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Abstract
Processing sensor data with spiking neural networks on digital neuromorphic chips requires
converting continuous analog signals into spike pulses. Two strategies are promising for achieving
low energy consumption and fast processing speeds in end-to-end neuromorphic applications.
First, to directly encode analog signals to spikes to bypass the need for an analog-to-digital
converter. Second, to use temporal encoding techniques to maximize the spike sparsity, which is a
crucial parameter for fast and efficient neuromorphic processing. In this work, we propose an
adaptive control of the refractory period of the leaky integrate-and-fire (LIF) neuron model for
encoding continuous analog signals into a train of time-coded spikes. The LIF-based encoder
generates phase-encoded spikes that are compatible with digital hardware. We implemented the
neuron model on a physical circuit and tested it with different electric signals. A digital
neuromorphic chip processed the generated spike trains and computed the signal’s frequency
spectrum using a spiking version of the Fourier transform. We tested the prototype circuit on
electric signals up to 1 kHz. Thus, we provide an end-to-end neuromorphic application that
generates the frequency spectrum of an electric signal without the need for an ADC or a digital
signal processing algorithm.

1. Introduction

The human brain processes a vast amount of sensory information quickly and efficiently. This efficient and
fast processing is currently unmatched by any artificial system. Hence, ongoing research aims to understand
and mimic the brain’s sensory processing. An essential part of this research is encoding incoming
information into spikes [1]. Coding schemes are commonly classified into rate coding and temporal coding,
that assume information is stored in the rate of spike trains for a given time window or in the actual timing
of the spikes, respectively. There is evidence that points toward the existence of time coding schemes in the
brain [2–4], as well as for rate coding schemes [5–7]. These two paradigms can also be generalized for
neuron populations, where redundant information in a group of neurons allows to reduce the inference time
or the uncertainty in the signal [8]. From a conceptual point of view, rate encoding offers robustness and can
be easily generalized for large populations [7]. In contrast, time coding is faster and more energy efficient, as
it requires few spikes. It also explains the fast reaction times, especially for sensory pathways, that are crucial
for survival [9–11]. One hypothesis of how neurons implement time coding is by carrying information in the
inter-spike interval, i.e. the time between two consecutive spikes [12]. Alternatively, time coding schemes
may rely on reference points in time to convey information. These references include the onset of a stimulus,
spikes from other neurons, or periodic waves within the brain activity [13, 14].
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One of the aims of neuromorphic research is to represent data with discrete spikes, mimicking the
efficient operation of the brain. Therefore, spike encoding is a crucial step in the design of neuromorphic
algorithms. When developing spiking neural networks (SNNs), the choice of the encoding scheme depends
on aspects like the nature of the input data, the network architecture, or the neuron dynamics model used by
the SNN. Neuromorphic computing research often focuses on high-end tasks that use processed data, e.g.
classification [15], object detection [16], tracking [17], or motor control [17, 18]. These applications
typically use rate encoding, as the main motivation is to validate neural models in terms of accuracy, rather
than the benefits of sparsity and efficiency provided by temporal encoding schemes [19]. However, energy
and time efficiency becomes more relevant for low-level neuromorphic applications that directly process
sensor data. This is the case of embedded systems where the pool of energy is limited, such as automotive
applications [20, 21]. There are recent examples of neuromorphic computing algorithms that deal with
low-end tasks and are applied to sensor data, such as LiDAR [20], event-based cameras [22], FMCW radar
[21], electrocardiogram signals [23], or microphones [24].

The interface between the sensor and the neuromorphic chip is crucial for obtaining a high energy
efficiency and processing speed. When dealing with analog data, the most efficient approaches directly
operate on the sensor signals by using ad-hoc circuits that encode them to spike trains. The signal-to-spike
encoding mechanisms are typically application-specific, as they need to be compatible with the SNNs
afterward. The idea of encoding analog signals to spikes for obtaining efficient implementations is not new.
In [23, 25], authors use temporal contrast to identify positive and negative gradients, which discriminate
high and low frequencies in the analog signal. Zhao et al [26] introduces a VLSI circuit for implementing the
interspike-interval (ISI) mechanism for encoding analog signals. The authors in [27, 28] introduce silicon
neurons for generating different spike bursting behaviours, similar to those observed in biological neurons.
We refer the interested reader to [29] for getting an overview of the different analog circuits used in
neuromorphic systems for real-time applications, and to [30] for a comparison of the different encoding
approaches.

