopting FedML
as well as the encountered challenges and risks. Hence,
the second section intends to address RQ1. The third
section focused on the TOE factors as experienced
by the interviewees and aimed towards RQ2. The
final section investigated future directions and discussed
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Table 1. Overview of expert interviews.

ID Position Organization Experience

I1 Product Manager Large software enterprise 1 �10 years
I2 Architect Large software enterprise 1 �5 years
I3 Applied Researcher Industrial software enterprise �2 years
I4 Development Expert Large software enterprise 1 �19 years
I5 CEO and Founder FedML Startup 1 �3 years
I6 Applied Researcher Research center for AI security �1 year
I7 Senior Consultant and Project Lead Large software enterprise 1 �6 years
I8 Customer Advisor Large software enterprise 1 �2 years
I9 CEO and Founder FedML startup 2 �5 years

I10 Product Manager Large software enterprise 1 �4 years
I11 Researcher Research center for software systems �4 years
I12 Solution Specialist and Product Manager Large software enterprise 1 �12 years
I13 Research Manager Large software enterprise 2 �4 years

possible tools that might help overcome challenges in an
early project stage.

The results communicated in this work represent the
findings of the first three sections. We plan to develop
the discussed tool and publish the remaining empirical
evidence in a separate work.

3.3. Data Analysis

The transcribed and recorded interviews were coded
according to the guidelines of the Reflexive Thematic
Analysis process (Braun et al., 2018). Consequently,
we reviewed the conducted interviews and familiarized
ourselves with the content of the collected data. We
made notes on the initial insights of each interview and
put the insights into the context of the overall data.
Additionally, we assigned a unique ID to each expert and
dismissed potentially sensitive information to ensure
anonymity.

The transcripts were coded and analyzed with the
help of MAXQDA20221. Each interview was coded
according to important features relevant to the RQs.
New codes were created whenever new findings could
not be assigned to an existing code category, which
triggered a re-codification of the previously coded data.
Hence, the final coding was created through multiple
rounds of coding. The codes were examined and
grouped into broader themes. These themes were
thereafter named and analyzed in detail to validate if the
themes accurately depict the transcript data. Emerging
conflicts were discussed by the researchers and resolved
by mutual consent. Finally, the interviews with the
annotated transcripts and their themes were summarized
and contextualized in relation to existing literature.

1https://www.maxqda.com

4. Results

This section presents the summarized results of
our interview study. We first address RQ1 by
describing the experts’ reasons to adopt FedML
as well as the main challenges and risks from
their experiences. The subsequent sections then
answer RQ2 by presenting the identified technological,
organizational, and environmental factors.

Reasons of Adoption. We identified three main
reasons for adopting FedML, which will be described in
more detail in the following. An overview of the aspects
and interviewee references can be seen in Table 2.

(1) Field of Application: FedML can enable
the development of novel use cases and applications
that would not have been possible using traditional
ML approaches. Furthermore, adopting FedML can
improve the performance and capabilities of existing
ML products by leveraging additional data from data
silos, possibly leading to a competitive advantage.

(2) Data Privacy: The potential access to sensitive
data and the need for protecting sensitive data also drive
FedML adoption. The privacy-enhancing features of
FedML help to mitigate privacy concerns by enabling
local model training without sharing raw data. This
can be particularly important for industries working with
sensitive data, such as the healthcare or financial sector.
The privacy-enhancing nature of FedML can foster trust
between organizations, encouraging collaboration by
eliminating the need to share data between organizations
and preserving the IP on the data.

(3) Efficiency: The improved communication
and computation efficiency also motivates FedML
adoption. FedML can improve communication
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Table 2. Reasons of adoption and main challenges.

Category Factors Experts #Experts (%)

Reasons of Adoption
Field of Application I4, I5, I9, I10, I11, I13 6 (46.15%)
Data Privacy I1, I2, I4, I5, I6, I9, I11 7 (53.84%)
Efficiency I3, I5, I9, I10 4 (30.76%)

Challenges and Risks

Uncertainty, Risk Analysis, & Mitigation I5, I12 2 (15.38%)
Insufficient Management Support I5, I7, I12 3 (23.07%)

Novelty of Technology I1, I2, I3, I5, I6, I8, I9, I10,
I12, I11, I13 11 (84.61%)

Collaboration I1, I2, I4, I5, I6, I9, I10 7 (53.84%)
Complex Implementation I1, I3, I8, I9, I10, I13 6 (46.15%)
ML Product I2, I3, I6, I9, I13 5 (38.46%)

efficiency by minimizing the need for raw data
sharing and centralization, resulting in more efficient
communication and reduced network overhead. This
can be particularly beneficial for organizations with
distributed data sources and limited bandwidth. In
addition, FedML allows organizations to leverage
external expertise and resources without sharing their
data, making it an option for outsourcing ML tasks
without compromising privacy and security. This
also allows companies without sufficient ML in-house
expertise to develop such applications.

Challenges and Risks. The interviewees mentioned a
total of six main challenges and risks in the adoption of
FedML. The list of main challenges and risks including
interviewee references can be seen in Table 2.

(1) Uncertainty, Risk Analysis and Mitigation: Due
to the novelty of FedML, organizations may face
uncertainties and challenges related to privacy, security,
and compliance. Mitigating these risks requires constant
careful analysis and planning. This includes identifying
potential risks, assessing their potential impact, and
implementing appropriate mitigation measures.

(2) Insufficient Management Support: It can
be difficult to secure sufficient financial support
and investment for FedML initiatives and to gain
strategic or tactical buy-in from key decision-makers.
Overcoming this challenge may require advocating
the value of FedML in terms of its potential impact
on business operations, competitive advantage and
digitization/data-first strategies.

(3) Novelty of Technology: As a relatively
new approach, organizations may face challenges as
first or early adopters of FedML. These challenges
include complex compliance assessments, regulatory
and standards uncertainties, and managing the rapid
evolution of FedML. Organizations may need to invest
in research, collaboration, and proactive monitoring
of regulatory and technological developments to

effectively address these challenges.
(4) Collaboration: FedML may be applied in

collaborative settings with multiple organizations,
which may present challenges for managing,
coordinating, and achieving critical mass for effective
training. To overcome this challenge, organizations
may need to establish robust mechanisms for managing
responsibilities, suitable communication channels, and
ownership frameworks.

(5) Complex Implementation: Deploying and
managing FedML systems can involve a significant
effort to overcome complex technical challenges.
Organizations need to carefully plan and execute
technical implementation to ensure the effective
adoption of FedML, potentially even across company
borders.

(6) ML Product: The stochastic nature of FedML
leads to challenges in managing expectations, evaluating
performance, and ensuring reliable results. In addition,
organizations may face privacy concerns as FedML
involves local model training but does not eliminate
privacy concerns.

4.1. Technological Factors

We identified a total of nine technological factors,
which can be grouped into four categories. The
following presents the categories with the identified
factors. Table 3 provides an overview of these factors
with references to the interviewees.

Data Considerations. Ensuring high-quality data,
sufficient data volume, and data interoperability are
critical factors to consider when assessing the feasibility
and suitability of adopting FedML in a specific use case.

(1) Data Quality: Sufficient data quality is an
essential foundation for the implementation of FedML
and has a significant impact on the performance and
reliability of the resulting models. Organizations
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Table 3. Identified technological, organizational and environmental factors.

Category Factors Experts #Experts (%)

T
e
c
h

n
o
lo

g
y

Data
Considerations

Data Quality I1, I2, I3, I5, I6, I8, I9, I10, I11, I13 10 (76.92%)
Data Volume and Accessibility I1, I2, I3, I5, I6 5 (38.46%)
Data Interoperability I1, I2, I3, I5, I6, I8, I9, I10, I11, I13 10 (76.92%)

System
Interoperability

FedML System I3, I5, I13 3 (23.07%)
Data Integration I1, I5 2 (15.38%)

Infrastructure Compatibility and Accessibility I1, I5, I9, I13 4 (40.76%)
Computational Power I5, I8, I9, I13 4 (30.76%)

Orchestration Versioning I1, I2, I9 3 (23.07%)
Pipelines I3, I8, I9, I10, I13 5 (38.46%)

O
r
g
a

n
iz

a
ti

o
n

Organizational
Readiness

Management Support I1, I5, I6, I9, I10, I11, I12, I13 8 (61.53%)
Knowledge and Expertise I3, I5, I6, I7, I10, I11, I13 7 (53.84%)

Federation
Considerations

Collaboration Management I1, I2, I3, I4, I5, I6, I7, I8, I9, I10,
I11, I12 13 (100%)

Co-Creation Management I1, I9, I13 3 (23.07%)
IP Management I1, I7, I10, I11, I13 5 (38.46%)

E
n

v
ir

o
n

m
e
n

t

Legal
Regulations

Cartell Office I6 1 (7.69%)
Data Privacy I3, I9, I11, I12, I13 5 (38.46%)
Legal Clarity and Unambiguity I1, I2, I5, I6, I9, I11, I12, I13 8 (61.53%)

External Pressure Market Competition I6, I10 2 (15.38%)
Regulatory Enforcement I10 1 (7.69%)

need to consider various aspects of data quality, such
as completeness, timeliness, and consistency. Data
cleaning may be required to ensure high data quality,
which is costly and may outweigh the resulting benefits.

(2) Data Volume and Accessibility: An adequate
volume of data is essential for the training of accurate
and reliable models. Sufficient data availability is a
prerequisite for every FedML use case. The availability
and accessibility of the data volume, potentially across
data silos, is a critical factor for the adoption of FedML.
Additional to the training process, organizations also
need to ensure that they can also provide an appropriate
data sample for the initial feasibility study.

(3) Data Interoperability: The data structure and
statistical distribution must provide an interoperable
basis. For that, organizations need to assess whether
the data is homogeneous or can be homogenized.
Standardized semantics and industry protocols can help
to ensure data interoperability.

System Interoperability. System interoperability is
crucial for the seamless training of a joint ML model
across multiple clients. It is crucial that the FedML
system is implemented appropriately on each side and
that the local data storages are integrated and accessible.

(1) FedML System: Each participating organization
either needs to have the expertise and resources to
implement their part of the FedML system, or use an
existing FedML platform. Additionally, it needs to be

ensured that the system can be enrolled across all clients.
(2) Data Integration: To run the FedML algorithm,

data sources need to be integrated. Organizations need
to make the data sources accessible so that the FedML
system can train on the data sources locally. These data
integration tasks must ensure that at each client’s side
the data from different sources can be combined and
used for training in the FedML system.

Infrastructure. The infrastructure for the FedML
process is crucial. This includes compatibility
with existing infrastructure and ensuring sufficient
computing power. Assessing the compatibility of the
FedML system with the existing infrastructure on each
client’s side and evaluating the availability of sufficient
computing resources are essential factors to consider in
order to ensure a successful implementation of FedML.

(1) Compatibility and Accessibility: This relates
to the compatibility of the FedML system with the
existing IT infrastructure of each client. Organizations
must ensure that the FedML system and its components
can be implemented within existing infrastructure,
including network architecture, hardware, and software.
The FedML system may require internet access to
enable communication and coordination between the
distributed parties. Hence, organizations must ensure
that the required connectivity and access are available.
Compatibility also includes the integration of FedML
with existing IT systems, such as data storage,
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processing, and authentication mechanisms.
(2) Computational Power: The available computing

power required for FedML training needs to be sufficient
and depends on several factors, such as the role of the
participant (client or aggregator), the specific FedML
system, the size and complexity of the ML models, and
the amount of data to be trained on. Organizations
need to be able to assess whether their existing
computational resources are sufficient to support the
computational requirements of FedML deployment, or
whether additional resources need to be allocated.

Orchestration. This category relates to the
deployment of the FedML model including the
versioning, training automation, and deployment.
Adopting appropriate versioning practices and
implementing robust training pipelines with automation
can help ensure proper coordination and alignment of
ML models between parties in a FedML system.

(1) Versioning: Model versioning is critical for
managing changes and updates to the ML models used
in FedML systems. Organizations need to implement
appropriate versioning procedures and mechanisms to
ensure accountability and that the FedML models are
updated, tracked, and managed efficiently.

(2) Pipelines: The Pipelines and automated
processes are critical for orchestrating the training
process across distributed clients and coordinating
gradient exchange, model synchronization, and model
serving. Pipeline automation can help streamline the
FedML deployment process and reduce manual effort to
ensure efficient and scalable training operations.

4.2. Organizational Factors

The organizational factors are divided into two
categories with a total of five factors, whereas the
federation consideration is only applicable if the project
includes a collaboration of different organizations.
An overview of these factors with references to the
interviewees is provided in Table 3.

Organizational Readiness. The readiness and
resources of an organization to adopt emerging
technologies and innovative ideas are critical.
Organizations need to ensure that there is
adequate management support, including awareness,
understanding, and willingness to invest in AI projects.
Secondly, they need to assess internal knowledge and
data science expertise to ensure the successful adoption
and implementation in the organization.

(1) Management Support: The level of awareness,
understanding, and support by management for the

adoption of emerging technologies such as FedML is an
important success factor. It includes the management’s
understanding of the potential of FedML in addressing
business challenges, willingness to invest in AI projects,
and overall mindset and openness to new technologies.
Investments in ML projects are difficult to implement
without risk aversion due to the lack of predictability
of the outcome. Management support is critical to
driving organizational change, providing the necessary
resources, and creating a culture that is supportive of
innovative ideas. Factors such as company size, risk
aversion, and strategic focus on data-driven processes
additionally influence organizational readiness.

(2) Knowledge and Expertise: The successful
implementation of FedML systems also depends on
the knowledge and experience of ML (and FedML)
of an organization. It includes the organization’s
existing capabilities and resources for ML projects,
digitization maturity, and overall readiness to implement
emerging technologies such as FedML. Organizations
need to provide internal capabilities and expertise for
data science projects, ML model development, data
infrastructure, and other necessary resources for their
tasks. This factor heavily depends on the role of the
participant and the degree of automation within the
project. The lack of internal skills could be compensated
through the acquisition of external knowledge.

Federation Considerations. If the project is
implemented within a setting with different participating
organizations, additional challenges arise. These
influencing factors relevant to the federated setting
include the effective management of collaboration,
co-creation, and IP. Organizations need to carefully
manage the collaboration between the participants as
this is critical to the establishment of the collaboration,
the feasibility of the project, and finally the successful
implementation of FedML in the use case.

(1) Collaboration Management: This factor
concerns the management of collaboration between
different participants in a FedML environment.
Collaboration in FedML can be complex and difficult
due to factors such as establishing collaboration,
withdrawing from collaboration, and finding and
selecting appropriate partners for the use case.
The distribution and management of tasks and
responsibilities among uneven participants can increase
the complexity. Incentive mechanisms may be needed
to encourage active participation and collaboration
among participants in a FedML environment. Effective
collaboration management is critical to the success of
a FedML implementation, and organizations need to
carefully plan and manage collaboration processes to
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ensure smooth and efficient operation.
(2) Co-Creation Management: In collaborative

settings, the co-creation challenges involve the joint
creation and ownership of the FedML model among
all collaborators and stakeholders. This may include
defining model ownership, data/model contributions,
and sharing of results. Co-creation management may
also involve defining roles and responsibilities, model
usage policies, and governance mechanisms.

(3) IP Management: IP management includes issues
related to the ownership, use, and protection of the IP.
Organizations must carefully define and agree on the
ownership and use of IP among participants, which may
include legal agreements, contracts, and policies.

