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ABSTRACT A powerful result from behavioral systems theory known as the fundamental lemma allows
for predictive control akin to Model Predictive Control (MPC) for linear time-invariant (LTI) systems with
unknown dynamics purely from data. While most data-driven predictive control literature focuses on robust-
ness with respect to measurement noise, only a few works consider exploiting probabilistic information of
disturbances for performance-oriented control as in stochastic MPC. This work proposes a novel data-driven
stochastic predictive control scheme for chance-constrained LTI systems subject to measurement noise and
additive stochastic disturbances. In order to render the otherwise stochastic and intractable optimal control
problem deterministic, our approach leverages ideas from tube-based MPC by decomposing the state into
a deterministic nominal state driven by inputs and a stochastic error state affected by disturbances. Satis-
faction of original chance constraints is guaranteed by tightening nominal constraints probabilistically with
respect to additive disturbances and robustly with respect to measurement noise. The resulting data-driven
receding horizon optimal control problem is lightweight, recursively feasible, and renders the closed loop
input-to-state stable in the presence of both additive disturbances and measurement noise. We demonstrate
the effectiveness of the proposed approach in a simulation example.

INDEX TERMS Data-driven control, predictive control for linear systems, stochastic optimal control, uncer-
tain systems.

I. INTRODUCTION
As Sensor data and computational power become more widely
available, data-driven approaches are increasingly relevant
in modern control applications. Recently, direct data-driven
control design based on Willems’ lemma [1] has emerged
as an appealing alternative to the classical approach of first
constructing a model from data based on system identifica-
tion methods. Informally, the so-called fundamental lemma
states that for discrete-time linear time-invariant (LTI) sys-
tems, the time-shifted vectors of any input-output trajectory
generated by a persistently exciting input signal span the vec-
tor space of all (fixed length) input-output trajectories of the
system. As a consequence, discrete-time LTI systems can be
represented by a single measured trajectory, enabling control
and analysis problems to be solved directly from trajectory

data [2], [3], [4], [5], [6]. A concise and comprehensive
recent review is provided in [7]. By replacing the model
with trajectory data, one effectively obtains a non-parametric
representation of the subspace spanning the system behav-
ior. This behavioral subspace can be directly searched by
varying the coefficients of the linear combination of the ba-
sis (or library of trajectories [7]), making the framework
naturally well-suited for finding optimal future input-output
sequences within data-driven (or data-enabled) predictive
control [8], [9]. Data-driven predictive controllers have since
been modified for different classes of systems [10], [11],
[12] with theoretical guarantees in various settings. Sev-
eral works consider data perturbed by measurement noise
and provide robust extensions of data-driven predictive con-
trol, akin to robust MPC (RMPC) [13], [14], [15], [16],
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[17], [18]. Few works, however, consider a setting akin
to stochastic MPC (SMPC), i.e., avoid overly conservative
performance by exploiting probabilistic knowledge of stoch-
astic disturbances.

A. RELATED WORK
Systems subject to stochastic disturbances are considered
in [19], [20] for a very general setting in which no knowl-
edge about the probability distribution of the disturbance is
assumed, and the data available are inexact. Strong proba-
bilistic guarantees on out-of-sample performance are given
for the resulting open-loop data-driven optimal control prob-
lem. Probabilistic constraint satisfaction is enforced for the
worst-case probability distribution that would explain the
data. However, closed-loop properties and recursive feasibil-
ity of the optimal control problem are not considered. In [21],
the authors present a data-driven predictive control scheme
for systems affected by zero-mean white Gaussian process
and measurement noise. By extending Willems’ fundamental
lemma to incorporate innovation data, the innovation form of
the underlying state space system is represented from data. If
the innovation data are exact, the resulting predictor is opti-
mal, but ensuring stability and robustness of the closed-loop
system remains an open research challenge.

In literature, only one line of work [22], [23], [24] falls
into the category of data-driven SMPC and comes with certifi-
cates for recursive feasibility and stability. In [22], Pan et al.
presented an extension of the fundamental lemma for stochas-
tic LTI systems that leverages polynomial chaos expansion
(PCE). Due to the linearity of PCE coefficients, stochastic
variables described by those coefficients can be propagated
through the dynamics in full. Applied to systems subject to
stochastic additive disturbances with a known probability dis-
tribution, this allows for a deterministic reformulation of the
otherwise intractable stochastic optimal control problem. The
resulting predictive control scheme is rendered recursively
feasible and practically stable with backup initial condi-
tions [23] and is extended to the input-output case in [24].
Since distributional knowledge informs predictions in full, the
approach is very appealing for settings in which the distribu-
tion of the disturbance is known exactly, but comes at the cost
of relatively heavy online computations.

B. CONTRIBUTION
This work presents a novel data-driven SMPC scheme for
the performance-oriented control of unknown LTI systems
subject to stochastic disturbances based on trajectory data.
By employing ideas from tube-based MPC, we provide a
deterministic reformulation of the stochastic optimal control
problem that is lightweight, recursively feasible, and leads
to a stable closed loop. Similarly to [23], we assume that
disturbance realizations can be measured or estimated offline
before the control phase. In contrast to [23], we consider a
setting in which no further distributional information is avail-
able, and an additional uncertainty, in the form of online state
measurement noise, needs to be accounted for.

In order to combine the deterministic fundamental lemma
with stochastic dynamics, we split the state into a determinis-
tic nominal part affected by inputs and a stochastic error part
affected by disturbances. By formulating the optimal control
problem based on nominal states, it is rendered deterministic.
Offline, before the actual control phase, probabilistic error
predictions are used to appropriately tighten constraints on the
nominal state such that original state constraints are met with a
pre-specified probability level. We represent the decomposed
dynamics in the data-driven setting and show how both the
error predictions for the probabilistic constraint tightening
and an additional robust constraint tightening with respect to
bounded online measurement noise can be computed from
data. To render the closed loop stable and the optimal control
problem recursively feasible, we employ ideas from classical
SMPC in the design of a data-driven robust first step con-
straint [25], stochastic tubes [26] with tightened constraint
sets [27], terminal ingredients [28], [29], and a pre-stabilizing
data-driven state feedback, with gains derived from the ini-
tially measured trajectory [3].

The main contribution is a recursively feasible and stable
tube-based data-driven predictive control scheme that lever-
ages chance constraints to efficiently control against process
disturbances in the presence of measurement noise.

C. OUTLINE
The remainder of this work is structured as follows. Sec-
tion II states the problem setting and all standing assumptions.
Section III introduces preliminaries on tube-based MPC. Sec-
tion IV proposes the data-driven predictive control algorithm,
and Section V presents ingredients for closed loop certificates.
Section VII tests the algorithm in simulation. Section VI dis-
cusses the case of noisy offline data, and we conclude the
article in Section VIII.

D. NOTATION
Boldface uppercase (resp., lowercase) letters denote matri-
ces (resp., vectors), In is the n× n identity matrix, Nb

a
abbreviates the integer sequence {a, . . . , b}, and (·)† de-
notes a pseudoinverse. A � 0 (A � 0) means matrix A is
positive (semi-)definite. Sequences of vectors are written as
s[1, N] = (s1, . . . , sN ), and s[1, N] = [s�1 , . . . , s�N ]� denotes
a stacked column vector of the sequence. Let ‖s[1, N]‖∞ =
sup{|s1|, . . . , |sN |}, and s[1, N] ⊂ S denote that si ∈ S for all
i ∈ NN

1 . The weighted 2-norm
√

x�Qx of x is abbreviated by
‖x‖Q. The probability of an event X is denoted by Pr(X ).
For a matrix H and appropriate integers a, b, [H]a is the
a-th row vector of H and [H][a,b] represents the subma-
trix of H that is comprised of rows a, . . . , b. For any sets
A,B ⊂ Rn, we write the Minkowski set addition as A⊕ B =
{a+ b | a ∈ A, b ∈ B}, the Pontryagin set difference as A

B = {a ∈ A | (∀b ∈ B) a+ b ∈ A} and set multiplication as
KA = {Ka | a ∈ A}. In the context of predictive control, we
write xl|k for the predicted state l steps ahead of xk . For any
sequence of vectors s[0, N], the Hankel matrix HL (s[0, N] ) is
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defined as

HL
(
s[0, N]

) =
⎡
⎢⎢⎢⎢⎣

s0 s1 · · · sN−L+1

s1 s2 · · · sN−L+2
...

...
. . .

...

sL−1 sL · · · sN

⎤
⎥⎥⎥⎥⎦ . (1)

A continuous function γ : R+0
i → R+0 is of class K if γ

is strictly increasing and γ (0) = 0. If γ ∈ K and γ is
unbounded, then γ ∈ K∞. If γ : R+0 → R+0 is continous,
strictly decreasing and limt→∞ γ (t ) = 0, then it is of class L .
If δ ∈ R+0 × R+0 → R+0 is such that δ(·, t ) ∈ K and δ(r, ·) ∈
L , δ is of class K L .

