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Abstract— Manually specifying features that capture the
diversity in traffic environments is impractical. Consequently,
learning-based agents cannot realize their full potential as
neural motion planners for autonomous vehicles. Instead, this
work proposes to learn which features are task-relevant. Given
its immediate relevance to motion planning, our proposed archi-
tecture encodes the probabilistic occupancy map as a proxy for
obtaining pre-trained state representations of the environment.
By leveraging a map-aware traffic graph formulation, our
agent-centric encoder generalizes to arbitrary road networks
and traffic situations. We show that our approach significantly
improves the downstream performance of a reinforcement
learning agent operating in urban traffic environments.

I. INTRODUCTION
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Human drivers inherently possess an ability to react to new
situations. This is in stark contrast to the narrow operational
domains of current reinforcement learning (RL) approaches
for self-driving, due to the prevalence of ad hoc feature vec-
tors associated with poor generalization [1], [2]. In particular,
two domain-specific characteristics of autonomous driving
render the systematic design of relevant and comprehensive
state representations difficult: First, the variable number and
lack of a canonical ordering of other traffic participants is
incompatible with fixed-sized feature vectors. Second, the
diversity in road networks in terms of geospatial topology
complicates specifying a universal map representation [3].

By adopting graph neural networks (GNNs) as RL poli-
cies, recent works have outperformed traditional approaches
relying on fixed-sized feature vectors. However, these were
confined to homogeneous road network geometries such as
highways [4], [5] or roundabouts [6], simplifying the learning
problem. Recently, GNN architectures that unify traffic and
infrastructure have been proposed for the related task of vehi-
cle trajectory prediction [7]–[12]. However, directly adopting
heterogeneous GNNs as policy networks is challenging, as
current state-of-the-art RL algorithms cannot be reliably
trained in complex environments [13]–[15].

To mitigate the challenging nature of the learning task,
we instead formulate a representation objective and design a
state representation model detached from the RL training
loop. As opposed to letting the agent directly infer con-
trol signals from a multi-modal graph representation, we
use spatio-temporal occupancy map prediction, as depicted
in Fig. 1, as a learning proxy for environment understanding.
As illustrated in Fig. 2, we specifically develop a GNN-
based encoder-decoder model whose intermediate latent
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Fig. 1: Our spatio-temporal representation model learns a contin-
uous parameterization of the probabilistic occupancy map ô(s, t).
The red and blue coloring scheme signifies high occupancy proba-
bility in the short and long-term future, respectively. The pre-trained
intermediate states zego are extracted as inputs for an RL agent
controlling the longitudinal acceleration of the ego vehicle.

states serve as low-dimensional, pre-trained state represen-
tations. Notably, the flexible nature of our encoder allows
arbitrary road network topologies and traffic environments
to be captured by the learned representations. To alleviate
the lossy nature of compressive graph encoding, we propose
a novel occupancy prediction framework that constrains the
decoding space in accordance with a priori known physical
priors for vehicle motion. We implement our approach us-
ing CommonRoad-Geometric (crgeo) [16], a PyTorch-based
framework offering a standardized graph extraction pipeline
for traffic scenarios. Our source code is available at https:
//github.com/CommonRoad/crgeo-learning.

II. RELATED WORK

We first introduce the learning frameworks used by our
approach alongside related applications to motion planning.

A. State representation learning (SRL)

By learning encoded representations of the surroundings,
SRL methods enhance the performance of RL agents oper-
ating in high-dimensional, complex environments [17]–[19].
An agent-centric approach is generally preferred, so that
the learned representations are aligned with the planning
context [20]. Further desired requirements for representations
are they enable predicting the future world state [21]–[25] (as
opposed to merely reconstructing the present) and that they
are low-dimensional [26], [27]. To mitigate the trade-off be-
tween dimensionality reduction and expressiveness, SRL can
be supported by incorporating knowledge about the world
as representation priors [18], [28], [29]. Imposing structural
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Fig. 2: Overview of our proposed architecture: The fixed-sized latent states zego, which are encoded by an ego-conditioned, heterogeneous
graph neural network, are extracted as inputs for an RL-based motion planner. Our novel decoder architecture, which infers the probabilistic
occupancy map from reconstructed virtual vehicles, is used for pre-training the encoder and can be disabled during inference.

constraints on the representations, e.g. by enforcing cor-
respondence to physically plausible world states, improves
their generalization and downstream effectiveness [30], [31].

