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Abstract: An increasing number of special-use and high-rise buildings have presented challenges
for efficient evacuations, particularly in fire emergencies. At the same time, however, the use of
autonomous vehicles within indoor environments has received only limited attention for emergency
scenarios. To address these issues, we developed a method that classifies emergency symbols
and determines their location on emergency floor plans. The method incorporates color filtering,
clustering and object detection techniques to extract walls, which were used in combination to
generate clean, digitized plans. By integrating the geometric and semantic data digitized with our
method, existing building information modeling (BIM) based evacuation tools can be enhanced,
improving their capabilities for path planning and decision making. We collected a dataset of
403 German emergency floor plans and created a synthetic dataset comprising 5000 plans. Both
datasets were used to train two distinct faster region-based convolutional neural networks (Faster
R-CNNs). The models were evaluated and compared using 83 floor plan images. The results show
that the synthetic model outperformed the standard model for rare symbols, correctly identifying
symbol classes that were not detected by the standard model. The presented framework offers a
valuable tool for digitizing emergency floor plans and enhancing digital evacuation applications.

Keywords: emergency floor plans; object detection; machine learning; faster R-CNN; synthetic data

1. Introduction

Increasing urbanization and urban densification, as well as the resulting trend of
building upwards, has led to a substantial increase in special-use and high-rise buildings [1].
These structures present greater complexity, posing challenges for quick and well-organized
evacuations, particularly in fire emergencies. At the same time, advancements in technology
enable the use of autonomous vehicles, such as unmanned aerial vehicles (UAVs) and
unmanned ground vehicles (UGVs) within indoor environments. As stated in [2], they
have been given too little attention for emergency scenarios so far.

These evacuation issues have been recognized and the associated challenges have
prompted research efforts to identify optimal evacuation strategies [1,3,4]. As [4] demon-
strated in their study, a comprehensive understanding of the building’s structure, combined
with situational awareness, can significantly enhance the efficiency and time effectiveness
of evacuations. To this end, path-planning tools are currently being developed to provide
support in evacuation scenarios and reduce the emergency response time, in turn increasing
the efficiency of first responders. The strategies developed so far use geometric data of
buildings combined with real-time information on hazards [1,2,5,6]. However, none of
these models utilize emergency floor plans, which provide publicly accessible information
on a building’s structure, as well as essential firefighting procedures. Escape routes, rele-
vant firefighting equipment and first-aid resources are visualized in these plans, supporting
evacuees, emergency responders, and firefighters alike.
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To close this gap, we have developed and present a method that classifies emergency
symbols and determines their location on emergency floor plans. For the category-specific
object detection (COD) task, a Faster R-CNN was employed. The extraction of walls
from the floor plans is facilitated by color filtering and clustering techniques, resulting in
clean plan images. While our Faster R-CNN adheres to the model architecture originally
proposed by [7], this study is characterized by the creation of a comprehensive dataset,
the development of a workflow for generating synthetic emergency floor plans, and the
implementation of a pipeline for generating clean plan images. By incorporating geometric
and semantic information from emergency floor plans, existing BIM based evacuation
applications, such as path-planning tools, can be enhanced, thereby further improving
their capabilities. As highlighted by [8] in their review, there is still a lack of semantic
data through object detection in BIM. The method can be applied in emergency situations,
where the scan of an emergency floor plan, followed by automatic evaluation, enables
UAVs and UGVs to find escape routes. The benefits of the presented method extend
beyond emergencies by providing maintenance personnel and fire protection authorities
comprehensive overviews of available resources and evacuation pathways, enhancing their
planning and decision-making process.

The extraction of architectural features has been extensively researched [9–12]. Hence,
for training a model detecting walls and other architectural structures in 2D plans, large-
scale open-source data sets are already available [13]. In contrast, the detection of emergency
symbols on plans supported by object detection has not yet been investigated, and no
open-source data set with emergency floor plans is available. A comprehensive database
was thus set up for training, validating, and testing the neural networks. A total of
403 emergency floor plans, mainly photographs, were collected in public buildings located
in Germany. For the COD task, the emergency symbols were labeled using bounding box
rectangles. Considering the limited availability of collected plans, an additional dataset
was synthetically created. By manipulating 200 of the gathered plans, a new dataset
comprising around 5000 plans was generated. Subsequently, this dataset was employed to
train a distinct Faster R-CNN model, the so-called synthetic model. Notably, our findings
demonstrate that the synthetic model outperforms the standard model trained on the
original dataset in the detection of certain emergency symbols. Furthermore, it is worth
highlighting the comparatively lower effort required to generate synthetic data, relative to
the labor-intensive process of collecting and labeling additional emergency floor plans.