Some neuromorphic applications focus on generating the frequency spectrum of the incoming signal
[24, 31, 32]. In these examples, an analog-to-digital converter (ADC) samples the sensor data and an SNN
computes a higher-level algorithm on a digital neuromorphic chip afterward. To maximize the efficiency of
these applications, the ADC should be removed by directly encoding the input signal into a spike train
compatible with the digital neuromorphic chip. For the specific case of an SNN that implements the Fourier
transform (FT) [32], the network needs spikes referenced to a periodic signal, as the FT algorithm works
with data sampled uniformly over time. Thus, the best-suited temporal approach for these applications is
phase encoding, as ISI and temporal contrast lack a signal that serves as reference over the time dimension.
Additionally, the results in [30] show the benefits of phase encoding in terms of accuracy and efficiency. The
benefits are more clear when comparing with rate-coded approaches, as phase coding needs down to 6.5
times less spike operations for processing data [33], resulting in a lower energy footprint [19].

The work in [32] proposed an SNN that computes a mathematically equivalent version of the FT by
using time encoding. The authors implemented the spiking FT (S-FT) on a digital neuromorphic chip and
validated it on automotive radar data. Here, we propose adapting the leaky integrate-and-fire (LIF) neuron
model for directly encoding analog signals to phase-encoded spikes, which the S-FT can use on a digital
neuromorphic chip. The proposed approach leads to the implementation of an end-to-end pipeline that does
not require an ADC nor a digital processing algorithm that encodes digitized signals into spikes. The
proposed analog-to-spike encoder (ASE) employs phase encoding, i.e. each sample is represented by the time
difference between the spike and a reference pulse. We implemented the ASE on a physical circuit and
validated the system with real data by comparing the reconstructed data from the spikes with the original
data. We modeled the nature of the error of the ASE for different scenarios. Moreover, we implemented the
S-FT on the neuromorphic chip SpiNNaker 2 [34] and ran it with the ASE output spikes. The results show
that the chip can use the spike train that results from encoding a periodic wave. To our knowledge, we
provide the first end-to-end neuromorphic pipeline for generating the frequency spectrum of analog signals
without employing an ADC.

2. Analog-to-spike encoder

The LIF is a century-old single-compartment neuron model that mimics the behavior of biological neurons
[35]. Its simplicity makes it a widely used artificial neuron in neuromorphic engineering. The model is based
on an R−C circuit that charges with the incoming current and discharges in the absence of input,
resembling the flux of ions in a biological neuron through its dendrites and the constant leak of them over
time through its membrane. We can express the dynamics of the LIF as
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Figure 1. Simplified schematic of the electric circuit used for implementing the LIF-based encoder. The R−C formed by RLIF and
CLIF circuit generates the u(t) according to (4). C1 compares u(t) with uth and generates spike events. The two D-type flip-flops
synchronize the output of C1 with the spike reading hardware, which controls the reset of the spike s(t) and refractory Srefr signals.
The second flip-flop regulates the working cycle of the LIF circuit.

C
du

dt
+

u(t)− urest
R

= iin (t) , (1)

where u(t) is the neuron’s membrane potential, urest is the resting potential, and iin(t) is the input current to
the neuron. The LIF model does not include the depolarization and hyperpolarization mechanisms on a
biological neuron when it generates a spike. Instead, it is necessary to manually add the behavior of the spike
generation and refractory period. A spike is triggered at time ts when u(t) crosses the threshold voltage uth.
After the spike generation, u(t) is reset and fixed to urest for the neuron’s refractory period trefr,

ts : u(ts)⩾ uth and (2)

u(t) = urest for ts < t< ts + trefr . (3)

As artificial sensors often provide information in the form of a voltage, we modify (1) so the evolution of
the membrane voltage depends on an input voltage uin. We also set urest = 0 for simplicity,

RC
du

dt
+ u(t) = uin (t) . (4)

In the remainder of the paper, we use the time constant τ = RC. By integrating (4) and setting u(ts) = uth, we
obtain an encoding function f(uin) that maps the input voltage uin to a spike time ts after onset,

ts = f(uin) =−τ log

(
1− uth

uin

)
. (5)

Accordingly, the ideal decoding function is given by the inverse of f(uin),

uin = f−1 (ts) =
uth

1− e−ts/τ
. (6)

We implemented the LIF neuron model (4) for generating a spike train from input analog signals. We
encoded the information into precise spike times using (5) and controlling the refractory period according to
a reference signal.

