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Abstract

Open-loop shallow geothermal systems, also known as groundwater heat pumps, are a promising technology
for reducing carbon emissions in the residential heating and cooling sector. To improve the efficiency and
sustainability of these systems, it is important to optimize their design and operation. These systems simul-
taneously impact the geothermal resource, i.e. groundwater, and depend on its conditions. Consequently,
these bidirectional interactions with groundwater must be carefully considered within the optimization process.
In addition, since groundwater is a shared geothermal resource, there can be negative interactions between
neighboring systems. Therefore, optimization approaches should not be limited to stand-alone systems, but also
include simultaneous optimization of multiple neighboring systems to maximize the geothermal potential of
groundwater. However, existing approaches for optimizing groundwater heat pumps are considerably limited,
primarily due to the inherent complexity of the resulting optimization problems with constraints, which naturally
take the form of partial differential equations.

This thesis presents a set of novel approaches for efficient and effective optimization of open-loop shallow
geothermal systems. The approaches enable the optimization of individual systems as well as multiple neigh-
boring systems, addressing key aspects such as optimal well placement and sizing. Two of the developed
approaches are based on approximate analytical groundwater models, while the third is based on numerical
groundwater simulation. The practical applicability of the new approaches in real-world scenarios is demon-
strated through various case studies. Overall, this thesis provides valuable tools to a wide range of stakeholders,
especially researchers and practitioners engaged in thermal groundwater management and optimization of
shallow geothermal systems.
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Zusammenfassung

Offene oberflächennahe geothermische Systeme, auch bekannt als Grundwasserwärmepumpen, sind eine
vielversprechende Technologie zur Verringerung der Kohlendioxid-Emissionen im häuslichen Heiz- und Kühlsek-
tor. Um die Effizienz und Nachhaltigkeit dieser Systeme zu verbessern, ist es wichtig, ihre Auslegung und ihren
Betrieb zu optimieren. Diese Systeme beeinflussen gleichzeitig die geothermische Ressource, d. h. das Grund-
wasser, und sind von dessen Bedingungen abhängig. Daher müssen diese bidirektionalen Wechselwirkungen
mit dem Grundwasser im Rahmen des Optimierungsprozesses sorgfältig berücksichtigt werden. Da es sich beim
Grundwasser um eine gemeinsam genutzte geothermische Ressource handelt, kann es darüber hinaus zu nega-
tiven Wechselwirkungen zwischen benachbarten Systemen kommen. Daher sollten sich Optimierungsansätze
nicht nur auf einzelne Systeme beschränken, sondern auch die gleichzeitige Optimierung mehrerer benachbarter
Systeme umfassen, um das geothermische Potenzial des Grundwassers zu maximieren. Bestehende Ansätze
zur Optimierung von Grundwasserwärmepumpen sind jedoch sehr eingeschränkt, vor allem aufgrund der in-
härenten Komplexität der resultierenden Optimierungsprobleme mit Nebenbedingungen, die normalerweise die
Form von partiellen Differentialgleichungen haben.

In dieser Arbeit wird eine Reihe neuartiger Ansätze zur effizienten und effektiven Optimierung von offenen
oberflächennahen geothermischen Systemen vorgestellt. Die Ansätze ermöglichen die Optimierung einzelner
Systeme sowie mehrerer benachbarter Systeme, wobei Schlüsselaspekte wie die optimale Platzierung und
Dimensionierung von Brunnen berücksichtigt werden. Zwei der entwickelten Ansätze basieren auf annähernden
analytischen Grundwassermodellen, während der dritte auf einer numerischen Grundwassersimulation beruht.
Die praktische Anwendbarkeit der neuen Ansätze in realen Szenarien wird anhand verschiedener Fallstudien
demonstriert. Insgesamt bietet diese Arbeit wertvolle Werkzeuge für ein breites Spektrum von Akteuren,
insbesondere für Forscher und Praktiker, die sich mit dem thermischen Grundwassermanagement und der
Optimierung von oberflächennahen geothermischen Systemen beschäftigen.
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1 Introduction

1.1 Background and context

The European Union has established the goal of achieving𝐶𝑂2 neutrality in all energy-related sectors by the year
2050 [1]. This transition requires significant transformations in the heating and cooling sector, which remains
predominantly dependent on fossil fuels [2]. Among the viable technologies for decarbonizing this sector,
shallow geothermal energy (SGE) systems emerge as a promising solution [3, 4], since they use renewable
resources and are highly efficient [5]. SGE systems can be divided into two main types [6]: closed-loop
systems, also known as ground source heat pumps (GSHP), and open-loop systems, usually referred to as
groundwater heat pumps (GWHP). The difference between these two types lies in the nature of the heat carrier
fluid circulation. In GSHP systems, an additional heat carrier fluid circulates in a closed loop to extract heat
from the subsurface [7]. In contrast, GWHPs use groundwater directly as the heat carrier fluid that transfers
heat from an aquifer to the heat pump [8]. The groundwater is extracted from one or more extraction (pumping)
wells and, after heat exchange within the heat pump, is re-injected into the same aquifer via one or more
injection wells [6, 8]. Further details on SGE systems, with a particular focus on GWHP systems, are provided
in Section 2.1.

GWHP systems affect the aquifer both thermally and hydraulically [9]. At the same time, groundwater
properties such as quantity, depth, and temperature play a crucial role in determining the feasibility and
efficiency of GWHPs [10, 11]. Particularly, the efficiency is predominantly influenced by the groundwater
temperature at the extraction wells [12]. Thus, these systems interact bidirectionally with their energy resource
(groundwater) by both impacting it and simultaneously depending on it. In addition, groundwater is a shared
shallow geothermal resource, which can lead to competing interests and potential negative interactions between
neighboring systems [9].

To maximize the efficiency and sustainability of GWHP systems, as well as to fully exploit the potential of
thermal groundwater utilization and thereby advance this technology, optimization of these systems becomes
crucial. In addition, optimization of GWHPs is also important to enable active thermal groundwater management
[13] and for urban energy planning purposes [14,15]. In a broader context, the term "optimization of GWHPs"
encompasses several dimensions, depending on the specific research questions and the level of analysis. For
instance, at a granular level, optimization may involve enhancing heat pump components or well geometry.
Moving up to the system level, optimization includes improving GWHP design (e.g. spatial arrangement of
wells) and operation (pumping rates). At this level, optimization is not limited to individual systems only, but
can also include simultaneous optimization of multiple neighboring systems with the goal of maximizing the
geothermal potential of groundwater. Finally, GWHPs can be optimized as integral components of higher-
level systems, such as urban energy systems. These three levels of analysis and optimization are illustrated in
Figure 1.1. The main focus of this thesis is on the system level, i.e. on the optimization of GWHPs in terms of
design and operational aspects. At this level, it is crucial to consider groundwater conditions and interactions
within the optimization process due to the previously described bidirectional coupling between GWHPs and
groundwater.

1.2 State of the art

Despite the significance of the aforementioned topic on system-level optimization of GWHPs, the existing
research prior to the present thesis was remarkably limited. The existing body of research found in the
literature can be divided into two groups. The first group includes simulation-based analyses of GWHP system
designs. This involves comparative evaluation of a few different system configurations using detailed simulation
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Figure 1.1 Analysis and optimization levels for GWHP systems.

models that involve numerical PDE (partial differential equation) groundwater simulations. Examples of such
approaches include the works of Lo Russo and Civita [16], Zhou and Zhou [17], and Gao et al. [18]. Strictly
speaking, these scenario-based approaches cannot be classified as mathematical optimization. This leads to
a major drawback: these approaches generally result in only suboptimal solutions, since the design space
(all feasible solutions) remains unexplored. The second major drawback of these approaches relates to the
substantial time required to formulate relevant simulation scenarios and subsequently manually configure and
run the corresponding simulations.

The second group of research studies involves the coupling of numerical groundwater simulation and
derivative-free optimization algorithms for the purpose of GWHP optimization. Within this group, only two
studies were identified prior to this thesis. Park et al [19] introduced an approach that optimizes the pumping
rates of a GWHP system by coupling a numerical groundwater simulation tool and a genetic optimization algo-
rithm. This approach is subsequently extended in [20] to include not only the optimization of pumping rates,
but also the positioning of wells within a single GWHP system. The main drawback of these approaches is their
high computational cost. Genetic algorithms and, more general, derivative-free algorithms require extensive
number of iterations to find an optimum [21, 22]. In these approaches [19, 20], each iteration involves a com-
putationally intensive numerical groundwater simulation. In addition, the number of optimization iterations
usually increases exponentially with the number of optimization variables. Therefore, these approaches are
limited to scenarios with only a few optimization variables. Moreover, due to the nature of genetic algorithms,
the solution obtained is generally only a near-optimal solution, but not the global optimum [21].

Existing approaches exhibit several limitations and are insufficient for a comprehensive and efficient treatment
of all aspects related to GWHP optimization. This inadequacy is particularly pronounced when dealing with the
collective optimization of multiple neighboring systems due to the increased number of optimization variables
in this case. In the existing literature that preceded this thesis, no study was found that considered such
optimization scenarios. Therefore, there is a compelling need for novel approaches to optimize GWHP systems
that are capable of overcoming the identified limitations.

1.3 Research objectives and questions

The main research objective of this thesis is to develop and evaluate novel approaches for the optimization of
open-loop shallow geothermal systems, i.e. GWHP systems, that are both efficient and suitable for selected
relevant applications. These approaches will also integrate groundwater-related considerations into the opti-
mization process. By achieving this objective, the thesis will cover some of the previously identified research
gaps and answer the following research questions:

1. What are the viable approaches for the optimization of GWHP systems, and how do they compare
in terms of efficiency and applicability?
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2. How to optimize the design and operation of GWHP systems? The optimal design/operation should
minimize negative interactions between neighboring wells (systems) and thus maximize their efficiency
and/or maximize the shallow geothermal potential of the area. This question includes the following
sub-questions:

a) How to optimize well locations of GWHP systems?
b) How to determine the optimal number of GWHP wells to be installed?
c) How to optimize the sizing (pumping rates) of GWHP wells?

3. How to effectively integrate GWHPs into energy system optimization models? This research question
focuses on the integrated system level of optimization, which is different from the system-level focus of
the other questions.

1.4 Structure

This thesis is based on five journal publications, which are listed below:

1. Halilovic, S., Odersky, L. and Hamacher, T., 2022. Integration of groundwater heat pumps into en-
ergy system optimization models. Energy, 238, p.121607. URL: https://doi.org/10.1016/j.
energy.2021.121607

2. Halilovic, S., Böttcher, F., Zosseder, K. and Hamacher, T., 2023. Optimization approaches for the design
and operation of open-loop shallow geothermal systems. Advances in Geosciences, 62, p.57-66. URL:
https://doi.org/10.5194/adgeo-62-57-2023

3. Halilovic, S., Böttcher, F., Zosseder, K. and Hamacher, T., 2023. Optimizing the spatial arrangement of
groundwater heat pumps and their well locations. Renewable Energy, 217, p.119148. URL: https:
//doi.org/10.1016/j.renene.2023.119148

4. Halilovic, S., Böttcher, F., Zosseder, K. and Hamacher, T., 2024. Spatial analysis of thermal groundwater
use based on optimal sizing and placement of well doublets. Energy, 304, p.132058. URL: https:
//doi.org/10.1016/j.energy.2024.132058

5. Halilovic, S., Böttcher, F., Kramer, S.C., Piggott, M.D., Zosseder, K. and Hamacher, T., 2022. Well layout
optimization for groundwater heat pump systems using the adjoint approach. Energy Conversion and
Management, 268, p.116033. URL: https://doi.org/10.1016/j.enconman.2022.116033

The thesis is organized as follows. Chapter 2 provides fundamental insights on two topics: SGE systems and
PDE constrained optimization. The following two chapters present the five publications. Chapter 3 addresses the
relevance of GWHP systems in the context of the energy transition and features Publication 1. This publication
introduces methods for integrating GWHP systems into energy system optimization models. Chapter 4 forms
the core of this thesis and contains the remaining four publications. This chapter is dedicated to the optimization
of GWHPs at the system level. Section 4.1 includes Publication 2, which performs a qualitative comparison of
different optimization approaches for GWHP systems. Section 4.2 comprises Publications 3 and 4, which present
novel GWHP optimization approaches that use analytical models to integrate groundwater-related aspects into
the optimization process. Specifically, Publication 3 focuses on thermal groundwater considerations, while
Publication 4 focuses on hydraulic groundwater aspects. Section 4.3 features Publication 5, which presents a
novel approach that uses the adjoint method to determine optimal well layouts of GWHP systems. This approach
uses PDE models to simulate groundwater flow and heat transport phenomena. Finally, Chapter 5 completes
this thesis with concluding remarks and an outlook on future research directions.

Figure 1.2 provides a schematic overview of the core - in terms of publications and the research questions
- content of the thesis, which includes Chapter 3 (Relevance of GWHPs) and Chapter 4 (Optimization of
GWHPs). Some publications address one research (sub-)question, while others address multiple sub-questions
simultaneously.

https://doi.org/10.1016/j.energy.2021.121607
https://doi.org/10.1016/j.energy.2021.121607
https://doi.org/10.5194/adgeo-62-57-2023
https://doi.org/10.1016/j.renene.2023.119148
https://doi.org/10.1016/j.renene.2023.119148
https://doi.org/10.1016/j.energy.2024.132058
https://doi.org/10.1016/j.energy.2024.132058
https://doi.org/10.1016/j.enconman.2022.116033
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Figure 1.2 Schematic overview of the main part of the thesis (GW: groundwater).
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2 Theoretical background

This chapter provides theoretical background on two topics: shallow geothermal energy (Section 2.1), with
particular emphasis on open-loop systems, and PDE-constrained optimization (Section 2.2).

2.1 Shallow geothermal energy

Geothermal energy refers to the inherent thermal energy stored in geological materials such as rocks, sediments,
groundwater, magma and other components beneath the Earth’s surface [9,23]. This renewable, on the time scale
of technical/societal systems [24], and sustainable energy resource can be used for both electricity generation
and heating purposes. Geothermal energy can be classified based on exploration depth, temperature (enthalpy),
or exergy [7,25]. However, it is important to note that the classification, especially with respect to temperature,
is not universally standardized [26, 27]. Based on the depth within the Earth’s crust, geothermal energy can be
classified into three main categories [9]:

• Shallow geothermal energy (<400 m) or very low temperature (enthalpy) geothermal energy. These
geothermal resources, with typical temperatures below 30 ◦C, are used for direct heating and cooling
applications in residential, agricultural, and industrial sectors.

• Medium geothermal energy (400-4000 m) or medium or low temperature geothermal energy. These
geothermal systems can be used for both direct heating and electricity generation.

• Deep geothermal energy (4000-5000 m) or high temperature geothermal energy. These geothermal
resources, with temperatures above 150 ◦C, are mainly used to generate electricity through flash steam or
binary cycle power plants.

Figure 2.1 Classification of geothermal energy based on depth and type of end use (modified from [9]).

Figure 2.1 summarizes the classification of geothermal energy based on exploration depth and end use. As
shown in the figure, only shallow geothermal energy systems can be used for cooling purposes due to the low
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Figure 2.2 Main types of shallow geothermal systems.

temperatures in the shallow subsurface. These temperatures are similar to the annual average atmospheric
temperature, and therefore SGE systems can be used for both heating and cooling applications throughout the
year [10].

Based on the type of circulation of the heat carrier fluid, SGE systems can be divided into closed-loop and
open-loop systems [5,6]. Closed-loop systems, also known as GSHP systems, use an auxiliary heat carrier fluid
to exchange thermal energy with the subsurface [7]. This fluid circulates in a closed-loop system consisting of
pipes that are integrated into geothermal heat exchangers. GSHP systems can be further divided into vertical
and horizontal systems, depending on the type of geothermal heat exchangers [28, 29]: vertical borehole heat
exchangers (BHEs) or horizontal collectors, respectively (Figure 2.2). Open-loop systems, known as GWHP
systems, use groundwater as a heat carrier fluid to exchange thermal energy with the aquifer [8]. In these
systems, groundwater circulates by being extracted and re-injected into an aquifer via "open" wells (Figure 2.2).
Since GWHP systems are the focus of this thesis, the following section describes them in more detail.

In addition to these main types of SGE systems used directly for heating and/or cooling purposes, the shallow
subsurface can also be used for seasonal thermal storage in the form of so-called underground thermal energy
storage (UTES) systems [30]. There are two main types of UTES systems [31, 32]: borehole thermal energy
storage (BTES) and aquifer thermal energy storage (ATES), which operate on the same principles as the GSHP
and GWHP systems. The difference is that BTES and ATES systems store thermal energy underground for use
at a later time. For example, a BTES system operates in cooling mode during the summer and stores the excess
heat underground, which is then used for heating purposes during the following winter season.

2.1.1 Open-loop shallow geothermal systems

A typical residential GWHP system with a single extraction-injection well doublet is depicted in Figure 2.3.
In larger systems, such as those for apartment complexes or hospitals, multiple extraction and injection wells
can be installed [16]. As illustrated in the figure, a submersible pump is placed in the extraction well to pump
groundwater from the aquifer. Once the heat is exchanged in the heat pump unit, the extracted groundwater is
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Figure 2.3 GWHP system and its main components (modified from [33]).

reintroduced into the same aquifer through the injection well [6]. Given their working principle, GWHP systems
cause both hydraulic and thermal impacts on the groundwater body [9]. The hydraulic impacts are manifested
as groundwater drawdown at the extraction wells and groundwater level rise at the injection wells [10], as shown
in Figure 2.4. As a result, local groundwater flow patterns are also altered. The thermal effects are caused by the
returned water at injection wells. The temperature of this water is different from that of the originally extracted
water and depends on the operating mode of the system. In heating or cooling mode, the re-injected water is
cooler or warmer, respectively. This results in thermal anomalies, i.e. so-called thermal plumes, in the aquifer
that propagate downstream following the natural groundwater flow direction [34–36], as depicted in Figure 2.4.

The viability and efficiency of GWHP systems depend on several local groundwater parameters, including
quality, quantity, depth, and temperature [10, 11]. Among these parameters, groundwater temperature at the
extraction wells has the greatest influence on GWHP efficiency [12]. Consequently, it is essential to ensure that
thermal plumes generated by an upstream GWHP system do not extend to the extraction wells of neighboring
downstream systems, as this could negatively affect their operation [36]. To mitigate such negative thermal
interactions between neighboring systems, certain regions have implemented specific regulations as part of the
permitting process for new systems. For example, in Bavaria, Germany, the guidelines require that the induced
temperature change at the extraction well of an existing downstream system must remain below 1 K [37].

Furthermore, groundwater, as a vital source of drinking water [38, 39], requires regulatory measures to
protect against detrimental thermal alterations because these can affect its chemical, physical, and biological
properties [40–43]. Currently, regulations for thermal groundwater use vary widely from country to country [7].
These regulations usually include criteria such as temperature limits and minimum spatial distances, for example,
between GWHP wells and property boundaries. Prescribed groundwater temperature limits typically include
both absolute minimum and maximum temperature values, as well as limitations on the extent of temperature
changes caused by GWHPs [7]. For example, in the German federal state of Bavaria, these specified values are
+5 °C, +20 °C, and ±6 K, respectively [44].

In addition to the aforementioned external factors concerning GWHP systems, such as thermal plumes or
their environmental impacts on groundwater, there are also internal aspects that must be taken into account
to ensure sustainable and efficient GWHP operation. In particular, pumping rates are technically limited by
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Figure 2.4 Hydraulic and thermal impacts of a GWHP system (modified from [10]).

the maximum drawdown allowed in extraction wells and the permissible groundwater rise in injection wells
(Figure 2.4) [45]. The first restriction aims to prevent aquifer depletion [46], while the second aims to prevent
groundwater flooding [47, 48], and thus this aspect also qualifies as an environmental concern. Furthermore,
internal hydraulic and thermal breakthrough considerations are an essential part of GWHP system design and
operation [49]. These breakthroughs occur when water re-injected at an injection well flows back into the
extraction well of the same system. Thermal recycling of water decreases the efficiency of GWHP systems and
therefore must be avoided or minimized [50]. To prevent hydraulic and thermal breakthroughs, it is important to
space the wells adequately depending on the pumping rate and to position the injection well further downstream
compared to the extraction well [51].

2.1.2 Groundwater simulation

Groundwater simulation models are required in order to optimize the design and operation of GWHP systems.
In this context, they serve two purposes:

1. Evaluating the hydraulic and thermal impacts of GWHPs on groundwater, and

2. Determining the existing groundwater conditions, including parameters such as temperature, velocity,
and hydraulic head.

These models are inherently numerical PDE models, since groundwater flow and heat transport in aquifers are
governed by a system of PDEs. However, it is important to recognize the existence of analytical approximate
models for estimating thermal plumes, which are reviewed in recent study [52]. This section will not discuss
these analytical models further, but will focus on numerical groundwater simulation models. Therefore, this
section provides background information on simulation models that are required for PDE-based optimization
of GWHP systems (Section 4.3).

Groundwater represents a fully saturated porous medium, and its 3D flow is described by the following
PDEs [53, 54]:

𝑆0
𝜕ℎ

𝜕𝑡
+ ∇ · q = 𝑄 (2.1a)

q = −K · ∇ℎ (2.1b)

where the hydraulic head ℎ [m] and the Darcy velocity q [m/s] are the states (dependent variables). The
parameters of the flow model are summarized in Table 2.1. The second PDE is the so-called Darcy’s law, which
describes the flow of a fluid through a porous medium [55]. Darcy’s law implies that the flow is laminar [56].
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This is the case with groundwater because the velocity range of groundwater varies greatly, but does not exceed
a few meters per day [57].
The liquid sink/source term 𝑄 can be split into a supply term 𝑄ℎ and a well-type SPC (singular point condition)
term 𝑄ℎ𝑤 , i.e. 𝑄 = 𝑄ℎ + 𝑄ℎ𝑤 . The well-type SPC term represents pumping (extraction) and injection wells
as idealized point sinks/sources: 𝑄ℎ𝑤 = −∑

𝑤 𝑄𝑤 (𝑡)𝛿(x − x𝑤), where 𝑄𝑤 (𝑡) is the pumping rate (volume per
unit time) of the well 𝑤 at location x𝑤 , and 𝛿(x − x𝑤) = 𝛿(𝑥 − 𝑥𝑤)𝛿(𝑦 − 𝑦𝑤)𝛿(𝑧 − 𝑧𝑤) is the 3D Dirac delta
function associated with the well location x𝑤 . In the case of GWHP systems, 𝑄𝑤 (𝑡) > 0 for extraction wells
and 𝑄𝑤 (𝑡) < 0 for injection wells. [53]
The PDE system (2.1) is solved to determine the states ℎ and q, considering a specified set of boundary conditions
and an initial condition. Typically, this is done by substituting q from (2.1b) into (2.1a) and then solving for ℎ
only. Once the hydraulic head ℎ has been determined, the Darcy velocity q can be calculated using equation
(2.1b).

The 3D heat transport in porous media is governed by the following PDE in divergence form [53,54]:

𝜕

𝜕𝑡

[ (
𝜀𝑠𝜌𝑐 + (1 − 𝜀)𝜌𝑠𝑐𝑠

)
(𝑇 − 𝑇0)

]
+ ∇ · (𝜌𝑐q(𝑇 − 𝑇0)) − ∇ · (𝚲 · ∇𝑇) = 𝑄𝑇 +𝑄𝑇𝑤 (2.2)

and in convective form:(
𝜀𝑠𝜌𝑐 + (1 − 𝜀)𝜌𝑠𝑐𝑠

) 𝜕𝑇
𝜕𝑡

+ 𝜌𝑐q · ∇𝑇 − ∇ · (𝚲 · ∇𝑇) = 𝑄𝑇 +𝑄𝑇𝑤 − 𝜌𝑐(𝑇 − 𝑇0)𝑄 (2.3)

where the temperature of the porous medium 𝑇 [K] is the state. A local thermodynamic equilibrium between
the liquid and solid phases of the porous medium is assumed, meaning that 𝑇 represents the groundwater
temperature. The parameters of the heat transport model are summarized in Table 2.2, which gives their
common values (or values of the constants) or orders of magnitude. It should be noted that the saturation 𝑠 = 1,
since groundwater is a fully saturated porous medium.
𝑄𝑇 and 𝑄𝑇𝑤 are the thermal sink/source terms, 𝑄𝑇 being the supply term and 𝑄𝑇𝑤 the well-type SPC term.
The well-type SPC term represents wells either as 𝑄𝑇𝑤 = −∑

𝑤 (𝑇𝑤 −𝑇0)𝜌𝑐𝑄𝑤 (𝑡)𝛿(x− x𝑤) (divergence form)
or 𝑄𝑇𝑤 = −∑

𝑤 (𝑇𝑤 − 𝑇)𝜌𝑐𝑄𝑤 (𝑡)𝛿(x − x𝑤) (convective form), where 𝑄𝑤 (𝑡) is the pumping rate of the well
𝑤, and 𝑇𝑤 is the prescribed temperature at well point x𝑤 . Regarding GWHP systems, only injection wells have
a thermal impact on the groundwater, which means that 𝑄𝑤 (𝑡) < 0 and 𝑇𝑤 = 𝑇

inj
𝑤 is the temperature of the

re-injected water at the well 𝑤. [53]
The PDE (2.2) or (2.3) is solved for the state 𝑇 , subject to specified boundary conditions and an initial condition.
The difference between the divergence form and the convective form lies in the assumption of the specific heat
capacities’ dependence on temperature 𝑇 . In the divergence form, the specific heat capacities are assumed to be
independent of temperature, whereas no such assumption is made in the convective form [53].
The heat dispersion is described by the tensor of hydrodynamic thermodispersion 𝚲, which is defined as
follows [53]:

𝚲 = 𝚲0 + 𝚲𝑠
0 + 𝜌𝑐Dmech (2.4a)

𝚲0 = 𝜀𝑠ΛI (2.4b)

𝚲𝑠
0 = (1 − 𝜀)Λ𝑠I (2.4c)

Dmech = 𝛽𝑇 ∥q∥I + (𝛽𝐿 − 𝛽𝑇 )
q⊗q
∥q∥ (2.4d)

with the parameters summarized in the second half of Table 2.2. Here, an axis-parallel isotropy is assumed for
the thermal conductivity of solid.

Table 2.1 Parameters of the flow model [53].

Symbol Parameter Order of magnitude Unit

𝑆0 Specific storage coefficient 10−4 m−1

K Tensor of hydraulic conductivity 10−4 ms−1

𝑄 General liquid sink/source function 10−4 d−1
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In modeling scenarios where the horizontal extent of the regional groundwater flow field is much larger
than the aquifer thickness 𝐵, vertical variations are often negligible. This allows the reduction of the full 3D
equations to essentially horizontal 2D equations obtained by vertical averaging (integration) of the aquifer [53].
Here two cases have to be distinguished [53, 55]:

• unconfined aquifers: 𝐵(𝑥, 𝑦, 𝑡) = ℎ(𝑥, 𝑦, 𝑡) − 𝑓 B(𝑥, 𝑦),

• confined aquifers: 𝐵(𝑥, 𝑦) = 𝑓 T(𝑥, 𝑦) − 𝑓 B(𝑥, 𝑦),

where 𝑓 B and 𝑓 T are the functions describing the bottom and top surface (boundary) of the aquifer, respectively,
and ℎ is the previously described hydraulic head (Figure 2.5). The upper boundary of the aquifer is considered
stationary in confined cases, whereas it is subject to movement in unconfined cases.

The resulting 2D vertically averaged, essentially horizontal, groundwater flow in unconfined aquifers is
described by the following PDEs [53, 54]:

(𝐵𝑆0 + 𝜀𝑒)
𝜕ℎ

𝜕𝑡
+ ∇ · q = 𝑄 (2.5a)

q = −𝐵K · ∇ℎ (2.5b)
𝐵 = ℎ − 𝑓 B (2.5c)

where q is the vertically averaged Darcy velocity, q = 𝐵q. The parameter 𝜀𝑒 represents the specific yield. 𝑄
is the vertically averaged (depth-integrated) source/sink term, which can be split into a depth-integrated supply
term 𝑄ℎ and a depth-integrated well-type SPC term 𝑄ℎ𝑤 , i.e. 𝑄 = 𝑄ℎ + 𝑄ℎ𝑤 . The well-type SPC term takes
the following form: 𝑄ℎ𝑤 = −∑

𝑤 𝑄𝑤 (𝑡)𝛿(x − x𝑤), where 𝛿(x − x𝑤) = 𝛿(𝑥 − 𝑥𝑤)𝛿(𝑦 − 𝑦𝑤) is the 2D Dirac
delta function.
For confined aquifers, 2D horizontal, vertically averaged groundwater flow is described in a similar manner [54]:

𝐵𝑆0
𝜕ℎ

𝜕𝑡
+ ∇ · q = 𝑄 (2.6a)

q = −𝐵K · ∇ℎ . (2.6b)

The PDE system (2.5) or (2.6) is solved for the hydraulic head ℎ and the depth-integrated Darcy velocity q in
the same way as its 3D counterpart (2.1).

Table 2.2 Parameters of the heat transport model [53].

Symbol Parameter Value Unit
(Order of magnitude)

𝑇0 Reference temperature 273.15 K
𝜀 Porosity 0.3 -
𝑠 Saturation 1 -
𝜌 Liquid (water) density 1000 kgm−3

𝜌𝑠 Solid density 2650 kgm−3

𝑐 Liquid specific heat capacity 4200 Jkg−1K−1

𝑐𝑠 Solid specific heat capacity 950 Jkg−1K−1

𝚲 Tensor of hydrodynamic thermodispersion (100-101) Wm−1K−1

𝑄𝑇 Thermal supply term (103-104) Jm−3d−1

𝑄𝑇𝑤 Thermal well-type SPC term (108-109) Jm−3d−1

𝚲0 Tensor of thermal conductivity of liquid (10−1) Wm−1K−1

𝚲𝑠
0 Tensor of thermal conductivity of solid (100) Wm−1K−1

Dmech Tensor of mechanical dispersion (10−4) m2s−1

Λ Coefficient of thermal conductivity of liquid 0.65 Jm−1K−1s−1

Λ𝑠 Coefficient of thermal conductivity of solid 3 Jm−1K−1s−1

𝛽𝐿 Longitudinal dispersivity 5 m
𝛽𝑇 Transverse dispersivity 0.5 m
I Unity or identity matrix 1 -
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Figure 2.5 Confined and unconfined conditions in aquifers (modified from [53]).

The 2D horizontal, vertically averaged heat transport in unconfined and confined aquifers is described by
the following PDE in divergence form [53,54]:

𝜕

𝜕𝑡

[
𝐵
(
𝜀𝜌𝑐 + (1 − 𝜀)𝜌𝑠𝑐𝑠

)
(𝑇 − 𝑇0)

]
+ ∇ · (𝜌𝑐q(𝑇 − 𝑇0)) − ∇ · (𝚲 · ∇𝑇) = 𝑄𝑇 +𝑄𝑇𝑤 (2.7)

and in convective form:

𝐵
(
𝜀𝜌𝑐 + (1 − 𝜀)𝜌𝑠𝑐𝑠

) 𝜕𝑇
𝜕𝑡

+ 𝜌𝑐q · ∇𝑇 − ∇ · (𝚲 · ∇𝑇) = 𝑄𝑇 +𝑄𝑇𝑤 − 𝜌𝑐(𝑇 − 𝑇0)𝑄 (2.8)

where 𝐵 = ℎ − 𝑓 B and 𝐵 = 𝑓 T − 𝑓 B for unconfined and confined cases, respectively. 𝚲 represents the depth-
integrated tensor of hydrodynamic thermodispersion, and is defined in a similar way as its 3D counterpart 𝚲.
𝑄𝑇 and𝑄𝑇𝑤 are the depth-integrated supply and well-type SPC terms, respectively. The former is defined either
as 𝑄𝑇𝑤 = −∑

𝑤 (𝑇𝑤 − 𝑇0)𝜌𝑐𝑄𝑤 (𝑡)𝛿(x − x𝑤) (divergence form) or 𝑄𝑇𝑤 = −∑
𝑤 (𝑇𝑤 − 𝑇)𝜌𝑐𝑄𝑤 (𝑡)𝛿(x − x𝑤)

(convective form), where 𝛿 is the 2D Dirac delta function.
In general, PDEs describing 3D and 2D groundwater flow and heat transport in aquifers exhibit bidirectional

coupling because water density and hydraulic conductivity are affected by groundwater temperature [53].
However, when the temperature variations are in a relatively small range, these dependencies can be neglected
[54]. Consequently, the PDE system can be solved sequentially: first the flow equations, followed by the heat
transfer equation. This sequential approach considerably simplifies the numerical solution process.
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2.2 PDE-constrained optimization

Various engineered and natural systems are characterized by underlying physical phenomena described by
PDEs. In the energy domain, these include systems involving fluid dynamics (e.g. wind [58–60] and tidal
energy [61–63], gas [64–66] and water distribution networks [67–69]), heat propagation (e.g. shallow [53, 54]
and deep geothermal energy [70–73], thermal energy storage [74–76], district heating networks [77–79]),
or electromagnetic phenomena (e.g. electric machines [80–83]). Optimization of these systems leads to
optimization problems with PDE constraints, commonly referred to as PDE-constrained optimization (PDECO)
problems. This also applies to GWHP optimization, since groundwater flow and heat transport are governed
by PDEs, as described in the previous section. Therefore, this section provides mathematical background for
PDE-based optimization of GWHP systems (Section 4.3).

A general PDECO problem can be stated as follows:

min
𝒖,𝒎

𝐽 (𝒖,𝒎), (2.9a)

subject to F (𝒖,𝒎) = 0, (2.9b)
𝑔(𝒖,𝒎) ≤ 0, (2.9c)
ℎ(𝒖,𝒎) = 0, (2.9d)

where:

• F (𝒖,𝒎) = 0 is a PDE or a system of PDEs in a residual form, corresponding to the PDE constraints.
These PDEs constitute the simulation problem or the so-called forward problem. In the context of
optimization, PDE constraints are also referred to as state equations [84].

• 𝒖 are state variables or states. These are the unknown (dependent) variables in the forward problem, i.e.
the PDE solutions. Examples of state variables are temperature, velocity and electric field.

• 𝒎 are control (decision) variables or controls. These are also referred to as design or inversion variables,
depending on the optimization context [84]. In optimal control problems, 𝒎 can represent source terms
in the domain Ω or on the boundary 𝜕Ω, corresponding to distributed and boundary control, respectively.

• 𝐽 (𝒖,𝒎) ∈ ℝ is the functional of interest, which is equivalent to the objective function in the finite-
dimensional optimization.

• 𝑔 and ℎ represent additional inequality and equality constraints, respectively, on controls and/or states.

In the forward problem, the control variables 𝒎 are given and the corresponding states 𝒖 are computed using a
PDE solver. In the optimization problem (2.9), the process is reversed. Here, the task is to determine control
variables 𝒎 that result in states 𝒖, which, in conjunction with these controls, minimize the specified functional
of interest 𝐽 and comply with the remaining optimization constraints 𝑔 and ℎ. The following two sections
discuss different PDECO solution and discretization strategies.

2.2.1 PDECO solution strategies

There are two different strategies for solving PDECO problems: the full space method and the reduced
space method [85, 86]. The former is alternatively referred to as the all-at-once or simultaneous analysis
and design (SAND) method, while the latter is also known as the black-box or nested analysis and design
(NAND) method [87,88]. In the full space method, controls and states are treated as independent optimization
variables. This means that the method solves a system of equations that represents the necessary first-order
optimality conditions, the so-called Karush-Kuhn-Tucker (KKT) conditions, simultaneously for control and
state variables [84]. Consequently, meeting the PDE constraint (2.9b) is only required in the last optimization
iteration, eliminating the need to solve often computationally intensive PDEs in each iteration [88].

On the other side, the reduced space method treats only the controls as independent optimization variables,
while the states are treated as implicit functions of these controls. This method offers the advantage of
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integrating well-established algorithms and software for solving the state equation into the optimization process.
In addition, the gradients required for optimization can be efficiently computed using adjoint PDE solvers, which
are becoming increasingly popular and can be automatically generated through algorithmic differentiation.
However, the main drawback of the reduced space method is that the PDE constraint (2.9b) must be satisfied in
each optimization iteration, requiring repeated computationally intensive solutions of the state equation at each
iteration. [84, 88]

In order to derive previously mentioned KKT conditions, we can formulate the Lagrangian functional L
using the Lagrange multiplier field, also known as adjoint or co-state variable 𝝋 [84]. In the case of problem
(2.9) without additional inequality and equality constraints, 𝑔 and ℎ, the Lagrangian functional is given as
follows [89]:

L(𝒖,𝒎, 𝝋) = 𝐽 (𝒖,𝒎) − 𝝋∗F (𝒖,𝒎), (2.10)

where 𝝋∗F is an inner product or duality pairing. The first-order optimality conditions are obtained from the
stationarity of the Lagrangian L with respect to the states 𝒖, controls 𝒎 and adjoints 𝝋 [89]:

𝜕L
𝜕𝝋

= 0 state equation, (2.11a)

𝜕L
𝜕𝒖

= 0 adjoint equation, (2.11b)

𝜕L
𝜕𝒎

= 0 control equation. (2.11c)

Using the definition of the Lagrangian L, the previous equations result in the following optimality system:

F (𝒖,𝒎) = 0 state equation, (2.12a)(
𝜕F
𝜕𝒖

)∗
𝝋 =

(
𝜕𝐽

𝜕𝒖

)∗
adjoint equation, (2.12b)(

𝜕F
𝜕𝒎

)∗
𝝋 =

(
𝜕𝐽

𝜕𝒎

)∗
control equation, (2.12c)

where (𝜕F/𝜕𝒖)∗ denotes the adjoint operator of (𝜕F/𝜕𝒖). In finite dimensions this adjoint operator corre-
sponds to the conjugate transpose matrix [89]. The first equation (2.12a) is the same as the PDE constraint
and is therefore called the state equation. The second and third equations are referred to as the adjoint and
control equations, respectively. The adjoint equations, resulting from the Lagrangian stationarity condition with
respect to the state variables, are PDEs characterized by linearity in the adjoint variables [90]. The full space
method solves the coupled system of equations (2.12) for all variables simultaneously using either direct solvers
or iterative solvers in combination with preconditioning techniques [91].

