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Abstract

Efficient data processing is one of the core techniques that enables
modern data driven computer systems. Database systems are uniquely
positioned to use increasing hardware capabilities to enable better data
processing. Since database systems have a long history, modern systems
need to reengineer the data processing pipelines to take full advantage
of fast hardware that allows reducing the query response latency. To
achieve low latency, systems not only need to increase the data processing
throughput through new hardware, but also need to tune query planning
for a low end-to-end latency.

In the first part of this thesis, we focus on parallel processing with
shared state, how this affects the choosing of algorithms, and how a sys-
tem can execute such tasks. We propose new evaluation strategies for
groupjoins, which join and aggregate data without unnecessarily dupli-
cating state. We also discuss the challenges of cardinality estimation for
query planning with complex calculated expressions, and develop a novel
approach to estimating the such expressions. Combined with the parallel
processing in groupjoins, this improves database system performance for
analytical queries that aggregate data.

Second, we address the latency challenges of query planning. Database
systems first plan the query before they process the data, where the
processing was the limiting factor for a long time. With faster hardware,
query planning becomes a larger part of end-to-end latency, and we can
observe bad performance of established planning techniques. In this thesis,
we propose Indexed Algebra as a novel technique that uses a dynamic
index structure to asymptotically reduce the time to plan a query.

This thesis concludes with a discussion of our results, and gives an
outlook on future research directions. The results of this dissertation allow
low latency data processing in more scenarios, which could be extended
even further. Modern SSDs, for example, allow low latency processing
even in out-of-memory scenarios, and we see potential to reduce queries
latency by adaptive recompilation of query plans.





Zusammenfassung

Effiziente Datenverarbeitung ist eine der Schlüsseltechnologien für
moderne datengetriebene Computersysteme. Datenbanksysteme sind
dabei in einer einzigartigen Position, um die wachsenden Hardwareres-
sourcen zu nutzen und die Datenverarbeitung zu verbessern. Aufgrund der
langen Geschichte der Datenbanksysteme müssen moderne Systeme die
traditionellen Datenverarbeitungsprozesse neu strukturieren, um die neue
Hardware optimal zu nutzen und die Latenz der Anfragen zu verbessern.
Um niedrige Latenzen zu erreichen, müssen Systeme nicht nur den Da-
tendurchsatz durch neue Hardware beschleunigen, sondern auch die An-
frageplanung anpassen, um eine niedrige Gesamtlatenz zu erreichen.

Im ersten Teil dieser Arbeit diskutieren wir die parallele Datenver-
arbeitung mit gemeinsam bearbeitetem Zustand. Insbesondere wird un-
tersucht, wie sich die Parallelität auf die Wahl der Algorithmen und die
Anfragebearbeitung im System auswirkt. Wir entwerfen neue Auswer-
tungsstrategien für Groupjoins, die Daten gleichzeitig verknüpfen und
aggregieren, ohne unnötig Zustände zu duplizieren. Darüber hinaus
diskutieren wir die Herausforderungen der Kardinalitätsschätzung für
die Anfrageoptimierung bei Komplexen berechneten Ausdrücken und
entwickeln eine neue Technik zur Schätzung solcher Ausdrücke. Zusam-
men mit der parallelen Auswertung von Groupjoins verbessert dies die
Geschwindigkeit von analytischen Anfragen, die Daten aggregieren.

Zweitens untersuchen wir die Latenz der Anfrageplanung. Daten-
banksysteme planen zunächst die Auswertung der Anfrage, bevor sie die
Daten nach diesem Plan verarbeiten, wobei die Verarbeitung lange Zeit
der begrenzende Faktor war. Durch schnellere Hardware wird die Planung
jedoch zu einem immer größeren Anteil der Gesamtlatenz, was die relativ
schlechte Leistung der etablierten Planungstechniken aufzeigt. In dieser
Arbeit entwickeln wir Indexed Algebra, eine dynamische Indexstruktur
für relationale Algebra, als eine neue Technik, mit der wir die Zeit für die
Planung einer Anfrage asymptotisch reduzieren.

Diese Arbeit schließt mit einer Diskussion unserer Ergebnisse und
einemAusblick auf zukünftige Forschung. Als Ergebnis dieser Dissertation
können Daten in vielen Fällen mit geringerer Latenz verarbeitet werden, es
jedoch weiterhin Verbesserungspotential gibt. Zum Beispiel ermöglichen
moderne SSDs eine schnelle Datenverarbeitung von Daten, die nicht im
Hauptspeicher liegen, und wir sehen Potenzial die Latenz von Anfragen
durch adaptive Rekompilierung von Plänen zu reduzieren.
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CHAPTER 1
Introduction

Database systems are a central component for the access and management of
data. Already in the seventies, systems to manage databases emerged, most
prominently System R [4, 17]. These early systems spent most of the time
shuffling data from disk to main memory, since they could only hold a couple
of pages in-memory [56]. Nowadays, this picture has completely changed and
processing mostly in-memory is possible and common [3]. Not only main
memory grew, but CPUs also increasingly have large on-die caches, which can
fit many lookup data structures, without accessing the relatively slow main
memory.

This change in hardware capabilities has also impacted database systems
design. Data processing algorithms need to be adapted to use the fast hardware
that can process large amounts of data with low latency. Specifically, they need
to be efficient not only for I/O, but also for main memory operations.

Not only can modern systems process much data in main memory or caches,
but storage and I/O is also fast now. Fast storage, especially in the form of
SSDs, is becoming mainstream and cheaply available. Figure 1.1 shows the
performance trend of selected Samsung storage drives. This plot starts in 2010
with HDDs with a read throughput of around 100 MB/s, to current PCIe 4 NVMe
SSDs that have a read throughput of around 7 GB/s. With already a handful of
devices in parallel, I/O performance that rivals main memory speeds is cheaply
achievable. With such fast data access, many analytic workloads do not need
to be batch processed overnight anymore, but can be evaluated interactively
with much lower latency. Even when data resides on storage, the processing
bottleneck is not the I/O operation anymore, but it shifts from to efficiently
processing the data.
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Figure 1.1: Read throughput of Samsung storage drives.

Modern database systems redesign the execution engine to process in-
memory data more efficiently [109]. For modern engines, two major modern
designs emerged: Vectorization, as pioneered by MonetDB [21, 68], or data-
centric code generation, as pioneered by HyPer [72, 108]. Both approaches
are successful in increasing the efficiency and significantly accelerating the
in-memory performance [74]. For efficient base table scans, vectorization has
some advantage, but for computationally-intensive queries with complex ex-
pressions, code generation and data-centric query execution generalizes better
and produces more efficient execution pipelines. However, these new execution
models only set the foundation for a new push for efficiency. In this thesis, we
work on three problems that arise for modern execution engines and implement
and evaluate them in the database system Umbra.

1. Parallel processing with shared state

2. Cardinality estimation for complex calculated expressions

3. Low-latency query optimization
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Umbra already has several advanced techniques that enable low-latency
query processing, including low-latency code generation [59, 75, 81, 84], query
optimization [15, 16, 116], and specialized data processing operators [10, 36,
49, 82, 128, 133, 138, 152, 153]. Using this system, we have a state-of-the-art
baseline that supports a wide variety of benchmarks and use-cases and thus
allows to cover the multifaceted workloads of modern database systems. With
an implementation in Umbra, this thesis is uniquely situated to demonstrate that
these topics enable more efficient low-latency query planning and processing
on modern hardware.

1.1 Parallel Processing with Shared State
In contrast to I/O bandwidth, processor performance did not increase as easily
in the last ten years. For a long time denser CPU transistors lead to an increase
in frequency and instructions per cycle (IPC). In contrast, modern CPU devel-
opment switched to integrating more and more parallel execution units, but
with relatively stagnating throughput per core [89]. As a result, large server
CPUs now contain in the order of a hundred cores, which requires parallel data
processing algorithms to use all cores.

In general, modern analytical data processing systems are compute con-
strained. As we saw in the last section, a large amount of data can fit into main
memory or SSDs with huge I/O throughput. Modern many-core processors
offer vast improvements in processing power to keep up with the increase in
I/O bandwidth. Hence, modern data processing algorithms thus need to support
efficient parallel execution. However, this is aggravated by Amdahl’s law [2],
which means that even small parts of an algorithm that needs single-threaded
execution limits the scalability of the complete algorithm.

Strategies for parallel query execution, e.g., morsel-driven parallelism, work
well when they can avoid the need for synchronization and thus potentially
single-threaded phases. However, when the query execution needs data struc-
tures with shared state, e.g., for aggregations, this inherently leads to contention,
which limits the parallel throughput.

The potential upside of parallel algorithms cannot be understated. When
we have a fully parallel algorithm, the algorithm is in another quality class. To
illustrate this, let us compare it with the traditional asymptotic complexity of
algorithms. As a hypothetical problem, take an algorithm that processes data in
𝑂(𝑛), but can only process single-threaded, and a fully parallel algorithm that is
in 𝑂(𝑛 log2(𝑛)).

For the traditional asymptotic analysis, the single-threaded algorithm is
superior. However, for practical applications where log2(𝑛) < #cores the parallel
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algorithm will be much faster. For the example, assume the constant factors
of the algorithms are the same. Then, take consider some recent hardware, an
AMD EPYC Genoa processors with 96 cores and storage of 16× 8 TB SSDs. For
the algorithms, 𝑛 is bounded by the data size in bytes, i.e., 𝑛 ≤ 247. With these
assumptions, we can estimate the speedup of the parallel execution as follows:

96
log2(247)

= 96
47

≈ 2

Parallel data processing algorithms thus promise a significant speedup, even
if they have some overhead over sequential processing. However, algorithms
often have data structures with shared state, where updating this state in parallel
creates contention, which limits the parallel processing. In Chapter 2, we focus
on groupjoins, which deduplicate state for hash joins and hash aggregations
over the same key. However, this creates shared state in the hash table that
needs to be updated in parallel. In this thesis, we develop novel techniques to
adapt and improve groupjoin to scale to parallel processing that avoid the data
hazards that go along with the traditional approach.

1.2 Cardinality Estimation for Complex Calcula-
ted Expressions

Finding the optimal query plan is important for the performance of analytical
queries. Database systems use cardinality and selectivity estimations to do
cost-based optimization of the query execution plan. For example, reducing
the size of intermediate results as early as possible to avoid processing tuples
that get filtered out later in the pipeline. To compare predicates and join condi-
tions, database systems estimate the selectivity and result cardinality of these
operations.

Usually, we can calculate these estimates based on statistics over the stored
relations. E.g., maintain helper data structures like histograms or sketches.
Additionally, keep track of a sample and evaluate predicates on that sample.
This allows accurate estimations of most common predicates.

Where this stops working is for calculated expressions, e.g., for a sum over
one or multiple columns. The usual statistics of distinct-counts or value-ranges
only help marginally for this purpose. Instead, for such numerical operations,
we need more type specific information, i.e., proper numerical statistics that
allow to estimate numerical operations. In combination with distinct-count
estimates, which allow estimating group sizes, we can also get estimates of
calculated expressions.
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For expressions that can’t be estimated using the standard techniques, sys-
tems often fall back to naïve heuristics or even to magic constants. However,
these fallbacks are based on the assumption of no prior knowledge of the under-
lying data. For example, for a comparison 𝑎 < 𝑏, we assume that both are random
variables on the entire domain. Then, an unbiased estimate for the selectivity, is
0.5, since of all values, both have equal probability of being that value. However,
for most predicates the assumption that both sides are in the same domain is
violated. Consider the predicate 𝑎 + 𝑏 < 10 in contrast to 𝑎 + 𝑏 < 1 000. Most
likely, their selectivity differs by over a magnitude, but with no prior knowledge
of the domains, the estimation of these predicates will be severely off, which
potentially disastrous consequences for query plan quality.

Thus, we need a model of the underlying data distribution, which allows
us to estimate complex calculated expressions, and takes into account as much
information as we can gather from the database. In Chapter 2, we describe a
strategy to estimate the distribution of calculated numeric columns with a focus
on the result of aggregates. These statistical estimations then allow cheaply
estimating most expressions.

1.3 Low-latency Query Optimization

Both previous techniques work towards reducing the query execution time.
With these techniques in place, database systems can process large amounts of
data with lower result latency. However, the pure improvement in execution
performance has diminishing returns the lower the processing time is, when
other parts of the system take a relatively longer time. In Umbra, we first parse
the query, then optimize the relational algebra, before we compile and execute
it.

Overall, parsing SQL is quick, and compiling the execution plan to machine
code can be sped up by existing techniques. Query optimization, on the other
hand, can can take a longer, and with sufficiently complex queries can take
several hundred milliseconds. For low-latency processing, this is prohibitively
expensive. While there are workarounds like prepared statements or plan
caching, these are complex to deploy and do not generalize to ad-hoc queries,
which actually need more efficient planning.

In Chapter 3, we re-think the query optimization approach to improve its
efficiency for low -latency operation. We identify several cases where the
traditional algorithms are expensive and replace them with a more efficient
system that uses indexes of the algebra.



6 CHAPTER 1. INTRODUCTION

1.4 Research Questions
To summarize, we see three research questions that we attempt to answer in
this dissertation:

1. How can we design algorithms with shared state to benefit from parallel
processing?

2. How to include calculated expressions and especially aggregates in query
result cardinality estimation?

3. How can we redesign the query optimizer to improve latency?



CHAPTER 2
Practical Planning and Execution of
Groupjoin and Nested Aggregates

Parts of this chapter have been previously published in the Proceedings of
the VLDB Endowment [47] and the International Journal on Very Large Data
Bases [44]. With contributions from Altan Birler.

2.1 Introduction
Joins and aggregations are the backbone of query engines. A common query
pattern, which we observe in many benchmarks [20, 107] and industry applica-
tions [150], is a join with grouped aggregation on the same key:

SELECT cust.id, COUNT(*), SUM(s.value)
FROM customer cust, sales s
WHERE cust.id = s.c_id
GROUP BY cust.id

In a traditional implementation, we answer the query by building two hash
tables on the same key, one for the hash join and one for the group-by. However,
we can speed up this query by reusing the join’s hash table to also store the
aggregate values. This combined execution of join and group-by is called a
groupjoin [103].

The primary reason to use a groupjoin is its performance. We spend less
time building hash tables, use less memory, and improve the responsiveness of
this query. However, groupjoins are also more capable than regular group-bys,
as we can create the groups explicitly. Consider the following nested query,
with subtly different semantics:
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SELECT cust.id, cnt, s
FROM customer cust, (

SELECT COUNT(*) AS cnt, SUM(s.value) AS s
FROM sales s
WHERE cust.id = s.c_id

)

Here, nested the query calculates a COUNT(*) over the inner table, which eval-
uates to zero when there are no join partners. Answering that query without
nested-loop evaluation of the inner query is tricky, as a regular join plus group-
by will produce wrong results for empty subqueries, which is known as the
COUNT bug [106]. A groupjoin directly supports such queries by evaluating the
static aggregate for the nested side of the join, taking the groups from the other
side.

Despite their benefits, groupjoins are not widely in use. We identify two
problems and propose solutions that make groupjoins more practical: First,
existing algorithms for groupjoins do not scale well for parallel execution. Since
groupjoin hash tables contain shared aggregation state, parallel updates of
these need synchronization, and can cause heavy memory contention. Further-
more, current estimation techniques deal poorly with results of groupjoins from
unnested aggregates.

The unnesting of inner aggregation subqueries is very profitable, since it
eliminates nested-loops evaluation and improves the asymptotic complexity
of the query. However, this causes the aggregates to be part of a bigger query
tree, mangled between joins, predicates and other relational operators. Query
optimization, specifically join ordering, depends on the quality of cardinality
and selectivity estimates [94]. With unnested aggregates, the estimation in-
cludes group-by operations and aggregates, which are notoriously hard [50, 78].
Consider the following nested aggregate with a predicate:

SELECT ... GROUP BY x HAVING SUM(value) > 100

The result might have vastly different cardinality, depending on the selectivity,
which in turn influences the optimal execution order of the query.

In this chapter, we work on techniques that make combined join and aggrega-
tion more efficient, e.g., with eager aggregation [130, 154] and hash table sharing
via groupjoins [40, 103]. In addition, we propose a novel estimation framework
for computed aggregate columns, which improves the plan quality with nested
aggregates. We introduce this here as part of our work in groupjoins, but the
estimation framework is useful for queries with regular group-by operators, too.
We integrate our work in the high-performance compiling query engine of our
research database system Umbra [113]. Figure 2.1 shows a high-level overview
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Figure 2.1: Missing components for practical groupjoins. Our improvements
to estimation and parallel execution enable efficient evaluation of queries with
nested aggregates.

of our query optimizer. On the way from an SQL query from a relational alge-
bra query plan to the query result, we focus on efficiently evaluating nested
aggregates with computed column estimates and parallel groupjoin execution.

The rest of this chapter is structured as follows: First, we introduce the
groupjoin and its use in general unnesting in Section 2.2. Then, we discuss
and evaluate four parallel groupjoin execution strategies in Section 2.3, and
propose a cost model to choose the optimal execution strategy. We evaluate the
execution strategies and our cost model based on the well-known TPC-H and
TPC-DS benchmarks in Section 2.4. Afterwards, we introduce our estimations for
computed columns in Section 2.5 and evaluate them in Section 2.6. Furthermore,
in Section 2.7 and Section 2.8, we improve query plans by considering groupjoins
for operator ordering and propose an eager aggregation strategy. Section 2.9
discusses the impact of our work on queries from TPC-H, before we discuss
related work in Section 2.10, and conclude in Section 2.11.

2.2 Groupjoin for Nested Aggregates

Apart from better performance, the semantics of groupjoins are useful to com-
pute nested aggregates. Due to the versatile subqueries in SQL, aggregates
can appear in various places of the query plan. To efficiently calculate such
aggregates, it is important to unnest and not evaluate them in nested-loops [14,
65, 114]. However, decorrelated aggregates need a careful implementation and
are challenging for query planning.
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2.2.1 Groupjoin
We define a groupjoin Γ [103] as an equi-join with separate aggregates over its
binary inputs grouped by the join key.

𝑅 Γ𝑎1 = 𝑎2 ∶ 𝑎𝑔𝑔 𝑆 ≔ {𝑟 ∘ [𝑔𝑟 ∶ 𝐺𝑅] ∘ [𝑔𝑠 ∶ 𝐺𝑆] | 𝑟 ∈ 𝑅,
𝐺𝑆 = 𝑎𝑔𝑔({𝑠 | 𝑠 ∈ 𝑆 ∧ 𝑟 .𝑎1 = 𝑠.𝑎2}),
𝐺𝑅 = 𝑎𝑔𝑔({𝑟 | 𝑟 ∈ 𝑅 ∧ 𝑟 .𝑎1 = 𝑠.𝑎2})}

We further require that 𝑎1 → 𝑅, i.e., that the join condition functionally
determines R. With this definition, we compute the left-outer join between R
and S on a key of R, and compute aggregates separately over the matching tuples.
We also generalize groupjoins to inner-join semantics, which is beneficial to
avoid duplicating tuples of R and building a duplicate hash table in more cases.

ΓR.id

R.id = S.r_id

1

R S
R.id→{R.*}

2

Γ
R.id = S.r_id⇒

R S

Figure 2.2: Preconditions to introduce a groupjoin.

The intuitive use-case for groupjoins is an optimization to fuse a join and a
group-by operator, given that the preconditions shown in Figure 2.2 are satisfied,
and we can separately evaluate the aggregates: 1 The join and aggregation
keys need to be equivalent, and 2 these keys are superkeys w.r.t. functional
dependencies of the left build side. In this case, introducing a groupjoin is
usually considered to be a net win [27, 40] and can reduce the cost of those
operators by up to 50 % by eliminating intermediate results.

2.2.2 Correlated Subquery Unnesting
The groupjoin also supports the challenging edge cases of whole table aggregates
in a correlated subquery. Consider the correlated subquery from Section 2.1,
where we calculate a whole-table COUNT(*) on sales that is correlated with
the outer query’s customer. Conceptually, we need to calculate a whole table
aggregate for each customer, but ideally want to introduce a more efficient join.
However, using an outer join is tricky, since we cannot directly translate whole
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table aggregates to the join result. A groupjoin can instead evaluate the left
and right sides separately, where a careful initialization can produce equivalent
results to whole table aggregates. For the COUNT(*) example, we initialize empty
groups (e.g., customers with no sales) as zero, and increment it with whole-table
tuple counting logic1.

Dependent join

R Γ

S

Γ

SR �

conceptual
unnesting

Γ
SR Γ: 𝒟

introduced
groupjoin

Figure 2.3: General Unnesting: Decorrelation of dependent subqueries contain-
ing an aggregation can introduce a groupjoin.

For the general case, we deliberately introduce a groupjoin to separately
calculate the aggregates of the correlated subquery, filter unnecessary tuples,
and avoid the COUNT bug [114]. Figure 2.3 shows this unnesting for two arbitrary
tables R and S, with the dependent subquery-join on top and a nested whole ta-
ble aggregate Γ in the correlated right subtree. To decorrelate this aggregate, we
first compute the magic set� of relevant tuples for the correlated subquery [135].
To compute the set, we eliminate any duplicates of the outer-side join key with
a group-by Γ and get the precise domain 𝒟 of potentially equivalent keys for
which we need to calculate the inner aggregate. With this condensed set of
outer keys, we satisfy both preconditions to introduce a groupjoin, which we
use to keep the aggregation of the subquery side S separate.

In the following, we parallelize groupjoins with on-the-fly adaptive data
segmentation into morsels and contention-avoiding relational operators that
allow dynamic work-stealing.

