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ABSTRACT 

This master's thesis introduces two methodologies for conducting functional Failure Modes and 
Effects Analysis (FMEA), namely static model-supported and executable model-based FMEA, that 
utilize a system architecture model implemented through Model-Based Systems Engineering (MBSE) 
with SysML (Systems Modeling Language). These two methodologies are investigated and compared 
with a traditional document-based method, based on a specific set of criteria, in a selected operational 
scenario within the Laser Interferometer Space Antenna (LISA) Mission. 

The thesis establishes a system architecture model that incorporates model elements, traceability 
links, and executable diagrams to depict functional architecture, interfaces, parameters, behaviours, 
and constraints with links to functional requirements and technical components. In the static model-
supported FMEA, this model assists FMEA activities by automating input creation and providing 
convenient access and storage of FMEA table and entries. The executable model-based FMEA builds 
upon this by simulating operational scenarios with failures injected into each function, thereby 
automatically revealing the effects of these failures on the LISA spacecraft constellation. Through 
case studies and criteria-based qualitative assessment, the thesis investigates and compares the 
model-based approaches against a traditional document-based method, highlighting their advantages 
in enhancing FMEA activities and providing recommendations to address limitations. As a result, the 
research demonstrates the superiority of the executable model-based FMEA approach for complex 
space science missions like LISA.  

This thesis contributes to the field of space systems engineering by offering a novel MBSE-assisted 
FMEA methodology and highlighting the benefits of a model-based approach in improving FMEA. 

 

ZUSAMMENFASSUNG 

In dieser Masterarbeit werden zwei Methoden zur Durchführung einer funktionalen Fehler- und 
Einflussanalyse (FMEA) vorgestellt, nämlich die statische, modellgestützte und die ausführbare, 
modellbasierte FMEA, die ein Systemarchitekturmodell verwenden, das durch Model-Based Systems 
Engineering (MBSE) mit SysML (Systems Modeling Language) implementiert wurde. Diese beiden 
Methoden werden in einem ausgewählten Betriebsszenario der Laser Interferometer Space Antenna 
(LISA) Mission untersucht und mit einer traditionellen dokumentenbasierten Methode verglichen, die 
auf einem spezifischen Satz von Kriterien basiert. 

In dieser Arbeit wird ein Systemarchitekturmodell erstellt, das Modellelemente, 
Rückverfolgbarkeitsverknüpfungen und ausführbare Diagramme enthält, um die funktionale 
Architektur, Schnittstellen, Parameter, Verhaltensweisen und Einschränkungen mit Verknüpfungen 
zu funktionalen Anforderungen und technischen Komponenten darzustellen. In der statischen 
modellgestützten FMEA unterstützt dieses Modell die FMEA-Aktivitäten, indem es die 
Eingabeerstellung automatisiert und einen bequemen Zugriff auf und die Speicherung von FMEA-
Tabelle und -Einträgen ermöglicht. Die ausführbare modellgestützte FMEA baut darauf auf, indem sie 
Betriebsszenarien mit Fehlern in jeder Funktion simuliert und so automatisch die Auswirkungen dieser 
Fehler auf die LISA-Raumfahrzeugkonstellation aufzeigt. Anhand von Fallstudien und einer 
kriterienbasierten qualitativen Bewertung werden in dieser Arbeit die modellbasierten Ansätze 
untersucht und mit einer traditionellen dokumentenbasierten Methode verglichen, wobei ihre Vorteile 
bei der Verbesserung von FMEA-Aktivitäten hervorgehoben und Empfehlungen zur Behebung von 
Einschränkungen gegeben werden. Als Ergebnis zeigt die Arbeit die Überlegenheit des ausführbaren 
modellbasierten FMEA-Ansatzes für komplexe wissenschaftliche Raumfahrtmissionen wie LISA.  

Diese Arbeit leistet einen Beitrag zum Bereich des Space Systems Engineering, indem sie eine 
neuartige MBSE-gestützte FMEA-Methodik anbietet und die Vorteile eines modellbasierten Ansatzes 
zur Verbesserung der FMEA hervorhebt. 
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1 INTRODUCTION 

This chapter elaborates on the context and the outline of this thesis work. The purpose and motivation 
to conduct this study is explained in chapter 1.1. Information regarding the LISA mission, which the 
work is applied to, can be found in chapter 1.2. An introduction to Model-Based Systems Engineering 
(MBSE), which is the main theme of the thesis methodology is based on, can be found in chapter 1.3. 
The research objectives of this thesis are summarised in chapter 1.4. And finally, the overall outline 
structure of this thesis document is shown in chapter 1.5, with links to the research objectives. 

 

1.1 PURPOSE AND MOTIVATION  

For future space missions with complex operational scenarios and stringent performance 
requirements, it becomes more and more relevant to understand the system behaviour (nominal and 
in the presence of failures) at early stages in the development lifecycle. Especially for complex space 
science missions like LISA, where system functions are spread over many system layers and are 
realised by several elements of the payload, the platform, and even across the different spacecraft in 
the constellation, an early anticipation of inconsistencies between specifications and system 
behaviour becomes exceedingly important. The more functional interactions are present in operating 
a complex system, the harder is it to detect failures and asses their impact on higher level. Moreover, 
the later fault occurrences appear at higher level in the product development lifecycle, the more their 
removal will result in cost increase and schedule delay [1, 2].  

As an intention to mitigate the aforementioned issues, two main solutions in LISA project have already 
been adopted: 

• In order to cope with complexity and to avoid inconsistency during system definition, Model-
Based Systems Engineering (MBSE) solution is implemented as a formalized Systems 
Engineering (SE) process. Functional modelling with SysML language [3] and Cameo 
Systems Modeler tool [4] is one aspect of MBSE which is used to describe the system 
architecture and behaviour in terms of formalized and executable diagrams. This allowed the 
project team to have a consistent, unambiguous, and conveniently accessible definition of the 
functions that are needed to do an operational task [5-7].  

• To address the identification and analysis of failure cases, Reliability, Availability, 
Maintainability and Safety (RAMS) discipline have been contacted at an early development 
phase (Phase A/B1). A strategy is implemented to incorporate failure analyses methodologies, 
such as functional Failure Modes and Effects Analysis (FMEA), within the presented model-
based approach. 

However, it was realized that during the early phase development, when detailed information on 
hardware and software components are still not available, the integration of the RAMS discipline to 
the MBSE approach is limited. The classical approach to FMEA uses extensive documents review as 
input to the FMEA study and does not benefit from the modelled system behaviours, operations and 
traceability links. It is prone to create inconsistencies, repetition of work, and is often limited in 
identifying failure cases (and their consequences), in particular when system functions are inter-
connected between several elements and layers of the system. In addition, once established in a 
document-based approach, the link between the systems, functions, requirements, and failures needs 
extensive updates in case of changes in system definition. 

On the other hand, using an executable system architecture model to explore failure cases offers the 
following potential benefits: 

• It saves the effort of re-collecting information across multiple documents and experts, in order 
to perform failure assessments. 
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• It establishes a consistent link between failures and spacecraft systems, functions, operations, 
and requirements across different levels of abstraction. 

• It enables a better understanding of the behaviour and failure consequences of the 
investigated spacecraft/satellite (or in case of LISA the constellation consisting of three 
spacecraft) by injecting intentional failures into the nominal executable behaviours and running 
operational scenarios. This helps to identify and prioritize the failures that have an impact on 
the operational tasks instead of a more conservative approach that is independent of 
spacecraft operations. 

Therefore, the main objective of this thesis is to explore and implement approaches that makes use 
of an (executable) system architecture model to perform a functional FMEA study and to investigate 
(and if possible, quantify) the benefits of such a model-based approach. The thesis will compare and 
discuss the proposed model-based approaches with a document-based method in a selected 
operational scenario within the LISA mission. 

 

1.2 THE LISA MISSION 

The Laser Interferometer Space Antenna (LISA) mission is the third large mission (L3) in the ESA 
Cosmic Vision Science Programme and has a launch date envisaged between 2035 and 2037. The 
main objective of LISA is to observe gravitational waves in space [8]. Gravitational waves are ripples 
in the fabric of spacetime that are produced by massive astrophysical events such as the collision of 
black holes or neutron stars. These waves can provide valuable information about the nature of 
gravity, the behaviour of matter in extreme environments, and the evolution of the universe. For the 
first time on 14 September 2015, the gravitational waves were directly measured by ground-based 
detectors: Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer 
[9].  

 

 
Figure 1.1: Spectrum of gravitational waves showing astronomical bodies and phenomena the LISA mission 

is aimed to detect. Courtesy of ESA [10] 
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LISA is designed to detect gravitational waves with a frequency range of 0.1 mHz to 1 Hz, which is 
lower than the frequency range observed by ground-based detectors and cannot be measured on-
ground due to omni-present seismic noise. This low frequency range makes LISA particularly well-
suited for observing supermassive black holes, which are thought to be located at the centres of most 
galaxies (see Figure 1.1).  

The space segment of the LISA mission is a constellation of three identical spacecraft, flying in an 
equilateral triangular formation with 2.5 million kilometres arm length in between. Each spacecraft is 
equipped with two cubic test masses isolated from the outside environment in a free fall. By 
exchanging bi-directional laser beams in between each other along the constellation arms, the 
spacecrafts form a Michaelson interferometry setup. This setup enables measuring the relative test-
mass distance to picometer accuracy, which, due to the extreme stiffness of space-time, is required 
to detect the gravitational waves at lower frequencies than the ground-based detectors [11]. The laser 
links and free-falling test masses (see Figure 1.2) are one of the factors that makes this mission 
unique from other space missions, as it requires highly collaborative functioning of all three 
spacecrafts and their payload and platform systems to achieve the science objectives. 

 

1.2.1 Gravitational Wave Measurement Principle in LISA Mission 

The principle of gravitational wave measurement in the LISA mission is based on the use of laser 
interferometry to detect the tiny changes in the distances between free flying test masses located 
inside the three spacecrafts, arranged in a nearly equilateral triangle in space [8]. The measurement 
principle of LISA is based on the fact that a passing gravitational wave causes a small, but measurable 
change in the relative distances between the test masses that act as end mirrors of a large laser 
interferometer that is spanned by the three spacecraft. The lasers are used to measure the distances 
between the spacecraft by sending (TX) and receiving laser (RX) beams, which are reflected by the 
test masses and interfered with each other. The change in distance is detected by comparing the 
phase difference between the laser beams at different times. The phase difference is measured by 
interferometry, which involves recombining received laser beam with the local beam to produce an 
interference pattern. When a gravitational wave passes through the LISA constellation, the phase of 
the beat note signal (a sinusoidal modulation of the detected laser intensity) changes as a function of 
time, allowing the tiny changes in distance to be detected. The LISA mission uses a combination of 
interferometry and time-delay interferometry (TDI) to measure gravitational waves. TDI is a technique 
that combines data from multiple interferometers to remove the effects of laser frequency noise and 
spacecraft motion arising from the difference in length of the interferometric inter-spacecraft links. By 
making use of the measured absolute distances between different spacecraft and synthesizing 
interferometric signals in post-processing, TDI can replicate the effect of a Michelson interferometer 
with equal arm lengths [11]. 

 

1.2.2 The LISA Spacecraft Payload 

The LISA spacecraft (SC) payload is mainly based on an Optical Metrology System (OMS) and a 
Gravitational Reference Sensor (GRS) System to achieve the interferometric gravitational wave 
measurement goal. The OMS is composed of: 

• Telescope (TEL)  

• Optical Bench (OB), also hosting the Constellation Acquisition Sensor (CAS) 

• Laser System (LS), including Laser Assembly (LA) and Frequency Reference System (FRS) 

• Extended Phase Measurement System (ePMS). 
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Another central part of the LISA payload is the Gravitational Reference Sensor (GRS) System 
consisting of: 

• GRS Head (GRSH) 

• GRS Front-End Electronics (GRS-FEE) 

• Charge Management System (CMS)  

The roles of the listed payload elements are described in the Table 1.1. Some core payload elements 
are mounted in the so-called Movable Optical Sub Assembly (MOSA), comprising TEL, OB and 
GRSH. This assembly is movable in one rotational degree of freedom to be able to change the angle 
between the two arms of a spacecraft, thereby tracking the seasonal dynamics of the LISA 
constellation. There are 2 MOSAs (Left and Right) in each spacecraft and most of the payload 
elements are only responsible for the operation of their own local MOSA unit, which can be seen in 
the schematic in Figure 1.2. 

 

Table 1.1: LISA payload instruments and descriptions. 

Payload Instrument Description 

Laser Assembly (LA) 
Generates, controls and modulates laser light. Contains the Laser Heads 
which feed laser light to the OB. 

Frequency Reference 
System (FRS) 

Serves as a reference for stabilizing the frequency of the generated laser 
light. It is based on an optical cavity, consisting of two mirrors with a highly 
stable spacer in between. The eigenmodes formed between the mirrors 
serve as the optical frequency reference. The frequency of the laser light 
is stabilized using the Pound-Drever-Hall (PDH) locking technique [12]. 

Optical Bench (OB) 

Hosts 3 interferometers (IFO) called Reference (REF IFO), Long-Arm 
(LOA IFO) and Test-Mass (TM IFO) interferometers, mechanisms, 
photoreceivers and photodetectors. 

• REF IFO: Interferes laser lights from local LA and the LA of the 
neighbouring MOSA. It is used to lock the local lasers feeding the 
two MOSAs to one-another. 

• LOA IFO: Interferes laser light from local LA and RX light from LA 
of the remote spacecraft at the other end of the long-arm. It is used 
to measure the distance fluctuations in-between the two 
spacecrafts. 

• TM IFO: Interferes laser light from local LA and laser light reflected 
from test-mass. It is used to measure the distance fluctuations 
between the free-floating test-mass and the local spacecraft. 

extended Phase 
Measurement System 
(ePMS) 

Extracts the interferometric signals from the IFOs and provides control 
signals for the lasers, based on the frequency of the interferometric beat 
signals. 

Telescope (TEL) 
Serves as a laser beam expander/compressor to collect the RX light and 
emit TX light. 

Constellation Acquisition 
Sensor (CAS) 

Detects the laser beam from the remote spacecraft to support the 
alignment of two spacecrafts' MOSAs onto each other, which is necessary 
for the laser link acquisition. 
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GRS Head (GRSH) 
Hosts the test-mass in an electrode housing mounted in a dedicated 
vacuum chamber, isolating the test-mass from external disturbances such 
as solar radiation pressure. 

GRS Front-End 
Electronics (GRS-FEE)  

Controls and detects the test-mass attitude and position electrostatically. 

Charge Management 
System (CMS) 

Controls the test-mass charge. 

 

 

Figure 1.2: Schematic of a LISA SC with the two MOSAs and the most important instrument units. Modified 
from Charpigny [5]. 

 

1.2.3 The Laser Acquisition Sequence 

One of the most important and complex operations in the LISA mission is the acquisition of the laser 
links between the three spacecrafts in the constellation, involving various payload instruments and 
functions (see Table 1.2). The laser links enable detection of the gravitational waves using laser 
interferometry and also enable data transfer via modulation of phase of the laser light. This auxiliary 
data retrieved from the laser links consists of science telemetry data, absolute ranging information 
and clock noise signals that are used to post process the science data to make it available for analysis. 

In order to enable this data exchange, first, the bi-directional laser beams have to be physically aligned 
such that the MOSAs on the two opposing spacecrafts point to one another. This process is called 
the geometric acquisition and is a prerequisite to detect interferometric signals. During geometric 
acquisition, each spacecraft searches for the remote spacecraft using a scanning manoeuvre. Once 
it detects the laser beam from the remote spacecraft on its CAS, the position of the RX spot on the 
CAS detector is used to adapt the attitude of the spacecraft and its MOSA. This results in both 
spacecrafts on each end to align themselves according to CAS readouts to establish the laser link. 
CAS is a camera with a large Field of View (FoV) and designed to be strictly co-aligned with the 
narrow FoV of the interferometric photoreceivers. Therefore, when the RX laser beam spot position 
is properly aligned on the CAS, it also aligns on the photoreceivers. This enables a spatial co-
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alignment of the RX beam with the local TX beam on the LOA IFO photodetectors, allowing 
interferometric signals to be detected. This process is done for all three spacecrafts of the 
constellation to complete the geometric acquisition operation.  

 

 

Figure 1.3: LISA constellation view showing laser links and locking scheme. 

 

However, the geometric acquisition is not enough to establish a datalink or science measurement in 
the constellation. The laser beam frequency is too noisy to enable exchange of data or extracting 
picometer length measurements, therefore must be stabilized. This is done by the process called 
laser frequency locking onto a stable frequency source. Each spacecraft is equipped with an optical 
cavity in its FRS, establishing an appropriate reference for LAs to stabilize their laser frequencies. In 
the constellation, the FRS of only one of the spacecrafts is active at a time, which becomes the 
“master/reference spacecraft”. This spacecraft hosts the LA stabilized onto the FRS unit, which is 
called the “master/reference LA” of the constellation. Every LA in the constellation eventually must 
align its laser frequency according to this reference. This alignment, called laser frequency locking, is 
a Proportional-Integral-Derivative (PID) control-actuation loop in the LA, which replicates the laser 
frequency of the reference it is following, with a desired frequency offset. Once the control loop 
achieves the desired laser frequency, and the corresponding PID control loop is closed, the laser is 
termed to be "frequency locked". 

There are three different frequency locking ways in the constellation. 

• In the master/reference spacecraft, one of the LA frequency locks onto the optical cavity inside 
the FRS. This LA is now referred as the master/reference LA and the process is called 
“master/reference locking”. 
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• The LA can frequency lock onto the neighbouring LA, by comparing the beat note between 
the local and the neighbouring laser. This process is called as “slave/transponder mode - REF 
IFO locking”, because it uses control signals which are provided from the ePMS and derived 
from the interferometric signal of the reference interferometer. 

• The LA can frequency lock onto the LA inside the remote spacecraft on the other end of the 
laser link, by comparing the beat note between the local and the remote laser. This process is 
called as “slave/transponder mode - LOA IFO locking”, because it uses control signals which 
are provided from the ePMS and derived from the interferometric signal of the long-arm 
interferometer. 

Once the locking chain for all LAs involve the reference/master LA, the laser light frequency for these 
LAs become stabilized. An example of a locking sequence is explained below and in Figure 1.3. Note 
that a dot notation is used in the explanation as “SC.LA”, implying the owner of the element from right 
to left of the dot.  