In the reduced space method, it is assumed that for each admissible 𝒎 there is a unique solution 𝒖 of the
forward problem F (𝒖,𝒎) = 0, i.e. there exist a mapping 𝒎 ↦→ 𝒖(𝒎) that is defined implicitly by the PDE
constraint [85]. By introducing 𝒖(𝒎) into (2.9), the reduced problem is obtained:

min
𝒎

𝐽 (𝒎) := 𝐽 (𝒖(𝒎),𝒎), (2.13a)

subject to 𝑔(𝒖(𝒎),𝒎) ≤ 0, (2.13b)
ℎ(𝒖(𝒎),𝒎) = 0, (2.13c)

where 𝐽 (𝒎) is the reduced functional of interest. Therefore, the only optimization variables in this case are the
controls 𝒎. In order to use gradient-based algorithms to solve the problem (2.13), it is necessary to compute
the gradient of the reduced functional with respect to the control variables 𝒎. The computation or estimation
of this gradient can be done by different techniques, the most efficient one being the adjoint approach [92]. The
gradient of the functional 𝐽 with respect to controls 𝒎 reads as follows:

d𝐽
d𝒎

=
d𝐽 (𝒖(𝒎),𝒎)

d𝒎
=

𝜕𝐽

𝜕𝒎
+ 𝜕𝐽

𝜕𝒖

d𝒖
d𝒎

. (2.14)
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The terms 𝜕𝐽/𝜕𝒖 and 𝜕𝐽/𝜕𝒎 in the previous equation can be computed analytically, which implies a negligible
computational cost. On the other hand, the direct computation of the term d𝒖/d𝒎 is computationally challenging
due to the inherent high dimensionality of the discretized states 𝒖. This computationally intensive procedure is
bypassed in the adjoint approach by using the following equation to calculate the gradient [89]:

d𝐽
d𝒎

=
𝜕𝐽

𝜕𝒎
− 𝝋∗ 𝜕F

𝜕𝒎
. (2.15)

Equation (2.15) is derived from (2.14) as follows:

d𝐽
d𝒎

=
𝜕𝐽

𝜕𝒎
+ 𝜕𝐽

𝜕𝒖

d𝒖
d𝒎

(2.16a)

=
𝜕𝐽

𝜕𝒎
+ 𝝋∗

(
𝜕F
𝜕𝒖

)
d𝒖
d𝒎

(2.16b)

=
𝜕𝐽

𝜕𝒎
− 𝝋∗ 𝜕F

𝜕𝒎
. (2.16c)

The first transformation is achieved by substituting the term 𝜕𝐽/𝜕𝒖 from the adjoint equation (2.12b). The
second transformation is based on the sensitivity equation that is derived by differentiating the state equation
(2.12a) [89]:

∇F (𝒖,𝒎) = 0 (2.17a)(
𝜕F
𝜕𝒖

)
d𝒖
d𝒎

+ 𝜕F
𝜕𝒎

= 0 (2.17b)(
𝜕F
𝜕𝒖

)
d𝒖
d𝒎

= −𝜕F
𝜕𝒎

. (2.17c)

A single optimization iteration in the reduced space method using the adjoint approach consists of the following
steps [89]:

1. Based on the current values of the controls 𝒎, the state equation (2.12a) is solved for the states 𝒖.

2. These states are used to solve the adjoint equation (2.12b) to obtain the adjoints 𝝋.

3. The obtained adjoints are then used to calculate the gradient of the reduced functional from (2.15).

4. Based on the employed gradient-based optimization algorithm, the controls are updated using the calcu-
lated gradient.

The adjoint equation is linear in adjoint variables and does not contain derivatives with respect to controls.
Therefore, it is usually less or equally computationally expensive compared to the state equation and requires
only one solution to compute the gradient, regardless of the dimension of controls.

2.2.2 Discretization and optimization

PDECO problems have infinite-dimensional properties by nature. Therefore, in order to enable their com-
putational solution by numerical methods, it is necessary to discretize them and thus reduce them to finite
dimensions. Depending on the stage at which this discretization is performed in the PDECO solution procedure,
two different approaches are possible [85,87]: the "discretize then optimize" (DTO) approach and the "optimize
then discretize" (OTD) approach. In the former approach, the discretization is applied to the functional of
interest and the constraints before the optimality conditions are derived, thereby yielding them in a discrete
form. In contrast, in the latter approach, the optimality conditions are first derived in the continuous (infinite-
dimensional) setting and then discretized. It is important to note that these two approaches generally do not
produce the same results [84, 89]. Figure 2.6 shows the differences between DTO and OTD approaches.



2.2 PDE-constrained optimization

15

Figure 2.6 DTO and OTD approaches for solving PDECO problems.

The DTO approach offers the advantage of obtaining the exact gradient of the discrete objective functional,
which ensures full convergence during the optimization process. In contrast, the OTD approach provides
an approximated gradient that does not represent a true gradient of the continuous or discretized functional.
Furthermore, the DTO approach allows the use of automatic differentiation to generate adjoint codes (discrete
adjoint models), which simplifies their implementation. However, this approach often results in increased
memory requirements and CPU time compared to manually written adjoint codes. On the other hand, the
OTD approach provides clearer physical insights into the adjoint variables and the role of adjoint boundary
conditions. It also allows for different discretizations (meshes) for the state and adjoint PDEs, which can make
the adjoint code simpler and less memory intensive. These separate discretizations are particularly beneficial
in shape optimization problems. [89, 92]
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3 Relevance of GWHPs

As described previously, GWHP systems emerge as a promising technology for the decarbonization of heating
and cooling sectors. To analyze this aspect and determine their potential for supplying heating and/or cooling
demands in a given region, energy system optimization models (ESOMs) can be applied. ESOMs are widely
used tools in the energy system modeling field to determine the optimal dispatch and expansion planning of
technologies to achieve specified 𝐶𝑂2 reduction targets. In cases where GWHPs are a relevant and feasible
technology in the considered area, their integration into the technology portfolio of the respective ESOM is
required.

The first publication included in this thesis introduces and compares three different approaches for integrating
(representing) GWHP systems in ESOMs. These approaches differ in their treatment of GWHP efficiency, i.e.
modeling of COP (coefficient of performance), within the ESOM framework. The comparative analysis of the
proposed approaches is performed on a real case study using an ESOM that models the heating system of the city
of Munich. The results demonstrate that detailed modeling of heat pump efficiency results in GWHPs emerging
as a key technology for reducing 𝐶𝑂2 emissions in the analyzed urban heating infrastructure. Therefore,
Publication 1 [93] serves a dual purpose: first, it confirms that GWHPs can make a significant contribution to
the energy transition, and second, it highlights the importance of adequate representation of GWHPs (and heat
pumps in general) in ESOMs. The publication also provides a comprehensive illustration of the appropriate
approaches for this representation.

It should be noted that in Publication 1, the GWHP optimization level corresponds to the integrated system
level. This leads to a relatively simple representation of GWHPs that does not include details about their
operation, design, or interactions with groundwater. The impact of groundwater on GWHPs is accounted for
by using groundwater temperature as a factor in estimating the COP. Nevertheless, the publication makes a
significant progress in terms of the representation of heat pumps in ESOMs, compared to the previous research
studies in this field.
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a b s t r a c t

Heat pumps are one of the key technologies for the mitigation of carbon emissions in the heating sector.
Therefore, they are an essential modelling component when analyzing future energy systems. The focus
of this work are groundwater heat pumps and their integration into energy system optimization models.
Three different integration approaches are introduced and compared to each other. The approaches differ
in the representation of heat pumps efficiency: constant, time dependent and both time and spatially
dependent. The comparison of the proposed approaches is conducted using an energy system model of
the residential heating sector in Munich and two optimization scenarios: 70 % and 95 % emission
reduction compared to 2014. Assuming constant efficiency of heat pumps throughout the year produces
incorrect optimization results, whereas adding spatial component to the temporal one does not change
cumulative results significantly. Thus, the second approach is the most suitable one due to its lower
complexity compared to the last approach. However, if spatially distributed results are required, then the
last approach is necessary. Finally, these integration approaches are applicable to all types of heat pumps.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The building-related CO2 emissions, i.e. CO2 emissions from
residential and non-residential buildings in all sectors, amounted
to 208 Mt in 2017 in Germany [1]. Heating sector, i.e. space heating
and hot water supply, accounted for around 83 % of those emissions
and, thus, represents a significant potential for CO2 emission re-
ductions. The current aspiration of the German government is to
reach around 66 % of CO2 reductions in the building sector in 2030,
compared to the 1990s level, on the way to an almost climate-
neutral building stock in 2050 [2].

Heat pumps are one of the key technologies when considering
future CO2 reduction scenarios in the heating sector [3]. Hence, they
are an essential component in numerous studies analyzing future
energy systems. The majority of these studies assume constant
efficiency, i.e. coefficient of performance, of heat pumps throughout
the year. Table 1 shows examples of several studies together with
the assumed constant efficiencies and corresponding types of heat
pumps. More recently, the importance of temporal component in
heat pumps efficiency has been emphasized in several works.

Ruhnau et al. [9] introduced a dataset consisting of national time
series of heat demand and efficiency of heat pumps. This synthetic
dataset provides data with hourly resolution for 16 European
countries and years 2008e2018. The efficiency is calculated for
three different heat pump types: air source (AHPs), ground source
(GSHPs) and groundwater heat pumps (GWHPs). The main moti-
vation for the temporal modelling of heat pumps efficiency, and
also heat demand, is that the time variable electricity consumption
of heat pumps will be important in future electricity systems with
high penetration of heat pumps. On the other side, Conrad and
Greif [10] introduced a dataset consisting of time series of efficiency
and electric load demand of heat pumps, but for 32 building cate-
gories. The proposed methodology for the time series computation
differs from the one in Ref. [9], but the motivation to model tem-
poral variability is the same.

Both of the aforementioned works introduce methodologies to
model time series of heat pumps efficiency and heat demand, but
they stop there and do not use these time series further in an en-
ergy system model. Hence, the quantification of the improvements
obtained with the inclusion of the time component in the efficiency
modelling of heat pumps is missing. However, a couple of other
studies analyze the impacts of different efficiencymodelling of heat
pumps. These are briefly described in the following.

Jarre et al. [11] analyzed the primary energy consumption of an* Corresponding author.
E-mail address: smajil.halilovic@tum.de (S. Halilovic).
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air-source heat pump used for space heating. The efficiency of heat
pumps is calculated hourly and it depends on outdoor temperature
and water supply temperature. This dependency is based on
manufacturer data with an additional constant reduction factor.
The authors concluded that using average annual or monthly values
of primary energy factors underestimates primary energy savings
compared with hourly values.

Petrovi�c and Karlsson [12] investigated the impacts of a more
detailed modelling of residential heat pumps when optimizing the
future Danish energy system. The efficiency of heat pumps is
modelled as a function of the source temperature, i.e. air and
ground temperature, and installation of GSHPs is limited with the
available space. The average seasonal values are used for the effi-
ciency to decrease computational time. It was concluded that the
improved representation of heat pumps efficiency influences the
optimization results, such as technology mix or total costs in the
future energy system. Moreover, the authors point out that the
impact of even more detailed modelling of heat pumps efficiency
should be further investigated in the future.

Pieper et al. [13] compared four different methods to estimate
the efficiency of a large-scale heat pump used in district heating:
constant, Lorenz, exergy and efficiency based on the method
introduced by Kjær Jensen et al. [14]. These methods are imple-
mented in an energy planning tool, which finds the cost-minimal
configuration of a future district heating system for the consid-
ered development region in Copenhagen, Denmark. The results
show that using constant, Lorenz or exergy efficiency can produce
misleading results, which might lead to wrong investment de-
cisions. The authors also pointed out that the impact of heat pumps
efficiency estimation on the results of energy planning tools, i.e.
energy system optimization models, is not addressed in the pre-
vious research works. Hence, they tried to close this research gap
with their work using large-scale heat pumps for district heating as
an application example. A similar analysis is conducted by Bach
et al. [15], who investigated the integration of large-scale heat
pumps into the district heating system of Greater Copenhagen,
Denmark. The authors compared constant and season-dependent
representations of heat pumps efficiency using an energy system
optimization model. They found that the seasonal representation
does not significantly change the overall model results for the
investigated (water based) heat pumps.

Haikarainen et al. [16] presented a model for the long-term
optimization of integrated electricity and heating sectors with
hourly time resolution. The authors emphasized the importance of
a high temporal resolution in energy system optimization models
(ESOMs). The efficiency of the considered AHPs is modelled on an
hourly basis and as a piece-wise linear function of the ambient air
temperature. However, the focus of this work were not heat pumps
but the whole technology portfolio. A comparison with a model
with a lower temporal resolution was also not carried out.

Verda et al. [17] analyzed optimal configurations of heating
systems in urban areas where district heating is the primary and

GWHPs the alternative heating option. The efficiency of heat pumps
is assumed to be constant during the heating season. The authors
also took into account that the efficiency can be reduced by the
existing upstream installations and thus the reduced groundwater
inlet temperature. A probability-based optimization approach is
used to select users to be disconnected from the district heating
grid and to install a GWHP. However, it should be emphasized that
the proposed model is not an ESOM.

The literature review shows that the integration of residential
heat pumps into ESOMs has not yet been sufficiently investigated.
Only one study [12] is found to analyze different representations of
residential heat pumps in an ESOM. Other studies do not include an
ESOM [9e11] or do not consider residential heat pumps [13,15].
Therefore, this work analyzes different representation/integration
approaches of residential heat pumps in ESOMs. Compared to
Ref. [12], it includes hourly modelling of the efficiency of heat
pumps, more detailedmodelling on the load side and consideration
of the hot water supply and not only space heating via heat pumps.
This contribution is important due to the significance of heat
pumps in future energy scenarios, where incorrect heat pump
representations can lead to significantly different optimization re-
sults and, thus, wrong conclusions or even political decisions.

The main objective of this paper is to introduce and compare
different approaches for GWHP integration into ESOMs, where the
approaches are applicable to all other types of heat pumps. The
focus is on GWHPs for two reasons: lack of literature about GWHPs
because research papers usually focus on GSHPs and AHPs, and the
case study area (Munich, Germany) possesses high potential for
GWHPs. The considered ESOM is an exemplary case study, but the
introduced methodology can be applied to any location.

The paper is structured as follows: Section 2 provides basic in-
formation about GWHPs and their efficiency indicators. Section 3
describes the methodology, i.e. integration approaches of GWHPs
into ESOMs (3.1), as well as the energy system optimization model
and the used data (3.2). In Section 4, the proposed approaches are
evaluated alongwith a critical reflection. A summary and outlook of
the paper are provided in Section 5.

2. Efficiency of groundwater heat pumps

Groundwater heat pumps, also known as open-loop shallow
geothermal systems, directly utilize the thermal energy of the
aquifer. The working principle of a GWHP system is depicted in
Fig. 1: warm groundwater is extracted at the extraction (pumping)
well, the heat is then transferred to the demand side using heat
exchangers of the heat pump and, finally, the cooled water is
returned back into the aquifer at the injection well. In the case of
cooling, the returned water will be warmer than the extracted one.
The injection well has to be placed downstream and with a suffi-
cient distance from the extraction well to avoid hydraulic and
thermal breakthroughs [18]. In the case of a breakthrough, re-
injected water will reach the extraction well and deteriorate the
operation of a GWHP system [19].

The efficiency of (groundwater) heat pumps is one of major
influencing factors on customers buying decision because it reflects
operating costs directly. In addition, the efficiency will influence
the CO2 footprint of a heat pump. The two mainly used heat pump
efficiency indicators are the coefficient of performance and the
seasonal coefficient of performance [20].

The coefficient of performance (COP) is a dimensionless number
defined as the ratio of the produced heating capacity Qhp and the
electric power input Php of the unit at specific temperature condi-
tions, expressed in kW/kW [21]:

Table 1
Constant seasonal coefficient of performance (efficiency) of heat pumps in different
studies.

Reference Source side Efficiency

Gerhardt et al. [4] Air 3.8
Soil 4.4

Karlsson et al. [5] Air 2.7
Kruse et al. [6] Air 3.03e3.45

Soil 3.45e4.0
Quiggin and Buswell [7] Air 2.65e3.0
Schlesinger et al. [8] e 2.96e4.29
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COP ¼ Qhp

Php
: (1)

For example, the COP value of 4 means that heat pumps produce 4
units of heat by using 1 unit of electricity. COP is a machine based
indicator and takes into account only direct energetic inputs and
outputs of heat pumps. Thus, COP can be used to compare heat
pumps from different manufacturers when they are operating un-
der identical conditions.

The seasonal coefficient of performance (SCOP) is the overall
coefficient of performance of a heat pump using electricity, repre-
sentative of the heating season, calculated as the reference annual
heating demand divided by annual energy consumption for heat-
ing, expressed in kWh/kWh [21]. Compared to COP, SCOP usually
includes auxiliary systems in the evaluation [20]. One such system
is the submersible pump used to pump groundwater from below
ground. This results in lower values of SCOP compared to COP.

Manufacturers usually define COP for a couple of operating
points under optimal conditions. However, in reality, COP will have
lower values because of non-ideal operating conditions. In addition
to this, energy system modelers should take into account the extra
energy needed for auxiliary components. Therefore, in this work
the system's coefficient of performance (COPs) will be used to
model the efficiency of GWHP systems. COPs is defined the same
way as COP, i.e. for one operating point, but including all system
components and not only the heat pump.

There are multiple factors influencing the COPs, such as: local
conditions (groundwater temperature and level), demand side
(sink temperature), part load behaviour, and control strategy [22].
These factors are time dependent and thus COPs will also vary over
time, as can be seen from field measurements [23].

Two main approaches to model COPs are identified in the liter-
ature. Both of them use temperature difference DT between source
(groundwater) and sink (space heating/hot water supply) as a
starting point. The first approach is using the ideal Carnot process
to model the theoretical maximum COP based on DT values [10].
Thereafter these values are multiplied with scaling factors based on
field measurements. This includes all additional efficiency losses
and results in realistic COPs values. Similar approach is used in
Ref. [24] to benchmark the seasonal performance of heat pumps.

The second approach is using a quadratic function to model the
dependence of theoretical COP on DT. This is used in works of
Staffell et al. [20] and Fischer et al. [25], and most recently by
Ruhnau et al. [9] and Mouzeviris and Papakostas [26]. In the first
step, the coefficients of a quadratic function are fitted to the catalog
data to obtain the theoretical correlation COP ¼ f(DT). Thereafter
these values are multiplied with a correction factor to match the
field measurements. In this work the second approach and the
coefficient/factor values from Ref. [9] are taken, as described in the
following.

The theoretical dependence COP ¼ f(DT) is fitted applying
regression method on catalog data from Ref. [27] and for GWHPs is
given by:

COP ¼ 9:97� 0:20,DT þ 0:0012,DT2; (2)

where DT ¼ Tl � Ts, Tl is the sink (load) temperature and Ts the
source temperature. In the second step, Ruhnau et al. [9] apply the
correction factor fcorr to obtain realistic COPs values:

COPs ¼ COP,fcorr; (3)

where fcorr ¼ 0.85 is based on the field measurements from
Ref. [28].

From (2) and (3) it follows that DT is the main influencing factor
on the efficiency of heat pumps. In the case of GWHP systems, DT is
the difference between the application temperature (space heating
or domestic hot water (DHW)) and the groundwater temperature at
extraction (pumping) well. There are different ways to model the
temperature levels of space heating Tsh and domestic hot water
supply Tdhw. The selection of temperature levels Tsh and Tdhw for the
region of interest in this work is described in section 3.1.

Finally, groundwater temperatures Ts are required to compute
COP from (2). It is common to set these temperatures at one con-
stant level in modelling, e.g. 10 �C in Ref. [9]. However, field mea-
surements from Germany [29] and China [30] show that temporal
variations are present. In addition, spatial heterogeneity of the
groundwater temperature field is also usually neglected. One of the
goals in this work is to include the impact of resource (ground-
water) on heat pumps efficiency. Therefore, different levels of
complexity for the spatial and temporal component of groundwater
temperature are considered in section 3.1.

3. Methodology

Fig. 2 depicts the overall methodology used to evaluate inte-
gration approaches of heat pumps into ESOMs. First, the efficiency
of heat pumps is modelled in different ways, which corresponds to
different integration approaches (section 3.1). In the second step, an
ESOM for a residential heating sector is developed (section 3.2).
Heat pumps are part of this ESOM and their efficiency is modelled
differently according to the integration approaches. Finally, two
optimization scenarios for reducing CO2 emissions are simulated
(section 3.2.2). Based on the optimization results, integration ap-
proaches are compared and evaluated.

Fig. 1. Working principle of a GWHP system. Typical components of the system are: (1)
Heat pump - main component with compressor and heat exchangers, (2) Extraction
(pumping) well - where the warm groundwater is extracted from the aquifer, (3) (Re)
injection well - where the cooled water is returned back to the aquifer, and (4) Sub-
mersible pump - used to pump the groundwater.

S. Halilovic, L. Odersky and T. Hamacher Energy 238 (2022) 121607

3



3.1. Integration approaches

Motivated by the idea that more complex energy systemmodels
are also more accurate [31], different levels of complexity for the
integration of heat pumps into energy systemmodels are analyzed.
Three different approaches to integrate GWHPs into ESOMs are
considered:

1. COPs ¼ const.,
2. COPs ¼ f(t),
3. COPs ¼ fi(t), where i denotes the i-th area/region.

For the sake of simplicity, these approaches are denoted as I, II
and III, respectively. In the approach I, the performance of heat
pump systems is considered constant for the whole energy system,
i.e. urban area. This is a common approach in numerous energy
system studies [10]. In this work, COPs ¼ 4.0 for GWHPs and
COPs ¼ 3.1 for AHPs are used based on the study by Reinhold et al.
[32]. It should be emphasized that AHP stands for air-to-water heat
pumps within this work.

In the approach II, performance modelling of heat pumps is
extended with a temporal component. In other words, COPs is
modelled as one time-series for the whole urban area. A detailed
description of this approach is given in section 3.1.1.

In the approach III, a spatial component is added to the COPs
modelling. Here, the city is divided into regions, where each region
has its own time-series for COPs representation. A detailed
description of this approach is given in section 3.1.2.

3.1.1. Temporal complexity
As previously stated in section 2, there are different approaches

to model the space heating temperature Tsh. Conrad and Greif [10]
apply weather compensation curves to describe the space heating
temperatures Tsh, whereas Ruhnau et al. [9] apply linear heating
curves and distinguish between radiator and floor heating. In both
cases, Tsh depends on the ambient air temperature. In this work, the
latter approach is applied:

TrshðtÞ ¼ 40�C� 1:0,TabmðtÞ;
T f
shðtÞ ¼ 30�C� 0:5,TabmðtÞ; (4)

where Tabm is the ambient air temperature, Tr
sh and T fsh radiator and

floor heating temperatures, respectively. Instead of time dependent
temperatures, one can alternatively use constant values Tr

sh ¼ 55+C

and T f
sh ¼ 35+C as given in Ref. [33]. The obtained temperatures

from (4) are combined into one temperature time-series applying
the weighted average:

TshðtÞ ¼
Q r
shðtÞ,TrshðtÞ þ Q f

shðtÞ,T f
shðtÞ

QshðtÞ
; (5)

where Q r
sh and Q f

sh are radiator and floor heating demands,

respectively, and Qsh ¼ Q r
sh þ Q f

sh the total space heating demand
of the given area.

Differences are also present in the definition of the water
heating temperature Tdhw. Conrad and Greif [10] define two con-
stant levels for DHW supply, 50 �C for single family and 100 �C for
multifamily houses, whereas Ruhnau et al. [9] define only one
constant level Tdhw ¼ 50 �C based on field measurements from
Ref. [28]. Staffell et al. [20] assume the range 50e60 �C for domestic
hot water temperatures. Temperatures for DHW supply Tdhw are
independent from the ambient air temperature and thus consid-
ered constant. However, these values usually differ between small
systems (single family houses) and large systems (multifamily
houses). In this work, Ts

dhw ¼ 50+C for single family and Tm
dhw ¼

65+C for multifamily houses are used, based on [33]. These values
are also combined into one temperature as follows:

TdhwðtÞ ¼
Q s

dhwðtÞ,Tsdhw þ Qm
dhwðtÞ,Tmdhw

QdhwðtÞ
; (6)

where Q s
dhw and Qm

dhw are single family and multifamily house
DHW demands, respectively, and Qdhw ¼ Q s

dhw þ Qm
dhw the DHW

demand of the given area. Although temperatures Tsdhw and Tm
dhw

are constants, the resulting mean DHW temperature Tdhw(t) varies
with time because of time dependent demands.

After the temperature levels Tsh and Tdhw are defined, they can
be combined into one temperature Tl, which is then used in (2) to
compute COP. The combined sink temperature Tl is the weighted
average of Tsh and Tdhw, where weights are demands [20] or hourly
shares [10] for space heating and DHW. In this work, the former
approach is utilized:

Tl ¼
Qsh,Tsh þ Qdhw,Tdhw

Qsh þ Qdhw
; (7)

where Qsh and Qdhw are demands for space heating and hot water,
respectively.

Fig. 2. Flow chart of the overall methodology.
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Groundwater temperature Tgw at a given location is a function of
the depth below the ground surface and time, which can be
described by the following equation [34]:

Tgwðz; tÞ ¼ Tm þ DTs,exp
�
� 2p

z
L

�
,cos

�
2p

�
t
t0

� z
L

��
; (8)

where z is the depth below the surface level, t time, Tm mean sur-
face temperature, DTs amplitude of the temperature variation on
the surface, t0 period of temperature oscillations, L ¼ 2

ffiffiffiffiffiffiffiffiffiffi
pat0

p
wavelength of one temperature oscillation, and a thermal diffu-
sivity of the subsurface. In this work, the form of (8) is simplified by
grouping certain parameters together as follows:

TgwðtÞ ¼ Tm � DTgw,cos
�
2p
t0

ðt � tdÞ
�
; (9)

where DTgw is the amplitude of the groundwater temperature
variation, td time delay constant, Tm and t0 the same as before. The
values of constant parameters in (9) are selected based on field
measurements from Ref. [29] and given as follows: Tm ¼ 12 �C,
DTgw ¼ 2 �C, t0 ¼ 8760 h, td ¼ 1800 h.

It should be emphasized that the analytical formula for
groundwater temperature is only an approximation and a numer-
ical simulation of groundwater conditions would be required to
account for all the complexities present in an urban aquifer. How-
ever, using an analytical formula for groundwater temperature in
an ESOM is appropriate for several reasons:

� The majority of research studies, which use ESOMs to analyze
future energy scenarios, assume constant groundwater tem-
perature (usually 10 �C) for all locations and throughout the
year. Therefore, this work improves the representation of
groundwater temperatures and makes them more realistic by
taking into account temporal and, in the approach III, also
spatial dependencies.

� The applied analytical formula is parametrized with real field
measurements and thus represents an estimation of the mixed
groundwater temperature, which is extracted and used by a
heat pump. Consequently, realistic seasonal changes are taken
into account without explicitly using groundwater tempera-
tures at different depths.

� A detailed modeling of the groundwater temperature and con-
ditions, i.e. the use of a numerical model of the flow and heat
transport in the porous media, is not suitable for ESOMs. The
ESOMs are spatially aggregated models in which, for example,
the entire city is represented as one location (site) that has one
time-series for the heat demand and requires one time-series
for the heat pump efficiency. This is due to the optimization
part of ESOMs where it is not possible to optimize models with
high spatial resolutions, e.g. to optimize a city model with a
building resolution. Therefore, aggregated representations for
the entire city or city regions (approach III) are required in
ESOMs.

� Finally, the data required to build a numerical model for the
groundwater simulation are usually difficult to obtain and were
not available for the location considered in this work.

To maintain consistency, the same procedure has to be applied
for AHP systems. In this case, the source temperature is the
measured ambient air temperature Tabm(t), whereas the load
temperature Tl(t) remains the same. Computation of theoretical
COP for AHPs is the same as (2), but with different polynomial
coefficients: 6.08, �0.09, 0.0005 [9]. Finally, applying (3) COPs
values for AHPs are obtained. The obtained COPs values for GWHPs

and AHPs over a period of one year are depicted in Fig. 3. It is
evident that GWHPs significantly outperform AHPs during winter
months. In addition, efficiency of both heat pump types decreases
considerably during the summer period. This can be explained by
the fact that there is only demand for DHW during summer
months, which increases the load side temperature.

It should be emphasized that instead of using weighted tem-
peratures from (5), (6) and (7), one can compute COPs for all
different load sides independently. Fig. 4 shows computed COPs of
GWHPs and AHPs for four different load sides: space heating with
radiators, floor heating, DHW supply for single and multifamily
houses. It is evident that both types of heat pumps are more effi-
cient for floor heating compared to radiators, especially during
winter, and for DHW supply of single family compared to multi-
family houses. This is due to the fact that lower load-side temper-
atures increase COPs. It is also noticeable that GWHPs outperform
AHPs in all cases, with the exception of the hot water supply of
multifamily houses, where GWHPs do better inwinter and worse in
summer compared to AHPs. The COPs of GWHPs for DHW looks
smooth because load-side temperatures are constant and source-
side temperatures are sinusoidal functions obtained from (9). To
use the independently computed COPs values in the ESOM, heat
demands must be separated as well based on the load side. How-
ever, this is not considered further in this work for three reasons:
(1) using equations (5)e(7) gives almost identical results (see
Appendix A for a detailed comparison); and also (2) the results
comparison is simplified; (3) computational time is reduced.

3.1.2. Spatial complexity
In the second extension, spatial complexity, i.e. heterogeneity, of

GWHP system's performance at an urban scale is being considered.
This is primarily motivated by the spatial heterogeneity of
groundwater temperatures in urban aquifers. The city of Munich,
which is the urban area of interest in this work, has already been
analyzed for the shallow geothermal potential within the GRETA
project [35]. One of the project outcomes is the map of ground-
water temperatures in Munich, which is available at [36]. Based on
these different groundwater temperature levels, the whole city is
divided into separate regions as depicted in Fig. 5. The division is
done using the clustering algorithm proposed by Siala andMahfouz
[37], which is a combination of the k-meansþþ and max-p regions

Fig. 3. COPs variation over the year for GWHP (blue) and AHP systems (orange). (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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algorithms.
Temperature levels for each of 29 identified city regions repre-

sent values that are based on measurements from April 2014 [36].
Therefore, equation (9) has to be first applied for each of regions to
compute the mean surface temperature of each region:

Tim ¼ Tigwð2520hÞ þ DTgw,cos
�
2p
t0

ð2520h� tdÞ
�
; (10)

where Ti
m is the mean surface temperature of region i, i 2{1, 2, …,

29}, Ti
gwð2520hÞ groundwater temperature of region i measured in

April (t ¼ 2520 h), and the remaining parameters are the same as

previously defined. Thereafter, inserting the obtained Ti
m values

into (9), time-series of groundwater temperatures for each region

Ti
gwðtÞ can be derived.
In addition, the separation of the city heat demand (and existing

heating structure) by regions has to be considered. This means that
each region i has its own:

� radiator heating demand Q r;i
shðtÞ,

� floor heating demand Q f ;i
shðtÞ,

� total space heating demand Qi
shðtÞ,

� single family house DHW demand Q s;i
dhwðtÞ,

� multifamily house DHW demand Qm;i
dhwðtÞ,

� total DHW demand Qi
dhwðtÞ.

These values are computed using a GIS tool, where, for instance,
all single family houses geographically inside the region i are
assigned to that region and their DHW demands are aggregated

into Q s;i
dhwðtÞ. Thereafter, using different demands of each region

and equations (5)e(7), load temperature levels Ti
shðtÞ, Ti

dhwðtÞ and
Ti
lðtÞ for each region i can be computed. Finally, using Ti

lðtÞ and

Ti
gwðtÞ, time-series of GWHP performance COPisðtÞ are estimated for

all regions.
To maintain consistency, the same procedure is applied for AHP

Fig. 4. COPs variation over the year for GWHP and AHP systems, and different load sides: floor heating (f), radiator heating (r), DHW for single family (sfh) and multifamily houses
(mfh).

Fig. 5. Division of the city of Munich into separate regions based on the groundwater temperature.
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systems. Ambient air temperatures are heterogeneously distributed
in urban areas because of the well-known urban heat island effect
[38]. However, here it is assumed that the source side, i.e. ambient
air, is homogeneous throughout the city due to the lack of mea-
surement data. Differences in COPs time-series for AHP systems still
exist between regions because of different demands and resulting
load-side temperatures.

3.2. Energy system optimization model

In general, ESOMs are used to analyze future energy scenarios
on different scales (urban, country, continent) and to solve the so-
called unit commitment problem. The objective is usually to
minimize costs and/or CO2 emissions, while satisfying the energy
demand at all times.

Within this work, an ESOM for the residential heating sector of
the city of Munich has been developed and used. It should be
emphasized that this in only an exemplary case study to analyze
different integration approaches of heat pumps into ESOMs. By
changing the input data, the approaches can be directly applied to
other locations and system scales, e.g. country level. The considered
model includes all relevant heating technologies for the city: dis-
trict heating (DH), GWHPs, AHPs, pellet, gas, oil, solar-thermal and
electric heating. GSHPs are excluded from the model because it is
difficult to install them in the city of Munich: drilling regulations
[39] limit borehole heat exchangers and there is usually not enough
space for horizontal collectors.

The electricity system is simplified by electricity prices: retail
price, tariff for heat pumps and feed-in tariff. In addition, photo-
voltaic modules (PVs) are included in the model as a competing
technology to solar-thermal in the sense of available space. Heat
and electricity demands are modelled with hourly resolution over a
period of one year, which corresponds to optimization time step
and period, respectively. Data and further assumptions used to
build the model are described in section 3.2.3.

3.2.1. Optimization framework
The previously described model is developed using the model-

ling/optimization framework urbs, which is an open-source linear
programming framework [40]. Urbs is based on multiple input -
multiple output processes that are used to model different tech-
nologies [41]. Additional flexibility is provided through other
framework components, such as energy storage, transmission,
demand-side management and time-variable efficiency. The last
one is used to model time-dependent COPs of heat pumps in this
work.

3.2.2. Optimization scenarios
In 2014, the heat-related CO2 emissions from the Munich

building stock amounted to 2.8 million t [32]. Residential buildings
(single and multi-family houses) caused the majority of those
emissions with around 80 %. Therefore, the focus is only on this
sector within this work. Nonresidential sector is not considered as
it requires separate analysis due to significantly different
conditions.

In the study by Kenkmann et al. [42], three climate protection
scenarios for Munich are identified: reference, moderate climate
protection and the climate-neutral scenario. Similar to this, two
different CO2 mitigation scenarios are considered in this work: 70 %
and 95 % reduction compared to the year 2014. These energy sys-
tem optimization scenarios are used to evaluate and compare
different GWHP integration approaches.

3.2.3. Data
The main data sources and underlying assumptions used to

generate energy system optimization models are described in the
following.

In the demand time-series, a distinction must be made between
heat and electricity demand. Due to the limited access to real de-
mand curves at the building level, both time-series are created
synthetically. For the heat demand time-series the open-source
tool UrbanHeatPro [43] is used. The tool generates synthetic heat
demand time-series for one year for each building of a building list,
taking into account all the necessary parameters, such as building
classes and properties [44] or the ambient air temperature [45]. For
the building database, data from Ref. [46] are used. The building
stock consists of 121,832 residential buildings, of which 42,514 are
multifamily houses and 79,318 single family houses. Finally, from
the time-series of the individual buildings, time-series for the
whole city or the individual regions are accumulated. The time-
series obtained for space heating and hot water demand of the
entire city are shown in Fig. 6. The demand for hot water is evenly
distributed throughout the year, while the demand for space
heating is inversely proportional to the ambient air temperature
and is therefore much higher in winter. The estimated annual hot
water and space heating demands for the city of Munich are
890.33 GWh and 5446.61 GWh, respectively. The electricity de-
mand is synthesized using standard load profiles [47]. For this
purpose the standard load curve is weighted according to the oc-
cupants of a building and the building class. Thereafter, the building
time-series are summed up to obtain the demand of the entire city
or selected regions.

Since suitable data about the existing generation capacities of
different heating technologies in Munich were not available, they
are generated synthetically. Based on the installed district heating
capacity [48], an approximate installed heating capacity per heat-
ing type is generated using [49,50]. For the higher-resolution
model, these heating capacities are divided according to the
number of buildings and residents per region. The installed ca-
pacities of different heating technologies in 2014, as well as yearly
heat and electricity demands, for all the regions and for the whole
city of Munich are given in Table 2.

Data sources for groundwater temperatures are previously
described in section 3.1.1 and section 3.1.2. For AHPs, air tempera-
tures are required to compute COPs. Here, the same temperatures
are used as for the heat demand computation, i.e. the ambient air
temperatures at 2 m above ground [45].

All cost relevant data are primarily based on the study by Stof-
fregen et al. [51]. The study is conducted for the region of Bavaria,
where the city of Munich is also located. Therefore, this study has

Fig. 6. Ambient air temperature and synthetic heat demands for the city of Munich.
The hot water and space heating demands are denoted by Qdhw(t) and Qsh(t),
respectively.
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similar local conditions as the modelled area and represents a
consistent and compact source of information. In addition, data
about the district heating grid in Munich are obtained from the
local provider [52] and the city gazette [53].

Specific CO2 emissions of different energy carriers are obtained
from different sources: [54] for electricity, [55] for district heating,
[56] for pellet and [57] for the specific emissions of gas and oil. It
should be emphasized that future developments of commodity
prices and specific CO2 emissions of different technologies, or the
future development of heating demand, are not considered in this
work. The focus here lies on the integration approaches of GWHPs
into ESOMs and their impact on the optimization results, but not on
the optimization scenarios itself. For the latter, one would require a
detailed analysis of all relevant data, including future de-
velopments, which is beyond the scope of this paper.