II. PROBLEM SETUP
We consider a linear, discrete-time time-invariant system

xk+1 = Axk + Buk + Edk, (2a)

x̂k = xk + μk (2b)

with state xk ∈ Rnx , input uk ∈ Rnu and (A, [B E]) control-
lable. System (2) is subject to two kinds of uncertainty: A
disturbance dk ∈ Rnd , akin to process noise, and a state mea-
surement error μk ∈ Rnx , akin to measurement noise. Both
disturbances dk and measurement errors μk are realizations of
a stochastic process whose distribution is fixed but unknown.
The problem is to design a data-driven stochastic predictive
control algorithm that stabilizes the origin while respecting
input and state constraints. The predictive control algorithm
centers around repeated solutions of a stochastic optimal con-
trol problem (OCP)

minimize
Uk

E

(
L−1∑
l=0

Js(xl|k, ul|k )+ Jf(xL|k )

)
(3a)

s.t. x0|k = xk, (3b)

xl|k evolves according to (2a), (3c)

ul|k ∈ U ∀l ∈ NL−1
0 , (3d)

Pr
(
xl|k ∈ X ) ≥ p ∀l ∈ NL

1 , (3e)

where E(·) denotes the expected value, and Js and Jf
represent stage and terminal costs, respectively. State con-
straints must be satisfied in probability, as specified by the
chance constraint (3e) with user-specified risk parameter p ∈
(0, 1]. Both U and X are user-specified convex polytopic
sets

U = {u ∈ Rnu | Guu ≤ gu
}
, (4a)

X = {x ∈ Rnx | Gxx ≤ gx
}
. (4b)

Problem (3) is solved in a receding horizon fashion, where
in each time step k, the first input u0|k of the minimizing
solution U k = (u0|k, . . . , uL−1|k ) is applied to the actual sys-
tem (2). Due to the probabilistic nature of both the system
evolution (3c) and the chance constraints (3e), problem (3) is

intractable. This work aims to provide a tractable reformula-
tion based on data.

A. AVAILABLE DATA
The system matrices A, B, and E of system (2a) are unknown.
In their stead, we use persistently exciting trajectory data to
design the predictive control scheme.

Definition 1 (Persistency of excitation): A sequence of vec-
tors s[0, N−1] ∈ Rm is persistently exciting of order L if the
Hankel matrix HL(s[0, N−1]) has full row rank mL.

Assumption 1: A trajectory (ud
[0, N−1], dd

[0, N−1], xd
[0, N−1] ) gen-

erated by (2a) is available, where the sequence of joint vectors

s[0, N−1], si =
[

ud
i

dd
i

]
, is persistently exciting of order L +

nx + 1.
Remark 1: For ease of exposition, and as in related

works [21], [23], we consider full state measurements, instead
of output measurements. An extension to the input-output
setting can follow from considering an extended state of past
outputs, as in for example [16], [24]. If disturbance recordings
cannot be accessed, they may be estimated from input-state
data as in [22, Section IV.D]. Note that if E �= Inx , further
structure on E needs to be assumed. The availability of noise-
free offline data is restrictive, especially in a setting with
online noise. Nevertheless, we include online noise in order
to narrow the gap to a fully realistic setting and show the
flexibility of the proposed approach in dealing with additional
uncertainties. We give a more detailed discussion on the influ-
ence and challenges of noisy offline data in Section VI, and
show its effect in a simulation example in Section VII.

In order to guarantee the satisfaction of state con-
straints (3e), we employ a stochastic constraint tightening with
respect to the disturbance d, and a robust constraint tightening
with respect to the measurement noise μ. To this end, we make
the following assumption.

Assumption 2:
(a) In addition to the data in Assumption 1, NS samples of

disturbance sequences d (i)
[0, L−1], i ∈ N

NS
1 , that is NSL realiza-

tions of the disturbance process, are available.
(b) The noise μ is bounded by a known polytopic set

M = {μ ∈ Rnx
∣∣ Gμμ ≤ gμ

}
. (5)

that contains the origin.
(c) The disturbance d is bounded by a known polytopic set

D = {d ∈ Rnd | Gd d ≤ gd
}

(6)

that contains the origin.
Items (a) and (b) of Assumption 2 are necessary by virtue

of stochastic and robust constraint handling, respectively. The
addition of item (c) allows for recursive feasibility and sta-
bility in a robust sense, i.e., both properties can only be
guaranteed in probability if either d or μ are unbounded.
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B. DESIRED PROPERTIES
We want to guarantee that the reformulated OCP (3) remains
solvable while the system is steered by the predictive con-
troller. Given that the OCP is feasible at initial time, recursive
feasibility guarantees that constraint satisfaction is possible
for all time.

Definition 2 (Recursive Feasibility): A receding horizon
OCP is recursively feasible if the existence of an admissible
solution U k implies the existence of an admissible solution
U k+1 at the next time step.

Additionally, we desire input-to-state stability of the
closed-loop system

xk+1 = f (xk,wk ) , (7)

with respect to wk ∈ Rnw , which is an extended disturbance
term comprising all uncertainty (both from the measurement
noise and the additive disturbance). For the following defini-
tions, let the extended disturbance be bounded by a compact
support set W that contains the origin. Furthermore, let the
origin be an equilibrium of the closed loop system for zero
disturbance, f (0, 0) = 0, as is the case for system (2a). De-
note by φ(k, x0,w[0, k] ) the solution to (7) at time step k for
initial state x0 and disturbance sequence w[0, k].

Definition 3 (Robust positive invariant set): A set X0 is
robust positive invariant (RPI) for system (7) if x0 ∈ X0 ⇒
φ(k, x0,w[0, k] ) ∈ X0 for all k ∈ N, and for all disturbance
realizations w[0, k] ⊂W .

Definition 4 (Input-to-state stability [28, Def. 19]): Let
X0 ⊆ Rnx be a closed robust positive invariant set for system
(7) with the origin in its interior. System (7) is input-to-state
stable (ISS) with respect to the disturbance and with region of
attraction X0, if there exist functions β ∈ K L and γ ∈ K
such that for all k ∈ N0, x0 ∈ X0, and wk ∈W∥∥φ (k, x0,w[0, k]

)∥∥ ≤ β (‖x0‖ , k)+ γ
(∥∥w[0, k]

∥∥∞) . (8)

By causality, the same definition would result if w[0, k] is
replaced by w[0, k−1] [30]. Definition 4 is equivalent to robust
asymptotic stability of the origin as defined in [29, Definition
4.43]. It implies that the origin of the undisturbed system
xk+1 = f (xk, 0) is asymptotically stable with region of attrac-
tion X0.

III. TUBE-BASED MPC
In this work, we present a tractable deterministic reformu-
lation of the stochastic OCP (3) based on trajectory data.
This reformulation uses ideas from stochastic and robust tube-
based MPC [26], [29], which are introduced in the following.
In tube-based MPC, a key idea is to decompose the state x into
a deterministic nominal part z and a (possibly) stochastic error
part e,

xk = zk + ek . (9)

Given the underlying system (2a), the resulting dynamics are

zk+1 = Azk + Buk, x0 = z0, (10a)

ek+1 = Aek + Edk, e0 = 0. (10b)

By only considering the deterministic nominal dynam-
ics (10a) in the predictive controller, the OCP (3) is rendered
deterministic. The expected value in the cost function (3a) can
then be computed explicitly, and all terms depending on the
state error can be neglected since they are constant.

For any finite time step k, the error e is bounded, and the
actual state x is in a neighborhood of the nominal state z. For
an L-step trajectory, these neighborhoods form a tube around
the nominal state predictions. The original state x satisfies
user-specified constraints X if the constraints on the nominal
state z are tightened with respect to that tube. Let us denote
the tightened constraint sets for the nominal states by Zl ,
i.e., zl|k ∈ Zl replaces (3e) and {Z0, . . . , ZL−1} describes the
nominal state tube.

A robust constraint tightening (as in RMPC) computes Zl

such that for all possible realizations of uncertainty

zl|k ∈ Zl ⇒ xl|k ∈ X . (11)

Naturally, Zl should be as large as possible, as every other
choice introduces unnecessary conservatism. The maximal
sets that satisfy (11) are Zl = X 
 El , where El = {e ∈ Rnx |
(∃d0, . . . , d l−1 ∈ D) e = el from (10b)} encompasses the re-
sulting state errors el|k for all realizations of the disturbance.