In the following section, prior research concerning the digitization of 2D floor plans is
presented. In Section 3, we introduce our methodology, as well as the method’s framework
providing a comprehensive insight into the employed neural networks (NNs). In Section 4,
we present the generated dataset and detail the creation of the synthetic data. Subsequently,
the results of our two approaches, namely the model trained with the collected emergency
floor plans, as well as the model trained with the synthetic dataset, are discussed in
Section 4.4. The paper concludes with a summary of the findings. Moreover, we give an
outlook on potential application domains, along with suggestions for enhancements and
future prospects.

2. Related Work

Digital tools such as computer-aided design (CAD) have emerged relatively recently,
and many existing building plans, including emergency floor plans, are available only in
a non-digitized format. Consequently, several studies have focused on the digitization
of floor plans to enable the extraction of information for further processing and analysis.
As early as 2009, ref. [14] conducted a survey on the generation of 3D building models
from 2D architectural drawings. Ref. [10] introduced a research work addressing the same
objective. Their initial step involves preprocessing the 2D architectural plan to remove
noise and unnecessary information by binarizing the image. It is then separated into two
components: a text image containing textual information and a geometry image containing
geometrical elements. The text image is analyzed using optical character recognition (OCR)
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techniques; the geometry image is processed to find geometry primitives such as segments
and arcs using the Hough transform method.

In 2022, ref. [15] introduced a method improving instance segmentation of architectural
floor plans using machine learning. They also provide a good review of feature extraction
of 2D floor plans. State-of-the-art methods include the use of NNs for segmentation,
such as walls, and object detection. Many researchers have addressed the development,
performance, and use cases of segmentation models [16–18]. Ref. [19] has particularly
studied the UNet model and shown that it performs well in image processing. Object
detection, and COD in particular, have become an integral part of image processing. There
are several extensive reviews on these models’ roles, use cases, limitations and future
perspectives [20,21].

In their study, the authors of ref. [9] employ a combination of three methods, namely
wall segmentation, object detection, and OCR, to extract both geometric and semantic
information from 2D floor plans. For wall segmentation, fully convolutional networks
(FCNs) are utilized. Additionally, a patch-based approach for wall detection is implemented.
Regarding object detection, the Faster R-CNN framework is employed. A subset of the
R-FP dataset is annotated with six different object classes. The model is trained on only
144 images for 150 epochs. Similarly, ref. [22] employed convolutional neural networks
(CNN) for floor plan digitization. Their approach involved the utilization of a UNet model
for wall segmentation and a Faster R-CNN for detecting architectural elements such as
doors and windows. Their dataset consists of 700 floor plans. The authors employed
an augmentation process to increase their dataset, resulting in a total of 2000 floor plans.
However, despite the augmentation, the images in the dataset still exhibited significant
similarity. In a related study, the authors of ref. [12] conducted floor plan digitization using
DeepLab3+ for wall segmentation and YOLOv4 for object detection, along with OCR. Their
dataset was substantially larger, consisting of 7000 floor plans, with 5600 used for training
purposes.

The presented approaches are closely related to the pipeline presented in this paper.
However, their approaches were never conducted on emergency floor plans. The detection
task is made for standard symbols in architectural floor plans like walls, doors and windows.
The total number of object classes in these projects is small. In this study, a holistic approach
was taken to capture each relevant floor plan symbol for evacuation scenarios, adding up
to a total of 56 object classes. The inclusion of this large number of symbol classes, some of
which exhibit significant visual similarity, combined with the challenging data situation
necessitated the development of a synthetic data set.

An investigation into the performance of the Cascade Mask R-CNN network for object
detection in floor plan images was conducted by [23]. They proposed the incorporation
of deformable convolution and introduced a synthetic floor plan dataset (referred to as
SFPI) for the purpose of training and evaluation. For the generation of synthetic data,
the authors created a dataset consisting of 10,000 images. This dataset encompassed ten
distinct floor plan layouts, with each layout incorporating a straightforward insertion of
furniture objects, divided into 16 distinct furniture classes. In comparison, the original
dataset comprised 700 samples for training and 150 samples for testing. On the other hand,
the synthetic dataset consisted of 7000 samples for training and 1500 samples each for
validation and testing, facilitating robust evaluation of the proposed method’s performance.
However, only 16 object classes of widely differing symbols were used. Since the extraction
of architectural elements, namely walls and staircases, was also goal of this study, the
repetitive use of only 10 floor plans left doubts about the effective training of neural
networks using this method.

In a recent study, ref. [24] address the challenge of acquiring large and accurately
labeled datasets for training neural networks. The framework employs a data augmentation
technique called random cropping to create a complete and automatically labeled dataset
that can be directly used as input for deep learning models. The study also investigates
the significance of context in image recognition, particularly the influence of the relative
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resolution between symbols and the background image. The authors demonstrate their
algorithm’s effectiveness by focusing on the detection of a valve symbol as a proof-of-
concept. Their concept has already been adapted by [25] and successfully applied for the
digitization of bridge construction plans.

