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Abstract

English

The development process of jet engines is a challenging issue as it includes various engineer-

ing disciplines with partially competing goals. In view of rising kerosene prices and the global

warming, the main focus still lies on the minimization of the specific fuel consumption. Apart

from that, there is an increasing requirement on the engine’s robustness because airliners tend

to lease instead of buying jet engines. This goes along with a higher financial risk on the en-

gine manufacturer side as they have to take over the costs for unexpected shop visits. In order

to ensure a robust design, the development process must be complemented with stochastic

methods to account for the uncertainty sources.

Throughout the thesis, an interdisciplinary simulation model of a low-pressure turbine sec-

ondary air system is set up. The methodological focus of the work is on the modeling of

epistemic uncertainty sources and can be divided into three parts.

The first one is devoted to the uncertainty quantification with a special emphasis on inverse

problems. The second focal point deals with the screening of the interdisciplinary model in-

put quantities to cut down the complexity of the system. Based upon the reduced parameter

set, the third and last research topic is about conducting a robust design optimization (RDO)

of the secondary air system. Due to the limited amount of information about the uncertainty

sources, non-probabilistic methods have been developed and adapted from literature for the

above-mentioned research goals.

For the inverse uncertainty quantification problem, a novel approach has been introduced

where the variation of the model response is described with the help of a minimum-volume

enclosing ellipsoid. Compared to state-of-the-art methods from literature, it shows a higher

accuracy and efficiency for high-dimensional problems. Throughout the subsequent variable

screening, which is based upon repeated Taylor series approximations, a significant reduction

of the epistemic input space by more than 60% has been achieved. Nevertheless, it turned out

that the remaining input space dimension is too large for a RDO with standard sampling tech-

niques. Thereof, the non-intrusive imprecise stochastic sampling (NISS) strategy has been

adapted which allows the modeling of lack-of-knowledge uncertainty sources with probability-

boxes. In comparison with a pure probabilistic RDO, the NISS-based approach has shown a

superior performance of the secondary air system under changing ambient and flight condition

scenarios.
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Deutsch

Die Entwicklung von Flugzeugtriebwerken ist ein herausfordernder Prozess, bei dem teilwei-

se konkurrierende Anforderungen verschiedener Fachdisziplinen miteinander vereint werden

müssen. Im Hinblick auf steigende Kerosinpreise sowie die globale Erderwärmung liegt der

Hauptfokus auf der Optimierung des spezifischen Kraftstoffverbrauchs. Darüber hinaus spie-

len steigende Anforderungen an die Robustheit eine zunehmend wichtige Rolle für den Ent-

wicklungsprozess, welche vor allem auf die Einführung des „Power-by-the-hour“ Geschäftsmo-

dells zurückgeht. Hierbei werden über einen Leasingvertrag Betriebsstunden an den Kunden

verkauft, wodurch Triebwerkshersteller einem höheren finanziellen Risiko im Falle ungeplanter

Reparaturen ausgesetzt sind. Zur Erreichung eines robusten Designs bedarf es der Erweite-

rung des Entwicklungsprozesses um stochastische Methoden.

Im Rahmen dieser Dissertation wird ein interdisziplinäres Simulationsmodell für das Sekun-

därluftsystem einer Niederdruckturbine aufgebaut. Der methodische Fokus liegt auf der Im-

plementierung von Methoden zur Berücksichtigung von epistemischen Unsicherheiten im De-

signprozess und kann in drei Schwerpunkte untergliedert werden.

Der erste Bereich befasst sich mit der Quantifizierung epistemischer Unsicherheitsquellen, wo-

bei ein Hauptaugenmerk auf inverse Probleme gelegt wird. Im daran anschließenden Teil geht

es um die Entwicklung eines geeigneten Screeningverfahrens zur Reduzierung des epistemi-

schen Parameterraums. Der dritte und letzte Themenbereich beschäftigt sich mit der Robust

Design Optimierung (RDO) des Sekundärluftsystems. Aufgrund der teilweise unvollständigen

Datenbasis werden für die oben genannten Problemstellungen Methoden diskutiert, die über

eine rein probabilistische Betrachtungsweise hinausgehen.

Für die inverse Unsicherheitsquantifizierung wurde eine neue Methodik entwickelt, welche

die Parametervariation von epistemischen Unsicherheitsquellen mit Hilfe einer einhüllenden

Ellipse beschreibt. Im Vergleich mit etablierten Ansätzen aus der Literatur zeigt dieses Vorge-

hen eine deutliche Steigerung der Recheneffizienz für hochdimensionale Simulationsmodelle.

Durch die darauffolgende Sensitivitätsstudie konnte der epistemische Parameterraum des Se-

kundärluftsystemmodells um ca. 60% verringert werden. Trotz der deutlichen Reduktion der

Komplexität kann für die robuste Optimierung kein standardmäßiges Stichprobenverfahren wie

die Monte Carlo Simulation verwendet werden. Aus diesem Grund wurde das „non-intrusive

imprecise stochastic sampling“ (NISS) Verfahren angewendet und für Anforderungen an die

robuste Optimierung weiterentwickelt. Abschließend wurden die Ergebnisse mit einer rein pro-

babilistischen RDO verglichen. Hierbei zeigte sich, dass die NISS-basierte Optimierung zu

einer wesentlich stabileren Performance des Kühlluftsystems unter variierenden Flug- und

Umgebungsbedingungen führt.
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Chapter 1
INTRODUCTION

The development procedure of modern aircraft engines is a challenging task which can, com-

pared to other engineering products, even stretch out over a period of more than a decade.

The reason for the lengthy process comes from the high safety requirements in the aviation

industry and the competing objectives from the various disciplines involved in the design pro-

cess. All of this leads to a volatile situation for the engine manufacturers, as they have to take

a high financial risk before generating income on the long term.

A key prerequisite for placing a new jet engine successfully on the market is to reduce the

airliner’s operating expenses. Since fuel costs account for 35%, and thus for the major share

of the overall expenses, a main objective is to minimize the engine’s SFC (specific fuel con-

sumption). Apart from that, the maintenance and inspection represent a significant fraction of

around 16%. Among the latter, the jet engine maintenance costs is the dominating factor with

a portion of about 40%, see Fig. 1.1 [39].

Over the last years, airliners tend more and more towards the conclusion of so-called PBH

(power-by-the-hour) contracts instead of buying the engine. In principle, the PBH agreement

is a leasing contract between aircraft operator and engine manufacturer. The latter guaran-

tees for a comprehensive maintenance over a certain period of time for which the operator

has to pay an hourly rate for each flying hour. For the airliners, this contract type allows a

better financial monitoring as the costs pertaining to maintenance and repair can be predicted

with certainty. From the suppliers’ perspective, the agreement offers on the one hand great

benefits if the leasing product runs reliably without any unscheduled downtime. On the other

1



Figure 1.1 Typical airline cost structure (left) and maintenance breakdown (right) [39].

hand, engine owners have to take over the financial risk for unexpected failures causing an

aircraft-on-ground scenario in the worst case.

The origin of PBH contracts for jet engines goes back to the year 1962. During that time, Rolls-

Royce had severe problems of introducing its Viper 20 engine to the market as an option for

the de Havilland/Hawker Siddeley 125 business jet. The potential customers were skeptic due

to the unavailability of spare parts whereas the aircraft mechanics were not willing to service

the engine because of its low market share. To solve this "hen and egg" problem, the company

decided to launch a new business concept which gives the customer the opportunity to buy

flight time instead of the engine itself. [79]1

Since its invention, the original business model has been enhanced by additional features

such as the engine trend monitoring which enables to register the engine’s parameters in real

time [2]. In 2018, the global PBH market size has reached a value of 20 billion USD and is

expected to grow constantly by up to 6% per year within the next decade [85, 140]. The con-

tinuous growth rate is mainly a consequence from the increasing number of low-cost airliners

which outsource the maintenance to third parties.

As a result of this trend, jet engine manufacturers have to evolve from a classical product de-

signer to a mobility supplier. Apart from the economic consequences, the changing business

case also affects the engine’s requirements and thereof the key aspects of the development

process. Keeping the SFC as low as possible remains the most important design objective but

since the financial risk of a possibly high maintenance frequency is carried by the manufac-

turer, there is an increasing demand for a robust engine design.

An important contribution to achieve this goal is to put more effort into deeper analytical analy-

ses. Especially the implementation of stochastic methods into the development process entails

1 Citations behind the full stop refer to the preceding paragraph.
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a high potential to optimize the design in view of its robustness. Within the scope of this thesis,

the focus lies on the jet engine’s cooling system. To be more precise, the part of the secondary

air system (SAS) being responsible for the cooling of the LPT (low-pressure turbine) disk is

investigated in greater detail. In the past, several studies have been conducted to enhance

the deterministic design approach by probabilistic concepts. The great benefit comes with the

increased insight of the system behavior as well as the knowledge gained from the stochastic

analyses.

The application of pure probabilistic methods presumes a sufficient amount of data about the

uncertainty sources. However, modelers most of the time face scenarios where the available

information is scarce or incomplete. For example, in the early design stage the geometrical

variation of a component can hardly be quantified due to the missing measuring data. In such

a case, the assignment of a probabilistic distribution is hard to justify and can lead to mislead-

ing conclusions.

To tackle this issue, the scope of this thesis concerns the question how to deal with lack-of-

knowledge uncertainty sources in the design process of the LPT secondary air system. The

overall goal is the development of strong methods to achieve a robust design for the cooling

system. The structure of this work is as follows:

Chapter 2 gives a general introduction into the interdisciplinary design process of the SAS

(secondary air system) and explains the aims and objectives of the thesis. After that, state-of-

the-art methods from literature are discussed throughout Chap. 3 which are related to the aims

and objectives of the previous chapter. The literature review is followed by the methodologi-

cal part in Chap. 4 which introduces new concepts for the quantification of lack-of-knowledge

uncertainties. In Chap. 5, the developed methods are applied to the industrial use case of

this thesis, i.e., the interdisciplinary model of a jet engine’s SAS. Finally, Chap. 6 provides

conclusive remarks and an outlook for future research topics.

3



Chapter 2
MOTIVATION: Challenges in the Jet Engine
Development Process

In general, jet engines belong to the group of thermal engines as they convert heat into ki-

netic energy. In short, the fundamental principle comprises the following steps: (i) intake and

compression of air; (ii) addition of heat throughout the combustion of fuel; (iii) expansion of

the working fluid while passing through the nozzle. As the fuel-air mixture emitted from the

engine has a higher velocity as the ingoing air, a propulsive force is generated in opposite flow

direction according to Isaac Newton’s third law of motion. Within the scope of this thesis, the

application case is a turbofan jet engine which is characterized by a high bypass ratio between

9:1 and 12.5:1 depending on the engine type [3].

In order to better understand the challenges of the jet engine development process, the ba-

sic functioning of a turbofan is explained with the help of Fig. 2.1. Apart from the schematic

drawing, it includes the nomenclature of the fundamental stations according to the ARP 755A

standard [12]. After the engine intake, the inflow hits the fan which leads to a pre-compression

of the cold air followed by a separation into bypass and core gas flow. As indicated by the

name, the latter enters the core engine which encompasses the components exposed to ex-

tremely high temperatures and pressures. In principle, this part of the engine consists of

compressor, burner and turbine. Like most of the civil jet engines, the application case of this

thesis deals with a two-shaft engine. Hence, the compression of the core gas flow takes place

in two steps by passing through the LPC (low-pressure compressor) and thereafter through the

HPC (high-pressure compressor). Then, the compressed air flows into the burning chamber

4
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Figure 2.1 Schematic drawing and station numbering of a turbofan engine. Graphical representation taken from [66].

where it is mixed with fuel and burned at constant pressure. The hot fuel-air mixture, which

reaches a temperature of more than 1,000◦ C, then enters the HPT (high-pressure turbine)

which is connected with the HPC by the high-pressure shaft. The amount of energy extracted

from the core gas flow throughout the expansion is in balance with the energy required for the

compression process within the HPC and associated losses. After that, the partially expanded

gas mixture is guided through the LPT which is linked to the LPC as well as the fan by the

low-pressure shaft. Thus, the energy delivered by the LPT is consumed by two compressor

modules. Finally, the gas flow gets accelerated while passing through the core nozzle. The

thereby generated thrust is only a small portion of the total net thrust provided by the engine.

The overwhelming part results from the acceleration of the bypass flow when exiting the en-

gine throughout the bypass nozzle because of the much higher amount of mass flow.

The focus of this thesis lies on the LPT module whose inlet and exit is described by the sta-

tions 45 and 49, respectively. More in detail, the secondary air system (SAS) of the module is

analyzed which has the purpose to ensure a sufficient cooling of the turbine disk. Since the

performance of the SAS is affected by pressure and temperature boundary conditions from the

core gas flow, an interdisciplinary model of the cooling system is built which simulates these

interactive effects.

The remaining parts of this chapter are arranged as follows: Section 2.1 gives a detailed intro-

duction into the interdisciplinary modeling approach. Further, the uncertainty sources of the

various disciplines as well as the categorization of the corresponding model parameters are

discussed. After that, Section 2.2 provides a literature review on relevant publications about

uncertainty quantification and robust design optimization in the field of turbomachinery and jet

propulsion. Finally, the aims and objectives of the thesis are outlined in Section 2.3.
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2.1 Interdisciplinary Modeling Approach for a Low-Pressure
Turbine Secondary Air System

The design process of jet engine components requires the analysis of multiple engineering

disciplines. A stand-alone modeling procedure for the cooling system of the LPT module is

therefore not reasonable as it cannot represent dependencies with other components and

subsystems. The interdisciplinary SAS model, which serves here as industrial test case for

the uncertainty studies, is basically a combination of the following three computational mod-

els: performance calculation, aerodynamic simulation and SAS model. Note, that a complete

design process requires also thermal and structural analyses which are not considered within

the scope of this thesis.

Each of the three above-mentioned disciplines is explained in detail within Section 2.1.1. Then,

Section 2.1.2 covers a discussion about the uncertainty sources during an early stage of the

design procedure.

2.1.1 Components of the Interdisciplinary Secondary Air System Model

The first discipline of the development process is the performance calculation with the help

of which the interaction between the engine’s components can be predicted for different flight

conditions. The basis for this simulation is the lossy Joule-Brayton process which describes

the general thermodynamic cycle of gas turbines. The following paragraphs are based upon

the publications [30, 38, 141].

Since jet engines are a composition of various components, performance simulation programs

have a modular design. This means that every component is represented by a separate mod-

ule. Figure 2.2 illustrates the modular characteristics and uses the same standard for the

station numbering as in Fig. 2.1. The general purpose of the performance calculation is to

simulate how the gas flow characteristics change from one component to the next one. The

concatenation of all changes yields a representation for the engine’s thermodynamic cycle.

As mentioned before, each component is modeled by a separate module whose operating be-

havior is given by means of a characteristic map. For example, a compressor map describes

the relation between pressure ratio, mass flow rate, efficiency and rotational speed. In an early

design stage, the data for the derivation of these charts is gathered from simulations and ex-

perience from previous engines. Later on, the characteristic maps are validated by gathering

experimental data from rig1 testing.

The core principle behind the performance calculation is to identify a thermodynamic matching

between all modules for a given engine operating point. This means that the gas flow parame-

ters (temperature, mass flow, pressure, flow velocity) at the exit of a component must coincide

with the gas condition at the inlet of the subsequent module. Furthermore, the components

1 Test rigs are used to evaluate the capability of jet engine components.
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Figure 2.2 Graphical illustration of a two-spool turbofan engine performance model.

being connected by the same shaft are coupled via its rotational speed and energy balance.

The starting point for the simulation is to provide the boundary conditions for the operating

point under investigation which is done by describing the flight and ambient conditions. The

latter are given by the flight altitude, Mach number and ambient temperature whereas the load

level is typically regulated by the required amount of propulsive thrust. After that, the goal

becomes to determine the modules’ matching that fulfills these boundary conditions. As the

components’ characteristics are not given by analytical expressions, the solution is obtained

in an iterative manner. The iteration parameters include gas flow conditions at decisive sta-

tions such as the turbine inlet temperature as well as parameters from the characteristic maps

like the compressor pressure ratio for example. If possible, the initial guess for the numerical

simulation is taken from a similar operating point. As a primary result, the model delivers the

gas flow characteristics at the various stations. Even though the characteristic maps are able

to capture three-dimensional effects, the representation is given in integrated form.

For the development of jet engine components, the thermodynamic cycle is analyzed for var-

ious flight phases. Without any claim to completeness, the most important operation points

encounter idle, end take-off, climb and cruise phase. Especially the ADP (aerodynamic design

point), which is part of the cruise phase, plays a crucial role in the conceptual design phase.

Usually, the ADP is analyzed at first and used to decide about the geometrical parameters and

the general setup of the aircraft engine. This includes, inter alia, the number of compressor

and turbine stages as well as the bypass ratio. Hence, the purpose of the design point study

is to find an engine architecture to meet the customers’ requirements. Of course, if it turns out

that the engine’s performance is not sufficient during the off-design flight phases, a re-iteration

of the ADP analysis must be performed.

Due to its high importance for the development procedure, it has been decided to conduct the

uncertainty studies within this thesis for the ADP. Nevertheless, we consider a design phase

where all geometrical features have been settled, i.e., the characteristic component maps re-

main unchanged. The MTU-internal performance program is called "MOPS" which stands for

modular performance simulation. For further information about the solution procedure, the

reader is referred to the manual of "GasTurb" which is a common commercial performance

calculation software [66].
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Figure 2.3 Representation of the curved three-dimensional flow through a turbine module [31].

The next step of the design procedure is the aerodynamic simulation of the core gas flow

within the LPT module. Even though the annulus is rotationally symmetric, the gas flow has

a three-dimensional characteristic as shown in Fig. 2.3. With respect to the local coordinate

system, given by the s-, k- and n-axis, the equations of motion can be derived from the bal-

ance of forces at an infinitesimal small fluid element. Finally, one yields a set of DEQs in the

corresponding directions given by [31]:

1
ρ

∂ p
∂k

=
v2

Rk
− rω

2 sin(σ)cos(β )−2ωvsin(σ),

1
ρ

∂ p
∂ s

=− Fr

dm
− v

∂v
∂ s

+ rω
2 sin(σ)sin(β ), and

1
ρ

∂ p
∂n

=
v2

Rn
+ rω

2 cos(σ)+2ωvcos(σ)cos(β ).

(2.1)

All of the parameters are depicted in Fig. 2.3 except the following ones:

• β Angle between flow direction and circumferential direction

• σ Angle between meridian direction and axis of rotation

• v Local relative flow velocity

• ∂ p Pressure change along k-, s- and n-direction

• Fr Frictional force in flow direction

In short, the solution of the complex 3D flow problem requires the simultaneous integration of

the three partial DEQs given by Eq. (2.1) in compliance with the conservation of energy, conti-

nuity equation as well as geometrical boundary and initial conditions. In case the result should

8
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Figure 2.4 Schematic drawing of a LPT annulus projected on the 2D meridian plane, illustration is partially taken from
source [96].

also account for the boundary layer along the airfoils, the set of equations must be extended

by the Navier-Stokes equations which makes the problem even more complex.

In a general case, there is no closed analytical solution existing. A common approach is to

solve the problem in a numerical way which is based upon replacing Eq. (2.1) with difference

equations. Thereof, the flow field is discretized by a set of finite cells which build up the basis

for the discretized form of the flow problem. Without going into detail, the goal of the numer-

ical simulation is to apply the difference equations on the mesh such that all elements are in

equilibrium with each other and the provided boundary conditions. With increasing model and

mesh size the simulation time is growing accordingly. Even with the help of the available com-

puter clusters, the aerodynamic simulation of the whole LPT module can take several hours

which is too expensive for the conduction of uncertainty studies.

For this reason, it has been decided to derive the solution for the 3D problem by the SCM

(streamline curvature method) which is a less precise but all the more efficient method. The

great benefit with respect to the computational time results from assuming circumferentially

symmetric flow properties. Thus, the 3D flow problem is degraded and solved in the two-

dimensional meridian plane with averaged flow properties in the circumferential direction, see

Fig. 2.4. The following paragraphs explain the fundamental principle of the SCM without deriv-

ing the underlying system of equations. For a more detailed explanation of the approach, the

reader is referred to [96, 142].

The first preparation step for the SCM is to subdivide the annulus into several stations in axial

direction. Apart from the module’s inlet and exit, additional stations are introduced in front of

and after each vane and blade row. In addition to that, the radial direction is also partitioned

into several stream tubes by a set of streamlines. Since their exact location is not known in

advance, they are distributed uniformly in radial direction. Based on that, the streamlines’ cur-
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Figure 2.5 Flow chart explaining the aerodynamic simulation with the help of the SCM [96].

vature values can be derived at any station which is required for the radial balance of forces

later on. In Fig. 2.4, the annulus for a three-stage turbine is shown schematically with a dis-

cretization of 14 stations and four stream tubes. The intersection points between streamlines

and stations represent the nodal points at which the gas flow’s absolute pressure and velocity

will be determined during the calculation process.

The iterative procedure behind the SCM can be explained with the help of the flow chart in

Fig. 2.5. At first, the inlet conditions, which correspond to station 45, are derived from the

performance calculation. Due to the fact that they are expressed as scalar values, a radial

distribution of the gas flow parameters is assumed based on experience. The initial step is

followed by an iteration over all remaining stations. Within each iterative step, a second loop

is performed that includes the computation of the pressure and velocity change within each

stream tube between previous and current station. The governing equations are derived from

the conservation of axial and angular momentum, energy balance and continuity equation. To

solve the system of equations, either the pressure or velocity must be estimated at every cal-

culation point in advance. Note, that the calculation step depends on whether the stream tube

part contains a free flow or bladed section. As a result of the inner loop, the modeler obtains

a first approximation for the radial pressure and velocity distribution at every node. Before the

algorithm moves to the next station, the radial balance of forces must be checked. If it is not

fulfilled, the gas flow parameters are adjusted accordingly.
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Once the iteration of the outer loop is finished, it must be verified that the mass flow rate

remains constant in every stream tube between LPT inlet and exit. As the streamline posi-

tions have been estimated, this step leads typically to a correction of the initial nodal positions

and thereof also to different radii of curvature. Furthermore, the new pressure and velocity

values are interpolated from the previous ones. Unless the correction step does not lead to

a significant change of the gas flow parameters, the nested iteration loop must be repeated.

The complete computation takes only a few seconds and is thereof incomparably faster than

a three-dimensional flow analysis.

Treating the aerodynamic simulation as stand-alone discipline is not meaningful because the

gas flow is directly affected by the station boundary conditions at the inlet and exit of the LPT.

In order to set up a thermodynamically consistent simulation process, the performance calcu-

lation must be coupled with the aerodynamic model. Thus, the computed gas flow parameters

at station 45 and 49 serve as input quantities for the subsequent aerodynamic discipline.

The last part of the interdisciplinary chain encompasses the simulation of the LPT’s cooling

system which is the actual core aspect of the thesis. Even though the secondary air system

has no direct influence on the thrust generation, it is of crucial relevance for the mechanical

design. Its main purpose is to provide enough cooling air to protect the turbine disk from high

temperatures. This is achieved by preventing the ingestion of hot air from the main gas flow

path into the disk cavities. Further aspects of the SAS within other engine modules can be

found in [118] and [147].