Figure 1 shows a simplified schematic of the electric circuit we used to implement the encoder. This
circuit served as a proof-of-concept for implementing an end-to-end pipeline. For implementing a
high-performance circuit, we refer the interested reader to literature focused on the VLSI design of silicon
neurons [29].

2.1. Encoding analog voltages with temporal spikes
By default, the LIF dynamics described in (4) generates a spike rate proportional to the input voltage uin(t).
In our approach, we sample the continuous signal uin(t) with a constant sampling time TS by generating a
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Figure 2. ASE signals for the generation of one spike. The top plot represents the membrane voltage for the nth spike in the time
series, the second plot represents the refractory state of the neuron, the third plot represents the output spike train, and the
bottom plot represents the sampling clock of the digital neuromorphic chip that uses the spikes generated by the ASE.

single spike per sample. We repeat the spike generation process for successive time windows. Thus, themth

spike represents the signal uin during the time range [tm, tm +TS]. This is inspired by the phase encoding
technique hypothesized for the encoding of information in certain areas of the brain [14]. A binary variable
Srefr forces u(t) to stay in a refractory state,

u(t) = urest, iff Srefr = 1 . (7)

We achieve an adaptive refractory period, trefr = TS − ts, by controlling the set and reset time of Srefr for the
mth sample,

Srefr =

{
1 if tm + ts < t< tm +TS

0 otherwise.
(8)

This encoding mechanism requires a periodic reference signal CLKS (see figure 1) that defines the sampling
time TS and the end of the refractory period. We assume the input voltage to be constant during the
sampling time of the ASE, uin(t) = Uin, as the neuron dynamics is faster than the rate of change of the input
signal. Figure 2 depicts the increase of the membrane voltage during one sample, the generation of a spike
pulse, and the set and reset of the refractory signal.

The sampling time TN of the hardware component collecting the spikes determines the spike time
resolution N,

N=
TS

TN
. (9)

2.2. Parameter tuning
The encoder (5) has two parameters that we can tune in order to map a voltage range [umin,umax] onto a time
range [tmin, tmax], namely the time constant τ , and the threshold voltage uth. Due to the dynamics of the
neuron model, we need to choose umin > uth > 0 to ensure a finite time range. This leads to tmin > 0 (see (5))
and hence introduces a waiting time before the first informative spike can arrive. We can use τ to reduce tmin,
but this would also lead to a smaller time range, as (tmax − tmin)∝ τ . To optimize the resolution in the
encoding time window∆t, we aim for a small waiting time

twait = tmin =−τ ln

(
1− uth

umax

)
(10)

and a large spike time range

tspk = tmax − tmin =−τ ln

(
umax (umin − uth)

umin (umax − uth)

)
. (11)
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Figure 3. Voltage dynamics of the ASE for the corner cases. The plot shows the curves for the maximum and minimum possible
inputs, which generate spikes at the minimum and maximum spike times, respectively. The dashed lines represent the additive
thermal noise (22).

Hence, by maximizing the ratio

µ=
tmax − tmin

tmin
=

tspk
twait

, (12)

we can ensure to find an optimal value for uth (see figure 3). The ratio (12) is independent of τ . Therefore, we
can only use τ as a scaling factor to fit the time range into the encoding window∆t. A voltage threshold
uth ∼ umin maximizes the ratio.