4.3. Environmental Factors

We identified two categories with a total of five
environmental factors, which will be described in the
subsequent paragraphs. All environmental factors and
interviewee references can be seen in Table 3.

Legal Regulations. FedML projects in general and
especially in collaborative settings need to consider legal
regulations to be compliant. These regulations include
antitrust compliance, data protection regulations, and
ensuring clarity and unambiguity in the legal landscape.
Companies need to carefully review and comply
with the relevant legal requirements to ensure legally
compliant implementation of FedML in their specific
use cases and ultimately to be able to use the FedML
model. The fast development and emergence of legal
regulations which are relevant to AI applications and
collaborative projects need to be carefully observed.

(1) Cartel Office: In collaborative settings, it
needs to be determined whether cooperation with all
participants is permissible under local antitrust or
competition authority regulations. Depending on the
jurisdiction and specific use case, the collaboration
between participants may be subject to competition laws
and regulations.

(2) Data Privacy: Considering legal regulations
regarding data privacy is crucial, especially in projects
with sensitive data. The type and sensitivity of used
data, as well as the jurisdiction in which the FedML
system operates, can have significant implications
for legal compliance requirements. Organizations
must carefully evaluate and understand the privacy
implications of using data in a FedML environment,
including potential risks associated with data sharing,
data use, and privacy. Compliance with data protection
regulations, such as the GDPR in the European Union,
may be required, and organizations should ensure that

all data processing within the project is compliant with
relevant regulations.

(3) Clarity and Unambiguity: Legal clarity and
unambiguity are complicated topics given the fast
pace of FedML’s technological advances and the
developments of laws. This can lead to uncertainty
regarding the legal framework and applicable laws,
which is even more complex given the high variability
depending on the specific use case. Keeping up to
date with the regulations and guidelines is important
for regulatory compliance, and currently, there are no
certifications or legal frameworks for FedML systems
yet.

External Pressure. FedML projects are subject
to external factors such as market competition or
regulatory enforcement. Organizations must assess
and respond to these external pressures by considering
the potential benefits, risks, and available resources
to make well-informed technology selection decisions
about FedML adoption in their specific context.

(1) Market Competition: The pressure to collaborate
with other organizations influences the development of
FedML projects. Organizations may be pressured to
engage in collaborations to remain competitive, gain
access to sufficient data sources, and generate collective
insights. Collaborations may also be needed to meet
regulatory requirements, such as transparency along the
supply chain in the example of the CO2 footprint.

(2) Regulatory Enforcement: The development
of FedML systems may be affected by regulatory
enforcement or regulatory changes. For example, in
certain industries or jurisdictions, privacy-enhancing
technologies such as FedML may be required by law to
protect sensitive data. As a result, organizations may be
forced to allocate additional budgets for implementing
privacy-enhancing solutions.

5. Discussion

Through an expert interview study with 13
participants from seven organizations, we investigated
the factors influencing the adoption of FedML in
organizations. We identified three main reasons for
adopting FedML in organizations and a total of six main
challenges of practitioners, which are summarized in
Table 2. Additionally, we identified a total of 19 factors
that impact the adoption of FedML in organizations and
summarized our findings in Table 3. We can sum up the
results of our RQs as follows:

RQ1: What are the reasons for the adoption of
FedML in organizations and the accompanying main
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challenges and risks?
The main motivation for the usage of FedML

revolved around the need to protect sensitive data and
thereby its potential to enable the usage of sensitive
data. The possibility of using sensitive data enables
the training of ML algorithms on currently untapped
data. A larger amount of training data yields the
possibility to train more sophisticated ML algorithms
for complex problem statements, which could not
be solved with the current amount of available data.
Therefore, the stated motivational driver to use sensitive
data and the motivation to tackle novel fields of
application are closely interrelated but still differ in
the underlying motivation. The results suggest that
a better-performing ML model and the increase of
training data volume are perceived as more beneficial
than improving the communicational and computational
efficiency of FedML. However, some experts (I4, I5, I9,
I10, I11) were driven by a combination of motivational
factors.

As for the challenges and risks, most experts
experienced challenges due to the novelty of the
technology due to complex compliance assessments,
as well as regulatory and standards uncertainties.
Additionally, the first and early adopters need to
come up with novel business cases, which impedes
the allocation of budget and management support for
FedML projects. Besides, the experts encountered
challenges regarding the collaboration and the complex
technical implementation of FedML.

RQ2: Which factors influence the practical adoption
of FedML in organizations?

We structured the identified factors according to
the TOE framework. The most relevant technological
factors were aspects regarding data quality and data
interoperability. On the organizational side, all experts
unanimously agreed that collaboration management
is a crucial impacting factor for the adoption of
FedML in organizations. This is followed by
factors regarding organizational readiness, especially
management support as well as knowledge and
expertise. The most relevant environmental factors
comprised aspects around legal regulations, especially
around missing legal clarity. The most relevant TOE
factors concur with the identified challenges and risks,
which further validates the significance of these aspects.

Contribution. The results of this study contribute
to research on the adoption of emerging technologies
in organizations. We complement current information
systems literature by investigating the influencing
factors of FedML adoption. Through systemizing

and presenting the influencing factors of its practical
adoption, we intend to provide structured insights
into the complex processes of implementing
FedML projects. We hope that our insights aid
management-oriented as well as technology-oriented
audiences in the planning and development process.
By knowing the crucial factors for the adoption of
FedML, we help to avoid pitfalls, overcome challenges
and counteract risks at an early stage. Overall, we
intend to facilitate the process of adopting FedML in
organizations and thereby help unlock novel fields of
applications in the ML domain. In addition, our study
provides a basis for further research on challenges and
success factors for collaborative AI projects.

Limitations. There are multiple limitations to our
work. FedML is an emerging technology and
the influencing factors might change with a broader
adoption of the technology. More factors might arise
and some might be alleviated through the emergence
of best practices or changed business understanding
towards FedML. Due to its novelty, we were only able
to interview first and early adopters, mainly consisting
of larger enterprises, research institutes, or start-ups.
Middle-sized enterprises were sparsely represented in
the interviewee demographic and their experiences
might have altered the outcome of our study. Moreover,
our study is based on the experiences and expertise
of 13 interview participants. Even though we reached
theoretical saturation which terminated our interview
study, more data from a bigger and more diverse set
of interviewees with more perspectives might enrich
our results. We encourage researchers and practitioners
to further validate our findings in practice, and
complement our proposed list of influencing factors.

6. Conclusion

In this paper, we presented a systematized set of
critical factors that influence the adoption of FedML in
organizations. Through an expert interview study with
13 participants from seven organizations, we identified
a total of 19 influencing factors. Additionally, we
presented the reasons for the adoption of FedML as
well as the main challenges and risks, which were
encountered by the interviewed experts. The critical
factors with the most occurrences comprised aspects
regarding collaboration management, data quality, data
interoperability, organizational readiness, and the lack
of legal clarity. Due to the novelty of FedML,
these factors might change. A broader practical
adoption will spark best practices and a change in the
business understanding of FedML, which can impact
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the landscape of influential factors. We encourage
researchers to further extend and improve the list of
influencing factors by applying it to various application
domains or verifying it in case studies. We hope that our
study provides a thorough understanding of the critical
factors in the adoption of FedML, aids managerial
decision-making, and that it can be used as a basis
for further understanding of the challenges and success
factors of collaborative AI projects.
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Abstract 
The disruptive potential of AI systems roots in the emergence of big data. Yet, a significant portion is 
scattered and locked in data silos, leaving its potential untapped. Federated Machine Learning is a 
novel AI paradigm enabling the creation of AI models from decentralized, potentially siloed data. 
Hence, Federated Machine Learning could technically open data silos and therefore unlock economic 
potential. However, this requires collaboration between multiple parties owning data silos. Setting up 
collaborative business models is complex and often a reason for failure. Current literature lacks 
guidelines on which aspects must be considered to successfully realize collaborative AI projects. This 
research investigates the challenges of prevailing collaborative business models and distinct aspects of 
Federated Machine Learning. Through a systematic literature review, focus group, and expert 
interviews, we provide a systemized collection of socio-technical challenges and an extended Business 
Model Canvas for the initial viability assessment of collaborative AI projects. 
 
Keywords: Federated Machine Learning, Collaborative Data Processing, Business Model, Alliances 

1 Introduction 

Artificial Intelligence (AI) had an immense economic impact in the last couple of years. In 2021 alone, 
the market of AI-based services including software, hardware and services exceeded 500$ billion with 
a five-year compound annual growth rate of 17.5% (Forradellas and Gallastegui, 2021). The potential 
profitability raise is currently estimated by an average of 38%, which implies an economic impact of 
$14 trillion until 20351. Unmistakably, the usage of AI enables new, unprecedented business models 
with a monumental impact on the industry. The main enabler for this disruptive new market is the 
emergence of big data, which forms the fundamental basis for AI systems. Even though vast amounts 
of data is freely available, a considerable amount of the world’s data is scattered, stored and locked up 
in decentralized IoT devices and data silos. Naturally, the siloed data is hardly accessible, leaving a large 
portion of already generated data, and therefore economic potential, largely untapped. The emergence 

 
1 https://www.accenture.com/fr-fr/_acnmedia/36dc7f76eab444cab6a7f44017cc3997.pdf 
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of data silos is strengthened by data protection laws and regulations such as the General Data Protection 
Regulation (GDPR), California Consumer Privacy Act, Cyber Security Law and the General Principles 
of the Civil Law. These regulations justifiably aim to protect the privacy of individuals and therefore 
restrict direct data sharing between different parties (Li et al., 2022). This protection of privacy is an 
important pursuit but leads to more data silos and therefore unused economic potential. 

Federated Machine Learning (FedML) introduced by McMahan et al. (2016) is a novel machine learning 
(ML) technology with the potential of building prediction models of decentralized and therefore siloed 
datasets. In contrast to traditional, centralized ML, FedML systems initially train a global ML model 
which is then distributed to all participants. Then, each participant individually trains the model locally 
on their own dataset. The clients solely return the update gradient resulting from the local training. 
Through this model-to-data approach, the data never leaves the client’s device, but still enables the 
development of a joint ML model. Thus, FedML enables tapping the potential of big data without 
privacy leakage. 
FedML technically has the potential to leverage siloed data while still preserving the intellectual 
property (IP) and privacy of each individuals’ dataset. Hence, FedML enables the usage of currently 
untapped data and therefore brings the potential to be the catalyst for novel, disruptive business model 
innovation and locking unprecedented value from siloed data. However, this requires the collaboration 
of multiple parties which own these data silos. Hence, a collaborative business model is needed as a 
framework for how value can be created, and different parties can be incentivized for participating in 
such a collaborative network. Setting up collaborative business models is complex and a potential reason 
for failure. The current literature lacks guidelines for decision-makers on which aspects must be 
considered for the successful realization of collaborative AI projects. 

This work aims towards closing this knowledge gap. More specifically, we investigate the challenges of 
prevailing collaborative business models through a systematic literature review and identify distinct 
aspects of collaborative FedML projects by conducting a focus group interview and multiple expert 
interviews. We work towards a systemized collection of socio-technical challenges and an easily 
consumable business model canvas (BMC) to aid decision-makers in the initial viability assessment of 
collaborative AI projects. Summarized, we aim to answer the following research questions (RQs): 

RQ1: What are the general challenges of collaborative business models? 
RQ2: What are the aspects of inter-organizational FedML business models in relation to prevailing 
collaborative business models? 

RQ3: Which aspects and attributes should be considered for inter-organizational FedML projects and 
how can these be structured into an extended BMC? 
To address these research questions, we first describe the theoretical background of our study by 
introducing Federated Machine Learning and providing background information on collaborative 
business models (section 2). Following, we elaborate on our tripartite research methodology, which 
consists of a systematic literature review, in-depth focus group interviews, and semi-structured expert 
interviews (section 3). Subsequently, we present the results of our research including a systemized 
overview of challenges for collaborative business models, a structured list of distinct socio-technical 
aspects for FedML projects and a proposal for a corresponding extended BMC (section 4). Finally, we 
discuss our work by reflecting the underlying research problem and research gaps. The discussion is 
followed by a summary of our contributions, answers to the RQs and limitations of our work. Our study 
concludes with an outline of future research (section 5). 

2 Theoretical Background 
The following section presents the theoretical background of our study. We first describe the motivation, 
terminologies, and the basic concept of FedML as originally proposed by McMahan et al. (2016). 
Subsequently, we provide general background information on business models to establish a common 
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understanding for this study. Finally, we elaborate on collaborative business models and corresponding 
extensions of the BMC by Osterwalder and Pigneur (2010). 

2.1 Federated Machine Learning 

A classic ML approach requires the collaborating participants to assemble their datasets in a central 
location and train a unique ML model !!"#, exposing the data to each other and the central server. The 
participants thereby risk losing their data sovereignty and IP, which inhibits companies to collaborate 
and share data (Schomakers et al., 2020). Introduced by McMahan et al. (2016), FedML counteracts the 
need of sharing datasets through a model-to-data approach. As illustrated in Figure 1, a global ML model 
is chosen, which is distributed amongst all clients. The clients train the model locally on their individual 
dataset. The update gradients are sent back to the server and used to improve the global model. Thereby, 
FedML enables data owners to train a joint model !$%&	without the need to disclose their data. 

 
Figure 1. One iteration of the Federated Machine Learning process (source: own work). 

In the original FedAVG implementation by McMahan et al. (2016) the model is learned through 
stochastic gradient descent (SGD), where each party # computes the average gradient $' = &''()() 
on its local data +' at the current model )( and iterates multiple times over the update )' ←	)' − .$'. 
The party submits the gradients to the central server, which aggregates the updates from all parties as: 

)()* ← )( −/
+'
+

+

',*
)()*' 	

)()*' ← )(' − .$' , ∀#	
While classic FedML operates on a client-server architecture, alternatives that do not rely on a central 
orchestrating server are also possible. For instance, parties can exchange model updates by establishing 
a peer-to-peer network, increasing the security of the process at the expense of consuming more 
bandwidth and resources for encryption (Roy et al., 2019). 
Moreover, the distribution of features and samples across datasets may not be homogeneous. Horizontal 
Federated Learning (HFL) refers to the setup in which all datasets {3-,*+ } from the K parties contain 
different samples that share the same feature space. If instead, the same samples are present in all 
datasets, but feature spaces are disjoint, the setup is known as Vertical Federated Learning (VFL). 

Considering the high heterogeneity of data, especially if spread across different organizations, some 
authors have proposed to overcome the problem of sparse overlapping datasets through Federated 
Transfer Learning (FTL) (Liu et al., 2020). In this scheme, parties may select samples for training that 
minimizes the distance between their distributions (instance-based FTL) or learn a common feature 
space collaboratively (feature-based FTL). Alternatively, parties may start by using pre-trained models 
or by learning models from aligned samples to infer missing features and labels (model-based FTL). 

Finally, it is important to note that the performances 5!"# and 5$%& of the respective centralized and 
federated models, might differ considerably. This performance gap 6 is characterized by 5!"# −
5$%& < 	6 and will be strongly dependent on the characteristics of the particular application. 
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Consequently, FedML introduces a potential trade-off between the loss of performance respect to the 
centralized setup and the privacy guarantees provided by the distributed approach (Yang et al., 2019). 

