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Abstract—This work presents the initial assessment of the
performance and power needs of two commercially available
Systems-on-a-Chip (SoC) featuring both Central Processing Units
(CPU) and Graphical Processing Units (GPU): the NVIDIA
Jetson Nano Developer Kit [1] and the NVIDIA Jetson AGX
Orin Developer Kit [2]. The objective of this evaluation is to
offer an early estimation of the GPUs’ performance and technical
viability for deploying on-board machine learning tasks in an
on-board processing subsystem. This evaluation establishes a
baseline for future optimization of on-board processing within
resource-limited environments, specifically nanosatellite systems.
Monitoring processes are configured to obtain a continuous
observation of parameters such as execution and training time,
CPU and GPU usages, throughput, performance, components
power consumption, temperatures and efficiency. Benchmarking
different conditions can provide results useful to determine the
requirements, criteria and trade-offs to be considered when
implementing such devices. Preliminary findings confirm the
feasibility of using the NVIDIA Jetson family of devices for space
applications involving demanding data processing or Artificial
Intelligence (AI) and Machine Learning (ML) models. Additional
emphasis has been put in tailoring the Operating System (OS);
by eliminating unnecessary processes irrelevant to the desired
pipeline or the tuning of resources through the different power
modes is possible to alleviate the requirements on the power and
thermal subsystems. Finally, an interest in training those AI/ML
models in space is taken: the study case of this work, a Water
Electrolysis Propulsion (WEP) controller, requires the ability to
retrain the neural network in order to autonomously operate
the spacecraft. Considering different configurations of the SoCs’
resources has lead to the conclusion that training is also viable.

I. INTRODUCTION

In recent years, the improvements in Machine Learning
(ML) algorithms plus the advances in computing power have
promoted the adoption of Artificial Intelligence (AI) applica-
tions in various industries with the trend promising to keep the
rise in activity also in the near future [3], [4]. Additionally,
an increase in commercialization and decrease in the price
of Commercial Off-The-Shelf (COTS) hardware used to run
these implementations have been observed.

In the space sector, AI has become of interest as it is
possible to bring autonomy to the spacecraft and minimize
the required communications to ground. Thus, components
capable of running AI/ML models have to be installed on-
board spacecraft in order to take advantage of their full
potential. For example, solutions for detection of wildfires
already consider and implement devices from the NVIDIA
Jetson family on-board of micro satellites [5], [6].

This trend has led to the necessity of performance analyses
where both the benchmark and the conditions in which it is
executed imitate the space environment. A way to perform the
analysis is to use the On-Board Processing Benchmarks (OBP-
Mark) and On-Board Processing Benchmarks for Machine
Learning (OBPMark-ML) [7], suites of standardized tests de-
veloped by the European Space Agency (ESA) to characterize
the performance of the systems in data and image processing
as well as AI/ML applications, respectively. OBPMark pro-
vides algorithms as sequential, parallel (OpenMP), and CUDA
implementations, which allows to compare the traditional SoC
with only an ARM processor [8] –an architecture highly used
in embedded applications in space and other industries– to the
new SoCs that include a GPU as seen in Table I.

TABLE I
OBPMARK-ML OBJECT DETECTION BENCHMARK

Parameter Device on Jetson AGX Orin
Arm Cortex-A78 CPU 2048-core Ampere GPU

Total Time 3min 10 s 50 s
Inference Time 124 s 18.7 s

Peak Power 19.8W 16.7W
Total Energy 3.03 kJ 0.97 kJ

Comparison showing the performance advantage of using a GPU over
a CPU for a space application: object detection using a convolutional
neural network (CNN) infering a total of 1000 satellital images.

However, many other design choices still free for the user
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to control, such as the device’s physical environment, the OS,
and the monitoring process. Furthermore, as the development
of the desired solution advances, it is also necessary to
benchmark it in a reproducible manner to predict its execution
conditions once in space. Therefore, establishing a methodol-
ogy to follow is needed as much as the tests to execute.

In this work, a prototype controller (based on the reinforce-
ment learning algorithm DQN) for the control of a Water
Electrolysis Propulsion (WEP) system developed by Dengler
et al. [9] used to study the feasibility of in-space autonomous
decision-making within an optimized Concept of Operations
(CONOPS) is deployed and characterized on the COTS GPUs.