The overall encoding performance also depends on the decoding and the subsequent algorithms. By
tuning the encoding/decoding parameters, we optimize the process. We establish three pipelines to evaluate
the accuracy of the coding process. First, a coding scheme using the proposed encoding f (y) (5) and its
inverse as decoding f−1(t),

y
f−→ t

f−1

−−→ ŷ= y . (13)

Second, a coding scheme using the proposed encoding f (y) (5) and a linear decoding g−1(t),

y
f−→ t

g−1

−−→ ŷ . (14)

Finally, we assess the encoder performance using a spiking algorithm As that takes linearly encoded spike
times as input and produces linearly encoded spike times as output. We apply the algorithm on spike times
encoded as t= f(x) (5). To evaluate the pipeline, we compare the decoded spiking output g−1(As(t)) = ŷ with
the output of a non-spiking version of the algorithm A(x) = y,

x
f−→ t 7→ As (t)

g−1

−−→ ŷ . (15)

For (13), the decoding does not need tuning because it is the inverse of the encoding (5). For (14)
and (15), we tune the parameters of the encoding and decoding to minimize the error

ε=

ˆ ymax

ymin

|ε(y) |dy=
ˆ ymax

ymin

|y− ŷ|dy . (16)

We evaluated the encoding on the S-FT algorithm [32]. The S-FT network relies on linear coding and
employs current-based LIF neurons without leak. The model assumes that the input consists in
phase-encoded spikes that follow the encoding

ts = g(y) = tlin, min +
tlin, max − tlin, min

ymax − ymin
(ymax − y) (17)

and decoding

y= g−1 (ts) = ymax −
ymax − ymin

tlin, max − tlin, min
(ts − tlin, min) . (18)
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By calculating the error

εlin =

ˆ ymax

ymin

|y− ŷ|dy=
ˆ ymax

ymin

|y− g−1 ( f(y)) |dy (19)

with the encoding f (y) and decoding g−1(t), we see that the multiplicative time constant τ cancels out. The
error depends on the decoder’s time range [tlin, min, tlin, max], the voltage threshold of the encoder uth and the
input voltage range [umin,umax], where the latter is fixed by the given setup. Due to the complexity of the
relationship between the tunable parameters uth, tlin, min and tlin, max, we propose a loss function

L= αεlin −µ, (20)

that we can use to determine the optimal parameters, where α defines the weight of the linear error w.r.t. the
time ratio, i.e. a small α puts focus on obtaining good time ratios, whereas big α favors small linear errors. By
setting a voltage threshold uth that optimizes the time ratio (12), the decoding parameters tlin, min and tlin, max

can be determined by directly minimizing the error εlin.

3. Results

This section covers the experiment results for the proposed ASE. We implemented a prototype on an electric
board with standard components. We tested the three scenarios introduced in section 2.2 with signals
obtained from a function generator. We collected the spikes and generated the reset signals for the encoder
with a microcontroller from the dsPIC33CK family. The minimum sampling time of the microcontroller is
1.48µs, which determines the resolution TN of the spike times. We finally implemented the S-FT algorithm
on the SpiNNaker 2 chip [34] and ran it with the spikes collected by the microcontroller.

We powered the circuit with 5V, and the input voltage signal was in the range of [1,5]V. Figure 4 shows a
measurement of the ASE on an oscilloscope for two consecutive spikes.

3.1. Decoding of flat voltages with an ideal decoder
We tested the ASE functionality using constant voltage signals as input. We collected the generated spikes and
applied the ideal decoding function (6) to the recorded spike times. In this case, the absolute error in the
measurement is mainly due to the quantization error and the circuit’s thermal noise.

The spike quantization introduces a time shift δtq to the actual spike time ts due to the finite resolution of
the digital hardware reading the spike events. Assuming that the spike time bins are uniformly distributed
with a period of TN, we can theoretically model this error with an average sampling error

δtq =
TN

2
. (21)

On the other hand, voltage dynamics are noisy and voltage fluctuations can alter the threshold crossing
time. The thermal error δtthermal on the spike time highly depends on the voltage dynamics. For
simplification, we model the fluctuations as a constant added to the actual membrane voltage,
u(t)+ δuthermal, and we estimate its impact on the spike time as

ts − δtthermal =−τ ln

(
1− uth − δuthermal

uin

)
. (22)

From (22), we can conclude that the thermal error on the spike times increases exponentially for small input
voltages uin. Figure 3 shows that thermal noise typically anticipates the spike time.