2.2 Collaborative Business Models 

A business model describes essential aspects of an organization, explaining how the organization 
creates, delivers, and captures value (Osterwalder and Pigneur, 2010). In the academic literature, the 
definition of the term is fragmented, and no consistent boundaries are established. Nevertheless, it can 
be stated that a business model provides an organizational and strategic design for implementing a 
business opportunity (George, 2011). 
In addition, Osterwalder and Pigneur (2010) argue that a shared understanding of the business model is 
crucial to its creation and success. Therefore, creating and discussing a business model requires a simple, 
relevant, and intuitively understandable concept without oversimplifying the complexity of how the 
organization works. The BMC by Osterwalder and Pigneur (2010) is a tool often used in practice to 
present a business model structured in nine components. 

Business models are not only used for a single company but can also support assessing the feasibility 
and profitability of collaborations across companies (Kristensen and Ucler, 2016). The trend of an 
interconnected and dynamic environment encourages organizations to collaborate inter-organizationally 
and co-create value (Diirr and Cappelli, 2018). In literature, no unified framework exists for 
collaborations. Still, some approaches utilize Osterwalder and Pigneur (2010) general approach of a 
business model as a basis and customize it to set a higher focus on specifics (Kristensen and Ucler, 
2016). For example, Eppinger and Kamprath (2011) highlight the importance of a partner and customer 
network in personalized medicine by modifying the canvas components and adding new ones, like 
intellectual property strategy. The approaches in the literature reach from modifications of business 
model components (e.g., Eppinger and Kamprath (2011) or Kristensen and Ucler (2016)), to 
configuration options of the business model (e.g., Curtis (2021) or Man and Luvison (2019)). However, 
the customizations are mainly application-oriented, tailored to the project to suit the needs and capture 
unique features influencing the business model and thus decisive for the project's success. 

3 Methodology 

This research was structured into three distinct parts. After a systematic literature review (SLR) to gain 
an overview of the challenges of collaborative business models, we organized an in-depth focus group 
interview to explore the novel field of inter-organizational FedML business models. By this, we aimed 
to augment the findings from the SLR and identify distinct challenges of business models for 
collaborative FedML projects. Since focus groups are characterized by their homogeneous group 
demographic, we pursued more generically applicable results by conducting additional semi-structured 
expert interviews. The research timeline is displayed in figure 2. The following subsections will go into 
more detail about the used research methodologies. 

 
Figure 2. Research Timeline 
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3.1 Systematic Literature Review 

To assess and identify the challenges of prevailing collaborative business models, we conducted a 
systematic literature review. By this, we intend to extract fundamentals and critical attributes of business 
models for inter-organizational collaborations, which will be collected, structured, and summarized. We 
followed a search strategy by Zhang et al. (2011) to identify the most relevant literature. Hence, the 
search is divided into base literature search, main search, and backward search. 

The Base Literature consists of 13 papers including five publications on business model theory and 
eight on collaborative projects which were known by the authors prior to the search. Based on the initial 
literature corpus, we focused on finding keywords related to inter-organizational business models. The 
resulting search string S is as follows: 

 
String Query 

S1 
(collaborate* OR federated OR interorganization* OR inter-organization* OR intercompany OR 
cross-company OR multi-party OR cross-industr* OR multi-institution* OR shared OR sharing 

OR alliance OR networked) 

S2 (“business model*” OR “model canvas” OR “business value model*”) 

S S1 AND S2 

Table 1. Compiled search string for the database search. 

The Main Search was conducted from April 2022 to June 2022. The list of searched databases 
comprises IEEE Xplore, ACM Digital Library, ScienceDirect, Wiley InterScience and SCOPUS. We 
only included peer-reviewed English and German publications with full-text access. With the defined 
search string S, databases, and criteria we collected 262 distinct publications. We only aim to include 
work in the field of computer science and technology (coarse focus) as well as literature regarding inter-
organizational collaborations and business models (narrow focus). Successively, the corpus consisting 
of 262 distinct publications has been filtered solely by title, abstract and full text regarding the defined 
coarse and narrow focus. By this, 18 publications remained. 

For the Backward Search, we scanned the references of the resulting 18 publications from the main 
search. Again, these referenced publications were filtered by title, abstract and body according to the 
inclusion and exclusion criteria. After eliminating duplicates, we added one further study resulting in a 
total of 19 publications. 

Finally, relevant information was extracted and synthesized from the final literature corpus. The 
structured and consolidated output yielded a set of critical attributes and challenges of business models 
for inter-organizational collaborations in the technological sector. In the following every insight from 
the SLR is referenced as usual with the corresponding publication. 

3.2 In-depth Group Interview 
Based on the identified challenges of prevailing collaborative business models from the SLR, we aimed 
to explore the distinct aspects of collaborative business models for inter-organizational FedML projects. 
Due to the novelty of the topic and the need for exploration, we organized an in-depth focus group 
interview (Dilshad and Latif, 2013) to study the business requirements of collaborative ML projects 
based on the findings from the SLR. 
The focus group consisted of five participants and two moderators, where one moderator ensures smooth 
progress and the other ensures that all topics are covered. All participants worked on a project involving 
the adoption of FedML in a cross-company use case. The participants were briefed about collaborative 
business models and were given an overview of the findings from the SLR. Afterwards, the group was 
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asked about the critical attributes and challenges of business models related to their collaborative FedML 
project followed by a reflection and lively discussion. Through this, we were able to identify further 
challenges based on their real-world experiences. The emerging data was coded by two researchers and 
incorporated into the results of the SLR. In the following, every insight which was gained through the 
in-depth focus group interview is referenced via the index (FG). 

3.3 Semi-Structured Expert Interviews 

Even though the focus group helped explore the socio-technical challenges of FedML collaborations, 
the insights might be highly biased due to the homogeneous demographics of the participants. To gain 
a more generically applicable understanding, we aimed to draw from the experiences of further experts 
working in the field of applied AI, especially with experience in FedML projects. For these expert 
interviews, we draw from the Grounded Theory methodology (Hoda et al., 2011). Hence, we confronted 
the interviewees with a set of pre-defined questions and recorded as well as transcribed the interviews. 
We successively conducted and compared the results of each interview. After 5 interviews theoretical 
saturation was reached and consequently, the interview study was closed. The set of interviewees 
represented a more diverse set of experts from different organizations and domains. Table 1 presents a 
codified table of our sample. We developed an interview guide based on the research questions and 
findings from the SLR as well as the focus group interview including open questions about potentially 
missing attributes, challenges, and further insights. These interviews allowed us to go more in-depth and 
identify missing aspects and gain more detailed, in-depth individual understanding to develop the 
guideline questionnaire further. 
The interviewees allowed the findings to be published in an anonymized manner but did not agree to 
disclose the full transcriptions. Therefore, the full transcripts are not included. The findings from the 
semi-structured interviews are referenced in the following with the participant ID as listed in table 2. 
 

Participant ID Position Organization Duration 

E1 AI Business Developer Large German software enterprise 52 
E2 AI Project Lead Large German software enterprise 44 
E3 Principal Data Scientist Large German software enterprise 45 
E4 Applied Researcher Medium-sized innovation company 35 
E5 Scientific Researcher Research institute for software development 59 

Table 2. Interview Study Participants 

4 Socio-Technical Challenges of Interorganizational Federated 
Machine Learning 

Applying collaborative models can be challenging in different domains, especially when several 
companies are involved. When the business is operationalized, complexity increases significantly 
because the general business model idea needs to balance the interests of all participants (Pauna et al., 
2021). Collaborations with multiple participants are complex in nature, and collaboration failure rates 
are high, leaving much revenue at risk and unrealized value (Man and Luvison, 2019). Moreover, 
aligning the business model with operational and governance-related aspects is suggested to help 
position the organization to deliver on its value proposition for a successful implementation of the 
business model (Curtis, 2021). Hence, early identification of the collaboration challenges is critical for 
the successful creation of the collaborative business model. 

To better understand which specific collaboration challenges should be considered, we first investigate 
the challenges of prevailing inter-organizational business models and, secondly, which FedML-related 
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socio-technical aspects are critical for successful implementation and therefore should be considered in 
a corresponding collaborative business model. 

4.1 Challenges of Collaborative Business Models 

Joint work of different organizations is complex, and organizations should be prepared to face 
challenges arising from cooperation. In the following, we give an overview of the systematized results 
of the SLR on the challenges of inter-organizational business models. We present our key results in a 
structured manner based on the work of Diirr and Cappelli (2018). 

Diirr and Cappelli (2018) divide the challenges of inter-organizational collaborations into three 
categories: external, internal, and network-related challenges. External and internal challenges are 
detached from inter-organizational collaboration. External challenges relate to environmental 
challenges, e.g., natural events, and internal challenges arise from inside the project, for example, 
infrastructure problems. Network-related challenges focus on the relationships and interactions between 
organizations and can be further subdivided into management, business process, and collaboration 
challenges (Diirr and Cappelli, 2018). Based on these categories in conjunction with the findings of the 
SLR we derived the following network-related challenges as listed in table 3. 
 

Category Description Aspects 
Management 
Challenges 

Include how 
organizations create and 
establish collaboration, 
compromising the 
following aspects 

Selection of suitable participating actors (Pauna et al., 
2021). 
Change management for dynamic collaboration (Caridà et 
al., 2015; Redlich et al., 2014). 
Cooperation establishment: lack of commitment from 
participating organizations (Proulx and Gardoni, 2020); 
building and expanding trust between the parties (Bleja et 
al., 2020; Diirr and Cappelli, 2018; Redlich et al., 2014). 
Decision-making and coordination slowness within the 
collaboration (Bleja et al., 2020; Caridà et al., 2015; Diirr 
and Cappelli, 2018; Redlich et al., 2014). 
Communication with government authorities requires a 
different approach due to multiple parties' interactions 
(Pauna et al., 2021). 

Business Process 
Challenges 

Addresses the way 
organization’s structure 
and design partnership 
operations 

Definition of a mutual business goal of the collaboration 
(Diirr and Cappelli, 2018). 

Co-Creation Management for delivering the value 
proposition: 

• Distribution of financials, investment (Pauna et al., 
2021), costs, and revenues (Bleja et al., 2020; 
Caridà et al., 2015; Pauna et al., 2021). 

• Risk allocation (Diirr and Cappelli, 2018). 
• Ownership structure (Diirr and Cappelli, 2018; 

Kujala et al., 2020). 
• Responsibility assignment (Diirr and Cappelli, 

2018). 
• Align on quality of co-creation product (Diirr and 

Cappelli, 2018). 
• Intellectual property Management (Eppinger and 

Kamprath, 2011). 
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Slower business strategy and process identification (Berkers 
et al., 2020; Diirr and Cappelli, 2018). 

Alignment of the structures of heterogeneous organizations 
with distinct characteristics (Diirr and Cappelli, 2018). 

Infrastructure for managing relationships between multiple 
collaboration actors (Caridà et al., 2015; Diirr and Cappelli, 
2018). 

Collaboration 
Challenges 

Describe how 
organizations jointly 
work together to achieve 
the goal of collaboration 

Agreement on collaboration and alignment with the 
organizations' own objectives (Bleja et al., 2020; Costa and 
Da Cunha, 2015; Diirr and Cappelli, 2018; Man and 
Luvison, 2019; Pauna et al., 2021). 
Alignment of different organizations: culture and common 
ethics (Bleja et al., 2020; Diirr and Cappelli, 2018; Kujala et 
al., 2020). 
Risk of opportunism of participants and consequences of 
action (Diirr and Cappelli, 2018). 

Table 3. Overview of Challenges for Inter-Organizational Collaborations 

This overview of challenges is a consolidation of the selected academic sources of the SLR and aims to 
provide a general understanding of the difficulties of such collaborations. It is important to note that 
naturally, this list might not be comprehensive and that certain, potentially important, aspects might be 
missing. 

4.2 Aspects of Interorganizational FedML Business Models 

To provide initial guidance in the creation of business models for collaborative FedML projects we aim 
to identify the corresponding critical challenges, which need to be considered at an early stage. These 
aspects are derived from literature research, in-depth group interviews and expert interviews. The 
following section presents the aspects in more detail. The basis is formed by the questions catalogue of 
the BMC by Osterwalder and Pigneur (2010). The extension reflects the specifics of collaboration and 
technology that can be generalized. 

Before setting up a business model for inter-organizational FedML projects, it is necessary to clarify if 
the underlying problem can be solved by applying FedML. We presuppose a prior feasibility check and 
task-technology-fit analysis, but still include these two points in our systemized collection of socio-
technical challenges. 

Osterwalder and Pigneur (2010) use nine components with their associated questions to describe the 
generic business model clustered in three parts (Create Value, Deliver Value and Capture Value). We 
augmented these parts with a section that addresses specific aspects of the inter-organizational 
collaborative environment and FedML. The extensions were obtained from comparable business model 
extensions retrieved from the literature review, the challenges of section 4.1 and insights from the 
conducted interviews. Overall, this results in the list as seen in Table 4. The insights from the in-depth 
focus group interview are referenced by the index FG whereas the semi-structured interviews are 
referenced by the corresponding participant ID (E1 - E5) are described in Table 2. 
The complete list with guiding questions including the used literature corpus is provided in a 
complementary document2. The overview of aspects targets important areas of a business model for 
collaborative AI projects, but due to the nature of the research approach, this list might not be exhaustive. 

 
2 Extended Business Model Canvas, Guiding Questions and Literature Corpus: bit.ly/3mXOUQg 
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Section Component Description 
Create Value Value Proposition Describes the value that can be delivered to a certain customer. 

Customer Relationships Explains the kinds of relationships an organization makes with 
particular customer segments. 

Channels Defines how an organization interacts and reaches its customers 
to serve the value proposition. 

Customer Segments Refers to the various groups of people the organization wants to 
reach and serve. 

Deliver Value Key Partners Designates the network of suppliers and partners that are 
essential business model. 

Key Activities Describes the most important things an organization must do to 
make its business model work. 

Key Resources Defines the essential resources required. 
Capture Value Cost Structure Describes all costs that are decisive for the operation of the 

business model 

Revenue Streams Represent the earnings that an organization receives from each 
customer segment. 

Collaboration 
Management 

Collaboration Structure 

Describes the negotiation mechanisms for building the network 
of participants and how decision-making is handled and 
coordinated within the collaboration. This mainly reflects 
whether there is a dominant participant in the collaboration (FG, 
E1, E2, E3, E4). 

Participant Management 
Includes the formation regarding the suitability of participants, 
the change management of the collaboration, and the 
transparency of the project participants (FG, E1, E4). 

Infrastructure 
Includes the management of collaboration- and technology-
specific communication channels, as well as the platform to 
facilitate it (E1, E4). 

Co-Creation 
Management 

Distribution of 
Ownership, 
Responsibility and 
Accountability 

Encourages distribution mechanisms within the collaboration. 
The aspects mentioned are crucial for the product created by the 
ML model (FG, E1, E2, E3, E4, E5). 

Distribution of Revenue 
and Costs 

Describes how participants are rewarded for their participation 
and how additional effort is compensated (FG, E1, E2, E3, E4). 

Intellectual Property 
Management 

Is crucial for enabling inter-organizational collaboration for 
joint activities (FG, E1, E2, E3, E4). 

Co-Creation 
Practices Profit Calculation Describes the project's estimated cost-effectiveness over the 

FedML lifecycle with the different participants (E2, E3, E4). 