1. Inside the SC-1, LA-L frequency locks onto the optical cavity inside the FRS. Therefore, SC-1 
becomes the “master/reference SC” and SC-1.LA-L becomes the “master/reference LA”. 

2. Inside the SC-1, LA-R frequency locks onto LA-L using the slave/transponder mode - REF 
IFO locking process. 

3. SC-2.LA-R frequency locks onto SC-1.LA-L using the slave/transponder mode - LOA IFO 
locking process. Since SC-2 is the first spacecraft to establish the LOA IFO lock with the 
master/reference spacecraft, it becomes the “slave/transponder – 1 SC”. 

4. SC-3.LA-L frequency locks onto SC-1.LA-R using the slave/transponder mode - LOA IFO 
locking process. Since SC-3 is the second spacecraft to establish the LOA IFO lock with the 
master/reference spacecraft, it becomes the “slave/transponder – 2 SC”. 

5. Inside the SC-2, LA-L frequency locks onto LA-R using the slave/transponder mode - REF 
IFO locking process. 

6. Inside the SC-3, LA-R frequency locks onto LA-L using the slave/transponder mode - REF 
IFO locking process. 

This example locking sequence deems all of the 6 LAs to become stable in frequency, therefore the 
science measurement and data exchange can happen, completing the laser acquisition sequence. 

 

Table 1.2: Payload functions for laser link acquisition. 

Payload Instrument Function 

CAS 
Principle task of acquisition (Providing centroiding information for the RX 
beam) 

FRS Internal frequency stabilization (reference mode) 

LA 

Light Generation 
Intensity Control 
Phase modulation 
Power stabilization on OB 
External frequency control (transponder mode) 
Laser frequency actuation 

ePMS 

IFO parameter extraction from carrier beatnotes 
Retrieval of PRN code delay and data 
Transponder beat note acquisition 
Extraction of DWS angles from LOA and TM IFO 
Demodulation of sideband-sideband beatnotes and clock noise retrieval 
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PRN code generation 
Generation of upscaled USO frequencies 
FFT peak detection algorithm 

OB 

Laser Beam acceptance for emission to remote SC 
Laser Beam acceptance for local interferometry 
Laser Intensity Measurement on OB 
Long-arm interferometer 
Reference interferometer 
Support for RX beam centroiding 

TEL Beam Expander/Compressor 

 

1.3 MODEL BASED SYSTEMS ENGINEERING  

This chapter explains the model-based systems engineering approach with a general overview in 
section 1.3.1, and description of the tools and language that is used in the thesis work in section 1.3.2. 

 

1.3.1 General Overview of MBSE 

Model-Based Systems Engineering (MBSE) is a methodology that uses models to represent and 
analyse complex systems, and to support decision-making throughout the system lifecycle [13]. 
MBSE is based on the idea that a model is a more efficient and effective means of communicating 
information about a system than traditional documents, diagrams, or other forms of textual description. 
In MBSE, the system, its components and functions are represented using models that can be visual, 
mathematical, or both. The models can be established using a variety of modelling languages and 
tools, including SysML, UML, Arcadia/Capella, MATLAB, Simulink, etc.  

In MBSE approach, the models can be used to define, simulate, and analyse system architectures, 
and behaviours under various conditions and to test the system's performance and/or functionality 
early in its lifecycle. Once established, these models become the main artefacts used to communicate 
information about the system to various stakeholders, including engineers, managers, customers, and 
regulators. 

One of the key advantages of MBSE is that it promotes a holistic approach to engineering with the 
philosophy of “single source of truth”. By representing the system and its components as 
interconnected models, MBSE allows engineers to design, analyse, and communicate the system 
definition as a whole and to identify and resolve potential conflicts or issues early in the design 
process. The connected way of design and communication through models ensures consistency and 
high level of awareness in the project team, leading to more efficient and effective system designs 
and reducing the risk of costly errors or delays later in the development process [14]. 

 

1.3.2 SysML and Cameo Systems Modeler 

SysML (Systems Modeling Language) is a graphical modeling language used for system engineering 
applications [3]. It is an extension of the Unified Modeling Language (UML) and is specifically 
designed to support the modeling of complex systems. SysML provides a standard set of graphical 
symbols and diagrams that can be used to represent the different aspects of a system and its 
components. The aspects are classified as structure, behaviour, requirements, and parametrics. 
Some of the common SysML diagrams include (see Figure 1.4): 

• Block Definition Diagram (bdd): provides a high-level structural view of the system and its 
components. Commonly referred as Blackbox view. 
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• Internal Block Diagram (ibd): represents the internal structure of a system and the interactions 
between its components. Ibd provide a more detailed view of the system than bdd and 
commonly referred as Whitebox view. 

• Activity Diagram (ad): represents the behaviour of a system, including its processes and 
activities. They are particularly useful for modelling the flow of information and control between 
different components of a system. 

• State Machine Diagram (stm): represents the behaviour of a system or component using 
discrete events reflected as states and transitions. The states represent different conditions or 
modes that the system or component can be in, while the transitions represent events or 
actions that cause the system to move from one state to another. 

• Parametric Diagram (par): represents the relationships between the parameters of a system 
or component. It shows how changes in one parameter can affect other parameters and 
ultimately the overall behaviour of the system through constraints. 

The contents of these SysML diagrams, called model elements, are interconnected. This 
interconnectedness allows for the easy traceability of requirements, behaviours, and functions of the 
system being modelled. By linking the model elements, SysML enables users to access a wealth of 
additional information that can be used to verify that the system is meeting its requirements and to 
identify any issues that may arise during the development process. This level of traceability also allows 
for the efficient management of complex systems, making SysML a powerful tool for engineers and 
systems architects alike. 

 

 

Figure 1.4:  Overview of SysML diagrams. Courtesy of Object Management Group [3]. 

 

Cameo Systems Modeler is a powerful modelling tool that is widely used in the field of model-based 
systems engineering (MBSE) and supports the Systems Modeling Language (SysML). It is a part of 
the CATIA product family from Dassault Systèmes and adopted in Airbus Defence and Space (ADS) 
as the main tool for early phase system architecture definition. The main capabilities of the tool 
involves collaborative modelling, simulation and analysis, traceability, and reporting and 
documentation [4]:  

• Collaborative Modelling: Cameo Teamwork Cloud tool provides collaborative modelling 
capabilities by allowing multiple users to access and work simultaneously on the same model 



 

 

INTRODUCTION 

 

21 

 

stored in a cloud server. This can help to improve teamwork and collaboration, as well as 
reduce the risk of errors and inconsistencies that may arise from working on multiple versions 
of the same model. 

• Simulation and Analysis: Cameo Simulation Toolkit provides the ability to simulate and 
analyse models, allowing engineers to test the behaviour of a system swiftly without the effort 
of exporting to external software. This can help to identify potential issues and conflicts early 
in the design process. 

• Traceability: Cameo Datahub tool provides traceability features that enable engineers to track 
the relationships between different elements of a model and requirements management 
software (e.g., IBM DOORS [15]). As an example, a system function in a Cameo model can 
be traced to a specific customer requirement in DOORS. This traceability feature allows to 
ensure that the requirement is properly addressed in the design and that any changes made 
to the requirement are reflected in the system function. 

• Reporting and Documentation: Through report wizard, it is possible to generate reports and 
documentation from models, making it easier to communicate the design to stakeholders. 

 

1.4 RESEARCH OBJECTIVES 

The main objective of this thesis is to explore and implement approaches that makes use of an 
(executable) system architecture model to perform a functional FMEA study and to investigate (and if 
possible, quantify) the benefits of such a model-based approach. The thesis will compare and discuss 
the proposed model-based approaches with a document-based method in a selected operational 
scenario within the LISA mission. In particular, the thesis intends to find answers to the research 
questions stated below: 

1- How can a traditional document based functional FMEA process be improved using the same 
input information but benefiting from a system architecture model implemented in MBSE 
environment, instead of documents? 

2- How can behavioural analysis and critical operational scenarios be integrated into a functional 
FMEA study performed using the executable system architecture model? 

3- What would be the difference between traditional (document based) FMEA, and model based 
FMEA approaches in terms of: 

• Analysis results 

• Documentation process 

• Process in case of update in system design assumptions 

• Impact of operation scenario on failure cases 

4- From the investigated approaches, which approach would be the suitable one to be implemented 
in a complex space mission project like LISA? What would be the benefits? 

 

1.5 RESEARCH STRUCTURE 

The research structure of this thesis work is explained in this chapter and summarised in Figure 1.5. 

Chapter 2 provides an elaboration on the state-of-the-art information in the literature. It investigates 
Functional Failure Mode and Effects Analysis (FMEA) utilized for functional failure mode detection 
and recovery analysis in the European space industry. Additionally, the chapter explores research 
related to MBSE assisted FMEA, including different approaches to the problem and identified gaps. 



 

 

INTRODUCTION 

 

22 

 

Furthermore, the LISA Mission System Architecture Model is introduced, with an examination of its 
capabilities and gaps throughout its deployment history. Lastly, the chapter explains the state-of-the-
art outcomes and research contributions aimed at filling the gaps in the literature. 

Chapter 3 delves into the methodology pursued to implement an early phase functional FMEA study 
by leveraging the LISA Mission system architecture model. It describes a proposed approach for the 
modelling of executable functional architecture, followed by an explanation of the execution and 
simulation implementation of this model to answer Question 2- of the research objectives. 
Subsequently, the chapter presents three different approaches for conducting a Functional FMEA 
study within a defined scope in the LISA mission, namely the traditional document-based approach, 
the static model-supported approach, and the executable model-based FMEA approach, elaborating 
the improvements using the model and answering the Question 1- of the research objectives . 

Chapter 4 is dedicated to presenting the results of the work performed to compare the three FMEA 
methodologies (traditional document-based, static model-supported, and executable model-based), 
answering Questions 3- and 4- of the research objectives. Additionally, the chapter highlights the 
contributions of the thesis work to the investigated problem. 

Chapter 5 focuses on potential areas for future work related to the thesis topic. It provides a 
compilation of recommendations for the further development of the thesis, along with suggestions for 
improving the modelling process and the integration of RAMS into MBSE methods and procedures. 

 

 

Figure 1.5: Flowchart showing the structure of the thesis work. 



 

 

STATE OF THE ART 

 

23 

 

2 STATE OF THE ART 

This chapter elaborates on the state-of-the-art information in the literature. In chapter 2.1 Functional 
Failure Mode and Effects Analysis is researched with the process depicted for ECSS-Q-ST-30-02C 
standard [16], which is used for functional failure mode detection and recovery analysis in the 
European space industry. In chapter 2.2, research related to MBSE assisted FMEA is investigated 
with the description of different approaches to the problem as well as identified gaps. In chapter 2.3, 
the LISA Mission System Architecture Model is introduced, with the investigation of its capabilities 
and gaps throughout its deployment history. Finally in chapter 2.4, the outcomes of the literature 
review and the research contributions aimed to fill in the gaps in the state-of-the-art are explained. 

 

2.1 FUNCTIONAL FAILURE MODES AND EFFECT ANALYSIS 

Functional Failure Mode and Effects Analysis (FFMEA) is a methodology used in systems engineering 
to identify potential functional failure modes of a system with their causes and effects [17]. Functional 
FMEA is a type of FMEA that focuses on the functional requirements of the system. This approach is 
particularly useful when the system design properties are not known, or uncertain, especially in the 
early phases of the development lifecycle. Since the functional description is one of the most stable 
definition of a system, it is of high interest for engineers to analyse the potential failure cases on this 
baseline before the system is designed/built, to avoid and mitigate any fundamental errors in later 
phases [1]. 

In the context of space applications, functional FMEA is often used to assess the reliability and safety 
of spacecraft and their subsystems. As an example, the ECSS-Q-ST-30-02C is a standard that 
provides guidelines for performing Failure Modes and Effects Analysis (FMEA) [16]. The FMEA 
requirements section of this standard outlines the general requirements for conducting FMEA, which 
can be summarized as follows: 

1. Identify the system functions: The first step in conducting FMEA is to identify the functions of 
the system and break them down into their lowest level (“leaf”) functions and components. The 
description, interfaces, interrelations and dependencies, as well as operational/mission link 
has to be defined. 

2. Identify potential failure modes: For each function, identify all potential failure modes that could 
occur. Burge [17] defines potential failure modes with proverbs to the function itself such as 
Over/Under/No/Intermittent/Unintended functioning.  

3. Analyse the causes/effects of failure: Analyse the causes and effects of each potential failure 
mode on the system, including its impact on safety, reliability, and mission success. This 
analysis can be done with the help of the functional architecture and the functional breakdown. 

4. Integrate findings: According to causes and effects of each failure mode, integrate them along 
the functional hierarchy and architecture to create a consistent definition of failure cases along 
the system abstraction layers. 

5. Rank failure modes: Rank the potential failure modes according to their severity, occurrence 
probability, and detection capability, to prioritize those that require mitigation. 

6. Identify mitigation measures: For each identified failure mode, identify and implement 
mitigation measures that reduce the risk of the failure occurring or minimize its effects. 

It is also important to note that the analysis is done on the same system layer (horizontal) and also 
along the system layer hierarchy (vertical). For example, horizontal investigation of a system layer 
can lead to the identification of failure propagations along various functions and items in one level, 
even if they are not part of the same hierarchical breakdown branch (see section 4.4b, 4.6b and 4.6c 
in [16]). On the other hand, the vertical integration of the failure modes establishes a consistent 
traceability of the failures to the higher levels of abstraction, where severity and impact of a failure on 
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operations and eventually the mission is more apparent (see section 4.5 in [16]). This way of 
integration enables the consistency in between levels of abstractions and full coverage of the system 
definition for the failure cases.  

 

2.2 MBSE ASSISTED FAILURE MODES AND EFFECTS ANALYSIS 

As the traditional systems engineering processes are transitioning toward the model-based approach 
for creating systems definitions, it is more and more desired to integrate the FMEA activities into this 
way of development methodology. Especially in the aerospace systems domain, integration of MBSE 
and FMEA is an interesting topic of research for the development teams due to the complexity 
involved. A selection of studies that offer distinct solutions regarding MBSE and FMEA integration are 
investigated in this chapter. 

Biggs et.al. [18] established a data model and a standard for the integration of safety analysis to 
SysML language, creating the baseline of the Cameo Safety and Reliability Analyzer Plugin (SRAP) 
[19]. The standard makes use of additional model elements, representing failure modes, effects, 
failure causes etc. and allows users to fill up FMEA tables inside the model. The use of additional 
model elements for safety and reliability analysis creates a separate viewpoint in the model, 
decoupling it from the model elements used for the definition of the systems. The use of this decoupled 
approach enables: 

• direct linking of the failure analysis elements to system definition elements without altering the 
properties of the system definition, 

• separation in model structure for experts to conveniently focus on their own related artefacts 
(e.g., safety and reliability experts work more on the SRAP model elements than the ones 
used for system definition).  

The links between the system elements and FMEA elements gives a strong traceability and overview 
that is not present in paper-based format. However, there are significant gaps identified in the 
proposed approach: 

• The standard does not offer any automation in terms of deduction of failure causes and effects, 
nor making use of the modelled system behaviours and/or architecture.  

• The standard requires a model element to be generated for each property in the failure 
analysis. Every different kind of failure mode, effect, cause, etc. must be reflected as a new 
model element, instead of a new property/attribute to one existing FMEA element. This creates 
high effort and clutter in the model, if the failure analysis involves specific failure modes, 
effects, and causes per each system definition (see Figure 2.5). 

Francesco [20] performs several RAMS analyses including FMEA with an MBSE approach for the 
A320 flight control system with alternative architectures. The analysis makes use of state machines 
for the system elements that include both nominal and failure states with their transitions and 
respective behaviours inside, as failure causes and effects. The use of failure state also effects the 
overall system behaviour since by execution the failed system will also not behave as intended. 
However, there are several gaps identified with the proposed solution in the research: 

• The approach does not identify the propagated effects of a specific failure along the entire 
system architecture. 

• Although modelled elements are mapped to the FMEA table entries by description, a solution 
on how to compile the entries automatically using the model is not offered. 

Girard et.al. [21] makes use of SysML modelling and an external software SmartIflow, to generate an 
automated FMEA study. The procedure in modelling is the use of state machine diagrams for each 
system: 
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• The states represent nominal and failure modes. 

• The transitions to failure modes correspond to system faults. 

• The behaviours defined inside the failure mode states correspond to the failure effects.  

The SysML model is then imported to smartIflow software, which runs a simulation called “unfolding” 
to generate an FMEA table. The approach traverses through every possible state transition that can 
happen until ending in a final state and records this sequence. The sequences that end in a failure 
mode state corresponds to a so called “failure chain” and therefore are represented in the FMEA 
table. While offering a comprehensive identification of possible failure cases, the gap identified in the 
proposed solution is that it does not include the effect of the operation of the systems on the identified 
failure chains. 

Schummer and Hyba [22], proposes a data path and anomaly tracing approach to identify failure 
propagations using a SysML model and queries implemented in Neo4j database tool [23].  The system 
architecture is modelled using an ibd with:  

• SysML: Part Property representing systems,  

• SysML: Proxy Port representing system interfaces, 

• SysML: Itemflow representing exchanged items and telemetry parameters. 

The model is then transferred to Neo4j database for analysis. The queries search through the data 
extracted from itemflow information from the model, that shows where a specific item/parameter 
traverses through the system elements in the architecture. This allows to identify potentially effected 
elements due to faulty exchanges through system interfaces. While offering a convenient solution to 
trace failure propagations, the approach does not take into account how a faulty input affects the 
system behaviour. For example, the faulty parameter could: 

• cause the failure of the system therefore fully deeming system output invalid/faulty,  

• or without affecting the system functioning it can still be carried on as a part of the system 
output, 

• or without affecting the system functioning it can be cancelled out in the system output. 

These behavioural aspects are significant in identifying the impacts of failures on overall system, 
therefore important to address. 

Mhenni et. al. [24] offer an Functional FMEA table generation approach by extracting Activity diagram 
data from the model, which is then completed by a safety expert. In this approach, the system 
functions are modelled as nested activity diagrams, with SysML: Action Input/Output Pin depicting 
functional interfaces and SysML: Object Flow reflecting exchanged functional parameters, forming a 
functional behavioural chain. The FMEA table is then generated by applying the following steps: 

• All the lowest level “leaf” functions are extracted from the diagrams and listed into a table. 

• Generic failure modes (e.g., “Fails to perform”, “Operates inadvertently” etc.) are listed for the 
functions. 

• Failure causes and effects are listed as input-output pins and/or upstream-downstream 
activities. 