The overall measured spike time is thus obtained by combining the the quantization and the thermal
noise time shifts

t̂s = ts + δtq − δtthermal , (23)

that leads to the decoding error

ε(u) = u− f−1
(̂
ts
)

(24)

= u− uth

1−
(
1− uth∓δuthermal

uin

)
e−δtq/τ

. (25)
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Figure 4.Measurement on a oscilloscope of the ASE membrane voltage u(t), the threshold voltage uth, and the spike event signal
s(t) in red, yellow, and blue, respectively. The measurements show the signals for two consecutive samples.

Figure 5.Measurement errors of the ASE for encoding constant voltages uin ∈ [1,5]V with varying uth ∈ [0.1,0.5,0.75,0.9]V.
Top: In dark blue, decoding error εu = |uin − f−1(t̂s)| for measured spike times t̂s. In light blue, modelled quantization error
εu = |uin − f−1(ts + δtq)| with ideal spike time ts = f(uin). Bottom: normalized error εts = |ts − t̂s|/TN between the measured
spike times t̂s.

This experiment converted constant voltages in the working range [1,5]V to spikes. We ran the
experiment for four different setups with different threshold voltage: uth = [0.1,0.5,0.75,0.9] V (see figure 5).

We measured the absolute decoding error as the difference between the input voltage uin and the voltage
ûin that results from decoding the spike times,

εu = |uin − ûin| . (26)

Moreover, we also measured the error in the spike times by comparing the obtained spike times t̂s and the
ideal spike times ts = f(uin) calculated with (5),

εts = |ts − t̂s|/TN , (27)

where we use TN as a normalization coefficient for making the error comparable across experiments. Figure 5
depicts εu and εts for the ASE when using the values of uth from the previous experiment. We can see that the
quantization error is high for high input voltages, whereas the thermal noise is low. On the other hand, low
input voltages increase the probability of earlier spikes due to thermal noise, but low quantization errors in
this area make spike times more precise. These errors are inherent to the used hardware and limit the
accuracy of the encoding regardless of the approach followed for decoding the spikes.

We offer in figure 6(a) visual comparison between the decoded voltages ûin and the input voltages uin for
the described experiment.

3.2. Decoding of flat voltages with a linear decoder
We tested the ASE setup from the previous section with a linear decoder (18). We used the optimization
strategy introduced in section 2.2 to find the parameters from (18) that best fit the curve from the ASE. We
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Figure 6. Decoding of the spikes obtained from the ASE when feeding constant input voltages between 1 and 5V, when using (a)
an ideal decoding scheme for uth values of 0.1,0.5,0.75, and 0.9 V, respectively; and (b) a linear decoding function for uth values
of 0.1 and 0.75V, respectively. Moreover, the second experiment was also run for a narrow voltage input range, namely 2 to 5V.
The input voltage is shown in red as reference, as it is the target value for the decoding.

used a differential evolution method1 that minimizes L (20) by adjusting k1 and k2 parameters that fix the
decoding time limits

tlin, min = tmin (1+ k1) , (28)

and

tlin, max = tmax (1+ k2) . (29)

As the spike times can only be real-valued, the hard boundaries for k1 and k2 are [−1,∞]. In our
implementation, we chose the boundaries k1,k2 ∈ [−1,2].

For testing the decoding, we reconstructed the original signal ûin = g−1(̂ts) from the obtained spike times
t̂s with the inverse of the linear encoding function g−1 (18). We evaluated the reconstruction error in terms of
the root mean squared error between the original signal uin(t) and the reconstructed signal ûin(t)

E=

√∑M
m (uin,m − ûin,m)

2

M
, (30)

whereM is the number of samples collected during the experiment.
Figure 7 depicts the decoding results for four scenarios with different umin and uth. A higher umin leads to

a narrower input range, which directly affects the output dynamic range of the encoder, i.e. narrow voltage
ranges increase the waiting time twait until a spike can take place. On the other hand, the mapping of the ASE
has a smaller curvature, which diminishes the error when using a linear decoder (18). These two effects are
counterbalanced with the threshold voltage, as a higher uth leads to a higher dynamic range, and lower values
reduce the decoding error.