B. Graph neural networks (GNNs)
As the graph-compatible counterpart of traditional en-

coder architectures, GNNs present a framework for ap-
plying SRL to traffic environments. Within the context of
the widely adopted message passing paradigm [32], GNNs
compute neighborhood-aware hidden representations via the
permutation-invariant aggregation of edge messages, i.e.,
neural encodings transmitted from a node to its (outgoing)
neighbors. This facilitates the propagation of task-relevant
information flow across the graph, which, depending on the
learning problem, can be summarized on the graph level via
readout operations [33]. As necessitated by the multi-modal
traffic graph formulation assumed in this work, GNNs are
also extendable to heterogeneous graph inputs [34], [35].

C. Applications to motion planning
Autoencoder-based representation models [36] have been

used in a multitude of existing works for learning latent states
based on, e.g., rasterized bird’s eye view images [37]–[41] or
on-board sensor data [42]. However, they do not leverage the
structural biases [43] induced by the road network topology.
In line with our approach, [44] uses a GNN-based encoder
to learn structurally-aware state representations, but in the
context of RL-based robotic manipulators.

Road occupancy as a standalone prediction task is widely
covered in existing works [45]–[49]. With the objective of
encoding traffic scenes similar to ours (albeit not in the con-
text of motion planning), encoder architectures for learning
representations of occupancy maps have been proposed [50]–
[52]. Using graphical or otherwise spatially-aware encoders
similar to ours, recent works such as [53]–[57] predict
occupancy grids [58] as an intermediate learning target for
guiding the training of neural motion planners. However,
these approaches do not provide global, low-dimensional
representations appropriate for decoupled RL agents. In
contrast to our work, they also suffer from the lossy nature
of grid-wise occupancy discretization [59].

III. METHODOLOGY

Next, we outline the details of our approach.

A. Definitions

1) Heterogeneous traffic graph: As originally proposed
in [60], we model road networks as atomic, interconnected
road segments (i.e., lanelets). We formalize the dynamic traf-
fic environment at the current time step by the heterogeneous
graph tuple G = (V, E , XV , XE), where V = (VV,VL) in-
dexes the vehicle (V) and lanelet (L) nodes, E = (EV2L, EL2L)
defines the corresponding vehicle-to-lanelet (V2L) and
lanelet-to-lanelet (L2L) edges, and XV = (XV,XL) and
XE = (XV2L,XL2L) contain node and edge-level graph fea-
tures, respectively. Here, the time-dependent V2L edges
relate to the physical presence of a vehicle on a given
lanelet, whereas the static L2L edges are implied by the
road network topology. Our approach incorporates the default
graph features provided by crgeo [16], e.g. velocity (V) and
vehicle-lanelet heading difference (V2L).

2) Planning context: The state of the ego vehicle is
chosen as the tuple (pego, vego), consisting of its x-y center
position and longitudinal speed. We further denote its length
as λego. Next, we let the reference path Γego : [0, ζego] → R2

of length ζego be parameterized by arclength s, and impose
the natural constraint that Γego(0) = pego. As illustrated
in Fig. 3, we assume that Γego follows the centerline of
a connected, traffic-compliant sequence of lanelets. The
corresponding sequence of lanelet node indices in VL is
denoted by Rego. Further, we let sstartj and sendj denote the
start and endpoint coordinates of the jth element in Rego, as
defined within the arclength-parameterized coordinate frame
of the centerlines. Also, we let dj denote lanelet length,
and let dpriorj be the aggregated length of the path segments
preceding j. Finally, we let the spatial context matrix Cego

contain the row vectors cj = [sstartj , sendj , dj , d
prior
j ].

B. Occupancy as representation objective

As occupancy explicitly expresses drivable and non-
drivable space, it can be considered as the foundational
environment characteristic in a motion planning context [61].
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Fig. 3: Ego reference path Γego composed of two successive lanelets
given by Rego = [1, 2].

We consider occupancy solely in the longitudinal direction,
as this is more relevant than the lateral direction and simpli-
fies our modelling assumptions. For a given spatio-temporal
coordinate vector [s, t] ∈ R2, future path occupancy on Γego

can be formalized as o : [0, ζego]× R → {0, 1}. As shown
in Fig. 4, o(s, t) is derived from a path projection of the
vehicles that overlap with the road surface at time t.