In contrast to previous approaches, our project addresses the specific challenge of
digitizing emergency floor plans, which are often only available in 2D format. While
previous studies have focused on the extraction of information from architectural floor
plans, our approach aims to capture a larger number of emergency relevant floor plan
symbols, incorporating a comprehensive set of 56 object classes. For this purpose, we
incorporate a synthetic data set inspired by the work of [24], encompassing ca. 5000 images.
This large and diverse dataset allows for more effective training of our neural network.

3. Methodology

The use of NNs in the field of computer vision is well recognized; numerous studies
have been previously published, demonstrating their robustness and reliability. The aim of
this study is to investigate the feasibility of using NNs to digitize emergency floor plans. A
sample image of an emergency floor plan is presented in Figure 1.

Figure 1. Sample emergency floor plan image. Note: All non-relevant sections of the floor plan, such
as the legend, have been manually cropped.

To successfully digitize emergency floor plans, all emergency symbols, staircases and
building walls must be correctly extracted, with the latter’s only use being to recreate a
digital version of the original plan, either as a vector file or a high-resolution image. In this
study, the output is a high-resolution PNG image.

The general pipeline developed for this study is depicted in Figure 2. Here, two
types of models were implemented to extract the emergency symbols and walls contained
within images of emergency floor plans. In this study, these models are referred to as the
category-specific object detection (COD) model and the color filter (CF) model. The models
are discussed in Sections 3.1 and 3.2, respectively.
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Figure 2. General pipeline used within this study. The original image is fed into the category-specific
object detection (COD) and CF. The outputs of both models are then mapped together to create a
clear floor plan, i.e., the clean plan discussed in Section 3.

For a given emergency floor plan, the location and type of all emergency symbols are
extracted by the COD model, while the walls are extracted by the CF model. The output of
the CF model is used to recreate a clean plan. This clean plan is then overlaid with images
of symbols in the locations detected by the COD model.

In this paper, the term “clean plan” refers to a digitized, high resolution version of an
emergency floor plan. In such plans, all information, with the exception of the emergency
symbols, as well as walls and staircases, is omitted. A comparison between a typical
emergency floor plan and a clean plan is presented in Figure 3.

(a) Input image

(b) Clean plan

Figure 3. The input and output images of the pipeline presented in this study. (a) The input of
the pipeline: a typical emergency floor plan. (b) The output of the pipeline: the original image’s
corresponding clean plan. Note: The input image has been manually cropped to remove all non-
relevant information.
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3.1. Object Detection Model

In this study, the COD model is used to identify the location of all emergency symbols
within an emergency floor plan. The expected output of this model is a set of bounding
box and class pairs. In the context of this study, a class refers to the name of an emergency
symbol. Further discussion on symbol classes is provided in Section 4.1.1.

The output bounding boxes are rectangular and are defined by the coordinates of
two vertices, representing the lower-left and upper-right corners of the rectangle. The
coordinates can alternatively be interpreted as the lower and upper bounds of the rectangle
in each direction. This bounding box’s definition is shown in Equation (1), where the
subscripts min and max represent the lower and upper bounds, respectively.

bounding box = [xmin, ymin, xmax, ymax] (1)

The neural network architecture employed in this study is the Faster R-CNN, a com-
bination of a Regional Proposal Network (RPN) and a ResNet-50-FPN. More information
on Faster R-CNNs can be found in [7]. The loss functions utilized by both networks are
summarized in Table 1.

Emergency floor plans tend to become crowded with symbols, especially in larger
buildings where the information is crucial for efficient evacuation processes. Accurate
detection and localization of small symbols holds significant importance in such cases.
In this regard, the Faster R-CNN outperforms alternative models, such as you-only-look-
once (YOLO) and single-stage detection (SSD), as was shown in [26–28], deeming it an
appropriate choice for the COD model.

Table 1. Loss functions used while training the Faster R-CNN model, where RPN is the Regional
Proposal Network.

Network Parameter Loss Function

RPN Class Cross Entropy (binary)
RPN Bounding Box Smoothed L1
ResNet-50-FPN Class Cross Entropy (normal)
ResNet-50-FPN Bounding Box Smoothed L1

A Stochastic Gradient Descent (with momentum) optimizer was used to train this
model. In addition to an L2 penalty of 5 × 10−4, a learning rate (α) and momentum factor
(β) equating to 1 × 10−3 and 90% were used as the hyperparameters. The formulation of
this optimizer can be found in [29].

The input to this model is an RGB image with the shape
[width, height, channels] = [416, 416, 3], where channels denotes to the number of channels
(3: red, green and blue). It should be noted that the input dimensions were chosen as such
due to the available computational resources, and can be thought of as an arbitrary choice.

3.2. Color Filter Model

In this study, the CF model is used to extract all walls from the emergency floor plan.
Here, a non-trainable color filter was employed for this task. The step-by-step procedure is
presented in Figure 4, and the values used to create the masks in HSV space are presented
in Table 2. The masks were subsequently merged together using the binary OR operation.