The modeling approach of the SAS is schematically drawn by Fig. 2.6. Once again, the general

3D flow problem is analyzed in a simplified manner. In principle, the cooling flow distribution

is described by a one-dimensional network which is a composition of two elements: cham-

bers and flow passages. The first group, also referred to as junction nodes, is illustrated by the

green rectangles in Fig. 2.6 and marks locations where a large volume is attributed to the cool-

ing air flow. There, the flow velocity is deemed negligible such that the total pressure and tem-

perature equal their absolute counterparts. On the contrary, the flow passages, represented by

the blue lines, describe those parts of the cooling system with a relatively small flown-through

area. Within the SAS model, the flow passages are characterized by one-dimensional pipe

flows, i.e., the fluid properties are not changing normal to the flow direction. Therefore, flow

passages can be seen as connection elements which transform gas flow characteristics from

inlet to exit chamber. To repeat, state variables to be determined at the chambers are given

by the total pressure and temperature whereas the corresponding characteristic variables for

the flow passages are the cross-sectional area and flow velocity.

The overall goal of the SAS model is to simulate the pressure and temperature values at

all chambers as well as the mass flow rates within the flow pipes. For the derivation of the

three state variable groups, an equation system is set up resulting from the following balance

equations:
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• Conservation of mass at the chambers

• Conservation of energy at the chambers

• Conservation of momentum within the flow passages

The first two balance equations state that the sum of all mass and heat flow rates are equal

to zero at every chamber. The conservation of momentum describes the relationship between

the state variables at the inlet and exit chamber as well as the mass flow rate within the con-

necting flow passage. The resulting equation depends strongly on the underlying type of flow

element. A short introduction will be given in context of Sec. 2.1.2 which deals with the uncer-

tainty sources of the model. To solve the resulting system of equations, boundary conditions

must be specified which are either defined in terms of temperature and pressure values at

certain junction nodes or as predefined mass flow rates.

Due to the nonlinear characteristics of the momentum conservation, the equation system is

solved iteratively with the help of the Newton-Raphson method. The solution procedure of the

MTU-internal SAS model implementation is strongly related to the publication [99] proposing a

nested iteration algorithm. At first, the nodal temperatures are computed by solving the linear

energy balance. After that, the pressure values are calculated from the nonlinear momentum

equations by a modified Newton-Raphson approach. Finally, the mass flow rates can be com-

puted by putting the derived pressures and temperatures into the conservation of momentum

equations.

Figure 2.6 Schematic drawing of a LPT secondary air system.
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As mentioned before, one main task of the SAS is to prevent the hot gas of the main flow

from entering the disk cavities. Of special interest in the design phase are thereof the six flow

passages at the transition to the core gas path. The flow paths of interest are localized at the

left and right side of all three rotor stages and highlighted by black arrows in Fig. 2.6. Accord-

ingly, the mass flow rates are abbreviated by Yrot_1_l, Yrot_1_r, Yrot_2_l, Yrot_2_r, Yrot_3_l and Yrot_3_r,

where "l" and "r" stands for left and right, respectively. In order to guarantee for a sufficient

insulation these cooling gas flows have to point outward into the core gas annulus which is

achieved by a positive pressure difference. Otherwise, the entering hot core gas would lead to

a huge increase of the disk temperature above the structurally acceptable temperature. As a

direct consequence, the component life expectancy is decreased significantly which can even

cause a disk fracture.

A key factor for the realistic simulation of the cooling system is the adequate modeling of the

boundary conditions denoted by the encircled letters. For this reason, a coupling of the SAS

model with both the performance and aerodynamic discipline helps to improve the quality of

the simulation results. The pressure and temperature values along the boundary line between

SAS and core gas flow ( F - W ) are a direct outcome from the aerodynamic simulation. The

remaining boundary conditions ( A - E ) represent the inflowing cooling air which is diverted

from the main gas path at the LPC exit, see Fig. 2.2. Thus, these boundary conditions are

directly related to W (25) which stands for the average core gas flow rate and is part of the

primary response parameters of the performance calculation.

To summarize, the analysis of the coupled SAS model provides a more realistic modeling

approach but requires more computational time due to the preceding aerodynamic and ther-

modynamic simulations. In the next section, the interdisciplinary process chain is reviewed

with regard to the uncertainty sources and their corresponding parameters.

2.1.2 Uncertainty Sources during an Early Stage of the Design Process

As a preparation step of the uncertainty studies, the interdisciplinary process chain has been

implemented within the MTU-internal development platform called OPUS (optimization utility

system). Basically, the underlying models of the three disciplines are concatenated by trans-

ferring the outcome of every single discipline to the subsequent one, see Fig. 2.7. Thus, the

simulation of the coupled SAS model consists of the sequential calculation of performance,

aerodynamic and cooling system discipline. From the modeler’s perspective, analyzing the

complete interdisciplinary chain is like running a black box where the parameters of all models

must be specified.

In the course of this work, we refer to an early stage of the design process at which the overall

architecture of the engine and its components is settled but the amount of information about

the model parameters is partially limited. In the following, an introduction over all considered

uncertainty sources and their representative descriptors is provided.

13



Figure 2.7 Schematic representation of the interdisciplinary process chain.

A useful categorization is to divide the uncertainty sources into two groups: flight-to-flight and

engine-to-engine variation. The first refers to the ambient and operating conditions of the

aircraft and is described by four parameters, all of which serve as input quantities of the per-

formance discipline. In detail, the group encompasses the flight altitude (XAlt), Mach number

(XMach), ambient temperature (XTemp) and the required thrust (XThr). Since these quantities

cannot be affected by the modeler, they are assigned to the set of noise parameters Xn, see

Tab. 2.1. As will be seen within the further scope of the thesis, they play a crucial role for the

design assessment because of their huge impact on the cooling system’s operation.

In contrast, the engine-to-engine category signifies the production scatter caused by the man-

ufacturing and assembly process. In case of the performance simulation, the engine-to-engine

variation is considered by treating the components’ efficiency (X
η(i)) and flow capacity (X

∆W (i))

as uncertain. The latter is a dimensionless parameter which characterizes the mass flow

through the module. All components depicted in Fig. 2.2 except the inlet and burner module

are taken into account which gives a total number of 14 uncertain parameters. Once again,

they belong to the noise factors because their nominal values are already fixed at this stage of

the design procedure.

In context of the SAS model, the manufacturing process affects the cross-sectional area of

various flow passages. For the following investigation, a preselection among all geometrical

parameters has been made based on the extensive sensitivity analyses in [28] to reduce the

dimensionality of the problem. The remaining flow elements categories comprise labyrinth
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seals, brush seals, rim seals, blade-platform gap areas and blade root gap areas. In the se-

quel, each of the mentioned geometrical features is explained including its associated model

parameters.

Labyrinth Seals

One of the most important sealing types of the SAS is the labyrinth seal, also referred to as

IAS (inner air seal). As can be seen in Fig. 2.6, the LPT cooling system comprises three

labyrinth seals which control the gas flow between chamber 6 and 7 as well as between cavity

8 and 9. The third labyrinth seal controls the incoming cooling air at boundary B . Due to its

comparatively small share in the total cooling air supply, it is treated in a deterministic manner.

The general structure is illustrated by Fig. 2.8(a) and consists of a static and a rotating part.

Due to the stepped configuration, the latter is impinged with two pins of different height. Its

static counterpart is made of a metallic honeycomb structure with a radial jump to ensure

the same distance at the two fins. The flow characteristics are mainly driven by the gap size

which results from the radius difference between rotor and stator. For the production induced

variation of the gap width, the following four key determinants have been identified:

• Eccentricity of the stator (XIAS1_stat_e,XIAS2_stat_e)

• Eccentricity of the rotor (XIAS1_rot_e,XIAS2_rot_e)

• Centric stator production scatter (XIAS1_stat_c,XIAS2_stat_c)

• Centric rotor production scatter (XIAS1_rot_c,XIAS2_rot_c)

Each of them is modeled separately which gives a total number of eight parameters for the

two labyrinth seals under investigation. The reason for differing between centric and eccentric

effects comes from the fact that the latter leads to an unsymmetric rubbing into the honeycomb

structure. In contrast, a pure radial deviation causes a symmetric abrasion if the fin diameter

(a) Labyrinth seal representation. (b) Brush seal representation [32].

Figure 2.8 Schematic illustration of a labyrinth (left) and brush seal (right).
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exceeds the rotor diameter due to the centrifugal expansion. The underlying mathematical

expressions for the effective gap size is not explained here because it covers experience-

based correction factors which are part of the proprietary information.

Within the examined design stage, the nominal IAS gap size is not yet defined. Thereof, the

stator diameter at the first (XIAS1_stat_c) and second (XIAS2_stat_c) labyrinth seal are treated as

design parameters. The other six geometrical features are assigned to the noise factor group,

see Tab. 2.1.

Apart from the production scatter, the labyrinth seal gap size is also affected by the centrifugal

expansion of the rotor as well as the difference in thermal expansion between rotor and stator.

The precondition for a significant impact of the centrifugal load is a substantially change of the

low-pressure shaft speed. Since we consider only a single design point, given by the ADP,

the variation is comparatively low which is why the centrifugal effect is neglected. Instead,

the two fin radii are applied with a constant factor to correct the nominal gap size. In case

of the thermally induced structure expansion, only a small significance is expected as the

temperatures of the two sealing components are similar. This estimation is confirmed by the

investigations published in [28]. Again, the nominal gap size at room temperature is corrected

by a constant factor.

Brush Seal

This type of sealing plays an important role for the overall distribution of the cooling mass flow

within the SAS. As can be seen in Fig. 2.6, the cooling of the first rotor stages is mainly as-

sured by the supply throughout B.C. E . In contrast, the third rotor stage is fed by the incoming

air from B.C. A and B . The main purpose of the brush seals is to control the air exchange

between the two supply pipes to ensure a uniform cooling of all parts. Within the scope of this

thesis, the focus is put on analyzing the right brush seal of the two as this one is more relevant

for achieving a cooling flow balance.

The detailed representation in Fig. 2.8(b) reveals that the brush seal consists of a wire pack

and a clamping tube surrounded by a cover plate. Accordingly, the flow through is a super-

position of the wire pack and cover plate leakage flow. In context of the SAS model, both

components are covered by an effective gap area whose corresponding parameter XBrush is

part of the design space.

Rim Seals

The last sealing type is used to model the insulation between cooling system and core gas

flow. The underlying flow passage element is described by a separate representation of the

incoming hot core flow and the outflowing cooling air. The separation is necessary to account

for the circumferentially changing pressure boundary conditions within the annulus. As a con-

servative approach, the maximum core flow pressure is used for modeling the hot gas flow

ingestion whereas a minimum static pressure is assumed for the exiting cooling air.
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In accordance with the above-mentioned mass flow rates of interest, the rim seals are labeled

in the same manner. To repeat, the indicated number stands for the stage and the letter "l" and

"r" corresponds to the left and right position, see Tab. 2.1. All of the six parameters are speci-

fied by an effective gap width which holds for both the incoming and outflowing air flow. Since

the design is already settled for the aerodynamic calculation, all of the parameters belong to

the noise factor group.

Blade Root Gap Area

The connection between the cavities before and after each rotor stage, i.e., from chamber 5 to

6, 7 to 8, and 9 to 10, is made via gap flows between blade root and disk slot. The schematic

drawing in Fig. 2.9(a) shows that there are two flow areas (A2, A3) through which the cooling

air can pass. The more relevant one is A3 which corresponds to the gap area between disk

and blade bottom surface. For the simulation of the interdisciplinary SAS model, the set of

design quantities is extended by three parameters representing the gap flow area A3 at the

first, second and third rotor stage. Due to the comparatively low cross-sectional area, A2 is

described by a constant value.

Blade Platform Gap Area

The last geometrical feature are the flow areas which result from the gap between the tur-

bine blade platforms, see Fig. 2.9(b). The root cause for the uncertainty on this parameter is

twofold. On the one hand, the platform gap is directly affected by geometrical deviations from

the turbine blades’ nominal geometry caused by the manufacturing process. On the other

hand, a misalignment of the disk slot positions leads to an undesired leaning of the blade and

thereof to changing gap areas. However, this effect vanishes for the one-dimensional modeling

approach as the corresponding descriptors represent the sum over all gap areas which cannot

(a) Blade root gap area. (b) Blade platform gap area, figure taken from [34].

Figure 2.9 Schematic illustration of a blade root (left) and blade platform gap area (right).
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capture local misalignments. As the platform gap area is not part of the design process, the

parameters XPlat_1, XPlat_2 and XPlat_3 are treated as noise factors.

So far, all models of the interdisciplinary process chain have been discussed including their

uncertainty sources and representative parameters except the aerodynamic discipline which

is treated in a deterministic fashion. The reason for this decision is the low convergence rate

when varying the geometric parameters of the annulus. Here, further research is necessary

to improve the stability of the SCM.

Table 2.1 gives a summary over all noise factors and design parameters of the process chain

and categorizes them with respect to the uncertainty source and discipline. Despite the prelim-

inary parameter reduction, the model still contains 33 noise factors and six design quantities.

What has not been mentioned so far is the fourth column of Tab. 2.1 which specifies the uncer-

tainty type of every single parameter either as aleatory or epistemic. In short, the decision is

primarily formed by the available amount of information about the parameter. The categoriza-

tion is used throughout this thesis and decides about the uncertainty quantification approach.

For the aleatory type probabilistic concepts are used, i.e., the parameters are assigned with

distribution functions. However, the main focus of this thesis is on the modeling of epistemic

uncertainties, i.e., the quantification of those parameters where the modeler’s knowledge is

scarce. A comprehensive explanation regarding the difference between these two uncertainty

types is given throughout Sec. 3.1. Moreover, the uncertainty quantification approaches for all

of the listed parameters are determined within Sections 5.1 and 5.2.
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Noise parameters Xn

Disc. Parameter Type Explanation No.

XThr Aleatory Thrust power generated by the engine 1

XAlt Epistemic Operating flight altitude 2

XTemp Epistemic Ambient temperature deviation from ISA condition 3
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to
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XMach Epistemic Aircraft speed expressed as Mach number 4

X
η (i) Epistemic Efficiency of the i-th jet engine component 5, . . . ,11

Pe
rfo

rm
an

ce

X
∆W (i) Epistemic Flow capacity of the i-th jet engine component 12, . . . ,18

XPlat_1 Aleatory Turbine blade platform gap area of the first rotor stage 19

XPlat_2 Aleatory Turbine blade platform gap area of the second rotor stage 20

XPlat_3 Aleatory Turbine blade platform gap area of the third rotor stage 21

XRim_1_l Epistemic Rim seal gap width at the first turbine rotor stage (left) 22

XRim_1_r Epistemic Rim seal gap width at the first turbine rotor stage (right) 23

XRim_2_l Epistemic Rim seal gap width at the second turbine rotor stage (left) 24

XRim_2_r Epistemic Rim seal gap width at the second turbine rotor stage (right) 25

XRim_3_l Epistemic Rim seal gap width at the third turbine rotor stage (left) 26

XRim_3_r Epistemic Rim seal gap width at the third turbine rotor stage (right) 27

XIAS1_lip_c Aleatory Sealing lip diameter deviation at the first labyrinth seal 28

XIAS1_lip_e Epistemic Sealing lip eccentricity at the first labyrinth seal 29

XIAS1_stat_e Epistemic Stator eccentricity at the first labyrinth seal 30

XIAS2_lip_c Aleatory Sealing lip diameter deviation at the second labyrinth seal 31

XIAS2_lip_e Epistemic Sealing lip eccentricity at the second labyrinth seal 32
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XIAS2_stat_e Epistemic Stator eccentricity at the second labyrinth seal 33

Design parameters Xd

XBrush Aleatory Brush seal gap width 34

XIAS1_stat_c Aleatory Stator diameter of the first labyrinth seal 35

XIAS2_stat_c Aleatory Stator diameter of the second labyrinth seal 36

XA3_1 Aleatory Gap area between blade root and disk at the first rotor stage 37

XA3_2 Aleatory Gap area between blade root and disk at the second rotor stage 38E
ng

in
e

to
E

ng
in

e

S
ec

on
da

ry
A

ir
S

ys
te

m

XA3_3 Aleatory Gap area between blade root and disk at the third rotor stage 39

Table 2.1 Overview over all relevant uncertain parameters of the interdisciplinary SAS model.
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2.2 Literature Review: Lack-of-Knowledge Uncertainties in
Turbomachinery Applications

Before proceeding with the aims and objectives of this thesis, a short literature review is given

about publications with a special focus on lack-of-knowledge uncertainty quantification meth-

ods in context of turbomachinery application cases.

Due to its high degree of criticality, a wide range of publications can be found which deal with

the analysis of the engine’s SAS. The authors of [11] and [29] for example have conducted

comprehensive sensitivity analyses to quantify the importance of geometrical features and

varying performance parameters on the cooling system’s operation. The sensitivity metrics

used within the two publications are based on the elementary effect method and the Spearman

rank correlation coefficient. In [24] a new sensitivity index, referred to as coefficient of nonlin-

ear correlation, has been introduced to capture nonlinear input-output relations which cannot

be detected by the classical correlation coefficients. The literature references discussed up to

now cover various functions of the secondary air system such as the sealing of the bearing

chamber or the required amount of cooling flow supply. Throughout [134], the focus is put on

investigating the impact of varying geometrical features as well as operational conditions on

the ingestion of core gas into the HPT cooling system. Apart from the different engine module,

the study reveals certain similarities with the objectives of the present thesis.

A common characteristic of all above-mentioned publications is the mono-disciplinary mod-

eling approach which lacks the representation of the cooling system’s interaction with other

disciplines. The paper [10] is basically an extension of [11] discussed before as it couples

the SAS model with the subsequent thermomechanical simulation of the LPT. Similar to the

monodisciplinary study case, the core aspect is on performing a probabilistic sensitivity study

but this time for the LPT rotor life duration assessment. The results of the conference paper

have been pursued by a robust design optimization within [9]. The coupling between sec-

ondary air system and thermal calculation has also been examined within [120] but without

a connection to stochastic analyses. The main goal of the cited work was to set up an inter-

active SAS-thermal simulation procedure which is not just a concatenation of the disciplines.

Thereof, it is able to represent interactions between the models such as the effect of thermal

deformations on geometrical SAS features which requires an iterative solution procedure.

The coupling of the SAS with preceding disciplines, especially the performance simulation, is

rarely discussed in literature. An exception to this is given by [176] which argues why the con-

duction of research analyses at component level has only limited informative value. Instead,

the authors outline the benefits of including the performance model into the design procedure,

regardless of the analyzed engine component. Once again, the publication does not enclose

any stochastic aspects.

All of the publications mentioned so far treat uncertainty sources, in case they are covered by

the studies, in a probabilistic manner. A noteworthy publication in context of the LPT cooling
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system, which deviates from this approach, is given in [91]. There, the emphasis is put on

those parameters where the available information is fairly limited. The classical probabilistic

modeling is replaced by considering the stochastic moments as uncertain parameters instead

of crisp values. Besides from the uncertainty quantification, the publication deals with the

extension of the Sobol index concept to assess the importance of the uncertain stochastic

moments. A similar approach for the quantification of lack-of-knowledge uncertainties has

been chosen in [135] which discusses the impact of a varying compressor blade geometry on

the components’ performance. Due to the limited set of optical measurements, the authors

have decided to assign probability distributions with interval-valued mean and variance to the

geometrical parameters.

The modeling of uncertainty sources based on vague information in context of axial gas tur-

bine compressors is also addressed within [149, 155]. The reference [155] analyses the high

cycle fatigue capability of compressor blisks under varying material properties and damping

ratios. The latter uncertainty source has been modeled by intervals because of the scarce in-

formation basis. Within the second reference [149], the failure probability of a four-stage axial

compressor is investigated with the help of the survival signature concept. The uncertainty on

the components of this network, i.e., the rows of the compressor, are described by the fuzzy

probability theory.

All in all, this short literature review has demonstrated a wide range of publications about

stochastic methods which aim at reducing the degree of conservatism of existing determin-

istic design concepts. However, the assortment of publications dealing explicitly with lack-of-

knowledge uncertainties is comparatively low, especially in combination with the analysis of

the LPT cooling system. In addition to that, most of the research studies are limited to sensi-

tivity analyses and a mono-disciplinary modeling approach, whereas the conduction of a RDO

(robust design optimization) is rarely discussed. Next, the aims and objectives of the thesis

are outlined.

2.3 Aims and Objectives

As mentioned in the introductory part, the challenges for aircraft engine manufacturers have

changed strongly over the last years. Since airlines tend to prefer so-called power-by-the-hour

contracts instead of buying the engine, engineers have to take greater account of possible

large maintenance costs during the development phase. Hence, a major goal of the design

process is to realize a robust design which prevents the engine from premature performance

degradation or even failure.

The basic prerequisite for taking the robustness criterion into account is to change the design

process from a deterministic approach to stochastic methods. Section 2.1.2 has demonstrated

the variety of uncertainty sources of the three development disciplines under investigation. To

repeat, two different uncertainty sources have been identified: flight-to-flight and engine-to-
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engine variation. From a stochastic point of view, establishing a classification according to the

type of uncertainty is more reasonable. A common approach for many engineering applica-

tions is to distinguish between aleatory and epistemic uncertainties, see e.g. [42]. The first

type is also called irreducible because it is related to the inherent variation of a random pro-

cess. The state-of-the-art approach for this uncertainty type are probabilistic concepts. On the

other hand, epistemic uncertainties are referred to as reducible because they are induced by

an incomplete knowledge and can thus be reduced by collecting more information. These two

types can occur alone but in many applications a combination of both is present which leads

to the framework of mixed probabilistic/non-probabilistic methods [21]. In [9], a concept for the

robust design optimization of a LPT under consideration of aleatory uncertainties has been

developed. Within the scope of this thesis, the main focus lies on the analysis of epistemic as

well as mixed aleatory/epistemic uncertainties.

The following case study will demonstrate the challenges for the design process if parame-

ters from the epistemic category are considered as well. For the sake of simplicity, the SAS

is treated as mono-disciplinary mathematical model. Hence, the set of input quantities com-

prises the geometrical parameters being affected by the manufacturing process. In this small

case study, all input quantities are set to their nominal values except the ones representing the

gap width between disk and blade root at the three turbine stages (XA3_1,XA3_2,XA3_3). The

gap width parameter is affected by deviations from the nominal geometry of the corresponding

blade root and disk slot, see Fig. 2.9(a). The geometrical variation of the blade can be mod-

eled by a fitted probability distribution because a sufficient number of measured components

is available. For quantifying the uncertainty on the disk geometry, only the minimum, maximum

and nominal value of each parameter is given. In this study, different modeling approaches

have been compared with each other:

• Case 1 - Interval theory:

The uncertainty modeling is based on the information about the lower (xi) and upper

bound (xi) of the random parameter without making any further assumptions.

• Case 2 - Probability-box concept:

The disk geometry is characterized by a so-called p-box (probability-box) which repre-

sents the uncertainty by a lower (FX(x)) and upper bound (FX(x)) for the CDF (cumulative

distribution function). The two bounding curves are derived from the assumption that the

mode and median of the unknown distribution does not deviate by more than 10% from

the nominal value.

• Case 3 - Probabilistic approach:

The geometrical variation of the disk is described by probabilistic concepts. For exam-

ple, it is modeled by a uniform distribution, characterized by the known minimum and

maximum value. Another meaningful approach would be to model the uncertainty by a

truncated normal distribution which has its mean (µx) at the midpoint of the given interval
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and a standard deviation (σx) equal to one-sixth of the interval width. Last but not least,

the disk variation is described again by a truncated normal distribution which has the

same mean and standard deviation as the uniform distribution.

Each of the three modeling approaches is shown exemplarily in Fig. 2.10(a) for the parameter

XA3_1. One can see that the interval approach is the most conservative one because it covers

all the other uncertainty representations. Due to additional assumptions a shrinkage of the

conservative interval bounds can be achieved which results in a p-box representation. If the

distribution type including its parameters is specified, we obtain a unique probability distribu-

tion.