4. Results

The integration approaches are compared based on the opti-
mization results of the ESOM for different optimization scenarios.
In addition, a critical reflection and possible future advancements
of the methodology are provided in the following.

4.1. Comparison of different integration approaches

In order to evaluate different integration approaches of heat
pumps into ESOMs, the results of CO2 reduction scenarios are
compared. The quantities used for the comparison are the installed
capacities of heating technologies, as well as their utilization in the
technology mix of the urban energy (heating) system. Figs. 7e9
show the results for all three integration approaches, and for both
optimization scenarios.

Figs. 7 and 8 depict the new installed and the total capacities in

the system, respectively, for all “integration approach - optimiza-
tion scenario” combinations. The total capacities are the sum of the
already available capacities in 2014 and the new installed capac-
ities. If the technology is not utilized, i.e. it is replaced with other
technologies, then its total capacity is set to zero. This means that
the new installed capacities of such technologies are negative.
These theoretically negative capacities are not depicted in Fig. 7 for
the sake of simplicity. Analyzing Figs. 7 and 8 it can be stated that in
both optimization scenarios the integration approach I significantly
differs from the approaches II and III.

Applying the approach I will result in new installed capacities of
AHPs in both scenarios, whereas this is not the case for approaches
II and III. Also, new added capacities of GWHPs are smaller for the

Table 2
Installed capacities and annual demands in 2014.

Region Installed Capacity [MW] Total Demand [MWh]

Oil Gas GWHP AHP Pellet District heat Solar- thermal Electric Heater Heat Electricity

CL00 20.25 37.89 0.03 0.03 0.03 e 0.16 2.16 20,865.21 31,613.23
CL01 63.24 118.31 0.10 0.10 0.10 37.93 0.50 6.73 116,192.93 98,717.47
CL02 116.95 218.79 0.18 0.18 0.18 70.15 0.92 12.45 218,333.67 182,551.60
CL03 26.36 49.31 0.04 0.04 0.04 e 0.21 2.81 74,295.56 41,141.51
CL04 129.19 241.67 0.20 0.20 0.20 77.48 1.02 13.75 213,841.14 201,645.11
CL05 178.92 334.71 0.28 0.28 0.28 106.60 1.41 19.05 416,594.04 279,274.78
CL06 376.55 704.43 0.59 0.59 0.59 225.84 2.97 40.09 356,449.56 587,762.25
CL07 156.94 293.59 0.25 0.25 0.25 94.13 1.24 16.71 334,031.86 244,965.57
CL08 78.86 147.52 0.12 0.12 0.12 47.29 0.62 8.40 107,225.13 123,092.15
CL09 145.37 271.94 0.23 0.23 0.23 87.19 1.15 15.48 189,689.79 226,906.14
CL10 127.36 238.26 0.20 0.20 0.20 76.39 1.00 13.56 294,173.45 198,801.39
CL11 48.83 91.36 0.08 0.08 0.08 e 0.38 5.20 41,634.70 76,226.28
CL12 149.96 280.53 0.23 0.23 0.23 e 1.18 15.97 187,896.39 234,070.82
CL13 241.69 452.13 0.38 0.38 0.38 144.96 1.90 25.73 623,881.17 377,253.62
CL14 263.65 493.21 0.41 0.41 0.41 158.12 2.08 28.07 385,160.81 411,525.90
CL15 56.88 106.41 0.09 0.09 0.09 34.11 0.45 6.06 143,494.06 88,782.94
CL16 171.75 321.30 0.27 0.27 0.27 103.00 1.35 18.29 212,753.96 268,084.58
CL17 44.01 82.33 0.07 0.07 0.07 26.39 0.35 4.69 77,171.13 68,692.29
CL18 143.78 268.98 0.22 0.22 0.22 86.23 1.13 15.31 217,867.18 224,431.74
CL19 169.83 317.71 0.27 0.27 0.27 101.86 1.34 18.08 203,145.00 265,093.15
CL20 230.88 431.91 0.36 0.36 0.36 138.47 1.82 24.58 336,847.02 360,376.00
CL21 134.79 252.16 0.21 0.21 0.21 80.84 1.06 14.35 260,926.84 210,397.83
CL22 243.87 456.21 0.38 0.38 0.38 e 1.92 25.96 242,761.92 380,651.30
CL23 105.83 197.98 0.17 0.17 0.17 63.47 0.83 11.27 104,271.32 165,193.88
CL24 82.03 153.46 0.13 0.13 0.13 49.19 0.65 8.73 144,824.79 128,040.95
CL25 179.58 335.95 0.28 0.28 0.28 107.71 1.41 19.12 351,932.68 280,308.86
CL26 122.39 228.97 0.19 0.19 0.19 73.40 0.96 13.03 159,219.87 191,045.81
CL27 24.65 46.12 0.04 0.04 0.04 e 0.19 2.62 21,676.91 38,482.45
CL28 5.39 10.09 0.01 0.01 0.01 3.24 0.04 0.57 239,468.50 8420.35
Munich 3839.80 7183.20 6.00 6.00 6.00 1994.00 30.25 408.80 6,296,626.59 5,993,549.95

Fig. 7. New installed capacities of different heating technologies in the city of Munich.
The horizontal bars represent different combinations of integration approach (I, II and
III) and optimization scenarios (70 % or 95 % CO2 reduction).
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approach I:

� 70 % CO2 reduction: 0.128 GW (I), 0.886 GW (II), 0.935 GW (III),
� 95 % CO2 reduction: 2.614 GW (I), 4.687 GW (II), 5.276 GW (III).

This can be explained by the fact that the approach I over-
estimates the efficiency of AHPs and underestimates the efficiency
of GWHPs, which is also visible in Fig. 3. Therefore, using a constant
COPs value to model efficiency of heat pumps will result in
misleading results from ESOMs. On the other hand, differences
between approaches II and III are relatively small. This is especially
the case for the 70 % CO2 mitigation scenario. Thus, time-variable
COPs, i.e. the approach II, is sufficient to make statements about
future energy-mix scenarios at the level of the entire system.

Previous statements can be reconfirmed when analyzing Fig. 9,
which shows heat production of different technologies in the sys-
tem over the whole year. All 6 00approach - scenario” combinations
are depicted here again. The labels correspond to the main tech-
nology in the household heat supply. For instance, “Gas” does not
only mean heat produced from stand-alone gas heating, but also
from combinations of gas and supporting systems such as solar-
thermal or electric heating. Thus, supporting systems are not
separately depicted in the figure. This is different compared to
Figs. 7 and 8, but the same conclusions can be made again:

approach I produces incorrect results, whereas approaches II and III
are relatively similar. Furthermore, comparing the two optimiza-
tion scenarios, the transition from district heating to pellets is
noticeable. This is due to the assumption of constant specific CO2
emission in the district heating energy-mix. For more realistic
scenarios, one would require the future development of such
emissions and other relevant factors, as already explained in sec-
tion 3.2.3.

Based on Figs. 7e9, and the previous discussion, it can be
concluded that the approach II is the most suitable approach when
analyzing future scenarios for the entire system, i.e. the whole city
or area of interest. This is because approach II produces comparable
results to the approach III, despite being less complex/detailed and
hence less computationally expensive. For instance, the optimiza-
tion solver Gurobi [58] takes 48.13 s and 5043.89 s to solve 95 % CO2
reduction scenario for the approaches II and III, respectively, when
running on the machine Intel Xeon(R) Gold 6140 CPU @ 2.30 GHz x
72, 320 GB of RAM. In addition, loading data and generating the
optimization model takes significantly longer in urbs for the
approach III compared to II. However, if more detailed, i.e. spatially
distributed, results are needed and not only the cumulative results
for the entire energy system, the approach III will be necessary. On
an urban system scale, such spatial results are important for city
planers. On larger scales, region-based results are usually requested
since regions may represent independent decision-makers, such as
states or cities.

Fig. 10 shows the results of two optimization scenarios when
applying the integration approach III. The heat production of
different technologies is depicted separately for all 29 identified
city regions. The technology labels used in the figure correspond to
those from Fig. 9 and the numbering of regions coincides with that
of Fig. 5. The transition from district heating to pellets between two
scenarios is also easily noticeable here. In addition, some regions
use gas heating in the 70 % CO2 reduction scenario. These aremainly
parts of the city where the district heating grid is not available.
However, in the 95 % scenario GWHPs and pellets are the only
viable heating technologies due to their low specific CO2 emissions.

Region-based results, such as in Fig. 10, can be used by city
planers to identify city regions where GWHPs might be the key
technology for the future heat supply. This can help to prevent
environmental issues or conflicting uses of groundwater caused by
increased number of installations. Moreover, one can include
groundwater protection zones and/or maximum pumping rates of
GWHPs in the model prior to the optimization. This will limit the
usage of GWHPs, but lead to even more realistic results. However,
such considerations are beyond the scope of this work.

Finally, Fig.11 shows time-series of heat supply for an exemplary
week. The presented values correspond to the result of 95 % CO2
reduction scenario and the approach II. These are hourly values of
the heat supply for the whole city of Munich. Heat supply should be
modelled in a way that different heating technologies are propor-
tional to each other, i.e. that they always supply the same share of
the total heating demand. For instance, if 75 % of households use
GWHPs as their main heating systems, this percentage should
remain the same during thewhole year. In other words, one heating
technology cannot be used to cover the base load on the city level
and some other technologies to fulfill the remaining (peak) heat
demand. Therefore, the so-called proportional processes are
applied in the modelling framework urbs (see section 3.2.1) to
obtain the correct heat supply behaviour, which can be seen in
Fig. 11. The shares of different heating technologies are not pre-
defined, but are set as an optimization result. It should be also
emphasized that smoothing effects in the demand and corre-
sponding supply curves are present due to the aggregation of in-
dividual household demands.

Fig. 8. Total installed capacities of different heating technologies in the city of Munich.
The horizontal bars represent different combinations of integration approach (I, II and
III) and optimization scenarios (70 % or 95 % CO2 reduction).

Fig. 9. Heat supply (production) from different technologies in the city of Munich in
one year. The horizontal bars represent different combinations of integration approach
(I, II and III) and optimization scenarios (70 % or 95 % CO2 reduction).
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4.2. Critical reflection and future advancements

This paper focuses on different integration approaches of
GWHPs into ESOMs and their impacts on the optimization results.
However, the same integration approaches can be used for other
types of heat pumps: ground and air source. AHPs are already
considered in this work and modelled in the same fashion as
GWHPs. In the case of GSHPs, one only has to change the co-
efficients in (2), according to Ref. [9], and to use soil temperatures.
Therefore, the procedure introduced in this work is a general

procedure for integration of heat pumps into ESOMs.
As previously stated, the focus of this work are heat pumps

integration approaches, but not the optimization scenarios itself.
For an analysis of future energy scenarios, a detailed analysis about
future developments of heat demand, economical and environ-
mental parameters is required. However, keeping these parameters
constant, as in this work, facilitates analysis of the impact of
different integration approaches.

Furthermore, it would be interesting to analyze impacts of heat
pumps on the electricity system. Different integration approaches
will result in different electricity demands of heat pumps, which
might represent a high share of the total electricity demand in the
energy system. An increase in the electricity demand may signifi-
cantly change the energy-mix in the electricity sector and, hence,
the specific CO2 emissions of heat pumps. This is especially
important for large scale systems, e.g. on a national level, where
high penetration of heat pumps would significantly affect the
electricity system. To analyze this interplay between electrified
heating and the electricity sector, a detailed model of the electric
energy system is required.

In the case of spatially heterogeneous efficiency of GWHPs, i.e.
the integration approach III, only groundwater temperatures are
used as an influencing factor from the source side. However, in
reality there are other factors affecting the work/installation of
GWHPs, such as groundwater thickness or drinking water protec-
tion zones. Increased number of installationsmight lead to negative
interference between systems, which has to be avoided. In addition,
the analytical formula (8) used in this work to compute ground-
water temperatures is only an approximate estimation and does
not consider numerous factors present in urban aquifers, which are

Fig. 10. Heat supply (production) from different technologies for each region of Munich in one year. The upper and lower diagrams represent results of the approach III for 70 % and
95 % CO2 reduction optimization scenarios, respectively.

Fig. 11. Heat supply (production) from different technologies in the city of Munich
during the second week of January. These are results from 95 % CO2 reduction scenario
when applying the approach II.
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affecting the groundwater temperature. Including all these aspects
in the model would result in a realistic (dynamic) thermal potential
of groundwater, which enables strategic use of groundwater as an
important energy resource. This requires coupling of energy system
optimization models with numerical groundwater simulation (flow
and heat transport) models, which is a complex task. Currently,
within the project GEO.KW [59] such coupling schemes are being
developed. Including the cooling in the model would also enable to
analyze potential synergies between heating and cooling applica-
tions, since they can balance thermal usage of groundwater.

Finally, energy systems are complex socio-economical systems
and thus a purely techno-economical model, which is used in this
paper, is not sufficient to describe all aspects of the energy transi-
tion. This is especially the case for heating systems, where house-
holds individually decide on their heating technologies. In the
future, it would be interesting to apply an agent-basedmodelling or
sociodynamics approach, while still using techno-economical pa-
rameters from this work. Such models can provide policy recom-
mendations that lead to the realization of CO2 reduction goals.

5. Conclusions

In this work, different approaches to integrate GWHPs into en-
ergy system optimization models were analyzed. These approaches
differ in the representation of GWHPs efficiency: (I) constant COPs,
(II) time-variable COPs and (III) time-variable and spatially depen-
dent COPs. The energy system optimizationmodel used in this work
is the model of the residential heating sector in Munich. To analyze
the impact of integration approaches on the optimization results of
such a model, two different optimization scenarios were consid-
ered: 70 % and 95 % CO2 reduction compared to the level from 2014.

In order to evaluate different approaches, the results of opti-
mization scenarios were compared. In particular, the new installed
capacities and the heat production from different technologies in
the system are compared. The comparison shows that the more
complex approaches, i.e. II and III, produce similar results, whereas
the approach I yields significantly different and misleading results.
The approach I, namely, overestimates the efficiency of AHPs and
simultaneously underestimates the efficiency of GWHPs. The
approach II is the most suitable for analyzing/obtaining optimiza-
tion results on a cumulative/system level, since it is less complex
and, thus, less computationally expensive than approach III. How-
ever, the approach III is necessary if regional (spatially distributed)
results are required, e.g. for city planning or in large scale models.
Additionally, it should be noted that the introduced integration
approaches can be used for all types of heat pumps and also for
different energy system scales and locations.

Since the electricity system was simplified by electricity price,
the first future goal is to develop a detailed electricity systemmodel
and combine it with the heating model. This combined model can
provide insights into interaction between heat pumps and elec-
tricity systems. In the spatial modelling, i.e. the approach III, only
groundwater temperature was used as an important groundwater
parameter. Adding other parameters, such as groundwater thick-
ness or proximity of other installations, can provide more realistic
and reliable results. Only techno-economical aspects of energy
systems were considered in this work. In the future, the more
detailed representation of heat pumps efficiency can be included in
socio-economical models, e.g. agent-based, for an improved energy

transition analysis.
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Appendix A Separate efficiency values based on the load side

In section 3.1.1, it is stated that instead of using weighted load-
side temperatures from (5), (6) and (7), one can compute COPs for
all different load sides separately. These separately calculated COPs
values can be included in the ESOM by dividing the heat demand
according to the load side. However, the optimization results ob-
tained by using weighted temperatures (simplified approach) are
almost identical, as can be seen in Figure A.12 and Figure A.13.

Fig. A.12. New installed capacities of different heating technologies in the city of
Munich. The horizontal bars represent different combinations of COPs estimation (A or
B) and optimization scenarios (70 % or 95 % CO2 reduction). The letters A and B
correspond to the method used in this work with weighted averages of load-side
temperatures and the method of using separate COPs values for different load sides,
respectively. Different hash patterns denote different load sides: multifamily houses
(MFH), single family houses with floor heating (SFH_f) and single family houses with
radiator heating (SFH_r).
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4 Optimization of GWHPs

This chapter is dedicated to the central topic of this thesis, namely the optimization of GWHP systems at the
system level. In Section 4.1, possible optimization approaches for GWHP systems are identified, classified
and qualitatively compared. Subsequently, in Sections 4.2 and 4.3, three novel optimization approaches are
introduced and analyzed using real case studies.

4.1 Optimization approaches

The task of optimizing GWHPs can be approached from several angles, depending on factors such as the
level of abstraction in modeling physical phenomena, the conceptualization and formulation of the associated
optimization problem, and the strategies used to solve the underlying problem. In this context, Publication 2 [94]
analyzes possible approaches for optimizing the design and operation of GWHP systems. To systematically
perform this analysis, a novel classification scheme is introduced, dividing the identified optimization approaches
into four different classes. These classes are distinguished based on the type of groundwater simulation model
used, being PDE-based or simplified (e.g. analytical), and the choice of optimization algorithm, being gradient-
based or derivative-free. Subsequently, a qualitative comparison of these classes is performed to evaluate their
computational efficiency and applicability. In addition, the publication also reviews the existing approaches in
the literature and underlines their limitations as well as possible future improvements. It should be noted that
Publication 2 chronologically follows Publications 3 and 5, and thus also reviews the optimization approaches
introduced in these earlier publications.
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Abstract. The optimization of open-loop shallow geother-
mal systems, which includes both design and operational
aspects, is an important research area aimed at improving
their efficiency and sustainability and the effective manage-
ment of groundwater as a shallow geothermal resource. This
paper investigates various approaches to address optimiza-
tion problems arising from these research and implementa-
tion questions about GWHP systems. The identified opti-
mization approaches are thoroughly analyzed based on cri-
teria such as computational cost and applicability. Moreover,
a novel classification scheme is introduced that categorizes
the approaches according to the types of groundwater sim-
ulation model and the optimization algorithm used. Simula-
tion models are divided into two types: numerical and sim-
plified (analytical or data-driven) models, while optimization
algorithms are divided into gradient-based and derivative-
free algorithms. Finally, a comprehensive review of exist-
ing approaches in the literature is provided, highlighting their
strengths and limitations and offering recommendations for
both the use of existing approaches and the development of
new, improved ones in this field.

1 Introduction

Open-loop shallow geothermal systems, also known as
groundwater heat pumps (GWHPs), have emerged as a
promising solution for decarbonizing the residential heat-
ing and cooling sector (Russo et al., 2012). The perfor-
mance of GWHPs is primarily influenced by groundwa-
ter temperature (Kim and Nam, 2016), which remains rel-
atively stable throughout the year and is elevated in urban

areas due to the subsurface urban heat island effect (Men-
berg et al., 2013; Epting and Huggenberger, 2013; Böttcher
and Zosseder, 2021). These systems harness the thermal en-
ergy of the aquifer by extracting groundwater from one or
more extraction wells and returning it to the same aquifer via
injection wells after heat exchange in a heat pump (Florides
and Kalogirou, 2007; Stauffer et al., 2014; García Gil et al.,
2022). Since the temperature of the re-injected water is dif-
ferent from that of the extracted (lower in the heating and
higher in the cooling case), this results in thermal plumes in
the aquifer that propagate downstream along the groundwa-
ter flow direction. If these plumes reach the extraction wells
of neighboring downstream GWHPs, this can result in ei-
ther negative or positive thermal interference (Perego et al.,
2022). Figure 1 provides an overview of potential thermal in-
terferences that can occur between neighboring systems, de-
picting scenarios where the operation of downstream systems
can be either degraded (negative interference) or enhanced
(positive interference).

It is also important to recognize that GWHPs have a ther-
mal impact on groundwater, which serves as a vital source
of drinking water in many places (e.g. Blum et al., 2021).
To mitigate the aforementioned negative interactions and im-
prove the efficiency and sustainability of thermal ground-
water use, resource management strategies need to be im-
plemented (Epting et al., 2020). This includes optimizing
the design, particularly well placement, and operation of
GWHP systems, since the propagation of thermal plumes is
affected by injection well locations, system operation (pump-
ing rates), and aquifer characteristics. For example, optimal
well placement can minimize negative thermal interference
between neighboring GWHPs (Halilovic et al., 2022a) or
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Figure 1. Possible thermal interference (interactions) between neighboring GWHP systems.

even maximize their positive interference (García-Gil et al.,
2020). Hence, optimization of multiple neighboring systems
plays an important role in urban planning strategies aimed at
enhancing sustainability. In addition, optimization of GWHP
systems is crucial for managing groundwater resources and
maintaining the current state of groundwater, i.e. prevent-
ing adverse changes in its physical, chemical, and biologi-
cal properties. Furthermore, it is essential to ensure adequate
spacing between wells within the same GWHP to prevent
hydraulic and thermal breakthroughs (Böttcher et al., 2019).
Thus, optimization of individual systems is also important
to maximize their efficiency and sustainability. Optimization
of individual GWHP systems and concurrent optimization
of multiple neighboring systems are challenging due to the
complexity of the resulting optimization problems and the
necessity for novel and efficient optimization approaches to
solve them.

This paper presents a comprehensive overview of opti-
mization approaches for the design and operation of GWHP
systems. The approaches are critically evaluated and com-
pared based on several criteria, and a novel classification
scheme is introduced to effectively categorize these ap-
proaches. Furthermore, the current status of the approaches
found in the literature is presented and possible future re-
search directions are discussed.

2 Simulation models

GWHP systems affect the groundwater body both hydrauli-
cally and thermally (García Gil et al., 2022), which can

also affect its chemical and biological conditions to a mi-
nor degree (Blum et al., 2021). The hydraulic head increases
around injection wells and decreases around extraction wells,
which also changes the hydraulic gradient and groundwater
flow patterns. Thermal impacts are present due to the previ-
ously described thermal plumes. To analyze these impacts
of GWHP systems on groundwater conditions, simulation
models are commonly used. For a particular system design
and operation, a simulation model can quantify its impacts
on groundwater and, based on that, analyze the performance
of the system. Therefore, simulation models play a crucial
role for the computation of the resulting groundwater tem-
perature field and serve as an integral component within the
optimization procedures.

These simulation models generally fall into three cat-
egories: numerical, analytical, and data-driven. Numerical
models use partial differential equations (PDEs) to describe
the underlying physical phenomena, i.e. groundwater flow
and heat transport in aquifers. The resulting system of PDEs
can be solved with general PDE solving software or com-
putational fluid dynamics (CFD) software, but there are also
several software packages that include specialized domains
of numerical simulation for shallow geothermal resources,
such as: FEFLOW (Diersch, 2014) – based on the finite ele-
ment method (FEM) or PFLOTRAN (Hammond et al., 2012)
– based on the finite volume method (FVM). Numerical mod-
els can incorporate various complex subsurface conditions,
including spatially heterogeneous groundwater parameters
(e.g. hydraulic conductivity) and conditions (e.g. velocity,
temperature, hydraulic head), complex boundary conditions,
coupled physical processes, multiple subsurface layers, etc.,
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while simultaneously simulating thermal and hydraulic ef-
fects of GWHP systems on the groundwater body. Therefore,
they are closest to reality given sufficient quality of input
data, but are generally computationally expensive.

The second category of models uses analytical formulas
to approximate numerical solutions and is commonly ap-
plied to estimate thermal plumes associated with smaller
GWHPs, whose energy consumption is less than 45 000 kWh
per year (Ohmer et al., 2022). Due to their analytical na-
ture, these models offer significant computational advan-
tages over numerical models. In Pophillat et al. (2020) three
prominent analytical models for estimating GWHP ther-
mal plumes were analyzed and compared. These models in-
clude the radial heat transport model (RHM) (Guimerà et al.,
2007), the linear advective heat transport model (LAHM)
(Kinzelbach, 1992), and the planar advective heat transport
model (PAHM) (Hähnlein et al., 2010). The authors con-
cluded that although analytical solutions are less accurate
compared to numerical models, they still have value for eval-
uating the thermal impact of GWHPs. Analytical solutions
are particularly useful for performing initial assessments of
potential negative interference between neighboring GWHPs
(Pophillat et al., 2020).

Finally, data-driven models are gaining popularity in this
area of research, primarily due to the emergence of ma-
chine learning. A common example is the use of neural net-
works (NNs) to predict thermal plumes (Russo et al., 2014;
Leiteritz et al., 2022; Davis et al., 2023). Data-driven mod-
els, such as NNs, offer the advantage of fast evaluation, but
rely on extensive training data and require additional time
for the training process. Acquiring this training data is of-
ten challenging due to the limited measurement and moni-
toring of hydrogeological data. One possible solution is the
use of physics-informed neural networks (PINNs) that inte-
grate physical laws driven by PDEs, mitigating the need for
extensive training data (Raissi et al., 2017).

3 Optimization of GWHPs

This section provides a comprehensive analysis of two key
aspects related to the optimization of GWHP systems. First,
in Sect. 3.1, the underlying optimization problems are dis-
cussed. Second, in Sect. 3.2, a detailed overview of the ap-
proaches for solving these optimization problems is pro-
vided. In the following section, we present a generalized
problem related to the optimization of GWHP systems,
which prepares the way for further analysis in subsequent
sections.

3.1 Optimization problems

The high-level optimization problem concerning GWHP sys-
tems can be formulated as follows:

min
xd,xo

fobj (xd,xo)= α1 · fcost (xd,xo)+α2 · fenv (xd,xo) (1a)

subject to Fsim (xd,xo)= 0 (1b)
g (xd,xo)≤ 0 (1c)
h(xd,xo)= 0 (1d)

where xd is the vector of optimization variables related to
the design of GWHP system(s), xo is the vector of optimiza-
tion variables related to the operation of GWHP system(s),
fobj is the objective function to be minimized, fcost is the
function describing technical costs, fenv is the function de-
scribing negative environmental impacts, α1 and α2 are the
weighting factors, Fsim is the simulation model in a resid-
ual form, g are the inequality constraints, h are the equality
constraints.

In this generalized problem, we differentiate between two
types of optimization variables: design variables xd and op-
erational variables xo. An example of design variables are
the number and spatial layout of GWHP wells, while an ex-
ample of operational variables are the pumping rates of each
well. The design variables are constant in time, whereas the
operational variables are usually time-dependent.

The objective function fobj contains two parts: fcost, ac-
counting for the technical costs of GWHP systems, and
fenv, accounting for the negative environmental impacts. The
term fcost can represent various costs associated with the in-
stallation and operation of GWHPs, which can be reduced
through different means, such as proper sizing of systems (re-
duced investment costs) or optimal operation of systems (in-
creased efficiency and lifetime). On the other hand, the term
fenv covers different environmental categories, such as neg-
ative impacts on groundwater or CO2 emissions indirectly
caused by the operation of GWHP systems. It should be
noted that environmental considerations are usually incorpo-
rated into the problem through constraints and not directly
within the objective function.

The simulation model Fsim (see Sect. 2) that describes the
subsurface phenomena is incorporated into the optimization
as a single or multiple equality constraints. This model can
be of any type discussed previously: numerical, analytical,
or data-driven, and it can also have an explicit form, such
as PDEs or algebraic equations, or an implicit ”black-box”
form, such as numerical simulation tools or NNs.

In addition to the simulation model, other inequality g or
equality h constraints may be present in the optimization
problem. These can be technical constraints, such as upper
and lower limits on pumping rates, regulatory constraints,
such as the maximum allowed change in groundwater tem-
peratures, or any other additional constraints.

Depending on how certain elements are specified in the
generalized problem (Eq. 1), the resulting optimization prob-
lems can be classified according to different criteria:

– Optimization variables: if the only optimization vari-
ables are the design parameters xd and the operation
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of the system(s) is predefined, i.e. xo is fixed, the prob-
lem (Eq. 1) becomes a design optimization problem. On
the other hand, the problem becomes an optimal control
problem when the system design is specified and the
operating parameters xo are the optimization variables.
Finally, simultaneous optimization of the design and op-
eration of GWHP systems is possible, i.e. considering
both xd and xo as optimization variables. This gener-
ally leads to improved optimal solutions since there are
more degrees of freedom to be optimized, but the result-
ing problems are usually more difficult to solve due to
increased problem complexity (e.g. from linear to non-
linear).

– Objective function: in problem (Eq. 1), the objective
function fobj is a weighted sum of technical costs fcost
and quantified negative environmental impacts fenv.
Setting one of the weights α to 0, the problem becomes
either a purely economic or an ecological optimization
problem, i.e. a single-objective optimization problem.
If both weighting factors are kept positive, then both
the cost and the environmental impact are minimized si-
multaneously and the problem becomes a type of multi-
objective optimization. This means that by changing the
values of α1 and α2, different Pareto-optimal solutions
are obtained (Marler and Arora, 2010).

– Application: the application types can be divided into
two main groups: optimization of a single stand-
alone system and optimization of multiple neighboring
GWHP systems. The application type directly changes
the format of the optimization variables and the ob-
jective function. In addition, different applications may
involve different optimization constraints, such as the
threshold for negative interference between neighboring
systems in the case of optimizing multiple systems.

– Simulation model: in the mathematical sense, the choice
of simulation model Fsim fundamentally changes the
type of the optimization problem. These optimization
problem types belong to different branches of optimiza-
tion and therefore require corresponding optimization
approaches to be solved efficiently. For this reason, the
entire following section is dedicated to the optimization
approaches for the problem (Eq. 1).

3.2 Optimization approaches

In this study, the term “optimization approach” is consid-
ered to encompass not only the specific methodology used
to solve a given optimization problem, such as the choice of
an algorithm, but also the way in which the problem is for-
mulated, which includes the selection of a groundwater sim-
ulation model. The classification of optimization approaches
is shown in Fig. 2, where four different classes are identi-
fied. The categorization is based on the simulation model

Figure 2. Proposed classification of the optimization approaches.

used, whether it is a PDE model or a simplified model, and
the optimization algorithm employed, either gradient-based
or derivative-free algorithms. In the following, each of these
four classes is explained and references to relevant literature
sources are provided.

Class I comprises optimization approaches where the
simulation model is a numerical PDE model, and the op-
timization is performed using gradient-based algorithms.
These approaches are referred to as PDE-constrained opti-
mization (PDECO) problems, which are recognized as the
most mathematically complex problems of the four classes
considered. The complexity arises due to the multidisci-
plinary nature of these problems, necessitating expertise in
several areas, including computational optimization, func-
tional analysis, and numerical analysis. For example, state-
of-the-art groundwater simulation tools usually lack the au-
tomatic provision of gradient information, requiring users
to estimate gradients manually. There are two main meth-
ods to solve this problem: automatic differentiation of ex-
isting simulation tools (Naumann, 2011) or the develop-
ment of custom numerical simulators within frameworks
such as Firedrake (Rathgeber et al., 2017) and FEniCS
(Logg et al., 2012), which can automatically provide the re-
quired gradients. Therefore, a comprehensive understanding
of PDE solving is essential in the initial stages of develop-
ing a Class I approach. Various strategies exist for solving
PDECO problems, including full-space and reduced-space
methods, as well as discretize-then-optimize and optimize-
then-discretize approaches (Hinze et al., 2008). For more in-
formation on PDECO, the reader is referred to the books by
Hinze et al. (2008) and Tröltzsch (2010).

Class II includes approaches that utilize simplified mod-
els for groundwater simulation and employ gradient-based
optimization algorithms to solve the underlying optimiza-
tion problems. In this context, the simplified models primar-
ily take the form of analytical models (see Sect. 2). These
models are expressed through analytical formulas, allow-
ing for direct integration into the optimization problem. The
conceptualization of the overall optimization problem deter-
mines the resulting problems, which typically correspond to
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well-established types of mathematical programming (op-
timization) problems, such as linear programming (LP),
mixed-integer linear programming (MILP), quadratic pro-
gramming (QP), and similar types. These problems are ex-
tensively studied in the optimization community, and con-
sequently, efficient algorithms and solvers (software imple-
mentations of the algorithms) are readily available. Compre-
hensive information on these types of optimization problems
can be found in numerous literature sources, including the
books by Nocedal and Wright (1999), Schrijver (1998) and
Bonnans et al. (2006).

Class III encompasses approaches that combine PDE sim-
ulation models with derivative-free optimization (DFO) algo-
rithms. This form of optimization is commonly referred to as
simulation-based optimization, where the simulation model
is treated as a black-box, meaning that only the inputs and
outputs of the simulator are observed and used by the op-
timization algorithm to guide the optimization process. As
a result, the term black-box optimization (BBO) can also
be used, which refers to optimization problems where ei-
ther the objective function or some constraints are treated as
black-boxes. However, it is important to note that the black-
box in BBO is not limited to numerical simulation mod-
els. For instance, Class IV also falls under the umbrella of
BBO. Furthermore, the terms BBO and DFO are closely in-
terconnected and can be used interchangeably in certain con-
texts. These distinct terminologies have emerged over time,
highlighting different aspects: the conceptual characteristics
of BBO, and the algorithmic features of DFO. DFO algo-
rithms, as the name suggests, do not rely on derivative infor-
mation during optimization iterations to determine optimal
solutions; instead, they use only the values of the objective
function and constraints. These algorithms include: heuristic
methods, e.g. genetic algorithms, particle swarm optimiza-
tion, simulated annealing, etc. (Bozorg-Haddad et al., 2017);
direct search methods, e.g. MADS algorithm (Le Digabel,
2011); and model-based methods, e.g. model-based trust-
region (Conn et al., 2000). For more detailed information on
DFO and BBO, interested readers are referred to Audet and
Hare (2017) and Conn et al. (2009).

Class IV comprises optimization approaches that involve
the coupling of simplified groundwater simulation models,
such as analytical models or NNs, with DFO algorithms.
Similar to Class III, Class IV falls into the DFO and BBO
branches of optimization. Consequently, the same or similar
optimization algorithms can be applied to both classes. The
main difference between the two classes lies in the fidelity of
the simulation models used. Class III uses high-fidelity mod-
els, while Class IV relies on low-fidelity models. Thus, the
computational cost associated with evaluating potential solu-
tion candidates during optimization iterations is significantly
lower in Class IV. It is important to note that Class IV has
similarities to situations where model-based DFO algorithms
are applied in Class III. The difference is that the approx-
imate models in Class III are constructed dynamically dur-

ing the optimization iterations, based on evaluations of the
PDE model. In contrast, in Class IV, the simplified models
are predefined and remain constant throughout the optimiza-
tion process.

Finally, it should be mentioned that the four introduced
classes do not encompass all conceivable approaches, since
combined approaches also exist. For example, the solution
obtained from Class II can serve as an initialization for the
optimization process in Class I. However, within the context
of this study, the division into four distinct classes seems both
logical and practical, since there are substantial differences
between these classes. The following section reviews previ-
ous research studies on the optimization of GWHP systems.

3.2.1 Current status of the approaches used for GWHP
systems

Despite the increasing importance of GWHP optimization as
a research area, the number of existing studies on this topic
remains limited. Park et al. (2020) propose a simulation-
based optimization approach to optimize pumping rates for
a single GWHP system. The approach couples a numerical
groundwater simulation model with a genetic optimization
algorithm. Furthermore, the same approach was extended in
Park et al. (2021) to optimize both well locations and pump-
ing rates within a single system. Since the approach in these
two studies uses a PDE simulation model along with a DFO
algorithm, it falls under Class III of the proposed classifica-
tion.

To date, only one research study has been identified that
applies the approach of Class I, i.e. the PDECO framework.
This study (Halilovic et al., 2022a) introduces a novel ap-
proach for concurrently optimizing the well locations of mul-
tiple neighboring systems. The approach was illustrated us-
ing a case study with ten systems, where the optimization ob-
jective is to minimize negative interactions between systems
and maximize the overall efficiency of all systems. The pro-
posed approach uses the adjoint method to efficiently com-
pute gradients from the numerical simulation model, which
are required by the optimization algorithm.

There is also only one research study that implements the
approach belonging to Class II. In Halilovic et al. (2023), the
authors introduce an approach that integrates an analytical
groundwater simulation model directly into the optimization
problem. Specifically, the analytical model used to calculate
thermal plumes is the LAHM model (Kinzelbach, 1992) and
the resulting optimization problem is formulated as an MILP
problem. The study applies this approach to optimize the lo-
cations of systems and their associated wells within an ur-
ban area comprising 56 potential systems. The objective is
to satisfy relevant regulations while maximizing heat extrac-
tion from the aquifer. An open-source implementation of the
proposed approach can be accessed at Halilovic and Böttcher
(2022).
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Figure 3. Qualitative comparison of the optimization approaches.

No research studies have been identified that apply the ap-
proach of Class IV, which involves the combination of sim-
plified models with DFO algorithms. It should be noted that
other studies on GWHP optimization exist, focusing on as-
pects such as optimizing the components of a heat pump or
determining optimal control strategies. However, these stud-
ies do not consider underground processes and are therefore
outside the scope of this work. Furthermore, there are other
research studies (e.g. Zhou and Zhou, 2009; Lo Russo and
Civita, 2009; Gao et al., 2013) that address the optimal de-
sign or operation of GWHPs using methods such as scenario
comparison or sensitivity analysis. However, these methods
are not optimization methods, and as such, they are not fur-
ther discussed in the present study. In the subsequent sec-
tion, a comparative analysis is conducted between optimiza-
tion approaches, i.e. the identified four classes.

3.2.2 Comparison of the optimization approaches

The primary factors for comparing optimization approaches,
i.e. their respective classes, are the computational cost and
applicability criteria. Figure 3 shows a qualitative compari-
son of these classes, considering two dimensions. The verti-
cal axis represents the computational cost required to solve
optimization problems with the approaches of the respective
class. The computational cost of an approach is of major im-
portance, since in practical planning procedures a relatively
fast solution is required. Moreover, the computational cost
increases proportionally with the number of optimization pa-
rameters (variables) and the size of the simulation domain.
Consequently, approaches with high computational costs are
limited to scenarios with a small number of optimization
parameters and small domains. As the number of optimiza-
tion parameters increases, inefficient approaches quickly be-
come computationally impractical, even when using high-
performance computers.