2.3 Parallel Execution of Groupjoins
The parallel execution of common relational operators is widely studied and
efficient parallel join and aggregation algorithms are used in many systems
that can scale analytical workloads [25, 76, 115]. Groupjoins, which fuse join
with aggregation hash tables, promise a significant speedup in comparison to
separate operators and are necessary for general unnesting. However, parallel

1COUNT(*) has some edge cases that are trivial in a groupjoin, but difficult in separate
operators. See Section 2.3.3 for an extended discussion.
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execution of groupjoins can be a bottleneck due to contention. While several
publications have previously discussed groupjoins, they are now well over a
decade old and single-threaded [23, 26, 99].

Key Value

Key Value

Key Value

Hash join

Key Value LeftAggr. RightAggr.

Key Value LeftAggr. RightAggr.

Key Value LeftAggr. RightAggr.

Hash groupjoin

Figure 2.4: Single Threaded Groupjoin Hash Table. Aggregates from either join
side are materialized as hash table payload.

Figure 2.4 shows a basic, single-threaded implementation of a groupjoin, and
its similarity to a regular hash join. In this example, we use a hash table to store
the hash table payload, which includes the accumulators for the aggregates of
both sides. During the build phase, we initialize these as empty to support the
semantics of static (whole table) aggregation.

In contrast to joins, the probe phase of groupjoins is not read-only, but needs
synchronization of the aggregate updates when using more than one thread.
The shared state of the aggregates poses a problem for parallel execution, and
we need synchronization, e.g., with fine-grained locking, to avoid data races.
Unsurprisingly, the synchronization overhead can quickly become a bottleneck,
especially in the presence of heavy-hitters [122]. While updating the aggregates
is generally a quick operation, and the critical section only spans a couple of
instructions, all threads will compete for the same locks of the heavy-hitters.
Even when eliding this lock and updating the aggregates with lock-free atomic
instructions, memory contention, which is the root-cause for this bottleneck,
still remains a problem and causes suboptimal performance.

In the following, we propose three execution strategies for groupjoins that
avoid synchronization between threads. For each implementation, we discuss,
in which scenarios it is an efficient implementation of a groupjoin. Based on
these insights, we propose a cost-based strategy in Section 2.3.5, to choose the
best physical plan, depending on the underlying data distribution.

2.3.1 Eager Right Groupjoin
One well-known technique of aggregation queries is eager aggregation [154].
A group-by can be pushed down, past a join, to reduce the number of input
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tuples to the join. In the general case, this needs an additional group-by after the
join, since the join might have a multiplying effect on the aggregate tuples. In
this section, we apply eager aggregation to groupjoins: When we can speculate
that almost every tuple finds a join partner, i.e., the relative-right selectivity
𝜎𝑆 = |𝑅 𝑆| ⋅ |𝑆|−1 is close to 1, then eager aggregation will substantially reduce
the number of tuples that need to be processed by the join.

Γ

R S

Γ

R S

Γ

Γ Γ

R S

count(*)

Figure 2.5: Eager Grouping. While the middle groupjoin eliminates the sec-
ond hash table, the schematic eager aggregation on the right can additionally
eliminate the result scan.

When eagerly aggregating in a groupjoin, we can exploit several facts that
allow making eager aggregation very efficient: Precondition 2 (cf. Section 2.2.1)
of the groupjoin guarantees that the join and group key of the left-hand side
functionally determine the left tuples. In other words, the left side does not
contain duplicates and, thus, cannot have a multiplying effect on the right
aggregation. As sketched in Figure 2.5, we can exploit this fact by first eagerly
executing the right aggregation. If there are any aggregates on attributes of R,
duplicate keys in S have a multiplying effect that duplicates the keys but do not
change their value. We account for this effect with a count(*) aggregate on
S, which we apply as multiplication factor of the unique tuples of R. In result,
we elide the final group-by that would be needed for general eager aggregation
as described by Yan and Larson [154], and replace the result scan with a single
hash table probe.

We eliminate the result scan, and improve the pipeline behavior, by using
the same precondition 2 . A group-by is a full pipeline breaker [108], i.e., it
materializes all incoming tuples and scans the result when the last tuple was
processed. However, this flushes all data from CPU registers, or very hot cache,
which makes pipeline breakers expensive. Algorithm 1 shows pseudocode to
execute this operator, where each loop represents one pipeline. In the first loop,
we eagerly aggregate the whole right side S into the aggregation hash table
Γ𝑆. The second loop probes with the left side R and calculates the complete left
aggregate in a single step with the probe result. Afterwards, the loop still is not
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Algorithm 1: Example code generated to execute an eager right group-
join with inner-join semantics.

initialize memory of Γ𝑠
for each tuple s in S

aggregate s as as in hash table of Γ𝑠
for each tuple r in R

if r has match as in Γ𝑠 # inner groupjoin
ar ≔ agg(r * as.count(*))
output: r ∘ ar ∘ as

terminated, but can continue its pipeline with any next operations, in this case
output.

In contrast to a lazily aggregated groupjoin, eager aggregation requires
no explicit synchronization through locks. Our implementation reuses the
implementation of regular aggregation, which first builds partitioned, thread-
local aggregation hash tables [83, 90, 127]. A second step exchanges these
partitions between threads and merges them into a partitioned global result hash
table. Afterwards, the duplicate-free left side can exclusively read its matches in
the hash table, which allows contention-free and full parallel execution.

While it can be executed very efficiently, eager aggregation is no one-size-
fits-all solution. Depending on the relative right selectivity of the join part, i.e.,
how many groups of the right-hand side are not matched by the left, we might
calculate many unneeded aggregates. Therefore, we deem it necessary to only
use this eager aggregation, when a local cost-model predicts it to be beneficial.

The following cost function models the eager right groupjoin and closely
follows the presented algorithm:

𝐶eager = |𝑆| + |𝑅 𝑆|

First, we build the eager hash aggregation in two passes over the data, which
touches every tuple of S twice: 2 |𝑆|. Then, we probe the hash table with the
left-hand side |𝑅|, and check the matching tuples |𝑅 𝑆|, for equality. In our
cost function 𝐶eager, we exclude the initial passes over each input side |𝑅| + |𝑆|,
which are required by any groupjoin implementation. Nevertheless, we include
the result scanning phase of pipeline breakers, to differentiate operator-fused
pipelines that do not need to materialize their result.
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2.3.2 Memoizing Groupjoin
Eagerly aggregating is very beneficial, when almost every right tuple finds
a join partner. The other extreme is also common, i.e., that many tuples are
filtered by the join. In this case, we want to filter right-hand side tuples, before
aggregating them. In the following, we present a groupjoin implementation
that builds filtered thread-local aggregates and efficiently merges them to a
groupjoin result.

The idea of this implementation is to optimistically use a shared global
aggregation hash table for aggregates with few tuples, but aggregate heavy-
hitters thread-locally. The global hash table resembles the sketched single-
threaded groupjoin in Figure 2.4, where we first build a join hash table with the
left-hand side R with additional space for the aggregates. For synchronization,
we use an atomic set-on-first-use thread-id tag that assigns groups to the first
thread that updates it. Additionally, when we probe the hash table with S, we
memoize the payload pointer to avoid a duplicate lookup.

Algorithm 2: Memoizing groupjoin probe pipeline with ownership
tagging.

1 Hashtable globalHt
2 // Omitted: Concurrent build of R hash table
3 thread_local localHt, tid
4 for each tuple s in S
5 hash ≔ hash(s.key)
6 *p ≔ globalHt.probe(hash, s.key)
7 if p not found
8 continue
9 owner ≔ p->tid.atomic_load(relaxed)

10 inPlace ≔ owner == tid;
11 // Is uninitialized?
12 if owner == 0
13 inPlace = p->tid.CAS(owner, tid)
14 if inPlace
15 p->aggregate(s)
16 else
17 localHt[hash, p].aggregate(s)

The intent behind this hybrid synchronization strategy is to avoid tiny
thread-local groups with very few tuples, while still aggregating heavy-hitters
thread-locally. With the thread-id tags, singleton groups, and groups that are
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clustered on a single thread, directly use the result hash table, which reduces
the size of local hash tables that would later need to be merged again. In effect,
this reduces the partial aggregates to the number of threads 𝑛, compared to 𝑛 + 1
for full thread-local preaggregation and merging into a global hash table.

Algorithm 2 shows pseudocode for the described groupjoin probe pipeline.
The atomic operations here use a memory model akin to the C++ model [18]. For
our optimistic synchronization, we use a single atomic compare-and-swap (CAS),
which is the only operation that requires memory synchronization. The low-cost
relaxed read of the current tag in line 9 does not need synchronization and could
read stale data. For correctness, in the sense of being free of data races, this read
is not required. However, it is a vital optimization for heavy-hitters, where the
CAS synchronization would cause memory contention. Instead, after the initial
CAS, any heavy-hitters will not take this branch again and all other operations
are either non-atomic or relaxed. In result, this thread-local preaggregation is
virtually contention free. Afterwards, when all input data was either aggregated
locally or globally, we exchange the local partitions between threads.

In the thread-local aggregation, we reuse previously calculated intermediates.
The local hash table lookup reuses the hash of the global hash table lookup, and,
instead of comparing the full key for equality, we only check if the pointer of
the probe result from line 6 matches. We also store just this pointer in the local
tables, which we also use as a shortcut for merging the aggregates. When all
probes from R are finished, we merge the thread-local groups by following this
memoized probe pointer, which reduces the number of cache misses and avoids
a second hash table lookup.

Compared to the eager right groupjoin, this memoizing approach favors
small left sides with a selective join. Expressed more formally for our cost model,
we use a build of the left hash table in two passes 2 |𝑅|, probe once with the
entire right side |𝑆|, before checking the matching tuples |𝑅 𝑆| for equality.
Then, we use these to build thread-local aggregates, before merging them into
their memoized global bucket, 2 |𝑅 𝑆|. Since this variant of the groupjoin is a
full pipeline breaker, we additionally need to scan the entire |𝑅| hash table to
start the next pipeline, while omitting unjoined results. In sum, we arrive at the
following cost function:

𝐶memo = 2 |𝑅| + 3 |𝑅 𝑆|

2.3.3 Separating Join and Group-By
As laid out in Section 2.2, groupjoin has its own semantics that is useful for whole-
table aggregates of unnested queries. An alternative to a dedicated operator
would be to emulate this behavior with reused join and group-by operators,
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which reduces the implementation overhead, but might build duplicate state in
two hash tables.

This duplicate state was the reason that previous work [27, 40, 103] con-
sidered a groupjoin as unconditionally advantageous to a separate execution.
However, a careful analysis of the involved operations shows that there exist
cases where a groupjoin is more expensive than a separate inner join followed
by a group-by. The intuition behind this somewhat counter-intuitive finding is
that the groupjoin result set might be bigger than that of a separate group-by.
That is, when the join is selective on the left build side R, then the join-reduced
aggregate table will be significantly smaller than the join table. In this case, it is
cheaper to probe a separate join table and build a densely populated aggregation
table instead of reusing the relatively sparse matches in the join table. In the
following, we show how a groupjoin can be rewritten as a join and group-by,
while still preserving the static aggregation semantics to unnest arbitrary queries
(cf. Section 2.2.2).

While for most groupjoins, the separation into a join and group-by is trivial,
the ungrouped whole table aggregations that can appear in correlated subqueries
require special care to preserve their semantics, especially with NULL values [26,
145]. We call this special case a static groupjoin. Consider the following example
of a query that we process with such a static groupjoin:

SELECT r.id, cnt FROM R r, (
SELECT COUNT(*) cnt
FROM S s
WHERE r.id IS s.r_id)

Our general unnesting resolves the correlated subquery with a groupjoin.
The following shows the resulting plan in SQL-like syntax:

SELECT r.id, COUNT(S::*) FROM R r
STATIC LEFT GROUP JOIN S s
ON r.id IS s.r_id

The important distinction of the static groupjoin is between empty inner
tables and NULL values. Table 2.1 shows three cases, where the aggregated count
differs: A count(*) in a subquery counts any matching tuple, even when its
value is NULL. Executing an outer join R S, produces additional NULL values that
need to be ignored by a count of S tuples. However, with a separate aggregation
operator, a naïve count cannot distinguish between matches, where NULL IS
NULL and padded tuples that did not have a join partner. Even evaluating the
aggregates before the join would still require coalescing of NULL aggregates. To
execute the join before aggregating, we ensure the correctness of the aggregates
with a join marker that decides between ignored and NULL tuples:
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Table 2.1: Static count semantics. In separate operators count(*) aggregates
might produce different results.

R S count(*) subquery count(S) after count(*) before

(NULL, NULL) 1 0 1
(1, 1) 1 1 1
(2, NULL) 0 0 NULL

SELECT r.id, COUNT(s.joinMarker)
FROM R r LEFT OUTER JOIN (

SELECT *, TRUE AS joinMarker FROM S
) ON r.id = s.r_id
GROUP BY r.id

Rewriting such a groupjoin as LEFT JOIN is usually not beneficial for per-
formance, since it fixes the relative left selectivity to one. On the other hand,
most groupjoins do not need an outer join, and might be cheaper executed in
separate hash tables. For our cost model calculation, we first two-pass build
a 2 |𝑅| hash table, then probe with |𝑆| and match |𝑅 𝑆| right tuples. With the
resulting tuples, we build a separate aggregation table, again in two passes
2 |𝑅 𝑆|, before we scan the |𝑅 𝑆| matched aggregation groups. The drawback
in comparison to the memoizing approach is that we do not know the size of
the aggregation state beforehand. Therefore, we need to additionally check if
the aggregate already exists, and dynamically allocate and initialize memory
on demand. While this can reduce resource usage for unmatched keys in R,
the fine-grained allocations are more expensive per match (|𝑅 𝑆|) than a bulk
operation for all keys. In our simplified cost model, we express this as a fixed
factor, which we measured empirically as 𝑐 = 30 % overhead. In total, we arrive
at the following cost function:

𝐶sep = |𝑅| + (3 + 𝑐) |𝑅 𝑆| + |𝑅 𝑆|

2.3.4 Using Indexes for Groupjoins
The previous execution strategies are designed to work over arbitrary inputs.
That means, we always need to build a data structure to aggregate values during
execution. For join processing, one can often use indexes to access a base table
relation on one side of the join [134]. Using indexes to support aggregations
can also be beneficial when applied properly.

Some DBMSs already use index scans to filter and compute group-by aggre-
gates pipelined. Similarly, we can avoid building a separate aggregation data
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structure and use the index for a groupjoin implementation that aggregate the
group with little overhead. The idea here is similar to the eager right group-
joins (cf. Section 2.3.1), where we probe the right side aggregation hash table.
However, for already existing indexes, we do not have matching aggregates, but
need to calculate them during the index probe. We can do this efficiently, since
the left side is duplicate free, and we visit all elements of the right group during
a regular index probe.

Using indexes is especially fitting for groupjoins, since we operate on a key
of the left side. When we have a key and join with a base relation, this usually
means that there exists a foreign key constraint with a corresponding index.
Thus, we likely already maintain matching indexes for groupjoins and can use
them for a more efficient execution.

Using already existing indexes for groupjoins has several advantages: By
using the index to find matching join partners, we avoid accessing unrelated
tuples, e.g., when the relative right selectivity 𝜎s is very low. Also, we need a
minimal amount of working memory, since we only keep the aggregation state
for the current index probe. As a consequence, e.g., when we calculate a single
sum, we can keep the aggregate in a dedicated CPU register and get excellent
performance.

Algorithm 3: Example code generated to execute an index groupjoin
with inner-join semantics.

for each tuple r in R
as ≔ ∅
for each matching tuple s in S.index:

aggregate s in as
if at least one match: # inner groupjoin

ar ≔ agg(r * as.count(*))
output: r ∘ ar ∘ as

Algorithm 3 shows pseudocode to execute such an index groupjoin. The
outer loop represents the input pipeline, in this case a table scan, but we can also
operate on arbitrary input tuples, e.g., from a join result. For each input tuple,
we initialize an empty aggregate as , before we probe the index for matching
tuples and combine them in this local aggregate. After probing the index, we
report the result to the next operator, depending on if we had at least one join
partner, or if we need to report static (cf. Section 2.3.3) results.

In contrast to the methods presented in the previous subsections, probing an
index has some inherent limitations in parallel execution. While we can probe
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the index in parallel with multiple threads, scanning the matching tuples in the
index is harder to parallelize. This is especially problematic for heavy hitters,
e.g., when a single left tuple finds millions of join partners on the right. Then, it
is unattractive to aggregate this heavy hitter single-threaded.

In this case, it is advantageous to split the equality ranges into schedulable
morsels and use multiple threads to aggregate in thread-local storage. This,
however, looses the pipelining benefits of the index-based groupjoin operation
and effectively executes the groupjoin separately. Defending against this case
requires metadata in the index to detect the presence of such heavy hitters.
When this is the case, we fall back to a separate execution as presented in
Section 2.3.3.

The JCC-H [19] benchmark demonstrates these problems, where there are
five populous orders that have very many lineitems. When we groupjoin these
orders with the lineitem table, the index based execution is essentially single-
threaded, while the memoizing and eager right execution execute on all available
cores. In this scenario, the optimal method additionally depends on the available
cores of the machine.

The cost calculation for this execution strategy differs significantly from the
other strategies. Since we choose a different access path for the tuples of the
right side 𝑆, the decision to use an index is strongly dependent on the relative
performance of accessing data linearly during a table scan, or using the random-
accesses of an index. This performance depends on many factors: What kind of
index do we use? Traditional B-Trees [11, 55], or in-memory optimized indexes
such as lock free hash indexes [32] or Adaptive Radix Trees [92, 93]. Additionally,
the random-access performance also depends on the physical storage of the base
table. For example, cloud-centric storage architectures using large files [29] have
large read amplification for random lookups, and even storing tuples in main-
memory optimized compressed Data Blocks [87] introduces some overhead.

We, therefore, exclude index groupjoins from our regular cost models. In our
system Umbra, we instead use a two-stage optimization, where we first decide
if we use the index, and if not choose one of the other execution strategies. In
Umbra, we use an empirically determined 10× overhead of accessing tuples via
an index join with a B-Tree index and cached pages, compared to a full table
scan.

When we have a suitable index and accessing it is cheaper than the full table
scan, index groupjoins have excellent performance. In comparison to the other
combined methods, we can avoid scanning the full right table. In separate join
and group-by execution, we also use the index, but still break the execution
pipeline by building the aggregation hash table. By avoiding this unnecessary
hash table, index groupjoins are about 33 % faster than separate index joins.
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Table 2.2: Example cost calculations of groupjoin implementations.

|𝑅| |𝑆| 𝜎𝑅 𝜎𝑆 |𝑅 𝑆| |𝑅 𝑆| 𝐶eager 𝐶memo 𝐶sep
100 200 80% 80% 80 160 280 680 708
100 200 80% 10% 80 20 280 260 246
100 100 100% 10% 100 10 200 230 233
100 500 100% 5% 100 25 600 275 283

2.3.5 Choosing a Physical Implementation
To recap, we presented four parallel execution strategies for groupjoins. In Sec-
tion 2.3.1, we presented an eagerly right aggregating groupjoin, in Section 2.3.2
we used a combined join and aggregation table with memoizing thread-local
aggregations. Furthermore, we showed in Section 2.3.3, that we can rewrite
arbitrary groupjoins as separate join and group-by. Lastly, we described how
to use indexes for groupjoins in Section 2.3.4. All four implementations have
different characteristics, which we formalized for the first three as a cost model
to compare their relative performance:

𝐶eager = |𝑆|+ |𝑅 𝑆|
𝐶memo = 2 |𝑅| + 3 |𝑅 𝑆|
𝐶sep = |𝑅| + 3.3 |𝑅 𝑆| + |𝑅 𝑆|

The base of all three cost functions consists of the underlying cardinalities |𝑅|
and |𝑆|, and the semijoin reduced cardinalities |𝑅 𝑆| = |𝑅| 𝜎𝑅 and |𝑅 𝑆| = |𝑆| 𝜎𝑆.
In Table 2.2 we go through some exemplary calculations of this cost model. As
the examples show, the different implementations have significant differences
in the total cost of execution, depending on how much a side is reduced with its
relative selectivity 𝜎.

When considering 𝐶eager, the differences are especially pronounced. 𝐶memo
and 𝐶sep are closer, since both approaches implement similar logic. Their largest
difference is the static vs. dynamic memory allocation to compute the aggre-
gates. Figure 2.6 shows the allocated memory in Umbra during the execution
of a groupjoin with our three implementations. In the shown case, every input
tuple finds a join partner, thus we need memory to store all tuples. Both fused
approaches store them in one hash table, either statically allocated up front
(memoizing), or dynamically during eager aggregation of S. In contrast, sepa-
rate execution allocates a smaller initial hash table and dynamically builds the
additional aggregation table. In this example, the fused storage uses about 1GB
peak memory, while separate execution consumes about 50 % more. However,
depending on how many distinct aggregates we encounter (𝜎𝑅), the dynamic
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Figure 2.6: Memory consumption of TPC-H SF 10 orders - lineitem groupjoins.

allocation of the separate execution might also use less memory. In our cost
model, we encode this difference as the simplified 30 % factor in 𝐶sep. However,
this factor depends on a few system characteristics, e.g., the cost to dynamically
allocate memory and the momentary scarcity of it. Additionally, the number of
aggregates also influences the hash table payload sizes.

Like any cost-based optimization, this approach relies on estimates of the
underlying data. While this works well for base tables and joins, the quality can
deteriorate with nested groupjoins and other aggregates.