In a probabilistic constraint tightening (as in SMPC), the
state constraints (4b) are required to hold with probability
level p for each future predicted state xl|k , that is

zl|k ∈ Zl ⇒ Pr
(
xl|k ∈ X ) > p, (12)

where the conditional dependency on x0|k = xk is understood
and omitted in the following. With X defined as in (4b) and
the state decomposed as in (9), the right-hand-side of (12) can
be split into two separate expressions

Gxzl|k ≤ η̃, (13a)

Pr
(
η̃ ≤ gx − Gxel|k

) ≥ p, (13b)

with the introduction of a new parameter η̃ ∈ Rrx . The de-
terministic constraint (13a) is used online, i.e., replaces the
chance constraints (3e) in the optimal control problem. Of-
fline, before the actual control phase, the parameter η̃ is
computed such that (13b) holds. Tightened nominal con-
straints are defined as

Zl =
{
z ∈ Rnx | Gxz ≤ ηl

}
, (14)

and to minimize conservatism, ηl is determined by solving

ηl = max
η̃

η̃ (15a)

s.t. Pr (η̃ ≤ gx − Gxel ) ≥ p, (15b)

with max(·) applied element-wise. Suppose the true dis-
turbance distribution is unknown, and a finite number of
NS disturbance sequences d[0, l−1] are available. Then, the
chance-constrained optimization problem (15) may be solved
approximately by reformulating it based on computed state
error samples el . To that end, a multitude of methods are avail-
able, see the recent survey [31]. For simplicity, we employ

188 VOLUME 2, 2023



FIGURE 1. Overview of the proposed approach. The extended fundamental
lemma, data-driven stochastic and robust constraint tightening, and the
overall algorithm are presented in Section IV. Additional constraints that
ensure stability and recursive stability are presented in Section V.

a scenario approximation [32], in which (15) is reformu-
lated into a large-scale linear program where the chance
constraint (15b) is replaced by deterministic constraints

η̃ ≤ gx − Gxel (16)

and required to hold for all but ND, ND < NS, samples, which
are discarded. For the resulting ηl , (15b) holds with confi-
dence 1− β for a risk parameter p ∈ [pmin, pmax]. A more
detailed description of the sampling-based solution to (15) is
provided in Section A of the supplementary material.

Remark 2: If the probability distribution of the error is
known, the chance-constrained optimization problem (15)
may be solved numerically to arbitrary precision. If the prob-
ability distribution of the error is Gaussian, the chance con-
straint may be reformulated into an analytic expression [33].
If the probaility distribution of the disturbance is known,
the probability distribution of the error may be obtained by
propagating the disturbance distribution through the error dy-
namics (10b) via the stochastic fundamental lemma [22].

In Section IV-IV-B, we show how state error samples e(i)
l

are computed from disturbance samples d (i)
[0, l−1] in the data-

driven setting, and present a data-driven formulation of robust
tubes. An overview of the proposed approach and the contents
of the remainder of the article is given in Fig. 1.

IV. DATA-DRIVEN STOCHASTIC PREDICTIVE CONTROL
Trajectory data generated by a persistently exciting input sig-
nal allow for a data-driven representation of discrete-time
LTI systems, based on a powerful result of behavioral system
theory [1], which we state in input-state-space [34].

Lemma 1 (Fundamental Lemma): Consider system (2a)
with dk = 0. If the input sequence ud

[0, N−1] is persis-
tently exciting of order L + nx + 1, then any (L + 1)-long
input-state sequence (u[k, k+L], x[k, k+L] ) is a valid trajectory

of the system if and only if there exists α ∈ RN−L such that

[
u[k, k+L]

x[k, k+L]

]
=
⎡
⎣HL+1

(
ud

[0, N−1]

)
HL+1

(
xd

[0, N−1]

)
⎤
⎦α. (17)

Lemma 1 describes a non-parametric system representation
of a discrete-time LTI system, where varying α on the right-
hand-side of (17) returns different (L + 1)-step input-state
trajectories on the left-hand-side. In the OCP of a data-driven
predictive control scheme [8], [9], [13], equation (17) (or the
equivalent input-output formulation) replaces the model and
α acts as the new decision variable.

A. DATA-DRIVEN REPRESENTATION OF STABILIZED
NOMINAL AND ERROR DYNAMICS
In order to represent system (2a) with past data, we ex-
tend Lemma 1 to the case of systems with additive distur-
bance. In the following, data Hankel matrices will be abbre-
viated as Hu := HL+1(ud

[0, N−1]), Hd := HL+1(dd
[0, N−1]),

and Hx := HL+1(xd
[0, N−1]).

Lemma 2 (Extended Fundamental Lemma): Consider data
as in Assumption 1. Any (L + 1)-long input-disturbance-state
sequence (u[k, k+L], d[k, k+L], x[k, k+L] ) is a valid trajectory of
system (2a) if and only if there exists α ∈ RN−L such that

⎡
⎢⎣u[k, k+L]

d[k, k+L]

x[k, k+L]

⎤
⎥⎦ =

⎡
⎢⎣Hu

Hd

Hx

⎤
⎥⎦α. (18)

Proof: Lemma 2 follows from Lemma 1 by considering an

extended input [ud

dd] and reordering rows accordingly. �
Remark 3: Note that trajectory data of length

N ≥ (nu + nd + 1)(L + 1)+ nx is required, such that the
system of equations (18) is not overdetermined for given
initial state x0, input sequence u[k, k+L] ∈ Rnu(L+1), and
disturbance sequence d[k, k+L] ∈ Rnd(L+1).

In order to counteract an inflation of the error state due to
the dynamics in A, we pre-stabilize the system by introducing
a stabilizing state feedback controller. Accordingly, the input
uk is decomposed into a state feedback component and a new
artificial input vk , uk = Kxk + vk .

Remark 4: Stabilizing and LQR-optimal state feedback
gains K ∈ Rnu×nx for nominal LTI systems can be computed
from data based on [3, Theorem 3] and [3, Theorem 4],
respectively (cf. Section B of the supplementary material).
To that end, we retrieve a nominal (undisturbed) input-state
trajectory with Lemma 2 by setting d[k, k+L] = 0, choosing
arbitrary inputs u[k, k+L], fixing an arbitrary initial state xk ,
and solving (18) for the resulting state sequence x[k+1, k+L].

In order to include the state feedback in the data-driven
system representation (18), i.e., represent the closed-loop be-
havior with open-loop data, we pretend the data generating
input sequence was already given by uk = Kxk + vk . Then,
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we rearrange (18) appropriately, to change the input variable
of interest from uk to vk = uk − Kxk .

Lemma 3 (Pre-stabilized fundammental lemma): Consider
open-loop data of system (2a) as in Assumption 1 and let K ∈
Rnu×nx be chosen such that ud

[0, N−1] − Kxd
[0, N−1] is persis-

tently exciting of order L + nx + 1. Let K̃ ∈ Rnu(L+1)×nx(L+1)

be a block-diagonal expansion of K. Any (L + 1)-long se-
quence (v[k, k+L], d[k, k+L], x[k, k+L] ) is a valid trajectory of
xk+1 = (A+ BK )xk + Bvk + Edk if and only if there exists
α ∈ RN−L such that⎡

⎢⎣v[k, k+L]

d[k, k+L]

x[k, k+L]

⎤
⎥⎦ =

⎡
⎢⎣Hu − K̃Hx

Hd

Hx

⎤
⎥⎦α. (19)

Proof: The proof follows from Lemma 18, by replacing Hu

with Hv = Hu − K̃Hx , reflecting the change of input from uk

to vk . �
Since the dynamics of the underlying system are stochastic

in nature, we split the system state into nominal state z and
error state e, as motivated in Section III. In the data-driven
setting, the state decomposition (9) translates to nominal state
trajectories z[k, k+L] only influenced by inputs u[0, L], and state
error trajectories e[k, k+L], only influenced by disturbances
d[0, L]. With either the disturbance sequence or the input
sequence set to zero in (19), we obtain the data-driven rep-
resentation of the pre-stabilized nominal (10a) or error (10b)
dynamics as ⎡

⎢⎣
v[k, k+L]

0
z[k, k+L]

⎤
⎥⎦ =

⎡
⎢⎣Hu − K̃Hx

Hd

Hx

⎤
⎥⎦αz, (20a)

⎡
⎢⎣ 0

d[k, k+L]

e[k, k+L]

⎤
⎥⎦ =

⎡
⎢⎣Hu − K̃Hx

Hd

Hx

⎤
⎥⎦αe, (20b)

where αe ∈ RN−L , αz ∈ RN−L , and the true state sequence
is given by x[k, k+L] = z[k, k+L] + e[k, k+L] = Hx(αz + αe).
Equation (20b) allows for the computation of state errors
e[k, k+L] from a sequence of disturbances d[k, k+L], which will
be used to compute tightened constraints for the nominal state
z in Section IV-IV-B. In practice, this computation takes place
offline, before the actual control phase. Equation (20a) allows
for prediction of nominal state sequences and replaces (3c)
in the OCP (formulated in Section IV–IV-D), to find optimal
input sequences v[k, k+L] during the control phase.