The horizontal axis represents the complexity (fidelity) of
the groundwater simulation model used in these approaches.
In the context of this study, the complexity of a simulation
model refers to the level of detail in representing physical
phenomena in the subsurface, such as the propagation of
thermal plumes, that are relevant to the optimization problem
under consideration. Assuming that the required input data,
such as groundwater parameters, are available in sufficient
quality, more complex simulation models are more accurate,
i.e. closer to reality. However, it is important to recognize
that data on groundwater parameters and conditions are of-
ten limited, which limits the use of complex models. Model
complexity is essentially limited by the available data, mak-
ing the use of highly complex models impractical in the ab-
sence of the necessary data. Nevertheless, simpler PDE simu-
lation models, such as a 2D model with uniform groundwater
conditions, are applicable even with restricted data availabil-
ity and generally offer higher accuracy than analytical mod-
els with identical input data. Since simulation models are an
integral component of optimization approaches, their com-
plexity directly affects the applicability of the obtained opti-
mization results. For instance, the results of an approach that
uses a complex groundwater simulation model provided with
high-quality data can be applied in practice with greater con-
fidence than the results of an approach based on less accurate
models.

In the context of computational costs, two key aspects de-
serve attention: the convergence rate and the computational
cost associated with the evaluation of each candidate solution
(a unique combination of optimization variables). The former
quantifies the number of optimization iterations required to
reach the optimal solution, while the latter describes the run-
time required for each model simulation used to evaluate the
current candidate solution within the optimization iterations.
In general, gradient-based algorithms significantly outper-
form derivative-free algorithms in terms of convergence rate
and therefore it is recommended to use gradient-based al-
gorithms when gradient information is readily available and
can be obtained at a reasonable cost (Audet and Hare, 2017;
Conn et al., 2009). As a result, Class II will almost always
outperform Class IV, and Class I will outperform Class III,
due to the use of gradient-based algorithms in the former
classes (I and II) and derivative-free algorithms in the lat-
ter classes (III and IV). Another disadvantage of Classes III
and IV is that derivative-free algorithms generally only find
near-optimal solutions and do not guarantee optimality (Au-
det and Hare, 2017). Furthermore, classes that use simplified
simulation models (II and IV) commonly have lower compu-
tational costs than classes that use PDE models (I and III).
This is a direct consequence of the computational costs as-
sociated with evaluating the simulation model during opti-
mization iterations. Considering all of the above, a hierarchy
of classes based on overall computational cost can be estab-
lished. Class II entails the least computational cost, while
Class III is the most computationally demanding. Classes I
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and IV fall somewhere in between, with Class IV usually
outperforming Class I, although the specific problem charac-
teristics (number of optimization variables, size of the simu-
lation domain, etc.) can also influence this comparative per-
formance. Despite the computationally demanding nature of
Class III, this class is frequently used in the simulation com-
munity owing to its user-friendly nature. By coupling stan-
dard standalone simulation software with an existing imple-
mentation of a DFO algorithm, typically an evolutionary al-
gorithm, users can develop and apply such approaches rela-
tively quickly.

In terms of the complexity/fidelity of the simulation model
used in optimization approaches, it is evident that the classes
employing PDE models (I and III) outperform those employ-
ing simplified models (II and IV). The complexity of the sim-
ulation model directly influences the validity of the optimiza-
tion results, thereby affecting the applicability of the corre-
sponding classes. Consequently, it is reasonable to use ap-
proaches from different classes for different application sce-
narios. For instance, the classes with more complex models (I
and III) are suitable for detailed planning of large GWHP
systems, while the other two classes (II and IV) can be ap-
plied for initial assessments of potential negative interactions
between neighboring systems or estimations of geothermal
potential on a larger scale.

4 Discussion and outlook

While there are a limited number of research studies (see
Sect. 3.2.1) that address the optimization of GWHP systems,
the research area remains insufficiently explored, which pro-
vides an opportunity to pose new research questions and
develop novel optimization approaches. The existing ap-
proaches in this field have certain limitations and do not
cover all relevant applications. For example, the approach of
Class III presented in Park et al. (2020, 2021) is limited by
the number of optimization variables it can efficiently han-
dle, since the computational cost increases exponentially as
the number of variables increases. Similarly, the only study
(Halilovic et al., 2022a) using the approach of Class I does
not cover all relevant aspects of GWHP optimization, such as
optimizing the number of wells in a large GWHP system, op-
timizing pumping rates, or simultaneously optimizing pump-
ing rates and well locations.

Class I (PDECO) seems to be the most promising among
the four classes because it uses PDE simulation models and
has lower computational costs compared to Class III. Here,
the complexity level of the PDE model can be selected based
on data availability, as discussed in Sect. 3.2.2. However, this
class presents significant challenges due to its mathemati-
cal complexity and multidisciplinary nature. To overcome
the challenges associated with developing new approaches
within Class I and facilitate their further advancement, col-

laboration within multidisciplinary teams will be required in
the future.

The limitations of the classes that use simplified sim-
ulation models (Class II and IV) are directly related to
the limitations of the simulation models employed. Conse-
quently, improving the simplified simulation models directly
enhances the approaches within these classes. The main goal
is to maintain the simulation models as fast and simple to
evaluate while enhancing their closeness to reality. By fur-
ther improving the accuracy of these simplified models, their
scope can be extended to new applications, such as detailed
design of large GWHP systems comprising multiple extrac-
tion and injection wells. Moreover, the simplified models are
well-suited for integration into energy system optimization
models (ESOMs), where GWHP systems play an important
role (Halilovic et al., 2022c). This is because the coupling of
a numerical groundwater simulation with an ESOM is im-
practical and computationally demanding (Halilovic et al.,
2022b). By using simplified models, the computational cost
can be significantly reduced while still capturing the essential
aspects of GWHP systems in the broader context of energy
system optimization. This further enables the development of
automated urban planning tools, which will increase sustain-
ability.

Another important consideration in GWHP optimization
is the inherent uncertainty associated with subsurface pa-
rameters and conditions. The complex nature of aquifers
and the limited availability of measurement and monitor-
ing data contribute to the presence of uncertainties (Gelhar
et al., 1992). Incorporating these uncertainties into optimiza-
tion approaches leads to stochastic programming problems
(Birge and Louveaux, 2011), which constitute a separate field
of optimization. The inherent stochastic nature of these prob-
lems significantly increases the complexity and computa-
tional cost compared to deterministic problems. Stochastic
problems are often solved with modified deterministic op-
timization approaches or by using a deterministic equivalent
of the stochastic problem (Hannah, 2015; Li and Grossmann,
2021). By minimizing the computational cost of determinis-
tic optimization approaches, researchers can better address
the challenges of stochastic problems and develop efficient
approaches to such problems. Therefore, it is crucial for the
deterministic optimization approaches discussed in this study
to reduce their computational cost. Several strategies can be
employed to reduce the computational cost of the existing
approaches. For instance, the Class III approach (Park et al.,
2020) may improve its efficiency by using model-based algo-
rithms instead of a genetic algorithm. Similarly, the Class I
approach (Halilovic et al., 2022a) can improve its efficiency
by using suitable (re)meshing techniques or by fine-tuning
optimization algorithm parameters.

It is important to note that the classification and compari-
son of optimization approaches presented in Sect. 3.2 is not
limited to the optimization of GWHP systems, but can be
applied to any optimization problem where the underlying
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physical phenomena are described by PDEs. Moreover, the
approaches developed for GWHP systems (see Sect. 3.2.1)
and their future advancements or new approaches in this
area can be extended to other applications. First, they can
be extended to applications that share the same underlying
physics, such as optimization of aquifer thermal energy stor-
age (ATES) systems, calibration of numerical hydro-thermal
groundwater simulation models, and optimization of obser-
vation well placement. Second, these approaches can be ex-
tended to other areas of shallow geothermal energy, including
optimization of vertical and horizontal closed-loop shallow
geothermal systems and optimization of borehole thermal en-
ergy storage (BTES) systems. Lastly, these approaches can
be further extended to areas involving different physical phe-
nomena, such as the optimization of wind farms or tidal
power plants. Nevertheless, it is important to note that ad-
vances in these other areas, particularly in the area of shal-
low geothermal energy, can reciprocally contribute to the
improvement of optimization approaches for GWHP sys-
tems. Namely, optimization approaches and principles used
in other areas have the potential to be adapted and applied to
GWHP systems.

5 Conclusions

This paper presents a comprehensive analysis and overview
of approaches for optimizing the design and operation of
GWHP systems. First, the optimization problems arising
from this research and practice question were investigated,
using a generalized problem as a basis. Then, optimization
approaches were identified and compared, and a novel clas-
sification of the approaches is proposed. The identified ap-
proaches were divided into four distinct classes based on
the type of groundwater simulation model used (PDE-based
or simplified models) and the optimization algorithm ap-
plied (gradient-based or derivative-free). Finally, the paper
includes a thorough review of the existing approaches in the
literature, highlighting their limitations and outlining oppor-
tunities for future improvements.

Based on the analysis performed, several conclusions can
be drawn:

– Optimization approaches that rely on gradient-based
optimization algorithms are preferable, as they consis-
tently outperform derivative-free algorithms.

– The choice of a simulation model used in an optimiza-
tion approach has a significant impact on its applica-
bility. For example, approaches using PDE models are
more suitable for detailed design of large-scale GWHPs,
while simplified models offer practical advantages for
assessing the geothermal potential of large areas. How-
ever, it is important to note that the degree of model
complexity is limited by the availability of hydrogeo-
logical data.

– The existing research on GWHP optimization is limited,
with only a few studies addressing this topic.

– Existing approaches have certain limitations and do not
cover all relevant applications and research questions
in GWHP optimization. One of the main limitations is
the high computational cost, which limits the number
of optimization parameters and the size of the simula-
tion domain that can be effectively considered. In addi-
tion, some approaches are limited in applicability due
to the use of simplified groundwater simulation mod-
els. Moreover, applications such as optimizing the num-
ber and placement of wells in large GWHP systems or
simultaneous optimization of pumping rates and well
placements remain unexplored. Consequently, there is
an ongoing need to develop new and improve existing
approaches to address these limitations and fill the re-
search gaps.

– The efficient optimization approaches developed for
GWHP systems have the potential to be extended
to other shallow geothermal applications as well as
to other optimization problems where the underlying
physical phenomena are described by PDEs. At the
same time, approaches from other areas can be adapted
and used for GWHP optimization in the future.

Finally, this study can provide a valuable foundation for
researchers and practitioners involved in the management
and optimization of shallow geothermal energy systems. In
particular, it provides valuable insights and recommenda-
tions for the application and development of optimization ap-
proaches for GWHP systems. Despite its challenging nature,
optimization of GWHP systems is of utmost importance to
improve thermal management of groundwater and to unlock
the full potential and attractiveness of GWHP technology.
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4.2 Optimization using analytical models

As discussed in the previous section, the incorporation of groundwater-related factors, which include ground-
water conditions and interactions between GWHP systems and groundwater, into an optimization framework
can be achieved either through the use of numerical PDE models or simplified models. This section is dedicated
to the latter case and focuses on optimization approaches that use analytical models to describe groundwater
conditions. In this context, the section includes Publications 3 [95] and 4 [33], which present two new op-
timization approaches, referred to as Approach I and Approach II, respectively. These approaches belong to
Class II within the classification taxonomy introduced in Section 4.1, as shown in Figure 4.1.

Approach I represents a novel methodological framework developed for optimizing the spatial arrangement
of GWHP systems and associated wells within a designated area. The optimization objective is to maximize
the thermal potential of groundwater, i.e. the heat extracted from the aquifer, while complying with a set
of technical and regulatory constraints. These constraints include spatial limitations, such as the minimum
prescribed spacing between wells within the same GWHP system, and regulations to avoid negative thermal
interactions between neighboring systems. The inclusion of the latter consideration in the optimization process
is based on an analytical model for simulating thermal plumes in groundwater. This model is an extended
version of the original linear advective heat transport (LAHM) model [96].

Approach II is another developed methodological framework for comprehensive optimization of GWHP
systems. In this approach, the scope of optimization is extended beyond the spatial arrangement of wells to
include the sizing of extraction-injection well doublets, i.e. the pumping rates of wells. That is, Approach II
treats pumping rates as optimization variables, in contrast to Approach I, which uses predefined pumping rates
based on heating demand estimates. The optimization objective of Approach II is to maximize the technical
potential of thermal groundwater use within the designated area. This objective translates into maximizing the
total amount of groundwater extracted from the area.

While Approach I focuses primarily on thermal groundwater aspects that include thermal interactions be-
tween neighboring systems, Approach II focuses on hydraulic groundwater considerations. Consequently, the
constraints in Approach II include technical and regulatory conditions associated with the hydraulic aspects
of GWHP operation, such as restrictions on groundwater drawdown in extraction wells and groundwater level
rise in injection wells. Furthermore, the available space for GWHP installations is limited primarily by the
propagation of thermal plumes in Approach I and by the hydraulic footprint of GWHP wells in Approach II. In
the latter, hydraulic considerations are integrated into the optimization process by using analytical expressions
derived from the thermal aquifer potential (TAP) method [45].

Figure 4.1 Approaches I and II in the classification scheme from Section 4.1

Both optimization approaches have been successfully demonstrated using real case studies involving areas
within the city of Munich. The approaches can be used in various applications, such as active thermal
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groundwater management, assessment of shallow geothermal potential, or strategic planning of 4th and 5th

generation district heating systems. To support their practical usage, implementations (source code) of the
approaches along with working examples are made openly available at [97] and [98] for Approach I and II,
respectively. Approach I has already been integrated into practical applications by the Department of Climate
and Environmental Protection (RKU) of the City of Munich in two ways: (1) using the extended LAHM model
from Publication 3 within a GIS-based tool [99] for monitoring and licensing of GWHP installations, and (2) for
assessing the city-wide thermal potential of groundwater, in particular for the preparation of the city’s shallow
geothermal potential map.
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A B S T R A C T

Increasing numbers of groundwater heat pump systems in urban areas can lead to negative thermal interference
between neighboring systems. These systems and their associated wells can be optimally positioned so as to
minimize such interactions and maximize the use of the shallow geothermal potential. This paper presents
a new method that determines the optimal positioning of groundwater heat pumps and their wells by
concurrently considering relevant technical and regulatory constraints. The method is based on an improved
analytical model for estimating thermal anomalies in groundwater, i.e. thermal plumes, and integer linear
programming optimization. The method is tested using a neighborhood with 56 parcels, i.e. potential systems,
in two optimization cases: steady and dynamic. In both cases, the method successfully determines both the
systems to be installed and the optimal locations of the wells such that relevant spatial regulations are satisfied
and the energy extracted from the aquifer is maximized. The dynamic case is somewhat more restrictive, as 43
of 56 potential systems are installed, compared to 44 in the steady case. This method represents a significant
improvement over existing ones, since it is able to efficiently optimize the locations and well layouts of a large
number of systems simultaneously.

1. Introduction

The heating and cooling sector in the European Union relies mainly
on fossil fuels [1] and as such requires further decarbonization in order
to achieve the CO2 neutrality target by 2050 [2]. Shallow geothermal
energy (SGE) systems are a highly promising technology that can be
used to increase the share of renewable resources in this sector [3,4].
There are two types of SGE installation [5]: closed-loop systems or
ground source heat pumps (GSHP) and open-loop systems or ground-
water heat pumps (GWHP). In GSHP systems, a heat carrier fluid
circulates in a closed loop and transfers the heat from the ground to
the heat pump [6], while GWHP systems use groundwater directly to
extract heat from an aquifer [7]. These systems pump groundwater
from extraction wells and return it to the same aquifer at injection wells
once the heat has been exchanged within the heat pump.

The efficiency of GWHPs is relatively high compared to other heat-
ing systems [8] and depends primarily on the temperature of the
pumped groundwater [9]. The efficiency is particularly high in ur-
ban areas, where groundwater temperatures are elevated due to the

∗ Corresponding author.
E-mail address: smajil.halilovic@tum.de (S. Halilovic).

subsurface urban heat island (SSUHI) effect [10–12]. This favors the
further diffusion of the technology in cities [13,14]. However, an
increased number of GWHP installations can lead to negative thermal
interference between neighboring systems [15]. Such interference oc-
curs when a thermal plume, i.e. thermally altered groundwater, from
the injection well of an upstream system reaches the extraction well
of a neighboring downstream system, which can significantly affect
the efficiency and operation of the downstream system [16]. At the
same time, it is important to maintain sufficient internal distance be-
tween the extraction and injection wells of the same system to prevent
thermal breakthroughs [17]. Active resource management is required
to avoid negative interference between GWHP systems and maximize
the potential and sustainability of the shallow geothermal resource
groundwater [18].

A potential assessment is required for quantifying the opportunities
and limitations of GWHPs in the area of interest and also represents
the first step in resource management. It is necessary to distinguish
between the theoretical potential – the total amount of available energy
– and the technical potential – the proportion of the total energy that
can be used by GWHPs [19]. Numerous research studies have evaluated
geothermal aquifer potentials in various locations around the world,

https://doi.org/10.1016/j.renene.2023.119148
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Nomenclature

Latin letters

𝐵 Aquifer thickness [m]
𝐶𝑂𝑃 Coefficient of performance
𝐶m Volumetric heat capacity of medium [J/m3 K]
𝐶w Volumetric heat capacity of water [J/m3 K]
𝑑ext Decision variables for extraction wells
𝑑inj Decision variables for injection wells
𝐸ext Heat extracted from groundwater [J]
𝑀 Total number of time steps
𝑚 Linearization parameter [–]
𝑁 Number of injection wells
𝑁𝑝 Number of parcels
𝑃 Set of all parcels/plots
𝑞 Pumping rates [m3/s]
𝑅 Retardation factor [–]
𝑟 Radial distance factor [m]
𝑇 Groundwater temperature [K]
𝑡 Time [s]
𝛥𝑇 Groundwater temperature change/difference

[K]
𝛥𝑡 Time step length [s]
𝛥𝑇inj Difference between inlet and natural ground-

water temperature [K]
𝛥𝑇max Maximum groundwater temperature change

[K]
𝑡𝑀 Final time [s]
𝑇n Natural groundwater temperature [K]
𝑣𝑎 Seepage velocity [m/s]
𝑥, 𝑦 Coordinates of the observed point [m]
𝛥𝑥 Spatial distance in 𝑥 direction [m]
𝛥𝑦 Spatial distance in 𝑦 direction [m]

Greek letters

𝛽L Longitudinal dispersivity [m]
𝛽T Transverse dispersivity [m]
𝛥min Regulatory minimum distance [m]
𝛥𝑖,𝑗 Euclidean distance between points 𝑖 and 𝑗 [m]
𝜔 Response factor
𝜃 Continuous optimization variables
𝜀 Porosity [–]

Subscripts and superscripts

ext Extraction
inj Injection
max Maximum
min Minimum
𝑗 Counter for extraction wells
𝑘, 𝑖 Counters for injection wells
𝑙 Counter for time steps
𝑝 Counter for parcels

including Switzerland [20,21], Spain [22], Australia [23], Finland
[24,25] and Germany [26]. When assessing the technical potential,
most of these studies do not consider possible negative interferences
between neighboring GWHPs. However, for a comprehensive estimate

of technical potential, it is necessary to take such interferences into
account, as they limit the space available for GWHP installations.

Several research studies have addressed the question of how to
manage, i.e. prevent or minimize, negative thermal interferences be-
tween GWHPs. García-Gil et al. [27] propose a relaxation factor for
new GWHP systems to improve the fairness and sustainability of ther-
mal groundwater use. Attard et al. [28] introduce thermal protection
perimeters around extraction wells of GWHPs to prevent negative in-
terferences. García-Gil et al. [29] define a balanced sustainability index
to quantify the sustainability of each GWHP, i.e. its potential to cause
negative interferences. These studies focus on how to better manage
the installation of individual systems, so as to reduce the probability of
negative interference with other systems. However, to fully maximize
the technical geothermal potential of a particular area, all associated
GWHPs should be considered and optimized cooperatively.

GWHP systems, i.e. their extraction and injection wells, can be op-
timally placed to avoid or minimize any negative interference and thus
maximize the technical potential. In addition, wells in a single system
can be optimally positioned to prevent hydraulic [30] and thermal
breakthroughs [17] within the system. However, there is only limited
literature that considers the optimal placement of GWHP wells [31].
Existing research studies typically focus on single GWHPs and compare
a few predefined well layouts based on numerical simulations: Zhou
and Zhou [32], Gao et al. [33] and Lo Russo and Civita [34]. This leads
to suboptimal well layouts, since the design possibilities are not as fully
explored as they are with numerical optimization methods. To date,
the only studies that use numerical optimization to determine optimal
GWHP well layouts are the works of Park et al. [35] and Halilovic et al.
[36]. In [35] the authors use a genetic optimization algorithm with
numerical groundwater simulations to optimize the well positions and
pumping rates of a single GWHP system. This approach is an extension
of the method from Park et al. [37], in which only the pumping rates
of an individual system are optimized. On the other hand, Halilovic
et al. [36] use gradient-based optimization to simultaneously determine
optimal well positions for multiple neighboring GWHP systems. The
underlying approach is based on adjoints for the efficient calculation
of gradients and numerical groundwater simulations. However, both
of these approaches [35,36] have their limitations when it comes to
optimizing GWHP well layouts. The first [35] is limited by the number
of optimization variables, i.e. the number of wells being optimized,
due to the use of genetic algorithms. These algorithms require a large
number of evaluations, which in this case are computationally intensive
numerical groundwater simulations. Therefore, this approach is not
suitable for the simultaneous optimization of well positions of multiple
neighboring GWHPs. The second approach [36] is not limited by the
number of wells considered and can be applied to multiple systems.
However, the limiting factor here is the size of the computational
domain, since the method requires a refined finite element mesh in
the areas where wells can be placed. Consequently, as the size of
the domain (area under consideration) increases, the computational
cost of each optimization iteration increases significantly. Moreover,
both approaches [35,36] are not yet adapted for determining the
optimal GWHPs that should be installed in a given area under certain
conditions, for instance, without negative interference. Thus, existing
methods are not suitable for maximizing the technical potential of large
areas.

The main aim of this paper is to present a new optimization method
that can overcome the identified limitations of existing methods. The
new method can optimize well locations of a large number, e.g. 100,
of GWHP systems simultaneously, i.e. it can minimize the negative
interference between all systems. The method can also be used to
determine the GWHPs to be installed and their well locations in a
given area without any negative interference above a certain thresh-
old, for instance 1 K. The proposed optimization method uses integer
linear programming with an upgraded analytical model for estimat-
ing the thermal plumes caused by GWHPs. This structure makes the
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new method significantly less computationally expensive than existing
methods, and it can therefore be applied to large areas. To demonstrate
its effectiveness, the method is used to maximize the technical potential
of a real-world urban region in the city of Munich, Germany. The
GWHPs to be installed are determined and their wells placed so as to
prevent negative interference and maximize the heat extracted from the
aquifer.

The paper is organized as follows. The proposed method and its
implementation are described in Sections 2 and 3, respectively. The
results are presented and discussed in Section 4, and a critical reflection
and outlook are given in Section 5. Finally, conclusions are presented
in Section 6.

2. Methodology

The overall methodology consists of two components: simulating
the impacts of GWHP on groundwater temperatures (Section 2.1) and
optimizing the GWHP well layouts (Section 2.2).

2.1. Analytical computation of the groundwater temperature field

Numerical models can be used to assess the impact of GWHPs
by computing the resulting thermal plumes. These models are time
consuming to build and computationally expensive to run [38]. Over
the years, multiple analytical solutions have been developed to predict
the thermal plumes caused by GWHP systems. Pophillat et al. [38]
compared numerical simulations with three analytical models: radial
heat transport, linear advective heat transport and planar advective
heat transport. The authors concluded that the considered analytical
solutions were sufficient for a first-instance assessment of potential
thermal interferences between neighboring systems. In addition, an-
alytical models are more suitable for optimization processes, since
optimization usually requires numerous simulation runs, and analytical
models are significantly less computationally expensive than numerical
simulations. Due to the form of their equation, analytical models can
also be directly integrated into optimization models, which speeds up
the optimization process. Such integration is carried out in this paper,
using the linear advective heat transport model as an analytical solution
to predict the thermal plumes of GWHPs.

2.1.1. Linear advective heat transport model
The linear advective heat transport model (LAHM) is a 2D analytical

model used for the licensing of smaller systems (<45,000 kWh per
year) in the German state of Baden-Württemberg [39]. The model was
originally introduced in [40] and describes the heat propagation from
a single injection well considering background flow in a homogeneous
aquifer. The LAHM is defined as follows [41]:

𝛥𝑇 (𝛥𝑥, 𝛥𝑦, 𝑡) =
𝑞 ⋅ 𝛥𝑇inj

4𝜀𝐵 𝑣𝑎
√
𝜋𝛽T

exp
(𝛥𝑥 − 𝑟

2 𝛽L

) 1√
𝑟
erfc

( 𝑟 − 𝑣𝑎𝑡∕𝑅
2
√
𝑣𝑎𝛽L𝑡∕𝑅

)
, (1)

𝑟 =

√
𝛥𝑥2 + 𝛥𝑦2

𝛽L
𝛽T

, (2)

where: 𝛥𝑇 is the change in groundwater temperature caused by a
GWHP, i.e. the difference between the actual groundwater temperature
𝑇 and the natural (undisturbed) temperature 𝑇n; 𝛥𝑥 = (𝑥 − 𝑥𝑘) and
𝛥𝑦 = (𝑦 − 𝑦𝑘) are the distances of the observed point (𝑥, 𝑦) from
the injection well (𝑥𝑘, 𝑦𝑘) in 𝑥 and 𝑦 direction, respectively; 𝑡 is the
observation time, i.e. the time from the commencement of the ground-
water (re)injection; 𝑞 is the pumping rate of the injection well; 𝛥𝑇inj
is the difference between the inlet temperature and the undisturbed
groundwater temperature; 𝜀 is the porosity; 𝐵 is the aquifer thickness;
𝑣𝑎 is the seepage velocity; 𝛽T and 𝛽L are the transverse and longitudinal
dispersivity, respectively; 𝑟 is the radial distance factor; 𝑅 = 𝐶m∕(𝜀 ⋅𝐶w)
is the retardation factor, where 𝐶m and 𝐶w are the volumetric heat
capacities of the porous medium and water, respectively. It should
be noted that (1) only applies to the coordinate system in which the
𝑥-axis is in the direction of the groundwater flow and the 𝑦-axis is
perpendicular to the flow direction.

2.1.2. Spatial and temporal superposition
The LAHM in its original form (1) can only be used for a single

injection well, which has a constant pumping rate over the entire
observation period. Accordingly, the ‘‘original’’ LAHM cannot be used
to estimate groundwater temperature differences caused by multiple
wells or wells with pumping rates that vary over time. However, due
to the linear relationship between 𝛥𝑇 and 𝑞 in (1) and since energy is
an additive and extensive variable [42], the model can be extended by
applying superposition principles. A similar approach was used in the
series of works [43–46] to extend analytical models used for estimating
temperature fields around borehole heat exchangers.

The LAHM can be applied to multiple wells using spatial superpo-
sition as follows:

𝛥𝑇𝑥,𝑦(𝑡, 𝑞𝑘=1...𝑁 ) =
𝑁∑
𝑘=1

𝛥𝑇𝑘(𝑥 − 𝑥𝑘, 𝑦 − 𝑦𝑘, 𝑡, 𝑞𝑘) , (3)

where 𝛥𝑇𝑥,𝑦 is the total temperature change at the observed point (𝑥, 𝑦)
caused by all wells; 𝛥𝑇𝑘 is the temperature change at the observed
point due to the well 𝑘 located at (𝑥𝑘, 𝑦𝑘) with pumping rate 𝑞𝑘; 𝑁
is the number of wells. Fig. 1(a) illustrates the principle of spatial
superposition in the case of two injection wells with the same constant
pumping rates.

The LAHM can also be extended to the dynamic case, in which
pumping rates vary over time, by applying temporal superposition. The
variable pumping rate of a single well can be regarded as a series of
pulses, i.e. subdivided into time steps with constant pumping rates,
similar to the approach in [43]:

𝛥𝑇 (𝛥𝑥, 𝛥𝑦, 𝑡, 𝑞𝑙=1...𝑀 ) =
𝑀∑
𝑙=1

(𝑞𝑙 − 𝑞𝑙−1) ⋅ 𝛥𝑇inj
4𝜀𝐵 𝑣𝑎

√
𝜋𝛽T

exp
(𝛥𝑥 − 𝑟

2 𝛽L

) 1√
𝑟

× erfc
( 𝑟 − 𝑣𝑎(𝑡𝑀 − 𝑡𝑙)∕𝑅
2
√
𝑣𝑎𝛽L(𝑡𝑀 − 𝑡𝑙)∕𝑅

)
, (4)

where 𝑀 is the total number of time steps; 𝑞𝑙 is the constant pumping
rate during the time step 𝑙 which runs from 𝑡𝑙−1 to 𝑡𝑙; (𝑡𝑀−𝑡𝑙) is the time
remaining until the final time 𝑡𝑀 ; 𝑡0 = 0 and 𝑞0 = 0. Fig. 1(b) shows
the principle of temporal superposition, applied to a single well with a
time-varying pumping rate.

The spatial and temporal superpositions described above can be
combined with one another so that the LAHM is able to calculate the
groundwater temperature anomalies caused by multiple wells whose
pumping rates, i.e. the extracted energy, vary over time:

𝛥𝑇𝑥,𝑦(𝑡, 𝑞1...𝑁,1...𝑀 ) =
𝑀∑
𝑙=1

𝑁∑
𝑘=1

𝑞𝑘,𝑙 𝜔
𝑡,𝑥,𝑦
𝑘,𝑙 (𝑥 − 𝑥𝑘, 𝑦 − 𝑦𝑘) , (5)

with:

𝜔𝑡,𝑥,𝑦𝑘,𝑙 (𝑥 − 𝑥𝑘, 𝑦 − 𝑦𝑘) =
𝛥𝑇inj

4𝜀𝐵 𝑣𝑎
√
𝜋𝛽T

exp
(𝛥𝑥 − 𝑟

2 𝛽L

) 1√
𝑟

×
[
erfc

( 𝑟 − 𝑣𝑎(𝑡 − 𝑡𝑙−1)∕𝑅
2
√
𝑣𝑎𝛽L(𝑡 − 𝑡𝑙−1)∕𝑅

)
− erfc

( 𝑟 − 𝑣𝑎(𝑡 − 𝑡𝑙)∕𝑅
2
√
𝑣𝑎𝛽L(𝑡 − 𝑡𝑙)∕𝑅

)]
, (6)

where 𝜔𝑡,𝑥,𝑦𝑘,𝑙 is the response factor of the well 𝑘 at the observed point
(𝑥, 𝑦) at time step 𝑙 ∈ {1,… ,𝑀} with reference to the current time
step 𝑡 ∈ {1,… ,𝑀} and 𝑙 ≤ 𝑡; 𝑞𝑘,𝑙 is the constant pumping rate of the
well 𝑘 during the time step 𝑙, and the other parameters are the same as
previously defined. Fig. 1(c) shows the combined superposition in the
case of two wells with time-dependent pumping rates.

2.2. Optimization

The main optimization goal is to maximize the spatial thermal
aquifer potential, i.e. to place those GWHPs that are able to extract
the maximum energy in a given region such that there is no negative
interference between them in terms of the defined regulations. The
optimized placement of GWHPs and their wells is based on the selection
of predefined (potential) well locations.
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Fig. 1. Superposition principles: (a) Spatial superposition: (1) and (2) Individual temperature fields obtained for each well independently with the LAHM. (3) Resulting temperature
field when both wells are in operation, obtained with spatial superposition. (b) Temporal superposition: Temporal evolution of the temperature field, i.e. groundwater temperatures
after each of three time steps. The well has double the pumping rate in the second time step compared to the first and third time steps. (c) Spatial and temporal superpositions
combined: Temperature anomalies over time caused by two wells. Both wells have double the pumping rate in the second time step compared to the first and third time steps.

2.2.1. Definition of potential well locations
Potential well locations are determined in a preprocessing step

which considers legislative constraints, the existing building structure
and the direction of groundwater flow in the study area. The initial
spatial constraint of the chosen area is the minimum 3 m distance
between the wells and the plot borders and buildings. Buffer zones
are applied accordingly to clip the suitable well placement area within
a parcel (cf. Fig. 2). The placement areas of extraction and injection
wells are predefined by the direction of groundwater flow. In general,
it is beneficial to place the extraction well up-gradient and the injection
well down-gradient to avoid thermal recycling, which would reduce the
GWHP’s efficiency. The up-gradient and down-gradient areas are delin-
eated by dividing the area deemed suitable for well placement normally

to the groundwater flow direction in the centroid of the respective
polygon. The extraction wells are placed on the up-gradient border and
the injection wells on the down-gradient border within their specific
polygon at a constant distance of 5 m to each other. Therefore, the
preprocessing process enables the hydro-geologically and legally sound
generation of potential well locations that are suitable for optimization.

2.2.2. Selection of well locations
It is assumed that one GWHP corresponds to one parcel in the area

under consideration, with locations of potential wells being determined
in a preprocessing process (see Section 2.2.1). As there are multiple
potential well positions, there is a certain degree of freedom for each
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Fig. 2. Potential well locations with spatial and legal constraints.

GWHP regarding the spatial placement of the wells within the respec-
tive parcel. This means that the optimization process determines which
systems should be installed and where the respective wells should
be placed. The selection of GWHPs in the optimization process is as
follows:

• each GWHP has a predefined number of potential extraction and
injection wells,

• for a GWHP installation, one well pair is selected, i.e. one extrac-
tion and one injection well is selected,

• if GWHP is not installed, all of its potential wells are deselected,
• the selection of wells is modeled with binary optimization vari-

ables 𝑑𝑖: if 𝑑𝑖 = 1, the well 𝑖 is selected, otherwise 𝑑𝑖 = 0, and the
well is rejected.

Fig. 3 shows the concept by which GWHP wells are placed (selected).
Potential extraction and injection wells are shown on the left with
the corresponding optimization (decision) variables 𝑑ext,𝑗 and 𝑑inj,𝑖. An
example of a well selection for an installed GWHP is shown in the
right. In this case, the optimization variables have the following values:
𝑑ext,1 = 𝑑inj,1 = 𝑑inj,3 = 0 and 𝑑ext,2 = 𝑑inj,2 = 1. More details on optimal
well selection, i.e. the values of the decision variables, are given in
Section 2.2.3.

The pumping rate 𝑞𝑝 of each GWHP system, i.e. for each parcel 𝑝,
can be expressed using the binary optimization variables as follows:

𝑞𝑝 =
𝑁𝑝

inj∑
𝑖=1

𝑑inj,𝑖 𝑞𝑖 , (7)

where 𝑁𝑝
inj is the total number of potential injection wells on the parcel

𝑝; 𝑑inj,𝑖 ∈ {0, 1} is the decision variable for injection well 𝑖; 𝑞𝑖 is the
predefined pumping rate of the injection well 𝑖. If all decision variables
in (7) are set to 0, all injection wells are deselected and the pumping
rate of the GWHP is then also 0, which means that the system is not
installed. On the other hand, if some of the decision variables are 1,
the pumping rate of the GWHP is non-zero, which means it is installed.
Thus, it is sufficient to use binary decision variables rather than pump
rates as optimization variables in order to install or remove GWHP
systems. The binary decision variables can be incorporated into the
LAHM by introducing (7) into (5) as follows:

𝛥𝑇𝑥,𝑦(𝑡, 𝑞1...𝑁,1...𝑀 ) =
𝑀∑
𝑙=1

𝑁∑
𝑘=1

𝑑inj,𝑘 𝑞𝑘,𝑙 𝜔
𝑡,𝑥,𝑦
𝑘,𝑙 (𝑥 − 𝑥𝑘, 𝑦 − 𝑦𝑘) , (8)

𝑁 =
𝑁𝑝∑
𝑝=1

𝑁𝑝
inj , (9)

where 𝑁 is the total number of potential injection wells in the area
under consideration; 𝑁𝑝 is the number of parcels (GWHP systems) in
the area. The total temperature change of the groundwater is linear
with respect to the optimization variables 𝑑inj,𝑘, which is necessary to
ensure that the optimization problem remains linear.

2.2.3. Objective function and constraints
In order to formulate the optimization problem, the objective func-

tion and the constraints must be defined. The optimization goal is to
maximize the thermal energy obtained from the aquifer via GWHPs
by determining an optimal placement that complies with regulatory
conditions. The objective function is defined as follows:

𝐸ext =
𝑀∑
𝑙=1

𝑁∑
𝑘=1

𝑑inj,𝑘 𝑞𝑘,𝑙 ⋅ 𝛥𝑇inj ⋅ 𝐶w ⋅ 𝛥𝑡 , (10)

where 𝐸ext is the total heat extracted from the groundwater by all
GWPHs in the area under consideration and over the entire time
horizon, discretized in time steps of length 𝛥𝑡. The goal is to maximize
the objective function (10) while meeting the optimization constraints.

The first set of constraints describes the assumption that each
GWHP, if installed, consists of a single well doublet, i.e. one extraction
and one injection well. Therefore, a maximum of one extraction and
one injection well can be installed on each parcel (plot) 𝑝, and the
corresponding constraints read:

𝑁𝑝
inj∑

𝑖=1
𝑑inj,𝑖 ≤ 1 ∀𝑝 ∈ 𝑃 , (11)

𝑁𝑝
ext∑

𝑗=1
𝑑ext,𝑗 ≤ 1 ∀𝑝 ∈ 𝑃 , (12)

where 𝑁𝑝
ext is the total number of potential extraction wells on the

parcel 𝑝 and 𝑃 the set of all parcels.
If an extraction well is installed in a particular parcel, an injection

well must also be installed in that parcel and vice versa. Similarly,
if there are no extraction wells in the parcel, there are no injection
wells in that parcel, and vice versa. Thus, the number of injection and
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Fig. 3. Selection of optimal GWHP well positions: (a) Potential wells. (b) Optimal (selected) wells.

extraction wells installed in the same parcel must be equal, which is
defined by the following constraint:
𝑁𝑝

inj∑
𝑖=1

𝑑inj,𝑖 =
𝑁𝑝

ext∑
𝑗=1

𝑑ext,𝑗 ∀𝑝 ∈ 𝑃 . (13)

Since the constraint (12) is a direct result of (11) and (13), it is
sufficient to include only constraints (11) and (13) in the optimization
problem.