Automatic filled table is then evaluated and finalized by the safety expert. The approach offers a 
practical solution to automatically compile an FMEA table from modelled behaviour data. However, 
several gaps have been identified in the approach, including: 

• The connection between failure modes and failure effects is not addressed by the model. 
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• The approach does not capture the effects of relatively complex modelled functional 
behaviours such as feedback loops, conditional behaviours etc. on a failure case. 

 

2.3 LISA MISSION SYSTEM ARCHITECTURE MODEL 

This chapter explains the implementation of the MBSE model, named as the LISA System 
Architecture Model, within the project team in ADS. The overview of the model, involving the history 
and strategy is explained in section 2.3.1. The Airbus R-MOFLT methodology used in the model is 
described in section 2.3.2. Information on the content of the model can be found in section 2.3.3. 

 

2.3.1 LISA Mission System Architecture Model Overview 

LISA is among the largest planned science missions within the next years. It is characterized by a 
complex mission architecture that requires the interaction of numerous elements at many levels in a 
system of systems. In order to manage this complexity, LISA team in ADS employed the MBSE 
approach as a part of their development process. Due to the complexity of the project, a behavioural 
analysis capability has been set up to allow understanding and analysis of the implemented artefacts 
and their impacts on higher levels in the system abstraction layers and different viewpoints.  

 

 

Figure 2.1: LISA System Architecture Model implementation timeline with LISA Mission timeline. Modified 
from ESA [10]. 

 

The evolution of the model through mission timeline can be observed in the Figure 2.1. The first 
models focused on analysis and simulations for specific cases [5-7] and did not implement formalized 
system definitions. This resulted in the obsoletion of the models once the analysis is finalized. 
Therefore, the project team pursued a more generalized use case by transferring documentation into 
the model to create a centralized definition of the system using the Airbus R-MOFLT methodology. 
With this approach, the model became the formalized documentation source (or interface) for a 
defined scope of operations, functions, systems and associated requirements, and this definition is 
used for simulations and deliverables as a by-product. From there on, the activities on the model 
pursued this aim especially in late A and B1 phases: documenting and generating (inputs to) 
deliverables using the model where the simulations are implemented as a support to experts and/or 
for the automation of artefact generation. It is important to note that the goal and the scope of the 
model needed to be clearly defined at an early stage, otherwise the aim to generate a holistic system 
description could have become an endless effort [25]. In the case of the LISA system architecture 
model, the scope was set as: 
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• Functional description of the complex payload and how it interacts with the platform and 
constellation.  

• Ability to trace system functions to functional requirements. 

• Generating inputs for critical operations definition. 

• Generating inputs for Functional FMEA (the topic of this thesis work). 

The implementation of the executable LISA system architecture model in this set scope has therefore 
addressed the gaps in the existing SE process and methodologies for the LISA project team. As a 
future outlook, the model is envisaged to be used until phase B2, where the mission-operation-
function-system and requirement definitions are finalized. Then, it will be used to transfer the system 
definition to the suppliers and so called “verification benches” either via document excerpts or as a 
model export if desired. The verification benches comprise:  

• High-fidelity numerical simulators: e.g., flight dynamics, environment models, detailed 
equipment models including Telemetry/Telecommand (TM/TC) interfaces. 

• Software Verification Facilities (SVF): where an emulated On-Board Computer (OBC) is used 
with real On-Board Software (OBSW) for software testing. 

• Satellite Simulators (SatSim): In the SatSim, a "copy" of the SVF is connected to the Central 
Checkout System (CCS) operated by Assembly-Integration-Test (AIT) team. It is at the same 
time used for training. 

• Full Electrical Functional model: Verification is finally done on a full Electrical Functional 
model, where specific equipment mathematical models are replaced by real hardware models. 

The model artefacts will be used as a baseline to define the verification plan and the verification bench 
contents, being a part of a consistent definition chain between requirements, design, analysis, and 
verification activities. 

Still, the model is always a key part to communicate with various stakeholders (e.g., suppliers, 
customer etc.) and as a reference throughout the development lifecycle. It acts as a user interface for 
the experts to access desired information conveniently, and to train newcomers to the project in a 
more visualized and holistic view to the systems. 

 

2.3.2 R-MOFLT Architecture Framework 

The Airbus R-MOFLT (Requirements - Mission, Operation, Functional, Logical and Technical) 
framework is a baseline in the definition of system architecture models used for developments of 
complex space systems in early phases (Phase 0/A/B1). The framework provides the methodology 
and the tool to support the development of systems with an MBSE approach: 

• Methodology: Step-by-step and top-down development process to create a system definition 
using MBSE. 

• Tool: Profiles and automations for Cameo Systems Modeler to customize the model elements 
and add features according to the needs of the project, supporting the methodology. 

The methodology is based on the fact that a system definition consists of multiple viewpoints 
(Requirements, Mission, Operation, Functional, Logical, Technical) that can be implemented fully or 
partly to the whole spectrum of system abstraction levels of interest. The viewpoints and abstraction 
levels are interconnected and show different aspects of the system to different stakeholders, e.g., 
subsystem functional integration team is interested more on the Functional viewpoint on subsystem 
level, whereas operations team is on the Operation viewpoint on system level, and RAMS team 
focuses more on the Functional viewpoint on multiple system levels for FFMEA. The methodology 
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therefore guides the experts to fill in some key artefacts in all the viewpoints for the whole abstraction 
levels in scope, creating an organized and holistic system definition. The key artefacts for the 
viewpoints can be seen in Figure 2.2. The Requirement viewpoint is integrated to the model elements 
in all levels and in all viewpoints using model relationship links, enabling full traceability to system 
specifications. 

R-MOFLT methodology focuses more on the consistent and full system definitions rather than 
executable models. The major aim is to make diagrams easy to read and understand rather than 
compatible for execution. The R-MOFLT models use majority of the SysML diagrams for its 
viewpoints:  

• activity and state machine diagrams for behaviour definitions  

• internal block diagram for architecture definitions  

• block definition diagram for structure and hierarchical definitions  

Usage of parametric diagrams are not common in the methodology, as they are more specialized for 
simulation purposes. 

 

 

Figure 2.2: Overview of R-MOFLT methodology, courtesy of Airbus [26]. Usually in (science) space systems 
with ESA as the customer, artefacts in Mission viewpoint (highlighted in red) are supplied by ESA. The 

artefacts in Operation viewpoint (yellow) are defined by both ESA and Prime (ADS), still ESA being 
responsible for the majority. The definition of the so called “solution space” (green), starting with the functional 

architecture, is on the responsibility of the development team in ADS. 

 

2.3.3 Model Content and Structure 

LISA system architecture model consists of 2 main parts implemented as separate SysML: Package 
dedicated to model definition and model execution. Another part was added to the model named as 
“Reliability and Safety” for the contents of this thesis. 

The model definition package (named “LISA_model”) involves all the model elements, relations, 
diagrams, scripts and tables that create the system definition according to the R-MOFLT 
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methodology. The model definition consists of 4 system layers or System of Interest (SOI)-Viewpoints 
in MOFLT terms (see Figure 2.3).  

 

 

Figure 2.3: SOI-Viewpoints of system definition package of LISA Mission System Architecture Model. 
Modified from Charpigny et.al. [7]. 

 

• L0 – LISA Mission, is mainly dedicated for the Mission viewpoint. It involves the LISA mission 
objectives, mission concept, mission phases and stakeholder analysis.  

• L1 - Constellation, is dedicated to the definition of the constellation formed by 3 spacecrafts. 
For this SOI viewpoint, Operational view is of interest. Operational concepts, phases and 
behaviours of the constellation are modelled in this layer including the Laser Acquisition 
Sequence.  

• L2 – Spacecraft, is dedicated to the definition of the LISA spacecraft. For this SOI viewpoint, 
functional, logical and technical definitions are of interest. For example, the integration of 
Spacecraft-Technical architecture is done in Technical view, where all the technical 
components in the planned scope (mostly payload instruments) are integrated inside the 
spacecraft. As an important note, since the spacecrafts are identical in the mission, only one 
definition is enough, saving time and effort for the development team. This still does not 
prevent the model to use the same definition but impose different behaviours on them in the 
constellation level.  

• The final levels are L3 – Payload and L3 – Platform. For these SOI viewpoints, functional, 
logical and technical definitions are of interest. As an example, functions belonging to Payload 
and its sub-elements are stored in this level, as well as the payload functional architecture. 

The model execution package (see Figure 2.4) uses the elements in the model definition package to 
create simulation contexts according to the desired analysis from the project team. This package 
involves all the model elements, diagrams and scripts that enables the simulations to be configured 
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and run. Each analysis is stored in their corresponding packages and dedicated to a different 
combination of the MOFLT viewpoints to analyse the effects of: 

• nominal system behaviour in specific viewpoints. (e.g., “Execution – Operational/Logical” 
package) 

• faulty system behaviour in specific viewpoints. (e.g., “Execution – LAS Functional/Technical 
FMECA” package) 

The rest of the packages are dedicated to the signals used in the simulations and the configuration 
elements. 

 

 

Figure 2.4: Containment tree view of the “Model Execution” package. 

 

The reliability and safety package (see Figure 2.5) involves all the model elements, relations, 
diagrams, and tables that are dedicated to the RAMS activities that uses the Cameo SRAP profile. 
These contents are linked to and make use of the elements in the model definition package. There 
are key model elements from the Cameo SRAP profile used for the FMEA analysis in this thesis work: 

• FMEA item: It is the main model element to store failure related properties of a function (in a 
functional FMEA study) or a logical/technical component (in a system FMEA study). There are 
one FMEA item per failure mode of each function and are linked to the functions using the 
"FMEA Item" property (e.g., if a function has two failure modes, there must be two FMEA items 
linked to the function for each failure mode). FMEA item model elements are stored in a 
dedicated package called “FMEA Items”. 

• Failure mode: Failure mode model elements are linked to the FMEA item of each function. 
Generic failure modes can be defined, and assigned to the system functions (e.g., “No 
Function”) to keep the number of failure mode model elements manageable. They are stored 
in the “Failure Modes” package. 

• Cause of failure: Cause of failure model elements are linked to the FMEA item of each function. 
They are only defined as verbal descriptions and are not connected to any functions, functional 
interfaces or flows defined in the model. Therefore, they must be generated and named 
manually for each analysed failure case. They are stored in the “Failure Causes” package. 

• Local/Final effect of failure: Local/Final effect of failure model elements are linked to the FMEA 
item of each function. They are only defined as verbal descriptions and are not connected to 
any functions, functional interfaces or flows defined in the model. Therefore, they must be 
generated and named manually for each analysed failure case. They are stored in the “Final 
Effect of Failures” and “Local Effect of Failures” packages. 

The FMEA/FMECA tables are stored inside the “FMECA Tables” package and their columns are 
customized according to desired standard/practice. These tables list the FMEA items and show all 
linked FMEA elements to them. The tables can be filled in with dragging and dropping dedicated 



 

 

STATE OF THE ART 

 

31 

 

elements into the column entries of the table, which would automatically generate a link to the FMEA 
item. Finally, the tables, diagrams, relation maps, and matrices that are used to show dependencies 
in between the failure analysis artefacts are stored inside the “Dependency Diagrams” package. It 
allows to collect and identify most critical or interdependent failure cases using queries in the model 
and particularly useful to the engineers.  

 

 

Figure 2.5: Containment tree view of the “Reliability and Safety” package. It is important to point out the high 
amount of model elements that need to be generated for only 6 failure cases (FMEA items). 
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2.4 STATE-OF-THE-ART REVIEW OUTCOMES AND RESEARCH CONTRIBUTIONS 

This chapter outlines the state-of-the-art review outcomes and research contributions made in 
addressing the identified gaps in the field of functional Failure Mode and Effects Analysis (FMEA) and 
Model-Based Systems Engineering (MBSE) applications. The outcomes and gaps were identified 
through an investigation of various approaches for functional FMEA, MBSE assisted FMEA 
applications, Airbus R-MOFLT methodology, and the LISA system architecture model in the preceding 
chapters.  

The following sections describe the identified gaps in the literature that the thesis aims to fill. 

• Inclusion of Operations in FMEA: The existing approaches lack the consideration of 
operational aspects in the FMEA analysis. To account for the complexity of operations in the 
LISA constellation, the proposed approach of the thesis incorporates operations in the FMEA 
analysis. This ensures that the potential failure modes associated with operations are 
considered, leading to a more comprehensive analysis. 

• Effects of Exchanged Interface Flows on the Function: The influence of exchanged interface 
flows on system functions is not adequately addressed in the existing approaches. 
Understanding how these interface flows affect the system functions and overall failure 
propagation is crucial for accurate FMEA analysis. 

• Inclusion of Functional Behaviours and Architecture together in FMEA: Existing approaches 
in the literature tend to primarily focus on either the functional architecture without explicitly 
considering individual functional behaviours, or they concentrate solely on the functional 
behaviours without adequately addressing the functional architecture. This limited focus leads 
to an incomplete understanding of the system's overall behaviour and the impact in case of 
failures. To overcome this limitation, the proposed approach integrates both behavioural and 
architectural aspects in the FMEA analysis by considering functional behaviours, constraints, 
interfaces, and flows. 

• Detailed Modelling and Analysis Descriptions: Through the literature review, it has become 
evident that there is a significant lack of detailed instructions on how to realize modelling and 
analysis steps. Existing descriptions tend to focus on the overall approach but often omit 
crucial details related to software configuration and the specific processes required to achieve 
desired results (e.g., obtaining an automatically filled FMEA table in Cameo). Recognizing this 
gap, the aim of this thesis is to provide comprehensive end-to-end descriptions of the 
modelling approach, including detailed instructions on software configuration and the step-by-
step process for achieving desired results. By addressing this deficiency, the thesis seeks to 
enhance the understanding and replicability of the modelling process. 

In terms of state-of-the-art outcomes, several methods have successfully addressed the needs of 
using Model-Based Systems Engineering (MBSE) for Failure Mode and Effects Analysis (FMEA) 
applications, which are also considered for implementation in this research. 

• Usage of ECSS-Q-ST-30-02C Standard: The approach and process outlined in the ECSS-Q-
ST-30-02C standard [16] (see chapter 2.12.2), which is a norm in the European space 
industry, will be employed for conducting the FMEA analysis in this thesis. This standard will 
serve as a guiding framework for the FMEA methodology and ensure compliance with industry 
practices and requirements. 

• Usage of Viewpoints: The MOFLT methodology (see section 2.3.2) separates the model 
structure into viewpoints, allowing experts to focus on their relevant artifacts. This approach is 
employed for FMEA topics, specifically using the "reliability and safety" viewpoint package in 
the model (see section 2.3.3). 

• Usage of Cameo SRAP: The concept of using dedicated model elements for safety and 
reliability analysis and establishing a formal link to the model elements used for system 
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definition, is found beneficial and will be applied in this thesis work. The approaches from 
Biggs et. al. [18] (see chapter 2.2) and the Cameo SRAP plugin [19] (see section 2.3.3) will 
be utilized in the LISA system architecture model. 

• Separation of Nominal and Non-Nominal Modes by States and State Machines: The approach 
proposed by Francesco [20] and Girard et. al. [21] (see chapter 2.2) shows promise in 
enhancing flexibility in behaviour modelling, providing concise representation and facilitating 
convenient switching and control over nominal and non-nominal functional behaviours. Hence, 
it will also be employed in the modelling approach of this thesis. 

• Usage and Tracking of Interchanged Parameters: The approach presented by Schummer and 
Hyba [22] (see chapter 2.2) involves utilizing and tracking interchanged parameters between 
systems to assess their propagation across the system elements. This enables a better 
understanding of how faulty parameters propagate in the overall system architecture. This 
approach will be utilized for functions, functional interfaces, and functional architecture in this 
thesis work. 

• Usage of I/O and Architecture Information for Failure Cause/Effects: To enhance the analysis 
of failure causes and effects, the proposed approach by Mhenni et. al. [24] (see chapter 2.2) 
leverages functional inputs/outputs and functional architecture information. This approach 
assists in identifying and evaluating potential failure causes and their impact on system 
functions during the FMEA analysis. Therefore, it is employed in the methodology of this thesis 
work. 
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3 APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND 
EFFECTS ANALYSIS IN LISA MISSION 

This chapter elaborates on the methodology pursued to implement an early phase functional FMEA 
study by making use of the LISA Mission system architecture model. Upon the investigation of the 
state-of-the-art and the iteration with the project team in ADS, some key constraints are identified for 
the approach: 

• Usage of Cameo Systems Modeler and SysML: The approach shall use the tool and language 
that has already been adopted by ADS LISA system engineering team for early phase system 
architecture development. This limitation is to reduce the effort of transferring knowledge along 
multiple software, which enables to analyse architectural implementations swiftly and 
conveniently. It also enables collaboration, support and development along other project 
teams in Airbus. 

• Compatibility and integrability to MOFLT functional architecture modelling process: As the 
standard is being defined by the Airbus group-wide Digital Design, Manufacturing and 
Services (DDMS) activity, it is important to ensure compatibility with the company engineering 
strategy. This would involve utilizing existing templates, manuals, and support, as well as 
benefiting from profile automations and tools (e.g., report generator). Furthermore, aligning 
with the MOFLT process enables building upon existing work and know-how of the project 
team, reducing the training and learning effort. 

• No implementation of performance analysis or high-fidelity physical/mathematical relations: 
The approach shall not implement any performance analysis or high-fidelity 
physical/mathematical relations to reflect the system behaviour. This role is clearly allocated 
to detailed analysis models and simulators developed by discipline experts in standard tools 
and processes that handle way better than Cameo in this case. 

• Minimum modelling effort specific to FMEA: To reduce the modelling effort required for 
conducting the FMEA study, the approach shall make use of existing model elements 
dedicated to system definition as much as possible. Although FMEA is a key goal, the model 
is not solely established for conducting FMEA activities, as described in section 2.3.1 of the 
model strategy. Adapting a modelling method with a majority of elements that are only useful 
for FMEA activities would result in higher effort and clutter in the model. Therefore, any 
modelling effort and model elements specific to FMEA that are not related to system definition 
shall be minimized. 

Based on the constraints outlined above, a proposed approach for the modelling of executable 
functional architecture is described in chapter 3.1, while the execution and simulation implementation 
of this model is explained in chapter 3.2. Subsequently, in chapter 3.3, three different approaches for 
conducting a Functional FMEA study within a defined scope in LISA mission are proposed, including:  

• traditional document-based,  

• static model-supported,  

• executable model based FMEA approach.  