Risks of Infeasibility Specify how the feasibility of solving the project with the 
FedML technology is determined (FG, E1, E4). 

Alignment in Quality Describes how product quality is defined, ensured, and tracked 
throughout the FedML lifecycle (E1, E5). 

Implementation of 
Activities 

Explains the extent to which the data-generating parties are 
involved in operational implementation (FG, E4, E5). 

FedML 
Product 

Compliance Data 
Protections 

Include what regulations must be considered to develop a 
compliant FedML model (FG, E1, E4). 

Versioning How versioning is handled within the FedML process (E1). 

Retirement Includes how an ML Model can be recalled and claimed from 
participating parties and also end customers (E1, E4). 

Table 4. Aspects of Inter-Organizational FedML Collaborations 
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4.3 Extension of the Business Model Canvas 

The BMC by Osterwalder and Pigneur (2010) can be used to guide the creation and discussion of a 
business model. The canvas is a simplification of reality and should also pick up the most critical aspects 
of the business model already. To provide an easily consumable entry point for the initial viability 
assessment of collaborative AI projects, we aimed to extend the traditional BMC with the corresponding 
most critical aspects and challenges. This extended BMC represents another layer of simplification to 
the provided collection of socio-technical challenges from chapter 4.2. Hence, the presented collection 
was reduced to the most critical subareas: Collaboration Management and Co-Creation Management. 
Both aspects were mentioned as the most critical challenges in the interviews and address the 
collaborative approach as well as the joint creation of a FedML model. Guiding questions are added to 
the component titles for ease of use and intuitive comprehension. Figure 3 shows the extension of the 
canvas with colour-coded support. White tiles represent the business model aspects of a collaboration 
as a whole and blue tiles the aspects within the collaboration. To spare time and efforts, we suggest that 
the extended BMC should be used as a first basis to identify potential roadblocks of collaborative FedML 
projects. Thereupon, decision-makers can use the more detailed and comprehensive collection of socio-
technical challenges as a second step of the viability assessment. To develop a concrete collaborative 
business model further steps (e.g. the identification of value streams between the collaborating parties) 
are necessary. Our artefacts solely represent a one-stop shop for the early identification of socio-
technical aspects, challenges and potential roadblocks in the creation of collaborative AI projects. 

Figure 3. Extended BMC for Inter-Organizational FedML Collaborations 

5 Conclusion 

A significant amount of the world’s data is scattered, stored, and locked up in decentralized data silos. 
The siloed data is hardly accessible, which leaves a large portion of already generated data and its 
economic potential largely untapped. The model-to-data approach of FedML technically enables the 
creation of a joint ML model from decentralized data without the need of data sharing. However, this 
novel privacy-enhancing ML paradigm requires collaboration of multiple parties which own the data 
silos. Consequently, a collaborative business model is required to define how value can be created. 
Setting up these collaborative business models is complex with a high potential of failure. 
The information systems research literature offers interesting insights on emerging AI business models 
and collaborative business models. Current research on the distinct aspects of AI business models 
resulted in a multitude of relevant contributions. For example, how organizations evaluate AI value 
creation mechanisms (Alsheiabni et al., 2020) or how the value drivers of AI open new business model 

Co-Creation ManagementCollaboration Management 

Key Resources Channels

Cost Structure Revenue Streams

Key Partners Key Activities Value Proposition Customer SegmentsCustomer
Relationships

Legend

Is the collaboration structured with a dominant partner or with equal participants?
How is the collaboration formed with the participants? 
How transparent are the participants inside and outside the collaboration?

How are revenue and costs distributed? 
How are ownership/ responsibility/ accountability distributed? 
How is intellectual property managed throughout the project participants?

What are the most important costs inherent in our business model? Which key resources are most
expensive? Which key activities are most expensive?

Who are our key partners? Who are our
key suppliers? Which key resources are
we acquiring from partners? Which key
activities do partners perform?

What key activities do our value
propositions require?Our distribution
channels? Customer relationships?
Revenue streams?

What key activities do our value
propositions require? Our distribution
channels? Customer relationships?
Revenue streams?

What value do we deliver to the
customer?
Which one of our customer's problems
are we helping to solve? 
Which customer needs are we satisfying? 
What bundles of products and services
are we offering to each customer
segment?

For whom are we creating value? 
Who are our most important customers?

Through which channels do our customer
segments want to be reached? How are
we reaching them now? How are our
channels integrated?  [...]

For what value are our customers really willing to pay? for what do they currently pay? How are they
currently paying? How would they prefer to pay? How much does each revenue stream contribute to overall
revenues?

Collaboration
viewed as a unit

Within the
collaboration itself

What type of relationship does each of
our customer segments expect us to
establish and maintain with them?  [...]
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design opportunities (Böttcher et al., 2022). Additionally, studies investigated how AI already 
transformed the business models of specific domains, such as the insurance sector (Zarifis et al., 2019; 
Zarifis and Cheng, 2023), Fintech (Zarifis and Cheng, 2022) or education (Renz and Hilbig, 2020; 
Zarifis and Efthymiou, 2022). Our study complements the current information systems literature by 
revealing the socio-technical challenges of collaborative AI projects and consequently providing 
guidance in the creation of a corresponding inter-organizational business model. 

5.1 Contributions 

Through a systematic literature review, in-depth focus group interview and semi-structured expert 
interviews, we first investigated the challenges and aspects of business models for inter-organizational 
FedML projects. These findings were aggregated and structured into a comprehensive set of guiding 
questions and compressed into an extension of the BMC. The resulted questionnaire represents a set of 
detailed aspects which need to be considered in the creation of the collaborative business model. 
Thereby, we aid decision-makers at an early stage of the business model development and prepare them 
for challenges related to the collaboration. The traditional BMC by Osterwalder and Pigneur (2010) was 
complemented by two dimensions and should aid decision-makers in the first assessment of value 
creation, delivery and capturing for inter-organizational FedML projects. We can sum up the results of 
our research questions as follows: 

RQ1: What are the general challenges of collaborative business models? 

A joint work of multiple organizations is complex, and a multitude of challenges arise from cooperation. 
Through a systematic literature review on collaborative business models in the technology sector, we 
aggregated a list of said challenges. Based on the example of Diirr and Cappelli (2018), we structured 
this list into Management Challenges, Business Process Challenges, and Collaboration Challenges. 
These categories were filled with challenges from the identified literature corpus. Specifically, the 
cooperation establishment, slowness within the collaboration, distribution of financials, and agreement 
on collaboration and alignment with the organizations’ own objective seem to be the most critical 
challenges. However, this list may not be exhaustive but should present the most important challenges. 

RQ2: What are the aspects of inter-organizational FedML business models in relation to prevailing 
collaborative business models? 

To identify relevant aspects of inter-organizational FedML business models, we organized an in-depth 
focus group interview to explore this novel topic followed by semi-structured expert interviews to get a 
more diverse view and to augment the findings from the focus group study. Particularly, the difficulties 
of allocating rights and responsibilities within the co-creation management appear to be of specific 
interest in the inter-organizational use of FedML. These results were combined with the identified 
challenges from RQ1 and structured into groups of aspects for collaborative FedML business models. 
As a result, we received four aspect clusters: Collaboration Management, Co-Creation Management, 
Co-Creation Practices, and FedML Product. A more detailed specification is listed in the provided 
collection of socio-technical challenges. 

RQ3: Which aspects and attributes should be considered for inter-organizational FedML projects and 
how can these be structured into an extended BMC? 

The findings from RQ2 and the resulting questionnaire act as a basis for the extended BMC. Since the 
canvas should be a simplification of reality but should also consider the most critical aspects of the 
business model, we selected the most referenced and mentioned subareas. Therefore, Collaboration 
Management and Co-Creation Management were selected to expand the original canvas. These subareas 
seemed to be the most critical challenges of prevailing collaborative business models and were 
mentioned as the most critical success factors in the focus group interview as well as in the expert 
interviews. Hence, we argue that these two dimensions are important extensions to the BMC and capture 
the most critical aspects without losing handiness. This assumption and reasoning needs to be validated 
in practice but should provide a proper basis. 
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Overall, the insights of our study advance the understanding of the socio-technical challenges which 
arise in collaborative AI projects and of the relevant aspects in the development of corresponding inter-
organizational business models. The systemized list of socio-technical challenges and resulting extended 
BMC can be used by decision-makers for the initial viability assessment. The comprehensive set of 
guiding questions can be used as assistance for the business model development process. By this, we 
guide decision-makers to make use of FedML and provide support to overcome socio-technical 
obstacles to the adoption of collaborative AI. Therefore, our study helps to unlock previously 
inaccessible value from siloed data and contributes to business model innovation. 

5.2 Limitations 

There are obvious limitations to our work. The participants of the focus group were affiliated with the 
same company and worked on similar projects within this company. Hence, the findings from this group 
could be highly biased and might have led to one-sided results. We tried to counteract this by conducting 
further interviews with experts of different backgrounds and affiliations. However, the theoretical 
saturation was reached after five interviews which terminated our interview study with a small sample 
size of five participants. More data and consequently more interesting perspectives from a bigger and 
even more diverse set of interviewees might enrich our results. Therefore, we encourage researchers and 
generally interested readers to use our work as a basis to complement, refine and develop our artefacts 
with their own insights. Moreover, our work poses as a starting point for the development of potential 
business models of inter-organizational FedML projects. This model only comprises the relevant 
decisive factors for the success of collaborative FedML projects but does not capture more low-level 
aspects as the value streams between organizations. This would pose a natural next step in developing a 
potential business model. We encourage the investigation of a model which captures how actors within 
the collaborative FedML project might exchange value (e.g., e3-value model). We also assume that a 
feasibility check was conducted beforehand if FedML is a fitting solution. If FedML can be excluded 
from the set of reasonable technologies choices for the given problem, there would be no point in going 
a step further by addressing the multitude of distinct socio-technical challenges of collaborative AI 
projects and building a concrete business model. Therefore, an a priori task technology analysis would 
be reasonable. 

5.3 Future Research 

Generally, the research in the field of FedML is dominated by technical work. Nonetheless, the practical 
adoption of novel technologies like FedML is dependent on more than the technical dimension. 
Decision-makers will not consider using FedML if the legal framework is fuzzy, the business model 
does not provide a proper value proposition or the task and technology contradict. We believe that 
FedML is a technology with great potential and will open a large variety of possibilities in the era of big 
data, where huge amounts of data is stored in data silos. To unlock this potential, there needs to be more 
research on the social and socio-economic challenges of collaborative ML. From legal frameworks and 
governance concepts to task-technology analyses, the research field is wide open and ready to be 
explored. 
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Abstract 
The wealth of digitized data forms the fundamental basis for the disruptive impact of Machine Learning. 
Yet a significant amount of data is scattered and locked in data silos, leaving its full potential untouched. 
Federated Machine Learning is a novel Machine Learning paradigm with the ability to overcome data 
silos by enabling the training of Machine Learning models on decentralized, potentially siloed data. 
Despite its advantages, most Federated Machine Learning projects fail in the project initiation phase due 
to their decentralized structure and incomprehensive interrelations. The current literature lacks a 
comprehensible overview of the complex project structure. Through a Design Science Research approach, 
we provide a process model of a Federated Machine Learning life cycle including required activities, roles, 
resources, artifacts, and interrelations. Thereby, we aim to aid practitioners in the project initiation phase 
by providing transparency and facilitating comprehensibility over the entire project life cycle. 

Keywords 

Federated Machine Learning, Process Model, Software Engineering, Applied AI, Design Science Research. 

Introduction 
The disruptive potential of Machine Learning (ML) roots in the emergence of big data and the ever-
increasing wealth of digitized data. Yet, the lack of sufficient training data is still a persevering bottleneck 
in creating sophisticated, data-demanding ML systems. Even though vast amounts of data is freely 
available, a considerable amount of the world’s data is still scattered, stored and locked up in data silos, 
therefore hardly accessible. This lack of available, suitable training data creates a competitive 
disadvantage especially for small and medium-sized enterprises (SMEs) (Bauer et al. 2020) leaving their 
full economic potential unreached. SMEs could overcome data scarcity by breaking up data silos, sharing 
data and collaborating. However, the companies’ willingness to share data is low due to privacy concerns 
and a potential loss of intellectual property (IP) (Schomakers et al. 2020). 
Federated Machine Learning (FedML) is a novel ML technique which allows the creation of a joint ML 
model on decentralized and therefore siloed datasets (McMahan et al. 2016). Through this model-to-data 
approach, companies could collaboratively train an ML model without the need for direct data sharing. 
Technically, FedML has the potential to enable SMEs overcome data silos, use currently untapped data, 
and thereby leverage the full potential of ML without privacy leakage. Despite its advantages, there are 
currently only a few production-level applications and most work on FedML comprises prototypes or 
simulations (Lo, Lu, Wang, et al. 2022). The missing operationalization of FedML may be attributable to 
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multiple aspects. For example, the persisting discrepancy between engineering traditional, deterministic 
software and engineering non-deterministic ML systems makes the integration of ML cumbersome (Giray 
2021). Additionally, FedML requires the coordination of multiple parties across different life cycle stages 
due to its decentralized nature. We recognized through focus group discussions and expert interviews, 
that FedML is currently missing clarity over its complex and multi-faceted process flow. This missing 
clarity poses a key challenge for practitioners in the project initiation and communication with potential 
participants. Current literature usually takes a technical perspective when designing FedML systems and 
lacks a comprehensible overview of the complex project structure. Against this backdrop, we aim to 
provide transparency by developing a comprehensible process model of an end-to-end FedML project life 
cycle. The process model intends to break down, structure and illustrate the different project stages 
including required tasks, resources, roles, artifacts, and their interrelations. In summary, we aim to 
answer the following research questions (RQs): 
RQ 1: What are the most relevant components and aspects needed for a comprehensible overview of a 
FedML process flow? 

RQ 2: How can a generic, structured process model of an end-to-end Federated Machine Learning 
project life cycle be designed? 

Theoretical Background and Related Work 
FedML is a novel, disruptive ML paradigm that enables the training of a joint ML model on distributed 
datasets without the need of sharing data. In traditional ML settings, data is usually accumulated in a 
central location, where the ML model is subsequently trained. Hence, data owners need to share their 
data with a central server and risk losing their IP. Introduced by McMahan et al. (2016), FedML 
counteracts the need of sharing datasets through a model-to-data approach. As visualized in Figure 1, the 
FedML process can be divided into four steps. First, the server chooses an initial global model which is 
suitable for the use case and underlying data structure. The global model can be initially trained by the 
server. Secondly, the server distributes the global model amongst all clients. Thirdly, each client trains the 
global model on its own local dataset and stores the update gradients. Consequently, each client owns its 
individually trained ML model based on its local dataset. Finally, the clients send the individually 
computed update gradients back to the server, which are aggregated based on a pre-defined protocol and 
used to update the global model. Steps 2-4 can be repeated until a certain accuracy level is reached or 
until the accuracy converges. Even though FedML usually uses a client-server architecture consisting of a 
central orchestration server and multiple clients, other architectures have been proposed as well. We refer 
to client-server architectures with a central orchestrating server since it is the most widely used 
architectural pattern (Lo, Lu, Zhu, et al 2022). 