The output of this model is a PNG image of the same shape as the input image—an
RGB image in this case—containing all solid, black lines. All non-black pixels are replaced
by white pixels, i.e., pixels with the following values: [red, green, blue] = [255, 255, 255].
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Figure 4. Description of the CF model. The input to this model is an RGB image. The output is an
RGB image of all solid, black lines in the input image.

Mask Upper Limit Lower Limit
First Red [0, 50, 50] [20, 255, 255]
Second Red [160, 50, 50] [180, 255, 255]
Green [25, 50, 50] [100, 255, 255]
Blue [90, 50, 50] [170, 255, 255]

Table 2. Lower and upper color values used to create the color masks in HSV space. All masks were
merged together using a binary OR operation.

Figure 4. Description of the CF model. The input to this model is an RGB image. The output is an
RGB image of all solid, black lines in the input image.

Table 2. Lower and upper color limits used to create the color masks in HSV space. All masks were
merged together using the binary OR operation.

Mask Upper Limit Lower Limit

First Red [0, 50, 50] [20, 255, 255]
Second Red [160, 50, 50] [180, 255, 255]
Green [25, 50, 50] [100, 255, 255]
Blue [90, 50, 50] [170, 255, 255]

4. Experiments and Results
4.1. Datasets

The detection of emergency symbols on floor plans, facilitated by object detection
techniques, has not been investigated before. There are therefore no open-source emergency
floor plan datasets for object detection models. In order to address this gap and provide
valuable resources for future investigations, two distinct datasets were created for the
purpose of this study.

The first dataset consists of 403 German emergency floor plans, mainly photographs.
The focus on German plans was due to the significant heterogeneity in styles and formats
of emergency floor plans worldwide. This dataset was used for training and validation of
the standard model, as well as for testing both the standard model and the synthetic data
model. The second dataset was utilized for training the synthetic data model. A total of
approximately 200 emergency floor plans were employed to generate the synthetic dataset,
yielding approximately 5000 training images. The process with which the synthetic dataset
was created is presented in Section 4.2.

4.1.1. Relevant Symbols

A comprehensive list of all emergency symbols, found in the dataset mentioned in
the preceding paragraph, was compiled. This list can be found in Appendix A. A total of
45 relevant symbols with different functions were identified. Twelve of them exist in two
different graphical styles. This duality can be attributed to the presence of two standards
governing emergency symbols and floor plans in Germany: the former German standard
DIN 4844-2 and the currently valid DIN EN ISO 7010, which has been in effect throughout
Europe since January 2013 [30]. Despite the ten-year duration of the DIN EN ISO 7010
standard, considerable heterogeneity persists among European plans, and a significant
proportion of old-style plans are still prevalent in Germany. A notable example of this
heterogeneity is the circular symbol denoting to the current location of an individual, for
which no universally accepted color convention has been established.
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4.1.2. Labeling

To train the neural networks and analyze their performance, it is essential to label
the entire data set for providing ground truth. This process ensures that the data are
properly categorized and serves as a benchmark for evaluating the performance of the
networks. The open-source tool LabelImg was used to label the plans for the COD. It
allows easy management of many classes and annotations using bounding boxes, which is
fully sufficient for emergency symbols, as the majority of symbols in the data set have a
square shape. Other symbols like circles and equilateral triangles can easily be enclosed
in a rectangle and their position can be determined exactly. The output is provided as
XML files in PASCAL VOC format, containing all relevant information and allows simple
further processing.

In an iterative procedure, the number of training and validation plans was succes-
sively increased. Approximately 20% of the plans underwent manual labeling, which was
necessary to establish an initial training state of the model. The model was then used
to pre-label plans that had not yet been annotated, thereby significantly expediting the
labeling process. This approach proved to be particularly advantageous when the model
had already achieved some level of proficiency through training. However, it should be
noted that, in addition to incorporating the labels of undetected symbols, all pre-labels
were carefully examined for incorrectly identified symbols and imprecise bounding boxes.
During the initial stages, this verification process increased the effort needed; however, the
overall effort of this semi-automatic labeling process was significantly lower, particularly
during later iterations.

4.2. Preprocessing—COD Model

As mentioned in Section 3.1, the input shape for the COD model is [416, 416, 3].
Consequently, each image in the training dataset is resized to match the input shape before
training. This change in shape, however, leads to a modified image with distorted symbols.
Such an effect is amplified for plans that deviate from a square aspect ratio, i.e., an aspect
ratio of unity. In this study, the aspect ratio of an image here is defined as the ratio of its
dimensions: width

height .
To overcome this issue while preserving the diversity in symbol sizes, zero-padding

was applied to all training images. The padded images have a shape of [d, d, 3], where
d is the largest dimension found among all training images. Figure 5 presents a sample
emergency floor plan before and after applying zero-padding.