As can be seen in Fig. 2.10(b), the chosen modeling approach of the input quantities has a

huge impact on the analysis of the cooling system. The graphical illustration shows one se-

lected cooling mass flow rate which is located close to the rim seals at the third rotor stage.

Note, that the chosen uncertainty propagation concepts are not discussed here as they are

addressed within Sec. 3.3.

The variability of the selected response value has the same characteristics as the input pa-

rameters which means that its uncertainty is either given as interval, p-box or CDF. This small

example of the SAS shows that the modeling procedure with the least assumptions, i.e., the

interval approach, leads to the most conservative cooling mass flow uncertainty representa-

tion. On the contrary, the probabilistic treatment reduces the degree of conservatism but is

based upon the introduction of additional assumptions which brings us to the first objective of

the thesis.

X ∈ [x,x]

FX ∈ [FX ,FX ]

X ∼ U
X ∼N

(a) Disk geometry variation at the first turbine stage. (b) Cooling mass flow close to rim seal at third rotor stage.

Figure 2.10 Geometric variation of the disk geometry at the first turbine stage (left) and cooling mass flow in the vicinity of
the third rotor stage rim seal (right). Both parameters have been normalized w.r.t. to their nominal value.
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2.3.1 Lack-of-Knowledge Uncertainty Quantification

The first main objective is to find appropriate concepts to represent lack-of-knowledge un-

certainties. If the UQ (uncertainty quantification) is based on strong assumptions, there is a

certain risk of losing information about the system response. For the case study shown here,

one can see this effect when comparing the different CDFs which result from modeling the

input as normal or uniform distribution, respectively. If a specific distribution has been chosen,

which is significantly different from the true one, the modeler would come up with a wrong

interpretation regarding, e.g., the robustness of the system. In contrast, using the interval or

p-box concept leads to conservative bounds in the response space. The advantage is that

the true (unknown) CDF is most likely covered by the interval or p-box bounds. However, for

the modeler it is hard to evaluate the system behavior in case of wide bounds as they include

non-meaningful CDFs as well. The lower p-box bound (FY (y)) in Fig. 2.10(b) for example does

not even cover the nominal mass flow value and is therefore an unlikely scenario.

To summarize, the modeling approach for lack-of-knowledge uncertainties can have a huge

influence on the system evaluation. On the one hand, the challenge is to find modeling ap-

proaches which are able to represent the imprecise information without strong, biased as-

sumptions. On the other hand, the test case in Sec. 2.3 has shown that non-probabilistic

methods can lead to a high degree of conservatism. Thus, the goal is to find approaches that

balance these competitive goals.

The uncertainty representation of imprecise data is even more complicated if the known in-

formation does not correspond to the model input parameters. The test case from Sec. 2.3

demonstrates a forward UQ problem because the gap widths between blade and disk are

directly represented by the parameters XA3_1,XA3_2 and XA3_3. For the first discipline of the

development process, namely the performance calculation, we are faced with an inverse prob-

lem. In this case, an imprecise set of data is given about the variation of the response quan-

tities but we are interested in quantifying the uncertainty on the input parameters. Thus, the

content of this thesis will deal with both, forward and inverse UQ problems under the condition

of scarce data sets.

2.3.2 Reduction of the Epistemic Parameter Space

When considering complicated engineering systems, such as the multidisciplinary jet engine

development process, the uncertainty quantification is not the only challenge. Typically, the

number of uncertain parameters is rather large in real-world applications leading to long com-

putation times. In order to reduce the system complexity, SA (sensitivity analysis) methods are

needed to identify those parameters which are of major importance for the model response

under investigation.

Within the framework of probabilistic analyses, a variety of methods is available to determine
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how the uncertainty of an input parameter affects the response quantities of a system. As

the set of input parameters from the jet engine design process comprises both, epistemic and

aleatory uncertainties, an appropriate sensitivity study is needed to account for the epistemic

part as well. The main goal of the investigation is to figure out whether the epistemic uncer-

tainty of a parameter should be considered in the modeling approach. If it turns out that the

system response is not sensitive with regard to the epistemic uncertainty, a pure probabilistic

approach can be used to model the parameter variation. To repeat, the epistemic SA analyzes

the reducible uncertainties whereas the aleatory one accounts for the inherent parameter ran-

domness.

To remind, the input space of the case study discussed before covers three parameters, repre-

senting the gap width between turbine blade root and disk at each stage. Let us assume that

the uncertainty of the disk geometry (XA3_1,disk, XA3_2,disk, XA3_3,disk) is modeled by the p-box

concept. The goal of applying an epistemic SA is to find out if the system response is sensitive

against the missing knowledge about the shape of the CDF inside the p-box. For example, if

the system response was insensitive against the epistemic uncertainty part of XA3_2,disk, the

input parameter representation could be reduced to a single CDF.

In literature, the extension of existing aleatory SA concepts for epistemic uncertainties is thor-

oughly discussed. One of the bottlenecks for many approaches is the computational effort due

to the additional epistemic layer in the parameter definition. Especially for high-dimensional

problems, like the jet engine design process, an efficient SA strategy is essential.

Within the scope of this thesis, the second main objective is the development of a method to

sort out epistemic uncertainties without a significant contribution to selected response quanti-

ties. Besides from reducing the model complexity, the gained information helps to get a better

understanding about the interdisciplinary system behavior.

2.3.3 Interdisciplinary Robust Design Optimization of the Secondary Air System

The final objective concerns the robust design optimization of the SAS. Generally spoken,

robustness means that the performance of a system is insensitive against the variation of con-

trollable and uncontrollable parameters. In contrast to a reliability analysis, robustness studies

do not determine the failure of a system in case of rare events. The latter is not covered within

the thesis.

At first, the question of how to define a robust system behavior in terms of the SAS must be

answered. After that, a metric is required which puts the robustness concept into a mathe-

matical formulation. In many approaches from literature, the metric is based on the mean and

standard deviation of the system response. As discussed in the previous chapters, the disci-

plines of the jet engine design process cover aleatory as well as epistemic uncertainties. Due

to the coexistence of both uncertainty types, the stochastic moments are no longer character-

ized by crisp values. Hence, one problem addressed in this thesis is to establish a metric for
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assessing the robustness of the SAS under aleatory and epistemic uncertainties.

Once this issue has been solved, the focus can be put on the actual optimization of the design

variables. Even though the epistemic parameter space will be reduced beforehand, the inter-

disciplinary design process is still a high-dimensional problem. A key aspect for an adequate

RDO strategy is thereof to find an efficient approach which enables the modeler to conduct

the RDO within a reasonable amount of time. Besides from the computationally efficiency,

the RDO procedure has to deliver trustworthy results, i.e., the robustness metric must be pre-

dicted with high accuracy. Especially the combination of a high-dimensional model setup and

the demanded computational efficiency makes the robustness study a challenging task.

To summarize, the goal of the RDO is to find a design which leads to a stable supply of cooling

flow at the transition between secondary air system and core gas path. Expressed in other

words, the SAS design should be insensitive against changing ambient conditions and geo-

metrical variabilities from the manufacturing process. A special focus of the RDO is on those

uncertainty sources where the available information is scarce and which are thereof not mod-

eled in a probabilistic fashion.

Within the scope of the next chapter, the reader finds a comprehensive literature overview

about stochastic methods being relevant for the objectives of this thesis.
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Chapter 3
THEORETICAL BACKGROUND

The following chapter is structured according to the aims and objectives of the thesis. Each

of the sections provides state-of-the-art methods for the problems outlined in Section 2.3.

Moreover, the limitations of existing concepts in context of the jet engine design process are

demonstrated which serves as motivation for new approaches introduced in Chapter 4.

First, Section 3.1 deals with the topic of how to categorize different uncertainty sources in the

context of this thesis. After that, the focus of Section 3.2 and 3.3 is put on concepts for the for-

ward uncertainty quantification (UQ) followed by Section 3.4 about methods for solving inverse

UQ problems. In both cases, the emphasis is placed on the modeling of lack-of-knowledge

uncertainties as this is less explored in literature. Section 3.5 refers to approaches for conduct-

ing a sensitivity analysis (SA) in context of epistemic uncertainties. Finally, the last section is

devoted to the subject area of robustness analysis. One of the main aspects addressed here is

to clarify the term robustness under the occurrence of lack-of-knowledge uncertainties. In ad-

dition, different mathematical concepts from literature to quantify robustness are discussed.

3.1 Categorization of Uncertainties

Generally spoken, the term uncertainty can be defined as gap between the modeler’s present

knowledge about a system and the ideal state of complete determinism. In order to find appro-

priate approaches for the uncertainty quantification, a preceding categorization is reasonable.

When looking back in history, such kind of classification can be found for the philosophical
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interpretation of probability. In the early 1840s, the French philosopher and mathematician

Augustin Cournot has introduced a distinction between "objective possibility" and "subjective

probability" [41]. The terminology of this classification has been intensively discussed over

the past which has led to a variety of classification concepts [65]. For example, Ian Hacking

explains the duality of probability with the terms aleatory and epistemological [72]. The first is

related to the inherent randomness of the system whereas the latter is based on incomplete

knowledge. For the more general case, namely the categorization of uncertainties, this sort of

distinction plays a crucial role in most of the modern concepts. In the following, we leave the

philosophical point of view and introduce a model-based uncertainty categorization.

From a mathematical perspective, a computational model is defined as

g : Rnx → Rny , x 7→ y = g(x), (3.1)

which maps an nx-dimensional input vector x ∈ Rnx to a ny-dimensional vector of response

quantities y∈Rny . Following the approach in [172], the uncertainty categorization is performed

with respect to three different dimensions: location, level and nature.

The first dimension (location) describes where the uncertainty occurs in the model. When

analyzing Eq. (3.1), the following locations, also referred to as uncertainty sources [42], can

be identified:

1. Input quantities: In a general non-deterministic case, x is a realization of the random vec-

tor X which is characterized by a probabilistic model fX(x|Θx). Hence, the randomness

of the input quantities themselves is a significant uncertainty source.

2. Model form: Regardless of the application case, the computational model g(x) is always

a simplification of the real physical system. The assumptions behind the modeling ap-

proach lead to a bias between the derived response y and the physical quantities under

investigation. Besides from the computational model, also the choice of the probabilistic

model form fX(x|Θx) belongs to the group of modeling errors.

3. Model parameters Θg and Θx: Defining appropriate physical and probabilistic models

includes the calibration of Θg and Θx, respectively. The determination of physical model

parameters is achieved by comparing the model response with system data obtained,

e.g., from measurements. In the ideal case, simulating the model response should co-

incide with the system data. For the determination of probabilistic model parameters, a

probability distribution fitting is conducted. Especially for a small set of system data, the

estimation of Θg and Θx is subject to a significant statistical uncertainty.

4. System data acquisition: As mentioned in the previous bullet point, system data is usu-

ally obtained from measurements. Since these observations are linked with measure-

ment inaccuracies, an additional uncertainty source must be considered for the model

calibration.
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5. Output quantities: The uncertainty of the response vector y is a result of all the un-

certainty sources mentioned above. For this reason, y can be seen as realization of

a random vector Y. Besides from that, the derived quantities y underlie computational

errors due to numerical approximations of the analytical model or truncation conditions.

One should keep in mind that the proposed partitioning of uncertainty sources is not a fixed

concept but leaves room for interpretation because of the overlap between the classes. The

focus of this thesis is mainly put on uncertainty sources which are related to modeling the

uncertainties on the input quantities x. Of course, the computational models introduced in

Sec. 2.1 are also subject to uncertainties. For example, representing the secondary air sys-

tem (SAS) by a one-dimensional flow network is a simplified approach. However, for the

problems explored here the model accuracy is precise enough. In contrast, for analyzing rare

events, such as a catastrophic system failure, one has to investigate the computational model

accuracy in greater detail.

In accordance with [172] the second dimension is the uncertainty level which describes the

gap width between the modeler’s knowledge and the unachievable state of determinism. In

Fig. 3.1, the transition from determinism to complete ignorance is divided in three stages. The

first one is referred to as statistical uncertainty. This level presumes that a sufficient amount

of data is available to describe the uncertainty by statistical methods. During the development

phases of a jet engine, this uncertainty level is mainly of relevance during a late stage. In this

phase enough data, e.g., by the assessment of test specimen, about a component has been

gathered. For the case of quantifying the uncertainty on the system input values x, a prob-

ability distribution fX(x|Θx) is preferable in case of having enough calibration data and if the

model form can capture the characteristics of the variation. In general, the level of statistical

uncertainty can occur at any location of a computational model. For example, if g(x|Θg) is

represented by a Gaussian process, the uncertainty on the model prediction shows a statisti-

cal characteristic.

Going further into the direction of total ignorance, the next level is named scenario uncertainty,

which is a rather formal expression. In contrast to the previous level, no clear statistical rep-

resentation can be derived for the analyzed phenomenon. Coming back to the representation

of uncertainties on the input quantities, this would mean that the entries of x should not be

modeled by a unique probability distribution. Due to the additional scenario uncertainty, the

model form as well as the set of parameters Θx cannot be considered as fixed values. A sim-

ilar approach holds for the computational model of the physical system. Again, the scenario

uncertainty could be represented by an uncertainty of the model parameters Θg and by differ-

ent options for the model formulation itself. Regardless of where in the computational system

the scenario uncertainty occurs, it always leads to a variety of possible model responses. In

the jet engine design process, modelers are faced with scenario uncertainty during an early

stage when no detailed information on the uncertainties is provided.
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Figure 3.1 Categorization of uncertainties with respect to the level and nature according to [172].

The last level before complete ignorance is the state of recognized ignorance. This level of

uncertainty stands out through a very poor knowledge which does not even allow the devel-

opment of possible scenarios for the phenomena under investigation. The term ignorance

stems from the Latin adjective gnarus which means knowledgeable. Thus, ignorance can be

circumscribed as lacking knowledge [129]. From the author’s point of view, the main difference

between ignorance and uncertainty is that not all uncertainty sources are known in the state

of ignorance. Contrary to total ignorance, the modeler is aware of the missing information in

the state of recognized ignorance. Staying in the field of jet engines, this uncertainty level

is of importance during the predevelopment phase where the customer’s requirements to the

engine are not yet fully defined. Consequently, basic engine configuration options, such as

the number of turbine stages, are not determined. Since the physical system is not completely

specified in this development stage one can neither derive appropriate computational models

for it nor evaluate the set of input quantities.

The final level, namely the total ignorance, represents a state of having extremely little knowl-

edge. In contrast to the remaining levels explained before, it covers the group of so-called

unknown unknowns. This category relates to uncertainties which the modeler is not even

aware of their existence. In this state, gathering more information could even increase the un-

certainty due to identifying unforeseen uncertainty sources. This uncertainty level plays a role

when performing feasibility studies of completely new technologies like a hydrogen powered

jet engine.

Within this thesis, an early jet engine design stage is analyzed. Hence, the fundamental struc-

ture of the components is settled but not all of the geometrical features are fully defined. The

uncertainties can therefore be assigned to the levels of statistical and scenario uncertainty.

Besides from the location and level, a further categorization can be established according to
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the nature, sometimes also named type, of uncertainty. The state-of-the-art approach for this

dimension is to distinguish between epistemic and aleatory uncertainty, see e.g. [21, 42, 76,

77, 172]. On the one hand, epistemic uncertainty, originated from the Greek word episteme

(knowledge), is associated to the modeler’s lack of knowledge about the uncertainty sources.

There is a variety of reasons causing this type uncertainty: limited or ambiguous information,

subjectivity, imprecise data, indeterminacy or vagueness [117, 125]. Since all of them are

based on incomplete knowledge, this type is also called reducible because the collection of

more data would decrease the uncertainty. On the other hand, aleatory uncertainty, derived

from the Latin expression alea (incertitude), represents the inherent, natural variability of a

phenomenon. Contrary to the epistemic type, aleatory uncertainties cannot be decreased by

collecting more information which is why they are classified as irreducible. In some cases,

the coexistence of both uncertainty types in a system can be observed which is referred to

as hybrid or mixed uncertainty. Apart from this well-established classification, the so-called

structural uncertainty can be found in literature [131]. This type corresponds to the problem

that a wide range of possible solution approaches is available for an engineering problem.

Among these, engineers can determine only a small set of concepts due to lack of time. As

a consequence, certain parts of the design space are not evaluated even though they could

include a design which fulfills the product requirements better than the chosen one [130].

The author considers that the nature of an uncertainty is not completely independent from

its level. This point of view is depicted in Figure 3.1 as well. It shows that the aleatory type

correlates strongly with the level of statistical uncertainty. Furthermore, the transition from

aleatory to epistemic follows the change from statistical uncertainty to recognized ignorance.

Last but not least, structural uncertainty is mainly assigned to the level of recognized igno-

rance. However, it is common practice to differentiate only between the aleatory and epistemic

type. Furthermore, the application case of the thesis deals with a development stage where

the basic component structures are finalized. As it is sometimes hard to determine whether

an uncertainty source is reducible or not, the classification according to the nature is also a

subjective decision by the modeler.

Finally, the necessity as well as the benefit derived from the categorization must be clarified.

From a technical point of view, identifying the location of an uncertainty is important for the

appropriate preparation of the computational model. Beyond that, grouping the uncertainties

according to their sources helps the modeler in deciding where additional research is benefi-

cial for improving, e.g., the robustness, of the product.

As can be seen in Fig. 3.1, the nature of an uncertainty is decisive when it comes to choosing

a method for the uncertainty representation. For the aleatory type, it has become established

to use the probability theory for the characterization. In case of epistemic uncertainties, a

variety of modeling approaches can be found in literature. The authors of [21] propose to

distinguish between two different reasons for the lack-of-knowledge uncertainty: subjectivity

and imprecision. As indicated by the expression subjectivity, the lack-of-knowledge is caused
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by a subjective expert’s assessment about the phenomenon of concern. In this case, the

uncertainty is treated by assigning a probability distribution to it. If data are available to fur-

ther specify the uncertainty, the initial probability distribution can be updated with the help

of a Bayesian approach. The second reason for epistemic uncertainty, namely imprecision,

evolves from scarce, inconsistent or inaccurate information. Applying the probability theory

under these conditions is only possible by making biased assumptions. For this reason, non-

probabilistic concepts such as interval method, evidence theory or fuzzy sets are required

[56, 60, 77, 116]. For the modeling of hybrid uncertainties, the corresponding methods have

to combine the characteristics of both types. For example, the p-box as well as the fuzzy

randomness approach can be interpreted as extending the probability theory with the interval

method or fuzzy set theory, respectively [59, 116]. For dealing with the specific type of struc-

tural uncertainty, integer programming is an appropriate method [6, 44, 159].

The level of uncertainty represents the modeler’s degree of knowledge. This information is

important for interpreting the results of the investigation. Especially if the level of uncertainty is

high, one has to keep in mind that even weak assumptions in the modeling approach can have

a significant impact on the outcome. Hence, the underlying degree of knowledge affects the

trustworthiness of the study findings which must be considered for the subsequent decision

making.

The uncertainty categorization introduced in this chapter is aligned to the computational model

defined in Eq. (3.1). Another classification strategy can be found in [116] for example which

differs between the type and characteristic of an uncertainty. The interested reader is also re-

ferred to [143] which discusses the categorization of uncertainties from a more philosophical

point of view in context of the risk theory.

3.2 Forward Uncertainty Quantification

The previous section has demonstrated the manifold characteristics of uncertainties in a com-

putational system. To repeat, an early stage of the jet engine development process is con-

sidered within the thesis which means that the uncertainty sources cover the level of scenario

and statistical uncertainty. Moreover, the research problems outlined in Sec. 2.3 are related

to input quantities of the different design disciplines. The quantification of errors introduced by

modeling the physical system is not part of the actual research focus.

The following subsections describe state-of-the-art methods to quantify aleatory, hybrid and

epistemic uncertainties, respectively. As shown in Fig. 3.1, several methods are available for

modeling the hybrid and epistemic uncertainty type. Here, the discussion is narrowed to the

p-box and interval concept. The term forward means that the available set of data, regardless

of its quality and quantity, is directly related to the corresponding quantity of interest in the

computational model.
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3.2.1 Probability Theory

Mathematical Theory

The standard approach for modeling aleatory uncertainties is based on the probability the-

ory and its underlying axioms which have been introduced by Andrey Kolmogorov [95]. This

mathematical concept for representing a random process is defined by the probability space

(Ω,Fp,Pp). The following introduction is based on [68].

The first entry Ω is called sample space and covers all possible outcomes ω of the random

process. The second element, namely the σ -field Fp, represents the set of events which are

of interest for the modeler. Each event Ap is a subset of the whole probability space. The

σ -field has to fulfill the following properties:

1. /0 ∈ Fp,

2. Ap ∈ Fp →AC
p ∈ Fp, and

3. A(i)
p ∈ Fp with i ∈ I, where I is a countable set →

⋃
i∈I A(i)

p ∈ Fp.

Note that the tuple (Ω,Fp) is also referred to as measurable space. The last entry Pp of the

triple is the probability measure which maps the event space to the unit space. Mathematically,

it is defined by Pp : Fp 7→ [0,1] and has to fulfill the axioms:

1. Pp(Ω) = 1, and

2. Pp(
⋃

∞
i=1A

(i)
p ) = ∑

∞
i=1Pp(A(i)

p ), with A(i)
p ∈ Fp, A(i)

p
⋂
A( j)

p = /0, i ̸= j.

Based on the definition of a probability space, a real-valued random variable X is formally

defined by the function X : (Ω,Fp) 7→ (R,Bp). The mapping transfers (Ω,Fp) to a real-valued

measurable space. In practice, the characteristics of the random variable X is described by the

cumulative distribution function (CDF). The CDF summarizes the properties of the probability

space introduced before and is given by

FX(x) = P(X ≤ x) = Pp(X−1((−∞,x])) = Pp({ω : X(ω)≤ x}), (3.2)

where x ∈ R and ω ∈ Ω. Hence, FX(x) is a specific probability measure for Bp = (−∞,x].

Furthermore, it is a right-continuous, increasing function with the following properties:

• The range of FX(x) is limited to [0,1],

• limx→−∞ FX(x) = 0 and limx→+∞ FX(x) = 1,

• P(a < x ≤ b) = FX(b)−FX(a), for a ≤ b, and

• P(a ≤ x < b) = FX(b)−FX(a)+P(X = a)−P(X = b), for a ≤ b.
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If FX(x) is absolutely continuous, the derivative fX(x) = dFX(x)/dx is called PDF (probability

density function). The density function fX(x) is always greater than zero because FX(x) is

strictly increasing. Throughout the thesis, only absolutely continuous random variables are

considered.

So far, the probability theory has been derived for a one-dimensional random variable X. Ex-

tending the concept for a multi-dimensional case, a random vector X is derived by

X : (Ω,Fp) 7→ (Rnx ,Bnx
p ) for nx > 1. In accordance with the one-dimensional case, a joint

cumulative distribution function is defined which summarizes the underlying probability space

FX(x) = P

(
nx⋂

i=1

{Xi ≤ xi}

)
indep.
=

nx

∏
i=1

FXi(xi). (3.3)

For the specific case of independent random variables, FX(x) is given by the product of the

marginal CDFs. The joint probability density function is given by

fX(x) =
∂ nxFX(x)
∂x1 . . .∂xnx

indep.
=

nx

∏
i=1

fXi(xi). (3.4)

Again, fX(x) is simply computed by the product of the marginal PDFs if all random variables

are independent from each other. Moreover, a marginal PDF fXi(xi) can be obtained from

fX(x) via the integration

fXi(xi) =
∫
Rnx−1

fX(x)dx−i, (3.5)

where x−i ∈Rnx−1 denotes the (nx−1)−dimensional vector which includes all variables but xi.