C. Encoder architecture

Our encoding pipeline is formalized as

zego = ENCODER(G, Rego,Cego), (1)

with the low-dimensional representations zego ∈ RZ being
the final output of the encoder. The GNN-based encoder
is designed to facilitate the probabilistic propagation of
traffic participants across the given lanelet network, which
is used as a neural infrastructure for social message passing.
Next, we outline the encoding steps. In general, we use
Θ□ to denote trainable, nonlinear functions, Σ to denote a
permutation-invariant aggregation operation, and assume the
activation function ρ to be applied after each step.

1) Vehicle-to-lanelet: Unlike the vehicle-to-vehicle
paradigm proposed in e.g. [5], we capture V2V interaction
effects in a map-agnostic fashion by first embedding the
vehicles onto the lanelet graph. Letting vehicle and lanelet
nodes be indexed by i and j, respectively, we compute the
initial hidden lanelet states h

(0)
j ∈ RH as

h
(0)
j = ΘL(xj) +

∑
(i,j)∈EV2L

ΘV2L([xi,xj ,xi→j ]).

where the node and edge features (xi, xj) and xi→j denote
the corresponding row vectors in XV and XE , respectively.

2) Lanelet-to-lanelet: Next, a total of L successive L2L
message passing layers are used to facilitate the propagation
of information flow across the lanelet network. With the
superscript l denoting the layer index, we recursively update
the hidden lanelet states according to the update equation

h
(l+1)
j = h

(l)
j +

∑
(j′,j)∈EL2L

ΘL2L([h
(l)

j′
,h

(l)
j ,xj′→j ]),

3) Ego-attentional readout operation: Then, an atten-
tional readout layer [62] is used to compute graph-level
hidden states hego ∈ RH . To obtain ego-centered representa-
tions, the aggregation of h(L)

j is weighted by attention scores

Ego vehicle Γego

Other traffic participants

Fig. 4: The ground-truth path occupancy o is derived from project-
ing the vehicles in VV onto Γego. The occupied and non-occupied
path segments are colored red and green, respectively.

αego based on the ego vehicle’s spatial context Cego, i.e.,

αego = softmax (ΘC(Cego)) ,

hego =
∑

j∈Rego

αego,jh
(L)
j .

4) Downscaling layer: Finally, a downscaling MLP layer
is applied to obtain the final latent states zego = Θz(hego),
intended to be used as state observations for the RL agent.

D. Decoder architecture

Our proposed decoder maps zego to a continuous param-
eterization of the probabilistic occupancy map according to

ô(s, t) = DECODER(zego, s, t),

o(s, t) ∼ Bernoulli(ô(s, t)).
(2)

However, as an abstraction of something tangible (i.e., the
presence of vehicles), predicting o(s, t) in an unconstrained
fashion using, e.g., a regular MLP network, might lead
to overparameterized predictions that are inconsistent with
the data [63]. The large hypothesis space is especially
problematic given the low-dimensional nature of zego and
the resulting information bottleneck. Instead, our novel de-
coding architecture prevents nonsensical predictions of the
occupancy map by inferring it from a decoded set of time-
evolving probability distributions referred to as virtual vehi-
cles. This enforces temporal and spatial consistency on the
output space and streamlines the learning task. By exploiting
the physical priors of our application domain, our method
further guarantees that the decoded occupancy maps conform
to plausible limits for e.g. vehicle length and velocity.

1) Virtual vehicles: We parameterize the probabilistic oc-
cupancy map ô(s, t) via recurrently decoded virtual vehicles.
As outlined in Section III-C, our fixed-sized intermediate
representations zego are computed by aggregating the ele-
ments in G. Due to the resulting node-level data association
loss, it is not viable to reconstruct vehicle instances in a way
comparable to related trajectory prediction works [7]–[12].
Without assuming an association between decoded and actual
vehicles, our virtual vehicle formulation instead enables a
differentiable and permutation-invariant parameterization of
the joint probabilistic occupancy map ô(s, t). This translates
the learning problem to the graph-level (i.e., global) domain,
yielding a feasible training target.



2) Formal definition: Formally, we let the state of a
decoded virtual vehicle q of length λq ∈ R be defined
by the tuple (Iq, pq), where Iq : R → {0, 1} is an exis-
tence indicator at time t, and pq : R → R models its time-
dependent longitudinal center position on Γego. Further, we
let oq : [0, ζego]× R → {0, 1} return its path occupancy

oq(s, t) =

{
1 if Iq(t) = 1 ∧ |s− pq(t)| < λq

2 ,

0 otherwise.
(3)

This expression differs from the vehicle occupancy o consid-
ered in Fig. 4, as virtual vehicles serve as non-deterministic,
atomic proxies for modelling future occupancy flow.