 

3.1 FUNCTIONAL ARCHITECTURE MODELING 

This chapter explains the process pursued to model the executable functional architecture inside the 
MBSE environment using Cameo Systems Modeler.  

As a basis for a functional FMEA study, the principle functions of the systems of interest shall be 
analysed, to be able to identify failures that traverses a functional chain which can finally be traced 
back to technical components. In order to identify the functional chain, the functions, their behavioural 
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nature, and their relationship with each other shall be defined. This definition must be traceable along 
a hierarchical decomposition, involve traceable parameters exchanged in between elements, and 
allow execution to simulate and record the overall system behaviour. In order to satisfy these 
requirements, the following modelling concepts are performed for a model-based FMEA analysis of 
the space segment of the LISA mission. 

• Model the functions and the system components that are realizing them. These elements will be 
the root cause of failures in the real implemented system, therefore the primary artefacts for the 
FMEA study. This process is described in the section 3.1.1.  

• Model functional interfaces and the functional flows occurring inside them. The interfaces and the 
flows allow the traceability of failed parameters along the functional chain in the architecture. This 
process is described in the section 3.1.2. 

• Model functional behaviours defining how functions convert inputs into outputs, functional modes 
that separates and controls the different behaviours of a function, and functional constraints that 
defines the (in)valid conditions for the behaviours. This is described in the section 3.1.3. 

The modelling approach proposed in this chapter is an addition into the default MOFLT methodology, 
in terms of functional behaviour, constraint and interface modelling. The outcome of the modelling 
approach is then used to conduct simulations and FMEA studies in the following chapters. 

 

3.1.1 Modelling of Technical Components and Functions 

The functions are the key artefacts to be analysed in a functional FMEA, whereas technical 
components are the artefacts to be affected as an outcome of a failure. As a reference example to 
conduct the FMEA studies, a set of functions that defines the laser acquisition sequence operational 
scenario has been identified from the functional requirements and functional breakdown (see Table 
1.2). These functions correspond to the lowest level (leaf) functions in the breakdown structure that 
can be allocated to a technical system of interest and establish the baseline architecture. The decision 
of only showing leaf functions and technical components in the architecture view instead of logical 
components and high level functions is that the technical definitions (components are interfaces) are 
mature enough to reflect during phase B1 of LISA development lifecycle.  

In the model, the functions are implemented as <<Function>> (SysML: Block) elements, and the 
technical components of interests are modelled as <<Technical Component>> (SysML: Block). The 
model elements are located inside the packages in their respective MOFLT viewpoints (F and T) in 
order to conveniently navigate inside the model as can be seen in Figure 3.1. 

 

 

Figure 3.1: Example of technical components (left) and functions (right) in the model containment tree view. 
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The next step is to establish the traceability links in between created model elements. In order to 
establish the breakdown structure and hierarchical traceability, directed composition links are used in 
between child and parent functions. After the generation of the functions, they are linked to the 
<<SOIRequirement>> (SysML: Requirement) elements in the model using the <<SatisfiedBy>> 
relation. The allocation of functions to the technical components is done via creating part properties 
inside the technical components in an internal block diagram (see Figure 3.2). These part properties 
are stereotyped as <<Functional Part>>, which are an instantiation of the function type it represents. 
This operation creates a directed composition link between the functions and the technical 
component.  

 

 

Figure 3.2: Allocation of functions to technical components. Left: The functional parts are contained inside the 
technical component LA in the containment tree view. Right: The functional parts are depicted as green 

rectangles inside the ibd of the technical component. Each functional part has an instance name followed by a 
function type, divided by a semicolon in between (e.g. “LG : Light Generation”). 

 

Finally, all the defined technical components are instantiated and shown on an ibd inside a Spacecraft-
Technical block, which is stereotyped by <<Technical Component>> and <<System of Interest>>, 
creating the baseline of the spacecraft architecture to be analysed (see Figure 3.3). The described 
modelling steps in functional-technical domain establish the functional breakdown, function to 
technical component allocation, and function to requirement traceability. This comes with the benefit 
of having formal links established in between the model elements (requirement, function, and 
technical component) ensuring model coherence and robustness and to be used in the FMEA study. 
The summary of traceability links established can be seen in the data model sketched in the profile 
diagram in Figure 3.4. 
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Figure 3.3: Collecting the technical components inside the Spacecraft-Technical block generates the 
definition of the spacecraft type with the components and functions inside. 

 

 

Figure 3.4: Profile diagram showing relationships in between functions, systems and requirements. 
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3.1.2 Modelling of Functional Interfaces and Flows 

Functional inputs and outputs are the artefacts establishing the paths that have been used to 
exchange parameters. These exchanged parameters affect the behaviour of each function and would 
be the key elements to trace potential failures in the systems. The standard MOFLT process only 
supports the definition of interfaces and flows, however it does not implement parameters, values, or 
exchange mechanisms for them. This does not allow to reflect nor execute the behavioural aspects 
of the functional architecture. Therefore, a customized implementation has been pursued on top of 
the standard MOFLT modelling approach. 

Following the MOFLT approach, the functional interfaces are modelled with <<Functional Interface>> 
(SysML: Proxy Port) for all the functions in the scope of the architecture. Functional interfaces are 
defined for each input-output parameters of the functions (see Figure 3.5). These interfaces are then 
typed by <<Functional Interface Type>> (SysML: Interface Block) elements. The items that are 
exchanged between the functional interfaces are modelled as <<Functional Flow>> (SysML: Flow 
Property) inside the functional interface types (see Figure 3.6).  

 

 

Figure 3.5: Containment tree and ibd view of functional interfaces of “Laser frequency actuation” function. 

 

 

Figure 3.6: Containment tree view showing the functional interface types. Inside, functional flows are defined 
which are typed by functional flow types. 

 

For the executable functional architecture, it is utmost important to define the functional flows and 
their values, as they will be exchanged in between functions during execution. From this point on, the 
MOFLT process is extended by adding more details to the modelled functional flows. According to its 
nature, the functional flows are typed by a block or a <<Functional Flow Type>> (SysML: Value Type). 
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The block type allows storing multiple parameters with values (as SysML: Value Property) in a 
structured way, whereas functional flow type can only store one parameter with a value assigned. In 
order to trace the parameter exchanges, the flows are given string values which shows the state of 
the flow during execution. As an example to illustrate the adopted concepts, the laser light flow is 
used. Majority of the functions in laser assembly and optical bench transfer laser light while changing 
its distinct attributes. In order to capture these effects, laser light is modelled as a block with four value 
properties as frequency, intensity, phase and state (see Figure 3.7). All the functional flows that 
convey laser light are then typed by the laser light block. This enables the functional flows to inherit 
the properties stated in Table 3.1 and change accordingly, enabling the traceability of changes along 
the functional path (see Figure 3.8). Other functional flows that deemed not to be much detailed are 
typed by functional flow type hosting string values that shows the state of the functional flow, for 
example as “–“ (invalid) or “on” (valid).  

 

 

Figure 3.7: Containment tree view of Laser Light flow type 

 

Table 3.1: Attributes of Laser Light flow type and their values 

Value Property Type Value 

frequency String –, initial, controlled, stabilizing, stabilized 

intensity String –, initial, set, stabilized 

phase String –, initial, PRN_modulated, sideband_modulated, PRN_sideband_modulated 

state String –, on 

 

Once all the functions in the scope have been equipped with functional interfaces, they are connected 
using a Functional Connection (SysML: Connector). This link enables the traceability of the functional 
flows as well as flow exchange during execution. The connection only allows the flow to change its 
properties in an input interface if the flow inside the connected output interface is changed. When all 
of the functional interfaces are connected inside each technical components (see Figure 3.9) and then 
inside the Spacecraft-Technical ibd, functional-technical architecture is established. The next step 
would be to define behaviours for each function in the study scope. 
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Figure 3.8: ibd showing the functional interfaces and functional flows of the Laser frequency actuation 
function. 

 

 

Figure 3.9: Example of a possible functional architecture of a Laser Assembly. 

 

3.1.3 Modelling of Functional Modes, Behaviours and Failure Constraints 

The previous steps define the structural aspects of the functional architecture. Even though it reflects 
valuable information about function dependencies and interconnections, by itself it is not enough to 
reflect what is actually happening in the architecture. It fails to answer the questions:  

• Which functions are used or active?  

• Which states are the functional flows in?  

• Is the system working as desired?  

Therefore, the next step in executable functional architecture modelling is establishing the behavioural 
aspects of the architecture. Functional behaviours are collection of actions that are performed by the 
function, showing how a function emerges to accomplish a desired need. Depending on different 
modes and constraints, a function can behave differently. It is in the interest of the systems engineers 



 

 

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA 
MISSION 

 

41 

 

to define what kind of behaviours a function possesses, at which modes they emerge, what causes a 
change in modes, and during which constraints they work properly. In the following sections, the 
approach to model the modes, behaviour and constraints of the functions are explained. 

 

3.1.3.1 Functional Modes 

Functional modes separate behavioural expectations from a function and control the behaviour that it 
performs. In the scope of the LISA model, majority of the functions have two modes defined as active 
and inactive. For example, in its inactive mode, it is not expected for a “Light generation” function to 
generate laser light, and vice versa, it is expected to generate light when active. The idea of this 
separation is to allow controlling what the function is expected to do by switching the modes, but also 
to allow capturing when function behaviour does not meet expectations, defined as failures. 

The functional modes are modelled in a state machine diagram as <<Functional Mode>> (SysML: 
State) as can be seen in Figure 3.10. The state machine diagrams are defined inside each function 
and only for the function itself. Each mode has an opaque behaviour defined as a “do activity”. This 
opaque behaviour updates a string value property named as “function_state” that is defined inside 
the function, to the name of the mode the function is currently in. This enables any other entity that 
accesses the function_state value property to know, real time, what mode the function is in. This is a 
very important aspect of this modelling approach as the functional behaviours and constraints defined 
for the function will be referencing this function_state value property to perform their activities (see 
next sections 3.1.3.2 and 3.1.3.3). 

Each mode has a transition defined as a signal trigger. The signals are named independent of the 
mode names (as integers), so that they can also be used for any other mode transitions throughout 
the model. The transitions from inactive mode are assigned a guard named “activation”. Activation is 
a Boolean value property defined inside the function, which has a default value of “true”. Therefore, 
as default, the guard will take the value of “true” allowing transition from inactive to active mode (or 
any other defined mode). If set to false, even if the signal trigger is detected, the transition will not 
happen. This is the main failure mode implemented to the functions for the functional FMEA study, 
i.e., “No Function”. 

 

 

Figure 3.10: State machine diagram of Laser frequency actuation function. Functional modes “Inactive” and 
“Active” are depicted as the green rectangles with an “M” symbol. Inside the modes, opaque behaviours are 

defined with the “do/” statements. The mode transitions are depicted as arrows with the signal triggers “1” and 
“2”. The “activation” guard applied to the transition from inactive mode is shown inside the square brackets. 

 



 

 

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA 
MISSION 

 

42 

 

3.1.3.2 Functional Behaviours 

After the definition of functional modes, the behaviours, i.e., what the function does with input/output 
(I/O) parameters in each mode has to be defined. This definition establishes the I/O value exchange 
mechanism that enables the execution to traverse through functions in the architecture. The collective 
work of these modelled behaviours emerge the overall functional behaviour of the system, also in the 
case of failures. 

It is a common practice in literature [20, 21, 24, 27-29] as well as in MOFLT methodology, to model 
functional behaviours and exchanges with activities and object flows inside activity diagrams. These 
model elements and diagrams are clear to read and understand due to their symbolic nature. 
However, when executed, the values exchanged in between activities in an activity diagram do not 
traverse through the interfaces inside the architecture established in the ibd. This is an important 
problem because it is utmost desired that the consistency in between the behavioural and structural 
aspect of the system must be ensured. Therefore, the execution must traverse through both aspects 
of the system and serve as a validation tool to the functional architecture and behaviour. For this 
reason, as a common practice, signal exchanges via Send Signal Action and Receive Signal Actions, 
or SysML: Sequence Diagram are used to exchange information through the architecture [20, 30]. 
The problem in this methodology is that these exchange methods only handle discrete events and do 
not support continuous data exchange during execution (as in Cameo Systems Modeler v19SP4). In 
addition, these diagrams only execute once when called, therefore must be looped to ensure data 
exchange continuously, and even if done so, all data exchanges need to be synchronized in between 
behaviours to work properly. In addition, it was observed that the high number of loops and signal 
exchanges drastically increases the amount of memory usage causing the software to crash. In the 
frame of this thesis different methods know from literature [27, 31, 32] have been analysed and traded. 
Finally, it has been concluded that the parametric diagram is best suitable for this task, as it: 

• allows direct visual access and exchange through interfaces in the architecture  

• is continuously active, therefore, does not need memory expensive loops and synchronization  

• offers direct and visual access to function parameters (e.g., function_state) 

• does not need the effort of modelling explicit signal exchange actions. 

Therefore, to model functional behaviours, the parametric diagram is used with SysML: Constraint 
Block and SysML: Constraint Property (see Figure 3.11). The behaviours are scripted inside the 
constraint properties using if-else conditions using the Groovy scripting language [33]. Behaviours are 
kept intentionally as basic and straightforward, i.e., if inputs are valid, outputs become valid, on the 
contrary if inputs are invalid, outputs also become invalid. The reason is to keep the complexity 
manageable, as the number of functions, systems and interactions involved are relatively high in the 
architecture scope. Then, all the parameters that are manipulated by the behaviours are connected 
to the functional flows inside the functional interfaces using SysML: Binding Connector. This 
connection ensures that the parameters at each end to assume the same value, transferring any 
change in the functional interface to the behaviour for the functional inputs and vice versa for the 
functional outputs. 

As an example, the behaviour modelled for the “Laser frequency actuation” function belonging to LA 
can be given (see Figure 3.11). This function is responsible for changing the incoming laser frequency 
according to control inputs received from either “External frequency control” or “Internal frequency 
stabilization” functions. This function is necessary in order to lock the frequency of the laser onto 
either the laser light of a remote spacecraft or the neighbouring LA on the same spacecraft, which is 
eventually required for the science measurement. 

The behaviour of the function is scripted inside the constraint property named “behaviour”. Since the 
function only manipulates the frequency of the laser light, only the “frequency” parameter coming from 
the laser input functional flow and going to the laser output functional flow is connected to the 
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constraint property. The rest of the parameters are directly relayed using the binding connectors. 
Inside the script, the outermost if-else if conditions specify the mode that the function is in, with the 
help of the bounded function_state value property defined inside the function. First, the behaviour for 
the “inactive” mode is defined:  

>> out_frequency = frequency; 

This corresponds to the action that when the function is “inactive”, it does not impose a change in the 
frequency parameter of the laser light. Then, for the “active” mode, valid conditions for each input 
functional flow values are listed, and for each condition an output value is assigned to the output 
functional flow value: 

>> if (state == “on”) 

Meaning that the laser light must be “on” first, for every other condition to be even considered. 

>> if (IN_F_InT_referenceFrequencyControl == “on”) {out_frequency = “stabilized”;} 

Meaning that if the reference frequency control signal is on, it directly stabilizes the laser light 
frequency. 

>> if (IN_F_InT_transponderFrequencyControl != “-”) {out_frequency = IN_F_InT_transponderFrequencyControl;} 

Meaning that if the transponder frequency control signal is not invalid, the frequency will be actuated 
to its this control signal value. And finally, if the conditions are not satisfied, the input value is relayed 
without change. 

>> else {out_frequency = frequency;} 

This logic can be applied to all the functions in the architecture and customized depending on their 
behavioural nature. An important advantage is that the methodology offers a modular approach, so 
only the function of interest, its properties and its interfaces are being considered. Which means that 
the functions can be relocated freely inside the architecture, connected to any desired function 
through its ports, as long as the functional flow is compatible. 
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Figure 3.11: Parametric diagram showing the modelled behaviour and constraints for the “Laser frequency 
actuation” function belonging to LA. 

 

3.1.3.3 Functional Constraints 

Within the behaviour modelling, the functions behave nominally when all of its input conditions are 
satisfied, and non-nominally when not, which is reflected in its output. However, explicitly for the FMEA 
study, there needs to be a way to capture and record failures inside the function within the defined 
behaviour. This would enable the observation of the failure propagation along the functional chain 
and creation of the FMEA table as a result. 

The failures in the modelled functions are defined in terms of “valid input conditions are not satisfied 
when the function is active”. Each of the failures is then modelled as a constraint property inside the 
parametric diagram of the function (see Figure 3.11). When the constraint is not satisfied and returns 
“false” due to failure condition, the constraint property gets a verdictKind value as “fail” (verdictKind is 
a Boolean-like value type defined in Cameo, taking the value of either “pass” or “fail”). By naming the 
constraint property as the failure condition itself, one can observe the cause of the failure directly in a 
verbal sense.   

As an example, the “Laser frequency actuation” function needs at least one of the control inputs to 
work, either the signal “IN_F_InT_referenceFrequencyControl”, or the signal 
“IN_F_InT_transponderFrequencyControl”. On top of that, obviously, it needs the laser light to be “on” 
so that it can change its frequency. To reflect these conditions, two explicit constraint properties are 
defined, shown in Figure 3.11. During model execution, when the “Laser frequency actuation” function 
is in its “active” mode: 

• Failure Case 1: If “IN_F_InT_referenceFrequencyControl” signal switches to “-” while 
“IN_F_InT_transponderFrequencyControl” signal already has the value “-”, the dedicated 
constraint “Transponder and reference frequency control is not on” will get the value “fail”. 
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• Failure Case 2: If “IN_F_InT_transponderFrequencyControl” signal switches to “-” while 
“IN_F_InT_referenceFrequencyControl” signal already has the value “-”, the dedicated 
constraint “Transponder and reference frequency control is not on” will get the value “fail”. 

• Failure Case 3: If the laser light state switches from “on” to “-”, the dedicated constraint “Laser 
light state is not on” will get the value “fail”. 

Therefore, once the constraints for a function are explicitly defined, they can also be explicitly 
identified when they fail, which gives the awareness to the user what exactly went wrong within the 
functional chain execution. This information can be used to fill the failure cause and effects entries of 
the FMEA table (described in section 3.3.3.2). 

 

3.2 EXECUTABLE MODEL SIMULATION SETUP 

In this chapter the implementation of the simulation in the model for the laser acquisition sequence 
scenario is explained. The reason to implement an operations-based simulation is to correctly capture 
the behaviour of the system according to its real mission usage. This way, it could be possible to find 
the failure cases that are not straightforward to find while using the static architecture views. The 
model execution for FMEA analysis has the two main pillars: modelling and setup of the execution 
context explained in section 3.2.1 and modelling of the operation of interest explained in section 3.2.2. 
The behaviour and the generated artefacts resulting from the simulation using the Cameo Simulation 
Toolkit is explained in section 3.2.3.  