2.4 Evaluation of Groupjoins
In this chapter, we present the experimental evaluation of the presented group-
joins in our research RDBMS Umbra [113]. We start with a study of the behavior
of parallel groupjoin execution in the TPC-H benchmark, and if it corresponds to
our presented cost model. As detailed in Section 2.3, groupjoins are commonly
used in unnesting, but we also apply them when they can improve performance.
For this evaluation, we consider the groupjoins in the well-known analytical
benchmark TPC-H, compare the performance of our proposed implementations,
and evaluate our cost model therein.

Hypothesis For TPC-H, the selectivity and relative sizes do not change when
increasing the scale factor, thus our cost model presented should stay consistent
relative to each variant. Since all three proposed algorithms are virtually lock
and contention free, we expect no relative changes between algorithms under
varying parallelism or data size.
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Figure 2.7: Performance of the index groupjoin on TPC-H SF 10 orders - lineitem
via the l_orderkey foreign key.

Setup of Performance Measurements We run all benchmarks on a NUMA
system with 2× Intel Xeon E5-2660v2 CPU with 10 cores each, 2× hyper-threads,
and 256GB RAM. To measure performance with warm caches, we repeat the
executions 20 times and report the median value. The typical run-to-run median
absolute deviation for this setup is 1 %.

In a first experiment, we evaluate the performance of our different groupjoin
implementations under a varying right selectivity 𝜎s. Figure 2.7 shows the
execution time of our different groupjoin implementations. In this experiment,
we groupjoin the TPC-H orders and lineitem tables with a foreign key index on
l_orderkey, which we use either in an index join or an index groupjoin. In a
direct comparison, index groupjoins are strictly better than building a separate
aggregation hash table when 𝜎s is small. However unsurprisingly, when we join
with more tuples of lineitem, the memoizing and eager right approaches can
be faster. Index groupjoins are faster for a right selectivity of up to 𝜎s = 15%.
Compared to this, Umbra’s 10× heuristic is rather conservative.

In the second experiment, we validate the quality of our cost model recom-
mendations. This experiment compares the predicted cheapest to the actually
measured fastest implementation. The setup is a micro benchmark on the TPC-H
SF 10 data set with the same, single orders-lineitem groupjoin. To test the
whole 𝜎𝑅 and 𝜎𝑆 parameter space, we prefilter each of the tables in 1 % incre-
ments via the primary key. Figure 2.8 shows the 10 000 combinations, and plots
the measured fastest implementations in the left plot, in comparison to the cost
model recommended ones on the right.

This experiment shows that our prediction is a good indicator of the actual
fastest performance. As expected from the cost model, the most impactful
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Figure 2.9: Peak memory usage for a TPC-H orders - lineitem groupjoin.

decision is whether we should aggregate eagerly. Our cost model recommends
this for the upper two-thirds of the 𝜎𝑆 range, while the measurements indicate
that the break-even point is already a bit lower. However, at this border the
methods only have minor performance differences. To quantify this, we pairwise
compare the performance of the measured fastest method with the, sometimes
slower, cost model recommendation. Using the recommendations results in a
mean absolute percentage error of only 1.7 % over the best performance and a
maximum absolute percentage error of 95 %.
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Table 2.3: TPC-H Groupjoins. Cost model calculations with four TPC-H group-
join queries on scale factor 1.

Q |𝑅| |𝑆| 𝜎𝑅 𝜎𝑆 𝐶eager 𝐶memo 𝐶sep
3 147 k 3.24M 54% 6.8% 3.32M 956 k 954 k

13 150 k 1.48M 63% 100% 1.58M 4.75M 5.14M
17 204 6.00M 100% 0.10% 6.00M 19.0 k 20.9 k
18 57 6.00M 100% 0.84% 6.00M 152 k 167 k

However, the memoizing and separate execution strategies are generally
closer in their measured runtime performance. We attribute this mostly to the
optimized dynamic memory allocation in Umbra [37], since the peak memory
usage differs much more. To quantify this, we measure the maximum amount
of memory used to execute the groupjoin under a varying left selectivity 𝜎𝑆 in
Figure 2.9.

In the next experiment, we limit the amount of parallelism and observe the
query performance with a fixed groupjoin algorithm, and fixed TPC-H scale
factor 10. The third experiment uses all threads, but varies the scale factor.
Note that Umbra was already a system with state-of-the-art performance, even
without our contributions. As baseline for TPC-H, the speedup of Umbra over
MonetDB [21] is about 3.2× and about 101× over PostgreSQL [147].

Cost Model We first go through the cost model calculations for groupjoins
in TPC-H, before evaluating if the model accurately predicts the performance
of these queries. For this evaluation, we look at a total of four TPC-H queries
using a groupjoin: Q3 is an organically occurring groupjoin, where we first join
and then group-by the same key. Q13 has a similar groupjoin sequence, albeit in
a nested query itself. In contrast, the groupjoins in Q17 and Q18 are the result
of unnesting. We also provide an interactive query plan viewer for these queries
online2.

The cost model calculations for these joins in Table 2.3 show our predicted
relative performance for these queries. Q3 has high selectivity of the right-hand
side, which favors the lazily aggregating variants, and a moderate relative left
selectivity, which puts separate processing at an advantage. When we look
at Q13, the join is very unselective on the right side, which puts eager right
aggregation at a clear advantage. Both unnested queries Q17 and Q18 only
compute the groupjoin on a small and highly selective left side, which puts the
hybrid memoizing groupjoin at a slight advantage.

2https://umbra-db.com/interface/

https://umbra-db.com/interface/
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Figure 2.10: Parallel scale-out of TPC-H SF10 groupjoin queries.

In the following, we run two experiments of our algorithms under a varying
parallelism and data scale to validate these claims and to show that the cost
model calculations are robust under these parameters. In contrast to the cost
calculations fromTable 2.3, which only include the variable costs of the groupjoin
implementation, our benchmarks measure the throughput of the whole query.

Figure 2.10 shows the relative performance of the different groupjoin im-
plementations with increasing parallelism. We observe that, as expected, the
relative performance between the algorithms stays the same. All three im-
plementations show a linear speedup when increasing the parallelism, with a
tamping down speedup on hyper-threads.

In Figure 2.11, we vary the amount of processed data via the scale factor
and see a similar picture. Again, the relative performance stays unchanged and,
apart from some effects when exceeding cache sizes, the overall throughput
stays relatively constant. All in all, our cost model has proven to be robust in



2.4. EVALUATION OF GROUPJOINS 27

1.9×

19.1×

2.2×

1.9×

Q17 Q18

Q3 Q13

1 5 10 15 20 25 30 1 5 10 15 20 25 30

0

50M

100M

150M

0

500M

1G

0

500M

1G

0

1G

2G

3G

4G

5G

Scale Factor

T
hr
ou

gh
pu

t(
tu
pl
es

/s
)

Method eager memoizing separate

Figure 2.11: Data size scale-out of groupjoins in TPC-H.

regard to variable system parameters, and accurately predicts the most efficient
groupjoin implementation.

Overall, eager aggregation can bring over 2× improvement in Q13, but is
over an order of magnitude slower in Q17. The other implementations are
much closer to one another, mostly because we build the hash table with the
duplicate free left side, which is orders of magnitude smaller than the right side.
In comparison to processing the large right side, building the relatively small
left hash table has only a minuscule impact on the overall query. Nevertheless,
a proper model will find the best execution plan and significantly improve the
efficiency.

Over the four queries in TPC-H that use a groupjoin, our cost model based
approach achieves a geometric mean speedup of 20 % over a baseline that ex-
ecutes join and group-by separately. We also ran a similar experiment over
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Figure 2.12: Possible query plans for TPC-H Query 18. Depending on the 𝜎
filterselectivity, we use the customer relation as hash-join build or probe side,
which roughly leads to a 10 % difference in performance.

TPC-DS, where we see similar results: A total of 13 queries can use a groupjoin,
with a geometric mean speedup of 5 %.

2.5 Aggregate Estimates
Good estimates for computed columns in nested aggregates are one of the
missing links in cost-based query optimization. Cardinality and selectivity
estimations for base table columns are well-known, and despite some problems,
work quite well in practice [91, 115]. While statistics on singular columns fail to
capture correlations, histograms, samples, and sketches provide a solid baseline,
and recently developed techniques using machine-learning work towards multi-
column estimates [38, 79]. However, estimates for computed columns such as
aggregates are rarely used, which results in poor cost-model calculations, and
suboptimal query plans.

We propose to extend existing approaches that work on base table columns
by calculating statistics, which allow deducing computed column estimates.
Our approach uses a lightweight statistical model that can be piggybacked onto
regular sampling or histogram-based statistics. The key idea is to fit a skew-
normal distribution to the underlying data using a method of moments estimator,
which can be cheaply maintained on base tables, as well as for computations
throughout the query tree. With this fitted distribution, we then efficiently
estimate the selectivity of predicates on computed columns, and the resulting
cardinality.
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Surprisingly few systems consider the results of computed columns in cardi-
nality estimation, which is rather surprising considering this is a part of standard
SQL, which even has a dedicated HAVING syntax. After unnesting or in nested
analytical views, it is common to have aggregates and predicates on aggregates
embedded in lower parts of the algebra tree, where the resulting cardinality
has consequences for the quality of query plans. One example is TPC-H Q18
shown in Figure 2.12, with the nested predicate HAVING SUM(l_quantity) >
300. The estimated selectivity for the filter𝜎 in the green pipeline has significant
impact on the query performance. Depending on the selectivity, the optimal
query plan is either, a) when the predicate is very selective, or b) if it is not.

In the figure, we use the convention to build the join hash tables with the
left and probe with the right side. For Q18, all data sources except the aggregate
result are unfiltered base tables, where cardinality estimation is trivial. The
challenging part for cardinality estimation is the join with the customer table ⋆,
which is marked with an asterisk. Since building a hash table is more expensive
than probing it, we estimate which side is smaller. In Q18, we estimate if the 𝜎
filter condition produces less tuples than the entire customer table. The base
table cardinalities differ by an order of magnitude (150 k customers and 1.6M
distinct orders for scale factor 1), so simple heuristics most likely mispredict
these cardinalities. In preliminary experiments, this misprediction has roughly
a 10 % performance penalty for the whole query. To avoid this and get closer to
the real selectivity of 0.003 %, we need robust estimation of computed columns.

In the following, we present our novel computed column estimator, based
on the method of moments for skew-normal distributions [120]. In result, we
get orders of magnitude better estimates for filters on computed columns and in
turn generate better query plans.

2.5.1 SkewNormal Distribution
Our key insight is that HAVING predicates are mostly on computed values based
on columns of “natural” numerical quantities, e.g., price, balance, counts, rat-
ings, durations, etc. In contrast to predicates on keys or identifiers, they are
rarely compared for equality, but more commonly with range predicates, e.g.,
≤ or BETWEEN. In the following, we propose an estimation model for computed
columns that roughly follow a normal distribution, i.e., most values center
around a mean, with relatively few outliers from that mean. Additionally, we
model a limited amount of skewness in the underlying data to break the inher-
ent symmetry of a pure Gaussian normal distribution. The resulting selectivity
estimation framework then handles a wide variety of computed columns.

The centerpiece of our estimation framework is the skew-normal distribution,
as proposed by Azzalini [5], which combines the normality assumption with
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Figure 2.13: Skew-Normal Fit. Histograms of several data sets, ranging from
uniform synthetic to skewed real-world data sets. The overlayed red distribution
is a fitted skew-normal distribution.
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a better fit for skewed distributions. For our estimation framework, the skew-
normal is a good trade-off for a reasonably robust, yet computationally simple
statistical model. The skew-normal 𝑠𝑛(𝜉 , 𝜔, 𝛼) is closely related to the normal
distribution 𝒩 (𝜇, 𝜎2), with an additional shape parameter 𝛼, that allows some
asymmetry as skew. With the special case 𝑠𝑛(𝜇, 𝜎 , 0) ∼ 𝒩 (𝜇, 𝜎2), the skew-
normal represents a superset of the normal distribution.

To reason about computed columns, we first discuss how to fit the distri-
bution to existing columns, before defining transformations that describe the
calculation of new columns. For the base table fit, we use the method of moments
as proposed by Pewsey [120], which uses the observed moments of a random
sample. For our approach, we piggyback this calculation of the moments, in the
form of descriptive statistics, onto regular table samples. To calculate these, we
take a sample 𝑋 of size 𝑛 of each numerical column and calculate the statistics
as follows:

Mean: ̄𝑥 =
∑𝑋
𝑛

Standard deviation: ̄𝜎 =
√
∑𝑋 2

𝑛
− ̄𝑥2

Skewness: ̄𝛾 =
∑𝑋 3

𝑛 − 3 ̄𝑥∑𝑋 2

𝑛 + 2 ̄𝑥3

̄𝜎3

Then, we transform the observed moments to the parameters of the skew-
normal 𝑠𝑛(𝜉 , 𝜔, 𝛼), as described by Azzalini [6, 7].

𝜉 = ̄𝑥 − 𝜔 ⋅ 𝑚

𝜔 =
√

̄𝜎2

1 − 𝑚2

𝛼 = 𝛿

√1 − 𝛿2

where

𝛿 = √𝜋/2 ⋅ 𝑚

𝑚 = 𝑜

√1 + 𝑜2

𝑜 = ± 3

√
2| ̄𝛾 |
4 − 𝜋

In Umbra, we default to a sample size of 1024 values, which we keep up-to-
date using reservoir sampling [16]. Our sampling process also incrementally
updates the observed moments, which means that we can keep online statistics
that always track the up-to-date state of the database.

Figure 2.13 shows the calculated skew-normal fit over four data sets. The
two left distributions are both generated, i.e., uniform random data from TPC-H
and a sample of a moderately skewed Zipf distribution [57]. Both distributions
on the right are from real-world data sets: Steam App statistics Metacritic
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ratings [118] and IMDb movie ratings [94]. The figure shows the underlying
data as gray histogram in the top row, and the empirical distribution function in
the bottom row. Overlayed in red, we plot the PDF and the CDF, of our inferred
skew-normal model.

Arguably, this method leads to a good fit of the underlying data. However,
the synthetic data also pinpoints a fundamental limit of this approach. The
skew-normal is unable to accurately capture the “squareness” of the uniform
random data with its heavy tails, respectively “peakiness” of left edge of the Zipf
distribution. More formally, the skew normal cannot fit the kurtosis—the fourth
statistical moment. In addition, it can only fit a limited skewness within its

parameter space (𝛾max = √2(4−𝜋)
(𝜋−2)3/2

≈ 0.9953 for 𝛼 → ∞ [7]). Thus, our model can

only truncate the skewness, while ideally, we would detect these edge cases and
switch to a better fitting distribution using a hyperparameter model. While such
a more advanced model would probably produce a better fit, the trade-off we
take here has little overhead, while still fitting a CDF that produces a relatively
low error for selectivity estimates of predicates.

This resulting statistical distribution 𝑠𝑛(𝜉 , 𝜔, 𝛼) has several applications for
our estimations. The main use-case is the estimation of ≤ predicates, like the one
in TPC-H Q18, which follows naturally from the CDF Φ𝑠𝑛 of the skew-normal:

Pr[𝑥 ≤ 𝑐] = Φ𝑠𝑛(𝑐)

Estimating equality is only possible indirectly, since the probability distribution
is continuous. As approximation, we evaluate a range predicate BETWEEN ± 𝜖
with default 𝜖 = 0.5 to get a bucket sized for one integer.

2.5.2 Transformations on the SkewNormal

To reason about computed columns, we first define arithmetic transformations
on our statistics. Given two skew normal input distributions, we model binary
arithmetic expressions to estimate predicates on computed columns. As an
example, consider the following condition on an analytical query that filters for
orders exceeding the customer’s current balance:

... WHERE
part.price * ord.quantity > cust.balance

We estimate the resulting distribution of such algebraic expressions using
∘ ∈ {+, −, ∗, /} with our statistical model. We piecewise transform the input
moments, before fitting a skew-normal distribution for the resulting computed
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column:

𝜇𝑥∘𝑦 = 𝜇𝑥 ∘ 𝜇𝑦
𝜎2𝑥∘𝑦 = 𝐸[(𝑥 ∘ 𝑦)2] − 𝜇2𝑥∘𝑦
𝛾𝑥∘𝑦 = 𝜎−3𝑥∘𝑦(𝐸[(𝑥 ∘ 𝑦)3] − 3𝜇𝑥∘𝑦𝜎2𝑥∘𝑦 − 𝜇3𝑥∘𝑦)

2.5.3 Aggregate Estimation

We extend these statistical building blocks on binary expressions to reason about
the statistical distributions of aggregated n-ary columns. Staying with a similar
example as previously, consider a query that builds an analysis on the biggest
customers that have at least a revenue of one million:

... GROUP BY cust.id HAVING
SUM(part.price * ord.quantity) > 1000000

In the following, we go over the standard SQL aggregate functions, i.e., AVG,
COUNT, MAX, MIN, and SUM, and discuss our estimates for these. Figure 2.14 shows
three examples of differently skewed input columns X in green. We model the
group sizes of these aggregates as i.i.d. random variables within the domain of
the estimated distinct values of the grouping key [50]. This results in a binomial
distribution of group sizes, which we again approximate using a skew-normal
distribution, plotted in blue. For COUNT aggregates, this already estimates the
result distribution. AVG aggregates are similarly independent of the group size
and follow the same distribution as the input of the aggregation function.

More interesting are SUM aggregates, shown in the second column, which
depend on both input statistical distributions: The distribution of the summed-
up column, and that of the group size. We approximate the resulting computed
column by a multiplication via the previously discussed transformations, and
plot the resulting calculated estimate in red.

To cross-validate the fit of this model, we simulate the calculation of the
aggregates and plot a histogram of the resulting data in gray. For MIN and MAX
aggregates, as displayed in the following two columns, we additionally need to
consider their extreme value property, which we model with a Gumbel extreme
value distribution 𝐺 [31]. Since the distributions of maximum and minimum are
symmetrical, we only detail the MAX case here, but MIN behaves similarly with
flipped signs.

Let 𝑋 be a skew-normal distributed random variable with inverse CDF quan-
tile function Φ−1

𝑠𝑛 . Then we use the theorem of Fisher-Tippet and Gnedenko [31]
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Figure 2.14: Skew-Normal Fit of Aggregates. The first column shows three
different distributions of base column and group size. The next three columns
compare simulated aggregates with a calculated fit of our skew-normal estimator.
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to find parameters for the extreme value distribution 𝐺(𝜇, 𝜎):

𝜇 = Φ−1
𝑠𝑛 (1 −

1
𝑛
)

𝜎 = Φ−1
𝑠𝑛 (1 −

1
𝑛
𝑒−1) − 𝜇

Then, we fit a skew-normal distribution to 𝐺(𝜇, 𝜎) to make our model closed. The
resulting models provide insight on the expected distribution of such computed
columns. For our query optimization pipeline, this means that we can provide
accurate input for subsequent cost-based join-ordering. Good estimates, in
combination with low-contention parallel execution, then produce near-optimal
query plans.

2.6 Evaluation of Estimates
In this chapter, we present the experimental evaluation of the quality of our
aggregate estimations in our research RDBMS Umbra [113]. We determine
how much impact improved aggregate estimates have with a comparison of the
estimated cardinalities for predicates on aggregated columns. We compare our
implementation to three other RDBMS, before isolating the effect of aggregate
estimation.

In TPC-H, the only query with a nested aggregation is the Large Volume
Customer Query Q18, with a fairly simple HAVING predicate. To focus on the
quality of aggregate estimates, we only consider its subquery in this experiment:

SELECT l_orderkey
FROM lineitem
GROUP BY l_orderkey
HAVING SUM(l_quantity) > THRESHOLD

The subquery sums the quantity of items in an order and only selects the orders
with the most numerous items. As described in the TPC-H specification, the
threshold over which an order is considered large is a substitution parameter.
In our experiment, we extend the range of this parameter to vary the predicate
selectivity from 0 % to 100 % and also consider more challenging expressions.

Systems Comparison In the first part of our evaluation of aggregate esti-
mates, we consider a total of four database management systems: Tableau Hyper
via its Python API 0.0.15145, DBMS X, PostgreSQL 14.4, and our research system
Umbra [113]. To get accurate cardinality estimates, we load the TPC-H scale
factor 1 validation data into an empty database. Then, we ensure that the DBMS
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Figure 2.15: Estimates for TPC-H Q18 style subqueries.

has accurate statistics over this data by issuing control commands to regenerate
statistics, if such commands exist. Afterwards, we execute the subquery with the
substituted constant and extract the query plan. For this evaluation, we record
the estimated, and the true cardinality in four different scenarios that are similar
to the subquery of TPC-H Q18. First the regular Q18 aggregate over the uni-
form random base column sum(quantity), and with a skewed Zipf 0.5 quantity.
As a slightly more complex aggregate, we use sum(quantity * price), again
on the uniform random base columns, and with an additional anti-correlation
(𝜌 = −0.7) between quantity and price (i.e., the higher the price, the lower the
quantity). Note, that all these scenarios depend on group-size estimates, which
we do not consider in the scope of our work, but refer to previous work [50].

Figure 2.15 shows this data, where the ground truth cardinality describes
a decreasing curve that corresponds to higher thresholds. Our presented esti-
mation framework in Umbra is close to the ground truth over the whole range
of the threshold, even for complex predicates. In the simple scenarios with
aggregates over a single column, DBMS X behaves similar. However, it does
not publicly describe or document the underlying model. In addition, it falls
back to estimating “magic constants” for expressions referencing more than
one base column. That means, when the selectivity for a predicate cannot be
determined, the systems just estimate a fixed fraction of the estimated input



2.6. EVALUATION OF ESTIMATES 37

cardinality. Indeed, Hyper estimates 1/2 of its input estimate and PostgreSQL
1/3.