II. METHODOLOGY

A. Monitoring Workflow

Using the internal sensors available in all the Jetson devices,
it is possible to set up a pipeline for measuring and reporting
values of interest. The jetson_stats library [10] (based
on the lower level tegrastats command) can monitor the
status of the device periodically –every 5 s for the AGX Orin
and every 10 s for the Jetson Nano, values chosen based on
sensors’ sampling rate and CPU performance– and obtain
readings for the following parameters:

• CPU usage, as a percentage.
• GPU usage, as a percentage.
• Power consumption breakdown by component, in Watts.
• Fan usage, as a percentage.
• Temperatures at different points of the SoC, in Celsius.
A simple server is set up on a RaspberryPi 4B [11] running

a monitoring database, Prometheus [12], which fetches –via
Ethernet– and stores all the parameters. Furthermore, Grafana
[13] is used to filter, navigate, visualize, and oversee the
information in real time. Grafana also allows to export the
selected data in other formats, such as CSV, for further
postprocessing.

This workflow has been designed to shift the workload of
storing, visualizing and processing the data away from the
devices into a dedicated server, ensuring the readings are less
influenced by the monitoring processes. Furthermore, it is
feasible to implement in production, which would only require
to transmit the recorded data from jtop/tegrastats as
telemetry through a satellite link to a receiving server.

B. Characterization of the Monitoring Workflow

As with any other running process, monitoring comes at
the expense of CPU usage and power consumption. In order
to characterize the monitoring system’s cost an external Rigol
DP932A [14] power supply is used. The power supply is
configured to provide 5.1V and 20V for the Jetson Nano
and the Jetson Orin AGX, respectively, and to record voltage,
current and power values at a rate of 10 samples/s, later
filtered to match the sampling rate of the internal monitoring.
Three power readings are obtained for each device:

1) External, from the DP932A, with the device on idle
without the monitoring process.

2) External, from the DP932A, with the device on idle with
the monitoring process running.

3) Internal, from the device, with the device on idle with
the monitoring process running.

Subtracting reading 1) from 2), we can obtain the increase
in power consumption due to the monitoring process and
comparing 3) to 2), we can validate if the values reported
by the devices match the demanded power of the board.

TABLE II
CHARACTERIZATION OF THE MONITORING SYSTEM

Parameter Device
Jetson Nano Jetson AGX Orin

Cost of monitoring 0.6W 1.0W
Power supplied minus reported 0.0W +2.5W

By running htop, we identify that the process takes <1%
CPU usage, which is insignificant in terms of power con-
sumption. Therefore, the obtained values in Table II can be
attributed to the usage of the Ethernet peripheral and internet
connectivity, which was unused during measurements in case
1). Comparing the measured values on the same state, we
observe that the Jetson Nano accurately reports the consumed
power of the board, while the Jetson AGX Orin reports 2.5W
less than the actual input power. These values refer to the
devices mounted on their corresponding carrier boards and
can vary when using custom boards with different peripherals.
Moving forward, all power values are obtained from the
internal monitoring system unless specified otherwise.

C. Benchmarking Idle State and Execution of WEP Agent

For the Jetson Nano, three OS have been explored:

• RedHawk [15], a Real-Time OS (RTOS) built upon
Ubuntu 18.04 with JetPack 4.3.

• NVIDIA’s latest OS release for the Jetson Nano, running
Ubuntu 18.04 with JetPack 4.6.

• A community release of Ubuntu 20.04 with JetPack 4.6
[16].

And for the Jetson AGX Orin, only official OS releases
were mature enough at the time of our testing, two versions
of JetPack have been studied:

• Ubuntu 20.04 with JetPack 5.0.2.
• Ubuntu 20.04 with JetPack 5.1.1.

The necessary packages for the WEP controller, introduced
in Section I, are installed and configured in order to execute
a pretrained version of the agent inside a simulation.

First, each OS and device combination is left unused,
on idle, over a period of 6 h in order to obtain baseline
readings. Afterwards, the WEP Agent is executed in a sped
up simulation –which includes a model of the WEP and an
orbit propagator– where it solves an orbit change problem.
The cost of running the simulation is not accounted for, as in
a real environment it is not needed.
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D. Benchmarking the Training of WEP Agent

The WEP Agent trains by solving tasks in the simulation.
Thus, in this case the simulation must be accounted for: a low
amount of data (1.3GB) is loaded into memory and a CPU
core must constantly run it. The whole process starts with a
fast multicore initialization and setup of the neural network,
and the rest of the training requires the single core with the
simulation to feed the inputs to the Agent and react to its
decisions. Meanwhile, the neural network resides in the GPU,
where we observe a utilization between 20% to 70%, which
can be considered low load and, therefore, low power.