After validating the optimizer on the theoretical scenarios, we applied the fitted curves to data from the
experiments with real data in section 3.1. Figure 6(b) shows the obtained decoded voltages to four scenarios,
with uth = [0.1,0.75]V, and umin = [1,2]V. Results show that narrowing down the input voltage range is the

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html.
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Figure 7. On top, mapping from voltages U in to spike times using the ASE model (5) and a linear time latency decoder (17), in
dark blue and light blue, respectively. For ease of comparison, the spike times have been normalized for all experiments, ts/tmax.
At the bottom, the decoding error ε when using (18) for decoding the ASE spike times. The parameters tmin and tmax for the linear
decoded are calculated with the optimizer described in section 2.2 for minimizing the cumulative decoding error E. The figure
depicts the mapping for umin = 1V and 2V, on the two leftmost and two rightmost plots, respectively. For each umin, we tested the
ASE for uth = 0.1V and 0.75V.

best way of improving the decoding error at the expense of reducing the output dynamic range. The results
for umin = 1V also show that a higher uth leads to a larger curvature and thus increases the output dynamic
range. This effect is reduced for the results for umin = 2V because the change in the ratio uth/umin is smaller
for the shown experiments. Increasing uth to values closer to umin would bring more significant
improvements to the output dynamic range.

3.3. Computing the S-FT with the ASE output
We tested the performance of the ASE for an end-to-end pipeline that computes the frequency spectrum of
the input signal. For the input, we used a function generator that creates signals consisting of one sinusoidal
component. These signals can be defined as

h(t) = A sin2πνt+B , (31)

where A, ν, and B are the amplitude, frequency, and offset of the sinusoidal wave, respectively. We connected
the function generator to the ASE, generating one spike per sampling period TS. Finally, we ran the S-FT
algorithm on a SpiNNaker 2 board with the spikes generated from the ASE.

We tested the implementation for frequencies in the range ν ∈ [25Hz,1kHz]. Same as for the experiment
in section 3.2, we created experiments with two different setups for the input voltage range. Namely, a
working range of [1,5]V, and a working range of [2,5]V, i.e. we used the parameters A= 2 and B= 3, and
A= 1.5 and B= 3.5, respectively. We fixed uth = 0.1V and τ = 3ms, and the resolution per spike to N = 100
time steps. These parameters lead to maximum spiking times of 315 and 155µs for the wide and narrow
input voltage ranges, respectively.

In figure 8, we compare the result of decoding the spikes of the ASE using an ideal decoder and a linear
decoder for a wide and narrow input voltage range, respectively. We also show on the right the result of the
S-FT for both input ranges. The results correspond to a setup with a frequency of ν= 500Hz. We repeated
this experiment for frequencies ν ∈ [25,50,75,100,250,500,750,1000]Hz and calculated the root mean
squared error (30) between the obtained frequency spectrum and an FFT computed with a synthetic sine
wave sampled with an ideal ADC. We show the error for the different frequencies in figure 9.

4. Discussion

We modelled the expected output of the proposed ASE from a theoretical perspective and validated its
behaviour with experiments on analog signals. In section 3.1 we modelled the error in the spike encoding as
a combination of a quantization error and the thermal error present in analog circuits. We proved that the
quantization error grows exponentially with the value of the input voltage, and the experiments show

9



Neuromorph. Comput. Eng. 3 (2023) 044002 J Lopez-Randulfe et al

Figure 8.Output of the ASE for a sinusoidal wave of 500Hz. The top plots correspond to a wave with amplitudes ranging between
1and5V, and the bottom plots correspond to a wave with amplitudes ranging between 2 and 4V. From left to right, the plots
correspond to the ideal decoding of the spikes, the decoding using a linear function, and the result of applying the S-FT on the
SpiNNaker 2 board to the output spikes, respectively. The ASE was tuned with τ = 3ms and uth = 0.1V. The sampling frequency
was 3 and 5.5 kHz, respectively, and each sample had a resolution of 100 time steps.