The next set of constraints corresponds to the minimum distance
requirement between extraction and injection wells of the same GWHP
system. This distance is defined to avoid hydraulic and thermal break-
throughs within the system [17] and is 10 m [47] in the federal
state of Bavaria, where the case study is located (see Section 3.1). In
the optimization context, this means that if two wells, extraction and
injection, are selected on the same parcel, they must be at least 10 m
apart. The respective constraints read as follows:

𝑑inj,𝑖 + 𝑑ext,𝑗 ≤ 1 if 𝛥𝑖,𝑗 < 𝛥min ∀𝑖 ∈ {1,… , 𝑁𝑝
inj},

∀𝑗 ∈ {1,… , 𝑁𝑝
ext}, ∀𝑝 ∈ 𝑃 , (14)

where 𝛥𝑖,𝑗 =
√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 is the Euclidean distance between
the potential injection and extraction wells (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ), respec-
tively; 𝛥min = 10 m is the defined minimum distance. The constraints
(14) are not set for all potential injection–extraction well pairs (𝑖, 𝑗) on
each plot 𝑝, but only for those whose distance is smaller than 𝛥min. If
the distance 𝛥𝑖,𝑗 is smaller than 𝛥min, the constraint ensures that at most
one of these wells can be installed. Since the locations of all potential
wells are predefined, the distances between them can be precalculated
and the constraints generated accordingly.

The final optimization constraint describes the regulation with re-
gard to the negative influence on neighboring GWHPs. In the case
of a new GWHP installation, this regulation protects the downstream
systems from a significant drop in the groundwater temperature and, in
turn, in their efficiency. In Bavaria, the temperature decrease compared
to the natural groundwater temperature at the extraction well of a
neighboring downstream system is limited to 1 K [47]. The corre-
sponding constraint, which describes the prior regulation, holds for
every potential extraction well 𝑗, and at the end of each time step
𝑡 ∈ {1,… ,𝑀}:

𝑑ext,𝑗 ⋅ 𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞) ≤ 𝛥𝑇max , (15)

where 𝛥𝑇max = 1K is the maximum temperature change defined by
the regulation; (𝑥𝑗 , 𝑦𝑗 ) are the coordinates of the extraction well 𝑗;
𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞) = 𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞1...𝑁,1...𝑀 ) as defined in (8). It depends on the
value of the optimization variable 𝑑ext,𝑗 , whether the regulatory condi-
tion will be tested or not. If the extraction well 𝑗 is selected (𝑑ext,𝑗 = 1),
the temperature change at this well must satisfy the regulation.

The constraint (15) is nonlinear, since the term 𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞), which
already contains optimization variables 𝑑inj,𝑘, is multiplied by the opti-
mization variables 𝑑ext,𝑗 . However, all other optimization constraints
and the objective function are linear w.r.t. the defined optimization
variables. Thus, in order to keep the optimization problem linear, the

constraint (15) is linearized in the following. First, the constraint is
rewritten as:

𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞) ≤ 1
𝑑ext,𝑗

⋅ 𝛥𝑇max , (16)

which is then linearized as:

𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞) ≤ (−𝑚 ⋅ 𝑑ext,𝑗 + 𝑚 + 1) ⋅ 𝛥𝑇max , (17)

where 𝑚 is a sufficiently large number, so that (17) holds when 𝑑ext,𝑗 =
0. In this paper, 𝑚 = 99, and it is a simple matter to verify that (17)
has the same meaning as (15) for 𝑑ext,𝑗 ∈ {0, 1}. Another linearization
possibility is to introduce a set of new binary optimization variables
𝑧𝑗,𝑘 = 𝑑ext,𝑗 ⋅ 𝑑inj,𝑘 with additional constraints, which would replace
the nonlinear terms (products) in (15). However, this approach in-
troduces a significant number of new variables and constraints into
the optimization problem, making it difficult to solve, and is therefore
omitted.

Based on the previous definitions of the objective function and
constraints, the optimization problem can be summarized as:

max
𝑑ext,𝑗 ,𝑑inj,𝑘

𝐸ext (18a)

subject to (11), (13), (14), (17) (18b)

with 𝐸ext as defined in (10) and optimization variables 𝑑ext,𝑗 , 𝑑inj,𝑘 ∈
{0, 1}, 𝑗 ∈ {1,… , 𝑁ext}, 𝑘 ∈ {1,… , 𝑁}; where 𝑁ext is the total number
of potential extraction wells in the considered area. This constitutes an
integer linear optimization problem, i.e. integer linear programming
(ILP), with binary variables only. In general, linear programs are the
simplest constrained optimization problems, in which finding the global
optimum is both relatively quick and guaranteed. Finally, there are
other alternatives to defining the objective function and formulating the
optimization problem. For instance, the objective can be to maximize
the efficiency, i.e. the groundwater temperature at extraction wells, of
all the selected GWHPs. Details of this alternative problem formulation
are given in Appendix A.

3. Implementation

The optimization method is implemented using Python-MIP [48],
an open-source package for modeling and solving mixed-integer linear
programs. The Python code, along with a working example, is accessi-
ble from [49]. Preprocessing of potential well locations is performed
in PostgreSQL using the open-source spatial database extender Post-
GIS [50]. The case study area and the optimization cases are presented
in the following.

3.1. Case study

The methodology described in Section 2.2 is applied to a neigh-
borhood of approx. 6 ha in the city of Munich (see Fig. 4). Munich
is generally well-suited to the thermal exploitation of groundwater, as
it is located on a productive and shallow gravel aquifer, which was
formed during the Pleistocene period. More detailed information on the
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Fig. 4. Location of the case study neighborhood in the city of Munich with groundwater contour lines of the mean low water situation.

datasets used can be obtained from Böttcher et al. [26] and Zosseder
et al. [51]. The known hydro-geological parameters in the chosen area,
i.e. aquifer thickness, seepage velocity and flow direction, show only
little variation. Therefore, we assume that the application of isotropic
and constant hydraulic conditions does not lead to any significant bias
in (1). A summary of the values applied to the case study neighborhood
is given in Table 1. In addition, a homogeneous building structure
of detached and semi-detached houses with predominantly sufficient
drilling space on the plots provides suitable conditions for a dense
cluster of potential GWHP users.

The pumping rates required for the 56 potential GWHPs are derived
from a heat demand simulation using UrbanHeatPro [52], an open-
source tool used for estimating the heating demands of buildings. It
is assumed that one GWHP system supplies all buildings on a plot, so
loads are merged for plots with more than one building. With a monthly
resolution of required heating energy 𝐸heat , and assuming a constant co-
efficient of performance (𝐶𝑂𝑃 ) of 4 and a constant source temperature
difference (𝛥𝑇inj) in the heat pump of 5 K, monthly pumping rates 𝑞𝑝
were calculated with:

𝑞𝑝 =
𝐸heat

𝐶w ⋅ 𝛥𝑇 ⋅ 𝑡m
⋅
𝐶𝑂𝑃 − 1
𝐶𝑂𝑃

, (19)

where 𝑡m is the time period of one month. The aggregation of the
monthly pumping rates for the various optimization cases is described
in the following section.

3.2. Optimization cases

As previously mentioned, analytical formulas are used for licens-
ing purposes of GWHPs in the German state of Baden-Württemberg.
Two simulation cases are provided in the government guideline [41]

Table 1
Hydro-geological parameters of the analyzed case study.

Parameter Value Unit

Aquifer thickness 8.5 m
Seepage velocity 4 ⋅ 10−5 m/s
Porosity 0.3 –
Longitudinal dispersivity 5 m
Transverse dispersivity 0.5 m
Volumetric heat capacity of the medium 2.888 ⋅ 106 J/m3 K
Volumetric heat capacity of water 4.185 ⋅ 106 J/m3 K
Flow direction (clockwise from North) 32 ◦

describing the use of these formulas and the corresponding open source
tool. The ‘‘annual mean value load’’ case describes the long-term impact
that would result from continuous operation of a system, assuming a
constant extraction rate and temperature spread 𝛥𝑇inj throughout the
year. This case applies to stationary conditions, i.e. the assumption that
the temperature field has theoretically reached its final expansion. It is
also assumed that unaffected and constant temperatures prevail in the
initial state. The purpose of the second case, ‘‘winter operation load’’, is
to check whether the seasonal increase in the use of a system during the
heating period has a greater effect than assuming annual mean values.
For example, the double pumping rate compared to the annual mean
value can be assumed, and 120 days can be set as the duration of the
period of increased use [41].

In analogy to these definitions, two optimization cases are analyzed
in this paper, these being the steady (winter) case and the dynamic
(annual) case. The steady case is based on the ‘‘winter operation
load’’ described above, in which all potential GWHPs have a constant
pumping rate during the 120 days under consideration, which is twice
the annual mean value. Therefore, only the spatial superposition of
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Fig. 5. Pumping rates of a potential GWHP used in two optimization cases.

Table 2
Optimization results.

Scenario Nr. of GWHPs Extracted heat

Total Installed Non-installed Amount [J] Share [%]

Winter (steady) case 56 44 12 ∼2.43 ⋅ 1012 82.40
Annual (dynamic) case 56 43 13 ∼3.40 ⋅ 1012 81.33

the LAHM is required in this case. On the other hand, the dynamic
case should more realistically reflect the behavior of GWHPs over the
course of the year. In this optimization case, the observation period is
set to one year, with monthly time steps and averaged pumping rates
for each month. To account for this dynamic behavior, both temporal
and spatial superposition are needed. Fig. 5 shows the pumping rates
of an example GWHP for the two optimization cases. The blue line
denotes the dynamic case with average monthly values, while the red
line denotes the steady case. It should be noted that the time window
of the dynamic case begins in August, at which time the groundwater
temperature is assumed to have recovered from the previous heating
season and returned to its natural state.

4. Results

This section presents and analyzes the results of the optimization.
Table 2 summarizes the results of the two optimization cases. It shows
the total number of GWHP systems, i.e. the maximum number of
systems potentially in the area, and the numbers of both installed and
non-installed systems for each case. In the steady (winter) case, 44 out
of 56 potential GWHPs are installed, only one more than in the dynamic
(annual) case. The maximum heat extracted from the groundwater,
which corresponds to the value of the objective function, is shown for
both cases. This value represents the amount of heat extracted over
the whole year and over the 4 months (with increased pumping rate)
for the dynamic and steady cases, respectively. Consequently, the heat
quantities for the dynamic and steady case should not be compared.
These values are normalized by the corresponding theoretical maxi-
mum values that would result if all 56 potential GWHPs were installed.
The normalized values, i.e. the heat fractions, are about 80% in both
cases and approximately 1% more in the steady case. This demonstrates
that negative interferences significantly limit the available space for
GWHP installations and are an important factor when evaluating the
technical potential in an area with a high building density.

Optimal well layouts for both optimization cases, including their
comparison, are shown in Fig. 6. It can be seen that each plot with an
installed GWHP has one extraction–injection well pair, which means
that constraints (11) and (13) are satisfied. The minimum distance of

10 m between wells of a single system is also maintained for all in-
stalled systems, which corresponds to constraint (14). It is also notable
that GWHPs are installed on almost the same parcels in both cases,
but with different well locations. To better understand the differences
in well layouts between the two cases, it is necessary to visualize the
resulting groundwater temperature fields, i.e. the thermal plumes.

Fig. 7 shows the resulting thermal plumes, i.e. the groundwater
temperature anomalies, for the optimal well layout in both cases.
The thermal plumes shown correspond to those after four months for
the steady (winter) case and at the end of February for the dynamic
(annual) case. The end of February is shown for the dynamic case,
because this is when the thermal plumes are at their maximum and
have the greatest impact on well selection. The GWHPs have been
heating during the previous winter months, while from March onward,
the heating loads, and thus the intensity of the thermal plumes, start
to decrease. This is illustrated in Fig. 8, which shows the evolution
of the thermal plumes in the dynamic case. The figure also confirms
the assumption about the recovery of groundwater temperatures at the
beginning of August.

Fig. 7 shows that none of the optimally selected extraction wells
are located in an area where the groundwater temperature changes
by more than 1 K. This means that the negative thermal interference
between the installed GWHPs is minimized, i.e. the constraint (17) is
satisfied. Comparison of the thermal plumes in each of the cases shows
that they are similar, while some of the differences are due to the
different well selections. Therefore, the steady case is a relatively good
approximation to the more realistic dynamic case. However, although
only one GWHP fewer is installed in the dynamic case and virtually the
same parcels are chosen for the installed GWHPs, it should be noted
that the selected well locations differ significantly between the two
cases. The observed difference in optimal well layouts can be attributed
to the ‘‘confined’’ nature of the problem solution. For example, in the
dynamic case, one optimal extraction well location from the steady
state case might be within the area of thermal plumes. As a result,
the entire solution is forced to transition to the next best feasible well
arrangement. This transition can be significant, especially given the
relatively large distance of 5 m between potential wells. Furthermore,
the aforementioned ‘‘confinement’’ of the problem makes its solution
sensitive to the choice of potential well locations. Minor changes in
potential well locations can result in substantial variations in optimal
well layouts. To mitigate this sensitivity of the solution to potential well
locations, one viable approach is to implement smaller spacing between
potential wells. Appendix B provides further details about this aspect.
Finally, we compare the computational cost. The optimization process
takes about 5 and 35 s for the steady and dynamic cases, respectively,
when performed on a computer with the following configuration: Intel
Xeon(R) Gold 6140 CPU @ 2.30 GHz × 72, 320 GB RAM.

5. Discussion and outlook

The results demonstrate that the optimization method presented
here can efficiently determine the optimal locations for GWHPs and
their wells for maximizing the technical geothermal potential. In both
cases, wells are successfully placed to minimize negative thermal in-
terferences and meet all regulatory requirements. Therefore, the pro-
posed method covers the research gaps identified in Section 1 and
is suitable for use in spatial energy planning, for example, in urban
districts. However, the new method also has its limitations. These will
now be discussed along with some possible future advancements and
applications.

The main limiting factor is that an analytical model is used, which
provides a less accurate calculation of thermal plumes than numerical
models. Pophillat et al. [38] demonstrated that the LAHM tends to
overestimate thermal plumes, and thus its application is a conserva-
tive assumption that tends to underestimate the spatial potential. The
upgraded LAHM incorporates the following simplifications due to the
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Fig. 6. Optimal well locations: (a) The steady case. (b) The dynamic case. (c) Comparison between two cases.

embedded properties of the original LAHM: the groundwater flow is
in only one direction throughout the domain, aquifer properties are
homogeneous, there is no hydraulic influence from the wells and there
is no heat exchange with the atmosphere or conductive processes.
However, conditions in aquifers are normally heterogeneous. For in-
stance, the spatially heterogeneous porosity can significantly influence
thermal retardation and consequently increase the uncertainty of the
thermal plume estimation [53]. Numerical models based on partial
differential equations (PDEs) are required in order to obtain more
accurate estimates of groundwater temperatures and to incorporate
heterogeneous aquifer conditions. Nevertheless, the original LAHM
has already demonstrated its suitability for licensing purposes [39]
as well as for initial assessments of negative thermal interferences
between GWHPs [38]. Hence, its upgraded version and the presented
optimization method can be used to estimate the technical geothermal
potential of an aquifer. In the future, the new method can be combined
with a PDE-based optimization method to improve the representation
of aquifer conditions, while still keeping the computational cost at a
reasonable level. This combined method can then be used in a detailed
design optimization of multiple neighboring GWHPs, large standalone
GWHPs or even nested systems with positive thermal interactions [54].

In this work, it is assumed that each installed GWHP system consists
of a single well pair. This is generally the case for smaller systems,
but not for large ones in which there may be multiple extraction and
injection wells. Thus, one of the future advancements will be to accom-
modate systems with multiple extraction and/or injection wells. The
formulation of the optimization problem needs to be slightly modified
in this case, since the total pumping rate of a system will be distributed
among several wells, depending on the number of installed wells.

The new method can also be used to make an economic and envi-
ronmental comparison of two installation strategies for GWHP systems,
these being either small individual or large communal systems. This
would require additional modifications to the optimization problem.
For instance, drilling costs for wells, pumping and piping costs, and
operational and installation costs of the heat pumps have to be taken
into consideration. Nevertheless, such a comparison would provide
urban planners and individual users with valuable decision support
regarding the optimal thermal use of groundwater.

Finally, in the future, the method presented can be integrated into
urban energy system optimization models (ESOMs). The ESOMs are
used to analyze future energy scenarios, i.e. to determine the opti-
mal technology mixes to achieve 𝐶𝑂2 reduction targets. If GWHPs
are among the technologies considered, the spatial thermal potential
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Fig. 7. Thermal plumes for the two cases: (a) The steady case. (b) The dynamic case (end of February).

Fig. 8. Development of thermal plumes in the dynamic case: Thermal plumes at the end of each month.
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of groundwater should be integrated into the ESOM [55]. The new
method is particularly suitable for this purpose due to its analytical and
linear properties. On the other hand, numerical groundwater simulation
models are computationally intensive and require additional solvers,
making the process of coupling them with ESOMs significantly more
complex [56]. In addition, the upgraded LAHM is, thanks to its low
computational cost, well suited for integration into GIS-supported on-
line management tools, such as the web app developed in the GEO.KW
project [57,58].

6. Conclusions

This paper presents a new method of optimizing the spatial ar-
rangement of groundwater heat pumps and their well locations with
the overall aim of maximizing the technical geothermal potential of
groundwater. The method is based on an analytical estimation of
thermal plumes using an upgraded LAHM model that supports dynamic
simulation and multiple injection wells. Optimal placement of GWHP
wells is attained through the selection of predefined potential well
locations, such that negative thermal interferences between installed
GWHPs are minimized. The overall optimization problem is an integer
linear program that can be solved efficiently for a large number of
optimization variables.

To demonstrate the applicability of the method, it was tested on a
real case study comprising an area in the city of Munich (Germany)
with 56 parcels, i.e. potential GWHPs. Two optimization cases were
considered, each differing in GWHP their representation: the steady
(winter) case with constant pumping rates over a period of four months
and the dynamic (annual) case with average monthly pumping rates.
The results for both cases show that the method successfully determines
the GWHPs to be installed and their optimal well locations such that
all regulatory conditions are met and negative interferences are mini-
mized. The results also demonstrate that about 80% of the total heat
demand can be met, which means that potential negative interferences
are a significant limiting factor for the installation of GWHPs.

The method presented is the first method to determine the optimal
installation of GWHPs in a given area such that the energy extracted
from the aquifer is maximized and there are no negative interferences
above a certain threshold. In addition, the new method can be applied
to determine optimal locations for a large number of GWHPs and
their wells at relatively low computational cost, which is a significant
improvement over existing methods. Furthermore, the method can
be extended to several other applications in the future, such as well
size and location optimization for large GWHPs, economic analysis
of GWHP installation strategies, and optimization of nested GWHP
systems. The proposed method is especially suitable for integration
in energy system optimization models that are used to analyze the
energy transition in the heating and cooling sector. Finally, the method
can be used in GIS-based tools for energy planning and geothermal
groundwater management.
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Appendix A. Alternative objective function

Instead of maximizing the total amount of extracted energy, the goal
can be to maximize the efficiency of all selected GWHPs. In this case,
the groundwater temperature at the extraction wells of selected GWHPs
is maximized and the objective function reads as follows:
𝑀∑
𝑡=1

𝑁ext∑
𝑗=1

𝑑ext,𝑗 ⋅ (𝑇
𝑗
n (𝑡) − 𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞)) , (A.1)

where 𝑇 𝑗n (𝑡) is the natural (undisturbed) groundwater temperature at
the considered location (𝑥𝑗 , 𝑦𝑗 ) and at the time step 𝑡, 𝑡 ∈ {1,… ,𝑀}.
The natural groundwater temperatures have predefined constant val-
ues, which means that the first term in (A.1) is linear. However, the
second term:
𝑀∑
𝑡=1

𝑁ext∑
𝑗=1

𝑑ext,𝑗 ⋅ 𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞) (A.2)

is nonlinear and similar to the left-hand side of the constraint (15).
Hence, the optimization problem can be linearized as follows:

max
𝑑ext,𝑗 ,𝑑inj,𝑘 ,𝜃𝑗 (𝑡)

𝑀∑
𝑡=1

𝑁ext∑
𝑗=1

(𝑑ext,𝑗 ⋅ 𝑇
𝑗
n (𝑡) − 𝜃𝑗 (𝑡)) (A.3a)

subject to (11), (13), (17) (A.3b)

𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞) ≤ −𝑚 ⋅ 𝑑ext,𝑗 + 𝑚 + 𝜃𝑗 (𝑡) , (A.3c)

where the constraint (A.3c) must hold ∀𝑡 ∈ {1,… ,𝑀} and ∀𝑗 ∈
{1,… , 𝑁ext}; 𝜃𝑗 (𝑡) ∈ R+

0 are new non-negative continuous optimization
variables needed for the linearization; 𝑚 = 99 and other parameters are
the same as before. For the selected extraction wells, i.e. when 𝑑ext,𝑗 = 1,
(A.3c) becomes:

𝛥𝑇𝑥𝑗 ,𝑦𝑗 (𝑡, 𝑞) ≤ 𝜃𝑗 (𝑡) , (A.4)

which means that by minimizing 𝜃𝑗 (𝑡), the temperature drops at these
extraction wells are also minimized. Since this matches the optimiza-
tion goal, which is to maximize the efficiency of the selected GWHPs,
the objective function becomes (A.3a). On the other hand, when 𝑑ext,𝑗 =
0, the optimizer will set the corresponding variables 𝜃𝑗 (𝑡) to zero
without influencing the selection of optimal wells. Thus, by introducing
the new set of optimization variables 𝜃𝑗 (𝑡) and the corresponding
constraints, the problem can be formulated as a mixed-integer linear
program (A.3).

Appendix B. Initialization of the optimization problem

The spatial arrangement of potential well locations can have a
considerable impact on the optimization problem (18) and the resulting
optimal well layouts. Notably, when the potential wells are spaced
at relatively large distances, minor alterations in their locations can
result in significant changes in the final selection of optimal well
locations. Fig. B.9 illustrates this phenomenon by showing the optimal
well layouts for two slightly different initial arrangements of potential
wells. The original initialization, i.e. the arrangement of potential well
locations, is the one used to analyze the potential of the case study area.
The new initialization is derived from the original one by randomly
moving the location of each potential well within a radius of 0.5 m from
its original position. The optimal well locations for both initializations
are then determined using the steady state optimization scenario.

Despite the relatively small differences in the potential well loca-
tions, the resulting optimal well layouts exhibit considerable variation.
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Fig. B.9. Comparison of optimal well layouts for two different potential well arrangements.

This sensitivity of the solution to potential well locations can be at-
tributed to the narrowness of the problem solution due to the constraint
on negative thermal interference and the prevailing geometric relation-
ships. In particular, certain optimal well locations are located exactly
at the boundaries of the thermal plumes indicated by the 1 K thermal
isolines. Consequently, even a slight deviation of one of the optimal
well locations into an infeasible region during re-initialization causes
the problem solution to switch to the next best feasible optimal well
layout. This can lead to significant differences in the new optimal well
layout compared to the original one, especially if the potential wells
are relatively far apart, as the solution is forced to make significant
adjustments or ‘‘jumps’’ between different well layouts during the
optimization process.
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A B S T R A C T

This paper proposes an approach to optimize the technical potential of thermal groundwater use by de-
termining the optimal sizing and placement of extraction–injection well doublets. The approach quantifies
the maximum technically achievable volume of extracted groundwater in a given area and, hence, the
amount of heat exchanged with the aquifer, considering relevant regulatory and hydraulic constraints. The
hydraulic constraints ensure acceptable drawdown and rise of groundwater in extraction and injection wells
for sustainable use, respectively, prevention of internal hydraulic breakthroughs, and adequate spacing between
neighboring doublets. Analytical expressions representing these constraints are integrated into a mixed-integer
linear optimization framework allowing efficient application to relatively large areas. The applicability of the
approach is demonstrated by a real case study in Munich, where the geothermal potential of each city block is
optimized independently. Six optimization scenarios, differing in terms of required minimum installed doublet
capacity and spacings between doublets, underline the adaptability of the approach. The approach provides a
comprehensive and optimized potential assessment and can be readily applied to other geographic locations.
This makes it a valuable tool for thermal groundwater management and spatial energy planning, such as the
planning of fourth and fifth generation district heating systems.

1. Introduction

Shallow geothermal energy (SGE) plays an increasingly important
role in the decarbonization of the heating and cooling sector [1].
Especially in the context of 4th generation district heating (4GDH)
systems [2] and 5th generation district heating and cooling (5GDHC)
systems [3], SGE systems represent a promising technology as their ap-
plication is expanded from individual users to communities in this case.
One way of SGE utilization is through open-loop systems, commonly
referred to as groundwater heat pumps (GWHPs). Fig. 1 shows a typical
GWHP system with its main components. These systems directly exploit
the thermal energy of groundwater through extraction–injection well
doublets by pumping groundwater from extraction wells and returning
it to the same shallow aquifer through injection wells after thermal
exchange [4]. Consequently, the properties of groundwater, including
its quantity, quality, depth, and temperature, are the most important
factors affecting the feasibility and performance of GWHP systems [5,
6]. Accurate characterization and consideration of these groundwater
properties is essential for ensuring sustainable and efficient operation
of GWHPs [7]. It should be noted that GWHPs are mainly used in areas

∗ Corresponding author.
E-mail address: smajil.halilovic@tum.de (S. Halilovic).

with high ambient groundwater velocity, which limits the application
of aquifer thermal energy storage (ATES) systems, another type of SGE
systems for thermal groundwater utilization. In this paper, we focus
only on GWHP systems, i.e. on areas with high groundwater velocity.

In the context of groundwater utilization for GWHP systems, it
is crucial to recognize that groundwater availability and properties
exhibit significant spatial variation [8]. In addition, spatial availability
for GWHP well installations in urban areas is limited due to extensive
building development. Therefore, conducting a spatial analysis is essen-
tial to identify adequate well locations and sizing for well doublets. The
goal of such an analysis is to quantify suitable groundwater extraction
values for the targeted urban energy planning level, such as a plot of
land or city block [9]. Accurate estimation of groundwater extraction
and injection rates, can ensure sustainable GWHP operation based on
the local hydrogeological conditions and in compliance with relevant
legal and technical constraints. The technical potential derived from
such an analysis is a basis for active thermal groundwater management
and the development of urban energy strategies [10], including the
planning of 4GDH and 5GDHC systems.
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Nomenclature

Latin letters

𝐵 Saturated aquifer thickness [m]
𝐶 Condition for relative well placement
𝑑 Decision variables for doublets
𝑑ext Decision variables for extraction wells
𝑑inj Decision variables for injection wells
𝐸 Set of potential extraction wells
𝐠1 Equality constraints
𝐠2 Inequality constraints
∇ℎ Hydraulic gradient [-]
ℎmax Maximum allowed groundwater level [m]
ℎn Natural groundwater level [m]
𝐼 Set of potential injection wells
𝐾 Hydraulic conductivity [m/s]
𝑚 Interference parameter [m]
𝑁 Number of potential doublets
𝑛doublet Number of installed doublets in city block

[-]
𝑞 Pump rate of a doublet [m3/s]
𝑞b Pump rate at the hydraulic breakthrough

threshold [m3/s]
𝑞block Pump rate per city block [m3/s]
𝑞d Pump rate at the drawdown threshold

[m3/s]
𝑞f Injection rate at the upconing threshold

[m3/s]
𝑞max Pre-computed maximum pump rate of a

doublet [m3/s]
𝑞min Predefined minimum pump rate of a dou-

blet [m3/s]
𝑞total Total pump rate [m3/s]
𝑟𝛥 External–internal well distance ratio [-]
𝑆 Set of potential doublets
𝒖 Optimization variables
𝑣𝐷 Darcy velocity [m/s]
𝑥, 𝑦 Coordinates of a well [m]

Greek letters

𝛼 Hydraulic breakthrough parameter [m2/s]
𝜒 Line length [m]
𝛥 Distance between two wells or two dou-

blets [m]
𝛥min Regulatory minimum distance [m]

Subscripts and superscripts

ext Extraction
inj Injection
max Maximum
min Minimum
𝑎̃ Median of 𝑎
𝑖 Counter for injection wells
𝑗 Counter for extraction wells
𝑘, 𝑝 Counters for doublets

Several research studies assess the potential of thermal groundwater
use at different locations and considering various constraints [11–19].
Some studies focus on specific technical and/or regulatory constraints,

Fig. 1. Typical GWHP system with its main components.

while others combine multiple constraints to estimate the technical po-
tential, i.e. technically feasible groundwater pumping rates, at a given
spatial resolution. In general, their aim is to estimate the local geother-
mal potential, but not to optimize the technical potential. However,
the geothermal potential can be maximized through strategic sizing
and placement of well doublets within the considered area. As the
thermal use of groundwater with well doublets induces hydraulic and
thermal changes in the aquifer, each operating doublet consumes space
and obstructs the installation of additional doublets. In the vicinity of
wells, pumping may create a considerable drawdown and injection an
upconing of groundwater, respectively. Especially in the planning stage
of larger GWHP systems with multiple well doublets, a consideration
of hydraulic influences is crucial for a sustainable well arrangement,
as each well doublet leaves its own hydraulic footprint in the aquifer.
These characteristics of multi-doublet systems have not been addressed
in the existing potential assessment studies. This aspect is particularly
important when the spatial planning level allows flexibility in the
arrangement of doublets and associated wells. For instance, analyzing
the geothermal potential for large GWHPs in the context of future
4GDH and 5GDHC systems requires determining the optimal size and
placement of multiple wells simultaneously. To answer the question of
optimal well count, sizing and placement in the potential assessment,
it is necessary to integrate optimization methods into the analysis.

Halilovic et al. [20] recently reviewed optimization approaches
for GWHP systems and concluded that there are only a few studies
addressing the topic of optimal well placement and/or sizing. Some
of the existing optimization approaches employ numerical groundwa-
ter simulation models and are therefore not suitable for integration
into large-scale potential assessments due to their high computational
costs [21–23]. In contrast, optimization approaches based on analyt-
ical models prove to be more suitable for such integration, as they
generally require less computational cost while providing reasonably
accurate and conservative estimates. To date, only one research study
has implemented an optimization approach based on an analytical
groundwater simulation model [24]. The approach uses the linear
advective heat transport model (LAHM) to estimate thermal plumes
caused by GWHPs [25]. The developed approach optimally places
GWHPs and their associated wells in the considered area in order
to minimize thermal interactions between the systems and simulta-
neously maximize the heat extracted from the groundwater, thereby
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maximizing the spatial potential of thermal groundwater use. This
optimization approach is promising for potential estimation studies and
is already applied on city-scale supporting the municipal heat planning
of Munich [24], but has certain limitations.

The main limitations of the approach proposed in Halilovic et al.
[24] arise from the characteristics of the LAHM model, which as-
sumes homogeneous groundwater conditions throughout the entire
study area. Additionally, the approach does not consider any hydraulic
aspects, such as pumping limits due to induced groundwater draw-
downs in extraction wells and the resulting hydraulic footprint that
prevents additional wells of the same type to be installed nearby.
Furthermore, systems’ pumping rates are predefined based on the es-
timated energy demand of the corresponding plots, which means that
only the placement of the systems and their wells is optimized and
their sizing remains unchanged. This makes the approach unsuitable for
certain applications, such as potential analysis for large multi-doublet
GWHPs in 4GDH and 5GDHC systems, since hydraulic constraints are
crucial in this case. Therefore, there is a need for an optimization
approach that accounts for aspects not covered in Halilovic et al.
[24], particularly hydraulic constraints and spatial heterogeneity of
groundwater parameters.

The main objective of this paper is to introduce a novel approach
for maximizing the technical potential of thermal groundwater use.
The proposed approach simultaneously optimizes the sizing and place-
ment of doublets and associated wells within feasible areas, with the
goal of maximizing the geothermal potential, i.e. the extracted heat
from groundwater. To achieve this, the approach considers multi-
ple important factors, including regulatory constraints, spatial hetero-
geneity of groundwater properties, and relevant hydraulic constraints.
The latter includes considerations of drawdown in extraction wells,
groundwater rise in injection wells, internal hydraulic breakthroughs,
and spacing between adjacent well doublets based on their hydraulic
footprints [26]. To effectively include these constraints, the method
integrates analytical expressions for pumping rate limits from Böttcher
et al. [19] into a mixed-integer linear optimization problem. This type
of optimization problems is well established in the optimization com-
munity and can be solved efficiently with modern solvers [27]. The new
approach provides a comprehensive and robust potential estimation, as
demonstrated by using a real case study wherein the technical potential
of thermal groundwater use of each city block of Munich is optimized.

The paper is organized as follows: Section 2 describes the method-
ology, followed by its implementation and a case study in Section 3.
Section 4 presents and analyzes the results. Section 5 discusses the
advantages, limitations and possible future improvements and appli-
cations of the approach. The paper concludes with a summary in
Section 6.

2. Methodology

The proposed approach combines analytical expressions that de-
scribe groundwater pumping limits (Section 2.1) with mixed-integer
linear programming techniques (Section 2.2) to optimize the placement
and sizing of extraction–injection well doublets.

2.1. The thermal aquifer potential (TAP) method

Böttcher et al. [19] developed the Thermal Aquifer Potential (TAP)
method to analyze the technical potential of thermal groundwater use
in shallow phreatic aquifers. This method is based on empirical analytic
formulas that describe the maximum pumping rates of a well doublet
with respect to three different constraints: maximum drawdown in the
extraction well, upconing threshold at the injection well, and hydraulic
breakthrough between the two wells.

The TAP method estimates the maximum pumping rate of a doublet
at the drawdown threshold 𝑞d as follows [19]:

𝑞d = 0.195 ⋅𝐾 ⋅ 𝐵2 , (1)

Fig. 2. Flowchart of the TAP method.

where 𝐾 is the hydraulic conductivity and 𝐵 is the saturated aquifer
thickness. The considered threshold for drawdown is one-third of the
saturated aquifer thickness as defined by the regulatory state of the art
in Bavaria, Germany [19]. The maximum injection rate at the upconing
(flooding) threshold 𝑞f is estimated with [19]:

𝑞f = (ℎmax − ℎn) ⋅𝐾 ⋅ 𝐵0.798 ⋅ exp(29.9 ⋅ ∇ℎ) , (2)

where ℎmax and ℎn are the maximum allowed and the natural ground-
water level, respectively, and ∇ℎ is the hydraulic gradient. Finally, the
TAP method calculates the maximum pumping rate at the hydraulic
breakthrough threshold 𝑞b of the well doublet using the following
equation [19]:

𝑞b =
𝜋

1.96
⋅ 𝑣𝐷 ⋅ 𝐵 ⋅ 𝛥wells, (3)

where 𝑣𝐷 is the Darcy velocity and 𝛥wells is the internal distance
between the extraction and injection well of the doublet. In this work,
to simplify the description of the optimization problem in later sections,
(3) is rewritten as follows:

𝑞b = 𝛼 ⋅ 𝛥wells, (4)

where 𝛼 = (𝜋∕1.96) ⋅ 𝑣𝐷 ⋅ 𝐵 is the hydraulic breakthrough parameter of
the considered well doublet. It should be noted that the TAP method
does not consider thermal breakthrough directly, but only indirectly by
considering hydraulic breakthrough. Since the hydraulic breakthrough
occurs before the thermal one, its prevention will also prevent the inter-
nal thermal breakthrough [28]. The TAP method defines the technical
pumping rate of a well doublet as the minimum of the three previously
specified pumping rates 𝑞d, 𝑞f and 𝑞b.

The analytical formulas (1)–(3) in the TAP method are derived from
the results of numerical parameter studies using nonlinear regression
analysis. Fig. 2 shows the overall flowchart of the TAP method. In
the first phase, idealized 2D box models are prepared for numerical
groundwater simulations in the parameter study. In this study, impor-
tant parameters are varied within a reasonable range of values, and
steady-state simulations are performed to gain conservative results. The
extraction and injection wells are placed in the center of the 2D models
parallel to the groundwater flow direction and at different distances
from each other. Subsequently, the results of the numerical simulations
from the parameter study are used in a nonlinear regression analysis to
fit the analytical expressions (1)–(3).

In addition to the threshold pumping rates 𝑞d, 𝑞f , and 𝑞b, the authors
of the TAP method also analyzed the hydraulic footprint of a well
doublet using idealized 2D models in a similar manner. This analysis
is necessary for estimating technical potential because neighboring
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systems limit the available water budget and therefore increase the
likelihood of hydraulic breakthrough within the system if they are
located too close. Thus, the authors determined a correlation between
the percentage of cycled water (inter-flow) in a well doublet and
the external–internal well distance ratio 𝑟𝛥, i.e. the ratio between the
distance to neighboring doublets and the inner well spacing [19].

2.2. Optimization

An optimization procedure can be used to maximize the technical
potential of thermal groundwater use through optimal placement and
sizing of well doublets. The proposed optimization approach integrates
the equations from the TAP method into a mixed-integer linear program
(MILP) to maximize the thermal aquifer potential while satisfying tech-
nical and legal constraints. In MILP problems, the goal is to optimize
a linear objective function subject to a set of linear constraints, where
some of the optimization variables are integer and others are continu-
ous. There are multiple powerful solvers for this type of optimization
problems that can be readily applied [27]. The placement of doublets
and their wells is based on a selection of predefined potential well
locations, which are defined in a pre-processing step as described in
the following.