Isolating the Impact of Aggregate Estimates We established that our
estimates capture the cardinality of HAVING predicates. In the following, we
isolate the impact of these aggregate estimations, and increase the complexity
of queries and data sets. To eliminate other factors, we emulate the selectivity
estimation with a fixed selectivity inside Umbra. This allows a more clear-cut
evaluation of the impact of Umbra’s skew-normal model on the estimation.

This evaluation uses queries on two real-world data sets. In contrast to
the generated TPC-H data, these are full of correlations and non-uniform data
distributions. The first data set is the Internet Movie Database (IMDb), in a
slightly modified form from the Join Order Benchmark (JOB)3: Since IMDb
primarily stores facts as strings, we extract a separate table that contains the
vote count and the user rating for movies, to allow statistics collection. On these
columns, we define five additional aggregation queries that calculate statistics
on the new numerical columns. Furthermore, we also consider aggregation
queries derived from public workbooks in Tableau Public4. The query set is
available online5.

To measure the quality of the estimates, we report the q-error. The q-error
measures the factor that an estimate differs from the ground truth. It captures
the relative difference to the real value and is symmetric and multiplicative. For
example, a q-error of one means that the estimate accurately captured the true
cardinality, and a q-error of 10 corresponds either an over- or underestimation
by a factor of 10. With a bounded q-error, it is also possible to give a theoretical
guarantee about the optimal query plan quality [105].

In Figure 2.16, we visualize the quality of our estimates from over 100
individual queries with predicates on aggregates. For the IMDb queries, we vary
a replacement parameter of a having predicate, similar to the last experiment,
to cover the whole range of 0 to 100 % true selectivity. From the public BI
benchmark, we consider all queries that evaluate a predicate on more than one
aggregation tuple. In total, this gives us 82 IMDb aggregation queries and 48
aggregation queries from the public BI benchmark. Each box in this plot shows
the median and the first and third quartiles, with individual dots for outliers.

The quality of our estimates strongly depends on the calculated statistics.
For Q35 to Q38, the estimates are close to the true cardinality, with occasional
outliers on the tail edges of the distribution, i.e., when the predicate is very

3https://homepages.cwi.nl/~boncz/job/imdb.tgz
4https://github.com/cwida/public_bi_benchmark
5https://db.in.tum.de/~fent/data/aggEst.tgz

https://homepages.cwi.nl/~boncz/job/imdb.tgz
https://github.com/cwida/public_bi_benchmark
https://db.in.tum.de/~fent/data/aggEst.tgz
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Figure 2.16: Estimation quality of aggregation queries. The box plots show the
log-scale q-error of our estimates in comparison to the static selectivity of Hyper.
Our skew-normal model reduces the geomean q-error by 46 % from 45.8 to 24.7.

selective. Our estimates, compared to a static selectivity estimation, capture
the shape of the aggregates better and reduce over- as well as underestimation.
Q34 shows one of the shortcomings of our approach, where a sum aggregate
combines two distributions with heavy tails. In comparison to static selectivity
estimation, our skew-normal model improves the error, but is limited by the
quality of the baseline group size estimates. We found that for static estimation,
we get the least error with the 1/2 fraction that Hyper uses, which we compare
in Figure 2.16. In comparison to this configuration, our skew-normal selectivity
estimation is a clear advantage and reduces the geometric mean of the q-errors
from 45.8 to 24.7, which eliminates the impact of bad selectivity estimation.

To summarize, computed column estimates improve the estimation quality
of nested aggregates. In combination with efficient parallel groupjoins, this can
have significant impact on query performance. Figure 2.17 shows a breakdown
of the affected queries in TPC-H and TPC-DS. Most queries see a moderate
speedup, with only one major slowdown in TPC-DS Q73. The slowdown arises
due to a worse logical plan, where previous the magic-constant estimation had
a lucky guess and canceled out an unrelated error in group-size estimation.
Nevertheless, it is still valuable to improve estimates so that they can capture
the behavior of nested aggregates. Over the affected queries, we get a geometric
mean speedup of 23 % in TPC-H and 6 % in TPC-DS.
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Figure 2.17: Overall Impact on TPC-H and TPC-DS.

2.7 Planning with Groupjoins
Our previous discussions of the groupjoin focussed on the implementation of an
individual operator. By choosing an optimal execution strategy, we get cheaper
physical execution plans. In the following, we use groupjoins to reason about
the whole logical query plan and improve its overall quality.

So far, we only considered strictly better plans by opportunistically intro-
ducing groupjoins when our join reordering [116] produces a suitable plan.
Specifically, this requires that the resulting plan resembles Figure 2.18a, and
contains a sequence of matching group-by and join without intermediary opera-
tors. Figure 2.18b illustrates that this misses opportunities for plans with nested
aggregates. Thus, planning of groupjoins early on produces better and more
robust query plans. Instead of introducing groupjoins opportunistically, we
look for and eagerly introduce groupjoins for nested aggregates. This improves
the plan for this potential groupjoin, and helps to find a better overall plan by
providing reordering possibilities. We first show, how we eagerly introduce
groupjoins in our logical query plan, before we discuss two example queries
from TPC-H that benefit from this optimization.

2.7.1 Eagerly Introducing Groupjoins

For join ordering, we build a query graph that connects relations by join predi-
cates. For the initial construction of this graph, we consider any non inner-joins
as relations [125]. As a consequence, group-by operations form boundaries of
our reordering graphs.
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Figure 2.18: Physical planning of groupjoin operators depends on join ordering.
A purely opportunistic approach misses non-trivial combinations.

Algorithm 4: Identifying Groupjoins.

input: JoinGraph (relations, predicates)
for each GroupBy Γ ∈ relations:

ps <- predicates joining on Γ.key
// Precondition 1

if ps does not cover Γ.key completely:
continue

R <- opposite relation(s) of ps
// Precondition 2

if ps is not a superkey of R:
continue

push (R ps Γ.key) below Γ

We identify potential groupjoins in this graph via Algorithm 4. The algo-
rithm first identifies potential group-bys in the input relations and checks the
preconditions to introduce a groupjoin, i.e., that we have a foreign key join with
the group-by key (cf. Section 2.2.1). However, we do not immediately introduce
a groupjoin, but only push this join into the group-by inputs. Swapping join and
group-by allows optimizing the input even further [155]. If the join is selective,
we might want to push it even further down. Keeping this conceptual groupjoin
separated allows our standard reordering algorithm to determine the optimal
plan. Otherwise, the join will end up at the top of the subtree, and we choose a
fitting groupjoin according to our cost model (Section 2.3.5).

As a result, we get an improved intermediary plan with a conceptual group-
join. While this plan does not necessarily result in the execution of a groupjoin,
the resulting plan is strictly better than the initial plan.
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Figure 2.19: Intermediary planned groupjoin for TPC-H Q2.

2.7.2 Additional Groupjoins in TPC-H
In the following, we show that this eagerly introduction of groupjoins also
practically results in better plans. In TPC-H, there are two queries with such
groupjoins over nested aggregates: Q2 and Q20.

TPC-HQ2 finds theminimum cost supplier for certain parts using a dependent
subquery. With basic decorrelation, we calculate the minimum supply cost for all
parts, before joining with the specific parts. Figure 2.19 shows a first execution
plan to evaluate this query. Note that we abbreviated the trivial join between
region and nation as the CTE “europe”.

In this plan, Algorithm 4 detects a groupjoin for the nested aggregate of the
join with part. Therefore, we conceptually introduce the groupjoin shown in
Figure 2.19. The overall utility of physically executing this groupjoin is limited,
but it acts as a useful stepping stone during query planning. We then push the
join below the group-by and consider it during join reordering in the lower
subtree.

In a first approximation, this technique generates plans that are somewhat
similar to the common optimization technique of introducing semi join reduc-
tions to filter the partsupp relation earlier [34, 146]. However, since we directly
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Figure 2.20: Final plan for TPC-H Q2.

join with the interesting parts, we can avoid duplicating the work of selecting
the correct parts. Besides, in the final query plan shown in Figure 2.20, we do
not build a hash table over the parts, but use index joins, as the filtered part
table is about three orders of magnitude smaller than its join partner. Thus, we
can avoid the costly full table scan of the largest table in this query, partsupp,
which greatly improves its runtime.

TPC-HQ20 identifies suppliers that have an excess of parts, that it determines
via an aggregation over lineitem in a dependent subquery. In this subquery,
we join with the partsupp relation, which we unnest initially as an outer join
with the aggregate. When we collect the join graph for this query, Algorithm 4
detects that this is a groupjoin and pushes the join with part and partsupp down
the aggregation. Then, we estimate the predicate on the nested aggregate using
the statistical method presented in Section 2.5, which reduces the estimation
q-error from 2.4 with no statistics to 1.2. Then, our join optimizer determines
the optimal join order for the input of the nested aggregate, where we join early
with the parts we are interested in. As a consequence, we execute the join we
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Figure 2.21: Groupjoin query plan for TPC-H Q20.

identified as a groupjoin last and introduce a groupjoin again, arriving at the
plan shown in Figure 2.21.

Impact In both queries, this technique aids the performance of unnested
aggregates. For correlated predicates in an aggregate subquery, we transform
these into a group-by key and a join over this key. When this additionally
is a foreign key, our presented transformation of conceptually introducing
groupjoins before reordering additionally improves these plans. Note, that this
is not limited to automatically decorrelated queries, but also if the query had
been flattened manually. In addition to the performance improvement already
shown in the Evaluation in Section 2.4 and 2.6, we get additional speedups.
While the two example queries from TPC-H previously had no performance
changes, the changes in our query planner now result in a 67 % speedup in Q2
and a 35% speedup in Q20.

2.8 Eager Aggregation
In Section 2.7.1 we have explored pushing a group-by below a join in the context
of groupjoins. In this section, we evaluate eager aggregations in general, pushing
group-by operators further down a join tree. We propose a fast greedy approach
to eager aggregation with a near-optimality guarantee, that results in significant
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Figure 2.22: Eager Aggregation of TPC-DS Q22.

speedups to 11 TPC-DS queries with queries 2, 22, and 59 almost reaching a 3×
speedup.

Pushing a group-by down a join reduces the amount of tuples going into
the join by eliminating duplicates. However, duplicates are uncommon, and
eager aggregations can be costly. Thus, an eager aggregation strategy needs to
intelligently identify the beneficial cases in a cost based manner.

Our eager aggregation builds on the fundamentals by Yan and Larson [155].
Chaudhuri and Shim [24] introduce a greedy heuristic for introducing eager
aggregation into a join tree, however, their heuristic lacks strong guarantees on
the cost of the resulting plan. We introduce an improved greedy heuristic that is
guaranteed to generate plans that are optimal in cost up to a constant factor. Eich
et al. [40] incorporate eager aggregations into existing dynamic programming
approaches to generate optimal plans, but their approach incurs an exponential
increase in optimization time. Using our greedy heuristic, near optimality
can be achieved without sacrificing optimization time. In the following we
summarize the fundamentals and discuss the integration of our approach into a
modern optimizer. We additionally describe a cardinality estimation technique
for pushed down group-by operators that allows for more consistent and reliable
estimations.

As motivating example, consider the query tree of the TPC-DS Query 22
in Figure 2.22a. This query first looks up the inventories of a certain date
range, before finding their corresponding items, and aggregating some business
metrics. However, in the end we are only interested in results per item. So, we
are only interested in the aggregates on i_item_sk that we need to execute
the following join, but not any particular sale or date. This means that we can
preaggregate before the join with item and significantly reduce the costs of
the join. Figure 2.22b shows the preaggreagted query tree. Note that we first
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group on inv_date_sk=i_item_sk and then group again on other attributes
of item. As the newly placed group-by and the join directly above have the
same hash table key we merge them into an eager groupjoin in Figure 2.22c
(cf. Section 2.3.1). However, this groupjoin has the slight twist that we relax
Precondition 2 and allow duplicates, since we aggregate them properly later.

With this strategy, we can reduce the incoming tuples into a join with an
additional group-by, which we refer to as preaggregation Γ∗. To generalize
this example, we first discuss when and how preaggregations can be placed to
determine the space of possibilities for eager aggregation. Then we reduce this
space to useful eager aggregations with a cardinality estimation strategy and a
corresponding cost model. This model lends itself to a greedy approach, which
we use to find near-optimal arrangements of eager aggregations.

2.8.1 Placement of Preaggregation
There are almost no limits to where we can apply eager aggregation within a
query [61]. We show this by first discussing how to represent duplicates of tuples,
and how eager aggregation allows us to switch between these representations
at will. Then, we study an example of the steps that we take to apply eager
aggregation while guaranteeing that the resulting query is equivalent to the
original query.

Relational algebra, as extended by Grefen and de By [58], works on multisets
(or bags) of tuples. A multiset can contain multiple entries of the same tuple,
where we refer to the amount of duplicates of a tuple as its multiplicity. Multisets
can be represented practically in two main ways:

1. All duplicates are stored and processed as separate copies, i.e., the ex-
panded representation. This represents tuple 𝑎 with three duplicates and
a singleton 𝑏 as {𝑎, 𝑎, 𝑎, 𝑏}

2. The multiplicity is stored within the tuple as an additional attribute 𝑚, i.e.,
the (strongly) aggregated representation. We represent our example tuple
as {𝑎3, 𝑏1}, where the superscript denotes the tuple’s multiplicity.

The expanded representation of multisets is widely used, easy to implement,
and performant. However, it results in repeated work for duplicates, as the
same computations have to be performed for different copies of the same values.
The aggregated representation allows us to eliminate such inefficiencies, but
is difficult to maintain. As different operators are applied and the projection
onto the required attributes shrinks, duplicates can arise, unless tuples are
constantly re-aggregated after every operator. We define the weakly aggregated
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Figure 2.23: Possible plans using the potential preaggregation placements.

representation, that has both the desirable qualities of the strongly aggregated
representation, but is easier to maintain. The weakly aggregated representation
may contain multiple entries of the same tuple with different multiplicities.
{𝑎3, 𝑏1}, {𝑎2, 𝑎1, 𝑏1}, {𝑎1, 𝑎1, 𝑎1, 𝑏1} are all valid weakly aggregated representations
of {𝑎3, 𝑏1}. The multiplicity of a tuple 𝑎 in a weakly aggregated representation is
the sum of all the multiplicities of all the occurrences of 𝑎.

Eager aggregation allows us to intelligently switch from the expanded rep-
resentation to the aggregated representation. To switch to the aggregated repre-
sentation, we place a preaggregation operator [88] which can also be interpreted
as a generalized projection [61]. Preaggregations should eliminate as many
duplicates as possible, i.e., aggregate together as many tuples as possible, while
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guaranteeing that the query result is correct. When placing a preaggregation,
we transform the data into the strongly aggregated representation, then do
small modifications above the preaggregation to efficiently maintain a weakly
aggregated representation. While we use group-bys as our preaggregation op-
erators, a partial preaggregation operator [88] that produces tuples in weakly
aggregated representation may be used analogously. If the query result, or a
specific operator requires the expanded representation as input, we can use an
expand-operator [61] to transform the data back to that representation.

Preaggregations can be applied in any join tree. If the result of that join
tree is to be aggregated with a group-by, it is more likely that preaggregations
will be useful, as the existence of the group-by in the query implies that there
likely will be duplicates in the join tree’s result. Thus, we will focus on apply-
ing preaggregations below a group-by, or similarly, a non-duplicate sensitive
operator such as distinct, or the set operations intersect, union, and except. In
these cases, an expand-operator is not even needed, as the result of the join tree
can be directly processed in the (weakly) aggregated representation.

Γ̂r;a:avg(T.v)

r = t

r = s t = u

2

R 1 S T 3 U

Figure 2.24: Potential preaggregation placements.

Consider the example join tree below a group-by shown in Figure 2.24.
Suppose our optimizer determines that duplicates are likely at points 1 , 2 , and
3 during the execution. Thus, we want to place preaggregation operators there
to eliminate duplicates and speedup the execution. To simplify, we assume that
all aggregates of Γ̂ are decomposable [40], which is true for our example with
the 𝑎𝑣𝑔 function.

By introducing a preaggregation operator Γ∗, we eagerly aggregate the re-
quired attributes for Γ̂ in the subtree below Γ∗. All non-preaggregated attributes,
e.g., Γ̂’s key and join predicates, form the key of the preaggregation. When an
attribute is preaggregated, it is split into three operations:

1. Initial aggregation, which computes an aggregate on attributes that have
not been preaggregated.

2. Merge aggregation, which aggregates on preaggregations.
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3. Finalization, computing an expression on aggregations.

For 𝑎𝑣𝑔(𝑣), the initial aggregation is 𝑠 ∶ 𝑠𝑢𝑚(𝑣), 𝑐 ∶ 𝑐𝑜𝑢𝑛𝑡(𝑣). In an inter-
mediary step, we merge them: 𝑠 ∶ 𝑠𝑢𝑚(𝑠), 𝑐 ∶ 𝑠𝑢𝑚(𝑐). We then calculate the
final aggregate as 𝑠

𝑐 . In Figure 2.23a, we place a preaggregation at 3 , where it

calculates the initial aggregates, while Γ̂merges and finalizes them. Figure 2.23b
shows an additional preaggregation placed in between at 2 , which merges the
aggregates from its input.

If we also preaggregate at 1 , we need to compute and propagate the multi-
plicity with a 𝑐𝑜𝑢𝑛𝑡(∗) aggregate. The top aggregate in Figure 2.23c then uses
this multiplicity for the finalization of its duplicate sensitive aggregates, by
multiplying their inputs with the multiplicity.

We refer to the correction of aggregates with a multiplicity as a multiplica-
tion mapping, which we also utilize for computing groupjoins in Section 2.3.1.
We maintain a weakly aggregated representation of the tuples by using these
multiplications. Such a multiplication is needed when both sides of a join are
preaggregated. Aggregates of the left side are multiplied with the multiplicity
of the right side and aggregates of the right side are multiplied with the multi-
plicity of the left side. The multiplicities of both sides are multiplied, resulting
in the output multiplicity. Note that the multiplicity for the empty side after an
outer join is 1. A multiplication is also required when only one side of a join is
preaggregated, but attributes from the other side will be later aggregated above
the join. Figure 2.23d shows an example with all preaggragations applied. In
summary:

• We first determine suitable aggregates of Γ̂, and include any free attributes
in the preaggregation key.

• Then, we decompose the aggregates of Γ̂, depending on whether the input
already is preaggregated.

• Lastly, we apply multiplication mappings to maintain correct weakly
aggregated representation.

For a detailed listing of decompositions for various aggregates and eager
aggregation transformations, we refer to the works by Gupta et al. [61] and Eich
et al. [40].

2.8.2 Cardinality Estimation Strategy for Preaggregation
To find the optimal plan, join order optimizers estimate the cardinalities and
costs of many plans, which means this process should be both fast and accurate.
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As we want our join optimizer to consider preaggregations as well, we need fast
and accurate estimations for preaggregation result cardinalities. Additionally,
we need our estimations to be consistent. Comparing the costs of plans with
preaggregations and without should make sense.

To estimate the cardinality of preaggregation, one can naïvely use the stan-
dard cardinality estimator of full group-by. This approach has multiple issues.
Firstly, the estimators for a full group-by are generally more involved and slower
than the join size estimators used within an optimizer. Secondly, optimizers have
issues meaningfully comparing join and group-by estimations as estimators tend
to underestimate joins and overestimate group-bys in many systems including
but not limited to Umbra [113] and PostgreSQL. This is due to the contradictory
way the independence assumption is generally applied to these two operators.
The cardinality estimates of joins are usually based on the multiplication of indi-
vidual selectivities of predicates, resulting in underestimations. The cardinality
estimates of group-bys are usually based on the multiplication of the domain
sizes of the key attributes, resulting in overestimations. These estimations are
often “corrected” with a variety of heuristics, which do improve the results, but
do not fundamentally change their shortcomings.

We neither want to reuse group-by estimators nor introduce a new cardi-
nality estimator specifically for preaggregations. Regardless of how accurate
such an estimator is, it will not be useful unless its estimations are sensibly
comparable with join size estimations. Thus, we propose a simple strategy that
relies on cardinality estimations of semi joins.

We know that |𝑋 𝑎Γ𝑎(𝑌 )| = |𝑋 𝑎𝑌 | for two relations 𝑋 and 𝑌. Thus, we want
to pick an estimate for |Γ𝑎(𝑌 )| in such a way that the estimate of the upcoming
join cardinality |𝑋 𝑎Γ𝑎(𝑌 )| would be the same as the estimate for |𝑋 𝑎𝑌 |. So, our
estimate for |Γ𝑎(𝑌 )| is the size of 𝑌 ′ such that |𝑋 𝑎𝑌 ′| = |𝑋 𝑎𝑌 |. If we use simple
estimators for join and semi join based on (relative) selectivities, this results
in the equivalence |Γ𝑎(𝑌 )| =

𝜎𝑋
𝜎 , where 𝜎 is the selectivity and 𝜎𝑋 is the relative

left selectivity of the join. This estimate fits well into a join optimizer that also
considers preaggregations, as it needs to compare the cardinalities of plans of
different join orderings and preaggregations. By using a common system to
estimate both joins and preaggregations, we avoid introducing inconsistent
estimates, which would result in the optimizer making subpar decisions.

We have shown our estimate for the case when preaggregation and join
share the same key. If the preaggregation’s key contains additional attributes
from base relations which are not key sides of a key-foreign key join, these
attributes may cause the number of distinct groups to increase. Let us consider
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the general case in the presence of multiple joins and additional attributes.