(a) (b)
Figure 5. A comparison between the emergency floor plan image before applying zero-
padding (a) and after applying it (b).



Sensors 2023, 23, 8344 9 of 21

In addition to zero-padding, various data augmentation operations were applied onto
the training dataset. These operations are detailed in Table 3, where p is the probability of
applying each transformation to an individual plan in the dataset.

Table 3. Transformation operations applied to the training dataset as part of the data augmentation
step, along with their corresponding probabilities (in percentage). The transformations are presented
in the order they were applied within the code.

Transformation Probability (p)

Horizontal Flip 50
Random Rotation (90°) 50
Motion Blur 20
Median Blur 10
Blur 10

Each transformation was applied sequentially, i.e., the probability of applying all
transformations to a single plan is ∏n

i=1 pi, where n is the number of transformations. It
should be noted that the list of transformations, described in Table 3, is applied to the
unaltered dataset at the start of each epoch, i.e., the dataset is reset to the pre-transformation
state before reapplying all five operations.

Synthetic Data

An initial assessment of the training dataset (discussed in Section 4.1) highlights
a notable disparity in the number of symbols for each symbol type, as can be seen in
Figure 6a. This disparity arises from the fact that certain symbols are not commonly found
in all buildings; rather, they are exclusive to specific types of buildings. For instance, escape
hatch symbols (symbol number: 16_4844-2) only occur in two plans in the dataset. Fur-
thermore, this disparity is more prominent for specialized symbols, such as the emergency
shower (symbol number: 15), which are only found in rooms designated for the handling
of caustics.

To minimize the imbalance depicted in Figure 6a, a synthetic dataset was created
from the original dataset. The general idea, adapted from [24], is presented in Figure 7.
Each emergency floor plan in the training dataset was initially cut into 25 equally sized
sub-images, hereafter referred to as cutouts.

The cutouts were created in a two-step process. First, the original image—with a shape
of [w, h, 3], where w and h are the image’s width and height, respectively—was divided
into 16 cutouts with a shape = [w

4 , h
4 , 3]. This process was then repeated on the same

image to create nine additional cutouts, albeit on a sub-image defined by the bounding
box [xmin, ymin, xmax, ymax] = [w

8 , h
8 , 7w

8 , 7h
8 ], where w and h represent the image’s width

and height, respectively. The original image’s corresponding labels were then mapped
onto the new cutouts, resulting in 25 pairs of XML and JPG files, for each emergency floor
plan image.

Synthetic symbols, i.e., high-resolution images of symbols, were then overlaid onto
all cutouts at random locations. This process was performed in a recursive manner, where
a location was assigned at random, and was only used if the symbol’s bounding box did
not intersect with another symbol’s bounding box. This recursive algorithm was limited
to 100 iterations, after which, if an intersection-free location was not found, the symbol
was skipped.

To avoid overcrowding a cutout, the number of synthetic symbols per cutout was
limited to 12 and was calculated using Equation (2), where Nsynthetic and Noriginal are the
number of synthetic and original symbols in a cutout, respectively.

Nsynthetic =

{
12 − Noriginal if Noriginal < 12
0 otherwise

(2)
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All synthetic symbols were initially resized and blurred, before being overlaid onto the
cutouts. To preserve the original diversity in symbol sizes, the dimensions of all synthetic
symbols were determined by taking the mean of the width and height of all the original
symbols within each cutout. Furthermore, the symbols were blurred using a Gaussian blur,
with a kernel size of [5, 5]. The blur variance for each symbol was estimated by applying a
Laplacian operation to each cutout.

(a)

(b)

Figure 6. Distribution of symbols across both the original dataset (a) and the synthetic dataset (b). The
x-axis represents all the symbol classes considered within this study, while the y-axis presents the
number of symbols per symbol class. Note: All symbol classes can be found in Appendix A. Note: To
avoid clutter, all versions of the same symbol have been merged into one symbol class.

(a) (b) (c)
Figure 7. The synthetic dataset workflow. (a) The original emergency floor plan image. (b) The first
set of cutouts: 16 images in total. (c) The second set of cutouts: nine images in total.
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Half the training dataset (200 emergency plans) was used to create the synthetic
dataset, resulting in 5000 pairs of XML files and JPG images. A fifth of those JPG/XML
pairs were used as the validation dataset, while the rest was used as the training dataset.

Figure 6b shows the distribution of symbols across all symbol types. It is evident
that the imbalance, observed earlier in the distribution of symbols in the original dataset
(Figure 6a), has been minimized. For the remainder of this paper, the COD model, which
was trained using the synthetic dataset, will be referred to as the synthetic model, while the
model trained using the original dataset will be referred to as the standard model.

4.3. Preprocessing—CF Model

Within this study, the objective of the CF model is to extract all walls from the emer-
gency floor plan dataset. These walls are then overlaid with the predictions of the COD
model to generate clean plans.