In order to model dependencies between random variables, copulas can be introduced. Since

the application case of the thesis does not require the definition of dependencies between

aleatory uncertainty sources, the copula concept is not discussed here. For further informa-

tion, the reader is referred to [1, 49].

To summarize, the randomness of a phenomenon is expressed by a distribution function in

probability theory. There is a variety of different CDFs in literature although the Gaussian one

is without doubt the most common one. The shape of the distribution is characterized by an

analytical equation and a set of distribution parameters Θx which results in a more general

expression fX(x|θx) and FX(x|θx) for the PDF and CDF, respectively. The definitions of the

distribution functions analyzed within the thesis are summarized in Appendix A.1. For a more

comprehensive overview, the reader is referred to [25].

Instead of analyzing the distribution function in detail, the properties of a random variable can

be summarized by stochastic moments. The n-th moment of a random variable is given by

E[Xn] =
∫

∞

−∞

xn fX(x)dx. (3.6)
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The first stochastic moment, also denoted as µx, represents the mean value of a random

variable and can be interpreted as the arithmetic average of X. Apart from that, the second

centralized moment, also called variance,

Var[X ] = E[(X −µX)
2] =

∫
∞

−∞

(x−µX)
2 fX(x)dx (3.7)

is used to describe the spreading of X around its mean. The square-root of it represents the

standard deviation σx. In case of a non-Gaussian probability distribution, also the third (γx)

and fourth (κx) normalized moments may be of interest which are defined by

γx = E

[(
X −µx

σx

)3
]
=

µ3
x

σ3
x

, and

κx = E

[(
X −µx

σx

)4
]
=

µ4
x

σ4
x
.

(3.8)

The former quantifies the skewness which is a measure for the asymmetry of the distribution.

A negative value of γx denotes a long left tail whereas a positive skewness indicates a long

right tail. The fourth normalized moment, referred to as kurtosis, is another metric for the

characteristics of the tails. Probability distributions with a high kurtosis have a sharp peak and

heavy tails. In contrast, the uniform distribution has no tails and is therefore quantified by a

low kurtosis value.

Apart from the stochastic moments, other important descriptors are the mode (X̂) and median

(X̃) of a distribution. The former is related to the value where fX(x) takes its maximum value.

The median is formally defined as the location where FX(x) = 0.5. Thus, the median can be

interpreted as the "middle" value of the distribution. Note, that mean, mode and median de-

scribe the same value for a unimodal, symmetric probability distribution. [26]

For a multi-dimensional random vector X, the stochastic descriptors discussed before are rep-

resented by nx-dimensional vectors instead of scalar values. The variance is usually expressed

by the covariance matrix Σx which is a [nx × nx]− dimensional, positive semi-definite matrix.

The entries of Σx are defined by

ΣXi,X j = E[(Xi −µxi)(X j −µx j)] for Xi,X j ∈ X. (3.9)

Hence, Σx is a symmetric matrix where the diagonal entries refer to the variance of the single

coordinates of X such that ΣXi,Xi = σ2
xi

holds. The off-diagonal entries represent the pairwise

covariance between the random variables which is a measure for the linear dependency be-

tween the two corresponding random variables. If all coordinates of X are independent from

each other, the off-diagonal entries are zero. However, a zero-valued covariance could also re-

sult from a nonlinear relationship which is not detected by the covariance measure in Eq. (3.9).

The major prerequisite for quantifying an uncertainty source with the help of the probability the-
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ory is the existence of a sufficient amount of data. In the next paragraph, different methods for

conducting a distribution fitting are summarized.

Concepts for Distribution Fitting

Let us consider that we are provided with a set of nm measurement points denoted by

Xm = {x(1)
m , . . . ,x

(nm)
m } ⊂ Rnx . (3.10)

In principal, a distribution fitting can be conducted by different ways [137]. The following con-

cepts are introduced for the one-dimensional case.

The simplest technique is to determine an empirical CDF which is directly derived from the

data set Xm by

Femp
X (x) =

1
nm

nm

∑
i=1

1
x
(i)
m ≤x

(x), (3.11)

where 1
x
(i)
m ≤x

(x) is an indicator function which takes the value of one if the data point x(i)
m is

smaller or equal than x and the value of zero otherwise. The resulting CDF is characterized by

a step-function with jump heights of 1/nm at every data point. The main disadvantage of this

approach is the non-continuous characteristic of the derived CDF.

An alternative approach is the method of moments. At first, the modeler has to choose a

certain family of distributions FX(x|Θx) which could represent the properties of the data well.

A graphical representation of Xm, for example in the form of a histogram plot, can help to

make a reasonable decision. After that, the sample mean (µ̌x) and standard deviation (σ̌x) are

computed according to

µ̌x =
1

nm

nm

∑
i=1

x
(i)
m , and

σ̌x =

√
1

nm −1

nm

∑
i=1

(x
(i)
m − µ̌x)2.

(3.12)

The actual distribution fitting is conducted by choosing the parameters Θx such that µ̌x and σ̌x

coincide with the corresponding moments from the chosen distribution.

The maximum likelihood method follows a similar approach. Again, a preliminary distribution

type FX(x|Θx) with unknown parameters Θx must be defined. Based on that, the likelihood

L(Θx|Xm) =

nm

∏
i=1

fX(x
(i)
m |Θx) (3.13)

expresses the probability that Xm is an outcome of the chosen probability distribution and

parameter set Θx. Finally, the optimal parameters Θ∗
x of the predefined distribution are deter-
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mined by the following optimization:

Θ
∗
x = maximize

Θx
L(Θx|Xm). (3.14)

To repeat, all of the concepts discussed so far require that the number of points nm is large

enough. If only a scarce set of measurements is available, modelers should account for the

uncertainty induced by estimating the model parameters Θx as well as the subjective choice

of distribution family. Since the probability theory is not able to capture the additional uncer-

tainties, alternative concepts are needed.

3.2.2 Hybrid Uncertainties

As discussed in the previous section, when characterizing an aleatory uncertainty source with

the help of the probability theory, a CDF is used to quantify the event {X ≤ x} by a single

measure. In case of hybrid uncertainties, a mix of aleatory and epistemic uncertainties is

existing. One approach to quantify this uncertainty type is the parametric p-box concept which

is an extension of the probability theory.

Parametric Probability-Boxes: Theoretical Background

The general p-box approach, introduced by [59], is based on the idea to define a lower (FX(x))

and upper bound (FX(x)) on the CDF. Hence, the probability of the event {X ≤ x} is given by

an interval

FX(x) ∈
[
FX(x),FX(x)

]
for x ∈ R (3.15)

instead of a crisp value. Note, that FX(x) and FX(x) must be a subset of F defined by

Eq. (3.17). The p-box concept can be subdivided into two groups: parametric and distribution-

free. The former one is an appropriate UQ method for hybrid uncertainties whereas the

distribution-free p-box concept is a more general representation and can be used for epis-

temic uncertainties, see Sec. 3.2.3. In the following, the focus is put on the parametric type.

The prerequisite for defining a distributional p-box is to have knowledge about the distribution

type. In contrast to the probability theory, the corresponding set of parameters Θx is given by

intervals. From a mathematical point of view, the p-box is formally defined by the quintuple

(
FX(x),FX(x),µ I

x,σ
I
x ,DF

)
. (3.16)

The first two entries correspond to the basic definition of a distribution-free p-box given in

Eq. (3.15). Further, the last element DF ⊆ F defines the admissible set of probability distribu-

tions, where F is a general representation of all CDFs on R given by

F= {F | F : R 7→ [0,1], F(x)≤ F(y) for any x ≤ y}. (3.17)
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The remaining two entries µ I
x ⊆ IR and σ I

x ⊆ IR are interval domains which cover the range of

possible values for the mean and standard deviation, respectively. The symbol IR represents

the space of all real-valued intervals. Thus, a feasible CDF lying inside the parametric p-box

has to fulfill the criteria ∫
∞

−∞

x fX(x)dx ∈ µ
I
x, (3.18)

and √∫
∞

−∞

(x−µX)2 fX(x)dx ∈ σ
I
x . (3.19)

Note, that a parametric p-box could also be represented by other stochastic moments than

mean and standard deviation. [21, 54]

An alternative p-box definition to Eq. (3.17) is given by [158]

FX(x) = FX(x|Θx), with Θx ∈ΘI
x ⊆ IRnθx , (3.20)

where ΘI
x =

⋃nΘ

i=1 [θ
(i)
x ,θ

(i)
x ] is an nΘ-dimensional hypercube representing the feasible param-

eter space. The notations θ
(i)
x and θ

(i)
x indicate the lower and upper bound of the parameter

θ
(i)
x , respectively.

In order to illustrate the parametric p-box concept, we consider a Gaussian distribution X ∼
N (µ I

x,σ
I
x) with uncertain mean and standard deviation. In this example, the intervals of the

stochastic moments are defined by µ I
x = [1.0,3.0] and σ I

x = [1.0,2.5]. The gray curves in

Fig. 3.2 give an ensemble of different Gaussian CDFs covered by the p-box definition. The

two solid black lines illustrate the lower and upper bounds according to

FX(x) = min
Θx

FX(x|Θx), and

FX(x) = max
Θx

FX(x|Θx).
(3.21)

The lower and upper bound can be a combination of different CDFs. In the example introduced

before, the lower bound is a composition of FX(x|µX = 1.0,σX = 1.0) and FX(x|µX = 1.0,σX =

2.5). From the graphical representation, one can see the clear separation between the two un-

certainty types. The aleatory uncertainty is assigned to the distribution type, i.e., the Gaussian

distribution in this example, and the epistemic part causes the uncertainty on the distribution

parameters. The degree of epistemic uncertainty can be interpreted as the gap width or area

between FX(x) and FX(x). If the epistemic uncertainty was reduced completely, the p-box

would degenerate to a single CDF.

Similar to the probability theory, the parametric p-box concept can be extended for multi-

dimensional cases which raises automatically the question of how to model possible inter-

correlations. In principle, two options are available to account for dependencies between the

coordinates of the random vector X. The authors of [103] propose to define dependencies at

the aleatory level. As in case of the probability theory, the joint CDFs, which represent real-
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Figure 3.2 P-box derived from the Gaussian distribution family.

izations of the multi-dimensional p-box FX(x|Θx), are quantified with the help of copulas. An

alternative approach is to consider dependencies at the epistemic level. Hence, the hyperpa-

rameter space ΘI
x, which encloses the possible distributional parameters of all marginals, is

no longer a set of independent intervals. In [56], the copula concept is extended to introduce

dependencies between intervals.

Within the scope of this thesis, correlations between hybrid uncertainties are modeled by re-

stricting the space of feasible hyperparameter combinations. Thus, ΘI
x is not defined as a

hyper-rectangle. In the following paragraph, the construction of parametric p-boxes is dis-

cussed for one-dimensional cases.

Constructing Parametric Probability-Boxes

Let us consider again the case that a set of nm measurement points is given as represented

in Eq. (3.10). Now, we assume that Xm contains only a small number of samples. Still, one

can use the techniques introduced before to fit a specific probability distribution to the data.

However, repeating the distribution fitting procedure with a second sample set of equivalent

size can lead to significantly different result. Instead of defining the distribution parameters Θx

by crisp values, a CI (confidence interval) can be used for the characterization.

The meaning of a CI can be described as follows. Let us assume that we have drawn 25
random samples from an unknown distribution FX(x) to approximate the true mean by µ̌x, see

Eq. (3.12). In order to assess the quality of the estimation, we can compute, for example, the

90% CI of the sample mean. If we repeated this experiment endlessly, the derived CIs would

contain µx in 90% of all cases. [113]

The mathematical expressions for computing the CI depends on whether the true standard

deviation σx is known or not. For the most general case, the modeler has neither information

about the distribution type of FX(x) nor about the value of σx. According to [177], the γ-level
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CI for the mean and variance are given by:

CIµ =

[
µ̌X −qt

(
1− γ

2
,nm −1

)
σ̌x√
nm

, µ̌X +qt

(
1− γ

2
,nm −1

)
σ̌x√
nm

]
, (3.22)

and

CIσ2 =

[
(nm −1)σ̌2

x
qX 2((1− γ)/2,nm −1)

,
(nm −1)σ̌2

x
qX 2((1+ γ)/2,nm −1)

]
, (3.23)

where qt((1− γ)/2,nm − 1)) and qX 2((1− γ)/2,nm − 1)) denote the ((1− γ)/2)− th quantile

value for a student’s t and chi-square distribution with nm−1 degrees of freedom, respectively.

The CIs derived in Eqs. (3.22) and (3.23) can be directly used for the quantification of the

distribution parameter intervals µ I
x and σ I

x . Usually, the γ−level of the CI is set to 95%.

In order to demonstrate the benefits of quantifying an uncertainty by a p-box instead of a single

CDF, we consider the following case. Let us assume that we are provided with 10 samples

drawn from a standard Gaussian distribution N (0,1), depicted by the solid gray line in Fig. 3.3.

In the first approach, the method of moments is used to determine the sample mean and stan-

dard deviation according to Eq. (3.12). The corresponding CDF for a Gaussian distribution

is given by N (−0.397,1.358) and shown by the gray dotted line in Fig. 3.3. In addition, the

empirical CDF is represented by the step function. In the second case, a p-box is constructed

from the set of data points. Since we assume that the underlying distribution is unknown, the

formulas in Eqs. (3.22) and (3.23) are used to derive µ I
x and σ I

x based on a confidence level of

95%. As a result, we obtain the intervals µ I
x = [−1.37,0.57] and σ I

x = [0.93,2.48]. Again, a nor-

mal distribution is chosen which leads to the parametric p-box shown by the solid black curves.

When comparing the different UQ methods in Fig. 3.3 with each other, it becomes obvious that

conducting a distribution fitting on the basis of a small data set can lead to a significant offset

Figure 3.3 Uncertainty Quantification based on distribution fitting and p-box construction.
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from the true distribution. Conducting further studies can lead to biased interpretations on the

results. In contrast, the parametric p-box tries to counteract the limited knowledge by providing

a set of possible CDFs within certain bounds. One can see that the unknown distribution is

captured by the bounds.

The example discussed before has highlighted the advantages of the p-box concept but there

are also some limitations worth mentioning. First, it is not guaranteed that the p-box really en-

closes the CDF even though a high confidence level has been chosen. Further, the derivation

is still based on an assumption regarding the distribution type. Especially for a low number nm

of data points, the choice of the distribution family is a rather biased decision.

3.2.3 Epistemic Uncertainties

The category of epistemic uncertainties is characterized by an even lower state of knowledge

about the uncertainty source than for the hybrid type. The concept of parametric p-boxes is

therefore not appropriate for the UQ. Instead, the usage of distribution-free, or in short free,

p-boxes is more appropriate which is introduced in the following.

Distribution-Free P-Box: Theoretical Background

As can be derived from the expression distribution-free, this type of p-box is not related to a

specific family of distributions. Roughly spoken, it is only defined by a lower and upper bound

as expressed in Eq. (3.15). Any CDF FX(x) ∈ F fulfilling this condition is a valid realization of

the p-box. Coming back to the quintuple-based formulation in Eq. (3.16), a distribution-free

p-box can be formally derived as (
FX(x),FX(x),µ I

x,σ
I
x ,F
)
. (3.24)

In the most general case, i.e., without any constraints on the stochastic moments, the definition

can be reduced to the triple
(
FX(x),FX(x),F

)
.

The free p-box concept is closely related to the so-called Dempster-Shafer theory, also known

as evidence theory developed by Arthur Dempster and Glenn Shafer [161]. In accordance

with the probability theory, it is based on an event space characterized by (Ω,Fe,Pe). Again,

the first entry Ω represents the sample space which contains all possible values of the random

process. The second element Fe represents a set of subsets of the sample space. The

subsets A(i)
e are also referred to as focal elements. In contrast to the probability theory, Fe is

not a σ−field. Thus, it does not have to fulfill the specific properties listed in Section 3.2.1.

Further, Fe comprises usually a countable collection of focal elements whereas Fp covers

an infinite number of subsets. The last entry Pe assigns a probability to every focal element
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according to

Pe(A(i)
e ) =


> 0 if A(i)

e ∈ Fe

0 if A(i)
e ⊂ Ω and A(i)

e /∈ Fe

(3.25)

with

∑
A(i)

e ∈Fe

Pe(A(i)
e ) = 1.0, and Pe( /0) = 0. (3.26)

In context of the evidence theory, Pe is called BPA (basic probability assignment). As shown

by the formulation in Eq. (3.25), the BPA raises no information about the probability assigned

to any subset of the focal element itself. In comparison to the probability theory, Pe is not the

fundamental measure of uncertainty. Instead, two measures of uncertainty can be derived for

a subset S ⊂ Ω: belief and plausibility. The corresponding equations are given by

Bel(S) = ∑
A(i)

p ⊂S

Pe(A(i)
p ) (3.27)

and

Pl(S) = ∑
A(i)

p ∩S ̸= /0

Pe(A(i)
p ). (3.28)

The belief Bel(S) in the occurrence of S can be interpreted as an uncertainty measure which

collects all information that must be assigned to the subset S. Thus, the probabilities of all

focal elements are summed up which are a subset of S, see Eq. (3.27). On the other hand,

the plausibility Pl(S) of the event S is a measure for the maximum amount of information that

could be assigned to S. Consequently, Pl(S) is calculated by summing up the probabilities

of all focal elements that intersect the event S, see Eq. (3.28). The difference between the

two uncertainty measures comes from the fact, that the BPA provides no information how the

assigned probabilities are distributed within the focal elements. A direct relation between belief

and plausibility of an event is given by

Bel(S)+Pl(SC) = 1, (3.29)

where SC denotes the complement of S. In the following, we consider the case that Fe is

represented by a set of nf intervals on the real line

Fe =
{([

x(1),x(1)
]
,m(1)

)
,
([

x(2),x(2)
]
,m(2)

)
, . . . ,

([
x(nf),x(nf)

]
,m(nf)

)}
, (3.30)

where x(i) and x(i) is the lower and upper bound of the focal element, respectively, and m(i)

denotes the BPA.

As discussed in Section 3.2.1, the CDF of a random variable X is used to summarize the
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underlying probability space. The same concept is applied for the two uncertainty measures

on X for the evidence theory. Accordingly, the uncertainty on the event S = (−∞,x] ⊂ Fe for

a continuous random variable is represented by a CBF (cumulative belief function) and CPF

(cumulative plausibility function). Note that the evidence space, unlike the probability space,

is directly defined on R. For this reason, no additional mapping is required. The equations for

the CBF and CPF are expressed by

CBFX(x) = BelX(S = (−∞,x]) =
nf

∑
i=1

1x(i)≤x(x)m(i), (3.31)

and

CPFX(x) = PlX(S = (−∞,x]) =
nf

∑
i=1

1x(i)≤x(x)m(i). (3.32)

The two expressions from Eqs. (3.31) and (3.32) can be interpreted as the envelopes of the

unknown CDF. This means that the CBF and CPF corresponds to the lower FX(x) and up-

per bound FX(x) of a distribution-free p-box. The meaning and interpretation of focal ele-

ments is illustrated in greater detail within the next paragraph which describes the construc-

tion of distribution-free p-boxes. Furthermore, the duality between evidence theory and p-

box concept is important for the uncertainty propagation techniques discussed in Section 3.3.

[76, 78]

Constructing Distribution-Free P-Boxes

For the aleatory as well as the hybrid uncertainty type, we have assumed the existence of a

sufficient amount of measurement data Xm. For epistemic uncertainties, it could be even the

case that the modeler’s knowledge is based on some stochastic characteristics without having

measurement data. In particular, the p-box construction is discussed for two scenarios:

1. The modeler’s knowledge is limited to stochastic moments or other descriptors such as

the mode, median and the bounds of the CDF.

2. A set of data points Xm is provided. Due to the low quantity and/or quality of the mea-

surements, other concepts than the ones introduced for aleatory and hybrid uncertainties

are needed for an unbiased UQ.

An extreme case of the first scenario occurs when the modeler only knows the bounds of a

random variable. In this situation, an unbiased UQ of the uncertainty on X is given by an

interval representation. This formulation can be expressed via the p-box

FX(x) = 1x≤x(x), and FX(x) = 1x≤x(x), (3.33)

where x and x denote the lower and upper bound. However, usually additional information is

either available or can be derived from reasonable assumptions to shrink the p-box bounds.
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In case of having further information about the range of possible mean values, i.e., µx ∈
[µ

x
,µx], tighter p-box bounds can be derived. Based on the findings in [146], the formulas

for the updated bounds are given by

FX(x) =


0 if x < µx

(x−µx)/(x− x) if x ≥ µx

, (3.34)

and

FX(x) =


(x−µ

x
)/(x− x) if x < µ

x

1 if x ≥ µ
x

. (3.35)

Figure 3.4(a) shows the case of a random variable being limited to the interval x ∈ [2.0,8.0].
The dotted lines represent the additional constraints on the mean value, given by the range

µx ∈ [4.5,5.5]. Besides from the mean, experts’ opinions are sometimes referred to the me-

dian X̃ , i.e., the location where FX(x) takes the value 0.5. This type of information can also

be transferred to mathematical expressions for the p-box bounds. The lower one is given by a

step function with jumps at x and the upper median value whereas the upper bound is char-

acterized by jumps at x and the lower median value. The dashed line in Fig. 3.4(a) depicts an

example, where the median range is limited such that X̃ ∈ [4.0,6.0] holds.

As discussed in Section 3.2.1, the median is equal to the 50−th percentile value. Hence, the

same concept can be applied if one has information regarding a different percentile value.

Another typical stochastic descriptor is the mode (X̂) of a random distribution which corre-

sponds to the maximum value of the PDF. Under the conditions that fX(x) is unimodal with

X̂ ∈ [x̂, x̂], the bounds on the true CDF are provided by

FX(x) =


0 if x ≤ x̂

(x− x̂)/(x− x̂) if x̂ < x ≤ x

, (3.36)

and

FX(x) =


(x− x)/(x̂− x) if x ≤ x < x̂

1 if x ≥ x̂

. (3.37)

The derivations of the Eqs. (3.36) and (3.37) are beyond the scope of the thesis and can be

read in [43]. A graphical representation for the mode range X̂ ∈ [4.0,6.0] is shown in Fig. 3.4(a)

by the solid lines. Each of the introduced p-box equations is rigor-preserving and best possi-

ble. The former property means that the corresponding uncertainty is covered completely by
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(a) P-boxes for constraints on mean, mode and median. (b) P-box for fixed mean and standard deviation.

Figure 3.4 P-box definition based on bounds on the mean, mode and median (left) and Chebyshev-based p-box definition
for fixed mean and standard deviation (right).

the bounds whereas best possible refers to the fact that the envelopes could not be any tighter

without additional information. If the modeler has data for several stochastic descriptors, an

aggregation can be performed by intersecting the single p-box formulations. The final bounds

are still rigor-preserving as long as all the underlying p-boxes share this property. The gray-

shaded area in Fig. 3.4(a), for example, is an aggregation of the p-boxes resulting from the

constraints on the mean, mode and median. [60]

All the scenarios discussed so far deal with cases where certain properties of the distribution

function are expressed by intervals. However, modelers can face the situation of having pre-

cise knowledge about µx and σx without knowing the underlying distribution type. Instead of

assuming a specific CDF, the Chebyshev inequality can be used to construct a p-box. This

inequality is given by

P(|X −µx| ≥ k)<
σ2

x
k2 , (3.38)

which provides an upper bound for the probability that X deviates from µx by more than the

threshold k [169]. Due to the missing information about the distribution family, the provided

percentile bounds from the Chebyshev inequality are rather conservative. In [123], mathemat-

ical expressions have been derived to transfer the inequality to crisp p-box bounds, given by

FX(x) =


0 if x < µx +σx

1− σ2
X

(x−µx)2 if x ≥ µx +σx

, FX(x) =


σ2

x
(x−µx)2 if x < µx −σx

1 if x ≥ µx −σx

. (3.39)

Figure 3.4(b) contains the graphical representation of Eq. (3.39) for an example with µx = 5.0
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and σx = 1.5. Consequently, any CDF fulfilling these two stochastic requirements is captured

by the p-box. As in the previous case, additional information about the random quantity is

helpful to tighten the bounds. For example, knowing that X is unimodal leads to the envelopes

shown by the dotted lines. Another conceivable scenario is to decrease the lack-of-knowledge

by restricting the range of possible values to a certain interval. The dashed p-box represents

the constraint that X can only take values within [2.0,8.0]. The equations for both of the mod-

ified versions are explained in Appendix A.2. Again, each of the bounds is rigor-preserving

and best possible.