ℛ ≔ the join tree of a subset of relations
𝒥 ≔ upcoming joins of the form 𝑆 ℛ where

𝑆 ∉ ℛ
𝒦 ≔ the key attributes of the preaggregation

𝒜(𝑅) ≔ the attributes of a relation 𝑅
𝑑𝑣(𝑅𝑖) ≔ Estimate for |Γ𝒦∩𝒜(𝑅𝑖)(𝑅𝑖)| for a relation

𝑅𝑖 using an existing group-by estimator

Then our estimate 𝑣 for |Γ∗(ℛ)| is:

𝑣 = ∏
𝑗∈𝒥

𝜎𝑆(𝑗)
𝜎(𝑗)

⋅ ∏
𝑅𝑖∈ℛ

{
1, if 𝑅𝑖 is key side of a 𝑗 ∈ 𝒥
𝑑𝑣(𝑅𝑖), otherwise

2.8.3 Integrating Eager Aggregation into an Optimizer
Eager aggregation can theoretically speed up queries significantly, as there
is no upper bound on the number of duplicates in multiset relational algebra.
However, in reality, a high percentage of joins are key-foreign key joins [39]
which do not produce any duplicates and prevent many eager aggregations, as
any preaggregation within the key side of the join needs to contain the key,
which makes such a preaggregation useless. So we need an efficient intelligent
optimizer that can recognize when eager aggregations will be useful, apply
eager aggregation when needed for significant gains in performance, and avoid
them when they are not needed. Additionally, with the placement of eager
aggregations, the optimal join orderings for a query can change as an eager
aggregation can significantly reduce the cardinalities of subtrees. This further
indicates the need to deeply integrate eager aggregations into a join optimizer.

Chaudhuri and Shim [24] propose a conservative (constant additional time
per generated plan) and greedy (locally evaluated costs) optimization technique
for eager aggregation. This technique extends an existing optimizer with an
additional step that places a preaggregation directly below a join, if it locally
improves the cost for that join. This is guaranteed to globally improve costs,
as placing a preaggregation only decreases cardinalities and, thus, decreases
costs above the preaggregation. However, this technique does not guarantee to
generate optimally preaggregated plans. Instead, it only improves the (imperfect)
plans of the original optimizer that does not consider preaggregations. Note
that the best plan without any preaggregation can have a significantly higher
cost than the optimal plan with preaggregations.
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Figure 2.25: Four alternative plans considered by the optimizer. All costs contain
the cost of a preaggregation on the join.

Let 𝑇 ∗ be the globally optimal plan among all possible plans with and without
preaggregations. Let 𝐽 ∗ be the best plan without any preaggregations. In the
worst case, the overhead denoted by 𝐶(𝐽 ∗)

𝐶(𝑇 ∗) can be on the order of 𝒪(𝑛𝑘) where
𝐶(𝑇 ) is a cost function, relations have sizes 𝒪(𝑛), and there are 𝑂(𝑘) relations.
So 𝐽 ∗ can have an exponentially higher cost than 𝑇 ∗. The plans generated with
Chaudhuri and Shim’s greedy technique is guaranteed to have a cost lower
than 𝐽 ∗. However, this is a really high upper bound for queries where eager
aggregation may be extremely useful, such as queries with multiple N-to-M
joins. We propose a slightly different conservative greedy technique which is
guaranteed to generate plans with costs 𝒪(𝐶(𝑇 ∗)), meaning that our technique
generates plans which are at most a constant factor larger than the globally
optimal plan.

We start with the optimal query plan 𝑇 ∗ among all possible plans, including
plans with preaggregations. We take this plan 𝑇 ∗ and place additional preag-
gregations after every single join in a risk averse way. We call the new fully
preaggregated plan 𝑓 (𝑇 ∗). As 𝑇 ∗ was optimal, placing these preaggregations
increased the cost of the plan. However, as a preaggregation operator can not
produce more tuples than it consumes, and assuming the cost of a preaggrega-
tion operator is linear in its input size, placing additional preaggregations can
only increase costs by a constant factor. Thus, 𝑓 (𝑇 ∗) is optimal up to a constant
factor. This implies that any fully preaggregated plan 𝑓 (𝑇 ′) better than the fully
preaggregated optimal plan 𝑓 (𝑇 ∗) is also optimal up to a constant factor.

It is trivial to modify a join optimizer to find the best fully preaggregated
plan as the structure of fully preaggregated plans are simple; every join is
always followed by a preaggregation. The optimizer should simply place a
preaggregation on top of every (sub-)plan it evaluates. As we have shown,
such a plan is guaranteed to be optimal up to a constant factor as it would
have a lower cost than 𝑓 (𝑇 ∗), the fully preaggregated version of the optimal
plan. However, a plan with preaggregations everywhere is suboptimal. Thus,
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we can use a greedy approach to remove preaggregations and improve the
generated plan even further. We iterate on every join, bottom-up, and remove
the preaggregation on the join’s left and/or right, if this locally improves the
cost for the subtree including the preaggregation above this join. As we also
consider the preaggregation above the join, and as the preaggregation’s output
size is not dependent on its input’s size, this operation is guaranteed to reduce
costs globally as well. The four alternative plans that are considered are shown
in Figure 2.25, where the join’s inputs are denoted by 𝑅 and 𝑆. This approach
guarantees the cost upper bound 𝒪(𝐶(𝑇 ∗)).

In our database system Umbra, we have integrated this optimization strategy
into the adaptive optimization framework [116] which can compute optimal
join plans for small queries using DPHyp [104] and high quality plans for larger
queries using LinDP++ [125] and iterative DP [86]. With the consideration of
these 4 preaggregated alternatives when building operator trees, the adaptive
optimizer is able to generate high quality plans with preaggregations for a wide
variety of query sizes.

Note that our approach is equivalent to the Chaudhuri and Shim [24] ap-
proach for a simple preaggregation cost function that does not depend on the
input size such as 𝐶𝑏𝑎𝑑(Γ∗(𝑇 )) = 𝒪(|Γ∗(𝑇 )|) + 𝐶(𝑇 ). Such a cost function is not
desirable as it underestimates costs and results in preaggregations being placed
too eagerly. For example, in TPC-DS SF10 Query 22 as shown in Figure 2.22a,
an additional group-by above inventory is placed when 𝐶𝑏𝑎𝑑 is used. This does
improve the join with date_dim, but not enough to be worth the group-by’s
cost. Thus, we use a cost function of the form 𝐶(Γ∗(𝑇 )) = |𝑇 |+𝒪(|Γ∗(𝑇 )|)+𝐶(𝑇 ).

A final optimization step after the generation of preaggregation operators is
to pull up these preaggregations into the joins above when possible, thus gener-
ating eager groupjoins instead of a join and a group-by. This final optimization
step can result in significant performance improvements as one less pipeline
needs to be generated and processed.

2.8.4 Evaluation of Eager Aggregation
We have evaluated our eager aggregation strategy on the TPC-H and TPC-DS
Benchmarks. Both these benchmarks contain many join trees below group-bys.
However, most of their queries are not amenable to eager aggregation, as most
of the joins below group-bys are key-foreign key joins which are unlikely to
produce duplicates. Thus, the eager aggregation strategy does not change the
plans generated for the TPC-H queries. However, eager aggregation results in
significant improvements to some queries in TPC-DS.

For TPC-DS SF 10, our optimizer places preaggregations in 22 out of 103
queries with a geometric mean speedup of around 20% for those 22 queries.
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Figure 2.26: Overall Impact of Eager Aggregation on TPC-DS.

Figure 2.26 shows the relative speedups of individual queries. Q2, Q22, and
Q59 with eager aggregation applied run more than 2.8 times as fast as their
non-eagerly aggregated counterparts.

The queries with the biggest wins have a costly top group-by but simple
preaggregations. Their group-bys contain multiple attributes, some of them
strings, and may require additional processing for features such as ROLLUP. As
join predicates primarily use integer keys, preaggregations below joins have
integer keys as well. The costly attributes are functionally dependent on the
integer keys; thus, they can be excluded from preaggregation keys. While our
cost functions do not consider the costs of processing individual attributes, we
tend to overestimate cardinalities of group-bys with larger keys, causing the
optimizer to prefer simpler preaggregations.

2.9 Groupjoins in Detail
For a qualitative analysis on the impact of groupjoins, we now take a detailed
look at the queries in TPC-H that benefit from using groupjoins. In the previous
sections, we already saw improved query plans. In this section, we focus on the
operator selection for physical execution. Choosing the right physical execution
strategy improves performance considerably, but is still sensitive to imperfect
cardinality estimates.

We visualize query plans in tree form andmark our code generation pipelines
with colored regions on its branches. The lowest operator of a pipeline typically
generates a loop that drives the query execution. Intermediary operators then
execute the query logic, before the pipelines ends at a materialization point,
e.g., building a join hash table. In our interactive online query plan demonstra-
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Figure 2.27: Query plan for TPC-H Q3.

tion6, we use the same notation and provide additional details of intermediary
optimization and cardinality estimation.

When edges between a base table and a join are not part of a pipeline, i.e.,
not included in a colored region, we determined it advantageous to use an index
to access the table. We additionally mark all edges between operators with the
cardinality of tuples that are produced on the TPC-H scale factor 10, which
allows us to reason about the quality of our produced plans.

TPC-H Q3 We execute this query with a groupjoin for the top level aggregate.
During optimizing of the group-by, we determine the equivalence relation
between l_orderkey and o_orderkey through the join condition. Thus, we can
eliminate the functionally dependent keys o_orderdate and o_shippriority, and,
since we now join and aggregate over the same key, we introduce a groupjoin.

Figure 2.27 shows Umbra’s execution plan for this query. In contrast to
the cost model calculation in Table 2.3, our optimizer chooses to execute a
suboptimal memoizing groupjoin. This is mainly caused by a misestimation of
the relative left selectivity of the groupjoin. In this query, the filter predicates
on the lineitem and order dates are correlated, but Umbra’s estimations do not
consider correlations [79, 94]. In turn, only about a tenth of the groups in the
memoizing hash table have a match, which wastes relatively much space.

The execution of this query spends most time in the groupjoin. Figure 2.28
shows a trace of the operator activity over the execution [13]. Note that to get a
precise trace, we gathered it on a recent Ice Lake system and limited parallelism,
so the total execution time is not comparable to our previous evaluation. In the
plot, the relative frequency, combined with the execution time, indicates the
cost of executing operators. When focussing on the groupjoin, we observe its
presence in four phases. In its first phase, it works in a pipeline along the table

6https://umbra-db.com/interface/

https://umbra-db.com/interface/
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Figure 2.28: Operator Trace of TPC-H Q3.

scan of orders and the join with customer, and collects tuples in kernel allocated
memory. In the second phase, it builds the hash table, before probing it with the
tuples of lineitem, and scanning the results to sort and output them.

TPC-H Q13 Figure 2.29 shows the physical execution plan of this query. In
it, we first calculate a nested aggregate, where we count how many orders
each customer has made. However, we also want to consider customers that
have no recorded orders, so this query needs proper outer join semantics in the
groupjoin. Since we match all customers, an eager right aggregation strategy is
very advantageous.

After probing the eagerly built right aggregation hash table with the cus-
tomer keys, we continue with the next aggregation that calculates the histogram
over the amount of orders. This way, we directly aggregate the customers in one
of the few top level groups. This pipelining, as indicated by the marked colors,
keeps tuples hot and usually directly in CPU registers. In effect, we execute this
query with two small, hot aggregation loops.

TPC-H Q17 The query plan shown in Figure 2.30, again benefits from unnest-
ing. While we do have a static whole subquery aggregate avg(l_quantity),
this aggregate does not require a complex unnesting that would require all
empty aggregates of the domain. Instead, we directly use all parts and join them
with a groupjoin with “inner join” semantics.

Since we only have two predicates directly on the part table, we have correct
estimates, and we confidently know that the qualifying parts are four orders of
magnitude fewer than lineitem. Thus, we use the foreign key index on l_partkey
and calculate the groupjoin aggregate pipelined, and directly continue with
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Figure 2.30: Query plan for TPC-H Q17.

another probe of the same index. We then sum up the price of the matching
tuples in the top level, before finally calculating the yearly average.

On a tangent, this still does some duplicate work, since we probe lineitem
twice and check the partkey equivalence condition twice. As a theoretical
improvement, one could execute both, groupjoin and join, with a single index
lookup using the partkey. We could first calculate the aggregate for this key,
before resetting and scanning the current probe index cursor again, this time
checking the quantity predicate.

TPC-H Q18 This query has several interesting challenges. As we already
discussed in Section 2.5, estimating the having predicate on the nested aggregate
(sum > 300) is challenging. Originally, we also had a semijoin with orders as the
literal translation of the IN expression. We transform it to an easier to execute
inner join in a subsequent optimization, since we join over the key of the nested



2.9. GROUPJOINS IN DETAIL 57

624

624

624

624

15M

60M

1.5M

15M

60M

Γ
o_orderkey = l_orderkey

c_custkey = o_custkey

c_orderkey = l_orderkey

𝜎sum > 300

Γl_orderkey
lineitem

orders

customer

lineitem

Figure 2.31: Query plan for TPC-H Q18.

aggregate, which results in the query plan shown in Figure 2.31. For the top
level aggregate, we also use our knowledge of such functional dependencies
of the key and drop the four functionally dependent keys, which allows the
combined groupjoin with lineitem.

For physical execution, the theoretically best approach would be to use three
index lookups for orders, customer, and lineitem. However, our estimates are
still too uncertain, and we still estimate the left side relatively large. Umbra
currently does not use in-memory optimized indexes like ART [92], but uses a
more traditional disk-oriented B-tree index [11]. Since these index lookups are
relatively expensive, we only use them when they are definitively faster than
a full table scan. For the smaller tables, our current heuristics do not use the
index, but for the large groupjoin with lineitem using the foreign key index is
very advantageous.

Observations Similar to the improvements of Q2 and Q20 that we saw in
Section 2.7.2, unnesting is again one of the key techniques for Q17. Since we
first calculate the tiny domain, we can use a very efficient index lookup over
lineitem to calculate the groupjoin result.

Using index lookups to answer queries is often very profitable, but one
limiting factor for them are estimation errors. For example, in Q18, we use a
suboptimal query plan that does not use the indexes of orders and customer
due to our low confidence in the estimation of the nested aggregate. While our
aggregate estimates from Section 2.5 already improve these, we still estimate
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that several thousand sums qualify the condition, and we only choose to use
the index for the largest join partner, lineitem.

Using the index for the groupjoin in Q17, results in a 6 × speedup for scale
factor 10. In Q18, the shown query plan has an 15% speedup compared to
using a memoizing groupjoin. If we estimate the having predicate accurately
and correctly identify that few tuples qualify, we would also use an index for
customer, however the performance impact is negligible.

The tracking and inference of functional dependencies is another fundamen-
tal optimization for these queries. These allow us to minimize the grouping keys
to only the candidate key over which we join with another table. In TPC-DS, we
can use significantly fewer groupjoins, since the functional dependencies are
not directly included in the schema. Although the DS schema defines primary
keys, it additionally defines so-called business keys, which we cannot represent
in the schema. Many aggregates then use the business keys, where we miss the
functional dependency to minimize the keys and thus do not produce optimal
execution plans.

2.10 RelatedWork
As outlined in Section 2.2, our work relies on well-known work on query unnest-
ing, which enables aggregates to be embedded in the query tree [30, 42, 77,
114]. Subquery unnesting to flatten the query tree is well-known as one of the
most important aspects of query optimization [20, 34]. Galindo-Legaria and
Joshi [51] describe the comprehensive optimization of aggregation in Microsoft
SQL Server. They describe the reordering of group-by and outer-join, where
they use similar conditions to our groupjoin preconditions (cf. Section 2.2.1) and
also discuss the problems with COUNT in static (scalar) aggregation. In contrast
to our work on groupjoins, they keep join and aggregation separate, where a
pushed-down group-by will still build a redundant hash table.

Bellamkonda et al. [14] describe the execution of correlated subqueries
with window operations in Oracle. Hölsch et al. [66] use an extended form
of relational algebra to reason about nested queries and are able to express
more transformation on aggregations. To incorporate unnested aggregations in
cost models, practical implementations, e.g., in DB2, use statistical views [41].
However, each query needs a matching view, which are relatively costly to
create and maintain, and are usually only created where missing statistics lead
to very poor plans.

In many real-world evaluations, join and aggregation are big contributors
to the overall workload [73, 150]. Consequently, there is a large body of related
work that optimizes hash joins [97, 115, 132] and hash aggregations [95, 122,



2.11. CONCLUSION 59

156]. Re-using hash partitions, and even whole hash tables is a well-known
optimization [30, 71]. One often discussed question is, if hash tables should be
partitioned or non-partitioned [10]. Our proposed approaches in Section 2.3
try to use a non-partitioned hash table to avoid materializing data, while using
thread-local partitioning for heavy-hitters. Other recent work on the interaction
of multiple operators focused on memory access patterns to better utilize the
available hardware [27, 100]. We see this work as orthogonal, and these ideas
can work hand-in-hand with parallel groupjoin execution.

2.11 Conclusion
In this chapter, we improved several aspects for an efficient evaluation of joins
and aggregates in a general-purpose relational databasemanagement system. We
improve important pieces of the query engine that previously have not worked
well with nested aggregates. First, we presented a low overhead estimation of
computed columns, which significantly improves the estimates that we use to
find better query plans in the query optimizer. Our aggregate estimates result in
a near 50 % reduction of estimation error, without any changes to the underlying
sampling method.

Furthermore, we improved the execution of groupjoins, which commonly
occur in nested and regular aggregation queries. Our contention-free parallel
and index-based execution allows them to be more universally applicable. We
also demonstrated where using a groupjoin is advantageous and presented
a simple, yet effective cost model to plan the best execution strategy. With
our improved groupjoin execution, we achieve significant speedups in several
TPC-H queries.

Building on our improvements to groupjoins, we presented an eager ag-
gregation technique that significantly improves execution plans with minimal
regressions. It consists of a simple cardinality estimation strategy, and a novel
greedy conservative optimization approach to introducing preaggregation opera-
tors. When integrated into the adaptive optimization framework, this technique
introduces preaggregations in 22 TPC-DS queries, resulting in approximately
20% geometric mean speedup with scale factor 10, with 3 queries reaching
almost a 3 × speedup.





CHAPTER 3
Asymptotically Better Query Optimization

Using Indexed Algebra

Parts of this chapter have been previously published in the Proceedings of the
VLDB Endowment [46].

3.1 Introduction
Optimizing the algebra plan of a query can take a significant portion of the overall
runtime. The challenge for the optimizer here is that the data flow through the
query, and its analysis can be astonishingly complex. Additionally, automatically
generated queries with complex business logic amplify this problem [33, 96,
98, 144]. Query optimizers struggle to deal with such complex input, which
is especially painful for small datasets where query optimization can be more
expensive than query execution. Small data sizes are common during testing, but
also in the real world, where, for example, Tableau reports that many workloads
contain fewer than a million tuples [150]. As a result, query optimization usually
operates on a budget, trading-off optimizations versus optimization time.

Some typical questions that come up during query optimization are: From
which part of the plan does a value come from? What are the join predicates?
Can we push a predicate down into the inputs? Consider for example the SQL
query below:

SELECT *
FROM A, B, C LEFT OUTER JOIN D ON C.u = D.u
WHERE A.v = 5 AND A.w = B.w AND B.x = C.x

AND C.y = 7 AND D.z = 8
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Figure 3.1: Relation algebra tree with subtle data flow. In this chapter, we
optimize queries by efficiently analyzing data flow.

In this small example it is easy to see which attributes form join edges ({u,
w, x}), which filters can be pushed down ({v, y}), and which not directly ({z}).
In general, these questions are difficult because the FROM clause can contain
arbitrary subqueries. The traditional solution to this problem is to keep track of
the columns that are available in each step of the query in a set [52, 54] and to
move predicates around step by step, checking the available columns in each
transformation. But if we have a join tree of depth 𝑛, where each join produces
at least one column, the construction time for these column sets grows with
Ω(𝑛2), which is highly unattractive for large queries.

Even if we ignore the performance problems, this myopic look at individual
operators is insufficient to express optimizations efficiently. In many cases we
want to inspect the full data flow instead. Consider the small algebra tree shown
in Figure 3.1. The top-most join predicate in this tree compares an attribute from
its left input (A.y) with an attribute from its right input (C.y). While this data flow
direction might be easy to see for such a small example, it is non-obvious when
there are dozens of operators between the base tables and the predicate. And
note that the example tree contains a non-trivial data flow that is not obvious at
a first glance: The selection operator on the lower right uses an attribute that is
produced in a different part of the operator tree, which effectively makes the
top-most operator a dependent join. Evaluating such a join is highly inefficient,
since it requires a nested loop join execution. The query optimizer has to detect
these dependent joins and can then rewrite the query to remove the correlation
between parts of the join tree [114]. While we can detect these dependent joins
by reasoning over the columns available after each operator, this again leads to
highly unattractive quadratic (or even cubic) algorithms.
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What we need instead is a framework to reason about complex data flows
without inspecting individual operators. For example, we want to be able to
correctly push down a predicate deep into a query tree in one holistic operation,
skipping all intermediate operators, and we want to detect dependent joins
without traversing the operator tree. This not only makes query optimization
more efficient from an asymptotic perspective, it also makes the optimizer more
pleasant to write, as we can ask data flow questions about the query itself instead
of traversing the operator tree all the time.