B. DATA-DRIVEN TIGHTENING OF STATE CONSTRAINTS
In order to guarantee chance constraint satisfaction of the
states xl|k in the prediction horizon, we subject the nominal
states zl|k to tightened constraints. We first tighten constraints
probabilistically with respect to the additive disturbance, be-
fore further tightening constraints robustly with respect to the
measurement noise.

The probabilistically tightened constraint sets Zl are de-
fined by (14) based on parameters ηl . To find ηl , the chance
constrained optimization problem (15) is solved using sam-
pled state error sequences e[0, L]. Given the initial state error
e0 = 0 and a sampled disturbance sequence d[0, L], the state
error sequence e[0, L] follows from (20b) as

e[0, L] = Hx

⎡
⎢⎣Hu − K̃Hx

Hd

[Hx][1,Rnx ]

⎤
⎥⎦

†⎡
⎢⎣ 0

d[0, L]

0

⎤
⎥⎦ . (21)

With the constraints X tightened to Zl for the nominal
state, (12) holds (with confidence β) and the pre-specified
chance constraints are satisfied for system (2a).

Next, we account for inexact state measurements x̂k =
xk + μk (2b) during the control phase. Let ẑ[0|k, L|k] denote
the nominal state predictions initialized at the measured state
ẑ[0|k] = x̂k . In the following, we further tighten the tube sets
Zl robustly with respect to all possible realizations of the
measurement noise μk ∈M. That is, we construct robust tube
sets Ẑl as in (11) such that

ẑl|k ∈ Ẑl ⇒ zl|k ∈ Zl . (22)

In order to obtain a maximal tube, we set Ẑl := Zl 
 Eμ,l ,
where Eμ,l encompasses all possible deviations from pre-
dicted nominal states ẑl|k to noise-free nominal states zl|k ,

zl|k ∈ {ẑl|k} ⊕ −Eμ,l ∀μ[0|k, l|k] ∈M. (23)

The smallest possible sets Eμ,l which satisfy (23) are given
by Eμ,l = {ẑl|k − zl|k | μk ∈M}, and are bounded, since the
measurement noise μk ∈M is bounded. As the deviation of
the two nominal trajectories evolves with A via

ẑl|k − zl|k = Alμk, ∀l ∈ NL
0 , (24)

the difference of the two input-disturbance-state trajectories
(u[k, k+L], 0, ẑ[0|k, L|k] ) and (u[k, k+L], 0, z[0|k, L|k] ) is again a
valid input-disturbance-state trajectory of the same underly-
ing system. Consequently, the data-driven representation in
Lemma 2 applies, yielding⎡

⎢⎣
0
0

ẑ[0|k, L|k] − z[0|k, L|k]

⎤
⎥⎦ =

⎡
⎢⎣Hu

Hd

Hx

⎤
⎥⎦αμ, (25)

with αμ ∈ RN−L, and where the noise μk = ẑ0|k − z0|k ap-
pears as the first nx entries of ẑ[0|k, L|k] − z[0|k, L|k], i.e.,

μk = [Hx][1, nx] αμ. (26)

Based on (25), (26) and with μk ∈M as in Assumption 2, the
sets Eμ,l may be constructed from data.

Lemma 4: Consider system (2) and data persistently excit-
ing of order L + nx + 1 as in Assumption 1. Let

Aμ =
{

α ∈ RN−L |
[

Hu

Hd

]
α = 0, Gμ [Hx][1, nx] α ≤ gμ

}

190 VOLUME 2, 2023



and define for each l ∈ NL
0 the tube sets

Eμ,l = [Hx][lnx+1, lnx+nx] Aμ. (27)

Then, zl|k ∈ {ẑl|k} ⊕ −Eμ,l for all μk and the sets Eμ,l define
the smallest possible tube that satisfies (22).

Proof: We have to prove that ẑl|k − zl|k ∈ Eμ,l for all l ∈
NL

1 and all μk ∈M. Denote with Hx,l = [Hx][lnx+1, lnx+nx]
the rows of Hx in (25) corresponding to ẑl|k − zl|k . First,
assume μk fixed and note that by Lemma 2 and (25), ẑl|k −
zl|k = Hx,lαμ = Alμk if Hx,0α = μk and [Hu

Hd ]α=0 . Thus,

as μk ∈M per Assumption 2, AlM = Hx,l {α ∈ RN−L |
[Hu

Hd ]α=0, Hx,0α∈M}=Eμ,l . If any element of Eμ,l is omitted, Eμ,l �

AlM and there exists a sequence of measurement noise real-
izations such that (22) is violated. As a consequence, the tube
sets Eμ,l are minimal. �

The nominal state within the OCP is thus constrained as

ẑl|k ∈ Ẑl := Zl 
 Eμ,l ∀l ∈ NL
1 . (28)

Remark 5: Note that with l ∈ NL
1 we omit constraints on

the initial state ẑ0|k = x̂k as it is not affected by future inputs,
but fixed. For recursive feasibility and stability proofs or for
the construction of a feasible candidate solution, it is often
desired that the tightened nominal state constraints Ẑ contract,
such that Ẑl+1 ⊆ Ẑl ∀l ∈ NL−1

1 . This can be guaranteed by
substituting Eμ,l in (28) with the convex hull of ∪l

i=1Eμ,i,
albeit the tube may become more conservative.

C. TIGHTENED INPUT CONSTRAINTS
Both the additive disturbance and the measurement noise
influence the measured state, which introduces uncertainty
into actually applied inputs via the state feedback compo-
nent. Similar to the constraints on the state in the previous
subsection, we tighten the original input constraint set U =
{u ∈ Rnu | Guu ≤ gu} (4a) twice. As z0|k = x̂k = Axk−1 +
Buk−1 + Edk−1 + μk , the additive disturbance dk does not
influence the actually applied input u∗0|k , but only succeeding
inputs u∗1|k, . . . , u∗L|k . Thus, with respect to the disturbance, a
probabilistic constraint tightening may be employed to reduce
conservatism. For all steps in the prediction horizon l ∈ NL

0 ,
the probabilistically tightened input constraint sets Ul are
computed such that

vl|k + Kzl|k ∈ Ul ⇒ Pr
(
vl|k + Kxl+k ∈ U) ≥ p. (29)

To that end, assume the dynamics (10b) and note that Kxl =
Kzl + Kel , which lets us split the expression on the right
hand side of (29) into deterministic and probabilistic part by
introducing a tightening parameter σl analogously to (13). As
in (14), (15), the input constraint sets are then given by

Ul =
{
u ∈ Rnu | Guu ≤ σl

}
, (30)

with the tightening parameter σl computed by solving the
chance-constrained optimization problems

σl = max
σ̃

σ̃ (31a)

s.t. Pr (σ̃ ≤ gu − GuKel ) ≥ p (31b)

based on error samples el computed from available distur-
bance samples via (21) as in the previous subsection.

Since the measurement noise μk directly influences the
actually applied input v0|k + Kx̂k , we further tighten the sets
Ul with respect to all possible realizations of μk . That is, for
all steps in the prediction horizon, we employ input constraint
sets Ûl constructed via

Ûl = Ul 
 KEμ,l ∀l ∈ NL
0 , (32)

which enforce vl|k + Kẑl|k ∈ Ûl ⇒ vl|k + Kzl|k ∈ Ul .
Remark 6: The tightened input constraint sets are such that

Ûl+1 ⊆ Ûl ∀l ∈ NL−2
0 and the actual applied input always sat-

isfies the specified constraints uk ∈ U . Note that since e0 = 0,
we have U0 = U and the constraints on the actually applied
input only take into account the measurement noise.