The second main scenario listed on page 43 is related to cases where the modeler is provided

with a data set Xm. Within the framework of epistemic uncertainties, the information contained

in Xm is usually scarce, incomplete or ambiguous. Let us assume that each entry x
(i)
m ∈Xm

results from an expert’s opinion about the possible values for the random quantity under inves-

tigation. Hence, Xm is no longer a set of measurements but a collection of intervals coming

from independent experts. By adding a certain probability to every interval, Xm can be inter-

preted as a set of focal elements Fe if the sum of all probabilities equals one, see Eq. (3.26).

The BPA is therefore a measure for the trustworthiness in an expert’s opinion. Figure 3.5

shows an example where the uncertainty on X is given by four interval-valued estimations,

each of them assigned with a different probability. The focal elements can be expressed by

Fe = {([2.0,3.5],0.2),([2.5,4.0],0.1),([3.0,5.0],0.3),([3.5,4.5],0.4)}. According to Eqs. (3.31)

and (3.32), the CBF (FX(x)) and CPF (FX(x)) are derived from the upper and lower bounds of

the focal elements, see Fig. 3.5(b). A similar scenario occurs when Xm includes a set of data

subject to significant measurement inaccuracies. In this case, representing the data as focal

elements with a BPA of 1/nm is more reasonable than treating the measurements as point

values. The range of each element corresponds to the measurement uncertainty. Note that

the p-box construction is similar to the concept depicted in Fig. 3.5. [60]

(a) Experts’ opinions expressed as focal elements. (b) P-box derived from the focal elements.

Figure 3.5 P-box definition based on different experts’ opinions.
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The two study cases discussed in the previous paragraph are related to the poor quality of a

data set. Even if Xm is derived from precise measurements, epistemic uncertainty can still

be induced due to a low number of data points. To repeat, the problem aligned with small

sample sets is the fact that they are not a comprehensive representation of the whole popula-

tion. Thus, characterizing the uncertainty by an empirical CDF, see Eq. (3.11), is an extremely

biased view. In context of parametric p-boxes, the concept of confidence intervals has been

discussed in Sec. 3.2.2 which considers the low data quantity by equipping the estimates of

the distributional parameters with intervals. For the construction of a distribution-free p-box,

the empirical CDF is provided with the Kolmogorov-Smirnov confidence band such that

P(FX(x)≤ FX(x)≤ FX(x))≥ (1.0− γ) (3.40)

holds, where γ describes the confidence level. In contrast to a CI, the confidence band is

applied to the whole distribution instead of a single parameter. The mathematical interpretation

of Eq. (3.40), however, is similar as the one for a CI. When computing the γ−level confidence

band for the empirical CDF Femp
X (x), the true CDF is covered by the bounds in at least (1.0−

γ) ·100% of the cases. The corresponding lower and upper bound of the p-box are defined by

the step functions

FX(x) =


Femp

X (x)−dγ if Femp
X (x)−dγ ≥ 0

0 if Femp
X (x)−dγ < 0

, (3.41)

and

FX(x) =


Femp

X (x)+dγ if Femp
X (x)+dγ < 1

1 if Femp
X (x)+dγ ≥ 1

. (3.42)

The parameter dγ refers to the γ−level confidence band width and depends on the number of

sample points contained in Xm. The only prerequisite for deriving the confidence band is that

the samples in Xm are independent and identically distributed. For further information on the

mathematical background of the confidence bands, the reader is referred to [80, 94, 114].

All of the methods discussed within the previous paragraphs share the idea of expressing

the modeler’s information by bounding the space of possible CDFs. In literature, further ap-

proaches are discussed, e.g., by defining bounds on the PDF instead of the CDF. The reader

is referred to [55, 60, 104].

The great benefit of constructing a distribution-free instead of a parametric p-box is that the

modeler gets rid of having to choose a distribution type. For this reason, free p-boxes are

definitely less biased especially if the bounds fulfill the criterion of being rigor-preserving.
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Moreover, the free p-box concept offers a great flexibility to the modeler because different

constraints can be combined via the aggregation of single p-boxes. Apart from the advan-

tages, there is also a decisive drawback. All of the distribution-free p-box discussed within this

chapter are rigor-preserving but most of them cover unfeasible CDFs, i.e., distributions which

do not fulfill the underlying constraints as well. When analyzing the unconstrained p-box for

a specific mean and variance in Fig. 3.4(b), one can see that the envelopes cover CDFs with

distributional parameters other than the specified ones. For example, the envelopes them-

selves represent distribution functions with mean values that are significantly different from

the defined one. The modeler should be aware of this effect as it can lead to a certain degree

of over-conservatism which makes the interpretation of the uncertainty studies difficult. To

counteract this drawback, a novel parametric p-box concept is introduced in Sec. 5.2.1. The

basic idea is to find a representation which excludes undesired CDFs from the definition while

preserving as much flexibility as possible for modeling the lack of knowledge.

Apart from the quantification, the propagation of uncertainties is an essential part for conduct-

ing uncertainty studies. In the next section, a short review on state-of-the-art techniques for

uncertainty propagation is given.

3.3 Uncertainty Propagation

The purpose of propagating uncertainties throughout a computational model is to analyze the

effect of the input quantity uncertainty on the system response. As a consequence, the re-

sponse quantities under investigation can be interpreted as random variables Yi ∈ Y. Depend-

ing on the problem, stochastic moments such as mean (µy) and standard deviation (σy) can be

of interest or even the distribution function FY(y) itself. The following subsections summarize

appropriate propagation techniques for the uncertainty categories introduced before.

Aleatory Uncertainties

For aleatory uncertainties, the variation on the input quantities x ∈ Rnx is characterized by

specific distribution functions. The standard error propagation concept is the MC (Monte Carlo)

method which belongs to the group of sampling-based approaches. In case of continuous

random variables, it can be summarized by the following steps:

1. At first, a sequence of ns i.i.d. (independently and identically distributed) random num-

bers is generated. The random sequence is obtained from deterministic algorithms

which is why the generated samples are not perfectly random. Therefore, the ran-

dom number generator has to fulfill certain properties such as passing statistical tests

on the uniformity criterion [97]. In principle, the generation of random numbers Us =

{u(1)
s , . . . ,u

(ns)
s } ⊂ Rnx is conducted by drawing samples from the standard uniform dis-

tribution U[0,1]. Note that for nx > 1, the procedure has to be extended by sampling from
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a multivariate standard uniform distribution.

2. In the second step, the inverse transform method is applied so that the samples follow

the desired distribution FX(x). In general, the inverse CDF is defined as

F−1
X (z) = inf{x : FX(x)≥ z}, with 0 ≤ z ≤ 1. (3.43)

Let us consider a random variable U ∼ U[0,1] which represents the random sequence

from the first step. By analyzing the CDF of the inverse transform F−1
X (U)

P(F−1
X (U)≤ x) = P(U ≤ FX(x)) = FX(x), (3.44)

it becomes clear that the realizations of X are obtained by transforming the random

sequence according to X = F−1
X (U). The transferred random sequence is denoted as

Xs = {x(1)
s , . . . ,x

(ns)
s } ⊂ Rnx . [180]

Again, the inverse transform method can be easily extended for a multivariate random

vector X as long as the dimensions are independent. In case of correlated random

variables, the Nataf or Rosenblatt distribution model can be used [166].

3. Finally, the computational model is evaluated to propagate the samples to the output

space. For every simulation run, the input vector x(i)
s ∈ Rnx is mapped to a response

vector y(i)
s ∈ Rny , see Eq. (3.1). This step can be very costly if the underlying model

is computationally expensive. The resulting sample set is the basis for approximating

stochastic descriptors like mean, standard deviation or failure probability.

In the following, we put the focus on deriving the stochastic moments µy and σy for a one-

dimensional response space, i.e., ny = 1.

The set of propagated samples Ys = {y(1)
s , . . . ,y

(ns)
s } ⊂ Rny is used to estimate the corre-

sponding integrals by the MC integration according to

E[g(X)] =
∫

∞

−∞

g(x) fX(x)dx ≈ µ̌Y =
1
ns

ns

∑
i=1

y
(i)
s , (3.45)

and

E[(g(X)−µY )
2] =

∫
∞

−∞

(g(x)−µY )
2 fX(x)dx ≈ σ̌

2
Y =

1
ns −1

ns

∑
i=1

(y
(i)
s − µ̌Y )

2, (3.46)

where µ̌y and σ̌y denote the sample mean and standard deviation, respectively. Since the basis

of these estimators is a set of i.i.d. samples, µ̌y and σ̌y converge to their true values as ns → ∞

according to the law of large numbers. One of the great benefits of the MC method is its robust

convergence behavior which brings us to the CLT (central limit theorem). This proposition
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states that the MC integration error for large sample sets follows a normal distribution

εMC ≈ σMC N (0,1)
√

ns
, (3.47)

where σMC represents the standard deviation of the integrand. In case of the sample mean,

σMC corresponds to σY which means that the MC integration error tends to a normal distribu-

tion with µ = 0 and σ = σY/
√

ns. Thus, the MC method has a convergence rate of O(1/
√

ns)

which is independent from the number of dimensions. Apart from this advantageous property,

the overall convergence behavior shows a relatively poor performance caused by the fact that

the random number sampling is subject to clustering. This effect leads to regions in the sample

space that exhibit a lower sampling density compared to others. To overcome this drawback,

pseudo-random and quasi-random MC methods have been developed. [36]

Pseudo-random MC approaches, also called variance reduction techniques, try to improve

the convergence rate by decreasing the value of σMC. Among this group, one noteworthy

approach is the IS (importance sampling). Here, the basic idea is to draw samples from a

proposal distribution hX(x) which is different from the nominal one fX(x). Consequently, a

density weighting factor fX(x)/hX(x) must be introduced to approximate the true value of the

stochastic descriptor. For example, the estimator for µy in Eq. (3.45) yields

Eh[g(X)] =

∫
∞

−∞

g(x) fX(x)
hX(x)

hX(x)dx ≈ µ̌Y =
1
ns

ns

∑
i=1

y
(i)
s

fX(x
(i)
s )

hX(x
(i)
s )

. (3.48)

The MC estimator for σy in Eq. (3.46) is extended in the same fashion. Finally, the question

arises how to choose the proposal distribution to maximize the efficiency gain. When deriving

the variance for the new estimator in Eq. (3.48), it follows that hX(x) should be proportional

to g(x) fX(x) to minimize the variation of the estimator. For further discussions, the reader is

referred to [36].

Another widely used variance reduction technique is the LH (Latin hypercube) sampling ap-

proach which is a special type of stratified sampling. In contrast to the previous method, the

generated sample points are drawn from the nominal distribution but the sampling procedure

itself is no longer based on a random sequence. The first step of the LH strategy is to sub-

divide the sample space of each random variable Xi ∈ X into ns intervals of equal probability.

After that, a random sample is drawn from every single subset which is assigned with a uni-

form distribution. This procedure is repeated for every dimension of the random vector X.

Finally, the ns sample points are randomly paired without replacement which results in a set of

ns nx-dimensional tuples. [75]

Figure 3.6 compares different sampling strategies in case of ns = 16 for a two-dimensional ran-

dom vector with X1 ∼ U[0,1] and X2 ∼N (0,1). In every graph, the sample space is subdivided

into 16 regions of equal probability. In addition, the dashed lines in Fig. 3.6(b) represent the
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(c) Sobol sequence.

Figure 3.6 Comparison between different sampling strategies according to [98].

intervals on which the LH sampling is based on. The scatter plot in Fig. 3.6(a), which corre-

sponds to the MC method, shows clearly the above-mentioned clustering effect. For example,

the sampling density in the lower left and upper right corner is low compared to other areas.

This impression is confirmed by the fact that five out of 16 regions are not covered by any

sample.

In comparison, the sample points obtained from the LH approach result in a better space-filling

design. Here, only two regions are empty. In literature, the benefit of the improved sampling

scheme on the convergence rate has been widely discussed for different application cases,

see e.g. [4, 100]. Unfortunately, the gain in efficiency degrades for high-dimensional problems

because the LH sampling scheme is based on the superposition of one-dimensional samples.

For this reason, the sample points from the initial LH design must be modified subsequently

which leads to an OLH (optimal Latin hypercube) design. For example, the initial sample points

can be optimized by maximizing the minimum distance between any two samples. An exten-

sive summary of optimization techniques can be found in [35].

However, the integration error from the standard LH approach is always less than the MC er-

ror if the computational model g(x) as well as the integrand are monotonic in all input and

response parameters, respectively [112].

Besides from the efficiency degradation in high dimensions, another disadvantage is that ad-

ditional sampling points cannot be added to an existing LH design. Thus, in order to increase

the number of samples a new LH design must be set up from scratch.

Apart from pseudo-random sampling strategies, the MC integration error can be alternatively

reduced by quasi-random, also called low-discrepancy, sequences. Contrary to the variance

reduction techniques, this approach aims at increasing the convergence rate itself rather than

improving the σMC−value. The main difference is that the quasi-random sequence is gener-

ated from a deterministic pattern.

There are a variety of techniques available for generating low-discrepancy sequences like the

Halton, Hammersley or Sobol sequence [122]. Within this review, we limit the discussion to the

latter. In principle, the generation of a Sobol sequence relies on the following two uniformity

51



conditions introduced by [162]:

• Property A: The sample space is subdivided into 2nx hyper-octants which result from

cutting each dimension into halves. The uniformity condition is fulfilled if there is exactly

one sample point in every hyperoctant.

• Property A’: Each dimension is cut into four parts of equal length which gives a total

number of 4nx hyperoctants. Again, the criterion is fulfilled if each region is covered by

exactly one sample.

Note that the two conditions above are derived for a unit hypercube which refers to the sample

space of a multivariate standard uniform distribution. These properties hold for any arbitrary

distribution by applying the inverse transform method. Due to the enforced uniformity, the re-

sulting convergence rate for the quasi MC method O(log(ns)
nx/ns) is in many cases superior

to the random sampling MC integration.

Figure 3.6(c) depicts the scatter plot generated from a Sobol sequence for the previously in-

troduced test case. Since the number of samples is chosen as ns = 4nx , property A and A’

are fulfilled. This leads to a design which has even a better space-filling property than the LH

approach as each of the 16 regions is covered by one sample.

Nevertheless, low-discrepancy sequences are associated with limitations. For instance, the

convergence rate is no longer independent from the number of dimensions. The advantageous

effectiveness can be preserved as long as ns > 2nx which leads to a tremendous amount of

samples in high dimensions. Furthermore, artificial correlations between pairs of variables

can occur when projecting a high-dimensional sequence on orthogonal two-dimensional sub-

spaces [119]. The development of advanced algorithms for improving the uniformity of two-

dimensional projections is still an active research field [87].

To summarize, the usage of pseudo- and quasi-random sequences can increase the accu-

racy of the MC integration significantly especially for low and intermediate dimensions. Care

must be taken when it comes to high-dimensional problems. In this case, the OLH sampling is

preferred over the standard LH approach to ensure a high degree of uniformity. If optimizing

the sample points is too time-consuming, quasi-random sequences can be used alternatively.

Since the samples are produced by deterministic algorithms, additional points can be added

easily. This allows the modeler to conduct a convergence study by increasing the number of

samples gradually.

The discussion in this section is limited to the comparison of different sampling techniques

regarding their efficiencies in approximating a definite integral. The performance of these

methods can change for other application cases like the fitting of a response surface or the

optimization of an objective function. [98]
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Hybrid Uncertainties

For the coexistence of aleatory and epistemic uncertainties, the distributional p-box concept

has been introduced in Section 3.2.2. To repeat, the PDF of hybrid uncertainties is denoted

as fX(x|Θx), where Θx ∈ ΘI
x is the nΘ-dimensional vector of uncertain hyperparameters. A

widely used approach for propagating this uncertainty type is the nested sampling scheme

which separates the epistemic and aleatory part clearly from each other. This concept in-

volves a sampling procedure that consists of an outer and inner loop.

The outer loop refers to the epistemic uncertainty space, characterized by the set of interval-

valued hyperparameters ΘI
x = {θ

I,(1)
x , . . . ,θ

I,(nΘ)
x } ⊂ IRnθx . The first step of the nested sam-

pling procedure is to generate a set of ns,θ samples that lie within the specified interval bounds

θ
I,(i)
x = [θ

(i)
x ,θ

(i)
x ]. Then, every single realization Θ∗

x is transferred to the inner loop where ns

sample points are drawn from the corresponding distribution function. Propagating the sam-

ples from the inner loop throughout the computational model gives an empirical CDF in the

response space. Thus, iterating over the epistemic sample set produces an ensemble of dis-

tribution functions where every single CDF corresponds to a realization of the outer loop. As in

case of purely aleatory uncertainties, stochastic descriptors can be derived from the numerical

integration. A graphical illustration of the double-loop sampling is given in Fig. 3.7.

So far, it has not been discussed how to interpret the statistical quantities from the nested

iteration scheme. The authors of [48] have proposed two procedures for the treatment of epis-

temic parameters which strongly influences the evaluation: IVP (interval-valued probability)

and SOP (second-order probability).

In the first case, the epistemic uncertainty on the hyperparameters is treated as a set of in-

tervals without further assumptions. As a consequence of the IVP method, the variation of

the aleatory statistics must be interpreted in the same fashion. This means that the empir-
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Figure 3.7 Double-loop approach for hybrid uncertainties.
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ical CDFs as well as the derived stochastic moments are treated as interval-valued random

quantities. Thus, the single CDFs in the response space are not equipped with a probability of

occurrence. Instead, the IVP approach determines a range of possible values for the aleatory

statistics which preserves the interval character of the hyperparameters.

For the SOP approach, a subjective probability distribution is assigned to every entry of the

vector ΘI
x. In many cases, the lower and upper bounds are used to define a multivariate uni-

form distribution. Hence, the epistemic uncertainty on the aleatory statistics has a probabilistic

character. The propagated CDFs are therefore no longer just a set of possible realizations but

they are associated with a probability of occurrence. The same holds for the interpretation of

the stochastic descriptors. The SOP approach allows the modeler to compute statistics on the

statistical values instead of deriving just the lower and upper bounds.

In both cases, the nested sampling is a computationally expensive approach which leads to

the question how to make the uncertainty propagation more efficient. As the inner loop is

related to the aleatory uncertainty, all advanced sampling methods discussed in the previ-

ous chapter can be used. Apart from improved sampling strategies, the inner loop can be

replaced by stochastic expansion techniques which enable the calculation of stochastic mo-

ments via analytical expressions [105]. Another surrogate-based approach is to approximate

the computational model itself by a response surface which allows the modeler to use sam-

pling strategies due to the significant reduction of the computation time [106].

Choosing an appropriate procedure for replacing the outer loop depends on the treatment of

the hyperparameters. Within the scope of the SOP method, the random sampling in the outer

loop can be substituted by the same concepts as the inner loop. In contrast, different methods

are needed in context of the IVP approach because the goal is to calculate bounds on the sta-

tistical values. For this purpose, optimization procedures are usually much more efficient than

sampling-based techniques. In general, global optimization procedures are preferred over lo-

cal approaches [56].

A more general approach for propagating hybrid uncertainties efficiently is the NISS (non-

intrusive imprecise stochastic sampling) framework introduced by [174]. This concept is a

combination of different strategies to approximate stochastic moments without a nested itera-

tion. The basic idea is to generate only one set of sample points which is drawn from a distribu-

tion where all hyperparameters take their nominal values, i.e., Θx = Θ∗
x . In order to propagate

distributions where Θx ̸= Θ∗
x , the existing sample set has to be reweighted according to the IS

scheme. To avoid numerical errors in high-dimensional problems, a decomposition method is

applied to the functional response, i.e., the stochastic moments of interest. Similar to a Taylor

series expansion, only the low-order interactions of the decomposition are considered. A more

detailed introduction to the NISS framework can be found in Section 4.3.1.

In principle, the choice of how to break the double loop is dependent on the type and dimen-

sionality of the problem. A discussion about various approaches can be found in [55, 90].
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Epistemic Uncertainties

To remind, for purely epistemic uncertainties the distribution-free p-box representation has

been discussed in Section 3.2.3. Similar to hybrid uncertainties, a nested sampling approach

is required for the uncertainty propagation. Basically, the sampling procedure is a direct ex-

tension of the standard MC method [22].

At first, a set of ns random numbers Us = {u(1)
s , . . . ,u

(ns)
s }⊂Rnx is generated in the unit space.

This step corresponds to the outer loop of the sampling procedure. The main difference comes

with applying the inverse transform method to Us because it leads to a set of interval vectors

denoted as XI
s = {xI,(1)

s , . . . ,x
I,(ns)
s } ⊂ IRnx instead of a set of scalar vectors. The bounds of

every interval-valued entry x
I,(i)
s = [x

(i)
s ,x

(i)
s ] ∈XI

s are derived by

x
(i)
s = F−1

X (u
(i)
s ), and x

(i)
s = F−1

X (u
(i)
s ). (3.49)

For the mapping of each interval xI,(i)
s to the response space, an additional inner loop is

required. The determination of the interval bounds yI,(i)
s = [y(i)

s
,y

(i)
s ] within this loop is achieved

by solving the following optimization problems

y(i)
s

= min
x

(g(x)), and y
(i)
s = max

x
(g(x))

s.t. x ∈ x
I,(i)
s .

(3.50)

In the standard procedure, the interval propagation is conducted by generating a set of uni-

formly distributed samples within the bounds of xI,(i)
s . If the computational model is monotonic

in all of its input quantities it is sufficient to propagate only the corner points of xI,(i)
s . For the

general case of a non-monotonic system behavior, solving the problem in Eq. (3.50) by an

optimization algorithm is more efficient than a sampling-based approach.

As a result of the propagation, one obtains a set of intervals YI
s = {yI,(1)

s , . . . ,y
I,(ns)
s } ⊂ IRny .

Finally, the lower and upper bounds of YI
s in every dimension are taken as a basis for deter-

mining the expressions of the p-box representation. Analyzing the propagated intervals in view

of the Dempster Shafer theory, YI
s can be seen as set of focal elements where each interval

is assigned with the same BPA of 1/ns. Therefore, the metrics in Eqs. (3.31) and (3.32) for

deriving the CBF and CPF can be used for computing FY(y) and FY(y). Figure 3.8 shows a

graphical representation of the double-loop approach where both loops are based on a sam-

pling strategy.

In summary, the nested iteration scheme for epistemic uncertainties is based on discretizing

the p-box into a set of equally-weighted intervals. Due to the duality between Dempster Shafer

theory and p-box concept, the set of propagated intervals is represented as the bounding

curves of a p-box. One noteworthy aspect of this propagation technique is the fact that each

CDF inside the p-box is considered as valid realization. This can lead to conservative bounds

in the response space if the p-box characterizing the input quantities contains undesired distri-
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Figure 3.8 Double-loop approach for epistemic uncertainties.

bution functions. For this reason, alternative approaches are examined in Section 5.2.1 which

aim at transferring the distribution-free p-box concept into the parametric type via flexible dis-

tribution functions.