In this chapter we show how to answer these data flow questions that arise
during query optimization with an Indexed Algebra. To avoid the frequent tree
traversals, we maintain an auxiliary index of the algebraic query representation.
This index answers data flow questions in 𝑂(log 𝑛) time and supports efficient
query transformation. We implement this index structure as a link/cut tree [142]
that builds a balanced search structure for the paths through our algebra. Using
our IndexedAlgebra to answer the data flow questions during query optimization
is dramatically more efficient than traditional approaches, while additionally
leading to concise and elegant formulations of optimization rules.

Indexed Algebra has the biggest advantage for complex queries, but also
improves relatively harmless queries like the ones from TPC-H. Before devel-
oping Indexed Algebra, our research system Umbra [113] spent a significant
time reasoning over columns. For example, in the intricate nested TPC-H Q2,
which our system parses as 21 operators, Umbra spent more than 20% of the
optimization time in naïve implementations answering data flow questions.
Indexed Algebra helps to significantly improve this, while helping even more
for complex queries.

The rest of this chapter is structured as follows: We first discuss the algebraic
representation of queries and common operations on the algebra in Section 3.2.
We then introduce the idea of indexing paths through the algebra in Section 3.3,
and how to efficiently support dynamic updates to that index. Then, we propose
several optimizations using Indexed Algebra in Section 3.5. Furthermore, we
discuss other techniques like property caching in Section 3.6. The benefits of
these techniques are demonstrated in Section 3.8, and related work is discussed
in Section 3.9.

3.2 Query Representation

In this section, we introduce an algebraic representation that represents a query
execution plan. We first discuss the general components of this algebra, before
we show how we navigate and reason about this algebra.
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3.2.1 Algebra: Operators, Expressions, and IUs
Operators. Like most relational systems, we represent a query in some form of
extended relational algebra. Operators like joins , selections 𝜎, group by Γ, or
table scans, make up the base structure of the algebra. The operators process
a multiset of tuples from one or several inputs that have a clear parent-child
relationship, where data conceptually flows from children inputs to the parent
outputs. For now, we assume that an operator outputs its tuples to a single
output operator, so that the query forms a tree of operators. We generalize this
operator tree to a DAG in Section 3.6.3, and first concentrate on simpler tree
structured queries.
Expressions. Attached to the operators are expressions that process scalar
values instead of tuples, e.g., individual columns. Like operators, expressions
are tree structured and can be arbitrary nested, however, the expression tree in
anchored at exactly one operator. In contrast to relational operators, expressions
are wide spread in general purpose programming languages, that also deal with
reasoning and optimization of expressions. In Section 3.6.1, we detail relational
algebra specific implementations that deal with expressions.
IUs. While our expressions consist of e.g., comparisons, arithmetic or constants,
a relational algebra expression can also reference columns of data in relations.
This way, an operator can execute, e.g., 𝑥 > 42 as a filter, or 𝑥 = 𝑦 as a join
predicate. In our algebra, we generalize the notion of a column to an information
unit (IU) [102]. IUs describe scalar values that can be referenced multiple times,
e.g., as a cached expression for common subexpression elimination to avoid
repeated computation.

IUs represent the data flow through a query. An IU has a single source
operator, typically a table scan, that produces the values. Other operators then
pass IUs through the algebra until they reach the consuming expressions. This
makes IUs a key part of logical query planning, where we initially do not consider
physical implementation details, like if an IU is pipelined and passed through
a register or materialized in a hash table. Query optimization then brings the
data flow of IUs in a form that is efficient to execute.

3.2.2 Efficiently Navigating Algebra
The relational algebra uses these components of operators, expressions, and
IUs. While this is already enough to model and execute queries, optimizing
this algebra is more complex. Simple analyses can be operator-local, e.g., to
reorder predicates or to fold constant expressions. However, most optimizations
require a structural analysis of the data flow through the relational algebra. For
example, to drop unused IUs, we need to know which expressions, if any, use
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Figure 3.2: Our algebra representation interlinks operators, expressions, and
IUs to allow efficient navigation.

them. Likewise, to move around select 𝜎 or map 𝜒 operators, we need to consider
the source of any consumed IU.

For these analyses, we set up explicit links between the components of our
algebra that allow to navigate it efficiently. In Figure 3.2, we visualize these
links as dotted arrows between the components in the example algebra tree of
the introduction. Operators are connected via their parent-child relationships,
which allow traversing the algebra tree. Expressions also have hierarchical
links and are additionally connected to their using operator, e.g., the top most
comparison A.y = C.y is linked to its join , which transitively applies to the IU
references in the expression. Similarly, IUs are linked to their source operator
and are additionally connected to all references of that IU throughout the algebra.

With this setup of links, we can now traverse the tree to build reasoning
grounds for optimizations. However, traversing this tree for each analysis, each
optimization, each transformation, and each operator seems costly. Therefore,
we want to build data structures that allow us to avoid duplicate traversal.

3.2.3 Reasoning about Column Sets
A traditional technique to reason about the query structure are column sets. For
this method, we say that an operator produces a set of IUs, and an expression
consumes a set of IUs for evaluation. This way, we can implement all kinds of
optimizations, e.g., pushing predicates down a join, where we need to determine,
which of the joins inputs produces the required IUs of the predicate.

Computing the required IUs of an operator also requires traversing the
query tree. We can limit the algebra traversals by caching the produced IUs per
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Figure 3.3: Traditional predicate pushdown traverses the query tree operator by
operator. Path-centric optimization can take a shortcut to the IU’s source, but
still needs to check if the path is sound, or if it contains e.g., an outer join.

operator, which allows us to calculate all sets in a single pass over the algebra.
Unfortunately, we now use dynamic memory per operator to cache the column
sets. For an algebra tree of 𝑛 operators, we also need to cache 𝑛 column sets. For
most queries, the size of the set of produced IUs also grows, since regular joins
produce the union of their input columns, which makes the size of these sets in
𝑂(𝑛). Consequently, our cache stores 𝑛 ⋅ 𝑂(𝑛) = 𝑂(𝑛2) produced IUs.

While reasoning about column sets is quite efficient, building the column
sets is already expensive. This caching cost is additionally amplified by wide
tables containing dozens of IUs. Also, column sets lead to complex code since
transformations of the algebra might need to invalidate the cached column sets,
potentially triggering a quadratic recalculation. As we will see in the evaluation
in Section 3.8, the maintenance of these sets is too expensive to be worthwhile.

3.2.4 Reasoning by Path Traversal

We argue that instead of reasoning about column sets, we should reason about
the paths that IUs take through the algebra. Another way to look at these
optimizations is if we argue locally for each operator (i.e., with column sets),
or if we argue about the whole algebra tree. Figure 3.3 contrasts these two
approaches for predicate push down. In the operator-centric approach, we
reason from the perspective of a join, where we can either push the predicate
to its left or right inputs. On the other side, in path-centric reasoning, we use
the link between IU reference and the producing operator to directly get to the
IU source. Then, we traverse the algebra bottom-up to get the push down path
and to detect operators like outer joins, through which we cannot directly push
predicates.
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For path-centric reasoning, we identify two common basic operations: Find-
ing the root of an operator tree and intersecting data flows by finding the lowest
common ancestor. We can find the root of an operator tree by traversing tree
bottom up, which allows, e.g., to find the (sub)tree that contains the source of
an IU. The lowest common ancestor of two operators is the place where the
two paths from these operators to the root intersect, and is useful, e.g., as the
earliest possible place to evaluate an expression consuming data from two IU
sources. Based on these operations, one can implement many optimizations,
which we discuss in Section 3.5.

The main advantage of this path-centric reasoning is that it requires no
dynamic per operator state. Avoiding this state entirely avoids the quadratic
space requirements, and additionally simplifies the transformation logic, since it
no longer needs to invalidate the column set caches. Still, deep query trees are a
problem. The tree traversal for each analysis still can lead to quadratic runtime.
Nevertheless, we found that it is still more efficient than building column sets.

While better than column sets, walking the raw algebra tree is still quite
naïve. In the following, we propose Indexed Algebra to make path-centric
queries efficient. Our index structure maintains a balanced path structure to
make traversal fast, while amortizing the balancing of the index during algebra
transformations. In effect, we get the simplicity of path traversal with the
analysis performance of set operations.

3.3 Indexing the Algebra
To make query optimization analysis with path traversal efficient, Indexed Alge-
bra uses an embedded index structure that makes direct traversal unnecessary.
To build this index, we first start with the simpler problem of indexing static
algebra trees in this section, before we generalize our Indexed Algebra to support
dynamic updates with link/cut trees.

3.3.1 Simple Tree Indexes
For the path queries that we want to support efficiently, simple path traversals
are only suitable for basic optimization. Consider, for example, again predicate
push down. Placing predicates that use a single IU requires only traversing a
single path through the algebra. However, if the predicate uses multiple IUs,
i.e., it is actually a join condition, finding the appropriate place in the tree is
more challenging. For this case, we need to determine the operator where all
paths from IU sources converge, i.e., we need to find the lowest common ancestor
(LCA) of the involved IUs.
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Figure 3.4: A binary search tree keyed on the distance to the root (annotated in
superscript) allows efficient path queries on static algebra trees.

To answer such queries efficiently, Indexed Algebra builds balanced binary
search trees for paths through the relational algebra. These auxiliary search
trees are keyed by the distance to the root of the algebra tree. The balance
significantly shortens the 𝑂(𝑛) path from a base relation to the root. Figure 3.4
shows an example of such an algebra tree with the distance to the root annotated
as superscript. Consider the 𝑂(𝑛) path from 𝜎0 to B6, marked on the left side of
Figure 3.4a. Figure 3.4b shows the 𝑂(log 𝑛) balanced index that allows to take a
shortcut to traverse the path.

As an example analysis, assume that the predicate 𝜎0 references a column of
B and a column of D. To place this predicate, the query optimizer now needs
to answer the path-query to find the LCA of B and D. We can find this join by
traversing the search trees of both B and D upwards until we reach a common
operator. In our example in Figure 3.4b and 3.4c, we traverse to parent nodes
until we reach the root node of the auxiliary tree, then follow right up child
pointers until we find the subtree of common ancestors rooted at 𝜒1. Since
this subtree contains multiple nodes, but we want to find the lowest common
ancestor, we still need to find the lowest operator in this subtree. By following
the left down child pointers of 𝜒1, we find 2 as the LCA of A and D.

With the help of these indexes, we can now reason efficiently without
explicitly traversing the algebra plan, and also answer more complex path
queries. Since we only traverse balanced auxiliary plans, the complexity of these
improves from linear to logarithmic, and we can find the LCA in 𝑂(log 𝑛) [63].
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Table 3.1: Complexity of operations on relational algebra.

Rel. Algebra Transformation Traversal

w/o index 𝒪(1) 𝒪(𝑛)
static index 𝒪(𝑛) 𝒪(log 𝑛)
path labeling 𝒪(𝑛) 𝒪(1)
Indexed Algebra 𝒪(log 𝑛) 𝒪(log 𝑛)

Still, building these indexes is potentially expensive. Since we build an index
from each leaf operator to the root, we again end up with quadratic complexity.

3.3.2 Path Labeling

Another well known technique to index hierarchical data are labeling schemes,
e.g., pre/post encoding [60] or OrdPath [117]. In OrdPath, we label each node
with its path from the root, with a special labeling algorithm that allows inser-
tions without the need to relabel other nodes. Using these path labels, queries are
efficient, i.e., we can answer most queries in 𝑂(1), and LCA queries in 𝑂(log 𝑛).

However, the OrdPath scheme was originally developed for XML queries,
which need to preserve document order. For relational algebra, we can relax
this and label nodes not with ordinals, but with pointers, which makes accessing
nodes referenced in the path more efficient. The fundamental downside of this
approach is that relocating a whole subtree requires a relabeling of the whole
subtree. As an example, when we push down a predicate from the root of the
tree to a table scan, we need to update the OrdPath labels of all operators on this
path to remove the predicate. Unfortunately, this means that the complexity for
algebra transformations is 𝑂(𝑛).

3.4 Implementing Indexed Algebra
Static algebra indexes have the problem of efficient updates of the indexed
algebra. While they allow efficient traversal over the algebra for queries, trans-
forming and building the tree is now significantly more costly than in the raw
algebra without an index. We now improve the transformation by using the
amortization technique of link/cut trees proposed by Sleator and Tarjan [142,
143]. Table 3.1 summarizes the complexity of these different approaches to
reason about relational algebra. While not indexing allows efficient transforma-
tions, traversing the algebra is expensive. Static indexes improve the traversal,
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Figure 3.5: Partial path indexes of Figure 3.4. Link/cut trees build dynamically
balanced splay trees over paths through the algebra and connect subtrees via
path-parent pointers.

but make updates costly. With Indexed Algebra, we achieve both logarithmic
updates and traversal.

On a high level, link/cut trees do not maintain balanced indexes for all paths
from leafs to the algebra root, but build them dynamically when needed. They
do this by maintaining splay trees for (partial) paths, which are connected by
path-parent pointers. We show an example in Figure 3.5, where only the path
from B6 has a complete splay index to the root. When we want to operate on

another path, e.g., from D5, we first need to transform the path-parent parent

edge to a balanced edge.

Heavy path decomposition [142] improves the cost to build the indexes. A
key observation of this technique is the inherent redundancy within these path
indexes: In the example in Figure 3.4 this manifests as the duplicate ancestor
subtree at 𝜒1, which appears in both path indexes from B6 and D5. Heavy path
decomposition can eliminate this redundancy by only indexing this subtree once
in the largest index, decomposing the path in one heavy and one light path. The
second, light, path index can now reuse this part of the path, essentially by just
pointing to the already constructed subtree in the first index.

Heavy path decomposition of the paths eliminates the redundancy in their
indexes. We only build balanced search indexes over heavy edges, and only
store additional to the index of the parent heavy path that is connected by a light
edge. Now the traversal from a leaf to the root of the algebra uses potentially
multiple connected indexes. However, since we now only index each algebra
operator exactly once, we also bound the complexity to build the indexes. The
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most expensive part of constructing this tree is now keeping the paths sorted,
effectively making the construction 𝑂(𝑛 log(𝑛)).

For now, we only indexed static algebra. Considering the goal of optimizing
the algebra, which means transforming it to a more efficient form, updating the
index structure is also important. For example, when we eliminate an operator,
e.g., by merging a filter 𝜎 with a subsequent join , we need to re-balance the
index. Since such a modification changes the lengths of paths through the tree,
we might need to split the previously longest path, and merge with another path.
To amortize this potentially expensive operation, we will only keep the path
indexes approximately balanced, which amortizes the 𝑂(𝑛) merging of paths.
With this approximately balanced index, our query optimization process, where
we often add, remove, and reorder individual operators, will also be efficient.

3.4.1 Link/Cut Trees
Implementing a link/cut tree is relatively little effort, e.g., a public implemen-
tation of Sleator fits in about 100 lines of code [141]. In this implementation,
efficient link operations connect two trees, and cut operations split a subtree
from its parent. During all operations, the link/cut tree keeps the accessed path
roughly balanced. The operation that enables the simple implementation of the
other function is expose. Exposing a node brings its path to the root in a form
that is suitable for queries, and keeps the nodes balanced enough for amortized
logarithmic behavior by organizing them in a self-balancing splay tree [143].

Link/cut trees use a heavy path decomposition that manages the path to the
root of the subtree in a roughly balanced splay tree. In addition, they relax the
condition that the heavy path is also the longest path in the tree. To differentiate,
we call these paths preferred paths instead. Since we do not need to ensure the
longest paths anymore, we can implement the link and cut operations efficiently
by connecting the balanced with the unbalanced light edges, which we now call
path-parent edges.

To amortize the maintenance of enough balance for logarithmic traversal,
link/cut trees introduce the concept of exposeing a node. The expose operation
is the foundation of all other operations, which always first expose a node before
executing their own logic. Exposing transforms the path from the current node
to the root to a preferred path. This transform all its path-parent edges to
balanced edges in the search tree, guaranteeing logarithmic time for all other
operations.

To maintain the balance in the search tree, we implement it as a splay tree.
In expose, we, thus, splay the node to the root, which maintains the approximate
balance. The link and cut operations also expose the involved nodes, but then
only connect or disconnect the subtrees. In contrast to the static approach,
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Figure 3.6: Intrusive structure of link/cut indexed operators.

struct Operator {
// Path-parent and children of the link/cut index
Operator *lcDown, *lcUp, *lcParent;
// Parent operator in relation algebra
Operator *parent;
// Algebra children are in subclasses

}

linking and cutting allows efficient transformations, but only roughly balance
the involved search trees, However, since we also expose (and thus splay) nodes
during link and cut, the balance is eventually maintained, effectively amortizing
the amortizes the tree-mergers over a series of operations. Since expose is a
logarithmic time operation, algebra transformations also take logarithmic time.

As described by Sleator and Tarjan [143], the amortized maintenance of
balanced paths in link/cut trees pairs nicely with the amortized maintenance
of balance in splay trees. In addition, splay trees move frequently accessed
nodes near the root. For our application of reasoning over relation algebra, it
harmonizes with the locality of reference.

For the integration of the link/cut index onto the operators, we employ the
intrusive pointer structure shown in Figure 3.6. As described in Section 3.2,
our algebra representation maintains an upwards reference to each operator’s
parent in the regular relational algebra semantics. The lcDown and lcUp point-
ers connect to form the auxiliary, roughly balanced splay tree that allows efficient
path traversal. To support the dynamic properties, the lcParent links a disjoint
splay-subtree to its path-parent tree with a non-preferred edge. These edges
will be transformed by the first expose of that node on the first root-to-subtree
path access.

3.4.2 Efficient Operations using the Link/Cut Tree
Operations on the link/cut tree work similar as with static index trees, except
for the additional expose operations. The expose operation builds the basis of
all other operations on the link/cut tree by bringing the operator to the root
of the splay tree through rotations and ensuring its path to the algebra root is
preferred (i.e., connected via lcDown/lcUp, and not via lcParent path-parent
pointers). In the following, we describe the core path traversal operations that
we use for algebra optimization.
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Find Root: Finding the root of an algebra tree is useful to detect if two operators
are in the same tree, or if they are separated, e.g., by a common table expression.
Additionally, we also use it during join ordering to detect if subtrees are already
connected via a transitive join edge. Finding the root requires a path index to
the root, i.e., exposing that node. With an exposed operator, its path index is
fully connected to the root and roughly balanced. Finding the root of the algebra
tree now means following upwards index pointers. Since these are organized via
a balanced index, this operation is efficient and reaching the root takes 𝑂(log 𝑛)
steps.

Lowest Common Ancestor: Finding the lowest common ancestor lca(A, B) in
the link cut tree differs from static indexes. We first expose A, which connects
its path to the root. This path now necessarily also contains the LCA. Then, we
also expose B, now connecting B’s path to the root. The lowest intersection of
these paths then mark the LCA.

Path Aggregates: Finally, one advanced technique allows to efficiently answer
queries about the paths between operators in a tree [80]. The idea here is to
maintain the answers for calculations over a path in the index as path aggregates,
where we calculate the aggregate from left and right index tree aggregates. This
adds a constant maintenance overhead to the balancing during expose, but
amortizes path queries over expose operations, which allows answering queries
about a path of length 𝑛 in 𝒪(log 𝑛) time.

One example of a useful path aggregate is determining if a path between
two operators contains an outer join . Since outer joins make IUs nullable, it
depends on if the data flow to a consumer crosses an outer join, if the column
is actually nullable or not. Figure 3.7a shows the already familiar indexing
example, where the left join 3 now has left outer semantics. This outer join
3 now marks its right, potentially nullable, child 𝜎4, indicating that IUs passing
both, the child and the join, can be null due to a missing join partner. In the
balanced path index in Figure 3.7b, we propagate this marker, marking a node
when either of its children has a marker. Transitively, the marker at the root of
the path index then indicates an outer join somewhere on the path from B6 to 𝜎0.
With a slight tweak, i.e., storing pointers instead of markers, we can also quickly
determine the causing outer join. Similarly, we can also determine the lowest or
highest outer join when we preferably propagate the outer join pointer from
either the upwards or downwards direction.

With these three base operations, we can implement a plethora of useful
optimizations. Since these operations take only logarithmic amortized time,
these optimizations are also very effective. In the following, we describe how
we apply these operations for query optimization, and how this makes the
optimizations effective.
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Figure 3.7: Algebra indexes efficiently determine if a path contains an outer join
by propagating a marker through the balanced auxiliary tree.

3.5 Applications in Query Optimization
Indexed algebra not only enables efficient operations on relational algebra, but
also allows elegant formulations of many query optimization techniques. Since
our indexes ensure amortized 𝑂(log 𝑛) operations, we can formulate many opti-
mizations that consider each operator individually without risking quadratic
runtime. In the following, we discuss some query optimization problems, and
how Indexed Algebra helps to efficiently apply them. This ties together the
connections between operators and expressions of Section 3.2 with the index-
ing approach of Section 3.3. We start with simple, yet effective optimization
techniques using path traversals and LCA queries, before we demonstrate the
versatility of path aggregates.

3.5.1 Determining Join Graph Edges
Join ordering algorithms to find the optimal execution order of joins usually
operate on a join graph [116]. To construct this graph, we collect all subtrees
(e.g., nested operators like group-by Γ, or base relations) that are connected
via joins as graph nodes. In addition, we also collect all join conditions from
join nodes or selections 𝜎. To determine the edges of this join graph, we need
match to match the consumed IUs in the conditions to nodes in the graph. The
difficulty here is that IUs in the join condition might have their source arbitrary
deep in a nested operator of the graph’s leaf nodes.

To avoid building explicit column sets for each node of the join graph, we use
the efficient findRoot operation of our Indexed Algebra. Algorithm 5 formulates
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the base construction of this join graph. Note, that the following algorithms rely
on the connections between expressions, IUs, and their source and consuming
operators, as introduced in Section 3.2.2.