D. PROPOSED OPTIMAL CONTROL
PROBLEM AND ALGORITHM
Given the evolution of the nominal state (20a), tightened state
and input constraint sets (28), (32), and the explicit expecta-
tion of the cost function, we obtain a tractable deterministic
data-driven reformulation of the stochastic OCP (3)

minimize
Ẑk ,V k ,αk

L−1∑
l=0

Js
(
ẑl|k, vl|k + Kẑl|k

)+ Jf
(
ẑL|k
)

(33a)

s.t. ẑ0|k = x̂k, (33b)⎡
⎢⎣

v[0|k, L|k]

0
ẑ[0|k, L|k]

⎤
⎥⎦ =

⎡
⎢⎣Hu − K̃Hx

Hd

Hx

⎤
⎥⎦αk, (33c)

ẑl|k ∈ Ẑl ∀l ∈ NL
1 , (33d)

vl|k + Kẑl|k ∈ Ûl ∀l ∈ NL−1
0 , (33e)

ẑL|k ∈ Ẑf, (33f)

ẑ1|k ∈ ẐI , (33g)

with prediction horizon L, predicted nominal state sequence
Ẑk := ẑ[0|k, L|k], input sequence V k := v[0|k, L−1|k], stage cost

Js
(
ẑl|k, ul|k

) = ∥∥ẑl|k
∥∥2

Q +
∥∥ul|k

∥∥2
R , (34)

with positive definite weighting matrices Q ∈ Rnx×nx , R ∈
Rnu×nu , and a terminal cost function

Jf
(
ẑL|k
) = ∥∥ẑL|k

∥∥2
P , (35)

with positive definite P ∈ Rnx×nx . (33f), (33g) are terminal
and first-step constraints, which play an important role for
recursive feasibility and stability of the proposed receding
horizon control scheme in Section V. The OCP (33) has
polyhedral constraints and quadratic costs, and can thus be
written as a convex quadratic program. It is parameterized by
the measured state x̂k and its decision variable is αk ∈ RN−L.
As a consequence, and since R is positive definite, it admits
a unique solution α∗k (and thereby V ∗k ) that depends entirely
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Algorithm 1: Data-Driven Stochastic Predictive Control.
Offline: Given data as in Assumptions 1, 2.
1: Compute LQR feedback gain K as in Remark 4.
2: For each l ∈ NL

1 , compute state errors e(i)
l (21) from

disturbance data d (i)
[0, l−1] for all i = 1, . . . , NS .

3: Compute stochastic tube constraint sets for nominal
state Zl (14) and input Ul (30) by solving (15), (31).

4: Robustly tighten Zl , Ul with respect to the bounded
measurement noise, obtaining Ẑl (28) and Ûl (32).

5: Compute P (as in Section D of the supplementary
material) and define terminal costs (35).

6: Compute tightened terminal set Ẑf as in (37), (41).
7: Compute the first step constraint ẐI set as in (50).
8: Construct the OCP P(·) as in (33).

Online: For all time steps k:
9: Obtain noisy state measurement x̂k .

10: Solve the OCP P(x̂k ) (33) to retrieve v∗0|k .
11: Apply uk = κ(x̂k ) = Kx̂k + v∗0|k (36) to the system.
12: Set k← k + 1 and go back to Step 9.

on x̂k (see for example [29, Chapter 7] for details). In the
following, we denote the OCP (33) as P(x̂k ) and its implicit
control law by

κ (x̂k ) := u∗k = Kx̂k + v∗0|k . (36)

Since the OCP is a convex program, small changes in the
initial state x̂k lead to small changes in the optimal decision
variable α∗k and therefore the associated optimal input se-
quence V ∗k .

Proposition 1: Let X0 be the set of initial states x̂k ∈ X0

for which P(x̂k ) is solvable, i.e., X0 is the set of feasible
initial states. For all x̂k ∈ X0, the implicit control law κ(x̂k )
is Lipschitz continuous.

Proof: Since the OCP itself is uncertainty free, has
quadratic costs and polytopic constraints, Lipschitz continuity
of its implicit control law is a well known property and follows
for example from [28, Proposition 17]. Lipschitz continuity of
κ(x̂k ) follows from Lipschitz continuity of Kx̂k . �

The complete data-driven tube-based stochastic predictive
control scheme is summarized in Algorithm 1.

V. RECURSIVELY FEASIBLE AND CLOSED-LOOP
STABLE DESIGN
In this section, we design terminal costs, terminal constraints,
and first-step constraints such that the OCP remains feasi-
ble and the resulting closed-loop system is stable. Stability,
discussed in Section V-B, follows similarly to classical ar-
guments in MPC by choosing the terminal constraint set as
a robust positive invariant set under the local control law
and the terminal cost function as a local control Lyapunov
function in that terminal set. Recursive feasibility, discussed
in Section V-A, follows from an additional first step constraint
that guarantees robust positive invariance of the feasible set.

In the following, we will elaborate on the terminal con-
straint set, which plays a role in both feasibility and stability.
Inspired by [27, Prop. 2] we first define a RPI feasible set
Xf under the control law uk = Kx̂k . To that end, consider the
set X̃f of all states x̂ for which Kx̂ satisfies tightened input
constraints, and the nominal successor state x̂+ = (A+ BK )x̂
is inside the tube (28).

X̃f =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̂ ∈ Rnx

∣∣∣∣∣∣∣∣∣∣∣∣∣

(∃αf ∈ RN−L
)⎡

⎢⎢⎢⎣
0
0
x̂

x̂+

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
[
Hu − K̃Hx

]
[1, nu]

[Hd ][1, nd]

[Hx][1, nx]

[Hx][nx+1, 2nx]

⎤
⎥⎥⎥⎦αf,

x̂+ ∈ Ẑ1, Kx̂ ∈ Û0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(37)
Proposition 2 (RPI feasible set under local control): Let

Xf ⊆ X̃f be a RPI polytope for system (2) controlled via
uk = Kx̂k , i.e., xk+1 = Axk + BK(xk + μk )+ dk . Then, for
any measured initial state x̂0 ∈ Xf, the original state con-
straints (3e) and input constraints (3d) are satisfied for all
k > 0 in closed loop.

Proof: By definition of X̃f, a measured state x̂ ∈ Xf implies
x̂+ ∈ Ẑ1, which in turn implies x+ ∈ Z1 for the actual (not
measured) state by definition of the tube set (28). By construc-
tion of Z1 in (14), x+ ∈ Z1 implies satisfaction of the state
constraints Pr(x+ ∈ X ) ≥ p. By robust positive invariance of
Xf, x̂+ ∈ Xf and the argument holds for all future time steps
by induction. Similarly, x̂ ∈ Xf implies Kx̂ ∈ Û0 so that input
constraints u = Kx̂ ∈ U are satisfied since Û0 ⊆ U . Again,
robust positive invariance of Xf guarantees that x̂+ ∈ Xf and
the constraints hold for all time. �

We use Xf to specify the terminal constraint set Ẑf for the
last nominal state ẑL|k in the OCP such that

ẑL|k ∈ Ẑf ⇒ Pr
(
xL|k ∈ Xf

) ≥ p (38)

for all realizations of the disturbance and measurement noise.
Ẑf is computed by first probabilistically tightening Xf with
respect to the additive disturbance as in (14), and then robustly
tightening with respect to the measurement noise. Let Xf =
{x ∈ Rnx | Gx,fx ≤ gx,f}, then

Zf =
{
z ∈ Rnx | Gx,fz ≤ ηf

}
, (39)

where ηf solves the chance constrained optimization

ηf = max
η̃

η̃ (40a)

s.t. Pr
(
η̃ ≤ gx,f − Gx,feL

) ≥ p, (40b)

and the robustly tightened terminal set is then defined as

Ẑf := Zf 
 Eμ,L, (41)

where Eμ,L encompasses all uncertainty induced by the mea-
surement noise and is given by (27).
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A. RECURSIVE FEASIBILITY
In order to guarantee recursive feasibility (Definition 2), we
need to show that the OCP P(x̂k+1) at the next time step
is feasible if the OCP P(x̂k ) at the current time step is fea-
sible. Since input and state sequences within the OCP (33)
are uniquely determined by the decision vector αk in (33c),
we frame recursive feasibility as the problem of ensur-
ing the existence of a feasible αk+1 at the next time step.
To that end, let the set AF(x̂k ) denote all feasible deci-
sion variables αk for P(x̂k ), i.e., AF(x̂k ) = {αk ∈ RN−L |
(33b)–(33g) are satisfied}.

Proposition 3 (Recursive feasibility in the space of α): The
receding horizon OCP (33) for system (2) under the proposed
control law (36) is recursively feasible according to Defini-
tion 2 if and only if

AF(x̂k ) �= ∅ ⇒ AF(x̂k+1) �= ∅. (42)

Remark 7: Next to the disturbance dk , both measurement
noise realizations μk , μk+1 influence AF(x̂k+1), since μk in-
fluences the control input κ(x̂k ) = κ(xk + μk ), which in turn
influences the successor state xk+1, and thereby the initial
state x̂k+1 = xk+1 + μk+1 of the next OCP.

In nominal MPC, recursive feasibility can be guaranteed
with a control invariant terminal constraint set Ẑf. The usual
argument, for example presented in [35], is based on a set
Cl that denotes all states from which the terminal set can be
reached in l steps without violation of input or state con-
straints. Since the terminal set is control invariant, x ∈ Cl

implies x ∈ Cl+1, and therefore Cl ⊆ Cl+1. If x ∈ Cl and we
apply the first input of any admissible input sequence, the
successor state x+ is in Cl−1 ⊆ Cl . Thus Cl is positive invariant
under the MPC law (yielding admissible inputs), and for all
x0 ∈ Cl the OCP remains feasible for all time.