Figure 9. Error of the frequency spectrum when encoding voltages with the ASE and feeding the spikes to the S-FT in the
SpiNNaker 2 board. The plots show the error for frequencies ranging from 25Hz to 1000Hz, both for wide and narrow input
voltage ranges, V= [1,5]V and [2,5]V, respectively.

evidence that this is the dominating error in the output spikes. The experiment in section 3.1 tested this
hypothesis by converting input voltage signals in the range [1,5]V to spikes and decoding them back into
voltages. We show the measured error in the decoding on the top row of figure 5 and compare it with the
quantization error equivalent to half of a time step in the spike times, i.e. the difference between the input
voltage and the voltage that the corresponding spike actually represents. We also show the errors in the spike
times on the bottom row of figure 5. The results indicate that errors in the spike times, mostly due to thermal
error, are larger for low input voltages. However, these errors do not have a big effect on the decoding error,
as it is mostly dominated by the quantization error. Finally, figure 6 shows the relationship between input
and decoded voltages for the considered voltage range and for four different values of uth. We observe that
the decoding stays close to the target value, and that errors are more significant towards high values of uin.

The experiment in in section 3.2 fit a linear decoder to the mapping curve of different setups of the ASE.
This step is necessary before implementing the ASE together with the S-FT, as the latter assumes phase
encoded input spike times. We fit a linear decoder for four different ASE setups, where we vary uth and umin,
and we evaluated the result in terms of the decoding error E and the dynamic output range µ. We can
observe that both parameters have a big influence on both indicators. Large parameter values lead to small
errors and narrow dynamic ranges. In general, the actual choice of parameters will depend on the
requirements and limitations of the application. If the SNN that processes the spikes is not limited to a linear
encoding function the design should aim to maximize µ, as the decoding error will stay close to zero (see top
and bottom plots in figure 6).
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The experiment described in section 3.3 tested the ASE together with a digital neuromorphic chip for
computing the frequency spectrum of the input analog signal. As we aimed to minimize the error in the
generated spectrum, we chose uth ≈ 0.1V. We run experiments for input signal frequencies up to 1 kHz and
umin = 1 and 2V, and fit a linear decoding function for each setup. Figure 8 depicts the results for ν= 500Hz.
The non-linear behaviour of the ASE (5) can be approximated by a hyperbolic function assuming small
ratios uth/uin � 1, which leads to a compression of the data for low values of uin, and an expansion of the
encoding range for high values of uin. This translates into the appearance of harmonics in the resulting S-FT,
which is specially noticeable for larger input dynamic ranges (see top right plot of figure 8). We also plot the
total error of the generated frequency spectrum with that of an FFT applied on a synthetic signal sampled
with an ideal ADC, i.e. simulated on a PC without any added noise. The error stays relatively low, and its
mostly due to the usage of a decoding function different to the encoding one. We observe bigger errors for
higher frequencies and higher input voltage ranges. For uin = [2,5], this trend stops at ν= 500Hz , as after
this frequency the second harmonic of the main signal is out of the range of the generated FT. This source of
noise is easy to model, and this error could be mitigated with a post-processing algorithm.

5. Conclusion

We proposed adapting the widely used LIF neuron model for mapping analog signals into spike trains using
phase encoding. By using an adaptive refractory period, the output spike train keeps a notion of the sampling
rate, which is a fundamental requirement for applying FT-based frequency spectrum analysis techniques.

We constructed a circuit prototype and ran it on simple periodic waves to validate the model. Our
experiments show that the proposed approach can encode voltages with high accuracy. Moreover, we used
the output of the ASE for running a spike-based FT on the digital neuromorphic chip SpiNNaker 2. This
implementation is more efficient and simpler than previous approaches, as it does not require an ADC
between the sensor and the digital chip.

One necessary step to develop real-time neuromorphic applications for signal processing is to enable
digital neuromorphic chips with low-level interfaces for reading single-source spikes in real-time. Such
improvement would lead to neuromorphic sensor data processing, which is crucial for efficient real-world
applications, like radar-based collision avoidance.

Future work shall focus on generating a comprehensive benchmark of the ASE by creating a VLSI version
of the circuit and assessing its performance with complex data obtained from actual sensors. Those
benchmarks shall include critical parameters like energy efficiency and the robustness to the noise of the
ASE, and compare them with the equivalent parameters of ADCs.

Data availability statement

The data that support the findings of this study will be openly available following an embargo at the
following URL/DOI: https://github.com/KI-ASIC-TUM/time-coded-SFT. Data will be available from 1
November 2023.
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