3.4 Inverse Uncertainty Quantification

In the previous chapters, a comprehensive review on forward uncertainty quantification and

propagation techniques has been given. All of the methods suppose that the existing set of

data is directly related to the QoI (quantity of interest). In case of an inverse UQ problem, the

observations of phenomena refer to the model response whereas the QoI can be a model or

input parameter.

Within a probabilistic framework, Bayesian methods have become the standard approach for

this type of problem. However, this concept can lead to extremely biased results when dealing

with a scarce data set. For this reason, non-probabilistic approaches have been developed

recently which do not presume a-priori information on the hidden variables. In the following

paragraphs, the Bayesian concept as well as a non-probabilistic framework are introduced.

3.4.1 Bayesian Inference

The Bayesian modeling framework goes back to the publication of Thomas Bayes [18] in the

18th century. A decisive contribution in context of inverse UQ problems are the publications of

Katafygiotis and Beck [20, 92].

The general idea of Bayesian inference is to update available knowledge about a random

variable with the help of additional observations. The first step of the approach is to assign an
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initial PDF to the parameters of interest. After gathering information about the model response,

e.g. by conducting measurements, Bayes’ theorem is used to update the initial hypothesis. For

continuous random variables, Bayes’ rule is formulated according to

p(x|Ym) =
p(Ym|x) p(x)∫

p(Ym|x) p(x) dx
∝ p(Ym|x) p(x), (3.51)

where x covers the unknown random parameters. The terms of the above equation have the

following meaning:

• The prior distribution p(x) represents the modeler’s initial guess about the unknown pa-

rameter variation.

• The term on the left hand side, i.e., p(x|Ym), denotes the posterior distribution. It quan-

tifies the updated uncertainty on x given the measurement set Ym = {y(1)
m , . . . ,y

(nm)
m } ⊂

Rny .

• The likelihood p(Ym|x) specifies the probability of observing the data Ym given a certain

realization of the input parameters. Since the likelihood can be seen as a function of x,

it is often expressed as L(x|Ym).

• The denominator on the right hand side is referred to as evidence or marginal likelihood

as it is obtained by marginalizing out x from L(x|Ym).

To summarize, the key aspect of the Bayesian framework lies in choosing a prior distribution

and defining the likelihood function. The latter comprises a statistical representation of the

computational model by taking measurement uncertainties and model inaccuracies into ac-

count. In many application cases, independence is assumed between noise and the unknown

parameters which leads to a likelihood function with additive noise. The more challenging task

in the Bayesian framework is to define a prior distribution that captures the modeler’s a-priori

knowledge adequately. In principle, p(x) should assign a high density to those realizations

x ∈ Rnx which are likely according to the modeler’s a-priori expectation. [89]

Based on the definition of these two terms, Eq. (3.51) is used to obtain the posterior distribu-

tion. In the specific case of using so-called conjugate distributions for the prior and likelihood,

the posterior can be derived analytically [64]. For the general case, solving Problem (3.51) is

a non-trivial task because no closed-form solution is available.

The most common numerical solution procedure is the MCMC (Markov Chain Monte Carlo)

sampling. Without explaining the method in detail, the aim is to generate a sequence of sam-

ple points (x(1),x(2), . . .) which follow the unknown posterior distribution. Each element x(i) of

the chain is generated from a proposal distribution which is defined on the basis of the pre-

vious sample x(i−1). Dependent on the likelihood, the candidate sample is either rejected or

accepted. In case of rejection, the new point equals the previous one. When generating a suf-

ficient number of sample points, the underlying distribution of the Markov chain converges to

the desired posterior. Here, a critical point is to determine when the Markov chain has reached
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the stationary point, i.e., the state of following the posterior distribution. [171]

All in all, Bayesian inference is extremely useful for applications where the modeler can pro-

pose a reasonable hypothesis which is further specified due to additional observations. For

cases without or little a-priori information so-called non-informative prior functions, for exam-

ple Jeffrey’s prior, can be used [64]. Nevertheless, a certain degree of subjectivity is always

introduced by the choice of the prior distribution. This prior effect fades out as the number of

observations is increasing.

However, the absence of prior information can be problematic if Ym contains insufficient ob-

servations. In such cases, the posterior is strongly influenced by the prior distribution which

can lead to biased results. Here, non-probabilistic UQ frameworks can be superior to the

Bayesian approach as they require no subjective hypothesis on the random variables. [33, 51]

The subsequent paragraph gives a brief summary about alternative approaches to the Bayesian

framework. A special focus is set on the concept introduced by [53] who have proposed an

interval-based strategy to solve inverse UQ problems.

3.4.2 Non-Probabilistic Inverse Uncertainty Quantification Concepts

For the following discussion, we consider a scenario where the modeler is equipped with a

set of measurement points Ym that comprises a very limited number of observations. Fur-

thermore, no prior information about the unknown parameter variation is given. Parts of the

subsequent paragraphs have already been published by the author in [108].

As discussed in Section 3.2.3, a common way to model lack-of-knowledge uncertainties is

the class of interval methods. Here, the uncertainty on the model parameters is quantified

by lower and upper bounds [115]. The propagation of the intervals throughout the model is

represented by the minimum and maximum values of the response quantities. Hence, interval

methods do not model the dependencies between them.

When using interval methods for the inverse UQ, the variation of the measurement data Ym

is quantified by a hyperrectangle. The goal of the inverse interval method is to minimize the

difference between the interval radii of the measurement set and the radii obtained by the

mapping of the input uncertainty throughout the computational model. In order to quantify

the discrepancy, a metric is introduced that represents the radii difference by the Euclidean

norm [58].

Another approach from the field of non-probabilistic uncertainty quantification is the fuzzy set

concept. The uncertainty of the model parameters is quantified by membership functions

which indicate the degree of membership to the fuzzy set. In order to propagate fuzzy sets

throughout the system model, the membership function is discretized by a finite number of

intervals. Thus, the fuzzy set concept can be seen as an extension of the interval method.

Without going further into details, the basic principle of the inverse interval method can also

be extended to the fuzzy set method as described in [71] for example.
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As discussed in [57], also the inverse fuzzy set approach is not able to model dependencies

in the output space. In order to overcome this problem, a different approach is proposed

in [52, 53]. The following paragraphs provide a review of the method.

The basic idea is to describe uncertainties with the help of a convex hull which is defined as the

smallest convex set that contains a finite number of points. For the given set of measurement

points Ym, the convex hull is denoted by CYm
and it holds

CYm
=

{
y ∈ Rny

∣∣∣∣∣ y =
nm

∑
i=1

β
(i) y

(i)
m ,

nm

∑
i=1

β
(i) = 1, β

(i) ≥ 0

}
. (3.52)

Then, the goal becomes to identify an uncertainty set in the input variables which leads to

a convex hull in the output space that matches CYm
as close as possible. In the current

approach, the uncertainty set in the input space is quantified by intervals. Moreover, indepen-

dence is assumed between the input parameters. Thus, the uncertainty set is described by a

hyperrectangle which can be interpreted as a convex hull of its corner points. It is denoted by

Cx and can be expressed as a multi-dimensional interval, i.e.,

Cx =
nx⋃

i=1

[ xi,xi ] = [ x1,x1 ]× . . .× [ xnx
,xnx ] = [ x,x ]⊂ IRnx , (3.53)

where x,x ∈ Rnx contain the lower and upper bounds of the one-dimensional intervals, re-

spectively. Hence, the goal of the inverse uncertainty quantification becomes to determine the

entries of x and x. The detailed procedure how to identify the optimal hyperrectangle com-

prises the following steps:

At first, a population of uncertainty sets Cx with different interval bounds x,x is created. Within

each set Cx, a number of ns sample points is generated:

Xs =
{
x
(1)
s , . . . ,x

(ns)
s

}
⊂ Cx. (3.54)

The distribution of the samples is not relevant as long as they represent Cx well enough. If

the computational model is monotonous, it is sufficient to sample only the corner points of the

hyperrectangle. The sampling procedure is followed by the propagation of the points to the

output space. The uncertainty set in the output space is obtained according to Eq. (3.1) by

Ys = g(Xs) with

Ys =
{
y
(1)
s , . . . ,y

(ns)
s

}
⊂ Rny , (3.55)

and y
(i)
s = g(x(i)

s ) for i = 1, . . . ,ns. Based on the propagated samples, a convex hull CYs
is cre-

ated which represents the image of Cx in the output space. By analogy with the measurement

set, the convex hull CYs
is determined by Eq. (3.52) but with the difference that Ys is used
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instead of Ym:

CYs
=

{
y ∈ Rny

∣∣∣∣∣ y =
ns

∑
i=1

β
(i) y

(i)
s ,

ns

∑
i=1

β
(i) = 1, β

(i) ≥ 0

}
. (3.56)

Ideally, CYs
is only dependent on the interval boundaries x and x of the hyperrectangle. How-

ever, as the computational model is not given by an analytical expression the convex hull is

affected by the number of sampling points. Hence, the modeler has to ensure that the amount

of samples is large enough to represent the "true" convex hull precisely enough.

The geometric discrepancy between the two convex hulls is specified by the following terms:

∆Vm = 1− Vs

Vm
, (3.57)

∆Vo = 1− Vo

Vm
, (3.58)

∆c = ∥cm − cs∥2. (3.59)

Eq. (3.57) describes the volume difference between CYm
and CYs

and in Eq. (3.58) their over-

lapping volume Vo is set in relation to the volume of CYm
. The Euclidean distance between

their centers of gravity cm and cs is expressed in Eq. (3.59). Note that the variables should

be normalized to get an objective measure for ∆c. In case the two convex hulls are identical,

each of the above-mentioned terms takes the value zero.

The actual inverse uncertainty quantification is performed by solving an optimization prob-

lem. Therefore, an objective function is minimized which comprises the sum of the terms of

Eqs. (3.57)-(3.59):

objC(x,x) = ∆V 2
m +∆V 2

o +∆c2. (3.60)

The parameters to be optimized are the lower and upper bounds x and x of the multi-dimensional

intervals in the input space. They influence the quantities Vs, Vo, and cs, and hence ∆Vm, ∆Vo,

and ∆c. Formally, the optimization problem is expressed by:

minimize
x,x

objC(x,x)

subject to x ≤ x.

(3.61)

As the fundamental principle of the inverse UQ is based on an optimization, one has to think

about a reasonable type for the optimization algorithm. Usually, the modeler has no a-priori

information on the input uncertainty which is why a good performance in exploring the input

space is required. Problem (3.61) can be solved by, e.g., a population-based method like the

Differential Evolution. In each iteration step, a new population of uncertainty sets Cx is created.
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Figure 3.9 Graphical representation of the convex hull approach introduced by [52].

The interval bounds of the individual sets are determined based on the objective function val-

ues of the previous population.

To summarize, the algorithm introduced by [53] solves the inverse problem by optimizing the

bounds of the multivariate intervals in the input space. Propagating the identified interval un-

certainty throughout the model leads to a convex hull that coincides as accurately as possible

with the measurement hull. Figure 3.9 shows a graphical representation of the approach.

In contrast to the Bayesian framework, the convex hull approach is able to solve an inverse

problem without any prior assumptions regarding the unknown parameter variation. The

application of the method might be problematic for high-dimensional problems as the time-

complexity for determining a convex hull grows exponentially with respect to its dimensions.

For this reason, an alternative non-probabilistic method will be developed in Section 4.1 to

derive the parameter’s uncertainty from a limited set of measurements [108]. Here, the main

idea is to describe the measurement as well as the simulation set by enclosing hyperellipsoids

which are less time-consuming to compute. In addition to that, the new method is extended

for cases where the provided set of data comprises stochastic descriptors, such as mean and

variance, instead of the measurements themselves.

Apart from the quantification and modeling of uncertainty sources, sensitivity analysis also

plays a crucial part within a stochastic design procedure. The subsequent chapter gives an

overview over state-of-the-art methods for conducting sensitivity studies in presence of hybrid

uncertainties. Hence, the focus of the review is put on methods which aim at determining the

influence of the parameter’s epistemic uncertainty on a certain target value.

3.5 Sensitivity Analysis in Presence of Hybrid Uncertainties

Generally speaking, the purpose of performing a sensitivity study is to analyze the influence of

the model input parameters Xi ∈ X on target values which are related to response quantities

Yi ∈ Y of the computational model. The knowledge gained from the SA can be used further to

rank the input quantities with respect to their importance. On the one hand, the modeler can
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use the ranking to reduce the model complexity by fixing the set of unessential input parame-

ters to their deterministic values. On the other hand, knowing the most influential parameters

is a valuable information for deciding where to allocate additional engineering effort to reduce

uncertainties efficiently. [154]

The subsequent section refers to common approaches from literature which are used for prob-

lems with random input parameters. After that, Section 3.5.2 opens the discussion about

methods to study the sensitivity of input quantities that are categorized as hybrid uncertain-

ties. Here, the focus is put on studying the epistemic part of the uncertainty source.

3.5.1 Sensitivity Analysis Concepts for Aleatory Uncertainties

In literature, two general subtypes of sensitivity analysis are distinguished: local and global

approaches. In case of a local SA, the impact of small perturbations around the nominal

values of X on the model outcome is investigated. Typically, interactions between the random

quantities are not considered within this framework. Most of the local SA approaches are

therefore based on approximating the gradient at the nominal value. For example, the SSC

(scaled sensitivity coefficient) of a parameter Xi is obtained by multiplying its nominal value with

the partial derivative of the output quantity of interest. Another local sensitivity metric is the

SI (sensitivity index). Contrary to the SSC, the partial derivative is scaled by the parameter’s

standard deviation. The mathematical formulations of the two metrics are given by [111]

SSCxi = µxi

∂g(x)
∂xi

∣∣∣∣∣
xi=µxi

, and SIxi = σxi

∂g(x)
∂xi

∣∣∣∣∣
xi=µxi

. (3.62)

Another popular family of local SA methods are OAT (one-at-a-time) concepts which are sim-

ilar to derivative-based approaches. As indicated by the term OAT, the goal is to examine

the model response when changing the value of one parameter while keeping the remaining

parameters at their nominal values.

In brief, choosing a local SA approach is appropriate for analyzing the impact of small param-

eter perturbations in case of quasi-linear input-output relations. Since the number of forward

model evaluations is comparatively small, local SA methods are preferred to screen out pa-

rameters for high-dimensional problems. Furthermore, no information about the probability

distribution type of the parameters is required.

However, the results of a local SA can be misleading for nonlinear models as the expansion

point may have a decisive influence on the gradient. Further, the missing information about

possible parameter interactions is a strong limitation of the approach. [150]

In order to determine sensitivity measures that consider the entire uncertain parameter space,

methods from the field of global SA approaches are needed. In [153], this group is decom-

posed in regression-based and variance-based methods.
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• In the first case, sensitivity metrics are derived from the coefficients of a linear regression

between the input and output quantities of interest. For analyzing quasi-linear models,

the SRC (standard regression coefficient) and PCC (partial correlation coefficient) are

appropriate sensitivity measures. If the model shows a nonlinear but monotonic behav-

ior, a rank transformation of the data can be performed. The corresponding sensitivity

metrics, i.e., SRRC (standard rank regression coefficient) and PRCC (partial rank cor-

relation coefficient), are computed in the same fashion as the SRC and PCC but the

calculation rules are applied to the transformed data. [74]

• The basic idea of variance-based methods is to decompose the variance σ2
y to the single

input quantities and their interactions. In contrast to regression-based approaches, even

nonlinear models can be analyzed. Among the most popular techniques is the FAST

(Fourier amplitude sensitivity testing) method [40] as well as the determination of the

Sobol indices [163].

Within the scope of this thesis, only the Sobol method is discussed in greater detail. For further

information about alternative global SA concepts, the reader is referred to [152, 154].

For deriving the Sobol index concept, we assume that all random input quantities X ∈ Rnx

are defined by independent uniform distributions in the unit space [0,1]nx . Note that this as-

sumption does not represent any limitation on the method as it can be applied to any other

distribution type. Moreover, we consider a scalar response quantity of interest, i.e., ny = 1. In

the general case of ny ̸= 1, the Sobol indices must be evaluated separately for every dimen-

sion.

The computation of the Sobol sensitivity indices is based on a HDMR (high-dimensional model

representation) of g(x)

g(x) = g0 +
nx

∑
i=1

gi(xi)+
nx

∑
i=1

nx

∑
i< j

gi, j(xi,x j)+ . . .+g1,...,nx(x1, . . . ,xnx), (3.63)

which decomposes the functional relationship into 2nx terms of increasing order. Eq. (3.63) is

a unique HDMR of g(x), also referred to as ANOVA (analysis of variance) decomposition, if

the constant component is computed according to

g0 =
∫

g(x)dx = E[g(x)], (3.64)

and the higher-order components are derived from

gi =
∫

g(x)dx−i −g0 = EX−i
[g(x)|Xi]−g0, and

gi, j =
∫

g(x)dx−i, j −gi −g j −g0 = EX−i, j
[g(x)|Xi,X j]−gi −g j −g0,

(3.65)
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where x−i covers all entries of x except the i−th dimension and gi denotes an abbreviation

of gi(xi). Using the expressions from Eq. (3.65) ensures that all summands of the ANOVA

decomposition are mutually orthogonal. Due to this mathematical property, it holds that∫
gi1,...,is gi1,...,it dx = 0, if {i1, . . . , is} ̸= {i1, . . . , it}. (3.66)

Under the assumption that g(x) is square-integrable, Eq. (3.63) can be rewritten according to

∫
g2(x)dx−g2

0︸ ︷︷ ︸
D

=

nx

∑
i=1

∫
g2

i dxi︸ ︷︷ ︸
Di

+

nx

∑
i=1

nx

∑
i< j

∫ ∫
g2

i, jdxidx j︸ ︷︷ ︸
Di, j

+ . . .+
∫

. . .
∫

g2
1,...,nx

dx1 . . .dxnx︸ ︷︷ ︸
Di,...,nx

.

(3.67)

The term on the left-hand side, denoted as D, equals the variance of g(x), whereas the terms

on the right-hand side express the variance of the individual component functions. Hence,

Eq. (3.67) yields a decomposition of the total variance. [163, 164]

The Sobol indices are obtained by dividing the right-hand side terms of Eq. (3.67) through the

total variance. For example, the first-order Sobol indices are given by

Si =
Di

D
=

VarXi

[
EX−i

[g(x)|Xi]
]

Var [g(x)]
. (3.68)

This factor expresses the importance of the random variable Xi without considering any inter-

action. To gain information about possible dependencies between the input parameters, the

total Sobol index must be computed which extends the first-order effect with all higher-order

effects

ST,i = 1−
Var X−i

[
EXi[g(x)|X−i]

]
Var [g(x)]

. (3.69)

If g(x) is an additive model Si = ST,i holds. In all other cases, the difference between first and

total Sobol index can be significant. Thus, the evaluation of the total effects is indispensable

to make a reliable statement about the reduction of input parameters. [81]

Unless the computational model is given by analytical expressions, sampling-based methods

are required to determine the Sobol indices. As this procedure can be cumbersome in high-

dimensions, alternatives to the MC sampling procedure have been developed [19, 151].

3.5.2 Sensitivity Analysis Concepts for Hybrid Uncertainties

In contrast to pure aleatory uncertainty sources, no standard procedures have become es-

tablished for performing a sensitivity study in presence of hybrid uncertainties. The SA ap-

proaches discussed in literature are greatly dependent on the chosen modeling concept.

Within this thesis, we follow the p-box method to represent hybrid uncertainty sources which
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relies on a strict partition between aleatory and epistemic contribution. Therefore, appropriate

sensitivity measures analyze the two parts separately.

Since the modeling of epistemic uncertainties is a young research field, the number of publi-

cations in this area is not as extensive as for aleatory uncertainties. Two common techniques

are the extension of the Sobol indices and the so-called pinching strategy. For both of them, a

short introduction is provided within the following paragraphs.

Extended Sobol Indices

As discussed in Section 3.2.2, a distributional p-box is formally defined by FX(x|Θx), where

the set of hyperparameters can take arbitrary values within certain bounds, i.e., Θx ∈ΘI
x. In

accordance to the distinction between IVP and SOP method for the uncertainty propagation,

two different approaches are presented to extend the classical Sobol method.

The first approach, sometimes referred to as imprecise Sobol method, treats the uncertainty

on the hyperparameters as multivariate interval without any additional assumptions. As a con-

sequence, the Sobol indices from Eqs. (3.68) and (3.69) become an interval-valued quantity

which is dependent on the realization of Θx. A logical extension of the classical Sobol method

is to determine the lower and upper index bound in the following fashion

Si1,...,is = min
Θx∈ΘI

x

Si1,...,is(Θx), and Si1,...,is = max
Θx∈ΘI

x

Si1,...,is(Θx). (3.70)

As in case of a pure aleatory SA, the total Sobol index is still playing a decisive role. Its

maximum value, i.e., ST,i, is a suitable measure to decide about the reduction of the aleatory

parameter space. If ST,i is small, one can fix Xi to its nominal value without reducing the

prediction accuracy significantly.

Besides from the maximum total index, a second sensitivity metric is the interval width of the

total imprecise Sobol indices given by

∆ST,i = ST,i −ST,i, with i ∈ {1, . . . ,nx}. (3.71)

This quantity is used to examine the overall influence of the epistemic uncertainties. A small

interval width ∆ST,i indicates a negligible lack-of-knowledge effect on the total Sobol index ST,i.

If this holds for all total Sobol indices, fixing the uncertain hyperparameters is reasonable.

[73, 156]

All in all, considering Sobol indices as intervals is an illustrative technique which makes the

influence of epistemic uncertainties visible. Furthermore, it preserves the basic idea of the

Sobol method to measure uncertainty with the help of variance. The optimization problems in

Eq. (3.70) introduce additional computational effort compared to the classical Sobol concept.

Hence, efficient propagation methods are needed, e.g., by replacing the crude MC uncertainty
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propagation with a polynomial chaos expansion [156].

The second approach is related to the SOP method. Other than from the IVP point of view,

subjective probability distributions are assigned to the uncertainty on Θx. This concept allows

a probabilistic interpretation of the single CDF realizations.

In this context, extending the Sobol method is based on the idea to perform a variance de-

composition of the uncertain response mean E[g(x|Θx)] and variance V [g(x|Θx)] instead of

the functional value g(x) itself. Thus, in order to the assess the main effect of θ
(i)
x ∈Θx on the

response mean Eq. (3.68) is reformulated according to

S
µ,θ

(i)
x

=

Var
θ
(i)
x

[
E

θ
(−i)
x

[
EX
[
g(x)

∣∣Θx
] ∣∣ θ

(i)
x
]]

VarΘx

[
EX
[
g(x)

]∣∣Θx

] , (3.72)

where θ
(−i)
x contains all entries of Θx except θ

(i)
x . In a similar manner, the epistemic main effect

for considering the response variance as QoI is obtained by

S
V,θ (i)

x
=

Var
θ
(i)
x

[
E

θ
(−i)
x

[
VarX

[
g(x)

∣∣Θx
] ∣∣ θ

(i)
x
]]

VarΘx

[
VarX

[
g(x)

∣∣Θx
]] . (3.73)

Note that the reformulation for higher-order Sobol indices is done in the same way. [91]

In contrast to the imprecise Sobol method, the effect of individual epistemic parameters can be

determined. As for the assessment of aleatory uncertainties determining the two total Sobol

indices of a parameter, i.e., S
T,µ,θ (i)

x
and S

T,V,θ (i)
x

, is an appropriate metric to evaluate the im-

portance of θ
(i)
x . If both of them have a low value, the corresponding hyperparameter can be

fixed to its nominal value.