The duration of the training of the DQN is in the order of
hours and in this case different behaviours can be observed by
modifying the resources available to the process. A simple and
safe way to do this is by using Jetson’s Power Modes [17],
[18], which are predefined configurations with underclocked
and disabled resources which considerably reduce power con-
sumption at the cost of performance.

Considering this conditions, we perform trainings and mea-
sure performance metrics for the different devices and power
mode settings.

III. RESULTS

A. Idle State and Execution of WEP Agent

The execution of the Agent is very fast with minimal
resources utilization, resulting in negligible differences from
the idle state. For this reason the focus has been shifted to the
optimisation and tuning of the OS in order to minimise the
baseline operation of the devices.

Fig. 1. Idle power consumption comparison of NVIDIA Jetson Nano

Fig. 1 shows power measurements for the three selected OS
over a period of 6 h. An additional custom tuned version of
Ubuntu 20.04 with disabled graphical user interface and other
unnecessary processes –such as apt-daily and fwupd,
which only check for available updates on installed packages–
that triggered periodically has been also considered. This tuned
version runs with the lowest power consumption, does not

provoke unexpected power peaks, and it is still easily main-
tainable: Ubuntu as the base OS allows for easy installations
of NVIDIA’s official releases of drivers and packages directly
from their websites, compared to any other Linux distribution
which would require custom builds and compilations.

As for thermal properties, the tuned version can stay idle
without the need of the fan in ambient conditions.

Fig. 2. Idle power consumption comparison of NVIDIA Jetson AGX Orin

From Fig. 2 the improvements in resource management
during idle state performed by NVIDIA in successive JetPack
releases, which halve the power consumption, are clearly iden-
tified. As for the Nano, a tuned version with similar changes
is configured and tested. However, even in the optimised OS,
the device needs to trigger its fan periodically to cool down
in ambient conditions, which would later mean more complex
heat dissipation needs in space.

B. Training of WEP Agent

TABLE III
PERFORMANCE OF TRAINING THE WEP AGENT ON JETSON DEVICES

Device Jetson Nano Jetson AGX Orin
Power Mode MAXN 5W MAXN 15W

Duration 3h 50min 5h 0min 1h 24min 1h 28min
Avg. Power 3.40W 2.54W 10.0W 9.6W

Energy 46.8 kJ 46.0 kJ 63.9 kJ 62.6 kJ
*Benchmarks ran on the corresponding tuned OS of each device.

In the Jetson Nano section in Table III, it can be seen
how the underclocking of the CPU and GPU has drastically
increased the required time to train the model. However, the
reduction in power consumed leads to an equal amount of
expended energy per training. On the other hand, for the Jetson
AGX Orin, the underclocking does not affect the total duration,
and the observed power savings are only achieved by disabling
8 of the 12 CPU cores, which would have remained idle during
the majority of the training. This shows that keeping unused

September 11, 2023 MSc Aerospace - Semester Thesis



resources available when they are not required is a mistake
that results in an unnecessary energy consumption.

The ranges of measured power values appear in the fol-
lowing Fig. 3 and Fig. 4. Another benefit of using lower
power modes is reducing variance and, most importantly,
instantaneous power peaks, conditions which simplify the
design of the device’s power supply as a lower maximum
current can be considered.

Fig. 3. Training power consumption comparison of NVIDIA Jetson Nano
Power Modes

Fig. 4. Training power consumption comparison of NVIDIA Jetson AGX
Orin Power Modes

As for thermal results in ambient conditions, we observe
that the Jetson Nano in the 5W mode does not require the
actuation of the fan at any time, and the device’s temperature
remained under 47.5 ◦C. On MAXN mode, it did turn on
for an interval of 15min as the temperature reached 55.0 ◦C
(triggering temperature for the standard configuration of the
fan). However, on the AGX Orin, the fan was primarily turned

on throughout each training, but always at low speeds (20%
to 50% of maximum RPM).

C. Power Budgets

By also measuring power consumption during SC7 sleep
with an external device, the DP932A, in this case, we can
build comprehensive power budgets.