2.2.1. Definition of potential well locations and doublets
In the pre-processing phase, potential well locations are determined

taking into account ground plans of the existing buildings, legal con-
straints and groundwater flow direction in the considered area. To
determine a feasible area for well placement, a minimum distance of
3 m between wells and buildings is maintained in the first step, by
applying corresponding buffer zones (see Fig. 3(a)). Within this delin-
eated area, potential wells are strategically positioned at the nodes of a
virtual grid that is oriented according to the groundwater flow direction
at the centroid of the corresponding polygon. The grid is designed with
a constant well-to-well spacing, with one of its axes aligned with the
groundwater flow direction and the other axis perpendicular to it. The
grid is then divided into lines parallel to groundwater flow, which are
denoted as doublet lines in Fig. 3(a), and wells are grouped based on
the lines they lie on. The simplifying assumption of this procedure is
that only wells placed on the same line are allowed to be installed as
an extraction–injection well doublet for the potential multi-well system.
This ensures that the installed wells are aligned with the groundwater
flow direction, which is a prerequisite for applying the TAP method
(see Section 2.1). The pre-processing step results in hydrogeologically
and legally viable potential well locations, which are further used in
the optimization procedure.

2.2.2. Optimization concept
As described previously, each line in Fig. 3(a) corresponds to one

potential well doublet, i.e. one upstream extraction and one down-
stream injection well which are installed according to the groundwater
flow direction. There are multiple potential well locations on each line
and multiple potential doublets (lines) in a city block, which gives a
high degree of freedom in the layout (installation) of a large multi-
doublet system and the placement of its wells. In addition, the size of a
doublet, i.e. its pumping rate, is interdependent with the well locations
due to the hydraulic breakthrough limits. Therefore, an optimization
procedure is required to determine the optimal combination of doublets
to be installed in a city block, i.e. the size and placement of the dou-
blets and the placement of the corresponding wells. The optimization
concept is described below:

• the area of interest has a predefined number of potential well
doublets (lines),

• each doublet (line) has a predefined number of potential well
locations, which can be extraction or injection wells,

• for each potential doublet (line) there are two optimization vari-
ables: the binary variable 𝑑 corresponding to the decision whether
to install (𝑑 = 1) or not (𝑑 = 0) this doublet, and the continuous
variable 𝑞 ∈ R+

0 representing the pumping rate of the doublet,
• for each potential well location, there are two binary optimization

variables: 𝑑ext and 𝑑inj, which represent the selection decision for
the extraction and injection well, respectively,

• if an extraction well is installed (selected) at the considered well
location, then 𝑑ext = 1 and 𝑑inj = 0, and vice versa, in case of an
injection well, 𝑑ext = 0 and 𝑑inj = 1,

• if neither an extraction nor an injection well is selected at the
considered potential well location, then 𝑑ext = 𝑑inj = 0,

• if the well doublet is installed (𝑑 = 1), one extraction well and
one injection well is selected from the potential well locations on
the corresponding line,

• if doublet is not installed (𝑑 = 0), all potential wells on that line
are deselected.

Fig. 3(b) shows an example of a city block with two installed doublets
and the placement (selection) of their wells. It is important to point
out that the proposed approach does not consider thermal interactions
between doublets, specifically the propagation of thermal plumes in
groundwater induced by GWHPs. Therefore, the approach focuses on
optimizing the technical potential of smaller areas (e.g. city blocks)
separately and does not address the optimization of the spatial potential
of multiple areas jointly. In the next section, further details on the
relations between the optimization variables described previously, as
well as on other optimization constraints, are provided.

2.2.3. Objective function and constraints
The optimization objective is to maximize the technical potential of

thermal aquifer utilization in a city block, i.e. to maximize groundwater
extraction by well doublets while meeting the corresponding technical
and legal constraints. Thus, the objective function to be maximized is
defined as:

𝑞total =
𝑁∑
𝑘=1

𝑞𝑘 , (5)

where 𝑞total is the total pumping rate of all doublets, 𝑞𝑘 is the pumping
rate of a single doublet 𝑘 and𝑁 is the number of potential doublets. The
maximization of the volume of extracted groundwater simultaneously
maximizes the thermal energy exchange with the aquifer.

The problem also includes several optimization constraints related
to the installation and operation of doublets and their wells. The first
set of constraints ensures that only installed doublets can be operated:

𝑞𝑘 ≤ 𝑞max,𝑘 ⋅ 𝑑𝑘 ∀𝑘 ∈ 𝑆 , (6)

where 𝑞max,𝑘 is the pre-computed maximum pumping rate of a doublet
𝑘 and 𝑆 = {1,… , 𝑁} is the set of all potential well doublets. If a
doublet is not installed (𝑑𝑘 = 0), it cannot pump groundwater (𝑞𝑘 = 0),
otherwise its pumping rate is limited by 𝑞max,𝑘, which is calculated in
the pre-processing as follows:

𝑞max,𝑘 = min(max
𝑗∈𝐸𝑘

𝑞d,𝑗 ,max
𝑖∈𝐼𝑘

𝑞f ,𝑖) , (7)

where 𝑞d,𝑗 and 𝑞f ,𝑖 are the ‘‘threshold’’ pumping and injection rates from
the TAP method, i.e. Eqs. (1) and (2), respectively, and 𝐸𝑘 and 𝐼𝑘 are
the sets of all potential extraction and injection wells of the doublet 𝑘,
respectively. Thus, 𝑞max,𝑘 represents the minimum between the two: the
maximum pumping rate of all potential extraction wells 𝑗, based on the
drawdown threshold, and the maximum injection rate of all potential
injection wells 𝑖, based on the upconing threshold, of the doublet 𝑘 (see
Section 2.1). This initial estimate of the theoretical upper bound for
the pumping rates is used in the optimization constraints to reduce the
exploratory design space and thereby speed up the overall optimization
process.
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Fig. 3. Selection of optimal well locations: (a) Potential wells. (b) Optimal (selected) wells and corresponding doublets.

The second set of constraints specifies a minimum pumping rate for
installed well doublets:

𝑞min ⋅ 𝑑𝑘 ≤ 𝑞𝑘 ∀𝑘 ∈ 𝑆 , (8)

where 𝑞min is the predefined minimum pumping rate of a doublet. These
constraints serve to prevent the installation of too small doublets, which
are not economically viable in practice.

The third set of constraints corresponds to the fact that each doublet
consists of a single extraction–injection well pair:
∑
𝑖∈𝐼𝑘

𝑑inj,𝑖 = 𝑑𝑘 ∀𝑘 ∈ 𝑆 , (9)

∑
𝑗∈𝐸𝑘

𝑑ext,𝑗 = 𝑑𝑘 ∀𝑘 ∈ 𝑆 . (10)

This also implies that the number of installed extraction and injection
wells of the same doublet must be the same, i.e. 0 or 1, depending on
whether the doublet is installed or not.

The next set of constraints are limitations on the pumping rates
of well doublets based on the TAP method. The first group of such
constraints ensures that none of the installed extraction wells (doublets)
exceeds the drawdown threshold defined in the TAP method:

𝑞𝑘 ≤ 𝑑ext,𝑗 ⋅ 𝑞d,𝑗 + 𝑞max,𝑘 ⋅ (1 − 𝑑ext,𝑗 ) ∀𝑗 ∈ 𝐸𝑘 ,∀𝑘 ∈ 𝑆 . (11)

Depending on which extraction well 𝑗 is selected (𝑑ext,𝑗 = 1), the
pumping rate 𝑞𝑘 of the doublet is limited by the pumping rate at
the drawdown threshold of this well 𝑞d,𝑗 . If the well 𝑗 is not selected
(𝑑ext,𝑗 = 0), the constraint reads as 𝑞𝑘 ≤ 𝑞max,𝑘, which should hold in any
case. The form of the constraint (11) is necessary to ensure that only
the selected extraction wells set an upper limit on the pumping rate
based on the drawdown threshold. The other constraints in connection
with the TAP method are formulated in a similar manner.

The second group of TAP-related constraints limits the injection
rates based on the upconing threshold:

𝑞𝑘 ≤ 𝑑inj,𝑖 ⋅ 𝑞f ,𝑖 + 𝑞max,𝑘 ⋅ (1 − 𝑑inj,𝑖) ∀𝑖 ∈ 𝐼𝑘 ,∀𝑘 ∈ 𝑆 . (12)

Similar to (11), these constraints enforce that the selected injection
wells, and thus the corresponding doublets, do not exceed the upconing
threshold.

The next group of TAP-related constraints ensures that an internal
hydraulic breakthrough is prevented by limiting the doublet’s pumping
rate:

𝑞𝑘 ≤ 𝛼𝑖,𝑗 ⋅ 𝛥𝑖,𝑗 + 𝑞max,𝑘 ⋅ (2 − 𝑑ext,𝑗 − 𝑑inj,𝑖) ∀𝑗 ∈ 𝐸𝑘 ,∀𝑖 ∈ 𝐼𝑘 ,∀𝑘 ∈ 𝑆 , (13)

where 𝛥𝑖,𝑗 is the distance between injection and extraction wells 𝑖
and 𝑗, respectively, and 𝛼𝑖,𝑗 = (𝛼𝑖 + 𝛼𝑗 )∕2 is the averaged hydraulic
breakthrough parameter 𝛼 of these two wells. The constraint (13) is
activated, i.e. it becomes 𝑞𝑘 ≤ 𝛼𝑖,𝑗 ⋅ 𝛥𝑖,𝑗 , only for the selected (𝑖, 𝑗) well
pair (𝑑ext,𝑗 = 𝑑inj,𝑖 = 1). In all other cases, the constraint does not
introduce additional, more stringent upper limits on the pumping rate
𝑞𝑘.

In addition to the relation between pumping rate and internal well
distance defined by the constraint (13), the well placement must also
comply with the regulatory minimum internal distance and the natural
order (upstream-downstream) of well placement:

𝑑inj,𝑖 + 𝑑ext,𝑗 ≤ 1 if (𝛥𝑖,𝑗 < 𝛥min or ¬𝐶𝑖,𝑗 ) ∀𝑗 ∈ 𝐸𝑘 ,∀𝑖 ∈ 𝐼𝑘 ,∀𝑘 ∈ 𝑆 ,

(14)

where 𝛥min is the defined regulatory minimum distance and 𝐶𝑖,𝑗 is the
relative well placement condition for the (𝑖, 𝑗) well pair, which states
that the injection well should be placed downstream relative to the ex-
traction well. If the internal distance of the considered well pair (𝑖, 𝑗) is
smaller than 𝛥min or if the condition 𝐶𝑖,𝑗 is not satisfied, these two wells
cannot be installed together as a doublet. The regulatory distance 𝛥min
between extraction and injection wells of the same doublet is defined
to avoid hydraulic and thermal breakthroughs within the system [28].
This distance is 10 m in the case study (see Section 3.1), which is
located in the German state of Bavaria [29].

The remaining optimization constraints address the spacing and
sizing of neighboring doublets. The first group of such constraints
guarantees sufficient distance between two neighboring doublets con-
sidering their hydraulic footprint derived from the TAP method. The
pumping rates of two neighboring doublets 𝑘 and 𝑝 are limited based
on their mutual distance 𝛥𝑘,𝑝 as follows:

𝑞𝑘
𝛼̃𝑘

+
𝑞𝑝
𝛼̃𝑝

≤ 2
𝑟𝛥

⋅𝛥𝑘,𝑝+𝑚𝑘,𝑝 ⋅(2−𝑑𝑘−𝑑𝑝) if 𝜒𝑘+𝜒𝑝 >
2
𝑟𝛥

⋅𝛥𝑘,𝑝 ∀𝑘, 𝑝 ∈ 𝑆 ,

(15)
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where: 𝛼̃𝑘 and 𝛼̃𝑝 are the hydraulic breakthrough parameters for the
doublets 𝑘 and 𝑝, respectively; 𝑚𝑘,𝑝 = 𝑞max,𝑘∕𝛼̃𝑘 + 𝑞max,𝑝∕𝛼̃𝑝 is the
interference parameter between these two doublets; 𝜒𝑘 and 𝜒𝑝 are the
line lengths representing the doublets 𝑘 and 𝑝, respectively, i.e. the
maximum possible internal well distances for the doublets; and 𝑟𝛥 is the
previously defined external–internal well distance ratio. The hydraulic
breakthrough parameter 𝛼̃ for each doublet is defined as the median
value of this parameter among all potential wells within that doublet.
To reduce computational complexity and avoid excessive constraints,
the constraint is applied only to pairs of potential doublets that are
relatively close to each other, since mutual hydraulic influence is rele-
vant in this case. The relative closeness of two doublets is determined
by comparing their distance 𝛥𝑘,𝑝 with the averaged maximum possible
internal well spacing of the doublets (𝜒𝑘 + 𝜒𝑝)∕2, multiplied by the
chosen external–internal spacing ratio 𝑟𝛥. If 𝛥𝑘,𝑝 ≥ 𝑟𝛥 ⋅ (𝜒𝑘 + 𝜒𝑝)∕2, the
doublets are sufficiently far apart and the constraint (15) is not applied.
Otherwise, the constraint is activated.

When the doublet pair (𝑘, 𝑝) is installed, i.e. 𝑑𝑘 = 𝑑𝑝 = 1, the
constraint (15) takes the following form:
𝑞𝑘
𝛼̃𝑘

+
𝑞𝑝
𝛼̃𝑝

≤ 2
𝑟𝛥

⋅ 𝛥𝑘,𝑝 , (16)

which imposes a limit on the weighted sum of the pumping rates of
the doublets based on their distance. The formulation of (16) is derived
from the constraint for the internal hydraulic breakthrough of a doublet
(13) and using the definition of the ratio 𝑟𝛥. In all other cases, i.e. when
one or both doublets are not installed, the parameter 𝑚𝑘,𝑝 ensures that
the constraint (15) is always satisfied, thus avoiding the introduction
of any additional limitations on the pumping rates.

The second set of constraints for neighboring doublets specifies a
minimum distance between two installed doublets, which is determined
by the regulatory internal distance 𝛥min between wells within the same
doublet:

𝑑𝑘 + 𝑑𝑝 ≤ 1 if 𝛥𝑘,𝑝 < 𝑟𝛥 ⋅ 𝛥min ∀𝑘, 𝑝 ∈ 𝑆 . (17)

If the distance between two potential doublets is smaller than 𝑟𝛥 ⋅
𝛥min, these doublets cannot be installed jointly. This constraint guar-
antees that neighboring doublets maintain an adequate spacing even
for smaller doublet sizes (pumping rates), which is not addressed by
the constraint (15).

Based on the previously defined objective function and constraints,
the underlying optimization problem can be formulated as follows,

max
𝒖

𝑞total(𝒖) (18a)

subject to 𝐠1(𝒖) = 0, (18b)

𝐠2(𝒖) ≤ 0, (18c)

where: 𝒖 represents the vector of all optimization variables, which
includes the binary variables 𝒅ext , 𝒅inj, 𝒅 and the continuous variables
𝒒; 𝐠1 represents all the equality constraints defined by (9) and (10); 𝐠2
represents all the inequality constraints defined by (6), (8), (11), (12),
(13), (14), (15) and (17). The optimization problem (18) is a mixed-
integer linear program that is solved independently for each city block,
as described in the following.

3. Implementation

The introduced optimization approach is implemented using
Python-MIP [30], an open-source package specifically designed for
modeling and solving mixed-integer linear programs. The Python code,
including a functional example, is freely available at [31]. Pre-
processing of potential well locations and pumping rate limits is con-
ducted in Python using geopandas and dependent libraries [32]. In the
following sections, the case study area and the considered optimization
scenarios are described.

3.1. Case study

The presented optimization approach is applied on a city block level
in the entire city area of Munich (see Fig. 4). This means that the
optimization problem (18) is formulated and solved for each city block,
thereby optimizing the potential of each block independently from
other blocks. The city block level is selected because it is aligned with
the energy planning scale relevant to future 4GDH and 5GDHC systems.
Munich offers favorable conditions for exploiting thermal energy from
groundwater due to its location on a productive and shallow gravel
aquifer. Extensive studies have been conducted to characterize key
hydro-geological parameters, such as hydraulic conductivity, aquifer
thickness, and groundwater flow direction, within the city area. De-
tailed information on these parameters are provided by Böttcher et al.
[19] and Zosseder et al. [33].

In the pre-processing step (see Section 2.2.1), potential well loca-
tions are determined for each city block by initially using a constant
distance of 5 m between wells. Due to the large area of some city
blocks, this results in a high number of potential well locations in those
blocks. Thus, to simplify the calculation and reduce computational
time, an iterative approach is used to reduce the number of potential
wells per city block. The constant distance between wells is iteratively
increased by 2.5 m for each block until the number of potential wells
within the block is reduced to 100 or less. Once the potential well
locations are determined, the relevant values from the TAP method
𝑞d, 𝑞f , and 𝛼 are calculated for each location using the available
groundwater parameter data for the city of Munich. In addition, a
filtering process is used during pre-processing to exclude potential well
locations with limited potential. Specifically, potential wells with pre-
calculated pumping rates at drawdown or upconing thresholds (𝑞d or
𝑞f ) below 1 [l/s] are removed. The value of 1 [l/s] is used in this
work because the focus here is on large multi-well systems that can
be used in 4GDH or 5GDHC systems. This process ensures that areas
(blocks) lacking sufficient potential due to groundwater conditions are
excluded from further analysis. The potential analysis (optimization) is
then performed for the remaining 8751 city blocks of Munich, as shown
in Fig. 4.

3.2. Optimization scenarios

In total, six distinct optimization scenarios were investigated, each
representing different combinations of two parameters: the external–
internal well distance ratio 𝑟𝛥 and the predefined minimum pumping
rate of an installed doublet 𝑞min. Three values were considered for
𝑟𝛥: 1.5, 2, and 3. These values correspond to about 10%, 5%, and
2.5%, respectively, of the inter-flow according to the TAP method (see
Section 2.1). The last case, with 𝑟𝛥 = 3, is the most conservative and
is characterized by the lowest level of interaction between neighboring
doublets. These 𝑟𝛥 values were paired with two values for 𝑞min: 1 and
5 [l/s]. In the latter case, the use of larger doublets, e.g. for 4GDH and
5GDHC grids, is particularly emphasized.

4. Results

The results obtained from the optimization scenarios are presented
and analyzed in this section. Table 1 provides a summary of the results
for all optimization scenarios introduced in Section 3.2. The table in-
cludes the following results: the total number of installed well doublets
in the city of Munich, the maximum and mean number of installed
doublets per city block, the average of pumping rates of the largest
installed doublets in city blocks (i.e. the average of maximum pumping
rates of installed doublets per city block), the mean value of pumping
rates of all installed doublets (excluding non-installed doublets), the
number of city blocks with and without installed doublets, the total
installed pumping rate for the entire city, and the maximum and mean
values of installed pumping rates per city block.
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Fig. 4. Case study with considered city blocks.

Table 1
Results of the six optimization scenarios for the city of Munich.

Scenario Nr. of installed doublets Doublet pumping rates [l/s] Nr. of blocks Block pumping rates [l/s]

𝑞min [l/s] 𝑟𝛥 Total Max Mean Average Max Mean With Without Total Max Mean
per block doublets doublets

1 1.5 24 802 27 2.8 20.7 10.7 8232 519 274 149.2 971.4 31.3
2 19 134 20 2.2 21.3 12.0 8232 519 241 056.5 762.8 27.5
3 14 139 18 1.6 21.9 14.3 8232 519 212 419.2 639.7 24.3

5 1.5 14 255 23 1.6 26.2 17.4 6342 2409 256 201.4 971.4 29.3
2 11 435 16 1.3 26.9 18.9 6342 2409 227 090.8 762.7 25.9
3 8905 10 1.0 27.6 21.7 6342 2409 202 045.0 639.7 23.1

It is evident that scenarios with larger values of 𝑟𝛥 and the same 𝑞min
have a smaller number of installed well doublets with larger capacities
(pumping rates). At the same time, as the 𝑟𝛥 value increases, the
installed capacities per city block decrease. This result conforms with
expectations, as these scenarios follow a more conservative approach
that requires larger distances between neighboring doublets. Further-
more, for a given 𝑟𝛥, the maximum installed pumping rate per city
block remains unchanged regardless of the 𝑞min value. This shows that
the city block with the highest installed capacity is identical in both
𝑞min scenarios and does not contain any well doublets with capacities
between 1 and 5 [l/s].

The number of city blocks with and without installed doublets
remains constant for scenarios with the same 𝑞min value. This is due to
the fact that the parameter 𝑟𝛥 controls the spacing between neighboring
doublets and does not influence whether at least one single doublet is
installed within a city block. From the scenarios with 𝑞min = 1 [l/s] to
𝑞min = 5 [l/s], the count of city blocks without installed doublets rises
from 519 to 2409, respectively, of the total 8751 blocks considered. The
difference of 1890 city blocks results from areas with low potential for
thermal groundwater use mainly due to a lower groundwater thickness
and corresponds to the blocks containing doublets with flow rates be-
tween 1 and 5 [l/s]. This observation is further evident in Fig. 5, which
shows the optimized potential of GWHP systems for two scenarios:
𝑞min = 1 [l/s], 𝑟𝛥 = 2 (top) and 𝑞min = 5 [l/s], 𝑟𝛥 = 3 (bottom). The
second scenario is more conservative, requiring more spacing between
neighboring well doublets and considering only larger doublets, and

this is also evident in the results (see Table 1). Moreover, the results
show that certain city regions exhibit an extensive potential for the
thermal use of groundwater, making them especially well suited for the
use of large multi-well GWHPs in 4GDH or 5GDHC systems. Conversely,
areas in the inner city zone and around the city river Isar (see Fig. 4)
with lower potential for thermal groundwater use (marked in red
colors) are also observed to be less suitable for larger GWHPs. These
results are the consequence of unfavorable hydrogeologic conditions
in the inner city zone, which were also observed in the original TAP
publication [19].

Fig. 6 shows the statistical results for two optimization scenarios:
𝑞min = 1 [l/s], 𝑟𝛥 = 2 and 𝑞min = 5 [l/s], 𝑟𝛥 = 2. The figure
depicts the distributions of installed capacities 𝑞block and the number
of installed doublets 𝑛doublet per city block, along with the correlation
between these two variables. The distribution plots reveal that both
parameters, 𝑞block and 𝑛doublet , mostly follow an exponential distribution
pattern. This means that the frequency (count) of city blocks increases
exponentially with decreasing capacity 𝑞block and number of doublets
𝑛doublet installed per block. Moreover, the number of blocks with only
one installed doublet is the highest, followed by blocks with two or no
doublets, depending on the scenario. The scenario with 𝑞min = 5 [l/s]
contains more blocks without doublets compared to the scenario with
𝑞min = 1 [l/s] because the first scenario excludes all blocks with only
one doublet that has a capacity between 1 and 5 [l/s]. Similarly, due
to the exclusion of smaller doublets in the first scenario, there are also
fewer blocks in this scenario that contain a larger number of installed
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Fig. 5. Optimized pumping rates per city block for two scenarios 𝑞min = 1 [l/s], 𝑟𝛥 = 2 (top) and 𝑞min = 5 [l/s], 𝑟𝛥 = 3 (bottom).

doublets (e.g. 10 doublets per block). This is further supported by the
central graph that illustrates the relationship between the number of
doublets 𝑛doublets in a block and its capacity 𝑞block .

Fig. 7 presents an example of the optimal positioning of well dou-
blets in four city blocks. The optimal well arrangements for two sce-
narios are depicted: 𝑞min = 1 [l/s], 𝑟𝛥 = 2 and 𝑞min = 5 [l/s], 𝑟𝛥 = 2. As
discussed previously, only larger doublets are included in the second
scenario. Consequently, certain city blocks in the second scenario have
fewer but larger doublets compared to the first scenario, as can be seen
in Fig. 7.

5. Discussion and outlook

The presented optimization approach can effectively analyze the
technical potential of thermal groundwater use by determining opti-
mal arrangements of well doublets, their sizing, and well locations

within the designated area. The approach can successfully quantify the
maximum technically achievable groundwater pumping rate, and thus
the exchanged thermal energy with the aquifer, taking into account
relevant regulatory and hydraulic constraints. Moreover, the considered
optimization scenarios demonstrate the approach’s versatility through
the selection of specific optimization parameters. For example, by
increasing the ratio 𝑟𝛥, more conservative results are obtained, indi-
cating reduced interaction between neighboring doublets. Similarly,
selecting a larger value for the minimum capacity 𝑞min focuses the
analysis on large GWHP systems, which is particularly useful for in-
vestigating the potential for 4GDH and 5GDHC systems. The approach
can also be used to study the potential of smaller systems, such as
distributed GWHPs for individual households, by setting an upper
threshold for the installed capacity of an individual well doublet.
Therefore, the presented approach can serve as a valuable basis for
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Fig. 6. Result comparison for two optimization scenarios.

Fig. 7. Optimal well placement for two scenarios. It should be noted that the city blocks are optimized/considered separately and the figure shows several independent optimization
results – one per city block – for both scenarios.

both thermal groundwater management and urban energy planning.
The new approach offers several advantages over existing methods,
including simultaneous optimization of well placement and size, con-
sideration of spatial heterogeneity of groundwater parameters, and
hydraulic constraints for determining optimal pumping rates. However,

it has certain limitations, which are discussed in the following together
with possible future improvements.

In this approach, the analytical formulas of the TAP method are
incorporated into an optimization framework. As a result, certain lim-
itations are inherited from the integration of the TAP method. The
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first one is that the wells of a doublet are fully aligned with the
groundwater flow direction. In reality, this need not be the case, as
wells can be placed in various configurations, such as in the corners of
a city block, without strictly following the groundwater flow direction.
To address this limitation, one of the first future improvements is to
extend the approach to such cases. This extension involves using new
analytical expressions applicable to well pairs that are not aligned with
groundwater flow direction.

The second limitation relates to having the same number of extrac-
tion and injection wells in a potential multi-well system. The proposed
approach already provides flexibility in the design of multi-well systems
because the doublets within a city block can be connected in different
configurations. For example, multiple doublets can be combined into a
larger system or several smaller single-doublet systems can be used. In
practice, however, systems may have unbalanced combinations of ex-
traction and injection wells due to hydrogeological conditions, such as
one extraction well paired with two or more injection wells. Therefore,
the approach can be further extended in the future to accommodate
such scenarios.

It should be mentioned that the potential analysis study presented
in this work did not consider existing systems within the city. Never-
theless, the approach presented is fully capable of including existing
systems into the potential analysis. Including existing systems in the
optimization problem (18) is a straightforward process. One method is
to set the optimization variables of the installed systems and wells to
constant values using equality constraints. In particular, binary decision
variables can be set to 1, representing the presence of the installed
wells, while capacities can be set to their actual installed capacity
values. Alternatively, optimization variables for existing systems need
not be used, and their values can be substituted directly into the
associated constraints with corresponding constant numerical values.
By using either of these methods, the approach can efficiently account
for existing systems and contribute to a more comprehensive analysis
of thermal aquifer potential.

Furthermore, as stated in Section 2.2.2, the proposed approach
does not directly consider thermal anomalies in the groundwater. How-
ever, certain aspects related to heat transport are addressed indirectly
within the optimization approach. First, the prevention of internal
hydraulic breakthrough within each system is achieved by applying
the constraint (13). Since thermal breakthrough normally occurs after
hydraulic breakthrough, this constraint also ensures the prevention
of internal thermal breakthrough [28]. Second, the constraints (15)
and (17) ensure sufficient spacing between neighboring well doublets,
accounting for the hydraulic footprint of each doublet. Additionally, a
potential doublet is defined on each line within a city block, and addi-
tional doublets are installed on parallel lines that are aligned with the
groundwater flow direction. This geometric arrangement of potential
doublets within a city block, along with the required spacing between
neighboring doublets, results in a lower possibility of mutual thermal
interference. Consequently, the new approach indirectly accounts for
thermal effects such as thermal breakthroughs or negative thermal
interactions between neighboring doublets. This only holds true for
every city block individually without considering interactions with
neighboring blocks.

On the other hand, when jointly optimizing multiple neighboring
city blocks, it is crucial to consider the propagation of thermal plumes,
since upstream systems can directly affect downstream ones. To ac-
count for this, an analytical model for estimating thermal plumes can
be incorporated into the proposed optimization approach. One possible
solution is to combine our approach with optimization concepts from
the study by Halilovic et al. [24], where the spatial potential is opti-
mized using the LAHM analytical model for thermal plume estimations.
By incorporating these thermal aspects into the optimization process,
the approach can be extended to the combined optimization of large
areas, such as several neighboring city blocks or entire city districts.
Moreover, there is the potential to combine the approach with energy

system optimization models (ESOMs) used for optimal planning of
urban energy systems. For urban areas where thermal use of ground-
water is a viable option, accurate representation of thermal potential in
ESOMs is crucial [34], especially in the context of optimal planning of
future 4GDH and 5GDHC systems. In general, potential analysis meth-
ods based on analytical formulas are more suitable for integration into
ESOMs because they are significantly less computationally demanding
and complex compared to methods based on numerical groundwater
simulations [35].

Finally, the approach can be extended to cost-related considerations,
allowing for a holistic analysis that addresses both economic and
environmental aspects of energy planning. This is particularly relevant
for large groundwater uses with multiple wells for heating or cooling,
as drilling costs become a significant factor. The challenge is to find
the optimal balance between fewer, more expensive wells with larger
diameters and multiple wells with smaller diameters. Additionally,
the proposed approach can be fully integrated into GIS-based online
management and energy planning tools, such as the web tool developed
as part of the GEO.KW project [36,37] .

6. Conclusion

This paper presents a novel approach for determining the optimal
sizing and placement of well doublets, with the overall goal of maximiz-
ing the technical potential of thermal groundwater use, i.e. the volume
of pumped groundwater. The approach incorporates regulatory condi-
tions, spatial variability of groundwater parameters, and key hydraulic
constraints into the potential assessment process. The considered hy-
draulic constraints ensure acceptable drawdown levels in extraction
wells and groundwater rise in injection wells, prevention of internal
hydraulic breakthroughs, and adequate spacing between neighboring
doublets. Analytic expressions describing these hydraulic constraints
are integrated into a mixed-integer linear optimization problem allow-
ing efficient application to relatively large areas. The positioning of well
doublets is based on the selection of predefined potential locations.

The proposed approach is applied to a real case study involving
the optimization of the geothermal potential for each city block in
Munich. To demonstrate the adaptability of the approach, six differ-
ent optimization scenarios are used, differing in two parameters: the
minimum capacity of a single installed doublet (1 and 5 [l/s]) and
the external–internal well distance ratio (1.5, 2, and 3). The results
prove the effectiveness and efficiency of the approach in identifying
urban areas, or in this case city blocks, with favorable potential for
large-scale GWHP systems as well as those unsuitable for such installa-
tions. Furthermore, the presented method provides comprehensive and
optimized potential estimates that can be readily extended to other ge-
ographic locations. Thus, it is a valuable tool for thermal groundwater
management and the integration of thermal groundwater potential into
spatial energy planning, including the development of future 4GDH and
5GDHC systems. In addition, the method can provide valuable insights
for well drilling and construction companies and housing associations.
Finally, by coupling optimization techniques with potential analysis,
the new method enables more thorough exploration and exploitation
of the shallow geothermal potential, leading to an improved use of
groundwater for heating and cooling purposes.
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4.3 PDE-based optimization

This section is dedicated to the PDE-based optimization of GWHP systems, which involves the use of PDE
(numerical) models to simulate groundwater flow and heat transport within an aquifer. The theoretical back-
ground for this section regarding numerical groundwater simulation models and PDE-constrained optimization
is provided in Sections 2.1.2 and 2.2, respectively. The section includes the last publication of this thesis,
Publication 5 [100], which presents a novel PDE-constrained optimization framework for GWHPs, hereafter
referred to as Approach III. This approach uses the adjoint method to efficiently obtain the required gradients
for optimization. Consequently, it falls into Class I of the classification scheme presented in Section 4.1, as
shown in Figure 4.2.

Figure 4.2 Approach III in the classification scheme from Section 4.1

Approach III can effectively determine optimal well placements for multiple neighboring GWHP systems
concurrently, with the goal of maximizing the efficiency of all of these systems while minimizing the negative
thermal interactions between them. In contrast to Approaches I and II presented in the previous section,
Approach III allows for the placement of GWHP wells at any location within a feasible area, rather than being
limited to predefined discrete locations. In addition, Approach III can account for various complexities present
in aquifers because of its use of a numerical groundwater simulation model. It is therefore particularly suitable
for detailed design and optimization of GWHP systems. The applicability of the approach is demonstrated using
a real case study comprising 10 neighboring GWHP systems.
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A B S T R A C T

Groundwater heat pump systems cause thermal anomalies in the aquifer that can impact upon downstream
systems and reduce their efficiency. Therefore, it is important to optimally position the extraction and injection
wells of such systems to avoid negative interactions and maximize the thermal potential of the aquifer.
This paper presents a new method to determine optimal well layouts of groundwater heat pumps using the
adjoint approach, which is an efficient way to solve the underlying PDE-constrained optimization problem.
An integral part of the method is the numerical groundwater simulation, which here is based on the finite
element method. In addition, a multi-start initialization strategy is introduced in an attempt to better reach
the global optimum. The method is applied to a real case study with 10 groundwater heat pumps, i.e. 20
wells, and two optimization scenarios with different natural groundwater temperatures. In both scenarios, the
optimization method successfully determines a well layout that maximizes groundwater temperatures at all
extraction wells. Comparing the results from these scenarios demonstrates that hydro-geological conditions can
have a significant impact on the optimal well layout. The proposed method is equally applicable to systems with
multiple extraction and injection wells and can be extended to various other shallow geothermal applications,
such as combined heating and cooling systems.

1. Introduction

The European Union has set itself the goal of being climate neutral
by 2050 [1]. This implies the decarbonization of all energy-related
sectors, including residential heating and cooling. One of the key
technologies to decarbonize this sector are heat pumps [2], as they
use renewable resources, are highly efficient and can provide additional
flexibility to the electricity system [3]. In particular, shallow geother-
mal heat pumps are gaining in importance due to their higher efficiency
compared to air–water heat pumps [4].

Groundwater heat pumps (GWHPs), along with ground source heat
pumps, are one of two main types of geothermal heat pumps. GWHPs
are open-loop systems, which means that they use heat directly from
the groundwater and, in contrast to closed-loop systems, do not require
any additional heat carrier fluid. Residential GWHP systems usually
have a single pair of wells in which the groundwater is pumped from
the extraction well and, after the energy (heat) exchange, the cooled
water is returned into the same aquifer at the injection well. The
returned water causes thermal anomalies, so-called thermal plumes,

∗ Corresponding author.
E-mail address: smajil.halilovic@tum.de (S. Halilovic).

which spread in the aquifer according to the natural groundwater
flow direction and can reach neighboring downstream GWHP sys-
tems [5]. Potential negative interaction events such as this must be
avoided because the efficiency of GWHPs depends significantly on the
groundwater temperature [6].

On the other hand, urban areas have high shallow geothermal
potential, since ground temperatures are anthropologically elevated by
the subsurface urban heat island (SSUHI) effect [7,8]. Therefore, in
addition to being a climate-friendly technology, there is an incentive
to install more GWHP systems in urban areas due to the potentially
increased efficiency and the need to mitigate further groundwater
temperature rise. However, an increased number of GWHPs can lead
to negative interactions between neighboring systems. In order to
avoid such negative effects, an optimal management of the resource is
required [9]. GWHP systems can be carefully positioned in an attempt
to minimize any negative interactions, i.e. to maximize the efficiency of
all systems, and at the same time to maximize the shallow geothermal
potential of a specific region.

https://doi.org/10.1016/j.enconman.2022.116033
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Nomenclature

Latin letters

𝐀 Coefficient matrix of constraints
𝑎, 𝑏 Coefficients of linear constraints
𝐵 Saturated aquifer thickness [m]
𝐛 Coefficient vector of constraints
𝐶m Volumetric heat capacity of medium [J/m3

K]
𝐶w Volumetric heat capacity of water [J/m3 K]
𝐷 Feasible area for wells
𝑑 Distance [m]
𝐃mech Tensor of mechanical dispersion [m2/s]
𝑑𝑅 Regulatory distance [m]
 Residual of equations
𝑓𝜇 Viscosity relation function [–]
𝑓B Aquifer bottom [m]
𝐺 Penalty field
𝑔 Inequality constraints
ℎ Hydraulic head [m]
ℎn Natural groundwater head [m]
𝐈 Unity or identity matrix [–]
𝐽 Functional of interest
𝐽 Reduced functional of interest
𝐊 Tensor of hydraulic conductivity [m/s]
𝒎 Design/control variables
𝑁 Number of heat pumps
𝑁cst Number of constraints
𝑛iter Number of optimization iterations
𝑝 Penalty function
𝑃𝑅, 𝑃𝑇 Penalty terms
𝑃 t Depth integrated heat source/sink terms

[W/m2]
𝐪 Darcy velocity [m/s]
𝑄 Depth integrated liquid source/sink terms

[m/s]
𝑞 Pumping rates [m3/s]
𝑅 Restricted area for wells
𝑟 Radius of approximate delta function [m]
𝑟p Radius of restricted area [m]
𝑆0 Aquifer storativity [1/m]
𝑇 Groundwater temperature [K]
𝑡 Time [s]
𝑇 inj Temperature of reinjected water [K]
𝒖 State variables
𝑉norm Normalization volume [m3]
𝐱ext Coordinates of extraction wells [m]
𝐱inj Coordinates of injection wells [m]
𝐱p Coordinates of penalty center [m]

Greek letters

𝛼, 𝛾 Penalty scaling factors [–]

A few research studies discuss negative interactions between
GWHPs and their connection to the shallow geothermal potential.
Attard et al. [10] introduced a new concept to prevent thermal interfer-
ence between neighboring GWHPs based on thermal protection perime-
ters, which are defined around existing GWHPs. These protection zones

𝛽𝐿 Longitudinal dispersivity [m]
𝛽𝑇 Transverse dispersivity [m]
𝝋 Adjoint variables
𝛿 2D Dirac delta function [1/m2]
𝛬 Coefficient of thermal conductivity of liquid

[J/m K s]
𝛬𝑠 Coefficient of thermal conductivity of solid

[J/m K s]
𝚲 Tensor of hydrodynamic thermodispersion

[W/m K]
𝛺 Computational domain
𝜕𝛺 Domain boundary
𝜓 Approximate delta function [1/m2]
𝜀 Porosity [–]
𝜀𝑒 Specific yield [–]

Subscripts and superscripts

ext Extraction
inj Injection
in Inflow
min Minimum
𝑖, 𝑗 Counters

ensure minimum distances between new and existing systems in order
to avoid negative interactions. On the other hand, García-Gil et al. [11]
proposed a new management policy for GWHPs based on numerical
models and a relaxation factor. The factor ensures that part of the
geothermal potential is available for future GWHP systems and thus
prevents its monopolization. Epting et al. [12] presented a method for
evaluating the theoretical and technical shallow geothermal potential
on an urban scale. The technical potential is based on the TAP method
(Thermal Aquifer Potential) [13], which takes into account the legal
and operational framework conditions for GWHPs. However, possible
negative thermal interactions between neighboring GWHPs are not
part of the TAP method and are therefore only qualitatively discussed
in [12]. None of these studies consider any optimization method,
but there is a clear need for such methods to maximize the shallow
geothermal potential through optimal placement of GWHP systems,
i.e. their wells.