Generally, all walls in an emergency floor plan are solid, black lines of varying thick-
nesses. Therefore, a k-means clustering algorithm (k = 4) was used as a pre-filter to remove
all non-relevant data from the image: all non-black pixels in the image; the first three
clusters. The output of this algorithm was then fed into the CF model.

4.4. Inference—COD Model

The trained object detection models, the standard model and the synthetic model were
tested using 83 emergency floor plan images: those not used in during the training of the
standard model. The images were initially padded in a similar manner to the one described
in Section 4.2. Aside from resizing the padded, inference images to the expected input
shape of the COD models, [width, height, channels] = [416, 416, 3], no preprocessing steps
were performed on the images.

For both models, detections with a confidence score lower than 70% were excluded.
Moreover, if the intersection-over-union value of two predicted bounding boxes was
higher than 90%, the detection with the lower confidence score was filtered out. The
complete inference pipeline, including both the preprocessing of the inference image and
the postprocessing of all detections, took an average time of 0.075 s, corresponding to an
average FPS of 13.328. The machine’s specifications are presented in Table 4.

Table 4. Specifications of the machine used during inference of both the synthetic model and the
standard model.

Component Details

GPU Nvidia Quadro RTX 8000
CPU AMD Ryzen Threadripper 3990X 64-Core Processor
RAM 251.4 GiB

The detections (also called predictions) of both models were compared to their corre-
sponding benchmark labels, i.e., their manually labeled counterparts. Within the remainder
of this section, these benchmark labels will be referred to as the ground truth. Figure 8
presents the detections of both the standard and synthetic models, on a sample emergency
floor plan (Figure 8a,b, respectively), as well as the corresponding ground truth labels
(Figure 8c).

Generally, the number of correct detections, generated by the synthetic model, sur-
passes the ones generated by the standard model. This is due to the substantially larger
number of symbols per class present in the synthetic dataset.

Moreover, a detailed analysis of the direction arrow symbols (symbols 2 and 2∗)
reveals the standard model’s susceptibility to variations in background conditions. While
the standard model is proficient at detecting these symbols, it struggles to detect them in
areas where the background color is similar to the symbol’s color. This limitation can be
seen in Figure 8a, where only 4 out of the 17 direction arrows located in front of a green
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background have been detected, in contrast to the synthetic model, where 16 direction
arrows were detected (Figure 8b).

An exception to the synthetic model’s higher performance is the stairs symbol (symbol
22), where its relatively simple geometry has led to overfitting. Since the synthetic model
is trained on cutouts with overlaid images of symbols, it exhibits difficulties in accurately
detecting stairs with varying geometry and background color. The symbol images used to
create the synthetic dataset can be found in Appendix A (refer to Section 4.2). This issue
has additionally resulted in several false detections throughout the inference dataset. For
instance, the model incorrectly identifies a navigation symbol as a staircase.

Figure 9 visualizes the number of correct and incorrect detections, as well as the
number of undetected symbols, for both the synthetic and standard models. A clear
distinction can be seen when examining both models’ performance for common and rare
symbols, defined as symbols that occur more than 300 times and less than 50 times in the
inference dataset, respectively.

For common symbols, the performance of both models is comparable, with the only
difference being the synthetic model’s higher number of total detections relative to the
standard model. However, a clear difference in performance can be seen for the rare
symbols. For instance, ∼50% of all symbols of the classes 18 and 25 were detected by the
synthetic model. Both symbols were not detected by the standard model.

To further assess the performance of both models, the class-averaged intersection-over-
union (IoU) of both models is presented in Figure 10. The performance of both models
is generally similar, with IoU values ranging from ∼50% to ∼95%. The lowest of those
values corresponds to the stairs symbol’s (symbol 22) detections of the synthetic model,
highlighting the overfitting issue discussed at the start of this section. For the standard
model, the symbol class with the lowest IoU is symbol 11. It should be noted that IoU
values equal to 0 are a result of the definition used in this study, where each undetected
symbol in a plan is given IoU value of 0.

(a) (b) (c)
Figure 8. Visualization of the detections of both the standard model (a) and the synthetic model (b) on
a sample emergency floor plan. Both detections are compared to the ground truth (c). The detections
are presented as pairs of a blue, rectangular box bounding the location predicted by the model, and a
class label (blue font). For interpretation of the class labels, refer to Appendix A.

4.5. Inference—CF Model

A sample output of the CF model is presented in Figure 11, where, given an image of
an emergency floor plan as input, the model outputs an image comprising the walls found
in the input image, i.e., the solid, black lines. It can be seen that the model was not able to
extract all walls in the input image, failing to correctly capture the walls in the middle of
the top edge of the image.