 

3.2.1 Execution Context 

The execution context, “Constellation_FMEA” block, is the main artefact that contains all the elements 
of interest reflecting the system definition, as well as the diagrams and scripts to enable the 
configuration of the analysis. The context involves three instances of the Spacecraft-Technical (see 
Figure 3.3), modelled as part properties for each of the spacecrafts SC 1-2-3. Inside the ibd, external 
functional interfaces of each spacecraft representing the laser links are connected using a functional 
connection, establishing the constellation architecture (see Figure 3.12). 

 

Figure 3.12: Ibd showing the execution context as the instantiation of the Spacecraft-Technical Type three 
times with laser links established as interface connections. 
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Inside the context (see Figure 3.13), three reference properties named as “Master”, “Slave_1” and 
“Slave_2” are defined and typed by the Spacecraft-Technical block. These reference properties 
represent the roles that the spacecrafts assume during laser acquisition sequence operations, as 
described in section 1.2.3. Three value properties defined inside the context, named as 
“master_sc_config”, “slave1_config” and “slave_2_config” take integer values representing which 
spacecraft is assigned to which role. The roles can be assigned before the simulation is started by 
modifying these configuration value properties. The context features a state machine diagram as a 
classifier behaviour to orchestrate the execution. The first state called “CONFIGURE” contains an 
activity called “Configure Roles” as a “do/ behaviour”. With the help of ALH API [34] scripts, each 
reference property representing the roles is assigned the value of individual spacecrafts SC 1-2-3 
according to the configuration value properties. This enables to track and refer to the spacecrafts with 
both their roles and identification numbers. After the configuration steps, the execution transitions to 
the second state called “START”, which contains the laser acquisition operational phase behaviour 
as a “do/ behaviour”. 

 

 

Figure 3.13: Left: Containment tree view of the execution context “Constellation_FMEA”. The part properties 
depicted with the symbol “P”, represents the three spacecrafts (SC1-2-3) in the constellation. The reference 
properties depicted with the symbol “R”, represents the three roles (master/reference, slave/transponder 1, 

slave/transponder 2) defined for the laser acquisition sequence. The value properties depicted with the symbol 
“V”, is used to assign a role to a specific spacecraft. Right: Classifier behaviour of the execution context as a 

state machine.  

 

3.2.2 Laser Acquisition Operational Phase Behaviour 

The operational phase behaviour elaborates on what each spacecraft in the constellation does to 
realize the laser acquisition sequence (refer to section 1.2.3). The activity diagram is used to model 
this scenario as defined by the MOFLT process. According to this scenario, the three spacecrafts, 
which are identical, are given separate roles as master, slave 1 and slave 2. These roles are depicted 
inside the activity diagram as swimlanes assigned to reference properties Master, Slave_1 and 
Slave_2. And according to these roles, individual operational tasks are performed.     

Each operational task corresponds to a set of system functions that required to be in their so-called 
active mode (see Figure 3.14). It is important to note that it differs from switching a system on. A 
system can be on anytime, but it does not guarantee that it will provide the desired output. Whereas 
the logic in the function activation employed in the operational tasks is that, the desired output is 
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wanted exactly when the function is activated. An example can be given for the “Long-Arm 
interferometer” function. One can switch on the components responsible for long arm interferometry 
without the RX and local TX laser inputs are present. It will not provide a desired output until both 
laser inputs are present, however still, this action is operationally possible to do so and does not pose 
a failure. But on the functional view, the desired output of Long-Arm interferometer function can only 
be achieved when two laser inputs are present or else its constraints will fail, which means that the 
function is not performing correctly when needed i.e., activated.  

 

 

Figure 3.14: Functions to be activated during laser frequency locking operational task. 

 

The activation is done by sending state transition signals to the respective functions using ALH API 
scripts (see Figure 3.15). The swimlanes in the operational phase behaviour diagram allow the 
execution to set its context into the respective reference property, which directs the context to one of 
the three spacecrafts. Ideally these commands should have been run inside the OBC of each 
spacecraft, and the signals should follow the functional connections. However, since the scope for 
this study is on the Payload functions, to keep the study simple this type of commanding is selected. 
After the command signal is sent, the execution goes into a loop node where it waits for the function 
to become active, and once done, it proceeds with the control flow. Notice that there is a decision 
node before this check loop which bypasses it, in case the “No Function” failure mode is set for the 
function.  

It is important to point out that, with the adopted activation scheme, there is a check loop implemented 
with a direct feedback from the function mode status. It could be the case that the real system also 
follows a pre-defined timeline as an open loop commanding. This would open up new failure cases 
depending on the timing of the commands and functional response; however this is not included in 
the scope of this study. 
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Figure 3.15: Activation of a target function implemented as an activity diagram. The first opaque action on top 
sends the signal that changes the mode of the desired function. The while loop node at the bottom checks and 

waits until the mode change has happened. The decision node in between is implemented to by-pass the 
check loop if a failure is deliberately injected to the function. 

 

3.2.3 Execution Behaviour and Results 

The execution is run using the simulation configuration named “LISA_FMEA”. After Cameo simulation 
toolkit finishes debugging the execution instance, the simulation waits for a starting command by the 
user. At this time, the user sets the activation property of the desired function inside the desired 
system into “false” to inject a failure (see Figure 3.16). After that, the start button is clicked in the 
simulation pane and the simulation is run. As a feature of the Cameo simulation toolkit, when a 
constraint is failed, it is highlighted in red including all the values that are present on the failure 
constraint through entire simulation context. This enables direct pinpointing of the failure location and 
propagation during execution. The execution runs over the laser acquisition sequence scenario, which 
takes around 2 minutes in a moderate business laptop (Intel i5-1135G7 processor, 8GB RAM). After 
the execution is finished, the results are saved as an instance into the pre-designated “Results” 
package.  
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Figure 3.16: Left: Failure is injected to the SC2, left ePMS, Transponder beat note acquisition function by 
turning its activation value property from “true” to “false”. Right: During execution, model elements with failed 

parameters are highlighted in red. 

 

In order to analyse the results, the instance is carried into another package called “Result Analysis”, 
with two tables inside called “Failure Mode”, and “Failure Effects”. The failure mode table searches 
for a slot instance that has a value “false” (see Figure 3.17). This slot corresponds to the activation 
value property that has been set to false beforehand to inject failure. The table columns are then 
configured to reflect which function, component, requirement, and system it belongs to, showing the 
comprehensive awareness of where the failure is injected. The failure effects table on the other hand, 
searches for a slot instance that has a value “fail” (see Figure 3.19). These slots correspond to the 
constraint properties that are violated during the simulation. The table columns are then configured to 
reflect which function, component, requirement, and system it belongs to, showing the comprehensive 
awareness of where the injected failure has propagated. In addition, the relation map “Bottom-up 
functional breakdown analysis” can be used to display the parent functions effected in the higher 
layers of abstraction for comprehensive analysis (see Figure 3.18). The analysis can be re-done for 
other simulation results by replacing the old simulation instance with the new one inside the “Result 
Analysis” package. The entries in the tables are then automatically updated. This feature is particularly 
useful to update the FMEA tables if the model is changed in the course of the project. 

 

 

Figure 3.17: The Failure Mode table shows detailed info on the injected failure. 

 

 

Figure 3.18: The “Bottom up functional breakdown analysis” relation map is useful to observe the higher level 
effects of a failure happening inside a function. 
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Figure 3.19: The Failure Effects table shows the propagation of the failure along the constellation. The 
causes of failure can be seen by looking at the names of the failed constraint properties in the “defining 

feature” column. 

 

3.3 FUNCTIONAL FMEA APPROACHES FOR THE LISA MISSION 

This chapter provides details on three proposed approaches for conducting a Functional FMEA study 
within a defined scope in the LISA mission. These approaches are as follows:  

• Traditional document-based FMEA approach, described in section 3.3.1.  

• Static model-supported FMEA approach, described in section 3.3.2.  

• Executable model-based FMEA approach, described in section 3.3.3. 

Each of these methods utilizes either the system architecture model or documents in different ways 
to conduct an FFMEA. The introduction of three different approaches allows for comparison and 
evaluation of the benefits and weaknesses of establishing a model-based process for FMEA activities 
(see chapter 4.1).  

 

3.3.1 FMEA Study: Traditional Document Based Analysis 

This section elaborates on the proposed approach for a traditional document-based functional FMEA 
study for the LISA mission. The approach has been implemented by the combination of the process 
followed when performing FFMEA in ADS at early project phases and ECSS-Q-ST-30-02C standard. 
An overall summary can be found in section 3.3.1.1. Information on the preparation phase that 
involves activities required to be done before establishing the FMEA table is described in section 
3.3.1.2. Explanation on how the FMEA table entries are deduced and filled is given in section 3.3.1.3. 
Example case studies using the methodology are explained in chapter 4.1. 

 

3.3.1.1 Traditional Document Based Analysis Approach Summary 

Functional FMEA study in the LISA mission is categorized as an early phase study and involves 
various documents and stakeholders from different departments, that need to interact and harmonize 
on the final deliverable. The study involves two main roles as the RAMS Engineering and Systems 
Engineering with three main artefacts per each system of interest: Design Description Document, 
Functional Analysis Document and Requirement Document (see Figure 3.20). 
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Figure 3.20: Context diagram of the traditional document-based FFMEA studies in early phases. 

 

The main role that is responsible for the study is the RAMS engineering, which is stationed outside 
the project and becomes involved during the study. This role has to gather necessary information 
from the project, get familiar to it, compile it in the desired format and perform the analysis. The support 
role is being undertaken by the systems engineering, that is responsible to provide all required 
information to the RAMS engineering regarding the system definition and review the FMEA analysis 
in the context of the mission. The process (see Figure 3.21) is by nature iterative due to the complexity 
of the system and requires close collaboration in between the roles. The less clarity in documents, 
the more need for one-to-one review sessions and the time needed scales strongly with mission 
functional complexity. 
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Figure 3.21: Process diagram for the traditional document based FMEA 

 

3.3.1.2 Preparation 

The document-based approach starts with the input from systems engineering as a flat list of functions 
and a functional breakdown. There are various options exists regarding the format these artefacts are 
supplied, and it is possible that different projects use different approaches. In the LISA mission FMEA 
study, the list is implemented as an excel file with the breakdown structure and the breakdown 
diagram is supplied as a picture or an html file. A functional architecture diagram is attached as a 
picture that shows the relationship between functions and systems of interests. 

The inputs are supplemented by the aforementioned three documents. Descriptions of the functions 
can be found inside the functional analysis document and requirement document. The descriptions 
include what the function needs to achieve, which system it belongs to and the parameters it 
exchanges. The description of the system and system interfaces are found in the design description 
document, which gives a more physical understanding on the implementation. 
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When the inputs are supplied by the systems engineering, the compilation process on the RAMS 
engineering starts. RAMS engineering has to study the system design description first, to be able to 
familiarize with the system of interest and understand its generic working principle. Then the 
components and subsystems are added and matched to the list of functions. It follows with the 
requirements, and interfacing functions. When all this information is compiled (see Table 3.2), RAMS 
engineering can generate and start filling up the FMEA table. 

 

Table 3.2: The desired format of information of RAMS engineering for the starting of FMEA study is a table 
that is the list of functions with the entries below. 

Function Name of the function 

System The system/component function belongs to  

Description Description of the function 

Requirement Requirement that the function is linked to 

Function Input/Outputs List of functional input/output parameters 

Upstream Functions List of functions that supply inputs to the function of interest 

Downstream Functions List of functions that receive outputs of the function of interest 

Parent Functions List of function that the function of interest is decomposed from 

Child Functions List of functions that the function of interest decompose into 

 

3.3.1.3 Conducting FMEA 

Using the compiled information, RAMS engineering starts to fill the first draft of the ECSS-Q-ST-30-
02C FMEA table, first with the lowest level “leaf” functions that have been reflected in the functional 
architecture diagram. Following the functions and the connections inside the diagram, information for 
the FMEA table entries is deduced supplemented by the other input artefacts. 

• Failure mode: In the scope of this thesis, only “No Function” failure mode is considered.  

• Failure cause: The failure cause could be internal or due to the inputs from other functions. 
For the internal cause, if the function of interest has child functions, the failure mode of these 
functions are listed (no functionality of the child function) [16]. The functional breakdown 
structure is used to follow this traceability. In addition, all the inputs to the function of interest 
are listed inside this column with the upstream functions they come from. This is an 
assumption made, as done by Mhenni et.al. [24], for the “first draft” of FMEA results before 
being detailed or corrected during the review loop with the systems engineering. 

• Mission phase / Operational mode: For the study conducted in the frame of this work, Mission 
phase / Operational mode is set as “Laser Acquisition Sequence”.  

• Local failure effects:  As a first entry, the “loss of function” is listed. Another effect would be 
the lack of outputs of the function of interest. This can also cause the failure of the downstream 
functions, for example, because no inputs are provided to these downstream functions. 
Therefore, in this column, all the outputs and downstream functions are listed. This is an 
assumption made, as done by Mhenni et.al. [24], for the “first draft” of FMEA results before 
being detailed or corrected during the review loop with the systems engineering. 

• End failure effects: The end effect is defined as the failure mode of the parent function, which 
is “no functionality of the parent function”. The functional breakdown structure is used to follow 
this traceability.  
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The rest of the table entries are filled out within the interpretation of the RAMS engineering according 
to system nature, heritage information and engineering judgement. 

From this point on, the first draft is finished, questions are collected and the review sessions with the 
systems engineering starts. In particular, the failures and local effects on the other functions must be 
agreed on within the context of the system definition. Some of the failures might pose no threat to the 
downstream functions, whereas some of them might propagate further even through other spacecrafts 
in the context of LISA constellation. This fact requires the expertise of the systems engineering to 
review the correctness and the reach of the failure cases. Through sessions in between roles and 
iterations, the final study is agreed on and delivered. 

 

3.3.2 FMEA Study: Static Model-Supported Analysis  

In the project, the “static model-supported FMEA approach” is defined as the process consisting of:  

• generating inputs from the model for FMEA study directly, instead of supplying related 
documentation as the master input,  

• and storing the output of the FMEA study (the filled out FMEA table) inside the model using 
Cameo SRAP profile.  

The terminology “static” refers to the fact that there are no model execution and simulations involved 
in the process. 

This section describes the process followed in this approach with an overall summary in section 
3.3.2.1, information on the preparation phase in section 3.3.2.2 and conducting the FMEA in section 
3.3.2.3. Example case studies using the methodology are explained in chapter 4.1. 

 

3.3.2.1 Static Model-Supported Analysis Approach Summary 

Static model-supported approach (see Figure 3.23) shifts the information compilation process into the 
system architecture model instead of the responsibility of the RAMS engineering. In this approach, 
systems engineering generates the input table (see Table 3.2) directly in the model using the 
traceability links defined during default MOFLT systems engineering process. Therefore, the input 
table and all the associated model elements in its entries are available for the RAMS engineering 
discipline inside the model, to support conducting the FMEA study. It important to note that it is still 
possible to export the input table from the model, e.g., as an Excel file, if desired by the project team. 
The documents are still supplied, but as a supplement for RAMS engineering to refer to, for further 
details on the systems and functions that are not captured in the model (see Figure 3.22). RAMS 
engineering can benefit from the analysis maps and diagrams in the model to enhance their 
awareness on the system and the presentability of their study. The result of the study is stored inside 
the “Reliability and Safety” viewpoint of the model using the model elements from Cameo SRAP profile 
[19], with an FMEA table formatted in-line with the ECSS-Q-ST-30-02C standard (see section 2.3.3). 
This approach does not necessarily force RAMS engineering to fill up the table inside Cameo, since 
export and import from Excel is also possible, therefore offers a flexible working environment in 
between disciplines. Additionally, it allows a smooth transition towards a fully implemented MBSE 
work environment. 

This approach assumes that the functional architecture modelling is already done as a part of the 
systems engineering process and stored in the model in a formalized way. In the LISA project, this 
had been achieved with the SysML model implemented in Cameo using MOFTL methodology, as 
described in chapter 2.3. If there are still documents that are detailing on the functions and the 
systems that are not involved in modelling scope, they are linked to the model (e.g. requirements 
database in DOORS). 
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Figure 3.22: Context diagram for static model-supported FMEA 

 

 

Figure 3.23: Process diagram for the static model-supported FMEA. Notice that the input preparation 
activities are eliminated since they are done by the model automatically. 
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3.3.2.2 Preparation 

The preparation phase for the static model-supported approach is to establish the input to the RAMS 
engineering in the desired table format (see Table 3.2). Inside the model, several queries can be 
defined to compile this information. 

First, using a generic table and metachain navigation (a querying method implemented in Cameo 
[35]), the functions that have been reflected in the functional architecture diagram are compiled. Then 
using the function-technical component link (“directed composition”) the system responsible for the 
performing of the function is shown. Function description and requirement are traced using the 
“satisfiedBy” link in between the function and the requirement elements. Functional input/outputs and 
the upstream downstream functions are traced using the functional connections in between functional 
parts inside the functional-technical architecture. And finally, the hierarchical parent/child functions 
are traced using the “directed decomposition” link in between the functions inside the functional 
breakdown structure (refer to traceability links descriptions in section 3.1.1 and Figure 3.4).  

 

3.3.2.3 Conducting FMEA 

In the static model-supported approach, deducing the content of the FMEA table entities is exactly 
the same as the traditional document-based approach described in section 3.3.1.3. The main 
difference in this approach is that the way deduced information is stored and filled. Instead of a 
document or a dedicated software, the FMEA is conducted inside Cameo using the system definition 
in the model and dedicated model elements from Cameo SRAP FMEA profile. 

As a first step, for the failure mode, which is identified as “No Function”, a failure mode element is 
created. This failure mode is then traced to the functions in the scope using the “failure mode” 
property. After this step, a macro called “create FMEA items” is run for each of the functions, which 
creates a “FMEA Item” model element. This is the main artefact that stores the main column entries 
of the FMEA, described in detail in section 2.3.3. For the rest of the column entries such as cause of 
failure, local effect of failure and final effect of failure, respective model elements are created and 
linked to the FMEA Item accordingly using the FMEA table inside the model (see Figure 3.24).  