In general, well placement is important for a single GWHP system
to avoid hydraulic and thermal breakthroughs [14] within the system,
but optimal well placement can also be used to reduce negative inter-
actions with neighboring systems. However, while there exist several
research studies on the optimization of borehole heat exchanger (BHE)
fields [15,16], there is still a lack of research on the optimization of well
layouts for GWHPs. Most of the existing studies only use simulation
methods to analyze a few possible spatial patterns of wells. Zhou and
Zhou [17] numerically simulated a GWHP with one well doublet using
several different spacings between wells (20–100 m) and cooling load
variations (±20%). Gao et al. [18] performed a numerical investigation
of four different predefined well configurations of a single GWHP
system. Similarly, Lo Russo and Civita [19] compared five exploration
scenarios to find a suitable design, including the spatial pattern of
extraction and injection wells, for a GWHP serving a large commercial
building. All previously described scenario (simulation) based designs
of well layouts have two major drawbacks: only inferior designs are
found compared to the fully optimized designs, and additional manual
work is required for each new system to define suitable scenarios. More
recently, Park et al. [20] developed a simulation–optimization model to
find optimal pumping rates of a GWHP system. Their approach is based
on the coupling of a numerical groundwater simulator with a genetic
optimization algorithm. Park et al. [21] further developed this model to
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determine optimal well locations and pumping rates of a single GWHP.
Optimal well locations are found in such a way that the extraction
well is fixed and the injection well is optimally selected from a set
of predefined locations. The existing methods either evaluate only a
relatively small number of predefined well layouts using simulation
scenarios [17–19], or, due to the underlying optimization method,
enable optimization over a small number of discrete (predefined) well
positions [21]. As a result, possible well layout designs are not fully
explored, i.e. only sub-optimal well positions are determined, which
can reduce the efficiency and lifespan of GWHPs. Furthermore, research
so far has only focused on finding optimal well locations for a single
GWHP system, but has not considered the case of multiple GWHPs in
order to reduce their mutual negative interactions and thus maximize
the geothermal potential of a given area. Therefore, existing methods
have several limitations and are not suitable to fully optimize well
layouts of GWHP systems, especially in cases where multiple wells need
to be optimized simultaneously.

The main objective of this paper is to introduce a new method for
optimizing well layouts of GWHP systems that closes the previously
identified research gaps. The new method is a significant improvement
over existing methods because both a continuous variation and large
numbers of well locations can be considered within the optimization
procedure. In addition, the newly proposed method can optimize well
locations of multiple systems simultaneously, since the number of
optimized wells is not a limiting factor. The underlying method is
a gradient-based optimization and relies on an efficient computation
of gradients using the adjoint approach. As an integral part of this
optimization concept, the numerical simulation of the groundwater
flow and heat transport is performed using the finite element method
(FEM). The applicability of the method is demonstrated using a case
study where negative interactions between several neighboring GWHP
systems are minimized, i.e. wells are placed to maximize groundwater
temperatures at all extraction wells. It should be emphasized that the
method can also be directly applied to find optimal well arrangements
of individual systems.

The paper is structured as follows. Section 2 describes the methodol-
ogy, i.e. the new optimization method. Section 3 provides information
about the implementation of the method, as well as the selected case
study, followed by the results, which are presented and analyzed in
Section 4. In Section 5, limitations and possible improvements of the
method, including future applications, are discussed. Finally, Section 6
provides conclusions for this work.

2. Methodology

The methodology can be divided into two parts: simulation and
optimization. The forward simulation (Section 2.1) is a numerical
calculation to evaluate a specific well layout, i.e. to calculate the
corresponding thermal and hydraulic groundwater conditions. The op-
timization (Section 2.2), on the other hand, finds the best (optimal)
well layout for a given objective, such as maximizing the temperatures
at the extraction wells.

2.1. Forward simulation model

To analyze the impacts of GWHPs on an aquifer, a forward model
describing flow and heat transport in the groundwater (porous media)
is required. This simulation model can be formulated as a system of cou-
pled partial differential equations (PDEs), which reads as follows [22]:

(𝐵𝑆0 + 𝜀𝑒)
𝜕ℎ
𝜕𝑡

+ ∇ ⋅ (𝐵𝐪) = 𝑄, (1a)

𝐪 = −𝐊𝑓𝜇 ⋅ ∇ℎ, (1b)

𝐵 = ℎ − 𝑓B, (1c)

𝐵𝐶m
𝜕𝑇
𝜕𝑡

− ∇ ⋅ (𝐵Λ ⋅ ∇𝑇 ) + 𝐵𝐶w𝐪 ⋅ ∇𝑇 = 𝑃 t . (2)

The given PDE system describes 2D vertically averaged, i.e. horizontal,
flow and heat transport in an unconfined aquifer. The first set of
Eqs. (1) represents flow in porous media, whereas the third PDE (2)
represents heat transport in porous media, written here in convective
form. All symbols from the PDE system are described in the nomen-
clature. The physical meaning of the PDEs as well as the modifications
and assumptions used in this work are described in the following.

The first PDE (1a) corresponds to the mass conservation law, where
the hydraulic head ℎ and the Darcy velocity 𝐪 are dependent variables.
The aquifer’s thickness 𝐵 is defined as a difference between ℎ and the
bottom of the aquifer 𝑓B. The term 𝑄 represents the depth integrated
liquid source/sink terms. In this work, it is assumed that the only source
and sink terms correspond with the wells of GWHPs, i.e. 𝑄 =

∑𝑁
𝑖=1𝑄𝑖,

where 𝑄𝑖 is the source/sink term of the GWHP 𝑖, with 𝑁 the number
of GWHPs. Furthermore, it is assumed that each GWHP has two wells:
an extraction well (sink term) and an injection well (source term).
Wells can be modeled (idealized) with well-type singular point sinks
or sources at their locations 𝐱𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ R2 [22]. Based on this, for
each GWHP 𝑖:

𝑄𝑖 = 𝑞𝑖(𝑡)𝛿(𝐱 − 𝐱inj𝑖 ) − 𝑞𝑖(𝑡)𝛿(𝐱 − 𝐱ext𝑖 ), (3)

where 𝑞𝑖(𝑡) is the pumping rate of the GWHP, and ‘‘inj’’ and ‘‘ext’’ stand
for injection and extraction, respectively.

The second PDE (1b) represents Darcy’s law, which has the same
dependent variables as (1a). The PDEs (1a)–(1b) can be solved simul-
taneously or sequentially by introducing (1b) into (1a). To simplify the
computation, the second approach is followed in this work, where the
unknown ℎ is computed first and thereafter 𝐪 is obtained directly from
(1b). Moreover, to linearize (1a) and reduce computational costs, the
effect of wells on the saturated aquifer’s thickness 𝐵 is neglected, i.e. it
is assumed that 𝐵 only depends on the natural groundwater head ℎn:

𝐵 = ℎn − 𝑓B. (4)

This is an acceptable assumption since the GWHP systems considered
in this work are relatively small and have low pumping rates, which
leads to low groundwater depression cones. It should be noted that the
effects of wells on the state ℎ are still taken into account in the PDEs,
and are only neglected in the term 𝐵 used for vertical averaging.

The third PDE (2) describes the heat transport in a two-phase (liquid
and solid) medium, i.e. groundwater. The main dependent variable here
is the groundwater temperature 𝑇 , whereas other terms are constant
parameters or solutions from the previous PDEs. The second term in
(2) describes the heat conduction and dispersion, and the third term the
thermal advection, respectively. The parameter Λ in the second term
is the hydrodynamic thermal dispersion, which can be calculated using
the following equations [22]:

Λ = (𝜀𝛬 + (1 − 𝜀)𝛬𝑠)𝐈 + 𝐶w𝐃mech, (5)

𝐃mech = 𝛽𝑇 ‖𝐪‖𝐈 + (𝛽𝐿 − 𝛽𝑇 )
𝐪⊗𝐪
‖𝐪‖ , (6)

with symbols’ descriptions given in the nomenclature. The term 𝑃 t in
(2) represents vertically averaged heat sink/source terms. In this work,
it is assumed that the only heat sinks/sources correspond with the wells
of GWHPs, i.e. 𝑃 t is given by:

𝑃 t =
𝑁∑
𝑖=1

𝑞𝑖(𝑡)𝐶w[𝑇
inj
𝑖 (𝑡) − 𝑇 ]𝛿(𝐱 − 𝐱inj𝑖 ), (7)

where 𝑇 inj
𝑖 (𝑡) is the temperature of re-injected water at the injection

well of GWHP 𝑖. It should also be noted that since the energy exchange
only takes place at injection wells of GWHPs, only the injection wells
appear as heat sinks in (7).

The flow PDEs (1) and the heat transport PDE (2) are coupled
only in one direction. Hence, they can be solved sequentially, first
the flow problem, and then the heat problem. Strictly speaking this
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is not realistic as the water density and hydraulic conductivity also
depend on the temperature of the groundwater. However, neglecting
these dependencies simplifies the problem significantly and is a rea-
sonable assumption for the considered application since temperature
differences occur over a small range of approximately 5 K [23]. Finally,
it should be emphasized that in this initial work only the steady
state is considered within the optimization process. Thus, all the time
dependent components in the previously described system of PDEs are
discarded. This means that the PDEs (1a) and (2) take the following
form:

∇ ⋅ (𝐵𝐪) = 𝑄, (8)

−∇ ⋅ (𝐵Λ ⋅ ∇𝑇 ) + 𝐵𝐶w𝐪 ⋅ ∇𝑇 = 𝑃 t , (9)

whereas (1b) remains the same.

2.2. Optimization

The optimization objective is to maximize the groundwater temper-
atures at extraction wells of GWHPs, since the efficiency of GWHPs
increases with increasing groundwater temperature at those wells. The
underlying problem can be described as a PDE-constrained optimiza-
tion (PDECO) problem, since the groundwater flow and heat transport
are modeled with the previously described system of PDEs. In general,
PDECO problems can be formulated as follows:

min
𝒖,𝒎

𝐽 (𝒖,𝒎), (10a)

subject to  (𝒖,𝒎) = 0, (10b)

𝑔(𝒖,𝒎) ≤ 0, (10c)

where 𝐽 (𝒖,𝒎) ∈ R is the functional of interest and is used to describe
mathematically the objective of the optimization, 𝒖 are the state vari-
ables that are the solution of a PDE or a system of PDEs represented in
a residual form by  (𝒖,𝒎) = 0, 𝒎 are the design/control variables, and
𝑔 any additional inequality constraints on controls and/or states.

The problem (10) can be solved in two ways: using full space
or reduced space methods [24]. In the former, states and controls
are considered both as optimization variables within the optimization
algorithm (solver) and changed directly and simultaneously in each
optimization iteration. In the latter, the mapping 𝒎 ↦ 𝒖(𝒎), which is
implicitly defined by the PDE constraint(s)  (𝒖,𝒎) = 0, is used to obtain
the reduced problem [24]:

min
𝒎

𝐽 (𝒎) ∶= 𝐽 (𝒖(𝒎),𝒎), (11a)

subject to 𝑔(𝒖(𝒎),𝒎) ≤ 0, (11b)

where 𝐽 (𝒎) is termed the reduced functional of interest. The reduced
problem is suitable for use with the adjoint approach for computing
functional gradients. In this work, a gradient-based optimization is
used together with the adjoint approach, which is the most efficient
technique of computing the required gradients in each optimization
iteration [25].

In each iteration, gradient-based optimization algorithms require
computation of the gradient of the functional with respect to the control
variables:
d𝐽
d𝒎

= d𝐽 (𝒖(𝒎),𝒎)
d𝒎

= 𝜕𝐽
𝜕𝒎

+ 𝜕𝐽
𝜕𝒖

d𝒖
d𝒎

. (12)

The partial derivatives 𝜕𝐽∕𝜕𝒎 and 𝜕𝐽∕𝜕𝒖 can be computed analyti-
cally and are, thus, computationally cheap to evaluate. On the other
hand, the derivative d𝒖∕d𝒎 is computationally expensive for high-
dimensional states 𝒖 and controls 𝒎. In general, the discretized state
space is high-dimensional in PDECO problems, whereas the dimension
of the control space depends on the number and type (a constant, or a
spatially or time-varying function) of controls. In the adjoint approach,

the direct computation of d𝒖∕d𝒎 is avoided and the functional gradient
is obtained as follows [24]:

d𝐽
d𝒎

= 𝜕𝐽
𝜕𝒎

− 𝝋∗ 𝜕
𝜕𝒎

, (13)

where 𝝋 are the adjoint variables, and ∗ denotes the Hermitian opera-
tor. The adjoints are obtained from the adjoint equation:
𝜕
𝜕𝒖

∗
𝝋 = 𝜕𝐽

𝜕𝒖
∗
. (14)

Therefore, the computation of the functional gradient involves two
steps: solving (14) for the adjoint variables and using the obtained
values in (13). Since the adjoint equation does not contain derivatives
with respect to controls and is a linear PDE, the computational effort for
its solution is independent of the size of the control and if implemented
efficiently is generally less or as expensive as solving the forward
problem described by  . As a result, the adjoint approach enables
an efficient computation of functional gradients independent of the
dimension of the control variables.

2.2.1. Optimization variables and the functional of interest
The main objective of the optimization procedure is to design the

placement of the GWHP systems, i.e. their extraction and injection
wells, in a way that the efficiency of all GWHPs is maximized and
all regulatory conditions are met. Therefore, the control optimization
variables are the Cartesian coordinates (positions) of wells: 𝐱ext𝑖 =
(𝑥ext𝑖 , 𝑦ext𝑖 ) ∈ R2 represents the extraction well coordinates of the heat
pump 𝑖 and 𝐱inj𝑖 = (𝑥inj𝑖 , 𝑦

inj
𝑖 ) ∈ R2 represents the injection well coor-

dinates of the same heat pump. All control variables can be described
using the following vector:

𝒎 = [𝑥ext1 ,… , 𝑥ext𝑁 , 𝑦ext1 ,… , 𝑦ext𝑁 , 𝑥inj1 ,… , 𝑥inj𝑁 , 𝑦
inj
1 ,… , 𝑦inj𝑁 ]𝑇 . (15)

The state optimization variables are the solutions of the governing
PDEs, i.e. the hydraulic head ℎ, Darcy velocity 𝐪 and the groundwater
temperature 𝑇 .

The optimization goal is to maximize the groundwater temperatures
at all extraction wells. Thus, the corresponding functional of interest 𝐽0
reads as follows:

𝐽0(𝒖,𝒎) =
𝑁∑
𝑖=1

𝑇 (𝐱ext𝑖 ) =
𝑁∑
𝑖=1

∫𝛺 𝑇 (𝐱) ⋅ 𝛿(𝐱 − 𝐱ext𝑖 ) d𝛺. (16)

The point evaluation of the function 𝑇 , i.e. sampling of the groundwater
temperature field at the extraction well, can be formulated as an
integral of the product of the function 𝑇 and the corresponding 2D
Dirac delta function. In this work, the short notation for the point
evaluations of functions (states) will be used from now on, but the
implementation is based on the previously described multiplication
with delta functions.

2.2.2. Optimization constraints
The underlying PDECO problem includes control constraints, which

are based on the regulations and physical conditions when placing
(installing) new GWHP systems. The first set of constraints corresponds
to the fact that the wells of a GWHP can be placed only inside a
plot (property) that belongs to the owner of that GWHP. In addition,
approval regulations for new systems usually stipulate a minimum
distance between the wells and the plot boundaries. For instance, this
distance is 3 meters in Bavaria (Germany) [26], where the considered
case study is located. Thus, for each GWHP 𝑖 the constraints state that
both wells, extraction and injection, must be restricted to the feasible
area 𝐷𝑖 that corresponds to the plot area excluding a minimum-distance
buffer zone:

𝐱ext𝑖 , 𝐱inj𝑖 ∈ 𝐷𝑖, ∀𝑖 ∈ {1,… , 𝑁}. (17)

In the case of idealized rectangular plots aligned with the coordinate
system, these constraints would take a particularly simple form as
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upper and lower bounds on controls. However, in this work, a more re-
alistic and general case with convex plots is considered. The constraints
are then formulated as follows:

𝑔𝑗𝑖 (𝑥
𝑤
𝑖 , 𝑦

𝑤
𝑖 ) = 𝑎𝑗𝑖,1𝑥

𝑤
𝑖 +𝑎𝑗𝑖,2𝑦

𝑤
𝑖 ≤ 𝑏𝑗𝑖 , ∀𝑖 ∈ {1,… , 𝑁}, ∀𝑗 ∈ {1,… , 𝑛𝑖}, (18)

where 𝑤 stands for extraction or injection, i.e. 𝑤 ∈ {ext, inj}; 𝑖 is
the counter for plots (GWHPs); 𝑗 counts the linear segments of the
plot boundary, assumed to be a polygon; 𝑛𝑖 is the total number of
boundary segments for plot 𝑖; 𝑎𝑗𝑖,1, 𝑎

𝑗
𝑖,2, 𝑏

𝑗
𝑖 are the coefficients of the

linear inequality constraint that corresponds to the boundary segment
𝑗 of plot 𝑖. These constraints can be also written in matrix form:

𝐀𝒎 ≤ 𝐛, (19)

where the matrix 𝐀 contains the coefficients 𝑎𝑗𝑖,1 and 𝑎𝑗𝑖,2, and the vector
𝐛 the coefficients 𝑏𝑗𝑖 . The total number of constraints in (18), 𝑁cst

1 ,
depends on the number of segments of plot boundaries and is given
as:

𝑁cst
1 =

𝑁∑
𝑖=1

𝑛𝑖. (20)

The coefficients in (18) are derived using analytical formulae and
geometric relations, as described in Appendix A.

The second set of constraints corresponds to regulation over the
minimum distance between wells of the same GWHP system. The
injection well is usually placed downstream and far enough from the
extraction well to avoid hydraulic and thermal breakthroughs [14].
Breakthroughs reduce the efficiency of GWHPs because the altered
groundwater circulates back to the extraction well [27]. For this reason,
there is usually a defined minimum distance between two wells of a
system. For example, in Bavaria, Germany, this distance is 10 meters
according to current best practice in local water protection authorities.
The corresponding constraints can be defined as follows:

𝑑(𝐱ext𝑖 , 𝐱inj𝑖 )2 = (𝑥ext𝑖 − 𝑥inj𝑖 )2 + (𝑦ext𝑖 − 𝑦inj𝑖 )2 ≥ 𝑑2min, ∀𝑖 ∈ {1,… , 𝑁}, (21)

where 𝑑 is the distance function and 𝑑min = 10 [m] is the predefined
minimum distance. The total number of these control constraints is
equal to the number of considered GWHPs, i.e. 𝑁cst

2 = 𝑁 .
The regulations also specify minimum distances between GWHP

wells and existing objects on a property, such as a house or a garage.
The wells cannot be placed within such objects and the minimum
distance provides a buffer zone that is necessary from a safety and
technical point of view. This regulatory distance 𝑑𝑅 is 3 meters [26]
in the area of interest (see Section 3.1). The corresponding constraints
can be summarized as follows:

𝐱ext𝑖 , 𝐱inj𝑖 ∉ 𝑅𝑗𝑖 , ∀𝑖 ∈ {1,… , 𝑁}, ∀𝑗 ∈ {1,… , 𝑟𝑖}, (22)

where 𝑅𝑗𝑖 is the restricted area 𝑗 for wells within the plot 𝑖, which is
for example a house and its surrounding 3-meter buffer zone; 𝑟𝑖 the
number of restricted areas in the plot 𝑖. Fig. 1 shows an example plot
with a restricted area and minimum-distance buffer zones. The control
constraints in (22) cannot be mathematically formulated as convex
linear constraints, such as (18), even when the restricted areas 𝑅𝑗𝑖
are convex polygons. For this reason, these constraints are integrated
into the optimization problem via penalty terms, as explained in the
following section.

Finally, it should be noted that if the order of installation of GWHPs
is defined, i.e. there are some existing GWHPs in the area and the
new ones should be optimally placed accordingly, an additional set of
constraints is required. These constraints correspond to regulations over
negative interference between neighboring GWHPs. The details of such
constraints and how they can be included in the optimization are given
in Appendix B, but they are not considered further in the present study.

Fig. 1. Example of a plot with one building and the corresponding buffer zones (𝑑𝑅 = 3
m).

2.2.3. Penalty terms
In general, penalty terms (functions) can be used to convert con-

strained optimization problems into unconstrained ones or to replace
only a certain number of constraints. These functions are added to
the original objective function and are formulated in such a way that
they become zero if the corresponding constraint is met, or otherwise
take a positive value in the case of a minimization problem [28]. In
the PDECO framework, the penalty functions can be used to replace
state constraints or control constraints that are difficult to express
in a suitable form for the selected optimization algorithm and/or its
software implementation.

Since the control constraints (22) cannot be formulated mathe-
matically as convex linear constraints, they are replaced by penalty
functions. The corresponding penalty term 𝑃𝑅, which is added to the
functional of interest (16), contains penalty functions for the positions
of all extraction and injection wells:

𝑃𝑅 = 𝛼 ⋅
𝑁∑
𝑖=1

(
𝑝(𝐱ext𝑖 ) + 𝑝(𝐱inj𝑖 )

)
, (23)

where 𝑝 denotes the penalty function, and 𝛼 is a penalty scaling factor
that determines how severely the objective will be penalized if the
constraints are not met. The penalty function 𝑝 should be positive if
the well under consideration lies within one of the restricted areas 𝑅𝑗𝑖
and otherwise be zero. In this work, the functions 𝑝 are defined as a
point evaluation of a predefined penalty field:

𝑝(𝐱𝑖) = ∫𝛺 𝐺(𝐱) ⋅ 𝛿(𝐱 − 𝐱𝑖) d𝛺, (24)

where 𝐺(𝐱) is the penalty field constructed using the restricted areas
𝑅𝑗𝑖 . The penalty field is defined as follows:

𝐺(𝐱) =

⎧⎪⎪⎨⎪⎪⎩

0 if 𝐱 ∉ 𝑅𝑗𝑖 ,
∀𝑖 ∈ {1,… , 𝑁}, ∀𝑗 ∈ {1,… , 𝑟𝑖}

1 + cos
[ 𝑑(𝐱,𝐱p𝑖,𝑗 )

𝑟p𝑖,𝑗
⋅ 𝜋2

]
if 𝐱 ∈ 𝑅𝑗𝑖 ,

(25)

where 𝐱 = (𝑥, 𝑦) ∈ 𝛺 is an arbitrary point in the domain 𝛺; 𝑑 the
distance function from (21); 𝐱p𝑖,𝑗 and 𝑟p𝑖,𝑗 are the penalty center and the
radius of the corresponding restricted area 𝑅𝑗𝑖 , respectively. The penalty
field 𝐺 for an example restricted area is depicted in Fig. 2. The idea
behind this particular choice of shape for 𝐺 is that the more a well is
within a restricted area, the larger the penalty term and, conversely,
the penalty should be smaller the closer the well is to the boundary of
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Fig. 2. Penalty field for an example restricted area plotted in 2D (a) and 3D (b). If a well is placed in the feasible part (blue color), the penalty field 𝐺 is 0, otherwise the penalty
has a positive value if a well is within the restricted area (red colors).

the area. This leads to a non-zero gradient, which is important for the
gradient-based optimization approach. The radii 𝑟p𝑖,𝑗 are selected as the
maximum distance between any point belonging to the corresponding
area 𝑅𝑗𝑖 and its penalty center 𝐱p𝑖,𝑗 . This ensures that the minimum value
of 𝐺(𝐱) inside restricted areas is 1 + cos(𝜋∕2) = 1. On the other hand,
the selection of the centers 𝐱p𝑖,𝑗 is a non-trivial task, since it depends on
the relative positions of the restricted areas 𝑅𝑗𝑖 and the corresponding
plots 𝐷𝑖. The centers must be chosen in such a way that the points
representing the well positions are not ‘‘trapped’’ in a restricted area
during the optimization iterations. This type of situation is depicted in
Fig. 3, where the well 𝑖 cannot escape the restricted area anymore and
reach the feasible part of the domain. Therefore, a distinction is made
between three baseline scenarios, as depicted in Fig. 4, when selecting
penalty centers:

1. the restricted area 𝑅𝑗𝑖 overlaps with only one edge (boundary
section) of the plot 𝐷𝑖: the penalty center corresponds to the
middle point of overlapping section of that edge;

2. the restricted area 𝑅𝑗𝑖 overlaps with exactly two edges of the plot
𝐷𝑖, including the corner of the plot that is between those two
edges: the penalty center corresponds to that particular corner;

3. all other cases: the penalty center corresponds to the geometrical
centroid of 𝑅𝑗𝑖 .

These baseline scenarios are usually sufficient to cover many cases, but
also provide the general concept for selecting penalty centers in all
other cases.

It should be emphasized that by combining penalty functions for
restricted areas and inequality constraints for convex plots, any type of
plot geometry can be defined. For example, if the original plots are non-
convex, they can be converted to convex hulls first and then additional
restricted areas can be defined to cover the difference between the
original plots and the new (convex) ones. This is important because
in the real world, plots have many different geometries, including
non-convex ones.

Finally, it should be noted that the penalty factor 𝛼 is usually
applied in an iterative way. The iterative optimization procedure means
that 𝛼 is increased at the end of each ‘‘outer’’ iteration, i.e. after
the optimization algorithm has converged or reached the predefined
number of optimization iterations. The solution from the previous outer
iteration is used as the starting point for the next iteration. The whole
procedure starts with a relatively small value of 𝛼 and ends when 𝛼 is
considered to be sufficiently large. In general, this iterative approach
should help to improve the convergence of optimization algorithms
and ideally has the same solution as the original optimization problem,
which includes constraints instead of penalties [28]. Also in this work,
an iterative optimization with increasing penalty factors is applied (see
Section 3).

Fig. 3. Example of improper selection of a penalty center. The well 𝑖 cannot reach the
feasible area because of the selected position of the penalty center and the underlying
shape of the penalty functions.

2.2.4. Approximated delta functions
The Dirac delta functions are present in two places in the underlying

PDECO problem: in the representation of wells, i.e. sink and source
terms in PDEs, as well as in the sampling of functions (states and
penalty fields), such as the evaluation of the groundwater temperature
at extraction wells. The delta function is a non-smooth function and is
therefore problematic for gradient-based optimization, which requires
information about gradients in each iteration. One approach to address
this problem is to replace the delta function with a smooth approxima-
tion. A similar approach is used in [29] to represent production wells
of a deep geothermal system. In other energy-related applications, such
as the layout optimization of wind [30] and tidal turbines [31], the
approach of representing the corresponding turbines with approximate
smooth functions is already well established. These smooth approxima-
tions are usually based on exponential functions and are often referred
to as bump functions. The one used in this work is depicted in Fig. 5
and defined as follows:

𝛿(𝐱 − 𝐱𝑖) ≈ 𝜓(𝑥, 𝑦, 𝑥𝑖, 𝑦𝑖) = e−
(𝑥−𝑥𝑖 )2+(𝑦−𝑦𝑖 )2

𝑟2 , (26)

where 𝐱𝑖 = (𝑥𝑖, 𝑦𝑖) is the center of the bump function 𝜓 and 𝑟 its radius.
The radius 𝑟 = 0.1 [m] is chosen based on the well dimensions of real
GWHPs. For this reason, it can be argued that the well representation
in this work is actually more realistic than the usual use of single point
sources for wells. Finally, the volume 𝑉norm below the surface of the
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Fig. 4. Baseline scenarios for the selection of penalty centers.

Fig. 5. Smooth approximation 𝜓 of the Dirac delta function with center 𝐱c = (0, 0) and
radius 𝑟 = 0.1 [m].

function 𝜓 must be used to normalize the values of the ‘‘smoothed’’
delta function:

𝑉norm = ∫
∞

−∞ ∫
∞

−∞
𝜓(𝑥, 𝑦, 𝑥𝑖, 𝑦𝑖) d𝑥d𝑦 = 𝑟2𝜋. (27)

2.2.5. Problem formulation
Based on the previous definitions of constraints, penalty functions

and the functional of interest, the optimization problem reads as fol-
lows:

min
𝒎

− 𝐽0(𝒎) + 𝑃𝑅(𝒎), (28a)

subject to 𝑔1(𝒎) ≤ 0, (28b)

𝑔2(𝒎) ≤ 0, (28c)

where 𝐽0(𝒎) = 𝐽0(𝒖(𝒎),𝒎) is the reduced form of the functional of inter-
est 𝐽0 defined in (16); 𝑃𝑅(𝒎) the penalty term from (23); 𝑔1(𝒎) = 𝐀𝒎−𝐛
corresponds to the linear inequality constraints (19), and 𝑔2(𝒎) to the
minimum distance constraints (21). Since the sense of optimization is
changed from maximization in (16) to minimization in (28), a negative
sign is introduced in front of 𝐽0. The underlying problem represents a
PDECO problem with control constraints.

2.2.6. Problem initialization
The underlying optimization problem is non-convex, which means

that gradient-based algorithms converge towards a local optimum.
Therefore, the selection of the initial optimization candidate is impor-
tant, as those that are close to the global optimum are more likely to
converge to it. Fig. 6 shows the multi-start initialization strategy used

Fig. 6. Multi-start initialization strategy.

in this work to achieve the global optimum or to come sufficiently close
to it. In the first step, different combinations of initial GWHP well po-
sitions, i.e. samples, are generated using the Latin Hypercube Sampling
(LHS) method [32]. The LHS implementation in Python [33] provides
only lower and upper limits on sampling points, i.e. well coordinates
in this case. Therefore, the obtained LHS samples are in general not
feasible, since they do not satisfy the optimization constraints (17), (21)
and (22). In the second step, the LHS samples are filtered and mutually
combined to obtain feasible samples that meet all optimization con-
straints. The feasible samples are combinations of well positions that
are within feasible areas (plots), with sufficient spacing between wells
of the same GWHP and outside of restricted areas. In addition, for each
well pair, it is required that the injection well is located downstream
of the extraction well for the samples to be considered feasible. In the
third step, a forward simulation is carried out for each feasible sample
and the functional of interest (16) is computed. Based on the value of
this functional, all samples are sorted in ascending order. Finally, two
smaller sets of feasible samples are selected for the initialization: the
top-most samples, which have the smallest functional values, and a set
of random samples. In addition to improving the optimal solution, these
different starting points are also used to investigate the influence of the
initialization on the optimization process. To adequately explore the
design space, 1000 feasible samples are generated in this work and then
the top 10 top samples and 5 random samples are used for initialization.

3. Implementation

The forward simulation model is implemented in Firedrake [34],
which is an open-source tool for solving PDEs using the finite el-
ement method (FEM). Firedrake provides high-level abstractions for
defining and solving PDE problems in the Python environment. Fur-
ther advantages are MPI parallelization and compatibility with dolfin-
adjoint [35], which can automatically provide adjoint solution fields
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Fig. 7. Location of the case study domain in Munich with a detailed view of the relevant features.

based purely on the forward numerical model defined in Firedrake.
These two tools are used to implement and solve the PDECO prob-
lem (28), where dolfin-adjoint provides interface to optimization algo-
rithms. The implemented forward model is verified against correspond-
ing simulation results obtained using FEFLOW [22,36], an established
commercial software package for groundwater simulations. The Se-
quential Least SQuares Programming (SLSQP) algorithm [37] and its
implementation in the SciPy Python library [38] are used to solve
the underlying optimization problem. The penalty factor 𝛼 is applied
iteratively as described previously in Section 2.2.3, using the following
increasing values: 0, 0.1, 1, 10, 100. For each of the five 𝛼 values, the
maximum number of optimization iterations is set to 50.

3.1. Case study

The method is applied in a 1.3-hectare study area in the City of Mu-
nich, Germany. Munich offers an exceptional hydro-geological database
acquired in predecessor projects, namely GEPO and GeoPot [39]. As
shown in Fig. 7, the study area comprises 10 plots of land with a
typical building structure of 11 single-family detached houses. With
the simplifying assumption that the heat demand of every plot can be
supplied and re-injected by one extraction and one injection well, the
optimal positions of 10 well pairs are determined in the case study.
Geologically, the case study area is situated in the so-called Munich
Gravel Plain which provides favorable conditions for the thermal use
of groundwater [13]. Generally, the fluvio-glacial sandy gravels have a
high hydraulic conductivity and they host a productive shallow aquifer
(cf. Fig. 8). Beneath the Quaternary gravels, intersecting Tertiary sandy,
silt and clay layers confine the aquifer to the bottom [40]. The study
area was selected because it offers favorable hydro-geological condi-
tions and a low depth to groundwater of around 3.5 m that would

additionally support an economical installation of groundwater heat
pumps. The elongated shape from south to north was chosen for this
test case so as to trigger negative thermal interactions between injection
and extraction wells of potential systems, as groundwater flow is also
directed towards the North, and thus to demonstrate the value of an
PDE-constrained optimization based design approach.

Fig. 8a shows the penalty field for restricted areas in the study case
(see Section 2.2.3). In addition, the saturated thickness of the Quater-
nary aquifer, the groundwater contours and the hydraulic conductivity
are depicted in Fig. 8b and Fig. 8c, respectively. The aquifer basis was
derived by geostatistical relief modeling of the entire Munich Gravel
Plain [41]. Within the domain of the case study, a northward directed
groundwater flow with a homogeneous hydraulic gradient of 2.8 per
mill is present. The saturated thickness is computed by subtracting
the base of the Quaternary aquifer from the shown groundwater table,
which was measured at mean low water conditions in April 2014. As
observable in Fig. 7, this represents the common regional conditions in
the Northwest of Munich. The saturated thickness decreases from 9 m
to 7 m towards the Northwest. Thus, the domain offers slightly higher
values compared to the median thickness of 6.3 m over the entire
city area. The hydraulic conductivity of the domain was derived by an
interpolation of pumping test data and represents the highly conductive
and homogeneous gravels of the area [42].

To solve the underlying PDE system that describes the heat transport
and groundwater flow in the aquifer, the pumping rates of all 10
GWHPs have to be defined. These are calculated from the annual
heating demand and assuming 2400 full load hours per year, as well as
a constant annual performance factor of 4 and a temperature difference
of −5 K at the injection well. The heating demand of each system,
i.e. each building, is estimated using an open source tool UrbanHeat-
Pro [43]. The obtained values of pumping rates and the heating power
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Fig. 8. Case study domain with penalty field, initial groundwater conditions and hydraulic conductivity.

Table 1
Constant pumping rates and the heating power of the domain’s 10 GWHP systems.

Plot ID 1 2 3 4 5 6 7 8 9 10

Pumping rate [L/s] 0.65 0.49 0.42 1.03 0.84 0.51 0.76 0.56 0.58 0.44
Heating power [kW] 13.65 10.29 8.82 21.63 17.64 10.71 15.96 11.76 12.18 9.24

are summarized in Table 1, with the system labels corresponding to
those in Fig. 9.

For the numerical modeling of the groundwater source, the domain
is discretized with approximately 3 ⋅ 106 triangular elements using the
open source mesh generator Gmsh [44]. Element sizes range from
0.08 m within plots to 3 m further away from plots, as shown in Fig. 9.
The fine mesh resolution within plots is necessary because the wells
can be placed anywhere in plots during the optimization iterations, and
the approximated delta functions representing wells require a relatively
fine spatial discretization. Mesh sensitivity testing shows that the ele-
ment size of 0.08 m is required to generate an acceptable discretization
error for the delta functions and the application considered in this
work. Piece-wise linear finite element basis functions (P1) are used for
all state variables, as they provide sufficiently accurate results and are
computationally less expensive than higher-order basis functions. For
the interpolation of the smooth delta functions (cf. (26)), piece-wise
quadratic basis functions (P2) prove to be sufficient.

As shown in Fig. 9, Dirichlet type boundary conditions were as-
signed at the upstream 𝜕𝛺in and downstream 𝜕𝛺out border to represent
a constant hydraulic head at 503.492 masl for inflow and 503.064
masl for outflow, respectively. At the remaining borders parallel to the
groundwater streamlines, no boundary condition was assigned, which
corresponds to a Neumann type boundary condition without fluid
flux [22]. Extraction and injection wells are hydraulically represented
through single node sink and source terms approximated by smooth
delta functions (see Section 2.2.4), where abstraction and injection
rates are always equal within one well pair. Due to the assumption of

a constant natural groundwater temperature, the heat transport simu-
lation can be solved with only one Dirichlet type boundary condition
at the upstream border 𝜕𝛺in. The assigned temperature depends on the
optimization scenario, as described in Section 3.2. The thermal impact
of the injection wells is represented with an assignment of 5 ◦C to the
temperature of re-injected water at those wells 𝑇 inj

𝑖 (cf. (7)). Normally,
injection well temperatures are assigned based on extraction well tem-
peratures by subtracting a constant predefined temperature difference.
However, since the extraction well temperatures are changing with the
well positions during the optimization, it is assumed for the sake of
simplicity that the injection well temperatures 𝑇 inj

𝑖 are independent of
the extraction well temperatures. The predefined value of 5 ◦C is based
on the expected average extraction well temperatures of 10 ◦C (see
Section 3.2) and a temperature difference of −5 K.