This inconsistency is likely a resultant of the way the dataset was gathered; since all
images in the dataset are photographs of emergency floor plans, the lighting notably varies
from one plan to another. Furthermore, the model’s output is extremely sensitive to its
hyperparameters, such as the number of clusters used in the preprocessing step, or the
binary thresholding value.
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(a)

(b)

Figure 9. Visualization of the the number of undetected symbols (solid black bar), the number of
incorrect detections (dark shaded gray bar) and the number of correct detections (light shaded gray),
presented for both the standard model (a) and the synthetic model (b). Notes: Only classes that occur
at least once throughout the inference dataset are presented. To avoid clutter, all versions of the same
symbol have been merged into one. The y-axis in both subfigures is a logarithmic scale.

Despite these drawbacks, the model is quite simple, comprising a K-clustering algo-
rithm and a non-trainable color filter. While a UNet may be a more appropriate choice
for this task, it requires a labeled dataset to train. Since, to the authors’ best knowledge,
there are no open-source datasets for emergency floor plans, the CF model presented in
this study was therefore deemed a more appropriate choice. Additionally, the utilization
of UNets for the purpose of floor plan segmentation is extensively documented in the
literature, as mentioned in Section 1.

4.6. Clean Plan

A representative output of the presented pipeline is showcased in Figure 12, displaying
a refined emergency floor plan that exclusively incorporates the emergency symbols,
staircases and walls from the original plan. This clean plan was generated by combining
the outputs of both the COD and the CF models.

4.7. Limitations

A common limitation observed while analyzing the detections of both COD models,
is their inability to reliably detect symbols with similar geometries. An example is shown
in Figure 13a, where the arrows contained within symbol 6 resemble symbol 2, and are
therefore detected as such by both the synthetic and standard models. For such symbols,
a larger dataset will not improve the model’s detections, and additional post-processing
techniques may be required.
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(a)

(b)

Figure 10. Class-averaged intersection-over-union values, calculated from the detections of the
standard model (a) and the synthetic model (b). An IoU equal to 0 correspond to classes with zero
detections. Notes: Only classes that occur at least once throughout the inference dataset are presented.
To avoid clutter, all versions of the same symbol have been merged into one.

Another issue is the true location problem (Figure 13b). In certain plans, particularly
crowded plans, the true location of the symbol is indicated by a solid, small circle. The
symbol is then placed elsewhere and connected to this circle via a solid line, hereby called
the connecting line.

While both COD models are able to detect the true location circles and their corre-
sponding symbols, the connecting line is not detected and, hence, the symbols cannot be
mapped back into their original location. The connecting lines generally vary in thickness,
shape and color, and hence can be difficult to accurately detect.

Such heterogeneity is also present in the symbol denoting one’s current location, which
is marked on every plan. Typically, it is a circular symbol of a consistent color. However,
there are no prescribed guidelines for its style; in 403 plans, multiple versions of this symbol
were found, differing in shape and color. This inconsistency poses as a challenge in finding
a general method to reliably detect it.

Finally, it is worthwhile noting that all the emergency floor plan images used within
this study have been manually cropped, removing any additional sections (with the ex-
ception of the actual plan) such as the legend. However, these additional sections can
include further valuable information. For instance, they may provide details regarding the
building’s location in the frequently displayed site plan or convey information about the
drawing scale.
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(a)

(b)

Figure 11. Visualization of the input and output of the CF model, where the input, an emergency
floor plan image, is presented in subfigure (a), and the output, an image comprising the walls found
in the input image, is presented in subfigure (b). Both the input and output images are RGB images
of the same shape: [input width, input height, 3].

(a) (b)

Figure 12. A comparison between an example input to the pipeline presented in this study: a cropped
emergency floor plan image (a), and the corresponding output of the pipeline: a clean plan, i.e., a
emergency floor plan image that includes only the original emergency symbols, staircases and walls
(b). All symbols were detected using the COD model (the synthetic model, in this case). The walls
were extracted using the CF model.
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(a) (b)
Figure 13. Visualization of the limitation of the presented category-specific object detection (COD)
models. (a) Incorrect detection of symbols with similar geometries. (b) The “true location” problem,
where a symbol’s location in the plan is different from its actual location.

5. Concluding Remarks

In this study, a framework was created to detect emergency symbols and extract all
walls from emergency floor plans. Two models, the COD model—a Faster R-CNN neural
network—and the CF model—a color filter with k-means clustering as a pre-filter—were
used as part of this framework. The results of both models were than mapped onto one
another to create a clean plan: a high-resolution, digitized version of an emergency floor
plan, which includes only the emergency symbols and the architectural elements of a plan.

Since, to the authors’ best knowledge, no open-source emergency floor plan datasets
exist, a new dataset was collected, consisting of 403 German emergency floor plans. These
plans were labeled using a combination of manual labeling and the semi-automatic labeling
pipeline described in Section 4.1.2. Furthermore, a larger, synthetic dataset was created
using the workflow described in Section 4.2.