When the model links and elements for the functions are established, the FMEA table shows the 
functions and its entries dynamically, e.g., in case of a function change, or the system responsible for 
realizing it, the table will be automatically updated. The table is also interactive, allowing to navigate 
through model elements, or show their specifications when clicked on, which is used extensively for 
the reviewing process afterwards. 

 

 

Figure 3.24: Excerpt from example FMEA table filled in using Cameo SRAP profile inside the model. 
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3.3.3 FMEA Study: Executable Model-Based Analysis 

Executable model-based FMEA approach is defined as using the executable model simulations to 
identify the failure causes and effects in the functional architecture. This section describes the process 
followed in this approach with an overall summary in section 3.3.3.1, and information on conducting 
the FMEA in section 3.3.3.2. Example case studies using the methodology are explained in chapter 
4.1. 

 

3.3.3.1 Executable Model-Based Analysis Approach Summary 

Executable model-based approach supports RAMS engineering during the deduction of failure 
causes and effects for the system functions along the functional chain by using the results of the 
failure case simulation of the executable model (as described in section 3.2.3). As a pre-requisite for 
this approach, the baseline MOFLT MBSE modelling activities with the prescribed extensions (as 
described in chapter 3.1) must be performed by Systems Engineering. The interactions between the 
stakeholders in this approach can be seen in Figure 3.25. 

In terms of process (see Figure 3.26), this approach differs significantly from the previous ones, as it 
is more of a review task than deduction. The deduction of failure cause and effects is not performed 
manually by either RAMS discipline or by system engineering in this approach. This task is solely 
performed by the simulation of the system architecture model. Systems engineering is responsible for 
the correctness of the behaviour model as well as functional constraints, whereas RAMS engineering 
is responsible to operate the simulation and collect the results in a proper FMEA table format. Once 
done, the review session is initiated with Systems Engineering to either further investigate the 
simulation results, or edits in the FMEA table. This review session is not as extensive and cyclic as 
the review loops of the previous approaches. The reason is that the model provides extensive 
information in a clear format on the most complex/knowledge-intensive part of the FMEA study, which 
is the deduction of failure causes and effects. This approach also uses the same process as in static 
model-supported approach to compile and store desired information inside the model. 

In terms of contents, the most significant difference is that this study is connected to functional 
behaviours and specific operational scenarios, meaning the failures can be directly traced to a non-
nominal behaviour and its cause during a specific operation. This link can be used to pinpoint: 

• the most critical causes of functional misbehaviours 

• the most critical functions per each operation 

• the most critical operations in the mission 

This allows for necessary efforts to be directed towards strengthening these identified elements. 
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Figure 3.25: Context diagram for executable model based FMEA. 

 

 

Figure 3.26: Process diagram for the executable model based FMEA. Notice that the review loop is 
eliminated as the model is generating the failure cause and effects information through simulations. A generic 

review with Systems Engineering might be needed at the end of the study. 
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3.3.3.2 Conducting FMEA 

In the executable model-based approach, the execution context is run for each of the functions in the 
architecture, one by one, with the “No Function” failure mode applied as described in section 3.2.3. 
The failures that result in the “Failure Effects” table (see Figure 3.19) corresponds to the Failure 
Effects entry of the FMEA table. On the other hand, the constraints of the function (described in 
section 3.1.3.3) corresponds to the Failure Cause entry of the FMEA table.  

An important point here is that there are two possible ways to conduct FMEA using this approach, 
with different failure effect results that answer the following questions: 

• Generic FMEA: Which functions could be affected when “Function X” fails? 

• Detailed FMEA: Which functions, in which systems are affected when “Function X” fails in 
“System Y”? 

The generic FMEA includes all the possible failure effects independent of the system it happens in. 
In order to collect all the functional failure effects that can possibly happen, independent of the system 
it is used in, “No Function” failure mode is applied to all the instances of a specific function. As an 
example, a LA function has 2 instances per spacecraft, and along the constellation it has 6 instances. 
It could be that failure of each 6 instances could have different failure effects due to different 
operations of the systems. In order to capture every possible failure effect, all 6 instances have to be 
failed for the analysis of one function. After execution, the model generates the list of all failed function 
instances for entire constellation, which would include same functions failed inside different 
spacecrafts or systems. These repetitions need to be filtered out, as in FMEA table, entries are listed 
only once. Therefore, a simple post processing step is needed. In this study, the Failure Effects table 
in Cameo is exported to Excel and using the “Remove Duplicates” tool on the function name column, 
the list is reduced to the unique list of functions as failure effects. This list can then be added to the 
FMEA table as described in the previous step. For the failure causes there is no need to run the 
simulations again and they can be deduced from the list of function constraints.  

On the other hand, the detailed FMEA is a system dependent way of reporting failures. It analyses 
the failure mode for each instance of a particular function, realized in different systems along the 
constellation (e.g., 6 instances of the “Laser frequency actuation” function in 6 LAs along 
constellation). Therefore, it includes unique failure effects that are identified along the constellation 
within the individual systems, in the context of their respective operational tasks. For this way, the 
process is to have the “Failure Mode” and “Failure Effects” table (see Figure 3.17 and Figure 3.19) 
for each instance of the functions in the architecture and list these in individual FMEA table rows. 
Although there is no additional modelling effort involved, it should be noted that the number of 
simulations needed will be equivalent to the number of function instances (e.g., 6 individual 
simulations have to be run for the 6 instances of the “Laser frequency actuation” function). The Failure 
Cause entry of the FMEA table still remains as the list of function constraints. Note that, post 
processing is not needed for this way of conducting FMEA. If desired, this way of reporting failures in 
individual systems and spacecraft can be adopted as a baseline. This would identify in which system 
of which spacecraft the functional failure is the most critical one and create a major situational 
awareness for the development team.  

It is important to note that both methods are still dependent on the operational scenario that is being 
simulated. If during the operations, the failed function of interest is not used, it will not be captured in 
the failure effects results of the simulation. The different results of the two methods can be observed 
in Table 4.6 and Table 4.7. If possible, it is recommended to include both FMEA approaches in the 
failure assessment because, 

• Generic FMEA shows the worst-case combination by collecting all the functional failures that 
can happen during an operational scenario, 
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• Detailed FMEA shows the exact propagation of a specific failure along the constellation during 
an operational scenario. 

This combination of both information is valuable for understanding the behaviour and impact of failures 
in the LISA constellation. 
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4 RESULTS AND DISCUSSION 

This chapter presents the results of the work performed to compare the three FMEA results and 
methodology (traditional document-based, static model-supported, and executable model-based) in 
chapter 4.1 and the contributions of the thesis work for the investigated problem in chapter 4.2. 

 

4.1 FMEA COMPARISON 

This chapter compares and discusses on the methodology and results of the three FMEA studies 
performed within this thesis. The comparison of the quality of results obtained from three different 
approaches is described in section 4.1.1. The comparison of the methodologies according to selected 
evaluation criteria (e.g., effort for preparation, information access and traceability etc.) is described in 
section 4.1.2. Discussion and conclusion on the comparison can be found in section 4.1.3. 

 

4.1.1 Comparison of Examples from Investigated FMEA Results  

This section investigates example FMEAs with 3 case studies:  

• Correctness in results,  

• Impact of architecture changes on the results  

• Impact of operational scenario on the results 

It's important to note that the results presented in this section correspond to the "first draft" of the 
FMEA, which was conducted solely by the RAMS engineering discipline, with or without the support 
of the model. This initial analysis does not involve review sessions with systems engineering, nor a 
detailed study and understanding of functional behaviours and descriptions by the individual 
conducting the analysis. This assumption is essential to ensure a meaningful comparison of the 
results, since, in terms of content, all three FMEA methods would result in the same manner at the 
end, if there were enough knowledge about the system, and enough time and effort was spent. 

 

4.1.1.1 Case 1: Correctness in Results 

The first case is the difference in the correctness of the results obtained. As an example, the “Laser 
frequency actuation” function belonging to LA is given. This function is responsible for changing the 
incoming laser frequency according to control inputs received from either “External frequency control” 
or “Internal frequency stabilization” functions. This function is necessary in order to lock the frequency 
of the laser onto either the laser light of a remote spacecraft or the neighbouring LA, which is 
eventually required for the science measurement. The frequency actuated laser light output of the 
function is then used by the phase modulation function where its phase is modulated with information 
for inter-spacecraft communication. 

For the traditional document-based approach, as described in section 3.3.1.2, from the documents 
the input table is compiled for this function (see Table 4.1). On the contrary, for the static model-
supported approach, the input table is compiled automatically from the model as described in section 
3.3.2.2. Using the information from input table and the functional architecture view in Figure 6.1, FMEA 
table row is filled out as described in section 3.3.1.3 and 3.3.2.3. On the executable model-based 
FMEA side, simulation is run by failing the function for all LAs in the constellation, and the generic 
results are collected following the process described in section 3.3.3.2. 

Investigating the “first draft” results obtained from traditional document based and also from the static 
model-supported approaches in Table 4.2, it can be seen that there are some incorrect deductions. 
The assumptions that correlate upstream-downstream functions to the failure cause and failure effects 
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(refer to section 3.3.1.3) turn out to be incorrect. For example, in reality, the laser light frequency can 
still be actuated without the need for intensity stabilization. Therefore, a non-stabilized intensity input 
is not a cause of failure for the function of interest. In addition, the failure of the “Laser frequency 
actuation” function does not impose a local effect of failure in the “Phase modulation” function since 
the laser light phase can still be modulated even if the frequency is not actuated. This entry needs to 
be corrected during the review loop with the systems engineering. On the contrary, when looking at 
the results of the executable FMEA approach, one can see that the “Phase modulation” function is 
not affected as the system behaviour dictates, showing the correct failure effects even 5 levels 
downstream that comes after the “Phase modulation” function.  

 

Table 4.1: Input table for the “Laser frequency actuation” function. Compiled either manually using document-
based approach or automatically using the model-based approach. 

Function Laser frequency actuation 

System LA 

Description Actuate the laser frequency 

Requirement PAYL-12 

Function Inputs/Outputs 

in IN_F_IntT_stabilizedLaserLight  
in IN_F_IntT_referenceFrequencyControl  
in IN_F_IntT_transponderFrequencyControl 
out OUT_F_InT_frequencyActuatedLaserLight 

Upstream Functions 
Internal frequency stabilisation (reference mode) 
Power stabilization on OB 
External frequency control (transponder mode) 

Downstream Functions 
Internal frequency stabilisation (reference mode) 
Phase modulation 
External frequency control (transponder mode) 

Parent Functions Transponder Mode Configuration 

 

Table 4.2: FMEA table for “Laser frequency actuation” failure. First row filled using the static approaches, 
whereas second row filled using the generic executable approach. Incorrect assumptions of static approaches 

are given in red colour, whereas additional entries from executable approach are highlighted in blue. 

Item / 
block 

Function Failure Mode Failure Cause 
Mission Phase 

/ Op. mode 
Failure Effects 

a. Local Effect Of Failure 

Failure Effects 
b. Final Effect Of 

Failure 

LA Laser 
frequency 
actuation 

No Function Internal 

No stabilized laser input 
from LA : Power 
stabilization on OB 

No reference frequency 
control input from FRS : 
Internal frequency 
stabilisation 

No transponder frequency 
control input from LA : 
External frequency control 

Laser 
Acquisition 
Sequence 

Loss of Function 

No frequency actuated laser light output 

Failure in LA : External frequency control 

Failure in LA : Phase modulation 

Failure in FRS : Internal frequency 
stabilization 

Failure in OMS : 
Transponder Mode 
Configuration 

LA Laser 
frequency 
actuation 

No Function Internal 

No reference and 
transponder frequency 
control input  

No laser light input 

Laser 
Acquisition 
Sequence 

Loss of Function 

No frequency actuated laser light output 

Failure in ePMS : Extraction of DWS angles 
from LOA and TM IFO 

Failure in ePMS : IFO parameter extraction 
from carrier beatnotes 

Failure in ePMS : Retrieval of PRN code 
delay and data 

Failure in OMS : 
Transponder Mode 
Configuration 
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Failure in ePMS : Demodulation of 
sideband-sideband beatnotes and clock 
noise retrieval 

 

4.1.1.2 Case 2: Impact of Architecture Changes on the Results 

The second case is to compare the impact of architecture changes on the results. For this purpose, 
a small change in LA architecture is done by switching the places of “Laser frequency actuation” and 
“Phase modulation” functions. This small change causes a relatively significant impact on the 
interfaces of the “Laser frequency actuation” function, adding 3 more functions to its downstream (see 
Table 4.1 and Table 4.3). For the document based and static model-supported approaches, this 
change of architecture effects the result of the first draft significantly (see first rows of Table 4.2 and 
Table 4.4). As the assumption has been made that all the downstream functions are affected by the 
failure in the function of interest, the new list of downstream functions is included in the FMEA table 
entry. 

However, looking at the system behaviour, there should be no change in the FMEA results of both 
architectures. The change in the sequence of the functional chain actually have no effect on the 
system behaviour as “Laser frequency actuation” and “Phase modulation” functions are independent 
of each other. The executable model-based approach can successfully capture this phenomena (see 
second rows of Table 4.2 and Table 4.4 being exactly the same), since it only considers the functional 
behaviours and interface exchanges instead of the “architectural picture”. On the other hand, not only 
static approaches resulted in an unnecessary change in the table entries but also, they have to be 
checked and corrected referring to the functional behaviour descriptions. 

This example shows the big difference between the flexibility and robustness of executable and static 
methods. With the static methods, each architectural change has to be analysed all over again, 
whether there should be a modification in failure effects and causes. On the other hand, the 
executable method only needs a simulation run (as described in section 3.2.3) to correctly show what 
the new effects are, independent of the scale of the change in the architecture view. 

 

Table 4.3: Input table for the alternative architecture “Laser frequency actuation” function. Compiled either 
manually using document-based approach or automatically using the model-based approach. 

Function Laser frequency actuation 

System LA 

Description Actuate the laser frequency 

Requirement PAYL-12 

Function Inputs/Outputs 

in IN_F_IntT_phaseModulatedLaserLight  
in IN_F_IntT_referenceFrequencyControl  
in IN_F_IntT_transponderFrequencyControl 
out OUT_F_InT_frequencyActuatedLaserLight 

Upstream Functions 
Internal frequency stabilisation (reference mode) 
Phase modulation  
External frequency control (transponder mode) 

Downstream Functions 

Internal frequency stabilisation (reference mode) 
External frequency control (transponder mode) 
Reference Interferometer 
Long-Arm Interferometer 
Laser beam acceptance for local interferometry 
Laser beam acceptance for emission to remote SC 
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Parent Functions Transponder Mode Configuration 

 

Table 4.4: FMEA table for alternative architecture “Laser frequency actuation” failure. First row filled using the 
static approaches, whereas second row filled using the generic executable approach. Incorrect assumptions 

of static approaches are given in red colour, whereas additional entries from executable approach are 
highlighted in blue. 

Item / 
block 

Function Failure Mode Failure Cause 
Mission Phase 

/ Op. mode 
Failure Effects 

a. Local Effect Of Failure 

Failure Effects 
b. Final Effect Of 

Failure 

LA Laser 
frequency 
actuation 

No Function Internal 

No phase modulated laser 
input from LA : Phase 
modulation 

No reference frequency 
control input from FRS : 
Internal frequency 
stabilisation 

No transponder frequency 
control input from LA : 
External frequency control 

Laser 
Acquisition 
Sequence 

Loss of Function 

No frequency actuated laser light output 

Failure in LA : External frequency control 

Failure in FRS : Internal frequency 
stabilization 

Failure in OB : Reference Interferometer 

Failure in OB : Long-Arm Interferometer 

Failure in OB : Laser beam acceptance for 
local interferometry 

Failure in OB : Laser beam acceptance for 
emission to remote SC 

Failure in OMS : 
Transponder Mode 
Configuration 

LA Laser 
frequency 
actuation 

No Function Internal 

No reference and 
transponder frequency 
control input 

No laser light input 

Laser 
Acquisition 
Sequence 

Loss of Function 

No frequency actuated laser light output 

Failure in ePMS : Extraction of DWS angles 
from LOA and TM IFO 

Failure in ePMS : IFO parameter extraction 
from carrier beatnotes 

Failure in ePMS : Retrieval of PRN code 
delay and data 

Failure in ePMS : Demodulation of 
sideband-sideband beatnotes and clock 
noise retrieval 

Failure in OMS : 
Transponder Mode 
Configuration 

 

4.1.1.3 Case 3: Impact of Operational Scenario on the Results 

The third case is to compare the impact of operational scenario on the results. As the static 
approaches consider all the functions are active all the time, and the executable approach considers 
the activated functions according to the operational scenario, there are significant differences in the 
results. As an example, “Internal Frequency Stabilization” function belonging to FRS is given. This 
function is responsible for stabilizing the laser frequency by locking it onto the optical cavity inside the 
FRS. This function is necessary in order to stabilize the laser frequencies of the whole constellation, 
which is eventually required for the science measurement and inter-spacecraft communication.  

 

Table 4.5: Input table for the Internal frequency stabilisation function. Compiled either manually using 
document-based approach or automatically using the model-based approach. 

Function Internal frequency stabilisation (reference mode) 

System FRS 

Description 
Ensure that at least one of both laser assemblies can be stabilized in 
frequency to an optical frequency reference (master mode). 

Requirement PAYL-10 

Function Inputs/Outputs 
in IN_F_IntT_masterLockingScanParameters 
in IN_F_InT_frequencyActuatedLaserLight 
out OUT_F_IntT_referenceFrequencyControl 

Upstream Functions Command FRS 
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Laser frequency actuation 

Downstream Functions Laser frequency actuation 

Parent Functions 
Reference Mode Configuration 
Laser Mode Configuration 

 

Based on the information from Table 4.5 and the functional architecture, one can follow the static 
approach to deduce the failure effects to conduct FMEA, resulting in the first row of Table 4.6. There 
are two fundamental problems in this result: 

• Tracing the local effects to only neighbouring (one upstream & downstream) functions does 
not capture the full effect of the failure of this function. The function failure creates a drastic 
propagation of errors and failures in the payload, which affects the whole constellation. To 
handle this correctly in the sense of a realistic failure effects analysis, RAMS engineering has 
to trace this failure along the constellation architecture. All the effected functions have to be 
manually identified one by one with consultation to functional descriptions and systems 
engineering during a review loop. 