In the case of disturbed (as opposed to nominal) systems,
it is not guaranteed that z = x ∈ Cl ⇒ z+ = x+ ∈ Cl−1 holds
for the initial states of consecutive OCPs, since the actual next
state x+ is not equal to the next predicted nominal state. For
probabilistically tightened constraint sets, this implication is
nontrivial to restore [36]. In the model-based setting, a remedy
presented in [27] is to directly ensure robust positive control
invariance of CL (or equivalently robust positive invariance of
CL for the closed loop system under MPC law) by introducing
an additional constraint on the first step of the prediction
horizon.

If the inital state of the OCP is additionally perturbed by
measurement noise, the above implication x̂k ∈ Cl ⇒ x̂k+1 ∈
Cl−1 depends on the noise μk , μk+1. In the following, we con-
struct a first step constraint from data and include robustness
with respect to measurement noise. To that end, denote the set
of feasible initial states by

CL =
{
ẑ0|k ∈ Rnx | (∃αz ∈ RN−L ) (33b)–(33f)

}
. (43)

Remark 8: In the model-based setting, CL can be computed
via backward recursion [37] based on the nominal dynam-
ics of the system and set algebra. In the data-driven setting,
equivalently, CL may be computed by representing the system

matrices (A, B, E ) with data, based on a suitable extension
of [3, Theorem 1] to include disturbance data. This implicit
system identification step can be avoided by constructing the
set of feasible α, Az = {αz ∈ RN−L | (33b)–(33f)}, and pro-
jecting onto the first step as CL = [Hz][1,nx]Az.

Since recursive feasibility depends on the measured state
x̂k , see (42), we require robust positive control invariance of
(a subset of) CL with respect to the evolution of x̂k ,

x̂k+1 = A (x̂k − μk )+ Buk + Edk + μk+1. (44)

That is, the control invariant set needs to be robust with re-
spect to the extended disturbance term wk := Edk − Aμk +
μk+1, wk ∈W = ED ⊕ (−AM)⊕M. The disturbance sup-
port set W can be computed from data as

W = Ed,1 ⊕ (−Eμ,1)⊕M, (45)

where Eμ,1 is as in (27) and Ed,1, equal to ED, is obtained by
defining the appropriate set of decision variables

Ae = {α ∈ RN−L | [Hu][1, nu] α = 0,

Gd [Hd ][1, no] α ≤ gd , [Hx][1, nx] α = 0}, (46)

with zero input and initial state, and then projecting onto the
first step state errors e1|k via

Ed,1 = [Hx][nx+1, 2nx] Ae. (47)

Based on W (45), a robust control invariant subset of CL can
be constructed as

C∞L = ∩∞i=0 Ci
L, (48)

where C0
L = CL and

Ci+1
L =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̂ ∈ Ci
L

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ α ∈ RN−L, u ∈ Û0 :⎡
⎢⎢⎢⎣

u

0
x̂

x̂+

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

[Hu][1, nu]

[Hd ][1, no]

[Hx][1, nx]

[Hx][nx+1, 2nx]

⎤
⎥⎥⎥⎦α

x̂ ∈ Ci
L, x̂+ ∈ Ci

L 
W

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (49)

The idea in (49) is to tighten the set CL , until all contained
states admit an input for which the successor state is in
Ci

L 
W , far enough away from the boundary of the set to
render it RPI with respect to all uncertainty in W .

Remark 9: In the model-based setting, an equivalent com-
putation (without measurement noise) has been used in [27]
and the idea of the sequence is presented in [38, Chapter 5.3].
The set C∞L (48) is obtained by recursively computing Ci

L (49),
until Ci

L = Ci+1
L for some i ∈ N, which implies that C∞L = Ci

L
is robust positive control invariant. In practice, the equality
is relaxed to hold with a tolerance, see [37, Chapter 5.3] for
details.

The constraint on the first predicted state ẑ1|k ,

ẑ1|k ∈ ẐI = C∞L 
W, (50)

guarantees that for all possible realizations of the disturbance
dk and measurement noises μk, μk+1, the next measured state
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x̂k+1 is inside the robust positive control invariant subset C∞L
of the L-step reachable initial state set CL .

Theorem 1 (Recursive feasibility of the proposed OCP):
Let the first step constraint set of the receding horizon
OCP (33) be given by (50). The receding horizon OCP is re-
cursively feasible, and if x0 ∈ C∞L 
M, the receding horizon
OCP is feasible for all time.

Proof: If x0 ∈ C∞L 
M, then x̂0 ∈ C∞L ⊆ CL and the
OCP P(x̂0) is feasible by construction of CL = {x̂k ∈ Rnx |
AF(x̂k ) �= ∅}. For recursive feasibility, assume that the
OCP is feasible at time step k with optimizer α∗k such
that α∗k ∈ AF(x̂k ). By construction of the first-step con-
straint ẑ∗1|k = [Hx][nx+1, 2nx]α

∗
k ∈ C∞L 
W , the next measured

state satisfies x̂k+1 = ẑ1|L + Edk − Aμk + μk+1 ∈ C∞L for
all possible realizations of μk , μk+1, dk . Since C∞L ⊆ CL ,
AF(x̂k+1) �= ∅ and the OCP is recursively feasible by Propo-
sition 3. �

Theorem 2 (Closed loop chance constraint satisfaction):
The proposed control law (Algorithm 1) leads to the satis-
faction of chance constraints (3e) in closed loop for a risk
parameter p ∈ [pmin, pmax] with confidence 1− β.

Proof: From the constraints of the OCP, ẑ∗1|k ∈ Ẑ1. By
Lemma 4, it follows that z1|k ∈ Z1, so that chance constraints
are satisfied with Z1 defined as in (14), (15). Since the chosen
solution method of the chance-constrained optimization prob-
lem (15) guarantees (15b) with confidence 1− β, satisfaction
of chance constraints for xk+1 is inherited with confidence
1− β for a risk parameter p in the specified interval. The
proof for the closed loop follows from recursive feasibility of
the OCP, Theorem 1. �

Remark 10: If the tightening parameter η is chosen such
that (15b) holds with certainty, closed loop chance constraint
satisfaction is guaranteed with certainty.

B. INPUT-TO-STATE STABILITY
In order to establish ISS according to Definition (8), we use a
special ISS-Lyapunov function as proposed in [28], [39].

Definition 5 (ISS-Lyapunov function): A function V :
X0 → R+0 is an ISS-Lyapunov function for system xk+1 =
f (xk,wk ) if there exist functions α1, α2, α3 ∈ K∞ and γ ∈
K such that for all x ∈ X0, w ∈W

α1 (‖x‖) ≤ V (x) ≤ α2 (‖x‖) , (51a)

V ( f (x,w))−V (x) ≤ −α3 (‖x‖)+ γ (‖w‖) . (51b)

For more details on ISS and ISS-Lyapunov functions, see
Section C of the supplementary material. In particular, we
use the following corollary, which is a direct result of the
Lipschitz continuity of linear functions.

Corollary 1: Consider a closed loop LTI system
f (xk,wk ) = Axk + Bκ(xk )+ wk with disturbance wk from a
compact set W . Let the set X0 contain the origin in its interior,
be robust positive invariant for the system xk+1 = f (xk,wk ),
and let V : X0 → R+0 be an ISS-Lyapunov function for
the undisturbed system xk+1 = f (xk, 0). The closed loop

f (xk,wk ) is ISS with respect to disturbances wk ∈W if
κ(xk ) is Lipschitz continuous on X0.

In the following, we use Corollary 1 to proof ISS of sys-
tem (2a) under the proposed control law (36),

xk+1 = Axk + Bκ (xk + μk )+ Edk . (52)

Corollary 1 requires Lipschitz continuity of the control law.
However, the measurement noise μk renders κ(xk + μk ) dis-
continuous in xk . Consequently, direct stability proofs for the
evolution of the state xk as in (52) are challenging. Therefore,
as in [30], we first analyze stability for the equivalent evolu-
tion in terms of the state measurements (44),

x̂k+1 = f̂ (x̂k,wk ) = Ax̂k + Bκ (x̂k )+ wk . (53)

For the artificial noisy system (53), the control law κ(x̂k ) is
Lipschitz continuous in the state x̂k of the system by Propo-
sition 1. By Corollary 1 then, system (53) is ISS with respect
to w if there is a Lipschitz continuous ISS-Lyapunov function
for the uncertainty-free system

x̂k+1 = f̂ (x̂k, 0) = Ax̂k + Bκ (x̂k ) . (54)

System (54) coincides with the nominal dynamics (10a) as-
sumed in the OCP. As a consequence, if the predictive control
scheme were applied to system (54), the measured state at the
next time step would be equal to the first predicted state (of
the optimal state sequence),

ẑ∗1|k = x̂k+1 = ẑ0|k+1. (55)

This equality allows us to express (cost) functions of the
successor state x̂k+1 in terms of the optimal solution of the
OCP P(x̂k ), and thereby upper bound the descent of the cost
function from time step k to k + 1. In the following, we show
that the optimal cost J∗L of the OCP,

J∗L (x̂k ) =
L−1∑
l=0

Js

(
ẑ∗l|k, u∗l|k

)
+ Jf

(
ẑ∗L|k
)

, (56)

is an ISS-Lyapunov function for system (54) with proposed
control law κ(x̂k ) = Kx̂k + v∗0|k (36), if the terminal cost func-
tion (35) is a Lyapunov function for system (54) under pure
state feedback κ(x̂k ) = Kx̂k .