Algorithm 5: Determining join graph edges with Indexed Algebra.

1 nodes ≔ The joined subtrees
2 for R ∈ nodes do

// Split up the join edges between subtrees
3 cut(R)
// Collect the join edges

4 edges = ∅
5 for (IUref(a), IUref(b)) ∈ conditions do
6 edges += (findRoot(a.source), findRoot(b.source))
7 …

// After join ordering, rebuild tree with link()

In this algorithm, we first cut the joined subtrees from the overall algebra
tree. This effectively makes each leaf node of the join graph a separate tree with
a distinct root node. When we now consider each condition, we identify each
consumed IU of that expression. From these IUs, we can determine its source
operator, which needs to be in one of the subtrees that make up the nodes of
our join graph. The findRoot() operation now finds precisely these nodes.
Subsequently, for each pair of referenced IUs within the conditions, we can add
a join edge between the nodes we find this way.

During this join graph construction, the Indexed Algebra is implicitly main-
tained by link, cut, and findRoot operations. This allows us to efficiently
constructs the join graph, even for complex input subtrees.

3.5.2 Detecting Dependent Joins
As already discussed in Section 3.1, detecting and eliminating dependent joins is
one of the most important query optimization steps. Our algorithm to efficiently
construct the join graph also relied on the absence of dependent join attributes.
However, recognizing dependent joins is not trivial and needs some data flow
analysis.

To recognize dependent IU references, we need to detect the situation where
a consumed IU’s source is not in the input relations of the operator containing
that reference (e.g., the A.z in Figure 3.1). A possible implementation to detect
these IUs would be to temporarily cut each operator consuming an IU and
determine, if the root of the subtree containing the IU source is the consuming
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operator. This gives us a binary check if that reference is dependent, but we still
do not know, which join to transform to eliminate the dependency.

Algorithm 6: Recognizing dependent joins.

1 for IUref(a) ∈ query do
2 lca ← findLCA(IUref.operator, a.source)
3 if lca ≠ IUref.operator then
4 mark lca as dependent join

To simultaneously recognize the dependent join, we implement our depen-
dency detection slightly differently. Algorithm 6 shows our implementation
using Indexed Algebra and LCA operations. We again check all IU references,
but now find the LCA of the IU’s source operator and the reference’s containing
operator. For regular references, the reference is in an ancestor operator of
the source, and thus equal to the LCA. Otherwise, the reference is dependent.
Here, not only detects the dependent reference, but also directly determine the
dependent join.

To efficiently process the query and make subsequent optimizations simpler,
we eliminate all correlations as one of the first optimizations. To unnest this
query, we use the transformation rules presented in earlier work [114], elimi-
nating the need for expensive nested loop joins. In this optimization, Indexed
Algebra again helps to skip large unrelated parts of the query that are in between
IU source and its references.

3.5.3 Tracking IU Nullability
For query optimizers, null columns are especially unpleasant to deal with [111].
In our system, we therefore try to eliminate null values already in base table
scans, where we can filter many tuples all at once [87]. When we can prove that
an IU is not null, subsequent operations (e.g., a join condition) can efficiently
compare values and ignore null bits. However, outer joins complicate this
optimization significantly, since they can conditionally produce null values.

Figure 3.8 shows an example of a query with an outer join between base
relations A and B, where B can become null after the join. Below the join, we
have a predicate 𝜎 that filters on a condition of B.x, which allows us to filter
null values already at the scan of B. Subsequently, we can skip the null check
for the predicate and any subsequent reference of that IU, and also optimize
expressions based on the assumption that the IU is not null. Unfortunately, a
naïve application would incorrectly transform the upper coalesce expression.
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Figure 3.8: The nullability of IUs can depend on outer joins and their position
in the algebra.

Instead, we need to analyze the query further and prove the absence of outer
joins.

Algorithm 7: Determine if the path between B and 𝜒 contains an outer
join that makes B’s columns nullable.
// Temporarly cut to limit the path B →∗ 𝜒

1 cut(𝜒)
// Calculate the aggregate for B

2 expose(B)
3 result ← B.nullable marker

// Restore the full path index
4 link(𝜒, 𝜒.parent)

To analyze this situation, we use Indexed Algebra’s efficient path aggregates
(cf. Figure 3.7), as shown in Algorithm 7. One catch here is, that aggregates by
default propagate through the whole preferred-path. This means that aggregates
for non-root algebra nodes do not directly contain the analysis result we are
interested in, i.e., if the path from B to 𝜒 contains an outer join. Instead, we
temporarily cut the 𝜒 subtree from the overall algebra tree, so that the operator
of the reference becomes a temporary root node. Afterwards, we expose the
source operator B to propagate our aggregate through that path and get the
answer. Since all three operations, cut, expose, and linking the temporary cut
again, are 𝑂(log 𝑛), these operations are surprisingly efficient.

3.5.4 Predicate Pushdown
Predicate pushdown is a ubiquitous optimization that needs data flow analysis.
In a simple form, we push a predicate 𝜎 on the path towards the source of
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its referenced IUs. In a more complex optimization, we also want to capture
transitive predicates that are conjunctive. So, when we encounter a join, we
want to infer new predicates, e.g., 𝜎𝑥=42( 𝑥<𝑦) ⟹ 𝜎42<𝑦.

A problem with the operator-by-operator detection of transitive edges is that
views or common table expressions can also introduce predicates in arbitrary
deep subtrees. To infer predicates from all join edges, even above the initial
predicate, the optimizer would need to first bubble predicates up, then push them
down again. Transitively, this can transform join edges (𝑥 < 𝑦) to predicates
that can be pushed further down (42 < 𝑦). To infer all transitive edges, we
need to iteratively bubble up and push down all predicates until we find no new
transitive predicates. Since transitive chains can be arbitrary long, traversing
tree operator-by-operator for each step is inefficient. Indexed Algebra instead
uses two distinct techniques to propagate transitive predicates:

• Predicate push down without considering transitivity

• Upward constant propagation generating new predicates

For the push down, we use the path-centric logic from Figure 3.3 that skips
intermediary operators. With Indexed Algebra, we can avoid directly traversing
the algebra by finding the LCA of the referenced IUs in the predicate. Certain
operators, e.g., outer joins , require more logic, so we need a way to recognize
these in the path. To detect these operators, we, again, use path aggregates that
signal the presence of these operators on paths through the algebra. With these
aggregates, we can effectively skip unrelated operators and push any predicate
in 𝑂(log 𝑛) to the next interesting operator. With these pushed down predicates,
we can now infer additional constants that we can propagate upwards.

3.5.5 Propagating Constants
Our predicate push down ensured that IUs are filtered as early as possible,
ideally at base relations. After evaluating this predicate, we know that it holds
in any downstream operator, which allows propagating it transitively. For some
predicates like <, we can infer additional bounds for other comparisons, but for
equality comparisons, we directly replace the IU references with constants.

For example, consider the SQL query shown in Figure 3.9. This query shows
a factored subquery with the nested equality predicate 𝜎year=2022. Constant
propagation would now replace all references of the year, i.e., the produced IU of
both the orders subquery and the complete query, with the constant value. Then,
we fold the resulting expression, which results in a simple predicate that we can
push down to the deliveries table. Note that this is not limited to just constants,
but this can be generalized to arbitrary predicates. For our example, the inferred
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Figure 3.9: SQL query with nested constants. We propagate and fold constants
from inner queries to all uses to enable transitive pushdown.

with years_orders as
(select * from orders where o_year = 2022)

select * from deliveries d, years_orders o
where d.order_id = o.id and d.d_year <= o.o_year + 1

bounds of o_year can be propagated again using the same technique, and we
can deduce that any other comparisons must also maintain similar bounds.

A core assumption we have for constant propagation is that IUs have the
same value during execution. As in the last sections, outer joins are the
exception to this rule. When there is an outer join on the path between IU and
its reference, we cannot directly propagate a constant to that reference. Constant
propagation uses the familiar path aggregates that track tuple nullability from
Section 3.5.3 to detect this case any only propagate predicates when no outer
join can introduce nulls.

In combination with predicate pushdown, the constant propagation transi-
tively introduces predicates through the whole query. Again, Indexed Algebra
ensures that the path traversals are cheap, and we can efficiently reach all
relevant IUs.

3.5.6 Bounding Distinct Values Estimates
So far, we mainly discussed query optimization rules that are almost always
beneficial. For cost based optimizations, e.g., join ordering, it is essential to have
good cardinality estimations [44, 91]. By making cardinality estimations path
sensitive with Indexed Algebra, we can improve the estimation bounds.

Cardinality estimation often uses distinct value counts, e.g., to estimate
the size of aggregations that eliminate duplicates from keys. Usually, base
table estimates derive these counts by calculating statistics, e.g., in the form of
HyperLogLog sketches [50]. However, when we leave base tables and process
predicates or joins, changes in cardinality do not translate easily to changes
in distinct values. Due to these limitations, many systems just use base table
estimates, which gives suboptimal estimates compared to amore precise tracking
of distinct values through the algebra.

Figure 3.10 shows a simplified query on the TPC-H schema, where we can
get better estimates by considering the path from source to root. Consider
the marked path from nation to the group by Γ where we first have a filtering
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Figure 3.10: The cardinality of the top aggregation Γ depends on the distinct val-
ues reaching it from the base table. Indexed Algebra maintains a path aggregate
to efficiently maintain this information.

join with region, then a growing join with customers. If we just consider the
distinct values at the base table (25), we loose the information about the filtering
intermediate join. Inspecting the whole path between the operators to find
the minimum path cardinality (5) captures a more precise upper bound for the
distinct values.

To calculate this minimum path cardinality efficiently, we again use path
aggregates. The path aggregates maintain the minimum cardinality of the path
to the root by selecting the minimum aggregate from lcUp and lcDown. To
estimate the minimum path cardinality to an arbitrary operator, we cut its
subtree and expose the source operator. In our example, we cut the parent of
the aggregate Γ to make it the root, and expose the nation table scan to ensure
its path to the root is preferred. Then, we get the min cardinality of 5, which
gives us a precise estimate without the need to traverse the operator tree.

3.5.7 Placing Expression Evaluation
We also optimize the amount of data that we store in intermediary operators
that need to materialize. These pipeline breakers are costly, since they break the
data centric execution and allocate memory to store tuples that are read later.
The most common pipeline breaker is the build side of a hash join that stores
tuples in a hash table. Reducing the size of the tuples stored in this materialized
state is advantageous, since it also increases cache locality.

For this optimization, we evaluate expressions at materialization points
when this leads to a smaller materialized state. In this state, we need to store any
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Figure 3.11: Materialization points allow evaluating expressions that reduce the
size of the materialized data. We use Indexed Algebra’s LCA and path operations
to efficiently find suitable materializations points.

produced IUs of the input that might be consumed by subsequent expressions.
By evaluating expressions before this materialization, we can reduce the state,
which reduces the memory consumption, and the overall cost of the query
execution. While evaluating expression might incur some overhead, a smaller
materialized state is usually more beneficial.

As an example, consider the algebra tree shown in Figure 3.11 that approxi-
mately follows the TPC-H schema. We explicitly annotate the pipeline breaking
build side of the joins with ⊤, which gives us two locations to evaluate expres-
sions. We can evaluate the first subexpression price - discount at the lower
build side 1 , which allows us to materialize the single result value instead of
the two partial values. At the second hash table build 2 , we have all required
IUs to evaluate the whole expression. Thus, we can avoid materializing its four
referenced IUs, and instead only store the single result value.

To reorder the evaluation of an expression, we need to consider its constraints
in the algebra tree. We can only evaluate it when all its referenced IUs are
available, which we can find by computing the LCA of the producing operators.
Then, we can place it anywhere between the LCA position and its actual usage,
at a suitable pipeline breaker. To also efficiently find pipeline breakers, we
implement an aggregated property of Indexed Algebra, similar to the markers
of Section 3.5.4. This way, we can efficiently find a suitable evaluation place for
each subexpression of a complex expression that reduces the overall materialized
state.

In summary, we presented several optimizations that benefit from Indexed
Algebra. By using path-centric optimization techniques, we obtain concise and
efficient algorithms.
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3.6 Beyond Indexed Algebra
Indexed Algebra allows to efficiently answer data flow questions that arise
during query optimization. In the following, we discuss further implementation
techniques that are less related to data flow.

3.6.1 Complex Expressions

Expressions in the relational algebra are often a significant challenge, and many
systems optimize them, e.g., by compiling them to efficient machine code [121].
In practice, expressions can be very large, whichmakes optimizing and compiling
them non-trivial. For example, we observed queries with a predicate of several
thousand disjunctions. A naïve approach to such queries can result in large
optimization states that exceed machine limits.

One problem with such large expressions is that recursive algorithms an-
alyzing it reach stack-size limitations [112]. As with relational operators, we
organize expressions in a tree structure that unfortunately is not balanced. This
means that its depth can scale linearly with the size of the input expression.
However, the stack space for recursive calls is limited and usually not very large.

We implement a technique to avoid the stack limits by recognizing large
stack depths before an actual overflow. To recognize this situation, we can
inspect the stack pointer, i.e., rbp on x86, and abort the query. This way, we
avoid crashing the DBMS, but we degrade its usefulness, since now users need
to work around the system’s limitations. When we exceed the stack size in
Umbra, we instead switch to a different stack, which allows processing such
queries, albeit with some overhead during optimization. Note that since Umbra
compiles queries, this is a one-time instead of a per-tuple overhead.

We also address the underlying issue of the large, deeply nested structure of
expressions. One problem we identify is the representation of such predicates
as binary boolean expressions. Instead, we increase the fan-out of our boolean
expressions by representing they as Nary expressions, which, e.g., results in a
single disjunctive expression with arbitrary many boolean inputs. In practice,
this means that we get shallow expression trees, where optimizing scales nicely
even for large input predicates. Note that this does not avoid any deeply nested
expression, but we found that this significantly improves the common case.

Having such large expressions in mind, we also eagerly fold constants.
Folding constants early not only reduces the size of the expression trees, but
also reduces the load of subsequent code generation. In certain cases, compilers
like LLVM use super-linear algorithms to compile code [110], which becomes
painful when dealing with large generated expressions.
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3.6.2 Lazy Property Evaluation
For individual operators, some properties are especially expensive to evaluate.
For these properties, we only want to calculate them once we need them, and
when they are unlikely to change again. In our implementation, we identified
the most expensive properties:

• The estimated cardinality

• The functional dependencies

For cardinality estimation, loading data structures for statistics and eval-
uating predicates on samples of a base table is relatively expensive. Ideally,
we only want to estimate base table cardinalities once, when we pushed down
all predicates that we can evaluate on that table. If we push down additional
predicates after this cardinality estimation, we would need to invalidate previous
estimations, which would cause duplicate work. Thus, we should lazily estimate
cardinalities on demand after predicate push down.

However, we potentially access the cardinality multiple times during join
ordering, where we treat filtered base tables as leaf nodes of the join graph. To
estimate the cardinality only once, we additionally cache it for each operator.
This unfortunately has the downside that we need cache invalidation logic when
we alter operators in a way that affects the cardinality.

Similarly, calculating and maintaining functional dependencies between IUs
can enable query optimizations, such as minimizing group-by keys. However,
computing functional dependencies and equivalent IUs is relatively expensive,
when only a handful of optimizations actually require functional dependencies.
This lazy evaluation is mainly useful with complex expressions. For example
in TPC-H, we see an overall improvement of 6%. However, the impact is larger
for queries with complex predicates, e.g., TPC-H Q19, where we get a 23%
improvement by avoiding unnecessary work.

3.6.3 DAG Structured Algebra
So far, we only looked at tree structured algebra plans, where each operator
has a single parent. However, relational algebra can also have multiple outputs
in the form of common table expressions (CTEs, i.e., WITH clauses or views in
SQL). Additionally, we also want to be able to share intermediate results for
push-based execution. Therefore, we introduce non-tree edges, which makes
our algebra DAG structured in the general case.

For regular queries, we expect DAG edges to be significantly fewer than the
tree edges of our regular algebra. To minimize the DAG edges, we inline shared
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Figure 3.12: A DAG structured query plan. Operators can be referenced multiple
times, but need to rename their IUs to avoid ambiguity.

table scans to avoid unnecessary intermediate materialization, which makes
them part of the algebra tree. CTEs can also be read multiple times, but a simple
inlining transformation can similarly transform these DAG edges. Inlining is
not always advisable, but helps to transform DAG to tree edges if a CTE is only
read once.

To support DAG edges, it first seems that analyzing data flows crossing DAG
edges complicates the reasoning over dependencies. When an IU crosses such a
DAG edge, its data now takes two paths through the execution plan. However,
to avoid ambiguity in the subsequent query, we also need to have distinct names
for these IUs. Renaming is also a pragmatic solution for the data flow analysis.
Within an algebra tree, we can use Indexed Algebra for efficient reasoning, but
when the data flow crosses a DAG edge, we also switch the IU we reason about.

In our implementation, we use a special operator to cross DAG edges that
share an input node. This parent operator of a shared node creates new IUs that
are distinct from the input IUs. We call this operator a PipelineBreakerScan (PBS)
that maintains the shared input in a referenced-counted state and explicitly
maps from IUs in its input to IUs in its output. The PBS also generalizes over its
input, which can be an arbitrary operator that can be scanned multiple times,
which are usually pipeline breakers.

Figure 3.12 shows an example query plan that contains DAG edges. The
scanned input in Figure 3.12a joins two base relations A and B, and materializes
them in a Temp operator. Crossing the DAG edges, Figure 3.12b has two PBSs
that rename all inputs to two sets of distinct IUs. The scanned output still
references the IUs 𝑎 and 𝑏, but we take special care to consider them part of the
scanned Temp operator and not part of the disconnected output. This way, data
flow questions reasoning about 𝑎 are contained in one tree, while 𝑎′ refers to
the same data across the DAG edge.

As a result, we generalize our algebra to DAG structured queries with the
simple renaming abstraction. The resulting overall algebra now has DAG edges
between algebra trees. Within these trees, we use Indexed Algebra that allows
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Figure 3.13: Two copy-on-write column sets share the striped nodes and only
duplicate a logarithmic number of nodes when inserting new IUs.

efficient reasoning. Thus, we can lift all techniques discussed before from trees
to DAGs.

3.7 Efficiently Representing Column Sets
In the last sections, we proposed restructuring the relational algebra and rewrit-
ing the query optimization algorithms to achieve an asymptotic speedup of the
optimizer. However, this is relatively invasive and requires many changes to the
implementation of the database system, which hinders the adoption in other
systems. An alternative to this relational algebra restructuring would be making
the sets of columns, i.e., IU sets, more efficient, and avoid the 𝑂(𝑛2) behavior. The
maintenance of sets of available IUs is a common operation during the semantic
analysis of a query plan, however, for most operators the set of available IUs
is similar to the input to that operator, and contain duplicate IUs. Intuitively,
operators like map 𝜒 pass-through their available columns, but they still need to
maintain a distinct set to add their additional computed columns. As discussed
in Section 3.1, this leads to a worst-case quadratic amount of IUs in all sets, even
though we only have a linear amount of total distinct columns. In the following,
we discuss an efficient representation of column sets that avoids unnecessarily
duplicating the input, while still providing efficient set operations.

The fundamental problem of these IU sets is the duplication of the input
state. This duplication is necessary, since we want to cache the IU sets for
reach operator to avoid expensive recomputation when we reason about the IUs
multiple times. Theoretically, computing the new set of columns only requires
to apply the column delta of an operator, but since we need to preserve the
input set, a naïve implementation of IU sets needs to make a copy of the input.
A solution to this dichotomy, efficient delta updates and preserving input, are
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Figure 3.14: Microbenchmark of column set operations on a left-deep join tree
with an increasing number of joins.

persistent data structures [35] that keep older states unmodified when updating
the set with a delta. This allows cheaply caching the input IU set, while still
being able to insert the delta efficiently.

Traditional persistent data structures are not unproblematic for performance
sensitive code, since they are usually pointer heavy, which results in high per-
entry memory overhead and bad cache locality. In this section, we implement
copy-on-write B-Trees, which reuse B-Tree pages when they are unchanged.
Additionally, the shared B-Tree nodes stores a reference count that indicates if a
node is shared between sets, or if we can avoid to copy when updating the node
and can modify it in place. Figure 3.13 shows a simplified example of two sets
that differ in the rightmost IUs, but still share all left children.

When inserting IUs at the right of these nodes, we can update these exclu-
sively used pages in-place without copying nodes. Only when a page is shared
between sets, we need to copy nodes on the path to the modification point
and decrease the reference count. We therefore want to preferably insert into
non-shared edges to get minimal copy overhead. Our implementation achieves
this by ordering IUs consecutively by creation, so that IUs of the same operator
share the same node, and all IUs of an operator are inserted at the same node.
Potential Performance Benefit. The sharing of parts of the IU sets can
significantly decrease the number of duplicate IUs in sets, which in turn improves
performance and reduces memory use. We show the effect of this optimization
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in a micro benchmark in Figure 3.14. In this experiment, we compare the
performance of calculating all available columns after a join, which can, e.g., be
used to find the push-down direction for predicates. For this benchmark, we
perform the union of two input sets with our copy-on-write (COW) B-Trees
and compare this with a state-of-the-art hash-based set implementation, i.e.,
tsl::hopscotch_set [64]. In this experiment, we construct a left-deep join
tree under an increasing number of relations with four columns each. This
resembles the process used to construct unoptimized relational algebra from
parsed SQL.