• Operationally, this function is active in only one of the spacecrafts (master/reference SC) and 
only for one of the LAs. Therefore, the failure in different components shows different effects. 
If the failure occurs in the function stabilizing the master/reference LA, the whole constellation 
is impacted as an effect. On the contrary, a failure in the “Internal frequency stabilization” 
function that is responsible for stabilizing the rest of the 5 LAs will not have any effect on the 
constellation operations, because it is not used. 

On the other hand, as shown in Table 4.7, a detailed model-based FMEA (as described in section 
3.3.3.2) is conducted on the 6 different instances of “Internal Frequency Stabilization” function. The 
analysis reveals that only the function inside the FRS of Spacecraft 1, that is responsible for stabilizing 
the Left LA (master/reference LA), ends up in a drastic functional failure effect propagating along the 
constellation. This shows that the static approaches fail to reflect the listed aspects of the functional 
failure, whereas the executable model-based approach captures the full effect of the failure in all the 
components it is allocated to, according to the operational use. 

This example, even though obvious for the payload experts, is especially chosen to be easy to grasp 
the concept. However, the same difference in results goes for all other functions in the architecture. 
These functions may not be so intuitive to investigate, as their failure might propagate differently 
depending on which component and during which operation it happens. This is a key limitation in the 
early phase functional FMEA that uses static approaches. Because, for a non-expert on the system 
functions (in this case RAMS engineering), there is limited expertise, information or intuition on how 
much the operational aspects affect the behaviour and the level of propagation of a specific functional 
failure. This results in a limited idea on how much effort that has to be spent on to analyse a specific 
function, which eventually might end up in an FMEA not reflecting the full coverage of a functional 
failure. 

It is important to note that, according to the preference of the RAMS and systems engineering, the 
number of failure effects entries can be reduced. Or a generic failure case independent of the 
components (generic FMEA approach) can be investigated by only listing the affected functions once 
(see second row of Table 4.6). This is achieved by failing the function of interest in all the components 
along constellation and removing the duplicates of the functions as described in section 3.3.3.2.  
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Table 4.6: FMEA table for Internal frequency stabilisation (reference mode) failure. First row filled using the 
static approaches, whereas second row filled using the generic executable approach. Entries from executable 

approach are highlighted in blue. 

Item / 
block 

Function 
Failure 
Mode 

Failure Cause 
Mission 

Phase / Op. 
mode 

Failure Effects 
a. Local Effect Of Failure 

Failure Effects 
b. Final Effect Of 

Failure 

FRS Internal 
frequency 
stabilisation 
(reference 
mode) 

No 
Function 

Internal 

No master locking scan 
parameters input from OBC 
: Command FRS 

No frequency actuated 
laser light input from LA : 
Laser frequency actuation 

Laser 
Acquisition 
Sequence 

Loss of Function 

No reference frequency control 
output 

Failure in LA : Laser frequency 
actuation 

Failure in OMS : 
Reference Mode 
Configuration 

Failure in OMS : Laser 
Mode Configuration 

FRS Internal 
frequency 
stabilisation 
(reference 
mode) 

No 
Function 

Internal 

No master locking scan 
parameters input 

No laser light input 

Laser 
Acquisition 
Sequence 

Loss of Function 

No reference frequency control 
output 

Failure in LA : Laser frequency 
actuation 

Failure in ePMS : Extraction of 
DWS angles from LOA and TM 
IFO 

Failure in ePMS : IFO parameter 
extraction from carrier beatnotes 

Failure in ePMS : Retrieval of PRN 
code delay and data 

Failure in ePMS : Demodulation of 
sideband-sideband beatnotes and 
clock noise retrieval 

Failure in OMS : 
Reference Mode 
Configuration 

Failure in OMS : Laser 
Mode Configuration 

 

Table 4.7: Part of an FMEA table for “Internal frequency stabilisation (reference mode)” failure, filled in using 
the detailed executable model-based approach. All the 6 instances of the function and where they belong in 

the constellation are shown in first two columns. The failure effects are captured with their exact location in the 
constellation (e.g., constellation.sc1.ePMS_L). The cause of failure for the affected functions are also listed 

next to their respective entries. As anticipated, the functions responsible for stabilizing slave/transponder LAs 
does not have failure effects as they are not used operationally. 

Item / 
block 

Function Failure Effects (with Failure Cause) 

SC1.FRS Internal frequency 
stabilisation (reference 
mode) – LA_L 

constellation.sc1.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized 
constellation.sc1.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized 
constellation.sc1.ePMS_L: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized 
constellation.sc1.ePMS_L: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized 
constellation.sc1.ePMS_L.: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized 
constellation.sc1.ePMS_L: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized 
constellation.sc1.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized 
constellation.sc1.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized 
constellation.sc1.ePMS_R: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized 
constellation.sc1.ePMS_R: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized 
constellation.sc1.ePMS_R: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized 
constellation.sc1.ePMS_R: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized  
constellation.sc1.LA_L: Laser frequency actuation - Transponder and reference frequency control is not on  
constellation.sc2.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized  
constellation.sc2.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized  
constellation.sc2.ePMS_L: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized 
constellation.sc2.ePMS_L: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized 
constellation.sc2.ePMS_L: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized 
constellation.sc2.ePMS_L: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized 
constellation.sc2.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized 
constellation.sc2.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized  
constellation.sc2.ePMS_R: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized 
constellation.sc2.ePMS_R: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized 
constellation.sc2.ePMS_R: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized 
constellation.sc2.ePMS_R: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized 
constellation.sc3.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized  
constellation.sc3.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized 
constellation.sc3.ePMS_L: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized 
constellation.sc3.ePMS_L: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized 
constellation.sc3.ePMS_L: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized 
constellation.sc3.ePMS_L: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized 
constellation.sc3.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized 
constellation.sc3.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized  
constellation.sc3.ePMS_R: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized 
constellation.sc3.ePMS_R: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized 
constellation.sc3.ePMS_R: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized 
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constellation.sc3.ePMS_R: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized  
SC1.FRS Internal frequency 

stabilisation (reference 
mode) – LA_R 

No Failure Effect 

SC2.FRS Internal frequency 
stabilisation (reference 
mode) – LA_L 

No Failure Effect 

SC2.FRS Internal frequency 
stabilisation (reference 
mode) – LA_R 

No Failure Effect 

SC3.FRS Internal frequency 
stabilisation (reference 
mode) – LA_L 

No Failure Effect 

SC3.FRS Internal frequency 
stabilisation (reference 
mode) – LA_R 

No Failure Effect 

 

4.1.2 Discussion and Assessment of Investigated FMEA Methodologies for the LISA Mission 

In this section, the methodologies are compared and assessed for the traditional document based, 
static model-supported and executable model based FMEA approaches according to the defined 
criteria in Table 4.8. The criteria are determined in the light of reflecting the aspects that are 
encountered during the project evolution and are considered important for an effective FMEA analysis 
by the project team.  

 

Table 4.8: Criteria table showing the comparison criteria with descriptions used for evaluating the different 
FMEA methodologies. 

Criteria Description 

Quality of Input 
Correctness and level of detail in information of the input to 
the FMEA study. 

Effort for Preparation 
Effort needed for the preparation before starting to fill the 
FMEA table entries. 

Information Access and Traceability 
Convenience to access to desired information and trace in 
between functions-requirements-systems-failures. 

Quality of Results 
Correctness and level of detail in information of the FMEA 
entries of the “first draft” before systems engineering review 
(only Failure Cause and Effects are considered). 

Effort to Obtain Results Effort needed to obtain Failure Cause and Effects information. 

Filling the FMEA Table Convenience to fill the FMEA table entries. 

Effort for Initial Setup 
Effort needed to initially setup the environment used for FMEA 
study. 

Maintenance 
Effort needed to maintain the consistency along the system 
definition and the FMEA entries during project evolution. 

 

By comparing these three different approaches, it is possible to gain insights into the strengths and 
weaknesses of each method. A point-based qualitative assessment is employed to evaluate each 
method against the defined criteria explained in Table 4.8. Through this analysis, the strengths and 
limitations of each approach are carefully considered, conclusions are made on whether the model-
based methodologies are the most suitable for meeting the specific needs of the LISA project and 
recommendations are given to further improve on this conclusion for each defined criterion. The 
summary of the comparison is given in Table 6.1 in APPENDIX B, whereas the overall conclusions 
are given in the next section.  
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Table 4.9: Description of points of the qualitative assessment. 

Point Description 

1 
Poor: The FMEA approach has significant weaknesses and limitations that hinder its 
effectiveness in the given criterion. There are significant issues that make the approach 
difficult to use or that impact obtaining satisfactory results. 

2 
Below Average: The FMEA approach has some strengths, but also significant limitations 
that impact its ability to perform optimally in the given criterion. The approach has some 
gaps in coverage or require additional effort to achieve satisfactory results. 

3 
Average: The FMEA approach has a number of strengths and weaknesses that balance 
each other out. It is generally effective in the given criterion, but requires additional support 
or modifications to work optimally in certain situations. 

4 
Above Average: The FMEA approach has notable strengths and is generally effective in 
the given criterion. It requires some adjustments to work optimally in certain situations, but 
overall it is a strong approach. 

5 
Excellent: The FMEA approach has exceptional strengths and is highly effective in the 
given criterion. It is versatile and can be applied in a variety of situations with little or no 
modification. 

 

4.1.2.1 Quality of Input 

The document-based approach has some disadvantages compared to the static model-supported 
approach and the executable model-based approach. Both approaches receive the same information 
of the system description, functional list, architecture, and breakdown, however in different formats. 
The document-based approach relies on excerpts from documents, which is not interactable and 
spread through various pages and chapters. This increases the chance of inconsistency in the 
information, unless specifically checked for, and may not provide a complete picture of the system's 
characteristics. Additionally, the use of worded information may make it harder to understand and 
extract the input. On the other hand, the static model-supported approach, and the executable model-
based approach both offer more consistent and complete information, which is important for ensuring 
the accuracy and completeness of the FMEA analysis. The model enables to conveniently navigate 
through relations in between elements to find, collect and present desired information. It also provides 
a visual representation of the system's characteristics, which is easier to understand than worded 
information. Finally, these approaches offer the ability to dynamically update the input, which is crucial 
for ensuring the accuracy and completeness of the FMEA analysis input when changes occur over 
time. 

Both static model-supported and executable model-based approaches offer exceptional strengths in 
ensuring high-quality and consistent input for the FMEA study, while the document-based approach 
suffers from significant weaknesses and limitations, hence resulting in the assessment shown in 
Figure 4.1. For the LISA project, it is recommended to pursue the model-based/supported approaches 
in terms of this criterion. 
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Figure 4.1: Point based qualitative assessment of approaches according to “Quality of Input” criterion. 

 

4.1.2.2 Effort for Preparation 

The document-based approach requires significant time and effort to compile information from 
multiple documents as described in section 3.3.1.2. The need to manually extract information from 
various sources for the preparation to the FMEA study makes this process time-consuming and more 
prone to errors, especially when the number of functions to be analysed is high. In contrast, both the 
static model-supported approach and the executable model-based approach offer significant 
advantages in terms of reducing the effort for this preparation. These approaches use the queries and 
relations in between the model elements to automatically compile the required information, which is 
then presented real-time in a table format, eliminating the need for manual operation. Once the initial 
setup is done in the model, the process becomes more efficient, streamlined, and less prone to errors, 
making the overall time and effort required for preparation significantly less. 

 

 

Figure 4.2: Point based qualitative assessment of approaches according to “Effort for Preparation” criterion. 
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In terms of the preparation effort, both static model-supported and executable model-based 
approaches demonstrate exceptional strengths by automating the information compilation effort, while 
the document-based approach presents significant weaknesses and limitations, hence resulting in the 
assessment shown in Figure 4.2. For the LISA project, it is recommended to pursue the model-
based/supported approaches in terms of this criterion. 

 

4.1.2.3 Information Access and Traceability 

The document-based approach has some limitations in terms of this criterion. It requires explicit 
searching for the necessary information, which requires expertise, is time-consuming, and might result 
in missing some essential information. Moreover, there is no formal traceability between the contents 
of the documents, making it difficult to track the origin of the information. Navigation through the 
documents is either manual or through hyperlinks if implemented, which is inconvenient. On the other 
hand, both static model-supported and executable model-based approaches have significant 
advantages overcoming these problems. They use model diagrams and relations to represent the 
system's functions, requirements, systems, and failures, containing all necessary information 
together. Additionally, full traceability is established between the model elements (shown in Figure 
3.4), which makes it easier to track the origin of the information. Navigation is more convenient using 
the interactive diagrams, tables, and model elements.  

 

 

Figure 4.3: Point based qualitative assessment of approaches according to “Information Access and 
Traceability” criterion. 

 

In terms of the "Information Access and Traceability" criterion, both static model-supported and 
executable model-based approaches are superior, with the exceptional strengths, to the document-
based approach which has significant weaknesses and limitations, hence resulting in the assessment 
shown in Figure 4.3. For the LISA project, it is recommended to pursue the model-based/supported 
approaches in terms of this criterion. 
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4.1.2.4 Quality of Results 

When considering the criterion of “Quality of Results”, both the document-based and static model-
supported FMEA approaches have limitations, as highlighted in section 4.1.1. These approaches rely 
on static functional breakdown and architecture views, which leads to missing details in the analysis 
results or incorrect assumptions due to a lack of functional behavioural awareness. Additionally, 
operational aspects are not included by default, requiring manual tracing of failure propagation in 
operational context, if included in the study. Furthermore, the lack of an explicit cause of failure in the 
local failure effects entry hinders the ability to address underlying issues. In contrast, the executable 
model-based approach overcomes these limitations by utilizing functional behaviour, constraint, and 
system operation simulations, ensuring consistency with the system definition. It incorporates 
operational aspects, traces failure propagation along individual systems in the constellation, and 
explicitly identifies the cause of failure in the local failure effects entry. These features contribute to 
higher quality analysis results, as the executable model-based approach is more reliable and effective 
in identifying potential failures and addressing their underlying causes.  

 

 

Figure 4.4: Point based qualitative assessment of approaches according to “Quality of Results” criterion. 

 

In terms of the "Quality of Results" criterion, the executable model-based approach is superior with 
its exceptional strengths. Both the static model-supported approach and the document-based 
approach exhibit notable weaknesses and limitations, hence resulting in the assessment shown in 
Figure 4.4. For the LISA project, it is recommended to pursue the executable model-based approach 
in terms of this criterion, especially for payload systems, as its complex nature requires highly detailed 
and quality analysis results.  

 

4.1.2.5 Effort to Obtain Results 

The document-based approach in FMEA requires a manual deduction process for all functions in the 
architecture, which is highly work-intensive and time-consuming. It also relies on a significant amount 
of system knowledge and/or expert assistance, making it less accessible to individuals without 
specialized expertise on the system of interest. Additionally, review loops are necessary for result 
refinement, further increasing the overall effort required. In contrast, the static model-supported 
approach provides instant access to the requirement-mission-operation-function-system information 
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of the analysed failure, which saves time in the initial stages of analysis. However, it still requires a 
manual deduction process for all functions in the architecture and relies on significant system 
knowledge and/or expert assistance for the identification of the failures. Review loops are also needed 
for result refinement. On the other hand, the executable model-based approach offers a more efficient 
alternative. It involves a quick simulation run for each function, which provides a list of failure effects 
and propagation with minimal effort. This approach eliminates the required time and effort for the 
manual deduction and is independent of the expertise of the person conducting the study. It also 
eliminates the need for frequent review loops, as only one review session is necessary at the end of 
the study. Similar to the static model-supported approach, the executable model-based approach also 
offers instant access to the requirement-mission-operation-function-system information of the 
analysed failure.  

 

 

Figure 4.5: Point based qualitative assessment of approaches according to “Effort to Obtain Results” criterion. 

 

When considering the "Effort to Obtain Results" criterion, the executable model-based approach 
stands out as superior, showcasing exceptional strengths. On the other hand, while the static model-
supported approach does possess certain strengths, it shares significant weaknesses and limitations 
with the document-based approach, hence resulting in the assessment shown in Figure 4.5. For the 
LISA project, it is recommended to pursue the executable model-based approach in terms of this 
criterion, especially for payload systems, as its complex nature requires high effort and expertise to 
obtain results.  

 

4.1.2.6 Filling the FMEA table 

The document-based approach offers a straightforward and convenient method for filling the FMEA 
table in Excel, allowing for customized and flexible wording, easy editing, and the implementation of 
drop-down lists. However, it still lacks formal traceability of failures to the system definition, 
necessitating manual navigation from the FMEA table to the related documents. In contrast, the static 
model-supported and executable model-based approaches utilize the model and SRAP elements to 
populate the FMEA table. These approaches provide formal traceability of failures to the system 
definition and enable convenient navigation from the interactive FMEA table to the system definition. 
However, each unique FMEA table entry in the model-based approaches requires the generation of 
a new model element and its linkage to the corresponding function's FMEA item, which is highly 
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labour-intensive, especially when custom wording for the entries is desired. This process also 
increases the number of elements in the model, potentially impacting software performance. While 
drop-down lists are still possible in the model-based approaches, their implementation is less 
convenient, requiring profile customization. Additionally, further profile customizations are needed to 
assign model definition elements to table entries.  

 

 

Figure 4.6: Point based qualitative assessment of approaches according to “Filling the FMEA table” criterion. 

 

When evaluating the "Filling the FMEA table" criterion, it becomes evident that both the executable 
model-based approach and the static model-supported approach, despite their respective 
advantages, suffer from significant limitations that hinder their convenience and usability. In 
comparison, the document-based approach outperforms the other approaches due to its inherent 
simplicity and flexibility, hence resulting in the assessment shown in Figure 4.6. To pursue the model-
based/supported approaches in terms of this criterion, it is crucial and strongly recommended to 
create a new customized profile for Airbus Space Systems-RAMS applications in Cameo System 
Modeler instead of using the Cameo SRAP profile. Until it is implemented, for the LISA project, it is 
recommended to use Excel to fill in the FMEA table and importing the filled in table into the model. 
This would result in a higher convenience for the RAMS engineering for filling in the FMEA table 
entries, while the later model import effort would still allow exploiting the advantage of model 
traceability and navigation. 

 

4.1.2.7 Effort for Initial Setup 

The document-based approach offers a straightforward setup process by implementing the template 
provided in the ECSS-Q-ST-30-02C standard in Excel, requiring low effort. Similarly, the static model-
supported approach benefits from a low setup effort as the template can be conveniently implemented 
in the Cameo tool, on top of a pre-existing model following the default R-MOFLT process. In contrast, 
the executable model-based approach necessitates additional time and effort for the modelling 
process, involving the creation of functional failure modes, constraints, behaviours, and simulation 
setup within the model. This undertaking calls for specialized expertise and training in modelling. As 
a result, the document-based and static model-supported approaches exhibit lower initial setup effort, 
a significant strength, while the executable model-based approach requires a significant amount of 
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effort due to modelling and simulation setup requirements, one of the key shortcomings of this 
particular method, hence resulting in the assessment shown in Figure 4.7.  