Both datasets were used to train two versions of the COD model, namely the standard
and synthetic models. These models were tested using 83 emergency floor plan images,
and their predictions were compared to a reference benchmark. The two models exhibit
comparable performance for common symbols, i.e., symbol classes that occur more than
300 times within the inference dataset. For rarer symbol classes, the synthetic model was
more reliable, correctly identifying half the number of two rare symbol classes, symbols 18
and 25. Both symbol classes were not detected by the standard model.

The synthetic model’s ability to detect both symbols suggests that this pipeline can be
used on other rare symbols. The steps detailed in Section 4.2 can therefore be used to train
for additional symbols, instead of collecting additional emergency floor plans containing
such symbols. The relatively lower effort is the main advantage of this idea, since, in
addition to the variability in the shape of emergency symbols, no open-source dataset exists
for emergency floor plans.

The limitations associated with the presented framework have been identified, namely
the incorrect identification of similar symbols, the “true location” issue, the inconsistency in
certain symbols’ design, and manual cropping. All limitations were discussed in Section 4.7.
Of those limitations, the authors believe that the “true location” problem, i.e., mapping the
COD model’s prediction to the symbol’s actual location, is the most crucial. A semantic
segmentation model could aid in detecting the “connecting lines”; however, the variability
in the lines’ color and thickness could pose as a potential challenge.
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Appendix A

Table A1. List of symbols used in the project.

Label (Ger) Label (Eng) Numeration Symbols

Standort Location 0

Standort Location 0_4844-2

Feuerlöscher Fire extinguisher 1

Feuerlöscher Fire extinguisher 1_4844-2

Richtungsangabe Direction 2

Richtungsangabe Direction 2_4844-2

Notausgang Emergency exit 3

Druckknopfmelder Push button alarm 4

Druckknopfmelder Push button alarm 4_4844-2

Erste Hilfe First aid 5

Sammelstelle Assembly location 6
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Table A1. Cont.

Label (Ger) Label (Eng) Numeration Symbols

Sammelstelle Assembly location 6_4844-2

Notruftelefon Telephone 7

Wandhydrant Wall hydrant 8_4844-2

Mittel und Geräte
zur Brandbekämpfung Fire blanket 9

Mittel und Geräte
zur Brandbekämpfung Fire blanket 9_4844-2

Fahrbarer Feuerlöscher Mobile fire extinguisher 10

Symbolposition Symbol location 11

Symbolposition Symbol location 11_1

Augenspueleinrichtung Eyewash device 12

Automatisierter externer
Defibrillator (AED) Defibrillator 13

Notdusche Emergency shower 15

Notausstieg Escape hatch 16_4844-2

Notausstieg mit Fluchtleiter Escape hatch with
emergency ladder 17

Rettungsausstieg Rescue exit / mooring 18

Notausgang für
nicht-gehfähige oder
gehbeeinträchtigte Personen

Barrier-free emergency exit 19

Vorläufige Evakuierungsstelle Temporary evacuation point
for impaired persons 20

Feuerleiter Fire ladder 21

Feuerleiter Fire ladder 21_4844-2

Treppe Staircase 22
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Table A1. Cont.

Label (Ger) Label (Eng) Numeration Symbols

Krankentrage Stretcher 23

Arzt Doctor 24

Arzt Doctor 24_4844-2

Auslösung RWA SHEV triggering 25

Warnung vor elektrischer
Spannung Dangerous electrical voltage 26

Brandmeldetelefon Emergency phone 28

Brandmeldetelefon Emergency phone 28_4844-2

Brandschutztuer Fire safety door 29

Notausgangsvorrichtung, die
nach Zerschlagen einer Scheibe
zu erreichen ist

Emergency exit device,
which can be reached after
breaking a pane

30

Fest eingebaute
Feuerlöschmittel-Batterie

Fixed fire extinguishing
battery 31

Tragbare
Schaumlösch-Einheit

Portable foam
extinguishing unit 32

Wassernebelrohr Water fog pipe 33

Fest eingebaute
Feuerlösch-Einrichtung Fixed fire extinguishing unit 34

Fest eingebaute
Feuerlösch-Flasche

Fixed fire extinguishing
bottle 35

Auslösestation fuer
Raumschutz

Sounding station
for room protection 36

Feuerlöschmonitor Fire extinguishing monitor 37

Warnung vor
feuergefährlichen Stoffen Fire hazard warning 39

Nothammer Emergency hammer 40

Medizinischer Notfallkoffer Emergency medical kit 41

Wiederbelebungsgerät Resuscitator 42
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Table A1. Cont.

Label (Ger) Label (Eng) Numeration Symbols

Warnung vor
brandfördernden Stoffen

Warning against
flammable substances 43

Warnung vor Gasflaschen Warning against
gas cylinders 44

Fluchtretter Escape rescue device 45

Richtungsangabe Direction 46_4844-2
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