 
Figure 1. One Iteration of the Federated Machine Learning Training Process (own work) 

IEEE published a reference architecture with generalized information about the structure of FedML 
model training processes and involved roles (IEEE 2021). The standard can be used as a basis for 
implementation, but it does not offer information about the entire life cycle. However, considering all life 
cycle stages is crucial and an existing open problem for an industrial-level implementation of FedML 
(Zhang et al. 2020). In contrast to the current literature on FedML, such life cycle models can be found in 
numerous studies on traditional, centralized ML systems. Studer et al. (2021), for example, introduced 
CRISP-ML(Q), an standard ML process model overarching the entire life cycle from business 
understanding to monitoring and maintenance with a focus on quality assurance. Kreuzberger et al. 
(2022) developed an end-to-end workflow including functional components and roles tailored to ML 
operations (MLOps) principles. Similarly, Kumara et al. (2022) proposed a reference architecture for 
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MLOps to aid in streamlining the life cycle of ML models in production. Besides, work on software 
engineering for ML as well as studies on AI governance yielded insights into ML life cycles. Amershi et al. 
(2019) investigated how software teams at Microsoft developed AI applications and presented a life cycle 
model including a set of best practices and challenges based on their observations. Laato et al. (2022) 
explored the incorporation of AI governance into system development life cycle models by conducting 
expert interviews. These interviews resulted in a set of governance concepts and a visualization of how AI 
governance stages tie into existing software development life cycles. The studies on ML life cycles yielded 
valuable insights into existing practices and the different stages of ML project. Based on that, Ritz et al. 
(2022) presented a process model to additionally illustrate the dependencies and interactions within the 
different stages and activities. Their model describes the activities and resulting artifacts including the 
interdependencies throughout the ML software development cycle. The existing life cycle and process 
models on centralized ML systems can be used as a basis for FedML projects but need to be revisited due 
to the decentralized nature of FedML. The decentralization introduces additional layers of complexity and 
coordination, which need to be addressed for a successful industrial-level implementation. In contrast to 
studies on ML systems, the current literature on FedML lacks such a comprehensible overview of the 
complex project structure. We aim to close this research gap and enhance the current literature corpus on 
FedML through a process model which breaks down, structures, and illustrates the different project 
stages including required tasks, resources, roles, artifacts, and their interrelations. 

Research Approach 
To investigate why FedML projects fail to actualize, we initially conducted a focus group discussion. We 
invited three project teams that attempted to realize FedML projects prior and discussed the encountered 
challenges during the projects. The main challenges have already arisen in the project initiation phase and 
was two-fold. The first challenge is the structuring of the process flow including the activities, resources, 
data, and information exchange. Secondly, communicating the division of tasks and coherent 
interrelations with the collaboration partners posed another main challenge. The focus group participants 
agreed that a structured end-to-end process model could alleviate both problems. The process model 
would facilitate the planning phase and communication with external participants by providing an 
abstract overview of the process flow including its required resources, roles, activities, and their 
interrelations throughout the project. We recognized that current research on FedML lacked such a 
holistic process model. To develop a process model for operationalizing FedML projects we used the 
design science research (DSR) methodology as proposed by (Peffers et al. 2007). We chose the DSR 
approach since it provides a methodical, rigorous approach for producing and evaluating innovative, 
purposeful artifacts for a specified problem domain (Hevner et al. 2004). Our research activities 
according to the DSR steps by Peffers et al. (2007) can be summarized as follows: 
(1) Problem Identification and Motivation: Through a focus group, we recognized that structuring the 
FedML process is complex. Understanding and communicating the division of tasks as well as the 
coherent interactions with potential partners is challenging. Current literature does not offer a structured, 
comprehensible overview of the FedML project flow and lacks guidance in the project initiation phase. 

(2) Objectives of a Solution: Our objective was the development of a generically applicable end-to-end 
process model for FedML projects to facilitate the planning phase and communication with external 
participants. The model should comprise an entire life cycle and provide a clear understanding of 
interacting entities, their corresponding activities, interactions, and dependencies along with the required 
resources and resulting artifacts. The content and structure should be closely aligned and consistent with 
best practices offered by literature on ML life cycles, and software development life cycles. Furthermore, 
the model should be useful and easily understandable by non-technical stakeholders and practitioners. 
(3) Design and Development: We reviewed current literature on ML life cycles, software development life 
cycles and assessed which practices, procedures and information are applicable for our process model. We 
gained our knowledge base on the structure of FedML processes from current literature. We conducted an 
interview study to collect information on the FedML project structure, separation of roles, activities, and 
interactions between the entities throughout the project life cycle. We describe the interview study in 
another publication (Müller et al. 2023). According to the described objectives, we designed and 
structured the elements of our process model. We incorporated the relevant findings from the literature 
review and interview study. During development, we conducted regular mini focus group discussions with 
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varying participants to assess the model regularly and to iteratively implement feedback. Additionally, we 
presented the initial resulting process model to a diverse group of 6 experts with technical backgrounds to 
gather feedback and change requests on the completeness, comprehensibility, and level of detail. 
(4) Demonstration. We demonstrated the process model during an expert discussion and within a large 
industrial lighthouse project as part of a project ideation process to adopt FedML for varying use cases. 

(5) Evaluation: We conducted two survey-based iterations to evaluate the artifact on the objectives. 
(6) Communication: Communication is being done through this paper. 

Results 
A process model should describe an abstract representation of reality and reduce complexity by 
eliminating details which do not influence relevant behavior (Curtis et al. 1992). We adapted the seven 
process modeling guidelines (7PMG) by Mendling et al. (2010) wherever possible to design such a process 
model, which is comprehensible and comprises solely the important details of the underlying process. 
Following the 7PMG, we use as few elements as possible by clustering activities where possible and only 
incorporate the most essential elements for the FedML project life cycle. This guideline concurs with our 
objective to produce an easily understandable process model. To follow the 7PMGs, we also aimed to 
minimize the routing paths per element by only including the most relevant inputs, outputs, and feedback 
loops. The full process model is designed so that it can be easily decomposed according to the life cycle 
stages. Finally, we used verb-object activity labels. Figure 2 displays the resulting process model. 

Components of the Process Model 

In this section, we answer RQ1 by presenting the components of the process model. These components 
comprise life cycle stages, activities, roles, resources, as well as artifacts and are described as follows: 

Stages of the life cycle represent interrelated tasks and activities and are structured according to software 
development life cycle stages in combination with MLOps and FedML-specific stages. Our model 
comprises five stages: Project Initiation, Project Validation, Project Setup, System Design and 
Development, and Deployment and Maintenance. The System Design and Development stage contains 
the FedML training process and can be divided into three sub-stages: Global Model Design, Local Model 
Training and Global Model Aggregation. The stages are described in the section on the process flow. 
Roles describe the behavior and responsibility of an individual or a group. One individual may take 
multiple roles, but each role describes a distinct set of behaviors and responsibilities attributed to a role. 
The following gives a short description of the nine different roles and their intended area of responsibility. 
(1) Business Stakeholder has the business need or problem to be solved and represents the initiator. The 
Business Stakeholder defines the business requirements, establishes a project strategy and agrees on the 
project definition with the success criteria (Kreuzberger et al. 2022; Too and Weaver 2014; Zwikael and 
Meredith 2018). In the process model, the business stakeholder is solely involved in strategic activities. 
(2) Project Manager is responsible and held accountable by the business stakeholder for the success of 
the project. The project manager oversees and leads the team to achieve the project’s objectives and is 
responsible for planning and managing the project efficiently (Too and Weaver 2014; Zwikael and 
Meredith 2018). Therefore, the project manager is involved in strategic activities. 

(3) Subject Matter Expert (also called domain expert) is an expert in a specific domain and deeply 
understands the business problem. The Subject Matter Expert aids the Business Stakeholder in the 
definition of goals during the project initiation stage (Amershi et al. 2019; Studer et al. 2021). 

(4) Solution Architect analyzes the functional, technical and business requirements and defines the 
overall solution architecture and technologies to be used (Kreuzberger et al. 2022). In the process model, 
the Solution Architect is mainly involved in the technical assessment of the ML problem. 

(5) Data Scientist is an ML expert responsible for analyzing the business problem and building a suitable 
ML model which solves the business problem. This includes conducting the algorithm selection, feature 
engineering and performing hyperparameter tuning (Kim et al. 2018; Kreuzberger et al. 2022; Kumara et 
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al. 2022). Hence the Data Scientist is involved in operational activities such as translating the business 
problem into an ML problem and further ML-related operational activities such as designing the model. 

(6) Data Engineer is responsible for pulling and engineering raw data such that the curated data is usable 
and accessible to the Data Scientist. These activities comprise building and managing data pipelines 
together with performing data cleaning and feature engineering (Kreuzberger et al. 2022; Kumara et al. 
2022). The Data Engineer performs operational activities like preparing data. The Data Engineer is the 
only role which performs local activities. 
(7) Software Engineer applies mature software engineering techniques to ensure that the ML system is 
built in a robust manner. The Software Engineer is responsible for packaging, testing as well as assuring 
the quality and robustness of the ML model along with the infrastructure (Kreuzberger et al. 2022; Serban 
et al. 2020). Hence, the Software Engineer is involved in software-related operational activities. 

(8) Development-Operations (DevOps) Engineer aims to automate and combine the processes of model 
development and model operations to deploy and serve the ML model. This includes incident 
management, monitoring, support and delivery of models in production (Kreuzberger et al. 2022; Kumara 
et al. 2022; Laato et al. 2022). Hence, the DevOps Engineer performs operational activities in the 
deployment and maintenance stage. 
(9) Legal Representative checks compliance with legal frameworks (e.g., GDPR or HIPAA) and clarifies 
the conformity of the potentially established collaboration. 
Activities summarize units of work performed by roles. An activity has a clear purpose and usually 
results in the creation or update of an artifact (Anwar 2014). Specific roles are assigned to each activity. 
We chose the granularity such that the goal of the activity is comprehensible and such that the flow of 
activities provides a good understanding of the underlying process. Activities are described with verb-
object labels. They either use information or data flows as input or can be triggered through prior 
activities. Some activities are optional depending on the use case-specific set-up and are indicated 
through dashed lines. The different activities are arranged horizontally by their chronological order and 
vertically by the type of activity. Activity types are indicated by swimlanes and are categorized into 
strategic activities, operational activities, and local activities. Strategic activities comprise management 
tasks such as planning, analysis, strategy formulation and organization. Operational and local activities 
cluster technical tasks which are concerned with the development and serving of the software product. We 
introduced an additional swimlane for local activities specific to FedML. These activities are executed 
solely in the environment of the local data contributors and accentuate which activities are performed by 
the decentralized entities. The separation into operational activities and local activities demonstrates the 
division, interrelations and dependencies between the central entity and local data contributors. 
Artifacts are tangible by-products which are produced, modified, or used by a process. Artifacts are used 
as input to perform an activity or are the result of activities (Anwar 2014). We differentiate between 
document artifacts and code artifacts Documents comprise specifications, descriptions, diagrams, 
reports, and other documented outputs. Code artifacts include output resulting from implementations 
such as ML models, infrastructures, or logs. Optional activities are indicated through a dashed outline. 
Resources are hardware or software components which are required to fulfil the activities but do not 
result from the activities of the process. We differ between global and local resources. Global resources 
can be used by every participant, whereas local resources are used exclusively by the corresponding local 
data contributor. Resources comprise for example data storage, log storage, model registry and metric 
storage. We include resources in our process model to fulfill the objective of providing transparency and 
showcasing the global and local interactions and dependencies within the FedML project life cycle. 

Process Flow of a Federated Machine Learning Life Cycle 

In this section, we answer RQ 2 by providing a walkthrough of the process model as displayed in Figure 2. 
We based the stages of our process life cycle on the different phases of software development life cycle 
models (Akinsola et al. 2020; Alsaqqa et al. 2020; Apoorva and Deepty 2013; Gurung et al. 2020) in 
combination with ML life cycle models (Amershi et al. 2019; Kreuzberger et al. 2022; Kumara et al. 2022; 
Laato et al. 2022; Ritz et al. 2022). Finally, we adjusted the stages to the specifics of FedML processes and 
architectures (Bharti et al. 2022; Bonawitz et al. 2019; IEEE 2021; Lo et al. 2021; Lo, Lu, Zhu, et al. 2022; 

118



 Process Model for FedML Projects 
  

 Twenty-ninth Americas Conference on Information Systems, Panama, 2023 6 

Zhang et al. 2020). Subsequently, we will describe the process model according to the life cycle stages. 
The listed activities represent a high-level abstraction of the needed tasks. The level of abstraction should 
give non-technical stakeholders and other practitioners a good understanding of the needed activities but 
should not be too detailed to keep the process model comprehensible and manageable. 
Project Initiation stage is the first step in starting a project. The business stakeholder and subject 
matter expert establish the goal and scope of the project. They define how business value will be delivered 
and which use cases will be tackled. Hence, a business model, business requirements and use case 
diagrams will emerge. The goals and scope are communicated with the data scientist, which will translate 
the business problem into an ML problem. The data scientist produces a technical description of the 
problem, data descriptions, and a deployment strategy according to the business requirements. Any 
challenges will be communicated with the business stakeholder to refine the goals and scope if necessary. 

Project Validation stage ascertains if the project is feasible and can meet the expected requirements. 
The ML problem is the input for the validation task which needs to be performed in the strategic and 
operational dimension. The business stakeholder, project manager, and legal representative conduct the 
business case analysis resulting in a business case report. The data scientist and solution architect carry 
out technical assessments. The technical assessment yields data understanding and the infrastructure 
specifications describing the needed infrastructure for data processing, model training and orchestration. 

Project Setup stage lays the basis for the implementation. The strategic activities are concerned with the 
collaboration creation if the project is implemented in a collaborative setting. Hence, this strategic activity 
the project setup stage is optional. The business stakeholder and project manager aim to establish and 
plan the collaboration, whereas the legal representative checks the compliance and legal regulations of the 
collaboration. The collaboration creation activities result in a collaboration agreement, which also 
specifies the used communications channels of the collaboration. We provide a comprehensive 
description of the socio-technical aspects which need to be addressed in the collaboration agreement in a 
separate publication (Müller et al. 2023). The software engineers set up the infrastructure as specified in 
the infrastructure specifications and technical description. Therefore, the infrastructure for data 
processing, model training and orchestration emerges from this stage. Optionally, communication 
channels are established if the project is implemented within a collaboration. 

System Design and Development stage aims to create the software product as well as the ML model 
and is divided into three substages: 
(1) Global Model Design substage intends to define the source code for the initial global model which is 
subsequently trained during the following substages. This requires access to existing data storage and log 
storage for traceability. The data engineer prepares the data as needed by the specified ML problem. The 
data scientist builds the corresponding ML model, which is prepared by the software engineer for 
distribution to the local datasets. Additionally, the data engineer defines data specifications rules, which 
can be followed by the local data engineers to achieve data homogeneity. The data preparations and 
features can be iteratively adapted dependent on the ML model performance. Finally, the initial model is 
stored in a central model registry. Summarized, this stage yields logs to ensure traceability, data 
preparation specifications to achieve data homogeneity and a global model implementation. 
(2) Local Model Training substage is conducted by the local participating data contributors. The local 
data engineers extract their local data from their corresponding data storage and prepare the data 
according to the defined data preparation specifications. After preparation, they pull the latest model 
from the model registry and train the local model. This results in a local version of the ML model. The 
gradients from the training process need to be extracted and sent to the central entity. All training logs 
need to be stored in a local log storage to ensure traceability. This local data and log storage is not public 
to guarantee privacy and should only be exchanged in exceptional cases e.g., for accountability matters. 