 

 

Figure 4.7: Point based qualitative assessment of approaches according to “Effort for Initial Setup” criterion. 

 

To pursue the executable model-based approach based on this criterion, it is essential and highly 
recommended to leverage the additional modelling effort for other applications. In the context of the 
LISA project, these additional modelled artifacts serve purposes such as comprehending and 
validating functional behaviours, operational tasks, and phase behaviours. This effectively justifies the 
investment of effort by providing a robust rationale beyond the scope of FMEA alone. 

 

4.1.2.8 Maintenance 

In terms of “Maintenance” criterion, the document-based approach requires manual maintenance for 
the entire document chain, which means that any modifications made to a document is not 
automatically reflected in the FMEA table. As a result, inconsistencies are very likely to arise 
throughout the project evolution, requiring explicit checks to identify them. On the other hand, for the 
static model-supported approach, as well as the executable model-based approach, maintenance can 
be done continuously. The model has validation rules embedded, providing warnings during function-
requirement changes, and automatically updating system allocation or functional hierarchy with no 
need for manual maintenance. However, when updating the Failure Effects and Failure Causes in the 
FMEA entries, both the document-based approach and the static model-supported approach require 
manual re-checking and deduction from scratch, as described in section 4.1.1.2, which is highly 
labour-intensive. In contrast, the executable model-based approach only requires re-running quick 
simulations to obtain the new list of failure propagation information, which is then used to update the 
corresponding entries. This highlights the substantial difference in flexibility and robustness of the 
executable model-based approach compared to the others, hence resulting in the assessment shown 
in Figure 4.8.  

It is highly recommended to pursue the executable model-based approach in terms of this criterion. 
This approach is the most effective especially in early phases, like in LISA project, when the project 
evolution is highly dynamic and continuous updates in the system definition are present. 
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Figure 4.8: Point based qualitative assessment of approaches according to “Effort for Initial Setup” criterion. 

 

4.1.3 Comparison Conclusion 

Looking at the detailed comparison of the results in section 4.1.1 and the assessment of 
methodologies in section 4.1.2, it is concluded that the offered executable model-based approach is 
the most suitable one to pursue for a complex space science mission like LISA. It shows significant 
advantages compared to the traditional document-based and static model-supported approaches in 
6 out of the 8 defined criteria as shown in Figure 4.9.  

 

 

Figure 4.9: Point-based qualitative assessment of traditional document based, static model-supported and 
executable model-based approaches according to defined criteria. 
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In order to manage complexity, the executable model-based functional FMEA approach offers the 
very much needed details and information to help identifying the un-intuitive failure cases. The fact 
that accessing this information with a relatively quick simulation is very much valuable and provide an 
important situational awareness to the development team, since the whole failures-functions-systems-
requirements-operations linking is visible and conveniently accessible. The time and effort savings in 
terms of conducting FMEA, updating FMEA during changes, and avoiding review loops to correct 
wrong/missing entries is significant, which justifies the implementation effort in the long run. It is still 
utmost essential to improve upon its limitations, therefore it is suggested to invest in specialized 
expertise and training for modelling, create a customized profile for RAMS applications, and leverage 
additional modelled artifacts also for other purposes than FMEA. These enhancements would further 
enhance the effectiveness and efficiency of the executable model-based approach in the LISA project, 
particularly for payload systems. 

For missions or systems with low functional complexity, the investment in additional training and 
modelling for an executable functional architecture is not justified. Existing systems can be understood 
with minimal simulations to grasp their overall behaviour. In such projects, from a perspective of quick 
benefit and effort, it is highly logical to transition to a static model-supported FMEA approach as soon 
as possible. This approach is readily available with minimal effort if the development team is already 
engaged in MBSE or R-MOFLT practices. If a model does not yet exist, it is still recommended to 
undertake the effort in order to benefit from the many advantages of MBSE implementation. However, 
the modelling scope should be limited to employing functional hierarchy and architecture without 
delving deeply into the functional behaviours and constraints necessary for an executable model, in 
order to maintain a reasonable level of effort. 

 

4.2 THESIS SUMMARY AND CONTRIBUTIONS 

This thesis contributes to the field of space systems engineering by offering a novel MBSE-assisted 
FMEA methodology and highlighting the benefits of this model-based approach in improving 
traditional FMEA results and process. In detail the following points have been performed and 
achieved: 

1- Define and implement a novel executable functional architecture modelling approach as an 
extension to Airbus R-MOFLT methodology for operational-functional-technical simulations that 
traverse through the functional architecture definition. Refer to chapters 3.1 and 3.2 

2- Implement and test the static model-assisted FMEA method in an existing system architecture 
model and utilize it to support a functional FMEA study. Refer to section 3.3.2 

3- Define, implement, and test the executable model-based FMEA method, which utilizes a failure 
propagation analysis for critical operational scenarios using the implemented executable 
functional architecture model. Refer to section 3.3.3 

4- Perform a thorough investigation and comparison between traditional (document based) FMEA 
and model based FMEA approaches in terms of the listed criteria below. Analyse and find out why 
executable model-based FMEA is the most suitable method for a complex space science mission 
like LISA. Refer to chapter 4.1  

• Quality of Input 

• Effort for Preparation 

• Information Access and Traceability 

• Quality of Results 

• Effort to Obtain Results 
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• Filling the FMEA table 

• Effort for Initial Setup 

• Maintenance 

At the culmination of this thesis, the research objectives (refer to chapter 1.4), and identified gaps in 
the literature (refer to chapter 2.4), namely the inclusion of operations in FMEA, the consideration of 
the effects of exchanged interface flows on system functions, the integration of functional behaviours 
and architecture in FMEA, and the provision of detailed modelling and analysis descriptions, have 
been successfully addressed and achieved. 

The approaches and results in this thesis can be used to develop an MBSE adoption strategy for 
complex space missions, serve as a guide for system modelling in MBSE environment, and integrate 
RAMS engineering discipline into early phase model-based system development. 
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5 FUTURE WORK 

This chapter presents potential areas for future work related to the thesis topic presented in Table 
5.1. It includes a compilation of recommendations for the further development of this thesis, as well 
as for improving the modelling process and the integration of RAMS into MBSE methods and 
procedures. 

 

Table 5.1: Recommendations for future work. 

Topic Description 

Airbus Space 
Systems-RAMS 
profile 

A new customized profile for Airbus Space Systems-RAMS applications in Cameo 
System Modeler is needed. Cameo Safety and Reliability Analyser Plugin is limited 
in terms of addressing the RAMS analysis needs and ease in usability. The new 
profile shall out-of-the-box, 

• contain standards used in space systems (e.g., ECSS-Q-ST-30-02C), 

• does not require model elements (e.g., Cause of Failure, Final Effect of 
Failure, etc.) to be created per each FMEA entry, possibly by allowing 
linking failure properties to already existing model elements used for 
system definition, 

• allow creation of a failure database and list suggestions and possible 
entries in the FMEA table for the user, 

• contain easily customisable FMEA tables (e.g., allow custom naming for 
table entries that are traced to model elements used for system definition) 

• be integrated to R-MOFLT framework and make use of its dedicated 
artefacts (e.g., automatically fill in mission phase, operational mode entries 
in FMEA table using function-operational-mission traceability links). 

Additional 
operational 
scenarios 

Modelling of more operational scenarios enables to cover more/all LISA mission 
phases (this thesis work focused only on laser link acquisition). 

Automated 
FMEA table 
generation 
inside Cameo 
from simulation 
results 

Although automated tables are generated from simulations in the form of Failure 
Cause and Failure Effects tables, it needs manual work to put these results in the 
FMEA table format. It can be achieved using scripts in the model. 

Monte Carlo 
Analysis 

Implementation of scripts to inject random failures for specific/all operational 
scenarios to enable a Monte Carlo Analysis. This would enable identification of, 

• Sensitivity of system functions to failures for the entire space segment, 

• System failure rates/probability (i.e., for entire LISA constellation) 

Severity and 
Criticality 
evaluation 

It is possible to automatically evaluate the Severity and Criticality of the system 
functions using the model. Simulations can be used to identify end effects of the 
failures that is traced to mission level showing their Severity. Combined with the 
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Probability data either found via simulations or using heritage information, 
Criticality metric can be calculated. 

Architectural 
clustering 
analysis 

Architectural clustering analysis can be done automatically in the model to identify: 

• Functions highly dependent on each other 

• Components highly dependent on each other 

• Logical dependency/clustering 

• Failures highly dependent on each other 

This data can be used to prioritize functions, components and logical systems or 
develop mitigating actions to break potential failure chains. 

Open-loop 
functional 
commanding 
scheme 

The operational-functional analysis in this thesis work followed a closed-loop 
commanding scheme (see section 3.2.2). It could be the case that the real system 
also follows a pre-defined timeline as an open loop commanding. This would open 
up new failure cases depending on the timing of the commands and functional 
response. Therefore, it is recommended to implement an option to perform a 
mission timeline based operational-functional analysis and simulation in the model. 

Component 
state– Function 
integration 

Integration of payload component states and their respective functions in the model 
execution is a key future activity to: 

• manage the complexity of the payload operations, 

• simulate and understand payload component behaviour also in the case of 
functional failures, 

• identify the most critical payload component states. 

This activity would enable directly referring to payload component states in the 
operational tasks instead of functions to be activated 

Using AI 
language 
models to help 
with modelling 

It is highly recommended to experiment with using AI language models to convert 
verbal behavioural descriptions into SysML diagrams and scripts for constraint 
properties to help with users and modelers. 

• Functional behaviours can be hard to put into a script format, that requires 
high effort in the case of complex behaviours. AI language models show 
promising potential to transfer verbal descriptions, which are more intuitive 
to human mind, into if-else conditions that the model can use during 
execution. 

• It is also worth trying whether a diagram (e.g., SysML Activity Diagram, etc.) 
can be generated from a verbal description of a function behaviour and vice 
versa using AI tools. 

Data for FMEA 
effort 

It is important to collect detailed data that reflects the time and effort of the 
modelling and FMEA activities from LISA and other projects throughout Airbus 
Space Systems for a more thorough comparison. This is important to identify: 

• The kind of projects that should employ an executable model-based, static 
model-supported or any other approach. 

• Aspects of the approaches that should be improved. 
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6 APPENDIX 

6.1 APPENDIX A 

 

Figure 6.1: Deduction of failure causes and effects from the functional architecture using the static approaches. The proposed method 
assumes that the upstream functions are possible causes of the primary failure, whereas downstream functions are affected as a result of 

the primary failure.
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6.2 APPENDIX B 

 

Table 6.1: Comparison summary table comparing different methodologies of traditional document based, 
static model-supported and executable model based FMEA approaches with pros [+] and cons [-] indicated. 

 
Document Based 

Static model-

supported 

Executable Model 

Based 

Quality of Input Method: Excerpts from 
documents 
 
[-] Higher chance of 
inconsistency in 
information. 
 
[-] Often not enough to 
explain overall system 
characteristics. 
 
[-] Worded information, 
relatively hard to 
understand. 
 

Method: Model, 
dynamic tables 
 
[+] Consistent 
 
[+] Dynamically updated.  
 
[+] Overall system 
characteristics 
represented with 
requirement-mission-
operation-function-
system viewpoints all 
together. 
 
[+] Visual, easier to 
understand than worded 
information. 
 

Method: Model, 
dynamic tables 
 
[+] Consistent 
 
[+] Dynamically updated. 
 
[+] Overall system 
characteristics 
represented with 
requirement-mission-
operation-function-
system viewpoints all 
together. 
 
[+] Visual, easier to 
understand than worded 
information. 

Effort for 

Preparation 

Method: Information 
compilation from different 
documents. 
 
[-] Extraction of information 
from multiple documents 
needed. 
 
[-] Need time, effort, and 
expertise to find desired 
information. 
 

Method: Automatic 
compilation using 
queries. 
 
[+] Required information 
automatically shown in 
table format. 
 
[+] Queries do not need 
manual operation once 
setup. 

Method: Automatic 
compilation using 
queries. 
 
[+] Required information 
automatically shown in 
table format. 
 
[+] Queries do not need 
manual operation once 
setup. 
 

Information Access 

and Traceability 

Method: Access through 
different documents. 
 
[-] Information needs to be 
explicitly searched for. 
 
[-] No formal traceability in 
between contents of the 
documents.  
 
[-] Navigation is manual or 
via hyperlinks (if 
implemented). 
 

Method: Usage of 
model diagrams and 
relations. 
 
[+] Model contains 
necessary information 
altogether. 
 
[+] Full traceability 
established in between 
functions-requirements-
systems-failures. 
 
[+] Convenient 
navigation using the 
interactive diagrams, 

Method: Usage of 
model diagrams and 
relations. 
 
[+] Model contains 
necessary information 
altogether. 
 
[+] Full traceability 
established in between 
functions-requirements-
systems-failures. 
 
[+] Convenient 
navigation using the 
interactive diagrams, 
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tables, and model 
elements. 
 

tables, and model 
elements 

Quality of Results Method: Deduction 
through static functional 
breakdown, architecture 
views. 
 
[-] Might include wrong 
assumptions due to lack of 
functional behavioural 
awareness. 
 
[-] Does not include 
operational aspects. 
 
[-] Failure propagation 
along constellation has to 
be traced manually, if 
included in the analysis. 
 
[-] Does not include explicit 
cause of failure in local 
failure effects entry. 
 

Method: Deduction 
through static functional 
breakdown, architecture 
views. 
 
[-] Might include wrong 
assumptions due to lack 
of functional behavioural 
awareness. 
 
[-] Does not include 
operational aspects. 
 
[-] Failure propagation 
along constellation has 
to be traced manually, if 
included in the analysis. 
 
[-] Does not include 
explicit cause of failure 
in local failure effects 
entry. 

Method: Usage of 
functional behaviour, 
constraint, and system 
operation simulations. 
 
[+] Consistent with 
system definition due to 
direct simulation of SE 
artefacts instead of 
deductions from 
contained information in 
the SE artefacts. 
 
[+] Include operational 
aspects and usage of 
functions. 
 
[+] Traces failure 
propagation along 
constellation. 
 
[+] Explicit cause of 
failure is identified in 
local failure effects entry. 
 

Effort to Obtain 

Results 

Method: Manual 
deduction, Review loops 
with Systems Engineering 
 
[-] Work-intensive 
deduction process for all 
functions in the 
architecture. 
 
[-] Requires significant 
amount of system 
knowledge and/or expert 
assistance. 
 
[-] Requires review loops 
for result refinement. 
 

Method: Manual 
deduction, Review loops 
with Systems 
Engineering 
 
[+] Instant access to the 
requirement-mission-
operation-function-
system information of 
the identified failure 
 
[-] Work-intensive 
deduction process for all 
functions in the 
architecture. 
 
[-] Requires significant 
amount of system 
knowledge and/or expert 
assistance. 
 
[-] Requires review loops 
for result refinement. 
 

Method: Executable 
model simulation. 
 
[+] Quick simulation run 
per each function to 
receive list of failure 
propagation. 
 
[+] Review session at 
the end of study instead 
of frequent review loops. 
 
[+] Instant access to the 
requirement-mission-
operation-function-
system information of 
the identified failure 
 

Filling the FMEA 

table 

Method: Excel worksheets 
 
[+] Customized and 
flexible wording possible. 
 

Method: Model, Excel 
and/or SRAP elements 
 
[+] Formal traceability of 
failures to system 
definition. 

Method: Model, Excel 
and/or SRAP elements 
 
[+] Formal traceability of 
failures to system 
definition. 
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[+] Convenient and 
straightforward editing. 
 
[+] Easy to implement 
drop-down lists. 
 
[-] No formal traceability of 
failures to system 
definition. 
 
[-] Manual navigation from 
FMEA table to documents 

 
[+] Convenient 
navigation to system 
definition directly from 
interactive FMEA table. 
 
[-] Every unique table 
entry needs a new 
model element. 
 
[-] Editing needs to be 
done on the model 
elements instead of 
directly on the table. 
 
[-] Drop-down lists 
require profile 
customization. 
 
[-] Need profile 
customization to allow 
assignment of model 
definition elements to 
table entries. 
 

 
[+] Convenient 
navigation to system 
definition directly from 
interactive FMEA table. 
 
[-] Every unique table 
entry needs a new 
model element. 
 
[-] Editing needs to be 
done on the model 
elements instead of 
directly on the table. 
 
[-] Drop-down lists 
require profile 
customization. 
 
[-] Need profile 
customization to allow 
assignment of model 
definition elements to 
table entries. 

Effort for Initial 

Setup 

Initial Setup: Excel 
ECSS-Q-ST-30-02C 
FMEA table template. 
 
[+] Minimal effort to setup 
template 

Initial Setup: Cameo 
ECSS-Q-ST-30-02C 
FMEA table template. 
 
[+] Minimal effort to 
setup template 

Initial Setup: Model 
functional failure modes, 
constraints and 
behaviours. Model 
functional chain in 
operational tasks. 
Establish simulation 
setup in the model. 
 
[-] Extra time for the 
modelling process 
 
[-] Requires training and 
expertise for modelling. 
 

Maintenance Method: Regular manual 
document update, manual 
deduction, Review loops 
with Systems Engineering. 
 
[-] No automation in terms 
of updating FMEA entries. 
 
[-] No indication of 
inconsistencies. 
 
[-] Manual and work 
intensive process 
repetition in case of 
functional architecture 
changes for Failure Cause 
and Effects entries. 
 

Method: Validation 
rules, dynamic tables, 
manual deduction, 
Review loops with 
Systems Engineering. 
 
[+] Dynamic changes in 
definition are reflected 
on FMEA table. 
 
[+] Validation rules give 
warning during 
inconsistencies. 
 
[-] Manual and work 
intensive process 
repetition in case of 
functional architecture 

Method: Validation 
rules, dynamic tables, 
executable model 
simulation. 
 
[+] Dynamic changes in 
definition are reflected 
on FMEA table. 
 
[+] Validation rules give 
warning during 
inconsistencies. 
 
[+] Quick simulation run 
per function is needed to 
obtain the new failure 
propagation information. 
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changes for Failure 
Cause and Effects 
entries. 
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