3) Stochastic formulation: We let fp : R × R → [0, 1]
denote the time-varying probability density function (PDF)
for pq . As motivated in [64], the Fokker-Planck [65] equation
can be used for modelling microscopic traffic flow as a
stochastic process. In this framework, pq is described by a
partial differential equation influenced by stochastic forces,
addressing the accumulation of uncertainty over time with
regards to the vehicle position. As the model training requires
a differentiable inference procedure, we use a simplified
behavior model with a tractable solution. Specifically, we
assume linear drift and diffusion terms given by η̂p,v and
η̂p,d, as well as a positional offset η̂p,0 corresponding to the
initial vehicle position. Using ”;” to separate the distribu-
tions’ input space from their given parameterizations, this
results in the time-evolving Gaussian solution [65]

fp(s; t, η̂p)=
1√

4πη̂p,dt
exp

(
− (s− η̂p,0 − η̂p,vt)

2

4η̂p,dt

)
,

Fp(s; t, η̂p)=−1

2
erf

(
η̂p,vt+ η̂p,0 − s

2
√
η̂p,dt

)
,

(4)

with Fp(s; t, η̂p) =
∫ s

−∞ fp(s
′; t, η̂

(q)
p ) ds′ denoting the cu-

mulative distribution function. Further, we let fI : R → [0, 1]
denote the predicted existence probability for q at a given t.
Delayed appearances or disappearances of vehicles on Γego

due to, e.g., lane changes cannot be captured by a constant
existence probability fI(t) = η̂I,0. By also introducing the
temporal offset parameter η̂I,τ , we instead use the time-
dependent parameterization given by

ml(t, η̂I,τ ) = σ(τR(t− η̂I,τ (1+τC) + τC)),

mr(t, η̂I,τ ) = σ(τR(1− t+ η̂I,τ (1+τC) + τC)),

m(t, η̂I,τ ) = ml(t, η̂I,τ ) ·mr(t, η̂I,τ ),

fI(t; η̂I,0, η̂I,τ ) = η̂I,0 ·m(t, η̂I,τ ),

(5)

with σ denoting the sigmoid function, and τC and τR being
fixed model hyperparameters. As visualized in Fig. 5, the
temporal masking effect produced by the left and right
shifting mechanism m provides the modelling flexibility
for fI to predict vehicles leaving or entering Γego at
future time instances. Given the vector parameterization
η̂(q)=[η̂

(q)
λ , η̂

(q)
I,0, η̂

(q)
I,τ , η̂

(q)
p,0 , η̂

(q)
p,d, η̂

(q)
p,v], where η̂

(q)
λ is the de-

coded length, and η̂
(q)
I and η̂

(q)
p contain the respective coef-

ficients for fI and fp, we model q stochastically as

P (Iq(t) = 1) = fI(t; η̂
(q)
I ),

P (pq(t) = s) = fp(s; t, η̂
(q)
p ).

(6)

Next, we derive the unimodal occupancy map ôq(s, t),
referred to as the probabilistic occupancy footprint of a
single virtual vehicle q. We assume that Iq(t) and pq(t) are
independent random variables and use the shorthand notation
s± = s± η̂

(q)
λ / 2 to denote the occupancy bounds for a given

s. As is illustrated in Fig. 6, applying (3) and (6) results in

ôq(s, t) = P (oq(s, t) = 1)

= P (Iq(t) = 1)P (|s− pq(t)| < η̂
(q)
λ / 2)

= fI(t; η̂
(q)
I )

∫ s+

s−

fp(s
′; t, η̂(q)p ) ds′,

= fI(t; η̂
(q)
I )(Fp(s+; t, η̂

(q)
p )−Fp(s−; t, η̂

(q)
p )).

(7)
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Fig. 5: Existence probability fI(t) for two virtual vehicles with
identical baseline existence probability η̂I,0 = 0.3 and different
temporal offset parameters (η̂
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Fig. 6: The predicted occupancy footprint ôq(s, t) of a virtual
vehicle q at a future time t is derived via a symmetrically bounded
integral of length η̂

(q)
λ centered at s. Here, the two vehicles have

identical positional PDFs fp, but different lengths η̂(q)
λ . As expected,

a larger η̂(q)
λ induces a larger predicted occupancy footprint.