Due to the probabilistic treatment of Θx, the partition of unity is fulfilled for the mean and vari-

ance Sobol indices which makes the interpretation of the results easier. Nevertheless, the

modeler should keep in mind that the resulting Sobol factors are dependent on the chosen

probability distribution. Of course, the epistemic SA is associated with additional computa-

tional effort. Compared to the classical Sobol method, an extra loop is required to generate

samples from the epistemic parameter space. Applying a crude MC sampling scheme is there-

fore only possible for low-dimensional models.

Let us consider the case that g(x) is a linear, additive model. Further, the input vector X is

given by a multivariate normal distribution with known variance but uncertain mean values. In

this special setup the lack-of-knowledge uncertainty causes a variation of the response mean

whereas the variance remains constant.

Applying the imprecise Sobol method to this test case would lead to ∆ST,i = 0 for every Xi ∈ X
because the total Sobol indices are not affected by the epistemic uncertainty. Thus, the mod-

eler could conclude that all uncertain mean values can be reduced.
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In the second approach, one could characterize the mean variation by a multivariate uniform

distribution. As the model is additive, the main effects from Eqs. (3.72) and (3.73) are sufficient

for the epistemic SA. The set of Sobol indices S
V,θ (i)

x
is of no importance as the variation of

the response variance is zero due to the linear model property. In contrast, the computation of

the main effects S
µ,θ

(i)
x

supply more information. Based on that, a meaningful reduction of the

epistemic parameter space can be conducted.

From the author’s point of view, the latter approach is therefore more suitable for an epis-

temic SA because it provides more information about the impact of the epistemic uncertainty.

Especially if the variation of µy is of interest, e.g., for a subsequent design optimization, the

imprecise Sobol method could lead to an erroneous parameter reduction.

Pinching Strategy

An alternative approach to the extended Sobol method is the pinching strategy. The basic idea

is to quantify the reduction of incertitude on the model response when freezing one or several

parameters to a constant value while keeping the uncertainty of the remaining epistemic pa-

rameters. In context of a distributional p-box, the PI (pinching index) can be expressed by

PIΘxi
= 1−

uncY (Θxi =Θ∗
xi
)

uncY (Θx)
, (3.74)

where uncY (·) denotes a general uncertainty measure on the response. The numerator of

Eq. (3.74) expresses the uncertainty on Y if the hyperparameters of the input quantity Xi are

set to a constant value. The denominator considers the total response uncertainty, i.e., if none

of the hyperparameters is pinched. [61]

Hence, when analyzing hybrid uncertainties, the pinching strategy degenerates a distributional

p-box to a single CDF. Unlike the extended Sobol methods, this concept is also appropriate

for pure epistemic uncertainties modeled by distribution-free p-boxes. Typically, the enclosing

probability bounds of Xi are degenerated to an averaged CDF given by

FXi(xi) =
1
2
(FXi

(xi)+FXi(xi)). (3.75)

However, if the true value of Xi is known to have no variability, it can be reasonable to replace

the p-box with a deterministic value. Further pinching strategies can be found in [62]. Within

this thesis, the focus is put on distributional p-boxes.

Especially for nonlinear input-output relations, the value of PI can be strongly affected by the

pinching point Θ∗
xi

. As the uncertainty on Θxi is given by intervals, there is no clear nominal

value such as the mean of a distribution. To get an unbiased result, the average value of PI for

different realizations of Θ∗
xi

can be computed. Apart from analytical test cases, this approach

is too expensive for many real-world applications. Therefore, the pinching location is usually

set to the interval midpoint.
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Up to now, the term uncY (·) has been introduced as a general uncertainty without giving a

specific metric for it. In the following, a short literature review about various ways to interpret

uncY (·) is provided:

• A common measure for the response incertitude is the area Ay enclosed by the response

p-box:

Ay =
∫ 1

0
(F−1

Y (r)−F−1
Y (r)) dr. (3.76)

Hence, the determination of the PI is based on comparing the p-box area before and after

the hyperparameter pinching. In [128], the computational effort of this metric is discussed

for a high-dimensional test case. Further, the authors have noticed a significant influence

of the pinching point Θ∗
xi

on the SA results which is why they have conducted a repeated

computation for varying locations. Within the scope of [124], the area-based metric

has been applied for distribution-free p-boxes derived from a known mean and standard

deviation with the help of the Chebyshev inequality, see Sec. 3.2.3. In this specific case,

the pinching strategy has degenerated the p-box to a deterministic value instead of a

single CDF.

• Another incertitude metric is the KS (Kolmogorov-Smirnov) distance which quantifies the

maximum vertical distance between the bounding curves of the response p-box

dKS = max
y

{FY (y)−FY (y)}. (3.77)

The authors of [70] have used this metric for an epistemic SA in combination with a OAT

sampling method which returns a main and total effect for every epistemic parameter.

The latter is equal to Eq. (3.74) whereas the main effect is derived from pinching all

epistemic parameters except the one under investigation.

• Apart from geometrical measures, the incertitude of stochastic descriptors is an alterna-

tive formulation for uncY (·). This approach is preferable if the modeler is interested in

specific statistics of the response. Typically, the epistemic uncertainty on the stochastic

descriptor is expressed by its interval width. For example, in [70] the difference between

minimum and maximum failure probability has been analyzed which is equal to the p-box

height at a predefined limit state. The same procedure can be applied for other statistics

such as the response mean or variance [128].

Further sensitivity measures that are not explicitly listed above can be found in [13, 22, 67].

Comparing the extended Sobol method with the pinching concept clarifies that the latter is

more oriented towards the assessment of lack-of-knowledge uncertainties. In particular, the

large flexibility of the uncertainty measure is helpful for adapting it to the epistemic modeling

approach which enables a straightforward interpretation of the resulting sensitivity indices.

The overall goal of this thesis is to achieve a robust design under consideration of aleatory
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and epistemic uncertainty sources. Performing sensitivity studies is seen as preparatory step

for the subsequent robustness assessment even though these two disciplines are not always

strictly separated in literature. For this reason, the focus of Sec. 4.2 is to introduce a com-

putationally inexpensive screening method for ranking the epistemic parameters rather than

quantifying the exact contribution of each uncertain parameter.

The next section of the theoretical background part is about robust design optimization (RDO)

techniques for the coexistence of aleatory and epistemic uncertainties.

3.6 Robust Design Optimization for Systems under Hybrid
Uncertainties

The term robustness is open to diverging interpretations in literature which are strongly de-

pendent on the application field. Within the scope of engineering problems, the concept is

often associated to the achievements of the Japanese engineer Genichi Taguchi in the 1980s.

The next two sections will shed light into the general definition of robustness as well as the

mathematical formulation for a RDO.

3.6.1 Introduction: Robustness in Context of Engineering Applications

In principle, a robust design is characterized by its insensitivity against variations caused by,

for instance, the production process or changing environmental conditions [170]. According to

Taguchi’s perspective, a robust performance is achieved by an optimal setting of the design

variables. In contrary, reducing the uncertainty of the design variables should be considered

as last option because it usually requires disproportionately higher effort.

The basic principle behind this concept can be illustrated with the help of Fig. 3.10(b). From

a deterministic point of view, design A is superior because its nominal value is lower as for

design B. In terms of robustness, design B shows a better performance as the variation of the

system response is significantly lower. Note that the uncertainty on the design variable, i.e.,

∆x, is the same for both designs.

As a starting point for the robustness assessment, the parameters of a system are distin-

guished between three categories, represented in Fig. 3.10(a): design variables, noise factors

and response parameters [46]. The difference between the first two groups is that design

variables can be controlled by the modeler whereas the parameters of the second group are

uncontrollable. Noise factors can be further subdivided into external factors (environmental

conditions, operating conditions), manufacturing imperfections and product deterioration [132].

In accordance with the above-mentioned categorization, three different robust design types

have been derived [5]:
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• Type I considers variations exclusively in the noise factors. Hence, the objective is to find

optimal values for the design parameters, which are treated as deterministic quantities,

to minimize the performance variation.

• Type II accounts for the fact that design variables are subject to uncertainty. Thus, the

performance variation is caused by the design variables themselves. In this framework,

the existence of noise factors is ignored.

• Type III puts the focus on the uncertainty of the computational model. Repeating a

simulation several times with exactly identical design variables can result in different

responses due to the variation of the model parameters. Thus, the goal becomes to find

a design which is insensitive against the uncertainty of Θg.

In real-world applications, especially a mixture of Type I and II is considered. The Type I robust

design coincides with Taguchi’s interpretation. His approach for achieving a robust design is

based on defining a loss function which quantifies the deviation of the system performance

from a certain target value. The higher the offset between target value and actual perfor-

mance, the larger the loss function. Since the noise factors are causing a variation of the

system performance, an optimal robust design is achieved by minimizing the expected value

of the quality loss function. In order to solve this optimization problem, Taguchi has introduced

a two-step procedure. First, a combination of design parameters is sought to minimize the

so-called SNR (signal-to-noise ratio) which presents a metric for the response variation. After

that, the group of design parameters which has a negligible effect on the SNR is tuned to

minimize the gap between target value and expected performance.

This approach requires the conduction of a DoE (design of experiments) to assess the robust-

ness of different designs. Taguchi has proposed a concept based on the usage of orthogonal

arrays. In principle, this approach can be seen as a deterministic DoE which strictly separates

Computational Model
Design Model

Xn

Xd YResponseVariables g : Rnx → Rny,

x 7→ y = g(Xd, Xn)

N
oise

Factors

(a) P-diagram.

x

y

A B

−∆x ∆x −∆x ∆x

∆yB
∆yA

(b) Graphical illustration of a robust design.

Figure 3.10 Variable classification (left) and graphical illustration (right) of the robust design concept [5, 126].

70



design variables and noise factors from each other. [88, 126]

Taguchi’s work was a decisive contribution towards the consideration of uncertainties in the

design process. However, his approach has been criticized especially in regard to the usage

of orthogonal arrays for the DoE as well as the separated optimization of the response vari-

ation and target value deviation. Further, the original Taguchi method is not able to deal with

constraints. For these reasons, classical optimization techniques have been extended to RDO

techniques. [121, 126].

With increasing computational power, the robust design concept has gradually entered the field

of numerical simulation. The conventional design optimization, which neglects the occurrence

of uncertainty, is enhanced by introducing a robustness criterion into the objective function.

Compared to a deterministic design optimization, performing a RDO requires a higher number

of simulations for mapping the input variations to the response quantities. The usage of effi-

cient uncertainty propagation techniques is decisive.

The variety of RDO approaches can be, regardless of their type, classified into feasibility ro-

bustness and sensitivity robustness. The first group is related to the insensitivity of constraints

against variations and is therefore also named robustness of constraints. The second class

puts the focus directly on minimizing the variation of the performance metric. The difference

between these two levels for the RDO formulation is discussed in greater detail within the next

chapter. [127]

Within the scope of this thesis, we concentrate on Type I and II and disregard the influence

of model uncertainties. The main intention of this thesis is the implementation of lack-of-

knowledge uncertainties into the RDO framework. One of the main challenges is to account

for the high computational cost. In [7], a Type IV robust design is introduced which refers

explicitly to epistemic uncertainties. From the author’s perspective, one can also extend the

existing types by appropriate modeling approaches for uncertain design variables and noise

factors.

The next paragraph provides a review on how to set up a mathematical formulation for a robust

design optimization with special emphasis upon lack-of-knowledge uncertainties.

3.6.2 Mathematical Setup for a Robust Design Optimization

As discussed in the previous section, the RDO is an extension of the conventional optimiza-

tion. A meaningful starting point is to analyze the mathematical formulation for a deterministic

design optimization and compare the expression with the one for a RDO.

Robust Design Optimization under Aleatory Uncertainties

The underlying aim of any optimization is to determine the set of design variables such that

the deviation between actual and desired performance is minimized. In order to express this

goal with an objective function, the modeler has to define a target value y∗ which expresses
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the desired system performance. In general, one can distinguish between three different types

of objective functions: nominal-the-best, larger-the-better and smaller-the-better. The first is

characterized by a finite target value whereas the remaining types have their optimum at plus

and minus infinity, respectively. In the sequel, all formulations are given for the nominal type.

The optimization framework introduced so far represents the unconstrained case. This setup

can be extended by a set of equality and inequality constraints which shrink the feasible space

of solutions. In addition, the design space can be limited by defining bounds on xd. Finally, the

deterministic optimization yields

min
xd

∥g(xd)− y∗∥2

s.t. c(i)(xd) = 0 for i = 1, . . . ,neq.

c(i)(xd)≤ 0 for i = 1, . . . ,nineq.

xd
i ≤ xd

i ≤ xd
i for i = 1, . . . ,nd

x ,

(3.78)

where xd ∈ Rnx
d

is the vector of design variables and c(i) denotes the i−th constraint.

To extend the deterministic optimization framework, one has to determine an appropriate mea-

sure for robustness. The most common metric is the standard deviation. Alternatively, the dis-

tance between two percentiles, e.g., the 5th and 95th percentile, could be used as a measure

for dispersion. Compared to the standard deviation, the percentile difference contains more

information as it accounts for the skewness of a distribution. However, the approximation of

two percentile values is rather expensive and not applicable to multimodal distributions. For

this reason, the standard deviation is used in the following. [84]

In presence of noise factors Xn and/or uncertain design variables Xd, Eq. (3.78) is modified

in the following fashion. The objective function is now re-formulated to minimize the distance

between expected response and target value. Further, the minimization of the performance

variation, denoted as σy, is part of the objective. Another major difference to Eq. (3.78) is

the formulation of the inequality constraints. Due to the uncertainty, the feasible space is re-

duced by a multiple of the constraint’s standard deviation. The extended optimization problem

is given by [126]
min
µd

x

w1 (µy − y∗)2 +w2 σy

s.t. c(i)(µd
x) = 0

µ
(i)
c + k σ

(i)
c ≤ 0

µd
x ≤ µd

x ≤ µd
x ,

(3.79)

where w1 and w2 represent the weighting factors of the objective function components. Note,

that the set of design variables has changed from xd to a vector of mean values µd
x .
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Figure 3.11 Graphical illustration for a RDO under aleatory uncertainties.

Figure 3.11 illustrates the RDO concept for random design variables. Let us assume that the

offset from the target value is equal for both designs. Consequently, design B is superior be-

cause it leads to a smaller performance variation.

Equation (3.79) shows clearly the aforementioned separation between feasibility and sensi-

tivity robustness. The first type, given by the inequality constraints, could alternatively be

interpreted from a probabilistic point of view. This would change the formulation to [126]

P
(

c(i)(Xd, Xn)≤ 0
)
≤ P(i)

f , (3.80)

which states that the probability of violating the constraint may not exceed P(i)
f . Even though

this expression is based on reliability analysis it is often referred as measure for the robustness

of constraints.

From the author’s point of view, the terms reliability and robustness should be strictly separated

from each other because of their different interpretations. On the one hand, violating reliability

constraints causes a failure of the system. On the other hand, the non-satisfaction of robust-

ness constraints refers to a significant performance degradation which does not necessarily

lead to failure. Hence, we keep the original formulation in Eq. (3.79) in the next subsection.

Robust Design Optimization under Hybrid Uncertainties

The RDO framework discussed in the previous section is not able to deal with the coexistence

of epistemic and aleatory uncertainties. This means that the objective function as well as the

constraint definition of Eq. (3.79) needs to be modified.

In the sequel, we consider the case that Xn is characterized by a distributional p-box and the

design variables Xd are subject to aleatory uncertainty. The main difference to the RDO frame-

work with pure random noise factors is the additional uncertainty of the stochastic descriptors

caused by the epistemic contribution. The mean and standard deviation of the performance

measure as well as the constraints are no longer crisp numbers but interval-valued quanti-

ties. The authors of [45] have developed the following concept to enhance the classical RDO
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framework:
min
µd

x

w1 ∥µ̃y − y∗∥2 +w2 σ̃y +w3 ∆σy

s.t. c(i)(µd
x) = 0 for i = 1, . . . ,neq.

µ
(i)
c + k σ

(i)
c ≤ 0 for i = 1, . . . ,nineq.

µd
x ≤ µd

x ≤ µd
x for i = 1, . . . ,nx

d.

(3.81)

Compared to the objective function in Eq. (3.79) the stochastic moments have been replaced

by the average mean µ̃y and standard deviation σ̃y, i.e., the interval midpoints of [µ
y
,µy] and

[σ y,σ y], respectively. In addition, the objective function is extended with a third term, denoted

as ∆σy, which evaluates the interval width of the uncertain standard deviation. So, the metric

for the sensitivity robustness is a combination of two terms characterizing the aleatory and

epistemic uncertainty of σy.

To account for the epistemic uncertainty in the inequality constraints, the maximum mean µ
(i)
c

and standard deviation σ
(i)
c is used. Contrary to the objective function, the constraint’s formu-

lation itself has not changed. Choosing the maximum value for both stochastic descriptors is

a simplified but conservative approach.

The RDO concept in presence of aleatory and epistemic uncertainties is shown in Fig. 3.12.

Similar to the previous illustration, both designs show the same average performance because

the distance between target and average mean value is the same. However, design B leads

to a lower average standard deviation σ̃y as well as a smaller interval width ∆σy.

g(Xd, Xn)

x y

fX(x) fY (y)

µ̃A
x µ̃B

x

A B

µ̃A
y µ̃B

y

y∗

Figure 3.12 Graphical illustration of a RDO under hybrid uncertainties.

All formulations introduced so far share the idea to implement the robustness criterion into

the objective function. Furthermore, the epistemic contribution is considered by the extra term

∆σy. In literature, alternative RDO strategies can be found:

• Instead of extending the deterministic objective function, the robustness metric can be

treated as an additional constraint. The authors of [69] for example have formulated

an inequality constraint to limit the response standard deviation. A logical extension for

hybrid uncertainties is to formulate a restriction for the maximum value of σy.

• As an alternative to ∆σy, the MMR (minimax regret) criterion can be used to account

for the epistemic uncertainty [83]. Here, the basic idea is to find a design which mini-
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mizes the worst performance in the epistemic space and makes the determination of ∆σy

thereof superfluous.

The first of the two above-mentioned approaches is given in absence of any other equali-

ty/inequality constraints by
min
µd

x

∥µ̃y − y∗∥2

s.t. σ y ≤ k µ̃y,

(3.82)

where the maximum standard deviation σ y may not exceed a multiple of the average mean

response µ̃y. The second modification can be expressed by

min
µd

x

{
max
Θx

(
w1 ∥µ̃y − y∗∥2 +w2 σy

) }
. (3.83)

Compared to the RDO concepts in Eq. (3.79) and (3.81), these formulations are more in

conformity with a worst-case analysis. To conclude, there is no best practice for setting up

a RDO. In the end, the modeler has to find a solution which fits to the requirements of the

analysis. Throughout Section 4.3.2, the different RDO formulations will be discussed again in

context of an analytical test case scenario.

To summarize, the previous sections have provided an overview over state-of-the-art methods

for inverse and forward UQ problems as well as a literature review about the thematic areas

of sensitivity analysis and robust design optimization. Furthermore, the limitations of existing

methods have been discussed in context of mixed aleatory and epistemic uncertainties. For

this reason, new approaches are introduced within the next chapter based on the research

questions from Section 2.3.
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Chapter 4
METHODS

The subsequent chapter covers the methodological part of this thesis and is structured in a

similar fashion as the preceding one. In Section 4.1, a concept for inverse lack-of-knowledge

problems is developed. After that, the focus is put on the field of epistemic sensitivity analysis

(SA) in Section 4.2. Here, a method is introduced to screen out unimportant parameters in

order to reduce the complexity of the computational model. Finally, Section 4.3 deals with

the question how to conduct a robust design optimization (RDO) in presence of aleatory and

epistemic noise variables. Apart from defining an appropriate formulation for the objective

function, developing an efficient RDO framework is key to a successful application in context of

high-dimensional problems such as the interdisciplinary secondary air system (SAS) model.

4.1 Inverse Lack-of-Knowledge Uncertainty Quantification

In Section 3.4, a summary about methods for solving inverse problems under stochastic input-

output relations has been discussed. To repeat, the Bayesian modeling framework has be-

come established when uncertainty sources are modeled by probabilistic approaches. How-

ever, this concept can lead to biased results if the modeler has only little data about the re-

sponse variation. In this case, non-probabilistic approaches can be beneficial, as they require

no a-priori information about the unknown input variation. For example, the method discussed

in Section 3.4.2 is based on the idea to describe the variation of a set of measurement points

Ym by a convex hull CYm
. The actual goal of the inverse uncertainty quantification (UQ) is to
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identify an nx-dimensional interval which matches, after propagating it to the response space,

the convex hull as much as possible.

A crucial limitation of this concept is the computational burden for the determination of convex

hulls in high dimensions. For this reason, an alternative concept is proposed here which uses

a so-called MVEE (minimum-volume enclosing ellipsoid) to characterize the uncertainty. First,

the fundamental principle is explained in Section 4.1.1. Similar to the convex hull approach

shown before, we consider a scenario where the modeler is equipped with a small set of mea-

surement points Ym. After that, the framework is extended in Section 4.1.3 for cases where

the uncertainty is given by descriptive statistics, i.e., the sample mean and standard deviation

of the model response, without knowing the underlying data set. The following paragraphs

have been partly published by the author in [107, 108].

4.1.1 Hyperellipsoid Approach for Limited Measurement Data

As mentioned before, the new approach to solve an inverse problem introduced in this thesis

describes the uncertainty in the output space by a hyperellipsoid instead of a convex hull. A

great benefit of using a hyperellipsoid is its simple mathematical formulation. Furthermore, de-

pendencies between the response quantities can be easily represented. Also, from a stochas-

tic point of view, it is reasonable to model uncertainties by ellipsoids. In [50], the uncertainty of

a system with two input quantities was represented by different geometric figures like a rectan-

gle, parallelogram, ellipse or triangle. It turned out that modeling the uncertainty by an ellipse

leads to the least overestimation of the maximum response in many cases.

The starting point for this approach is the same as in Section 3.4.2. The modeler is faced with

a situation where the measurement set given by

Ym =
{
y
(1)
m , . . . ,y

(nm)
m

}
⊂ Rny, (4.1)

comprises only a small number of points. Now, the uncertainty in the output space is quanti-

fied by a MVEE, i.e., the ellipsoid with the smallest volume that contains all sample points of

Ym. Mathematically, the MVEE of the measurement set Ym can be computed by solving the

optimization problem

minimize
A,b

log(det(A−1))

subject to ∥Ay
(i)
m +b∥2 ≤ 1, i = 1, . . . ,nm,

(4.2)

where A ∈ Rny×ny must be a symmetric and positive definite matrix and b ∈ Rny [27]. An
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optimal solution of Problem (4.2) is denoted by Am, bm and forms the MVEE

EYm
= {y ∈ Rny | ∥Am y+bm∥2 ≤ 1} . (4.3)

Here, the inverse matrix of Am, i.e., A−1
m contains information regarding the main axis lengths

of the MVEE and their orientation whereas the negative vector of A−1
m bm, i.e., −A−1

m bm is

related to the center of the ellipsoid.

Having quantified the uncertainty in the output space, the question remains how to identify the

uncertainty in the input space. In contrast to the convex hull strategy, the input uncertainty set

is also described by an ellipsoid, i.e.,

Ex = {x ∈ Rnx | ∥Ax x+bx∥2 ≤ 1} , (4.4)

with Ax ∈ Rnx×nx and bx ∈ Rnx , where the entries of Ax and bx need to be determined.

From the author’s point of view, it is reasonable to quantify the uncertainty in the input and

output space by the same geometrical shape due to the consistent interpretation. This argu-

mentation will be further clarified in Section 4.1.3. Moreover, if the computational model is a

perfectly linear map, the inverse of an ellipsoid is also an ellipsoid. The same argument also

holds if g(x) is nearly linear on the uncertainty set which might be a feasible assumption if the

set is small enough.