(3) Global Model Aggregation substage collects and aggregates the resulting update gradients from the 
local data contributors. A data scientist builds the global model through the collected update gradients. 
The model is evaluated and stored in the model registry. Logs are stored in a log storage for traceability. If 
the model performance is insufficient, another training iteration can be triggered. The evaluation results 
can also be used to adjust the scope and goals or adapt the data specifications and model design. If the 
model performs as desired, it is packaged by the software engineer for deployment. 
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Figure 2. Process Model of an End-to-End FedML Project Life Cycle 
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Deployment and Maintenance stage intends to serve and maintain the model service. The DevOps 
engineer deploys the final packaged model. The DevOps engineer and data scientist maintain and monitor 
the model while storing the recorded metrics in a metric storage. This includes the monitoring report of 
business metrics. Hence, this stage produces a model service, metrics, and bug reports. If ML service 
deviates from the desired behavior, the performance metrics can be used to trigger changes in the data 
preparation scheme and model design as well as trigger an adjustment of the goals and scope. 

Demonstration and Evaluation 
We conducted two iterations of demonstrations with subsequent survey-based evaluations. The first 
iteration was part of the Design and Development stage as described in the section on the Research 
Approach. We demonstrated the process model and discussed the model with the experts. We received 
feedback through the discussion and asked all participants to fill out a survey. The survey evaluates the 
relevance and usefulness of each element with its overall comprehensibility, level of detail, completeness, 
usefulness, and value. The demonstration was part of a project ideation process to adopt FedML within a 
large industrial lighthouse project. In total, 14 experts participated in the assessments. Overall, the group 
of experts comprised a variety of affiliations from startups, big tech companies and research institutions 
with experience ranging from one to 12 years in their respective field. For each demonstration, all experts 
confirmed the identified problem and validated the idea, structure, components, and importance of the 
process model. We incorporated the feedback after each round of discussions. 

To evaluate the models’ usefulness, we finally presented the refined model to 8 potential users and key 
stakeholders such as project managers, product specialists, solution architects, and solution advisors. 
Each participant was involved in prior FedML use case discussions. We aimed to assess if the model can 
be used in practice, or if further modification is required. One expert stated that the model seems complex 
at a first glance due to its size. Since the other experts liked that the model displays an entire project life 
cycle, that the level of detail is fitting, and all components should be included. Based on these statements, 
we have not made any changes. The involved experts aim to use the model in future discussions. 
The overall evaluation results in Figure 3 show that the model was well-received by all participants. A 
large majority of the participants described the model as detailed enough, complete, comprehensive, and 
valuable. The model is unanimously considered useful, which implies that the set objective of a useful and 
understandable model is met. Regarding the components, the stages seem to be relevant for each expert, 
whereas very few experts deem the artifacts and roles somewhat irrelevant. Three experts stated that the 
last stage of a project life cycle is missing Model Maintenance activities and therefore strongly disagreed 
that the model covers all important aspects. We agreed and updated our model accordingly. Therefore, we 
consider the model as presented in Figure 2 as complete. All experts confirmed the structure, 
comprehensiveness, and level of detail. Thereby, we assume that the objective of a clearly understandable 
and generically applicable model is met as well. All experts agreed that the process model includes all 
relevant details and stated that they will use the model in future discussions on FedML with their 
stakeholders and potential collaborators, which confirms the usefulness for the target user again. 

 
Figure 3. Results of the Evaluation 
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Conclusion 
In this study, we introduced a process model of an end-to-end FedML project to provide transparency and 
facilitate the comprehensibility of the complex project life cycle. The process model extends current 
literature on traditional, centralized ML life cycles and complements existing reference architectures 
through a holistic overview of the FedML project life cycle. By investigating related work, conducting 
focus group discussions and an interview study, we identified stages, activities, roles, resources, and 
artifacts as the most relevant components for a comprehensible overview of the FedML process (RQ1). 
Finally, based on our research, we designed and constructed the process model with the corresponding 
interactions and dependencies of the different components (RQ2). The evaluation results show that 
potential users deem the model to be useful, deliver value and comprise the most relevant aspects with an 
appropriate level of detail. The process model can help practitioners to gain an understanding of the 
structure and interrelations within a FedML project. As stated in the expert evaluations, the model can be 
used for simplified communication with potential collaboration partners and decision-makers. 
Additionally, the model can ease the project initiation phase and successful implementation by providing 
guidance and an overview of the whole project life cycle. 
The process model is currently limited to server-client architectures with a central orchestrating server 
and multiple local data contributors since it is the most widely used architectural pattern. However, more 
architecture designs are possible and cannot be abstracted by our process model. In the future, adapted 
process models for novel or different architectures could be established. Also, the model has only been 
evaluated by 14 experts and within one project ideation phase. We recommend testing and evaluating the 
model in more scenarios to gather more feedback for improvement. Practical validation might also lead to 
a more thorough alignment with current MLOps rather than DevOps paradigms to further streamline the 
model to current best practices. Overall, the process model aids the successful implementation of FedML 
projects. By that, our model contributes towards more privacy-enhancing ML projects and might help 
improve the overall performance of ML models through leveraging decentralized and currently untapped 
dataset. Furthermore, we aim to publish an additional activity model with more detailed activities for each 
stage of the life cycle to provide further guidance on more in-depth technical aspects of FedML projects. 
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Abstract 
Big data forms the fundamental basis for the success of Machine Learning. Yet, a large 
amount of the world’s digitized data is locked up in data silos, leaving its potential 
untapped. Federated Machine Learning is a novel Machine Learning paradigm with the 
potential to overcome data silos by enabling the decentralized training of Machine 
Learning models through a model-to-data approach. Despite its potential advantages, 
most Federated Machine Learning projects fail to actualize due to their decentralized 
structure and incomprehensive interrelations. Current literature lacks clear guidelines on 
which steps need to be performed to successfully implement Federated Machine Learning 
projects. This study aims to close this research gap. Through a design science research 
approach, we provide three distinct activity models which outline required tasks in the 
development of Federated Machine Learning systems. Thereby, we aim to reduce 
complexity and ease the implementation process by guiding practitioners through the 
project life cycle. 
Keywords:  Federated Machine Learning, Activity Model, Software Engineering, AI. 

 

Introduction 
The success of Machine Learning (ML) systems roots in the emergence of big data and the ever-increasing 
availability and wealth of digitized information. Even though data forms the fundamental basis for 
powering ML systems, it also poses ML’s major bottleneck. Problem domains become increasingly complex, 
which results in more sophisticated and therefore data-demanding ML systems. The development of such 
advanced, intelligent systems is often restricted through a lack of sufficient training data. Especially small 
and medium-sized businesses (SMEs) experience this problem and suffer from a deficiency of training data 
(Bauer et al., 2020). Although a considerable amount of data is freely available, vast amounts of the world’s 
data is scattered in decentralized IoT devices and data silos. The siloed data is usually hardly accessible to 
external prospective parties, which leaves a significant portion of generated data largely untapped. By 
breaking up these data silos through collaboration and data sharing, SMEs could overcome the persisting 
problem of data scarcity. Thereby enabling the development of complex ML systems which were not within 
the realms of possibility before. However, companies are reluctant to share data due to privacy concerns 
and a potential loss of intellectual property (IP) (Schomakers et al., 2020). Moreover, the constrained 
usability of these data silos is additionally strengthened by data protection laws and regulations. Important 
legal regulations such as the General Data Protection Regulation (GDPR), California Consumer Privacy Act, 
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Cyber Security Law and the General Principles of the Civil Law justifiably aim to protect the privacy of 
individuals, but also lead to more data silos. 

Motivated by this problem McMahan et al. (2016) introduced Federated Machine Learning (FedML), a 
novel ML approach which enables the training of a joint ML model on distributed datasets without the need 
for direct sharing training data. Through a model-to-data approach, the ML model is brought to the 
decentralized data, therefore data never needs to leave the individual’s device which enhances privacy by 
design. By that, companies would be able to collaboratively train a joint ML model without the risk of losing 
their individual IP and the need of disclosing any data. Hence, FedML technically yields the potential of 
alleviating the lack of sufficient training data by enabling ML training across company borders and 
decentralized data silos. 
However, despite its advantages, most FedML projects fail to actualize and never leave the prototype or 
simulation stage (Lo, Lu, Wang, et al., 2022). The reason for the lack of production ready FedML systems 
may be attributable to multiple aspects. Even integrating centralized ML algorithms into traditional 
software systems is cumbersome due to the non-deterministic behavior of ML systems, which collides with 
deterministic software engineering practices (Giray, 2021). Additionally, the decentralized nature of FedML 
introduces a further dimension of complexity. Among other things, a collaboration may need to be 
established and multiple parties need to be coordinated throughout the whole project life cycle (Wouters et 
al., 2017). Through focus group discussions and expert interviews, we recognized that the realization of 
FedML projects is currently hindered by missing clarity over the multi-faceted process flow. The currently 
incomprehensible project structure especially impedes product owners and project managers in the project 
planning and communication with participants. This challenge could be alleviated through a 
comprehensive step-by-step guide that clearly outlines the needed tasks of implementing an entire FedML 
project. Current academic and non-academic literature does not address this issue. We aim to close this 
research gap by providing activity models which describe the sequence of activities needed to successfully 
implement FedML applications. By this, we aim to provide clarity and guidance for practitioners throughout 
the project life cycle and thereby aid to facilitate the development of FedML projects. Summarized, we aim 
to achieve this goal by answering the following research questions (RQs): 
RQ 1: What are the required activities for the implementation of Federated Machine Learning projects? 

RQ 2: How can a structured model for guiding practitioners through the implementation of Federated 
Machine Learning projects be designed? 

Federated Machine Learning 
FedML is a novel, disruptive ML technique that enables the training of a joint ML model on distributed 
datasets without the need of sharing data. In traditional ML settings, data is usually accumulated in a 
central location, where the ML model is subsequently trained. Hence, data owners need to share their data 
with a central server, therefore potentially risk losing their data sovereignty and IP. Introduced by 
McMahan et al. (2016), FedML leverages a model-to-data approach and thereby alleviated the need of 
sharing datasets. As visualized in Figure 1, the FedML process can be divided into four steps: 

1. The server chooses an initial global model, which is suitable for the use case and underlying data 
structure. This global model can be initially trained on an initial dataset. 

2. The server distributes the global model amongst all clients. 
3. Each client trains the global model on its own local dataset and stores the update gradients. After 

the training process, each client has its individually trained ML model based on its local dataset. 
4. The clients send the individually computed update gradients back to the server. These gradients 

are aggregated based on a pre-defined protocol and used to update the global model. 

Steps 2-4 can be repeated over several iterations until a certain accuracy level is reached or until the 
accuracy converges. A multitude of different FedML architecture have been proposed, however, in this work 
we solely refer to server-client architectures consisting of a central orchestration server and multiple clients, 
since this architectural pattern is the most widely used (Lo, Lu, Zhu, et al., 2022). 
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Figure 1. One Iteration of the Federated Machine Learning Process (own work) 

 

Related Work 
IEEE published a reference architecture with generalized information about the structure of a FedML 
model training process and high-level descriptions of activities related to defined roles (IEEE, 2021). The 
reference can be used as a basis for implementation, but it neither provides information about the life cycle 
nor detailed insights into the activity descriptions and activity sequences. Considering all life cycle stages is 
crucial and an existing open problem for the implementation of industrial-level FedML systems (Zhang et 
al., 2020). Also, it is needed to illustrate the chronological sequence as well as the interrelations of the 
required activities in order to successfully guide practitioners in the development. Opposed to the existing 
literature on FedML, detailed activity descriptions were proposed in numerous studies on life cycle models 
of traditional, centralized ML. For example, Studer et al. (2021) introduced CRISP-ML(Q), an ML process 
model which covers the full life cycle from business understanding to monitoring and maintenance. The 
authors followed the principles of the Cross-Industry Standard Process Model for Data Mining (CRISP-
DM) (Wirth & Hipp, 2000) and constructed their ML process model with a focus on quality assurance. The 
development activities were organized in six phases and they described the needed activities briefly. 
Kreuzberger et al. (2022) developed a workflow for ML operations (MLOps) frameworks including 
functional components and roles. They included activity descriptions and activity sequence as part of their 
proposed model. Similarly, Kumara et al. (2022) proposed a reference architecture for MLOps to aid in 
streamlining the life cycle of ML models in production. 
Work on software engineering for ML yields important insights into ML life cycles with their corresponding 
sequence of activities. Amershi et al. (2019) investigated how software teams at Microsoft developed AI 
applications. Based on their observations, they analyzed and grouped activities which are performed by the 
teams to construct a life cycle model with a set of best practices. The study describes the activities and 
illustrates a workflow of the nine stages. Besides, research on AI governance looks into the activities 
throughout the ML life cycle. Laato et al. (2022) conducted expert interviews to explore the incorporation 
of AI governance into system development life cycle models. Their study resulted in a set of governance 
concepts and descriptions of how AI governance stages tie into existing software development life cycles. 
Even though, the authors did not describe any needed activities per se, the study provides valuable 
information for the construction of the activity diagrams through their insights on existing best practices 
during the different stages of an ML project. Additionally, based on that, Ritz et al. (2022) present a process 
model to illustrate the dependencies and interactions within the different life cycle stages and activities. 
They described the activities throughout the whole life cycle including the interdependencies throughout 
the software development life cycle. These existing life cycle models for centralized ML systems can be used 
as a basis for FedML projects but need to be revisited due to the decentralized nature of FedML. 
Some well-defined activity models for traditional, centralized ML models have been proposed for a 
multitude of application domains. Koshtura et al. (2020) proposed an UML diagram, which illustrates the 
set of required activities for the implementation of ML-based demand analysis systems to forecast the 
bicycle use in smart cities. Thanachawengsakul et al. (2019) constructed an activity diagram, which 
describes implementation of a knowledge repository management system architecture which uses ML, 
whereas Venugeetha et al. (2022) illustrated an activity diagram for ML-based breast cancer prediction. 
Again, these models are heavily tailored to their specific use cases and are intended for centralized ML 
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systems. Since the decentralized FedML process introduces additional layers of complexity, it is needed to 
revisit activity models and address FedML specifics for a successful industrial-level implementation. 

Research Approach 
We observed that many FedML projects do not evolve past prototypes. To understand why FedML projects 
fail to actualize, we conducted a focus group discussion with three project teams that attempted realizing 
FedML projects in the past. Through this focus group discussion, we aimed to understand the encountered 
challenges during the project. We noticed that the main barrier lies in the project initiation and planning 
phase. The project teams reported that it is challenging to structure the complex implementation process 
due to its decentralized and collaborative nature. The project flow is complicated to understand, and the 
division of tasks is not clear. Therefore, communicating the tasks throughout the team and potential 
collaborators is arduous. This barrier of intricated process structure and difficult communication seem to 
pose the main challenge in building FedML products. The focus group agreed that a process model, which 
gives a holistic overview of the process and a detailed activity model with a comprehensive sequence of tasks 
would alleviate the barrier. Both artifacts would help provide transparency and guidance throughout the 
development of FedML projects. 