Proposition 4 (Terminal cost function): Let P be the op-
timal cost-to-go matrix of the LQR problem associated with
the state feedback gain K. The terminal cost function (35)
is a Lyapunov function in the terminal set Zf (41) for the
closed-loop system xk+1 = (A+ BK )xk , such that

Jf
(
xk+1

)− Jf (xk ) = −Js (xk, Kxk ) . (57)

The optimal cost-to-go matrix P may be computed from
data, see Section D of the supplementary material. The proof
of Proposition (4) is standard in MPC and included in Section
E of the supplementary material.

We proof the next result with the help of an
explicit candidate solution. Given a feasible solution
U∗k = (u∗0|k, u∗1|k, . . . , u∗L−1|k ), u∗i|k = v∗i|k + Kẑ∗i|k , to
the OCP (33) at time step k, a candidate solution for
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the next time step k + 1 can be constructed by shifting
the input trajectory and appending Kẑ∗L|k . That is, a
feasible, likely suboptimal, candidate solution for the
next time step is Ũ k+1 = (u∗1|k, u∗2|k, . . . , u∗L−1|k, Kẑ∗L|k ).
Since predictions are exact (55) for the uncertainty-free
system (54), we have x̂k+1 = ẑ∗1|k and the candidate

state sequence is Z̃k+1 = (ẑ∗1|k, ẑ∗2|k, . . . , ẑ∗L|k, z̃L|k+1) with
z̃L|k+1 = (A+ BK )ẑ∗L|k = [Hx][Lnx+1, Lnx+nx]α̃k+1 and

α̃k+1 =
[

Hu

[Hx][1, nx]

]†
[

Ũ k+1

ẑ∗1|k

]
.

Based on Proposition 4, the difference between the terminal
cost of the solution of the OCP at time step k and the terminal
cost of the explicit candidate solution at the next time step
k + 1 is upper bounded via

Jf
(
z̃L|k+1

)− Jf

(
ẑ∗L|k
)
≤ −Js

(
ẑ∗L|k, Kẑ∗L|k

)
. (58)

Lemma 5 (ISS of the artificial system): The optimal cost
J∗L (56) is an ISS-Lyapunov function for system (54). Further-
more, J∗L is Lipschitz continuous on C∞L . As a consequence,
system (53) is ISS with region of attraction C∞L .

Proof: J∗L is positive definite, defined on a domain that
contains the origin with J∗L (0) = 0 and continuous by
Proposition 1. By [40, Lemma 4.3], there exist functions
α1, α2 ∈ K∞ such that condition (51a) holds for V = J∗L .
Condition (51b) is J∗L ( f̂ (x̂k, 0))− J∗L (x̂k ) ≤ −α(‖x̂k‖) for
some function α3 ∈ K∞, which we show with the help of the
suboptimal candidate solution for the next time step k + 1.
The cost of the candidate solution, denoted by J̃L (x̂k+1), is

L−1∑
l=1

Js

(
ẑ∗l|k, u∗l|k

)
+ Js

(
ẑ∗L|k, Kẑ∗L|k

)
+ Jf

(
z̃L|k+1

)
. (59)

Since J∗L (x̂k+1) ≤ J̃L (x̂k+1), the descent of the optimal
cost function is upper bounded by J∗L (x̂k+1)− J∗L (x̂k ) ≤
J̃L (x̂k+1)− J∗L (x̂k )

(55)= −Js(x̂k, κ(x̂k ))+ Js(ẑ∗L|k, Kẑ∗L|k )+
Jf(z̃L|k+1)− Jf(ẑ∗L|k )

(58)≤ −Js(x̂k, κ(x̂k )). Since κ(x̂k ) is
continuous in x̂k by Proposition 1, and Js(x̂k, uk ) (34) is
continuous in x̂k and uk , the composition Js(x̂k, κ(x̂k ))
is continuous in x̂k . Hence, there exists α3 ∈ K∞ such
that α3(‖x̂k‖) ≤ Js(x̂k, κ(x̂k )) by [40, Lemma 4.3]. As
a consequence, J∗L (x̂k+1)− J∗L (x̂k ) ≤ −α3(‖x̂k‖). With
condition (51a) and (51b) satisfied for w = 0, J∗L is an
ISS-Lyapunov function for system (54).

By construction, C∞L (48) is compact, contains the origin,
and is robust positive invariant for system (53) with respect to
all possible disturbances wk ∈W . Since the quadratic optimal
cost J∗L (·) is Lipschitz continuous on the compact region of
attraction C∞L [28, Proposition 17], system (53) is ISS by
Corollary 1. �

Lemma 5 shows that the artificial system (53) is input-to-
state stable under the proposed control law (36). ISS for the
actual closed loop system (52) follows from the measurement
equation x̂k = xk + μk and the definition of input-to-state

stability, as in [30, Theorem 3.3], based on properties of com-
parison functions.

Theorem 3 (ISS of the closed loop system): System (52)
is ISS under the proposed control law (36), with region of
attraction X0 = C∞L 
M.

Proof: The proof follows from [30, Theorem 3.3], since
both necessary Assumptions [30, Assumptions 3.1, 3.2] hold
with Ax+ Bu Lipschitz continuous in x, W compact and
therefore contained in a closed ball of some radius λ, the
artificial system (53) ISS on X0 w.r.t. the extended additive
disturbance w ∈W , and X0 robust positive invariant w.r.t. the
extended additive disturbance by construction. For complete-
ness, a self-contained proof is included in Section F of the
supplementary material. �

In summary, we have shown that the proposed reced-
ing horizon OCP is recursively feasible, and the resulting
data-driven predictive controller (36) renders the closed loop
system ISS with respect to both additive disturbances and
measurement noise.

VI. ON THE CASE OF INEXACT DATA
The availability of exact trajectory data is a standing as-
sumption in this work (Assumption 1). In essence, we take
a certainty-equivalence approach, i.e., we assume that the
data-driven representation captures the true system, com-
parable to the case where system matrices (A, B, E ) are
known. The proposed control scheme and the proof of its
properties were nontrivial since we investigated a realistic
setting during the control phase, with the system state in-
fluenced by unknown disturbances and only accessible via
noisy measurements. Even though offline data can be aver-
aged, filtered, or similarly de-noised, in practice, data are
still likely inexact, and Assumption 1 is likely violated.
As a consequence, the hypothesis of Lemma 2 no longer
holds.

In that case, there are four consequences for the presented
control scheme: 1) predictions within the OCP are inexact
even for the nominal system; 2) the computed constraint sets
are not as specified and may lose their declared properties; 3)
the computed LQR gain K is not the actual LQR gain associ-
ated with specified Q and R, and may even be non-stabilizing;
4) the computed solution of the algebraic Ricatti equation
P is (likely) no longer associated with K via the Lyapunov
equation. Problem 1) may be alleviated by a bound on the
prediction error, which could be accounted for in a further
constraint tightening. Specifying such a bound is a pressing
open challenge in the data-driven control literature. Problem
2) may be alleviated at the cost of conservatism by guaran-
teeing either under- or overapproximation of the original sets,
whichever is appropriate for the resulting properties. Problem
3) is not as crucial since only optimality is lost as long as K
is still stabilizing. In [41], Dörfler et al. present a regularized
data-driven LQR which leads to stabilizing controllers when
the signal-to-noise ratio is large. Problem 4) has implications
related to stability: the solution of the algebraic Ricatti equa-
tion P is used to guarantee that the terminal cost function is
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FIGURE 2. Double-mass-spring-damper model used for the simulation.
The states are angles and angular velocities of the masses, the input is the
torque on mass 1, and the disturbance is the torque on mass 2.

a Lyapunov function for the nominal system under control
u = Kx. This in turn lets us bound the descent of the stage
cost. A similar bound may still be obtained without P being
accurate.