In this microbenchmark, we can observe quadratic construction time, which
already starts to show in moderately sized queries. With 100 joins, our copy-
on-write implementation is about 14× faster than the hash set that needs to
copy its inputs, which grows to a 63× speedup and for 1000 joins. The tables
in this test case are even relatively narrow, which is often only the case after
pruning unused columns. For comparison, TPC-H has on average 8 and TPC-DS
17 columns per table.

A possible optimization opportunity is to only include referenced columns
in the column sets, without the need for explicit projections. This, of course,
only works when we already computed which columns are in-use and which are
unnecessary, for which we already need column sets to begin with. However,
it is quite common that some columns are accessed infrequently, especially
for wide tables with hundreds of columns. After the initial semantic analysis
pass, where it is unnecessary to cache column sets, we can detect completely
unused columns that are never referenced with a pointer structure similar to
Section 3.2.2. This reduces the size of column sets significantly, but can only
avoid the quadratic behavior in well-behaved queries, and has no effect, e.g., for
a simple SELECT *. Thus, while pruning appears to help with column set size,
its worst-case behavior is still quadratic. Indexed Algebra, in contrast, improves
the performance for the general case.

Discussion. Copy on write works well when we only have operators that pass
though their inputs. However, new IUs, i.e., calculated results with maps 𝜒 or
markers in mark joins, limit the effectiveness of the shared nodes. When an
algebra transformation changes the produced IUs of an operator, some part of
the IU set containing the produced IUs of that operator need to be recalculated.
How big this recalculated part is depends on the position of the affected IUs
in the B-Tree nodes and their fill degree. Since our implementation orders IUs
by their creation, any operator that filters or adds IUs of a whole table thus
can operate on a contiguous range of IUs in this set. Additionally, reordering
operators, e.g., for join order optimization, does not affect the order of the IUs
in the set.
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However, for some operations might still invalidate a large number of IU sets,
which makes the asymptotic behavior still worse than using Indexed Algebra to
index the paths through the algebra. Consider constant propagation, where we
replace an IU with a constant and erase it from all IU sets. The dependent sets
are potentially all sets on the path to the algebra root, i.e., 𝒪(𝑛) sets. Naïvely,
constructing each set requires 𝒪(𝑛 log(𝑛)) operations, thus transforming the
algebra has 𝒪(𝑛) ⋅ 𝒪(𝑛 log(𝑛)) = 𝒪(𝑛2 log(𝑛)) complexity. However, when we
assume that we can share 𝒪(𝑛) IUs in each set and this brings each set’s con-
struction cost down to 𝒪(log(𝑛)), the complexity for each transformation is still
𝒪(𝑛 log(𝑛)), which is significantly worse than our approach based on link/cut
path indexes that supports transformations in 𝒪(log(𝑛)).

Finally, column sets do not help for optimizations that need to traverse a path
through the algebra tree, e.g., the tracking of IU nullability due to outer joins
(Section 3.5.3) or determining the minimum cardinality of a path (Section 3.5.6).
In these cases, we still traverse the algebra. Thus, maintaining IU sets for algebra
optimization does not improve the asymptotic optimization complexity. A more
efficient representation of column helps the case where we need to build these
sets once, e.g., to calculate the materialized IUs in a hash join. However, updating
these sets in a dynamically changing algebra tree is the most expensive way
to reason about algebra that we looked at. In the following, we use a standard
hash set implementation to give a more honest evaluation compared to the
status-quo.

3.8 Evaluation
We now evaluate the impact of our work on the performance of the query
optimization engine in our research RDBMS Umbra. We compare our imple-
mentation of Indexed Algebra to our implementation using path traversal, and
additionally evaluate an approach using column sets. We start with an evalua-
tion that shows the asymptotic improvements for large queries, before we show
the impact on popular benchmarks.

Our query optimizer produces state-of-the-art query plans that do not differ
between any of the presented analysis approaches. To show the quality of our
produced plans, we provide an online interactive query plan viewer for the
evaluated benchmarks1.
Setup of Performance Measurements: We run all measurements on a system
with an Intel Xeon W-2145 CPU with 8 cores, 2× hyper-threads, and 32GB
RAM. Since we measure the relatively small amount of optimization time in
the benchmarks, we ensure consistent results by repeating every measurement

1https://umbra-db.com/interface/

https://umbra-db.com/interface/
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1000 times and reporting the average time. Compared to query execution, the
small optimization time seem negligible, but as in most systems, query planning
in Umbra is single threaded and every millisecond in query planning blocks
potentially hundreds of cores for parallel query execution.

As benchmarks, we use TPC-H [20], TPC-DS [107], and the Join Order
Benchmark (JOB) [91]. The complexity of the queries varies significantly be-
tween the benchmarks, with TPC-H having the least complex queries. In our
implementation, the TPC-H queries involve on average 9 and a maximum of 20
operators, where JOB has an average of 18 and a maximum of 36, while TPC-DS
is the most complex with an average of 20 and a maximum of 71 operators.

Reports from industry, however, feature orders of magnitude more complex
queries. SAP [33, 98] for example reports that their core data services contain
over 100 views that reference more than 100 tables, with the largest view ref-
erencing over 4000 tables. Similarly, we hear reports from Tableau [150] and
VMware [144] about auto generated queries that are dozens of pages of SQL.

To test the asymptotic optimization runtime for such large queries, we cannot
compare queries with a fixed amount of operators. Instead, we use a synthetic
workload, where we gradually increase the involved operators. In the following,
we use a synthetic join workload that is inspired by a SQLite’s sqllogictest2.
In this workload, we gradually increase the number of involved base relations,
which allows simulating large algebra trees.

In addition, query optimization has many parts that are unaffected by the size
of the algebra. Table 3.2 shows a break-down of the average optimization times
over Umbra’s optimization passes in TPC-DS. For most passes, Indexed Algebra
has no significant benefit, since these passes do not reason about the algebra
itself, but use mostly operator local information, e.g., for constant folding during
expression simplification. For these passes, Indexed Algebra adds some overhead
to maintain the indexes, which only become relevant for the algebra centric
optimizations. For these optimizations, unnesting and predicate pushdown,
Indexed Algebra has the biggest impact. In the following, we concentrate on
unnesting, since that is the optimization that sees the biggest improvement of
using an index, and, since we need to check each IU reference if it is correlated,
also scales with the size of the algebra tree.

3.8.1 Efficiency on Query Complexity
In a first experiment, we evaluate the impact of query complexity on optimization
runtime. However, the implementation of the traditional operator-centric opti-
mizations using column sets differs significantly from our proposed path-centric

2https://www.sqlite.org/sqllogictest/

https://www.sqlite.org/sqllogictest/
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Table 3.2: Impact of Indexed Algebra on TPC-DS optimization.

Avg. Time [µs]

Optimization Pass Column Sets Indexed Algebra Speedup

Simplify Expressions 10.5 11.0 0.95
Unnesting 78.8 10.9 7.26
Predicate Pushdown 66.9 58.8 1.18
Cardinality Estimation 96.9 97.4 1.00
Join Ordering 63.5 65.7 0.97
Physical Planning 20.7 23.1 0.91

Total 339.9 269.5 1.28
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Figure 3.15: Query optimization time of synthetic join querys with many rela-
tions. Indexed Algebra has asymptotically better runtime for large queries.

optimization (cf. Figure 3.3). For this evaluation, we implement all optimizations
with the path-centric optimizations, and only calculate column sets once for the
unnesting logic of Section 3.5.2. For path-centric optimization, we compare a
naïve path traversal with Indexed Algebra.

For this experiment, we expect Indexed Algebra to have an advantage grow-
ing with the query complexity. Path traversal and column sets both have
quadratic behavior, while Indexed Algebra runs in 𝑂(𝑛 log 𝑛). Between column
sets and path traversal, we expect no dramatic difference.

Figure 3.15 shows the results measuring the time to optimize queries of
increasing complexity. As a first micro benchmark, we only consider the time to
execute the optimization to decorrelate any nested expressions. On the x-axis,
the figure shows the increasing number of joins between 10 and 300 relations.
As expected, the two traditional implementation approaches, path traversal and



3.8. EVALUATION 91

JOB Synthetic Joins

TPC-H TPC-DS

Indexed Algebra
Path Traversal

Column Sets
OrdPath

Indexed Algebra
Path Traversal

Column Sets
OrdPath

0.0
0.1
0.2
0.3
0.4

0.0
2.5
5.0
7.5

10.0
12.5

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

U
nn

es
tin

g
T

im
e

[m
s]

Figure 3.16: Query optimization time of various benchmarks.

column sets, scale badly with them taking several milliseconds to perform the
single optimization pass.

With increasing query complexity, the two traditional approaches show
clear super linear execution time. For ten relations, path traversal takes 20 µs,
while Indexed algebra is 4× faster and only takes 5 µs. With 300 relations, path
traversal takes over 12 ms, where Indexed Algebra only takes 0.14 ms, over
85× faster. This means that using Indexing algebra, we can cope with very
large queries. We tested even larger join sizes with 1k and 10k joins, where
Umbra takes 0.16 and 13 seconds to optimize the query. For such large joins, join
reordering becomes a bottleneck, where, e.g., join linearization shows quadratic
runtime [116].

This shows the advantage of Indexed Algebra over the traditional approaches
for complex queries. While this is not as pronounced for smaller queries, it is
still a significant advantage there.

3.8.2 Benchmarks

While we saw a definitive improvement for synthetic joins, as a workload, it
is rather simplistic. The synthetic workload only has base relations and join
operators, where the benchmark queries of TPC-H, TPC-DS and JOB better
capture the real world applications that also contain business logic in aggregates
and more complex expressions. For this experiment, we continue to measure
unnesting time, which applies to all operators and expressions since the SQL
standard allows correlated attributes at almost any point of a query.
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Figure 3.17: Comparison of total optimization times.

In this experiment, we expect fewer gains than with the complex synthetic
queries. Since the queries in this experiment contain significantly fewer oper-
ators on average, the quadratic behavior is not as dramatic. However, as we
already saw in the last benchmark, Indexed algebra should still be several times
faster.

Figure 3.16 shows a box plot of the results, which roughly follow our expec-
tations. In TPC-H and JOB, Indexed Algebra is more than 4× faster than using
column sets, while it is on average 7× faster in TPC-DS. In addition, Indexed
Algebra significantly improves the situation for the outliers: Unnesting TPC-DS
Q64 takes over 350 µs with column sets, while Indexed Algebra only takes about
23 µs. Similarly, TPC-H Q8 takes over 80 µs with column sets, where Indexed
Algebra takes 8.5 µs.

In comparison to the synthetic queries, the performance of path traversal
and column sets is unexpected. On average, path traversal is faster for this
workload of real queries. We suspect that this might be caused by memory
allocation: The relations in real-world queries have many more columns than
in the synthetic workload, which results in large dynamically allocated sets.
Since these sets also scale quadratic with the query size, the ballooning memory
results in poor cache locality, which path traversal avoids.

In contrast, OrdPath seems to be the best implementation, when just consid-
ering unnesting. However, unnesting mostly reads the query tree and favors
optimization strategies that allow cheap path queries. When we also consider
the total optimization time that includes transformations, this picture changes:
Figure 3.17 shows the total optimization time, including query transformations.
For the small queries in TPC-H, OrdPath is competitive with Indexed Alge-
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Figure 3.18: Evaluation of interactive workloads.

bra, but for larger synthetic join queries the asymptotically worse updates to
OrdPath’s path labels become costly.

To summarize, Index Algebra not only has sizable improvements for huge
queries, but also significantly improves optimization of relatively small real
world queries. In the following, we investigate how well the improvements of
this specific task translate to the complete query optimization process.

3.8.3 Interactive Workloads
Benchmarks capture a narrow use-case with mostly static queries. Query op-
timization is more challenging for workbooks, which are popular tools for
complex, interactive data analytics [149]. The data these workbooks run on is
typically relatively small, but the queries can be quite complex. For the following
evaluation, we use real-world queries from Tableau Public, which we convert to
standard SQL and CSV files3.

For our evaluation of interactive workloads in Figure 3.18a, we consider
over 1 000 queries from nine complex Tableau Public workbooks. The data
queried in these workbooks is relatively small, and consequently, the median
execution time for these queries is relatively short with 230 µs. In contrast, the
median optimization time of these queries with Umbra’s traditional column
set implementation 105 µs. Using Indexed Algebra brings the median total
optimization time down to 89 µs, which is an 18% speedup on real world queries.

As an additional data point on small data, we use TPC-H on a small scale
factor 0.01. The small scale factor captures the optimization challenges of the

3https://github.com/tum-db/tableaupublic

https://github.com/tum-db/tableaupublic
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Figure 3.19: Improvements of total query optimization time. We compare the
time to optimize queries using Indexed Algebra in contrast to column sets. The
average improvements are: 12% for TPC-H, 29% for TPC-DS, and 10% for JOB.

interactive nature of such workbooks, and still captures the data size of the 75th
percentile of Tableau Public workbooks [150]. In this configuration, the TPC-H
queries have a median execution time of 369 µs. The median total processing
time for column sets is 856 µs, using Indexed Algebra reduces this to 790 µs.
Figure 3.18b shows this as a box plot. In total, Indexed Algebra can reduce the
end-to-end latency of this workload by 8%.

3.8.4 Overall Results

Query optimization comprises many optimizations, where the unnesting is only
one partial optimization. Many other analyses in other optimization passes
can be similarly costly, but are not as dependent on the query structure as
unnesting, which diminishes the improvement of Indexed Algebra. As discussed
in Section 3.6.2, cardinality estimation using sample evaluation is expensive,
and unaffected by Indexed Algebra. To quantify the overall improvement, we
measure the speedup of using Indexed Algebra over the total query optimization
time.

Over all optimizations, we expect less speedup than we saw for query unnest-
ing in the last sections. Still, many optimizations besides unnesting also depend
on the query structure, so we should still measurable a significant improvement
with Indexed Algebra. Especially for complex queries, where the quadratic scal-
ing of traditional methods has the most impact, we expect good improvements.

Figure 3.19 shows the aggregated speedup of query optimization time over
the measured benchmarks. As expected, the speedup is less than for the specific
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Figure 3.20: Total time spent processing synthetic join querys with many rela-
tions. Umbra uses Indexed Algebra to efficiently optimize large queries.

optimization of the last measurements, but we still see some significant speedups
for outliers, e.g., TPC-H Q8 and TPC-DS Q64, which improve by over 50%.

We conclude with a systems comparison of the total processing time for
synthetic join queries in Figure 3.20. This experiment shows MariaDB 10.9.4,
DuckDB 0.6.1, PostgreSQL 14.6, Hyper 0.0.16377, and SQLite 3.40.1 over an
average of three runs for join sizes of up to 1000 joins. As workload, we adapted
the synthetic joins that we already used in the last experiments, but with base
tables and a result of 1000 tuples so that the query execution is not trivial.
We measure all systems with an increasing number of joins, until we hit the
limits of the systems, e.g., a parse error for SQLite, or excessive processing time.
While the excessive runtime could have multiple causes, inefficient planning or
execution, Umbra still achieves sub-second processing times even for more than
a thousand joins using Indexed Algebra.

3.9 RelatedWork
After the classical approach in System R [134], Goetz Graefe pioneered the
implementation of optimizations on relational algebra with the EXODUS [54],
Volcano [53], and Cascades [52] systems. Modern optimizers like Calcite [12]
or Orca [144] still use the same concepts. These systems all rely on operator
centric optimizations that transform the plan with predefined rules. Indexed
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Algebra works on path-centric algorithms instead, which allows more efficient
plan transformations.

A newer development is the development of advanced query compilers.
Query compilers nowadays build upon data centric code generation [108, 136],
which translates query plans into an intermediate language that a compiler like
LLVM can optimize and transform to machine code. Subsequent work in this
area advanced the used intermediate representations (IR) to fit the needs of query
processing systems [69, 75, 137, 148]. Indexed Algebra optimizes the logical
plan from a high level, where IRs focus on the lowering to machine code for
the physical query plan. This also allows powerful inter-operator optimizations
such as operator fusion. However, a series of operators forming a pipeline
become a function or loop that is a boundary where imperative compilers
cannot easily optimize. In contrast, Indexed Algebra specializes for data flow
questions inherent to query languages, where we can introduce optimizations
across pipelines. In summary, we see these approaches as complementary: IRs
allow powerful low-level optimizations on individual expressions, while Indexed
Algebra optimizes the high-level plan.

Another related work is TreeToaster [9], which builds efficient patternmatch-
ing based on the incremental view maintenance engine DBToaster [1]. Tree-
Toaster recognizes that pattern matching is a bottleneck, and makes pattern
matching on dynamic algebra trees efficient. In contrast, our work reengineers
the pattern matching to operate on paths instead of individual operators.

3.10 Conclusion
In this chapter we introduced Indexed Algebra as an efficient solution to optimize
relational algebra. Traditional techniques to query optimization did not scale
for complex queries, often showing quadratic runtime with increasing operators.
While complex queries previously took a long time to optimize, our technique
helps to reduce the average optimization time and makes processing the most
complex queries viable.

Indexed Algebra tames the quadratic complexity of query optimization
by building an index structure of the data flow paths though the query. In
combination with our proposed path-centric query optimization, this reduces
the time spent optimizing. With Indexed Algebra, the runtime of both queries
and transformations of the algebra is logarithmic in the number of operators.
In total, this query optimization can implement optimizations looking at all
operators in 𝑂(𝑛 log 𝑛).

Furthermore, we have shown that path-centric query optimization not only
allows efficient, but also expressive implementation of query optimization. For
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path-centric optimization, especially the least common ancestor operation is a
convenient way to directly find interesting points where the data flow intersects.
This approach also does not require additional data structures that we would
need to maintain and update, which significantly reduces the implementation
effort. In effect, this allows Indexed Algebra to offer the best of both worlds,
efficiency and ease of use.

Even for moderately complex queries as we find in TPC-H, Indexed Algebra
improves the total optimization time by up to 1.8×. Due to the asymptotically
better runtime, complex queries show an even larger improvement. For such
complex queries, Indexed Algebra allows to efficiently optimize queries that
previously were considered impossible to optimize.





CHAPTER 4
Conclusions

In this thesis, we observed several challenges for low latency query processing
and query execution, and developed strategies to improve modern database
systems. First, we introduced a strategy for parallel execution with optimistically
shared state that avoids contention between threads. In addition, we propose
an improved cardinality estimation algorithm for calculated columns based on
statistical distributions to guide the query optimizer. Lastly, we enable low
latency query optimization using an index over paths through the relational
algebra to accelerate common query optimization tasks.

These techniques enable new business use-cases that require low-latency
query processing. For example, many users have a need for hybrid OLTP and
OLAP [67, 119] processing. Our contributions bring traditionally long-running
analytical queries closer to the latency needed for transaction processing [70].
In turn, this also leads to a lower time-to-insight, i.e., when one can move
from batch processing analytics overnight to running them on real-time data.
Lastly, an improved latency also is beneficial for interactive visualizations [85],
which need low latency to not feel sluggish and allow smooth updates of the
visualization based on query results when changing the analysis. Low-latency
query execution also sparks interest from industry, where, anecdotally, most
analytical queries process only a few hundred megabytes of data. With such
workloads, the line between the traditionally distinct worlds of OLTP and OLAP
systems are blurry, since modern database systems can execute OLAP queries
with OLTP latency.
Outlook. While this thesis improves low latency data processing for modern
database systems, we still see further opportunities for improvements, which
were partially explored in related publications that the author of this thesis was
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part of, but are not part of this thesis. These still have the potential to further
improve execution latency.

One path tomore capable low latency processing is tomake I/Omore efficient
by enabling cheap I/O parallelism that hides I/O access latency [101]. While
modern I/O devices, either storage devices in the form of SSDs or network
interfaces, offer very high throughput that is comparable to main memory, but
still have relatively high latency for single reads [62]. With multiple outstanding
read requests, it is possible to hide the latency and overlap processing of already
available data with the latency time for the I/O. This is especially relevant
when we need many I/Os for processing, e.g., for index joins [124]. However,
traditional methods to achieve such I/O parallelism, e.g., by oversubscribing the
CPU with thousands of execution threads, create massive CPU overhead, which
then limits the useful processing capacity and leads to higher query latency [28].
One way to make this more efficient is to use coroutines, and an asynchronous
I/O interface like io_uring. Some challenges for this approach remain, e.g., an
efficient approach for userspace scheduling of coroutines, or to make locking
coroutine aware and non-blocking [22].

Other approaches to reduce query latency include adaptive query process-
ing [8, 126], which can dynamically switch query execution plans to adapt
to hardware or predicate misestimations. Keeping the latency for the plan
adaption low is challenging for code-generating execution engines, which need
low-latency query re-compilation [131]. To enable this efficiently, we can reuse
already compiled-code to speed up recompilation, e.g., when selectivity during
execution is different from query planning, or to quickly generate different query
plans in prepared statements with parameters. Using compiler techniques, we
can generate code that can be cheaply reordered or optionally executed without
needing to recompile the whole query, but with a much cheaper code copying
approach. As a result, this approach further reduces the latency of many queries.

Finally, we see a need for efficient text processing in database systems [129].
Many data processing operations are already efficient, e.g., hash based data
structures with small integer payloads. However, many real-world workloads
contain text, which is substantially slower to process, and the typical column-
based vectorization approaches that speed up regular queries are not applicable
to strings. However, using code generation, one can specialize the processing
code of strings when an operation applies to many tuples, e.g., pattern matching
within these strings. As a result, the tailored code for string processing can make
better use of hardware-specific features such as SIMD [139, 140, 151], which
significantly improves the latency of these operations.

In conclusion, this thesis continues the ongoing research efforts to reduce
data processing latency. We contribute several new and improved algorithms
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that improve query planning and processing, which enables better data analytics
and improves the interactivity and approachability of data science.
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