At this point, is important to emphasize the differences between the activity model and the process model 
in terms of their target group and intended purpose. The process model aims to provide a highly abstracted 
overview of the holistic project structure including required resources, role distributions, and resulting 
artifacts. This high-level overview intends to aid business stakeholder and solution architects in the project 
initiation phase outline the general project and facilitate communication with potential participants. The 
activity model, on the other hand, provides a detailed activity sequence through the needed steps of 
implementing a FedML project. The comprehensive activity descriptions aim to provide guidance for the 
implementation and therefore intends to support product owner and project manager in the planning phase 
of the development process. Therefore, while the process model aims to facilitate the project initiation phase 
for business stakeholder and solution architects, the activity model intends to ease the planning phase for 
product owner and project manager. In this paper, we will focus on the comprehensive activity model. We 
plan to communicate the process model1 in a separate publication since both artifacts are standalone and 
need to be considered independently for their respective purpose. 
Current literature does not offer a structure representation of a FedML project flow and does not provide 
guidance on the needed sequence of activities required to realize a FedML project in practice. Therefore, we 
aim to close this research gap by providing a detailed activity model which illustrates the tasks and 
interrelations of each life cycle stage in a FedML project. To develop such an activity model, we leveraged 
the design science research (DSR) methodology as proposed by Peffers et al. (2007) since it provides a 
methodical, rigorous approach for producing and evaluating innovative, purposeful artifacts for a specific 
problem domain (Hevner et al., 2004). Table 1 provides an overview of our research approach and short 
description of the conducted activities during the DSR cycle. The remainder of the paper is structured 
according to the steps of the DSR approach. 

Step Short Description of Activities 

(1) Problem identification 
and motivation 

Identified the problem and motivation through focus group discussions. See 
description above. 

(2) Objectives of a 
solution 

Conducted focus group discussions to derive requirements and determine 
relevant design principles. See chapter on Objectives of a Solution 

(3) Design and 
development 

Designed and developed the artifact to provide transparency and guide 
practitioners through a successful FedML project implementation. See 
chapter on Design and Development 

 
1 Process Model: https://bit.ly/3IHIrAn 
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(4) Demonstration Demonstrated the artifacts in group discussion and during project ideation 
phase of an industrial lighthouse project. See chapter on Demonstration 
and Evaluation 

(5) Evaluation Evaluated the comprehensibility, completeness, usability, and value of the 
artifacts. See chapter on Demonstration and Evaluation. 

(6) Communication Communication is being done through this paper. 

Table 1. Design Science Research Steps According to Peffers et al. (2007) 

 

Results 

Objectives of a Solution 

The objectives and requirements of the solution were identified through the initial focus group discussion 
as described in the section on the research approach. The three project teams agreed that the activity model 
should aid specifically in the planning phase and provide a clear structure over the sequence of activities 
which are needed to successfully implement FedML projects. Therefore, the activity models should cover 
the entire end-to-end life cycle of a FedML project. Additionally, the model should help in the 
communication with non-technical stakeholders and practitioners. Hence, the model should be easily 
consumable and provide transparency as well as guidance throughout the whole life cycle. The contents 
should be closely aligned and consistent with best practices of ML life cycles, software development life 
cycles, and state of the art FedML practices. Lastly, the activity model should be usable for independent of 
the specific FedML strategy and applicable for all FedML processes with a centralized orchestrator and 
multiple, distributed clients. The activity model should be applicable independent of the underlying use 
case, application domain, data structure, and business requirements. The requirements to the artifacts are 
summarized and indexed in Table 2. 

ID Short Description of the Requirement 

R1 Aligned with best practices from ML and software development 

R2 Comprise an end-to-end project life cycle 

R3 Generically applicable and independent of the use case 

R4 Understandable and usable by non-technical stakeholders and practitioners 

R5 Provide transparency and structure of the entire project 

R6 Provide guidance for the implementation process 

Table 2. Identified Requirements on the Activity Models 

 

Design and Development 

To build our knowledge base to meet requirements R1 and R2, we reviewed current literature on ML life 
cycles (Amershi et al. 2019; Kreuzberger et al. 2022; Kumara et al. 2022; Laato et al. 2022; Ritz et al. 2022), 
software development life cycles (Akinsola et al., 2020; Alsaqqa et al., 2020; Apoorva & Deepty, 2013; 
Gurung et al., 2020) and assessed which practices, procedures, and information are applicable for the 
activity model and its structure. Additionally, we reviewed the state-of-the-art FedML processes through 
current literature on FedML architectures and algorithms (Bharti et al., 2022; Bonawitz et al., 2019; IEEE, 
2021; Lo et al., 2021; Lo, Lu, Zhu, et al., 2022; Zhang et al., 2020). The activity models are partially based 
on an expert interview study on the socio-technical challenges of FedML projects, which we describe in a 
separate publication (Mueller et al., 2023). The study especially provided information for strategic activities 
in a collaborative setting. The relevant findings from the interview study, focus group discussions and 
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literature review were incrementally combined. During development, we conducted regular mini focus 
group discussions with varying participants to iteratively assess the activity models and implement 
feedback. 
Per definition, an activity represents units of work that are performed by roles. Each activity has a clear 
purpose and usually results in the creation or update of an artifact (Anwar, 2014). Therefore, the activity 
models should provide guidance on which units of work need to be followed such that the goals (or artifacts) 
of the stages can be successfully achieved. However, some activities and their corresponding method of 
execution may be dependent on technicalities, use case, or business requirements. To ensure requirement 
R3, we want to leave the choice of the fitting method to the practitioner. Hence, we chose the granularity, 
such that the goal and required activities is comprehensible, but does not preset specific context-dependent 
methods. We only included the happy path without exit points and did not incorporate the dependencies 
and interactions between the stages to enhance comprehensibility. The activity models show one iteration 
of each stage. It is important to highlight that in ML projects, the stages are usually performed iteratively 
to refine the process. 

The design of the activity models is based on the UML 2.0 notation2 since it is a commonly known and 
normed unified modelling language in the field of software engineering. By leveraging widely known 
notations, we aim to meet requirement R4. As specified in UML 2.0, every diagram has at least one initial 
node, which is indicated by a filled circle, and one end point, which is represented by an encircled filled 
circle. Activity states are illustrated through ellipses, described through verb-object activity labels, and 
connected with arrows to represent in which order the activities happen. Decision points are modelled 
through diamonds, and bars represent the start (split) or end (join) of concurrent activities. If multiple 
actors interact within one activity model, horizontal swimlanes group the activities performed by the same 
actor. Objects only show critical inputs/outputs and are modelled through rectangles. If similar objects 
appear multiple times, the life cycle stage is described as state name in rectangular brackets. Shared objects 
are placed on swimlane separators. 

To meet requirement R2 and R5, we structure the activity models according to the life cycle stages of a 
FedML project, whereas each stage represents a set of interrelated tasks and activities which serve a clear 
purpose. Figure 2 provides an overview of the different life cycle stages. The first three stages comprise 
strategic activities, starting with the project initiation (1), followed by the project validation (2) and project 
setup (3) phase. We clustered these three stages into a single activity diagram since these phases are 
interconnected and constitute the preparation for the implementation. The resulting activity diagram is 
illustrated in Figure 3. Thereafter, all development activities are grouped in the System Design and 
Development stage, which can be divided into the Global Model Design (4), Local Model Design (5), and 
Global Model Aggregation (6) stages. Stage 4 builds the technical basis for the FedML training process, 
and its corresponding diagram is depicted in Figure 4. The actual FedML training process is conducted in 
Stage 5 and 6. We clustered both stages into a single activity diagram since these two phases collectively 
constitute the FedML training process. The activity diagram is illustrated in Figure 5. Finally, the 
Deployment and Maintenance (7) stage serves and maintains the ML product and is shown in Figure 6. 
The figures display a single iteration of each stage. In practice the stages 4 to 7 are iteratively and 
continuously performed due to the iterative ML process. The following activity descriptions are structured 
according to the life cycle stages and describe the accompanying activities in relation to the activity 
diagrams. The descriptions should help to meet requirement R6 and simultaneously answer RQ1 and RQ2. 

 

Figure 2. Stages of a Federated Machine Learning Project 
 

 
2http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/ 

Global Model Design Local Model Training    Global Model Aggregation  

System Design and Development
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Stage 1: Project Initiation 

The first stage represents the initial step in starting a project and lays the foundation of the project by 
broadly defining the goal of the project and its corresponding high-level requirements. As seen in Figure 3, 
this stage contains one main activity (Initiate Project) with two sub-activities. The first sub-activity defines 
the project goals and scope. Depending on the company-specific best practices, the goal definition usually 
requires the specification of a business model, the corresponding business requirements, and the 
illustration of use case diagrams to demonstrate the business case. The second sub-activity translates the 
resulting business problem into an ML problem to define the technical descriptions and deployment 
strategy. 

Stage 2: Project Validation 

The second stage aims to investigate the feasibility of the project and includes one main activity (Check 
Project Feasibility) with two concurrent sub-activities (see Figure 3). More specifically, the result of the 
previous stage is taken as input for a simultaneous business case analysis and technical assessment of the 
project’s feasibility. These assessments determine whether the project’s goals and scope are technically 
executable, deliver value as intended, and which steps should be taken to meet them including the overall 
FedML strategy. Additionally, it is determined whether collaboration partners are needed to successfully 
implement the project. 

Stage 3: Project Setup  

The third stage intends to set up the project by arranging a potential collaboration and setting up the 
technical foundation for the implementation of the project. Hence, the activities of this stage depend on the 
decision if collaboration partners are wanted for the project. In a collaborative setup, two additional main 
activities (Establish Collaboration and Plan Collaboration) need to be performed, before the technical 
foundation can be constructed. This stage is depicted in Figure 3. 
(3.1) Establish Collaboration will create the collaboration and consists of three sub-activities. First, 
potential collaboration partners need to be identified. Then, it needs to be evaluated if the potential 
participants would be interested in joining the project. Lastly, the collaboration feasibility needs to be 
checked, to assess whether the project can be implemented jointly. This step needs to determine if all sides 
agree on the same objectives and assess on a high level if all participants could deliver the expected value, 
resources, or expertise. If the collaboration structure cannot perform as intended, all three steps need to be 
repeated until the collaboration can be established or until a termination decision is made. 

(3.2) Plan Collaboration will plan the joint project and comprises a total of five sub-activities. To begin the 
collaboration planning, the overall partnership strategy needs to be described to specify the common goal 
and underlying partnership structure. Subsequently, the collaboration management, co-creation 
management, and co-creation practices are defined. The aspects which need to be covered in this step are 
multi-faceted and comprehensive. We describe the specifics which need to be covered in the collaboration 
management, co-creation management, and co-creation practices in a separate publication (Mueller et al., 
2023). Thereafter, legal compliance needs to be checked. If the compliance check fails, a refinement of the 
collaboration planning activities is necessary, or termination decision could be made. If all activities were 
successfully executed, an agreement on the collaboration specifications emerges. 

If a collaboration is needed and comes to fruition, all collaboration channels which are needed for the 
orchestration, communication, and collaboration management are created. Lastly, the required technical 
infrastructure needs to be set up in all cases. This activity lays the technical basis for the implementation by 
creating the data processing, model training, and orchestration infrastructure. 
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Figure 3. One Iteration of the Project Initiation, Validation, and Setup Stage 

Stage 4: Global Model Design 

The fourth stage yields the data specifications and source code of the initial ML model which will be the 
technical foundation of the FedML training process. The activities comprise an ML experimentation task 
as well as data preparation specifications and can be divided into three distinct main activities. As illustrated 
in Figure 4, this stage starts with the Prepare Data activity and is followed concurrently by the Design 
Global Model and Define Data Specifications activities. 

(4.1) Prepare Data represents the data preparation step of traditional ML pipelines and consists of four 
sub-activities. It requires access to a data storage which contains a representative dataset for the targeted 
ML problem. The data is fetched from the data storage and subsequently analyzed on the underlying data 
distribution, data quality, and overall suitability for the business requirements. Thereafter, the data is 
preprocessed such that high data quality is ensured and the ML model can interpret the data’s features. 
This task involves data cleaning, data transformation, data reduction, and feature engineering. The final 
data validation activity ensures the correctness, usefulness, and sufficient quality of the data. 
(4.2) Design Global Model crafts the initial source code for the initial model which will be used in the FedML 
training process and consists of four sub-activities. An initial proposal of an ML architecture is trained on 
the data from step 4.1. The resulting ML model is evaluated on its performance based on the evaluation 
data and validated on the validation data. Based on the evaluation and validation results, it is determined 
whether the accuracy suffices for an initial distribution to the local clients for training. Since the model is 
further trained in the FedML process, this step can be seen as a further feasibility check and should validate 
the suitability of the ML model for the use case. If the criteria are not met, then the model is analyzed, and 
another design iteration is triggered. If the criteria are met, the initial ML model is stored in a model registry 
which is accessible to all participants. 
(4.3) Define Data Specifications yields the data preparation specifications which are used by every local 
data contributor (or client) as a data preparation guideline to ensure homogeneous, suitable training data 
for the FedML process. Therefore, the data cleaning, data transformation, and data reduction rules must be 
defined and documented. Additionally, the feature engineering rules are defined. The resulting specification 
document is then communicated with each client. 
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Figure 4. One Iteration of the Global Model Design Stage 

Stage 5: Local Model Training 

The fifth stage delineates the local training on the data contributor’s (clients) side. As indicated by the 
swimlanes (client 1, …, client n) in Figure 5, every data contributor performs the same activities 
simultaneously, which consists of one main activity and a total of five sub-activities. Each data contributor 
requires access to the model registry and their individual data storage. The different clients fetch the latest 
model from the model registry, and concurrently prepare the local data. To prepare the local data, it is 
needed to first fetch the data from their data storage. Thereafter, the data is preprocessed as outlined in the 
data preparation specifications (see Stage 4). The data preparation specifications ensure homogeneous 
datasets across all clients. Naturally, in settings that allow heterogeneous data, this step can be neglected. 
Once preprocessed, the data is then validated on the correctness, usefulness, and sufficient quality of the 
data. Finally, the latest ML model is trained on the prepared data, resulting in update gradients, which are 
shared with the aggregator. 

Stage 6: Global Model Aggregation 

The sixth stage details the aggregation process of the FedML training and is structured into one main 
activity with six sub-activities (see Figure 5). Once enough update gradients from the local data contributors 
are collected, the global model can be built and evaluated. The required number of update gradients 
depends heavily on the use case, business requirements, or scale of the project. The aggregator selects a set 
of the received upgrade gradients, which are used to train the model. The gradient selection process can 
either follow a pre-defined sub-sampling scheme or be neglected and simply use every received gradient. 
This is dependent on the pre-defined FedML strategy. The selected gradients are subsequently aggregated 
and fused with the latest global ML model. The updated global ML model is then stored in the model registry 
for traceability and to make the model accessible for the involved clients. Then, the model is validated. 
Based on the validation results, it is determined whether the model needs to be further trained by triggering 
a new training iteration or if it can be packaged for deployment. 
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Figure 5. Activities of the Local Model Training and Global Model Aggregation Stage 

Stage 7: Deployment and Maintenance 

The seventh stage deploys the packaged ML model into production and yields the model service. As 
illustrated in Figure 6, this stage consists of seven distinct activities. First, the latest ML model is fetched 
from the model registry and build for deployment. Then, integration testing is performed to ensure that the 
built code will work as intended. If the tests are successful, the built model will be deployed and served. 
Again, the specific methods for building and integration testing are dependent on the use case, business 
requirements, or simply on the developers' preferences. Once the model is served, it is continuously 
maintained and monitored on its performance, potential deviations from the desired behavior, and pre-
defined business key performance indicators. If the model does not perform as desired for example due to 
concept drift, covariate shift, or simply if an updated ML model version is available, the currently deployed 
model needs to be sunsetted. 