In practice, deviations from the case of exact data can be
reduced by implementing minor regularizing adjustments, the
benefits of which have been commonly observed in the litera-
ture on data-driven control with inexact data [19], [41], [42].
In particular, it is advantageous to penalize large norms of
the decision variable α, because any noise inside the Hankel
matrix (33c) is amplified directly by α. In line with [41], we
propose to add the term λα‖�αk‖ to the cost function (33a),
where λα > 0 is a regularization parameter and � is a matrix
defined as

� := I −H†
udxHudx, Hudx :=

⎡
⎢⎣Hu − K̃Hx

Hd

[Hx][1, n]

⎤
⎥⎦ . (60)

With the above definition, ‖�α‖ is a measure for the distance
of α to the image of H†

udx. For λα sufficiently large, the equal-

ity �αk = 0 holds, which means that αk ∈ image H†
udx [41].

The presented sets of admissible decision variables α, such
as Aμ (27) of Lemma 4 and Ae in (46) may be (partially)
de-noised by enforcing �α = 0 in the definition of each set.

Similarly, instead of directly computing state errors from
disturbance samples with the pseudo-inverse in (21), αe may
first be obtained by employing a convex cost function lα (·) :
RN−L → R≥0 other than ‖αe‖2 and solving

αe = arg min
α̃e

lα (α̃e) (61)

s.t.

⎡
⎢⎣ 0

d[0, L]

e0

⎤
⎥⎦ =

⎡
⎢⎣Hu − K̃Hx

Hd

[Hx][1, n]

⎤
⎥⎦ α̃e. (62)

The computation of the LQR state feedback gain may be regu-
larized in similiar fashion, see Section B of the supplementary
material.

VII. SIMULATION EXAMPLE
In this section, we present a simulation example and demon-
strate the effectiveness of the proposed control algorithm.
Consider the double-mass-spring-damper system, shown in

Fig. 2. The discrete-time dynamics of the system read

xk+1 =

⎡
⎢⎢⎢⎣

0.952 0.048 0.094 0.002

0.048 0.952 0.002 0.094

−0.920 0.920 0.859 0.046

0.920 −0.920 0.046 0.858

⎤
⎥⎥⎥⎦ xk

+

⎡
⎢⎢⎢⎣

0.048

0.001

0.936

0.016

⎤
⎥⎥⎥⎦ uk +

⎡
⎢⎢⎢⎣

0.001

0.048

0.016

0.94

⎤
⎥⎥⎥⎦ dk, (63)

following discretization of the continuous-time dynamics (see
Section G of the supplementary material) with sampling
time �t = 0.1 s. The state vector x = [θ1 θ2 ω1 ω2]�
consists of the respective angles and angular velocities of
the two masses. The input u = MM is the torque on mass
1, the disturbance d = Md is the torque on mass 2. The
goal is to stabilize the origin while minimizing cumulative
stage costs

∑
k x�k Qxk + ukRuk with Q = diag(1, 100, 1, 1),

R = 1, and respecting input constraints |u| ≤ 5 Nm and
component-wise state constraints −xmax ≤ x ≤ xmax, with
x�max = [2π 2π π0.s−1 0.5π0.s−1]. The disturbance dk

acting on mass 2 is sampled randomly from a zero-mean
normal distribution with variance d = (0.2 Nm)2, truncated at
the bounds of the interval [−d, d]. Online state measurements
are corrupted by measurement noise μk , which is sampled
from a zero-mean normal distribution with covariance matrix
μI4, μ = 0.012, truncated such that ‖μ‖∞ ≤ μ.

A. EXACT OFFLINE DATA
For the proposed control algorithm, the model (63) is assumed
to be unknown. To retrieve trajectory data as in Assump-
tion 1, we simulate the system in open-loop for 50 time-steps,
with admissible inputs chosen at random. With the trajectory
data, we generate a persistently excited nominal state tra-
jectory via (20a), which lets us compute the LQR feedback
gain K based on [3, Theorem 4] and the specified Q, R. By
Proposition 1 of the supplementary material, we retrieve the
associated matrix P for the definition of the terminal cost
function. For the probabilistic constraint tightening, we use
2924 disturbance measurements (Assumption 2 a) to solve
the probabilistic optimization problems (15), (31), with con-
fidence 1− β = 0.99 for a risk parameter p ∈ [0.88, 0.92].
The resulting constraint sets are further tightened to account
for the bounded measurement noise (see Section IV.IV-B), for
which we assume the bound μ to be known (Assumption 2
b). We employ a Monte-Carlo simulation of 100 runs, each
with different realizations of the online measurement noise
and additive disturbance, a length of 50 time steps, and fixed
initial state x0 = [1.5 2 0 0]�.

All simulations are carried out in MATLAB, with polyhe-
dral constraints specified based on MPT3 [43], linear matrix
inequalities solved with CVX [44], and the OCP (33) solved
by MATLAB’s quadprog. With a prediction horizon set
to L = 10, the mean computation time for the solution of
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FIGURE 3. Trajectories of 100 simulations for different realizations of
online disturbance and measurement noise. Dotted lines are constraints.
The average of all trajectories is shown highlighted.

the OCP was 1.650.ms on an Intel I5-13600K. The resulting
trajectories are shown in Fig. 3. In all scenarios, the OCP re-
mained feasible for all time steps and the proposed controller
stabilized the system around the origin while respecting input
constraints. Chance constraints were met, with rare constraint
violations in the interval [0.3s, 1.3s]. This conservatism is
introduced by the robust treatment of the measurement noise.
More frequent constraint violations occur if the bound on the
measurement noise is reduced, see the additional simulation
examples in Section H of the supplementary material.

B. INEXACT OFFLINE DATA
Although inexact data is not explicitly considered in the con-
trol design beyond the regularization techniques presented in
Section VI, we demonstrate the applicability of our proposed
control algorithm in a more realistic setting. To that end, we
perturb all measured states and disturbances (including those
used for the probabilistic constraint tightening) by measure-
ment noise μ as defined above, with μ = 0.012 unchanged. In
other words, we now consider the same measurement noise to
be present both online and offline, and also similarly perturb
disturbance samples, emulating a prior disturbance estimation
procedure. In order to investigate the effect of noise inside
the offline data, we sample 5 different realizations of offline
noise and use it to perturb the same state and disturbance
measurements. For each of the 5 sets of data, we compute
tightened constraint sets, controller gain K, and cost-to-go P,
but employ simple robustifications as discussed in Section VI.
In the cost function of all 5 resulting OCPs, we add the term
5‖�α‖22.

For all 5 resulting data-driven predictive controllers, we
again simulate 100 different realizations of online mea-
surement noise and disturbance each. In the case of d =
(0.2 Nm)2, we observed that about one out of five controllers

FIGURE 4. Median cost trajectories for 100 runs based on offline state and
disturbance data perturbed by measurement noise, each corresponding to
different realizations of offline noise. For comparison, the trajectory with
exact offline data is shown dashed.

TABLE 1 Performance comparison of exact and noisy (inexact) state and
disturbance data.

did not steer the state to the origin (see Section I of the
supplementary material). We lowered the disturbance level
to d = (0.1 Nm)2 and repeated the simulations. Median cost
trajectories for the 5 different resulting predictive controllers
are shown in Fig. 4. Whereas the control performance varies
significantly, all predictive controllers stabilized the system
around the origin. The resulting mean and standard devia-
tion of the total costs can be seen in Table 1, which also
includes results for the predictive controller based on exact
(unperturbed, noise-free) offline data.For the given parame-
ters, even with noisy data, the OCP was feasible for all time
steps. For the setting with lower disturbance levels, mean costs
increased by 26.3%. In contrast, median costs increased by
only 6.7% from 2749.5 to 2934.3. Overall, we observed that
in the present setting, the effect of noisy data is often small,
and rarely very large. In hindsight, this further motivates a
stochastic, as opposed to robust, future road to data-driven
control.

VIII. CONCLUSION
This work presented a novel data-driven stochastic predictive
control scheme for the control of constrained LTI systems
subject to stochastic disturbances and measurement noise. The
goal was to develop a lightweight and efficient predictive
control strategy that leverages the deterministic fundamental
lemma while also considering the probabilistic information of
disturbances for performance-oriented control. The key idea
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of the paper was to leverage a data-driven formulation of
robust and stochastic tubes that leads to a recursively feasible
receding horizon OCP and a predictive controller that renders
the system input-to-state stable with respect to both distur-
bance and measurement noise. On the one hand, we provided
a lightweight deterministic receding horizon OCP that allows
for the data-driven control of stochastic systems without the
need of a model. On the other hand, we provided a data-driven
tube-based formulation that allows for the translation of state-
of-the-art stochastic and robust tube-based MPC results into
the data-driven domain.
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