E. Joint occupancy probability
We next derive an expression for the predicted joint oc-

cupancy ô(s, t). To facilitate tractable inference, we assume
the virtual vehicles to be independent. For a set of virtual
vehicles Q = {q1, ..., qN}, the probability of at least one
vehicle occupying Γego at the location [s, t] is given by

ô(s, t) = 1−
∏
q∈Q

(1− ôq(s, t)) , (8)

as exemplified in Fig. 7. Given a sufficiently large N , neither
the independence assumption nor the simplified linear motion
model assumed in (4) pose significant restrictions on the
modeling capacity of our decoder, as (8) allows complex
behavior patterns and the corresponding occupancy maps to
be modeled via superimposed virtual vehicles.
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Fig. 7: Spatial cross-section of the probabilistic occupancy map
ô(s, t) induced by two virtual vehicles at a given time t. In the top
right subplot, more virtual vehicles are added for comparison.

1) Recurrent decoding: We employ a recurrent neural
network ΘD and a downscaling layer Θq to decode the
virtual vehicle parameterizations {η̂(1), ..., η̂(N)} from zego.
We transform the raw outputs of Θq via rescaled sigmoid
functions so as to conform to ηmin ≤ η̂(q)≤ ηmax. The
parameter bounds ηmin and ηmax correspond to reasonable
priors for plausible vehicle behavior in traffic and are as-
sumed to be fixed hyperparameters.

F. Spatio-temporal occupancy loss

A naive approach towards defining the loss function is
to consider the binary cross-entropy over a uniform grid
discretization of the spatio-temporal occupancy domain [66].
Instead, we compute the loss segment-wise in a boundary-
aware fashion by leveraging the continuous output domain
of our occupancy decoder. As shown in Fig. 8, we let O(t)

p

and O(t)
n contain the occupied and non-occupied connected

segments of Γego at time t. The respective path segments
are indexed as Ω□ ⊆ [0, ζego] according to their topological
order. Minimizing the binary cross-entropy, we then define
our decoding loss as

ℓp(t) =−
∑

Ω∈O(t)
p

1

|Ω|

∫
s∈Ω

log (ô(s, t)) ds,

ℓn(t) =−
∑

Ω∈O(t)
n

1

|Ω|

∫
s∈Ω

log (1− ô(s, t)) ds,

ℓ =

∫ T

t=0

δtℓ
(
ℓp(t) + ℓn(t)

)
dt, (9)

where T ∈ R is the considered time horizon and δℓ ∈ [0, 1]
is a discount factor for reflecting the diminishing significance
of future occupancy. With |Ω| denoting the arclength of the
respective path segment, the normalization factor 1/|Ω| is
introduced to avoid the dependence on segment length and
to counteract the class imbalance caused by road surfaces
being predominantly unoccupied. As the spatial integrals are
otherwise intractable, we approximate them numerically with
resolution Rℓ as illustrated in Fig. 8a. Similarly, we discretize
the temporal integral over TD time steps.

IV. NUMERICAL EXPERIMENTS

Next, we describe the collection of our simulated traffic
dataset and introduce the numerical RL experiments that

On Op
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=
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(a) t = 0.0 s.

On Op
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s

(b) t = 0.1 s.

Fig. 8: Loss evaluation for two subsequent time instances. The
segment-wise integrals over the path regions in O(t)

p and O(t)
n are

approximated numerically based on Rℓ evenly spaced samples.

evaluate the effectiveness of our learned state representations.

A. Dataset

Using the OpenStreetMap [67] API, our dataset is com-
prised of a diverse set of urban locations sampled from within
the Munich metropolitan region. The collected road networks
are then populated with vehicles using the traffic simulator
SUMO [68]. In total, the dataset contains 1000 simulated
scenarios, jointly amounting to 28 hours of traffic.

B. Reinforcement learning agent

For our experiments, we extract zego as inputs for a
PPO-based [69] RL agent together with the current ego
velocity vego. At each time step, the encoder is condi-
tioned on the navigation context generated by a high-level
route planner. The resulting reference routes span across
multiple lanelets and include heterogeneous map structures
such as intersections. We intentionally limit the agent to
longitudinal acceleration control along the reference path to
focus on the effect of the learned representations. Given the
weighting coefficients w ∈ R4, the reward r is defined as
r = w · [rpath, rcollision, rspeed, rô], where rpath is a dense
path progression reward, rcollision is a sparse penalty im-
posed on collisions, rspeed is a linear over-speeding penalty,
and rô penalizes expected occupancy conflict from

rô =

∫ T

t=0

δtr

∫ s̃(t)+λego/2

s̃(t)−λego/2

ô(s, t) dsdt, (10)

with s̃(t) = vegot being a constant-velocity extrapolation of
the ego position and δr ∈ [0, 1] being a discount factor.