Fig. 5. Power budget of NVIDIA Jetson Nano

Fig. 6. Power budget of NVIDIA Jetson Nano

Figs. 5 and 6 show the three expected states for each device
when deployed.

• Deep sleep for very low power consumption.
• The “Idle/Execution“ state as nominal consumption.
• Training requires the most power but is also only a

punctual event that happens from time to time.

IV. DISCUSSION

From the obtained results, we can envision how the device
will generally operate on-board of a satellite. While in eclipse,
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a complete shutdown may be possible, but entering deep sleep
may be preferable as a full power off leads to a slower start-up
and possible data loss. During the sun phase, we can consider
the “Execution“ state as nominal consumption and account
for the training phase only if it is required or we have excess
power.

Examining the final power budgets (Figs. 5 and 6) and
analysing the numbers we can contemplate the usage of the
Jetson Nano as a Data Handling (DH) computer on-board
of small factor satellites such as 12U CubeSats, as it could
perfectly fit the typical budget of these. Furthermore, the
reduction in power peak loads will directly translate in a
simpler design of the power supply –as it has to support lower
current– and an improvement in battery life or the possibility
to choose a smaller one.

However, the Jetson AGX Orin would require a bigger
platform to operate, not only because of the numbers obtained
in this work but also because it has been tested at its lowest
power mode. Lower specifications devices of the same family
that come at a lower price tag would be better suited for micro
satellites and, taking it to the extreme, it could be argued that
CPUs are enough for certain applications if their execution
load is very minimal, for example, when only executing a
pretrained and optimised neural network.

Moreover, if we consider the typical sun phase durations
in Low Earth Orbit (LEO) we come across the fact that we
cannot perform a full training from start to finish without
interruption. It is necessary to consider intermediate states of
the model and store them before entering deep sleep. These
intermediate models can be reloaded when energy production
ramps up again –or in case of unexpected errors– and training
can continue. Only when convergence is reached, the final
model can be considered for execution and the training process
completed.

Finally, the thermal analysis and radiation testing have yet to
be conducted and extended. In terms of thermal conditions, it
shows promising signs, especially for the Jetson Nano, as little
to no active cooling has been required in ambient conditions.
Also with good results, radiation tests such as the one by
Rodriguez-Ferrandez et al. on the NVIDIA Jetson Xavier [19]
can already give an idea on how these type of devices will act
and what errors to look for when operating in the harsh space
environment.

V. CONCLUSIONS

The presented work shows the preliminary approach to
benchmark these types of devices and tailor them for space
environment specific needs with some changes to their soft-
ware. Furthermore, the obtained results can help determine
the desired requirements for our subsystem and process of
implementation.

Section II explains the idea behind a monitoring pipeline
useful in both testing and production environments. Account-
ing for the effects of the monitoring processes running on
the device is also a crucial step to obtain accurate results.
Understanding the environment and hardware in which our

application runs is necessary to know which parameters can be
modified from benchmark to benchmark and obtain a variety
of results.

Subsection III-A shows how newer software comes with
more optimized power consumption, although other character-
istics such as package support and maturity can cause a trade-
off. It also states the importance of monitoring, understanding,
and tuning the different processes running on the OS to avoid
unnecessary workload.

Subsection III-B shows the comparison of different perfor-
mance values measured that can help understand the trade-offs
that come into play when comparing devices/configurations.
Other applications or models may have different relevant
parameters, such as throughput, and choosing which ones to
measure is also a decision. Moreover, power measurements
in this preliminary phase are helpful to build up the power
budgets for the subsystems.

VI. FUTURE WORK

As for future work, the hardware side of the devices must be
analysed. A custom carrier board that can fit into a micro sat
–or even following the CubeSat standard– must be designed
with only the necessary peripherals to run the device in space,
reducing, even more, the maximum required power. This will
also lead to a more in-depth tailoring of the OS and probably
a custom compilation.

The custom board will also require a heat spreader that
can extract the heat generated, make it testable in a thermal
vacuum chamber, and give more insights into the operational
conditions of the device. Radiation testing could also be
considered, however it is difficult to justify the installation
of a viable test bench for a couple devices due to difficulty
and cost.

Moreover, as this is a constantly improving field, newer soft-
ware and devices will have to be benchmarked and compared,
bringing more performance at a cheaper cost. An honorable
mention is the Jetson Orin Nano released during the writing
of this work. It comes with newer software and promises more
power efficient resources than the Jetson Nano.
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