3.2. Optimization scenarios

Two optimization scenarios are used to demonstrate the ability of
the optimization process to produce suitable results based on different
hydro-geological conditions, as well as to show how these conditions
affect the optimal well layout. These two scenarios differ in the natural
temperature of the inflowing groundwater. In the first scenario, the
groundwater temperature at the inflow boundary of the domain is set
to be constant, i.e. 𝑇in = 10 ◦C. In the second scenario, the groundwater
temperature is higher in the middle of the inflow boundary and lower
at its edges:

𝑇in(𝐱) = 𝑇min
in + 𝛥𝑇in ⋅ cos

[𝑑(𝐱, 𝐱in)
𝑟in

⋅
𝜋
2

]
, 𝐱 ∈ 𝜕𝛺in, (29)
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Fig. 9. Case study area with its boundary and GWHP (plot) labels and sections of the corresponding finite element mesh.

where 𝑇min
in = 8 ◦C is the temperature at the boundary edges, 𝛥𝑇in =

4 ◦C the temperature difference between the maximum and minimum
temperature at the boundary, 𝑑(𝐱, 𝐱in) distance between a point 𝐱 at the
inflow boundary 𝜕𝛺in and its geometric center 𝐱in, and 𝑟in the ‘‘radius’’
of the boundary, i.e. the distance between its center point and one
of the edges. The groundwater temperature at the boundary center
corresponds to the maximum temperature of 12 ◦C. Conceptually,
optimization scenario 2 represents the case where groundwater flowing
into the domain has been altered in the upstream area, for example, by
other GWHPs, while scenario 1 represents the case where no GWHPs
are present in the upstream area.

4. Results

In this section, the results of the optimization scenarios are pre-
sented and analyzed. Table 2 summarizes the results of the optimization
scenario 1. For all 15 different initializations, i.e. the first 10 top and
5 random LHS samples (see Section 2.2.6), the number of optimization
iterations 𝑛iter as well as the initial and final values of the functional
of interest are provided. In addition to the total number of iterations,
the number of iterations for each value of the penalty factor 𝛼 is also
given. For the first two values of 𝛼, i.e. 𝛼 = 0 and 𝛼 = 0.1, the
number of iterations almost always reaches the predefined maximum
number of 50. Thereafter, the number of iterations tends to decrease
as the value of 𝛼 increases, and is usually lowest for the largest 𝛼.
This means that the main progress in optimization, i.e. the largest
changes in the well layout, are achieved during the stages with smallest
penalty factor, where violation of the constraints related to restricted
areas (see 2.2.3) carries little or no penalty. Considering the functional
of interest, its final values are always smaller than the initial values.
Since the functional is defined as the negative sum of the groundwater
temperatures at all extraction wells, this means that the sum of these
temperatures is maximized and increases by a few degrees, e.g. from
approx. 89 ◦C to 93 ◦C for the 1st top sample. The only exception to
functional improvement is the 6th top sample, where the final value
is positive. This means that the solution is not feasible and some of
the wells are located within restricted areas, resulting in an increased
penalty and therefore shifting the functional into positive range. A
further analysis of this special case is carried out later in this section
with the help of visualizations. The blue color in Table 2 indicates the

Table 2
Results for optimization scenario 1.

Sample Nr. of iterations Functional of interest

Type Nr. 𝛼 = 0 𝛼 = 0.1 𝛼 = 1 𝛼 = 10 𝛼 = 100 Total Initial Final

Top 1 50 47 4 14 1 116 −89.0773 −93.0678
2 50 50 50 27 8 185 −88.4074 −92.7604
3 50 50 37 14 12 163 −88.2872 −92.2075
4 50 50 33 4 5 142 −87.8936 −88.6561
5 50 50 50 25 6 181 −87.8581 −91.6815
6 50 50 50 37 6 193 −87.6945 14.8968
7 50 50 50 50 16 216 −87.6555 −92.3777
8 50 50 18 50 18 186 −87.5232 −92.8066
9 50 50 50 50 44 244 −87.4092 −91.9520
10 50 50 42 7 7 156 −87.4081 −92.1422

Random 1 50 50 44 3 5 152 −84.8632 −90.0143
2 50 50 50 48 6 204 −85.3343 −90.6592
3 50 50 50 37 9 196 −85.8546 −92.7686
4 50 50 25 14 1 140 −87.3253 −93.0817
5 50 50 33 4 5 142 −82.7233 −88.6561

two best optimal solutions, which are obtained for the 1st top and
the 4th random initialization samples. While these two samples lead
to almost identical solutions, it is evident that initialization plays a
significant role and that the problem has many local minima. However,
using multiple top samples for initialization seems to be a good strategy
for reliably reaching or getting close to the global optimum. This is
further supported by the fact that the 4th random sample in this case
is actually equal to the 13th top sample, which means that this sample
would also be one of the top initialization samples if 15 instead of first
10 top samples were used for initialization.

The well layout changes during the optimization iterations for the
1st top sample in optimization scenario 1 are depicted in Fig. 10(a).
Extraction and injection wells are denoted with circles and crosses, and
the dark blue and yellow colors represent the first and last iterations,
respectively. This notation of wells and iterations is used throughout
the work. The corresponding groundwater temperature field and well
locations for the initial and final (optimal) well layout are presented in
Fig. 10(b). In the optimal solution, wells are placed mainly on the edges
of the plots or in their corners. The extraction wells are placed within
the regions of high groundwater temperature. To establish such regions,
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Fig. 10. Optimal well layout for optimization scenario 1: (a) Well positions through optimization iterations. Extraction and injection wells are depicted with circles and crosses,
respectively. The colors in the legend represent optimization iterations, with dark blue and yellow corresponding to the first and last iteration (solution), respectively. (b) Groundwater
temperature field and well locations for the initial (left) and final/optimal (right) well layout.

Fig. 11. Well positions through optimization iterations for optimization scenario 1. Extraction and injection wells are depicted with circles and crosses, respectively. The colors in
the legend represent optimization iterations, with dark blue and yellow corresponding to the first and last iteration (solution), respectively.

in the optimal well layout all injection wells are grouped within an
interior region of the domain. As a result, negative well interactions
are minimized and temperatures at the extraction wells are maximized,
which is the optimization goal.

To further compare different initialization patterns, changes in well
layout during optimization for three samples are shown in Fig. 11. The
following samples are presented: 4th random, which yields one of the
two best optimal solutions in addition to the 1st top sample; 6th top,
where the solution is not feasible; and 1st random, with one of the
inferior feasible solutions. Comparing the 4th random (see Fig. 11(a))
and 1st top (see Fig. 10(a)) samples, it can be seen that they result
in nearly identical optimal well layouts, particularly in the case of
extraction wells. For this reason, the final value of the functional of
interest is almost the same for the two cases. As mentioned earlier,

the 6th top initialization sample produces a positive final functional
of interest, i.e. an infeasible solution. The extraction well of system 2,
which is marked with a red circle in Fig. 11(b), is placed within the
restricted area, i.e. too close to a building. This causes a large penalty
and thus increases the functional of interest. The reason why the
extraction well is ‘‘captured’’ in a restricted area is the combination of
hard and soft optimization constraints. The hard constraints, such as the
minimum distance constraint (21), are those that are imposed directly
within the optimization algorithm and, therefore, must be satisfied in
each optimization iteration. The soft constraints, such as the constraint
over restricted areas (22), are represented with penalty terms and do
not have to be satisfied in all optimization iterations. Nevertheless, by
increasing the penalty factor, soft constraints should be also met in the
final solution. This can be seen in Fig. 11(b), where the considered
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Table 3
Results for optimization scenario 2.

Sample Nr. of iterations Functional of interest

Type Nr. 𝛼 = 0 𝛼 = 0.1 𝛼 = 1 𝛼 = 10 𝛼 = 100 Total Initial Final

Top 1 50 50 41 34 3 178 −94.9388 −99.0102
2 50 50 32 23 1 156 −94.2972 −98.1109
3 50 50 13 25 1 139 −93.8563 −98.2430
4 50 50 50 35 8 193 −93.5070 −97.9084
5 50 50 32 50 50 232 −93.4840 −99.6244
6 50 50 7 50 22 179 −93.4203 −99.4235
7 50 50 50 7 47 204 −93.3522 −99.6396
8 50 50 28 1 1 130 −93.3488 −97.1548
9 50 50 24 22 1 147 −93.3085 −98.7915
10 50 50 7 50 11 168 −93.2896 −99.1492

Random 1 50 50 43 38 6 187 −91.8329 −97.9626
2 50 50 50 50 12 212 −91.4544 −97.4910
3 50 47 2 40 8 147 −91.7123 −98.8106
4 50 50 10 50 22 182 −92.2810 −98.9850
5 50 50 45 7 6 158 −88.8350 −97.4986

extraction well initially ‘‘moves’’ more into the restricted area and after
a certain number of iterations tries to leave it. However, the ‘‘escape’’
is not successful, since the distance between the extraction and the
corresponding injection well reaches the minimum value, which is
represented by a hard constraint and must be always fulfilled. Fig. 11(c)
shows the optimal well layout for one of the inferior local optima.
Compared to the best optimal solutions, i.e. the 4th random and 1st
top, the final well layout differs significantly.

Table 3 summarizes the results of the optimization scenario 2 (see
Section 3.2). The number of optimization iterations and the initial and
final functional of interest are provided for all 15 initialization samples.
Similar to optimization scenario 1, the number of iterations almost
always reaches the maximum for the two lowest penalty factors, 𝛼 = 0
and 𝛼 = 0.1, and thereafter tends to decrease as 𝛼 increases. The two
best optimal solutions are indicated in blue color and correspond to
the 7th and 5th top samples. In addition, the three subsequent best
solutions are also obtained from the top samples, namely: 6th, 10th and
1st, respectively. These results reaffirm that using multiple top samples
for initialization rather than randomly selecting feasible samples is a
valid strategy leading to the global optimum. A feasible solution is
found for all 15 samples and the functional of interest has evidently
improved. The sum of groundwater temperatures at all extraction wells
increases by a several degrees, e.g. from approx. 93.3 ◦C to 99.6 ◦C
for the 7th top sample. Comparing initial and final functional, the
improvement in scenario 2 is larger on average than in scenario 1.
This means that the potential for improving well layouts is generally
influenced by hydro-geological conditions. However, it should be noted
that the final functional values between the two scenarios are not
comparable, as the temperature of the groundwater flowing into the
area is different.

Changes in well layout during optimization for the 7th top sample,
which results in the best optimum in optimization scenario 2, are
shown in Fig. 12(a). The accompanying initial and optimal temperature
fields, including well locations, are presented in Fig. 12(b). Similar to
optimization scenario 1, the injection wells are grouped in an interior
region of the domain. The only exception is the injection well of the
system 1, which does not belong to this cold region. The extraction
wells are ‘‘moved’’ to regions with higher groundwater temperatures.
The extraction wells on the left side of the domain are not placed
in the plot corners as in scenario 1, but follow the patterns in the
groundwater temperature field, as shown in Fig. 13(a). These results
demonstrate that: first, hydro-geological conditions, such as the natural
groundwater temperature, can significantly influence the optimal well
layout; and second, the proposed optimization approach successfully
integrates such conditions. Moreover, the temperature fields shown in
Figs. 10(b) and 12(b) indicate that thermal advection plays a significant

role in heat transport, which was expected given that the groundwater
velocity is relatively high in the study area.

Fig. 13 also depicts changes in well layout during optimization
for the following two samples: 1st top, which has the best initial
functional but does not yield the best optimal solution and 3rd random
that delivers an inferior feasible solution. The example in Fig. 13(c)
also demonstrates that wells, such as the injection well of GWHP 8,
can switch sides of the restricted areas during optimization. This is
an advantage in the context of global optimization, since the well
placement is not limited by the initial relative position to restricted
areas.

Fig. 14 shows the optimization progress over all iterations. Results
obtained with the 1st and 7th top initialization samples are presented
for optimization scenarios 1 and 2, respectively. In addition to the
evolution of the functional of interest 𝐽 , changes in groundwater
temperatures 𝑇 at all extraction wells during the optimization are
displayed. Iterations with different penalty factors 𝛼 are indicated with
different background colors. Comparing the initial values (iteration 0)
with the final values, it is noticeable that the temperatures at extraction
wells have increased and at the same time the functional has decreased.
This inverse behavior of temperatures and the functional follows from
the definition of the functional. According to its definition in (28a), the
functional of interest consists of a negative sum of the temperatures
at all extraction wells and a penalty term related to restricted areas.
The main advance in temperature rise takes place during the 𝛼 = 0
and partially during the 𝛼 = 0.1 stages. Thereafter, the temperatures
change only slightly for higher 𝛼 values. The largest value drop of the
functional also occurs at 𝛼 = 0. Additionally, oscillations occur in the
functional for some larger 𝛼 values. The reason for this is that the
optimization algorithm uses too large an optimization step and some
of wells end up in one of restricted areas, which activates the penalty
and increases the functional drastically. However, the algorithm au-
tomatically reacts to this and quickly reduces the functional again.
Furthermore, it should be noted that the computational cost increases
with increasing 𝛼 values. As an indicative example, one optimization
iteration takes about 2 min and up to 7–9 min for 𝛼 = 0 and 𝛼 = 100,
respectively, when running in parallel on 20 cores of Intel Xeon Proces-
sor (Skylake, IBRS), 2394 MHz, 88 GB of RAM. There is potential for a
further reduction in computational time by tuning the parameters of the
optimization algorithm, improving the parallelization, or introducing
mesh adaptivity techniques to more efficiently focus resolution where
needed [45].

Finally, to quantify the well layout improvements after optimiza-
tion, a benchmark, i.e. non-optimized well layout, is required. It should
be noted here that the initial well layouts are generally not the non-
optimized benchmark as they are part of the optimization, i.e. the
strategy to reach the global optimum. Therefore, for each optimization
scenario, the initial sample with the highest functional value of all
feasible samples (see Section 2.2.6) is used as the non-optimized bench-
mark. Comparing this benchmark to the final solutions, the functional
of interest has changed from approx. −79.3 ◦C to −93.1 ◦C and from
−85.7 ◦C to −99.6 ◦C in the scenario 1 and 2, respectively. This means
that the sum of groundwater temperatures at all extraction wells has
increased by almost 14 ◦C in both scenarios after the optimization,
which can significantly improve the efficiency of GWHPs.

5. Discussion

The results demonstrate that the proposed method can success-
fully determine the optimal well layout of multiple GWHPs that max-
imizes groundwater temperatures at all extraction wells. The com-
parison of the results between optimization scenarios shows that the
hydro-geological conditions are an important factor for the optimal
well layout and are correctly considered by the method. Furthermore,
the proposed multi-start initialization strategy is successful in robustly
supporting the attainment of an optimal solution that is closer to the
global optima than that obtainable from a random or naively chosen
starting configuration. However, the new method has some limitations,
which are discussed in the following sections along with future work.
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Fig. 12. Optimal well layout for optimization scenario 2: (a) Well positions through optimization iterations. Extraction and injection wells are depicted with circles and crosses,
respectively. The colors in the legend represent optimization iterations, with dark blue and yellow corresponding to the first and last iteration (solution), respectively. (b) Groundwater
temperature field and well locations for the initial (left) and final/optimal (right) well layout.

Fig. 13. Optimal well layout: (a) Final well positions for optimization scenario 1 (black) and 2 (red) for the samples top 1 and 7, respectively. (b) Well positions through
optimization iterations for optimization scenario 2. Extraction and injection wells are depicted with circles and crosses, respectively. The colors in the legend represent optimization
iterations, with dark blue and yellow corresponding to the first and last iteration (solution), respectively.

5.1. Critical reflection

The assumptions used to simplify the optimization problem in this
work can be divided into two groups: those related to physical phenom-
ena and the conceptual ones. The first are described in Section 2.1 and
represent reasonable assumptions for the problem under consideration,
such as the approximation that the water density remains constant.
The conceptual assumptions are the main assumptions that significantly
reduce the problem complexity and are therefore discussed in the
following.

In this work only a steady state solution for the groundwater simula-
tion is considered within the optimization procedure. This simplifies the
optimization and speeds up the entire process considerably, since only

stationary forward and adjoint PDEs are solved in each optimization
iteration. In the time-dependent case, both the forward and adjoint
PDEs are time-dependent and require appropriate time discretization.
Depending on the selected time horizon and time steps, each optimiza-
tion iteration becomes more time-consuming and memory-intensive
compared to the steady state. The time-dependent case, however, is
more realistic, as the seasonal changes in GWHP use, e.g. an increased
heating demand in winter, as well as the environmental conditions,
such as heat fluxes from the surface, can be taken into account [46].
Furthermore, this work assumes a constant, predefined temperature
of the re-injected water at injection wells. This should be replaced
by a constant temperature difference between extraction and injection
wells of each system to improve the representation of GWHPs in the
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Fig. 14. Optimization progress: groundwater temperatures at all extraction wells and the functional of interest 𝐽 through optimization iterations. Different background colors
correspond to different values of the penalty factor 𝛼.

numerical simulation model [47]. If this temperature difference is kept
constant, the heating power provided for each GWHP corresponds to
that from Table 1.

The approach introduced here uses a vertically averaged 2D repre-
sentation of the aquifer. To fully take into account all the complexities
present in urban aquifers, a 3D numerical model is required [48].
However, the 2D model is, on the one hand, significantly less compu-
tationally complex and, on the other hand, should deliver sufficiently
good results. It should also be noted that many aquifer parameters,
such as the hydraulic conductivity or thermal dispersion factors, are
based on indirect measurements and are therefore subject to uncertain-
ties [49]. It is important to analyze how these parameter uncertainties
affect the optimal solution. Such an analysis can be done in two ways,
either by including the uncertainties in the optimization, i.e. solving
a stochastic PDECO problem, or by performing a parameter-based
sensitivity analysis with the optimal solution. This could help to find
the minimum data quality required for optimization purposes or to
define robust optimal solutions.

5.2. Outlook

One of the first future steps is to include the time dependencies
into the optimization, i.e. to consider time-dependent PDECO problem.
The solution to this problem can then be compared with the optimal
solution from the stationary PDECO to assess how sufficient and robust
the stationary case is for optimization purposes. Furthermore, since
the groundwater simulation has been simplified by considering a 2D
vertically averaged aquifer, a future goal is to use a full 3D model to
analyze optimal solutions from the 2D model. For example, one can
introduce random vertical heterogeneities in the aquifer to evaluate the
robustness of the 2D-based optimal well layout.

Finally, the presented method has several other possible future
applications, such as:

• Optimization of large GWHPs with more than one extraction
and injection well, which means finding the optimal number and
positioning of wells as well as optimal pumping rates. The method
can already be used to find optimal well locations of an individual
GWHP with any number of wells. However, if the number of wells

and their pumping rates are unknown, these can also be defined
as optimization variables.

• Optimization of aquifer thermal energy storage (ATES) systems as
these systems have the same working principle as GWHPs, with
the exception of utilizing the aquifer as energy storage. Similar
to GWHPs, optimal well locations and their pumping rates can be
found for ATES systems. In addition, the method can be used to
find optimal locations of multiple ATES systems in the areas with
high density of such systems [50,51].

• Finding optimal arrangements of neighboring GWHPs that oper-
ate in both modes, i.e. heating and cooling. Since these modes
change the groundwater temperature in opposite directions, pos-
itive interactions between neighboring systems can arise [52].
Thus, it would be useful to optimally place wells so that the
positive synergies are maximized. The method can be applied in
this case by including the time dependencies and additional heat
sources, i.e. cooling wells.

• Improved quantification of the thermal groundwater potential
of the area of interest. This means, for example, determining
the maximum number of GWPHs that can be installed in a cer-
tain area while complying with all regulatory conditions. Such
potential assessments could be integrated into energy system
optimization models [53], which are used to find optimal energy
transition paths towards CO2 reduction targets.

6. Conclusions

In this work, a new method for determining the optimal well layout
of groundwater heat pumps is presented. The method is a gradient-
based optimization that relies on an efficient calculation of the required
gradients using the adjoint approach. This enables a large number of
continuous optimization variables, i.e. well locations, to be considered
simultaneously. An integral part of this optimization concept is the
numerical simulation of the groundwater flow and heat transport based
on finite elements. The new method is implemented using Firedrake
and dolfin-adjoint, which are open-source frameworks for numerically
solving PDEs using FEM and generating adjoints, respectively. Since
the underlying PDE-constrained optimization problem is non-convex
and has many local optima, a robust initialization strategy is also
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proposed. The strategy is to use multiple starting well layouts, which
are obtained from Latin Hypercube Sampling and have the best values
of the functional of interest.

The new method is tested on a case study in Munich, Germany,
with real data and 10 GWHPs, each with a single well pair. A total of
10 extraction and 10 injection wells are optimally placed to maximize
groundwater temperature at all extraction wells. To analyze the influ-
ence of hydro-geological conditions on the optimization results, i.e. the
optimal well layout, two optimization scenarios were considered, which
differ in the temperature of the inflowing groundwater. The results
show that the proposed methodology successfully finds optimal well
layouts in both scenarios and that hydro-geological conditions can
significantly alter the optimal well layout. In both scenarios, the sum
of groundwater temperatures at all extraction wells in the optimal well
layout is almost 14 ◦C higher than in the non-optimized benchmark.

It should be emphasized that the proposed method is the first well
layout optimization method that allows for continuous well locations
and is not limited by the number of wells. This is a significant im-
provement compared to the existing methods, which can only consider
predefined (discrete) well locations and a small number of wells. In
addition, this is the first method used to optimize the well layout
of multiple neighboring GWHPs to maximize thermal groundwater
potential. The method can also be applied to find optimal well layouts
of individual systems with multiple extraction and injection wells.
Moreover, the method can be used in various other applications in the
future, such as the optimization of ATES systems or the quantification
of the thermal potential of aquifers. Finally, the introduced method can
serve as a basis for the future optimal management and planning of the
geothermal resource groundwater.
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Appendix A. Coefficients for linear control constraints

Linear control constraints (18) are generated automatically in the
code using the following steps:

1. The geometry of plots is read from shape files using the Python
library GeoPandas [54]. The result is a list of vertices for each
convex plot.

2. The vertices are then used to define linear functions that corre-
spond to the edges of plots.

3. Inequality constraints are defined based on geometric relations
and the linear functions obtained previously.

In the second step, the linear function corresponding to the edge 𝑒𝑖𝑗
between two vertices 𝑣𝑖 and 𝑣𝑗 is obtained from the equation of a line
through two points:

𝑦 = 𝑘𝑖𝑗 ⋅ 𝑥 + 𝑛𝑖𝑗 (A.1)

𝑘𝑖𝑗 =
𝑦𝑗 − 𝑦𝑖
𝑥𝑗 − 𝑥𝑖

(A.2)

𝑛𝑖𝑗 =
𝑦𝑖 ⋅ 𝑥𝑗 − 𝑦𝑗 ⋅ 𝑥𝑖

𝑥𝑗 − 𝑥𝑖
(A.3)

where 𝑣𝑖 = (𝑥𝑖, 𝑦𝑖) and 𝑣𝑗 = (𝑥𝑗 , 𝑦𝑗 ). It should be noted that in the case
of 𝑥𝑖 = 𝑥𝑗 = 𝑥⟂ the previous formulas for 𝑘𝑖𝑗 and 𝑛𝑖𝑗 are not applicable
since the function becomes 𝑦 = 𝑥⟂.

In the third step, the inequality constraint for each edge is obtained
from the function (A.1) by replacing the equality sign with ≤ or ≥. The
inequality sign is selected based on a relative geometric positions of the
corresponding edge 𝑒𝑖𝑗 and an arbitrary point 𝑝c = (𝑥c, 𝑦c) within the
convex plot (polygon). An example plot with an internal point 𝑝c and
an edge 𝑒𝑖𝑗 is depicted in Fig. A.15a. If the edge 𝑒𝑖𝑗 lies ‘‘below’’ the
point 𝑝c then = in (A.1) is replaced by ≥ and, otherwise it is replaced
by ≤ if the edge is ‘‘above’’ the point. The ‘‘below’’ and ‘‘above’’ means
respectively negative and positive 𝑦-axis sections 𝑚c = 𝑦(𝑥c) of the
function corresponding to that edge on an auxiliary coordinate system,
whose origin is the point 𝑝c (Fig. A.15b). The special case 𝑦 = 𝑥⟂ must
be separately considered, since there is no intersection with 𝑦-axis here
(Fig. A.15c). In this case, if 𝑥c ≤ 𝑥⟂ the inequality constraint reads as
𝑥 ≤ 𝑥⟂ and, otherwise, the constraints becomes 𝑥 ≥ 𝑥⟂. It should be
noted that the point 𝑝c can be chosen arbitrarily as far as it is inside
the plot, but here the geometrical centroids of plots are used since they
are easy to obtain from shape files.

Appendix B. State constraints

Once the order of installation of GWHPs is established, a new set
of constraints should be added to reflect the regulations on negative
interference between neighboring GWHP systems. As already men-
tioned, neighboring GWHPs can influence each other in such a way that
upstream GWHPs change the groundwater temperature at extraction
wells of downstream GWHPs. In some countries, the approval ordi-
nance stipulates that the temperature change (due to the new upstream
systems) at the extraction well of an existing GWHP must be less than
a specified constant threshold value Tdif f . In this work, the area of
interest is located in Bavaria, Germany, where Tdif f = 1 [K] [26]. The
corresponding constraints are given as follows:

𝑇n(𝐱ext𝑖 ) − 𝑇 (𝐱ext𝑖 ) ≤ Tdif f ∀𝑖 ∈ {1,… , 𝑁exis} (B.1)

where 𝑇n(𝐱ext𝑖 ) is the natural groundwater temperature at the extraction
well of GWHP 𝑖; 𝑇 (𝐱ext𝑖 ) the temperature after new systems have been
installed upstream; 𝑁exis the number of existing GWHPs. The temper-
ature field 𝑇n can be obtained by solving the underlying PDE system
without any new GWHPs and, thus, represents a constant parameter
in the optimization problem. It is important to note that the current
system for installing (licensing) new GWHPs works on a first-come-
first-served basis. Therefore, the regulation described above is only
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Fig. A.15. Geometric relations between an edge 𝑒𝑖𝑗 and a point 𝑝c within the plot.

applied to new systems to check whether they have a negative impact
on already existing downstream GWHPs.

In (B.1) the temperature fields (functions) are evaluated at the
positions of extraction wells, which means that the Dirac delta function
is applied in the same way as in (16). However, it should be noted
that 𝐱ext𝑖 in (B.1) are no longer control variables, but only constant
values, since the existing GWHPs are ‘‘fixed’’ and not part of the
optimization. Moreover, the constraints (B.1) include the state 𝑇 and,
thus, cannot be explicitly defined in the reduced formulation (11).
There are several approaches to dealing with state constraints in PDECO
problems, including the penalty-based approach.

The state constraints (B.1) can be replaced by adding a penalty
term 𝑃𝑇 to the original functional of interest (16). In the first step, the
constraints are reformulated as follows:

∫𝛺 𝑠1(𝐱
ext
𝑖 ) d𝛺 ≤ ∫𝛺 𝑠2(𝑇 , 𝐱

ext
𝑖 ) d𝛺 (B.2)

where 𝑠1(𝐱ext𝑖 ) = (𝑇n(𝐱)−Tdif f )⋅𝛿(𝐱−𝐱ext𝑖 ) and 𝑠2(𝑇 , 𝐱ext𝑖 ) = 𝑇 (𝐱)⋅𝛿(𝐱−𝐱ext𝑖 ).
Thereafter, the penalty term is defined as:

𝑃𝑇 = 𝛾 ⋅
𝑁∑
𝑖=1

∫𝛺(max{0, 𝑠𝑖1 − 𝑠
𝑖
2})

2 d𝛺 (B.3)

where 𝑠𝑖1 = 𝑠1(𝐱ext𝑖 ), 𝑠𝑖2 = 𝑠2(𝑇 , 𝐱ext𝑖 ), and 𝛾 is a penalty scaling factor.
This type of penalty is similar to the Moreau–Yosida type of regulariza-
tion terms used in state-constrained optimization problems [55]. The
penalty term 𝑃𝑇 becomes zero when the constraints (B.1) are met,
and otherwise scales quadratically with the constraints violation. The
maximum function in (B.3) is squared to obtain a smooth function,
which is advantageous for gradient-based optimization.
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5 Conclusion and outlook

This thesis has developed and evaluated novel frameworks for the optimization of GWHP systems that are
efficient and tailored to specific applications. In achieving this primary objective, the thesis effectively closes
research gaps identified in the literature, resulting in both methodological and application-oriented advances.
It should be highlighted that the optimization approaches for GWHP systems introduced in this thesis are
pioneering work in this field, as the development of such approaches was almost non-existent before.

5.1 Conclusion

The publications included in this thesis introduce new approaches for the optimization of GWHPs at the system
level, conduct a comparative analysis of different approaches, and present strategies for integrating GWHPs
into ESOMs. Building on the findings from these publications, the central research questions formulated in
Section 1.3 are answered in the following:

1. What are the viable approaches for the optimization of GWHP systems, and how do they compare
in terms of efficiency and applicability?

In Section 4.1, a comprehensive analysis was conducted to identify and compare GWHP optimization
approaches and to propose a new classification scheme for them. The identified approaches were divided
into four different classes based on the groundwater simulation model used (PDE-based or simplified)
and the optimization algorithm used (gradient-based or derivative-free). In terms of computational
efficiency, optimization approaches using gradient-based algorithms are preferable, since they consistently
outperform derivative-free algorithms. On the other hand, the applicability of an optimization approach
is significantly influenced by the choice of the groundwater simulation model. Approaches using PDE
models are more suitable for detailed GWHP planning, while approaches based on simplified models
offer practical advantages for assessing geothermal potential over large areas.

2. How to optimize the design and operation of GWHP systems?

Sections 4.2 and 4.3 present three new approaches for optimizing the design and operation of GWHP
systems. The overview of these approaches is depicted in Figure 5.1. Approaches I and II, introduced
in Section 4.2, use simplified (analytical) models to represent groundwater conditions and interactions
between GWHPs and groundwater. Conversely, Approach III, presented in Section 4.3, is based on a PDE
model of groundwater flow and heat transport within an aquifer. The difference between Approaches
I and II lies primarily in their focus: Approach I concentrates on thermal groundwater considerations,
particularly negative thermal interactions between neighboring systems, while Approach II focuses on
hydraulic groundwater considerations.

The identified three sub-questions are answered below:

a) How to optimize well locations of GWHP systems?

This thesis contributes three new approaches to effectively determine optimal well locations of
GWHP systems. In addition to the differences between these approaches described previously, they
also differ in the concept of optimal well placement. In the first two approaches, well placement
is based on the selection of predefined discrete well locations, whereas the last approach enables
well placement anywhere within the feasible area. The practical application of the approaches is
demonstrated with real case studies in the city of Munich. The choice of the most suitable approach
depends on the specific application objective. Approaches I and II are computationally more efficient
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Figure 5.1 New optimization approaches in the classification scheme from Section 4.1

compared to Approach III, making them suitable for larger areas. However, this efficiency comes
at the cost of neglecting multiple details and complexities associated with groundwater due to
their reliance on simplified groundwater models. In contrast, Approach III can accommodate these
complexities, which makes it the preferred option for applications that require detailed and accurate
groundwater modeling.

b) How to determine the optimal number of GWHP wells to be installed?
Approaches I and II directly address this research question. These two approaches are able to
not only identify optimal GWHP well locations, but also determine the optimal number of wells,
i.e. the number and placement of GWHP systems or well doublets, within an area based on the
overall objective. The presented approaches allow for various analyses, including determining the
maximum number of systems and their locations without negative interactions within a given region
or estimating the maximum technical geothermal potential of an area. The decision process on
whether to install a particular GWHP (well doublet) differs slightly between the two approaches,
but in both cases it involves selecting extraction-injection well pairs from a predefined set of well
locations. As previously discussed, Approach I focuses on thermal groundwater considerations,
while Approach II centers on hydraulic aspects. Consequently, the key factor limiting the available
space for GWHP installations is the propagation of thermal plumes in the first case and the hydraulic
footprint of wells in the second case. Therefore, the suitability of the two approaches depends on
the requirements specific to a particular application.

c) How to optimize the sizing (pumping rates) of GWHP wells?
Approach II is formulated to determine the optimal sizing and placement of extraction-injection well
doublets, with the aim to maximize the technical potential of thermal groundwater use. Methodolog-
ically, this is achieved by introducing additional continuous optimization variables that correspond
to the pumping rates (sizes) of well doublets. This approach is tested using a real case study in the
city of Munich, where the potential of each city block is optimized individually. The obtained results
show that the optimal sizing strategy for well doublets depends on several factors, including the ge-
ometry of individual city blocks, their orientation with respect to the groundwater flow direction, the
minimum pumping rate thresholds, and the constraints governing the distance between neighboring
doublets. Approach II combines these various factors into a comprehensive optimization framework
that enables the identification of the optimal strategy for maximizing geothermal potential within a
given city block. This strategy can result in a small number of larger doublets (wells) or a larger
number of comparatively smaller doublets.
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3. How to effectively integrate GWHPs into energy system optimization models?

Chapter 3 addresses this question by introducing and comparing three different approaches for integrating
GWHPs into ESOMs. These approaches differ in their representation of GWHP efficiency: constant,
time-dependent, and both time- and location-dependent. The comparison of the approaches is performed
using a real case study in Munich, where the respective ESOM represents the residential heating sector
of the city. The results reveal that assuming a constant efficiency of heat pumps throughout the year
leads to misleading optimization results, while adding a spatial component to the temporal one does not
significantly change the cumulative results. Therefore, the second approach (time-dependent COP) is the
most suitable for analysis at the energy system level, as it is less computationally intensive than the last
approach (time- and location-dependent COP). However, if spatially distributed results are needed, e.g.
for urban planning, then the last approach is required.

Finally, the developed optimization approaches provide valuable tools for a variety of stakeholders, in particular
for researchers and practitioners engaged in the management and optimization of open-loop shallow geothermal
systems. Their potential applications span a wide spectrum, ranging from optimal design of individual GWHP
systems to strategic planning of future district heating systems. Moreover, it should be emphasized that the
proposed approaches can be adapted to other objective functions and constraints, extending their utility to other
shallow geothermal applications and even to other energy applications where the underlying physical phenomena
are governed by PDEs. In this context, the research presented here contributes to improving the understanding
and optimization not only of GWHP systems, but also of other technical systems characterized by bidirectional
interactions with their energy resources (environment).

5.2 Outlook

The novel optimization approaches introduced in this thesis significantly advance the research field of GWHP
optimization. Nevertheless, these approaches have certain limitations, which are discussed in the following
along with possible future improvements and new applications:

• Approaches I and II use analytical models to describe groundwater conditions, which leads to certain as-
sumptions and simplifications inherent in these models. For instance, these models assume unidirectional
groundwater flow in the study area or homogeneity of aquifer properties. Therefore, one potential avenue
for advancement lies in the enhancement of these underlying analytical models, which would improve
the corresponding optimization approaches.

• Approach I focuses on thermal groundwater considerations, while Approach II focuses on hydraulic
aspects. In the future, a combination of these two approaches could lead to a comprehensive framework
covering all relevant aspects, thus improving the analysis of the technical geothermal potential and
enabling a more sophisticated thermal groundwater management.

• If GWHPs are regarded as relevant technologies in the considered region, the spatial thermal potential
of groundwater should be integrated into the corresponding ESOM for the heating and/or cooling sector.
Approaches I and II are particularly suitable for this task due to their analytical nature and computational
efficiency, in contrast to the approaches based on PDE models [101]. This would directly improve the
representation of GWHPs in ESOMs and the current integration methods presented in Chapter 3. In
addition, Approaches I and II could also be integrated into GIS-based tools for energy planning and
thermal groundwater management.

• Approach III (PDE-based optimization) could be extended to cover additional dimensions of GWHP
optimization. This may include the consideration of time-dependent scenarios and the use of 3D
subsurface models, thereby going beyond the scope of the current analysis in Section 4.3, which focuses
on steady-state PDEs and 2D models. In addition, the present approach optimizes only the placement of
GWHP wells. Therefore, its scope could be extended to scenarios where the number of wells or systems
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and their operating parameters (sizing) are also optimized. To realize such advances, mixed-integer PDE
constrained optimization problems would need to be addressed.

• Through the inclusion of economic factors, all three approaches could be extended in the future to
a comprehensive analysis that incorporates both economic and environmental dimensions of energy
planning. This extended framework would provide urban planners and individual stakeholders with
valuable decision support for the thermal use of groundwater.

• Groundwater (aquifer) parameters are often subject to uncertainties due to the lack of measurements
or estimates from indirect measurements [102]. This thesis has not addressed the inclusion of these
uncertainties in the optimization process or their impact on optimal solutions. Therefore, the optimization
approaches could be extended in the future to also account for these aspects, e.g. by using stochastic
optimization methods.

• The presented approaches have the potential to be extended to various other applications in the future.
In the first instance, these are applications related to GWHP optimization that have not been addressed
within the scope of this thesis. For example, we could consider optimization of a single large GWHP
system with multiple extraction and injection wells, or simultaneous optimization of neighboring GWHPs
operating in both heating and cooling modes. In the latter scenario, such modes can lead to positive
thermal interactions between neighboring systems [103], providing the opportunity to maximize positive
synergies and utilize groundwater as an energy carrier. Secondly, the approaches could be adapted for
other shallow geothermal applications, e.g. optimization of ATES, GSHP, and BTES systems. Finally,
the applicability of these approaches could be extended to a broader range of energy applications where
the underlying physical phenomena are governed by PDEs, such as the optimization of wind or tidal
energy systems.
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