 
Figure 6. One Iteration of the Deployment and Maintenance Stage 
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Demonstration and Evaluation 

To demonstrate and evaluate our activity model, we performed two iterations of demonstrations with 
survey-based evaluations. After each demonstration, we received feedback through an expert discussion 
and surveys, which were additionally filled out by each expert. The survey evaluates if the model is deemed 
valuable, detailed enough and additionally gathers feedback on the overall usefulness, comprehensibility, 
and completeness of the activity model. The survey results are shown in Figure 7. We incorporated the 
feedback after each round of demonstration and evaluation. In total, 14 experts from eight organizations 
participated in the assessments and provided valuable recommendations. An anonymized list of 
participants including their current position, their organization, and years of experience in their current 
position is shown in Table 4. 

ID Position Organization Experience 

E1 Applied Researcher Emerging Tech Start-up > 2 years 

E2 Applied Researcher Industrial Software Enterprise > 2 years 

E3 Applied Researcher Research Center for AI Security > 1 year 

E4 Research Engineer Large Engineering Company > 5 years 

E5 ML Engineer and Senior Data Scientist Large Software Enterprise > 7 years 

E6 Senior Researcher Large Software Enterprise > 7 years 

E7 Senior Product Manager Large Software Enterprise > 6 years 

E8 Product Manager Large Software Enterprise > 10 years 

E9 Senior Consultant and Project Lead Large Software Enterprise > 6 years 

E10 Solution Advisor Large Software Enterprise > 2 years 

E11 Development Expert Large Software Enterprise > 19 years 

E12 Consultant for Emerging Tech Medium-sized Consultant Company > 2 years 

E13 Solution Architect Large Software Enterprise > 5 years 

E14 Project Manager Research Center for AI Security > 1 year 

Table 4. Overview of Evaluation Participants. 

 
In the first demonstration, we introduced the activity model to a total of 6 experts (E1-E6). The main 
focus of this iteration was to evaluate the technical completeness, comprehensibility, and level of detail. 
Against this backdrop, we invited a diverse group of experts with technical backgrounds. The group 
comprised three experts on FedML and three applied researchers with expertise in related, emerging 
technologies but without extensive knowledge on FedML. Therefore, the iteration can be considered as an 
expert evaluation (Peffers et al., 2012). All experts validated the research problem and confirmed the 
completeness, comprehensibility, and level of detail. Additionally, the expert round experienced the activity 
model as a useful and valuable resource for their activities and communications with stakeholders. We 
received two recommendations to improve the activity model. One expert (E6) mentioned that large-scale 
FedML projects include an additional gradient selection step, which sub-samples the received gradients. 
We incorporated the feedback by adding a Select Gradients activity as the first task of the Global Model 
Aggregation stage. Another expert (E2) proposed that an explanation of the different steps in the Plan 
Collaboration and Establish Collaboration phase would be helpful. We did not adapt the activity model 
since these activities are dependent on the use case and business requirements.  
Overall, the activity model has been received very positively. The participants stated that they will use the 
activity model for their future activities and discussions. More specifically, the experts remarked that the 
activity model will facilitate their communication with stakeholders since “this is very much what decision-
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makers would require from practitioners in order to understand what needs to be done […]” (E2). 
Additionally, expert E4 stated that the model “[…] helps [him] to structure a project for privacy-preserving 
FedML because [he] would know where to apply privacy-enhancing technologies” (E4). Expert E6 
validated the usefulness and wished for a similar activity model for other emerging technologies. 
Summarized, the models aid practitioners in communication with their stakeholders, provide a structure 
for their projects and thereby facilitate the development of their project. The experts expressed that the 
models are a “very good resource for FedML projects” (E3). 
In the second demonstration, we presented the refined activity model to a group of 8 potential users 
and key stakeholders (E7-E14). The demonstration was part of a project ideation process to adopt FedML 
within a large industrial lighthouse project. The main focus of this iteration round was to evaluate the 
models’ usefulness, comprehensibility, and value to potential users. The group of participants included a 
variety of potential users such as project managers, product owners, solution architects, and solution 
advisors. Each participant was involved in prior FedML use case discussions and therefore well-suited for 
this evaluation round. The group of participants reported that the activity model is intuitive to follow, helps 
to structure the overall process flow, and provides guidance for project implementation. Based on the 
feedback, we added Maintain Deployed Model and Sunset Deployed Model tasks in the Deployment and 
Maintenance stage. Besides, the activity model was considered a comprehensible, complete, and 
comprehensive artifact. The group further agreed that the model is useful and provides value in future 
activities and discussions. 

Overall, the target users from the evaluation group validated the relevancy and effectiveness of the models. 
Expert E12 specifically emphasized that “[…] the models are intuitive to follow” (E12) and aid in “[…] 
understanding the FedML process” (E12). The potential users described the models as “a very useful visual 
tool” (E11) that helps in planning FedML projects due to its “[…] detailed sequence of activities and areas 
where you can keep focus on” (E11). This makes the complex FedML process for “[…] non-technically 
proficient stakeholders easier to comprehend” (E14). One target user stated that the models “[...] help make 
better-informed decisions as a newbie to FedML” (E9). According to the evaluation group, the models 
provide transparency, and aid non-technical stakeholders to structure and gain an understanding of FedML 
projects. 

As illustrated in Figure 7, the evaluation results show that the model was overall well-received by all 14 
experts. The model is considered useful, valuable, and detailed enough. The large majority of the 
participants experienced the model as comprehensible and that it covers all important aspects. 

 
Figure 7. Consolidated Evaluation Results 

 

Discussion 
In this study, we designed three distinct activity models which represent the entire life cycle of a FedML 
project. The problem was identified and motivated through an initial focus group discussion with potential 
users from three project teams. The relevancy was additionally confirmed in the demonstrations and 
evaluations. This is also reflected in the survey results since each participant deems the activity models to 
be useful and valuable (see Figure 7). 
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Solution Requirements 

Through the initial focus group discussion, we were able to formulate a total of six requirements to the 
activity models (see Table 2). Aiming to fulfill requirement R1, we reviewed and incorporated current 
literature on ML life cycles, software development life cycles, and state of the art FedML methods. Since 
technical experts and potential users validated the completeness and usability, we consider that the activity 
model is aligned with current best practices. Therefore, we consider requirement R1 to be met. The activity 
models represent the entire life cycle of a FedML project, which was validated on completeness by experts. 
Hence, requirement R2 should also be fulfilled. Through the two rounds of demonstrations and evaluations, 
we were able to gather feedback from a large variety of different profiles and backgrounds. The participants 
ranged from FedML experts and applied researchers to product specialists, projects managers, solution 
architects, and solution advisors. As reflected in the survey results (see Figure 7), every expert from this 
diverse set of evaluation participants considers the models valuable, useful, and with a fitting level of detail. 
Therefore, we consider the activity models as generically applicable and requirement R3 as met. Through 
the second round of demonstrations, we aimed to evaluate the comprehensibility and usability of potential 
users and therefore non-technical stakeholders. As reported, the feedback was consistently positive, which 
leads us to believe, that requirement R4 is fulfilled as well. Combined with the thoroughly positive feedback 
from the technical experts in the first demonstration, we can assume that the activity models provide 
transparency and structure to the entire project life cycle (requirement R5). After incorporating the missing 
aspects suggested by the experts, we consider that the activity models cover the most important aspects. 
Consequently, the models can be used as guidance for the implementation process and ease the planning 
process for product owner and project manager, which finally achieves requirement R6. Summarized, we 
can assume that all objectives have been met to a sufficient extent and that the activity models are useful as 
well as deliver value to potential users. 

Generalizability 

The models are currently tailored to server-client architectures with a central orchestrating server and 
multiple local clients since this is the most widely used architectural pattern (Lo, Lu, Wang et al., 2022),. 
However, more architectural patterns such as completely decentralized processes were suggested (Lo, Lu, 
Zhu, et al., 2022), which may not be covered by the proposed activity models of stages 5 and 6. Since the 
architecture choice only influences activities regarding the local model training (stage 5) and global model 
aggregation (stage 6), the models of stages 1-4 and stage 7 remain the same and can be used in each FedML 
project. Additionally, the activities of local model training (see Figure 5) are imminent and only the 
outgoing communication of stage 5 might change depending on the architectural pattern. For partially 
connected or fully decentralized architectures, clients might communicate amongst themselves, and the 
aggregation scheme might differ (Lo, Lu, Zhu, et al., 2022). Therefore, the choice of a different architectural 
pattern might require revisiting the outgoing communication of stage 5 and the activities of stage 6, whereas 
the remaining activity models can be reused as proposed in this study. 

Throughout this study, we focused on designing generically usable activity models that are not specific to 
use cases or domains. Hence, we only included activities that are required in every FedML project. 
Moreover, we designed the models such that the need for optional activities is queried (see Figure 3). 
Thereby, we aimed for generalizable models. To evaluate the generalizability of the models to multiple 
areas, domains, and target users, we presented the models to a diverse group of potential users. As 
illustrated in Table 4, the evaluation group consisted of 14 participants, from eight organizations of different 
sizes and eight different job profiles. Since the large majority of the participants confirmed the 
comprehensibility and usefulness (see Figure 7), we consider the model to be generically applicable to a 
large variety of areas. Even though the models were constructed to be generically applicable, some domain-
dependent and process-specific activities might be missing. Therefore, the direct application of the models 
in varying application domains would further validate the generalizability of the models. We encourage 
practitioners to test our models in their use cases to further develop the artifacts. 

Limitations 

It should be noted that the activity models were designed to aid in the communication with non-technical 
stakeholders, provide transparency, and guidance for the implementation process. Consequently, the 
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models are not intended to be followed down to the smallest detail since the domain, business requirements, 
or technology specifics might alter certain activities. In this context, we also only included the happy path 
without exit points throughout the life cycle. The models should be seen as a reference and basis for 
implementation. Lastly, experiences gathered from practical applications might help to further enhance the 
models. Even though we gathered insights and feedback for the artifacts from experts with a large variety 
of different roles and experiences, we conceivably only depict a subset of the potential user demographic. 
Therefore, we recommend testing the activity models in more diverse settings to receive broader feedback 
to further improve and develop the models. 

One of the main motivational drivers to use FedML is the provided degree of privacy through its model-to-
data approach. However, the send gradients could be reverse engineered which might reveal sensitive 
information (Jere et al., 2020). Further privacy-enhancing technologies could be implemented on top of 
FedML to mitigate privacy leakages. Our models do not include activities regarding the implementation of 
privacy-enhancing techniques since these are case-specific and reduce the generalizability of the proposed 
models. However, as expert E4 stated, the proposed models still aid in the implementation of further 
privacy-enhancing technologies. Through the detailed step-by-step description of the activity models, 
expert E4 recognized entry points where privacy-enhancing technologies need to be implemented. 

Conclusion 
In this study, we introduced three distinct activity models which together depict the sequence of activities 
that are needed to implement a FedML project. The activity models extend current literature on life cycle 
models for centralized ML projects and complement FedML reference architectures through activity 
sequences throughout the whole FedML project life cycle. Thereby, the models provide transparency and 
structure the entire life cycle of a FedML project to facilitate the comprehensibility of its complex process. 
The evaluation results show that potential users deem the models to be useful, deliver value and comprise 
the most relevant aspects with an appropriate level of detail. We showed that the activity models can help 
practitioners and non-technical stakeholders to gain an understanding of the structure and especially ease 
the project planning phase by providing guidance over the project life cycle. However, the models are 
currently limited to server-client architectures with a central orchestrating server and multiple local clients. 
Other architectural designs may not be covered by our models. Overall, the activity models aid the 
successful implementation of FedML projects by easing the planning phase for product owners and project 
managers. Additional to the sequence of activities, current literature on FedML seems to be lacking clarity 
over the interrelations between the stages, role distribution, and their dependencies throughout the project. 
We plan to discuss these aspects through a process model in a separate publication. 
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Guiding Questions for Federated Machine Learning Collaboration Agreements
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Disclaimer: This systemized set of guiding ques3ons only includes aspects that should be specifically 
considered within Federated Machine Learning collabora3ons. 

 
Collaboration Management 
 

Collaboration Structure 
o Does the collaboration consist of one dominant partner or multiple equal partners? 
o How is the collaboration established with the participants? 
o What are the negotiation mechanisms for building the network of participants? 
o How is decision-making handled and coordinated within the collaboration? 
o Is the collaboration compliant with antitrust regulations? 

 
Participant Management 

o How are project participants e.g., data owners identified, evaluated, and selected? 
o What capabilities are required from the different participants? 
o How are participants involved and retained in the project? 
o Are participants obligated to continue participating in throughout the entire project? 
o How transparent are the participants inside and outside the project? 

 
Infrastructure 

o When, with whom, and in what context is communication taking place within the project? 
o Which communication channel is used for the project? 

 
Co-Creation Management 
 

Distribution of Ownership, Responsibility, and Accountability 
o How is the ownership, responsibilities and accountability distributed? 
o How is the ownership of the FedML model handled? 
o What rights and responsibilities do the project participants, e.g., data owners, have? 
o Who takes accountability for the behavior of the FedML model? 

 
Distribution of Revenue and Costs 

o What are the different value streams? 
o How are revenue and costs distributed? 
o Which incentive is created for the project participants? 
o Who takes care of the variable and fixed costs? 
o How are collaboration costs, e.g., for IT infrastructure on the data owner's side, handled? 

 
Intellectual Property Management 

o How is the intellectual property of each project participant’s input managed? 
o How is intellectual property of the data handled? 
o How is the intellectual property of the FedML model architecture and design handled? 
o How is contributed intellectual property managed in case a participant leaves the 

collaboration? 
 
Co-Creation Practices 
 

Profit Calculation 
o How is the profit calculation for the project performed? 
o How does a potentially dynamic participant network affect the profit calculation? 

 
 
Risks of Infeasibility 

o How is the feasibility of solving the project with FedML determined? 
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o How is an initial viability assessment of the collaborative FedML project conducted? 
o How is the technical assessment conducted? 
o How is the business case analysis conducted? 

 
Alignment in Quality 

o How is the product quality defined? 
o How can the product quality be ensured? 
o How can the quality of each contribution be tracked within the collaboration? 

 
Implementation of the FedML Activities 

o How are the implementation tasks distributed and managed? 
o Who sets up the technical process at each local contributor? 
o Is the FedML pipeline automated or manually executed by each local contributor? 

 
FedML Product 
 

Compliance Data Protections 
o Which regulations need to be considered to develop a compliant FedML model (e.g., GDPR, 

HIPAA)? 
o How is data privacy for sensitive data assured throughout the FedML process and after 

aggregating the local contributions? 
 
Versioning 

o How are different model versions and libraries managed throughout the entire life cycle? 
o How can model versioning be controlled, executed, and ensured for each local contributor? 

 
Recall and Retirement 

o How is a model recall enforced for local contributors and end customers? 
o How can a model or resulting service be retired? 
o How can the collaboration be dissolved and how is the generated output affected? 
o How can contribution of a participant be retracted in case the participant decides to leave the 

collaboration? 
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