C. Baseline approaches

We compare our PPO agent’s performance against multi-
ple baselines trained with identical reward configurations:

1) V2V: A vehicle-to-vehicle (i.e., not map-aware) GNN
policy network as proposed in [5].

2) V2L: A direct adoption of our ENCODER as policy
network (i.e., without pre-training zego).

3) Naive: The pre-trained representations resulting from
using a feed-forward network MLP(256, 128) for de-
coding ô(s, t) from [zego, s, t] without architectural
constraints. This naively assumes occupancy to be an
independent property for each spatio-temporal coordi-
nate vector [s, t].



D. Implementation and training

The end-to-end training of the representation model was
conducted on an NVIDIA A100 Tensor Core GPU for 48
hours using the Adam optimizer [70] with the hyperpa-
rameters listed in Table I. Subsets of the collected dataset
were used for training (90%) and testing (10%). To aid
generalization, random planning contexts for the encoder
were resampled for each mini-batch during training. The
PPO agents were implemented using the Stable-Baselines
3 framework [71] and trained for 106 steps on simulated
replays of the scenarios, with start and goal positions for the
ego vehicle being randomly sampled for each episode.

TABLE I: Selected hyperparameters for our experiments. We refer
to our online available implementation for further details.

Encoding layers (ΘL,ΘV2L , ΘL2L , ΘC , Θz) Linear
Encoding dimensions (H , Z) 256, 32
Number of L2L layers (L) 4
Aggregation function (Σ) max
Activation function (ρ) tanh
Reference path length (ζego) 45m

Decoding layers (ΘD , Θq) LSTM(256), Linear
Number of virtual vehicles (N ) 12
Temporal masking constants (τR, τC ) 6.0, 0.7
Decoding horizon (T, TD) 2.4 s, 60
Spatial integration method Trapezoidal(Rℓ = 40)
Temporal occupancy discount factor (δℓ) 0.99

V. RESULTS

As is evident from the results reported in Table II, our
proposed model achieves better decoding performance than
the unconstrained baseline. This indicates that our approach
mitigates the effects of the information bottleneck caused
by the encoding pipeline. Specifically, it is likely that the
simpler hypothesis space streamlines the training process.
Further, a qualitative assessment of the decoded probability
maps shown in Fig. 9 suggests that our model is able
to accurately predict complex environments to a degree
where the intermediate encodings zego will enable intelligent
planning decisions for the agent.

TABLE II: Empirical evaluation results on the test dataset.

(a) Occupancy decoding loss.

model ℓ

Ours 1.045
Naive 1.210

(b) Downstream RL performance.

agent goal reach (%)

Ours 72.9
V2V 39.9
V2L 49.0

Naive 54.0

The effectiveness of our representations is confirmed by
the results of the conducted RL experiments. The improved
success rate of the representation-enhanced agent indicates
that the pre-trained representations simplify its motion plan-
ning task. Effectively, using them as state observations frees
the agent from the responsibility of modeling its own sur-
roundings, allowing it to concentrate its learning capacity
on the lower-level control aspects of motion planning. As
traffic modeling is a complex endeavour that is more easily
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ô(
s,
t)

t=0.0 s

t=0.4 s

t=0.8 s

t=1.2 s

t=1.6 s

t=2.0 s

(a) Vehicle from another lane intersecting Γego. The occupancy probability
map has a temporary peak located at the intersection point.
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(b) The rapid intensity decay of the leftmost probability mode suggests an
accurate representation of B’s likely departure from the ego route.

Fig. 9: Decoded occupancy maps ô(s, t) visualized together with
color encodings of the corresponding latent representations zego,
which are extracted as state observations for the RL agent.

tackled in a supervised setting, it is thus unsurprising that the
simplification of the RL task improves the final performance.

VI. CONCLUSION

We present a novel encoder-decoder architecture for learn-
ing latent state representations that enhance the performance
of RL-based motion planning in heterogeneous driving envi-
ronments. Our approach recurrently decodes and aggregates
virtual vehicles to predict the spatio-temporal occupancy
map. This ensures that the representation space is constrained
to physically plausible predictions, which further enhances
the model’s interpretability and reduces its black-box nature.
By using a heterogeneous GNN encoder to compress the
traffic surroundings, our approach offers a significant benefit
compared to previous works; as opposed to feature vectors
narrowly tailored to specific traffic settings, our approach
naturally extends to arbitrary road networks.
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