For reasons of simplicity, it is assumed that the input parameters are independent from each

other. This aspect is discussed for the application case in Section 5.1. Thus, the entries of Ax

that need to be determined reduce to its diagonal entries, collected in ax ∈Rnx , and it holds

Ax =


ax,1 · · · 0

... . . . ...

0 · · · ax,nx


∈ Rnx×nx . (4.5)

Due to this simplification, the uncertainty of the input space can be described completely by

the two vectors ax,bx ∈ Rnx .

The basic principle of this approach has a few similarities with the method explained in Sec-

tion 3.4.2. The goal is to identify the uncertainty of the input space by an ellipsoid which has

an image in the output space that coincides with EYm
as closely as possible. As in case of

the previous strategy, the geometry comparison is a key element of the approach. The main

difference is how the uncertainty is quantified. Instead of using hyperrectangles and convex

hulls in the input and output space, the uncertainties are described by hyperellipsoids.

The basic principle is shown by the illustration in Fig. 4.1. Note, that the ellipsoid Ex is de-

scribed by its center point cx and the vector lx containing the main axis lengths. For the
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Figure 4.1 2D representation of the hyperellipsoid approach.

non-rotated case, these geometrical quantities can be derived from ax and bx via

lx = 1/ax, and cx =−A−1
x bx. (4.6)

In the following, the single steps of the approach are explained in detail. As starting point, we

consider the case that an ellipsoid Ex is clearly defined by the vectors ax,bx ∈ Rnx in the input

space. Similar to the convex hull approach, a sampling procedure is necessary to propagate

the uncertainty from the input to the output space. Hence, a set of samples is generated within

Ex in accordance to

Xs =
{
x
(1)
s , . . . ,x

(ns)
s

}
⊂ Ex. (4.7)

The modeler has to ensure that Ex is well represented by the sampling. If the computational

model has a monotonic behavior, it is sufficient to create sample points only from the surface

of Ex. This modification saves computation time without influencing the mapping to the output

space. The generation of samples from an nx-dimensional hyperellipsoid surface can be done

in a two-step procedure. First, a set of samples is generated which lies on the surface of an

nx-dimensional unit ball. Therefore, samples are drawn from an nx-variate standard normal

distribution and subsequently normalized such that each point is represented by a unit vec-

tor [109]. After that, a linear transformation is applied to map all points from the unit ball onto

the surface of Ex. Note, that the samples are no longer uniformly distributed due to the linear

transformation.

After having computed the functional values of the samples, the corresponding uncertainty

set in the output space Ys is obtained. The next step of the procedure is to compute the

associated MVEE which is defined by

EYs
= {y ∈ Rny | ∥As y+bs∥2 ≤ 1} . (4.8)

Thus, two ellipsoids are available in the output space: EYm
and EYs

. Similar to the approach

from Sec. 3.4.2, a metric has to be introduced to compare the two ellipsoids with each other.
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For measuring the discrepancy between EYm
and EYs

, a linear transformation is used to avoid

an influence of the axis scaling. Here, the linear map defined by Am y+bm for y ∈ Rny maps

EYm
onto the ny-dimensional unit ball which is the set of all y ∈ Rny with ∥y∥2 ≤ 1. If the same

map is applied to EYs
, a set ÉYs is obtained which shall be close to the unit ball. Using the

property that the linear map defined by As y+bs for y ∈ Rny maps EYs
onto the unit ball with

AsEYs
+bs =AsA

−1
m (AmEYs

+bm)︸ ︷︷ ︸
=ÉYs

−AsA
−1
m bm +bs, (4.9)

it is desired that AsA
−1
m = Iny and AsA

−1
m bm +bs = 0 hold, where Iny is the ny × ny identity

matrix. Note that the comparison of AsA
−1
m against the identity matrix, and not against an

arbitrary orthogonal matrix, is sufficient here, as Am and As are symmetric positive definite

matrices, i.e., they are unique in Eq. (4.3) and (4.8). Hence, the discrepancy between the

ellipsoids EYm
and EYs

is measured by the following terms:

∆A= ∥AsA
−1
m −Iny∥2, (4.10)

∆b= ∥bs −AsA
−1
m bm∥2. (4.11)

If the two ellipsoids are identical, both terms take the value zero, otherwise their discrepancies

are penalized. Hence, the metric to describe the mismatch between the ellipsoids is given by:

objE(ax,bx) = ∆A2(ax,bx)+∆b2(ax,bx). (4.12)

Based on the mathematical formulation of the objective function, the concept of the inverse

UQ is to minimize the geometrical discrepancy by optimizing the vectors ax and bx. This can

be expressed by:

minimize
ax,bx

objE(ax,bx)

subject to ax ≥ 0.

(4.13)

The basic principle of the discrepancy measure derived in Eq. (4.9) is shown in Figure 4.2 for

the 2D case. To both of the ellipsoids, the same linear transformation is applied. In case of the

measurement ellipsoid, this leads to a mapping of EYm
to the unit ball. In contrast, the trans-

formed ellipsoid of EYs
, i.e., ÉYs , deviates from the unit ball unless EYs

matches EYm
perfectly.

As a reminder, for the issue of identifying the optimal hyperrectangle Cx, a population-based

optimization strategy was recommended. One of the main advantages of using a global opti-

mization strategy is the good performance in exploring the design space. The same approach

can be applied to Problem (4.13), with the difference that a population of hyperellipsoids in-

stead of hyperrectangles is generated in every step.

However, the inverse problem can also be solved by a local optimization strategy. In this case,
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Figure 4.2 Graphical representation of the discrepancy measure.

the solution is developed in two steps. First, the uncertainty in the input space is approximated

with the help of a local linearization of the computational model. After that, the obtained so-

lution is used as starting point for the actual optimization procedure. For the first step, we

assume that g(x) is approximately linear on the optimal Ex, i.e.,

EYm
≈ g(Ex). (4.14)

If g is perfectly linear, there is an equal sign in Equation (4.14). Under this assumption, the

propagation of an ellipsoid throughout the model leads also to an ellipsoid in the output space.

Thus, EYm
is the image of an approximate solution Ẽx = {x ∈ Rnx | ∥Ãx x+ b̃x∥2 ≤ 1} in the

input space for the local linearization of g. In order to obtain such a local linear model, a first-

order approximation of g at a point x0 ∈ Rnx that maps to the center point of EYm
is used, i.e.,

g(x0) =−A−1
m bm. In order to do so, the Jacobian matrix Jg is computed at x0 and the relation

A2
x ≈ JT

g A2
mJg (4.15)

is used to approximate Ax. Again, if g is linear, there is an equal sign in Eq. (4.15). As

JT
g A2

mJg is usually not a diagonal matrix, only their diagonal entries are extracted for Ãx.

Note that this procedure is only possible if these entries are all positive. The point x0 can then

be used as the center point of Ẽx with b̃x = −Ãxx0. Hence, the first part of the inverse UQ

is completed. The accuracy of the approximate solution Ẽx can be checked by computing the

value of the objective function according to Eq. (4.12). The precision is strongly dependent on

the characteristics of the real model. The stronger the nonlinearity of g the higher the risk that

Ẽx is further away from the optimum.

If the modeler is already satisfied with the initial approximation of the input uncertainty, the

subsequent optimization is not necessary. Otherwise, the identified input uncertainty Ẽx is

used as starting point for an optimization procedure. Here, a local strategy is practical be-
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cause the initial solution should already be close to the optimum. As the optimizer can vary

the parameter bx freely, the center of the optimized ellipsoid does not necessarily have to co-

incide with the center point of EYm
. Nevertheless, the local strategy might not find the global

optimum of Problem (4.13) if the start values ãx and b̃x are too far away from it. Instead, the

optimizer converges to a local optimum. By assigning weighting factors to the components of

Eq. (4.12), the performance of the algorithm can be improved. Alternatively, the modeler can

use a population-based optimization strategy.

The general concept of the hyperellipsoid approach as well as the difference between the lo-

cal and global optimization technique is illustrated by an analytical test case within the next

subsection.

4.1.2 Analytical Example

Let us consider a test model g which has two dimensions in the input as well as in the output

space in order to have a clear representation of the results. Its analytical description is given

by

g : R2 → R2,

x1

x2

 7→

y1

y2

=

0.5x2
1 +3x1 +2x2

0.5x2
2 + x1 +4x2

 . (4.16)

In order to create a measurement set Ym, samples are generated from a known probability

distribution. Here, two different cases are considered for which each 40 input samples are

generated:

Case 1: The measurement set is sampled from a two-dimensional normal distribution

with a mean value at x1 = x2 = 5.0. The two random variables are not correlated with

each other which is why the off-diagonal entries of the covariance matrix take the value

zero. Both variables have a standard deviation of one. Moreover, we consider a truncated

normal distribution which generates exclusively samples that have a probability of at least

0.05. This modification is intended to prevent the measurement set from outliers.

Case 2: A uniform instead of a normal distribution is used to generate the measurement

set. The sample points in the input space are created by a uniform sampling procedure

within the region x1,x2 ∈ [2.5,7.5].

Then, the output samples, which are obtained by propagating the input samples through the

model g, are used as measurement set Ym for the subsequent investigations and the realiza-

tions in the input space are no longer considered because this information is usually not given

for a real application.

The sample points Ym are represented by black points in the output space, see Figures 4.3(b)
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and 4.3(d). For both cases, the convex hull CYm
and the MVEE EYm

are computed. As CYm
is

the smallest convex set that contains Ym, it holds

CYm
⊂ EYm

. (4.17)

The corresponding shapes are represented in a light blue (EYm
\CYm

) and light green (CYm
)

color. Using the inverse UQ based on the hyperrectangle identification approach from Sec-

tion 3.4.2, a dark green rectangle in the input space is yielded, see Figures 4.3(a) and 4.3(c).

Note that the convex hull CYs
can be quantified by propagating the four corner points of Cx as

g is monotonous for positive input values.

For the hyperellipsoid approach from Section 4.1.1, the initial ellipse obtained from Eq. (4.15)

is depicted by dotted blue lines and the final result of the optimization by the solid blue lines in

Figures 4.3(c) and 4.3(d).

In order to assess the solution, it is also investigated which points in the input space map to

CYm
and EYm

. The set of all these points, i.e., g−1(CYm
) and g−1(EYm

) = g−1(EYm
\CYm

)∪
g−1(CYm

) are colored in light blue and green, similar to the associated images in the output

space.

We start with the interpretation of the results from case 1, depicted in Figure 4.3(a). For the

hyperrectangle identification approach, the goal of the optimization is to find a rectangle that

coincides, after propagating it to the output space, with the convex hull CYm
in the output space

as much as possible. Therefore, Cx should also be a good representation of the green region

in the input space. However, the corner areas of Cx include points which do not coincide with

CYm
in the output space. This comes from the fact that one term of the objective function (see

Eq. (3.60)) compares the areas of CYm
and CYs

. If Cx was completely inside the green region,

this requirement would be fulfilled badly.

Now, the focus is put on solving the inverse problem with the new approach from Section 4.1.1.

It can be observed that the MVEE is a rather good approximation of the measurement set Ym

because the ellipse runs mostly close to the convex hull. Thus, the approximation of the uncer-

tainty via the MVEE is only associated with a small overestimation. The ellipsoid Ex in the input

space covers a very small area outside the blue region for small values of x1 and x2. However,

the image in the output space runs also clearly outside EYm
if y1 and y2 take large values as

can be seen in Fig. 4.3(b). The reason for this is the overestimation of the uncertainty set Ys

by EYs
. Due to the quadratic terms in Eq. (4.16), the propagated sample points contained in

Ex are not perfectly arranged in an elliptical shape in the output space. Thus, the ellipse EYs
is

not able to describe the uncertainty of Ys without an overestimation. As a consequence, the

uncertainty of the input quantities tends to be underestimated by Ex.

In the following, the results of the hyperrectangle and hyperellipsoid approach are opposed to

each other for the second case of the analytical example. Again, we start with the analysis

of the rectangle identification. Figure 4.3(c) shows that the identified rectangle Cx is a good
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(c) Case 2 - input space.
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EYs

CYs

(d) Case 2 - output space.

Figure 4.3 Input and output space representation for the analytical test case.

approximation of the green region. Similar to the previous test case, Cx includes points in the

corner areas with a functional value outside CYm
. Nevertheless, these regions are smaller as

in the first test example. One can conclude that the degree of conservatism is not as high as

before.

Last but not least, the solution obtained by the ellipse identification is discussed. In Fig. 4.3(d),

it can be seen that the measurement set is not so well represented by EYm
as in the previous

test case. Especially for small values of y1, the ellipse is not really close to the convex hull

with the consequence that the uncertainty of Ym is overestimated by the MVEE. Furthermore,

Fig. 4.3(d) shows that EYs
coincides almost exactly with EYm

. The modeler could conclude

that the obtained solution is a very precise quantification of the input uncertainty. However, the

representation of the input space in Fig. 4.3(c) clarifies that this conclusion should be drawn

with caution because a significant part of the ideal image of EYm
is not captured by Ex. Hence,

the identified ellipse is an underestimation of the true input uncertainty. Basically, the same
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phenomenon has been observed for the first test case. Again, the reason are the quadratic

terms of the underlying function which lead to an image of Ex in the output space that has not

a perfect elliptical shape.

To summarize, both the hyperrectangular and the hyperellipsoid identification show reason-

able results. The rectangle identification provides a better solution for the second test case

because it is a good approximation of the set of points g−1(CYm
) = {x | g(x) ∈ CYm

}. In con-

trast, the hyperellipsoid approach is more convincing for the first case as Ex matches the blue

region in Fig. 4.3(a) relatively well. However, this conclusion has to be discussed in view of

the number of sample points contained in the measurement set Ym and the nonlinearity of the

model. In case Ym comprises an extremely small number of samples, the two approaches

would lead to similar results in both test cases because the rectangular/elliptical shape is not

clearly identifiable in the output space. On the other hand, if Ym contains a lot of points the

influence of the different distributions on the measurement sets would become clearer. But

then, the question arises if a probability distribution fitting would be more reasonable instead

of considering the uncertainty in terms of uncertainty sets.

As mentioned above, also the degree of nonlinearity of g plays an important role. If the un-

derlying function was highly nonlinear, the mapping of uniformly distributed samples in the

input space would lead to a measurement set in the output space which is not close to a

rectangular shape. To conclude, the question of when to use which of the two approaches

is strongly dependent on the characteristics of the model and the amount of data. Giving a

general recommendation is therefore not meaningful.

4.1.3 Modified Hyperellipsoid Approach for Stochastic Moments

Now, the following scenario should be analyzed. For a given computational model, a com-

prehensive number of measurements has been executed to quantify the uncertainty of the

output space. However, the modeler is not provided with the raw data itself but with the mean

values µy ∈ Rny and variances σ2
y ∈ Rny of the output quantities. As the measurement points

themselves are not given, a probability distribution fitting is not possible without making further

assumptions. The modeler has to deal with the question how to describe the uncertainty of

the response quantities based on the given mean values and variances.

For this issue, it is referred to the Chebyshev inequality. In general, this inequality provides an

upper bound for the probability that a scalar random variable (n = 1) deviates from its mean

value more than a certain threshold. For the determination of the upper bound only the vari-

ance of the random variable must be given without knowing the underlying type of distribution:

P(|y−µy| ≥ k)<
σ2

y

k2 , (4.18)

where k ∈ R describes the deviation of the random variable from its mean value. In [37], this

concept was extended for multivariate random vectors. As in case of a scalar random variable,
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the exact distribution is not required:

P
(
(y−µy)

TΣ−1
y (y−µy)< k

)
≥ 1−ny/k, (4.19)

where ny is equal to the dimensionality of the random variable and Σy is the covariance matrix.

The latter is a symmetric, positive semi-definite matrix that describes the dependency between

the variables. It is given by

Σy =


σ2

y,11 . . . σ2
y,1ny

... . . . ...

σ2
y,ny 1 . . . σ2

y,ny ny


∈ Rny×ny , (4.20)

where σ2
y,i j ≥ 0 and σ2

y = (σ2
y,11, . . . ,σ

2
y,nyny

) holds. From Eq. (4.19) one can derive the expres-

sion for an ellipsoid in the output space for a given k-factor. Though the measurement data

set itself is not provided in this case, the equation is assigned with a subscript "m" to keep the

notation introduced in Section 4.1.1

EYm
=
{

y ∈ Rny | ∥Σ−1/2
Y y−Σ

−1/2
Y µy∥2 ≤

√
k
}
. (4.21)

The probability that a sample drawn from the random vector Y lies inside the ellipsoid is at

least (1−ny/k) ·100%. Thus, the covariance matrix Σy is related to the matrices Am and bm

by

Am =
1√
k
Σ

−1/2
Y , and (4.22)

bm =− 1√
k
Σ

−1/2
Y µy. (4.23)

The choice of the k-factor has to be made by the modeler. For a conservative approach, a

high value for k should be taken which results in an ellipsoid with large main axes.

However, the derivation of Am and bm with the help of the Chebyshev inequality requires

knowledge about all entries of the covariance matrix Σy. If the correlation between the re-

sponse quantities is known, the ellipsoid EYm
can be determined without any additional steps.

In this case, the procedure of the inverse UQ is identical to the one introduced in Section 4.1.1.

Otherwise, if only the variances are known, one has basically two options how to deal with

this problem. The first one is to estimate the dependencies between the response quantities

based on experience. The second one is to derive the covariance matrix from the computa-

tional model itself under further assumptions.
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For the first case, Σy is assumed to be known and EYm
can be determined as if the covariance

matrix was given from the beginning. As we assume that the input quantities are independent,

the covariance matrix yields

Σx =


σ2

x,1 . . . 0

... . . . ...

0 . . . σ2
x,nx


∈ Rnx×nx , (4.24)

where σ2
x,i ≥ 0, i = 1, . . . ,nx can be collected in σ2

x ∈ Rnx because the off-diagonal entries are

all zero.

Similar to the hyperellipsoid identification of a limited set of measurement points, the original

model is replaced by a first-order approximation. The linearization of g enables to propagate

uncertainties throughout the simplified model by the analytical expression

Σy ≈ JgΣxJ
T
g , (4.25)

where Jg ∈ Rny×nx is the Jacobian matrix. As a reminder, the Jacobian is evaluated at x = µx

which is the image of µy in the input space. Therefore, the corresponding vector µx has

to be determined beforehand. The remaining steps of the inverse UQ are identical to those

presented in Section 4.1.1.

The task is more challenging, if one has no information about the dependency between the

response quantities. Since we are only provided with the variances of the output quantities,

the diagonal entries of Σy are known. So, we want to identify the entries of σ2
x ∈Rnx such that

the diagonal entries of Σy match with the corresponding entries of JgΣxJ
T
g . Thus, a system of

linear equations can be set up which has nx unknowns σ2
x,1, . . . ,σ

2
x,nx

and ny known parameters

σ2
y,1, . . . ,σ

2
y,ny

, i.e.,


σ2

y,1

...

σ2
y,ny


︸ ︷︷ ︸

σ2
y

=


∑

nx
i=1 j2

g,1 i σ2
x,i

...

∑
nx
i=1 j2

g,ny i σ2
x,i


=


j2
g,11 . . . j2

g,1nx

... . . . ...

j2
g,ny 1 . . . j2

g,ny nx


︸ ︷︷ ︸

=:J2
g


σ2

x,1

...

σ2
x,nx


︸ ︷︷ ︸

σ2
x

, (4.26)

where jg, ji represents the elements of the Jacobian Jg. A solution σ2
x to an equation of the

form of Eq. (4.26) exists in general if rangJ2
g = rang(J2

g | σ2
y ). However, it is not necessarily
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guaranteed then that σ2
x,i ≥ 0, i = 1 . . . ,nx, holds. If this is the case or if no solution to Eq.

(4.26) exists, it is proposed to compute σ2
x by solving the following optimization problem:

minimize
σ2

x

∥J2
g σ

2
x − σ2

y∥2

subject to σx ≥ 0,

(4.27)

where J2
g is the element-wise square matrix of the Jacobian. By substituting the resulting vari-

ances of the input quantities into Eq. (4.25), we obtain the covariance matrix Σy in the output

space.

Once the entries of Σy are fully determined, the actual inverse UQ can be conducted. The re-

maining steps described in the following are rather similar to the approach from Section 4.1.1.

At first, the modeler decides about the k-factor value to derive an equation for the measure-

ment ellipsoid EYm
according to Eqs. (4.22) and (4.23). After that, the minimization problem

can be set up which is equivalent to the formulation given in Eq. (4.13). Since we maintain

the assumption that all input quantities are independent from each other, the goal is again to

identify the vectors ax ∈ Rnx and bx ∈ Rnx . The geometric dimensions of Ex, i.e., the center

point cx and axis lengths lx, can be derived from Eq. (4.6). However, as the uncertainty on the

response parameters is initially provided by stochastic moments, it is reasonable to represent

the input variation in the same fashion. The transformation is given by

µx =−A−1
x bx, and (4.28)

Σx =A−2
x /k. (4.29)

The k-factor for the input space has to be chosen such that P(X ∈ Ex) = P(Y ∈ EYs
) holds.

When comparing the expressions from above with Eq. (4.6), one can derive that the midpoint

of Ex is equal to µx and the axis lengths are derived by lx = σx
√

k.

x1

x2

y1

y2
y
(i)
s

g(Xs) EYs

EYm

µx,1

µ
x,

2 σx,1
√

k

µy,1

µ
y,

2 σy,1
√

kσ
y,

2√
k

x
(i)
s

σx,2
√

k

Figure 4.4 2D representation of the modified hyperellipsoid approach.
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A graphical representation of the modified hyperellipsoid approach can be seen in Fig. 4.4.

The ellipsis (Ex) as well as its image on the output side (EYs
) are colored in black. The ellipsis

EYm
derived from the Chebyshev inequality and the known statistical moments has a gray

color. It is completely enclosed by a rectangle which shares the same midpoint. The entries

of the variance vector σ2
y are directly related to half the side lengths.

To repeat, the core of the method consists in solving an optimization problem. Again, the

modeler has several options how to find a solution. From the author’s point of view, it is

reasonable to start with a linearization of the computational model. Hence, Eq. (4.26) can

be used to obtain an approximation for σ2
x . The corresponding ellipsoid Ẽx in the input space

conforming to σ2
x is given by

Ãx =
1√
k
Σ

−1/2
x , and (4.30)

b̃x =− 1√
k
Σ

−1/2
x µx. (4.31)

It has to be kept in mind that the obtained solution Ẽx is derived from a first-order approxi-

mation of the computational model. If g is nearly or even perfectly linear for x ∈ Ẽx the initial

solution is close to the optimal one. Otherwise, the corresponding image of Ẽx in the output

space deviates clearly from EYm
. The quality of the approximated solution can be measured

by the metric introduced in Eq. (4.12).

At this point, the modeler has to make the decision if the matching accuracy between the el-

lipsoids is precise enough. If the initial solution is not close to the measurement ellipsoid, an

adjacent optimization can improve the precision of the inverse UQ significantly.

In general, it is recommended to solve the optimization problem with a local strategy and use

Ẽx as starting point. If there is still a significant mismatch between EYm
and the final solution

EYs
, one should think about a modification of the objective function by introducing weighting

factors to its components. As an alternative, a global, population-based optimization method

could be used instead. This type of optimization takes usually more time but is less prone to

finding only a local optimum.

As the modified approach is applied to a real-world problem in Section 5.1, the analytical exam-

ple from Section 4.1.2 is only discussed briefly. Basically, only the steps until the determination

of EYm
are different. Instead of deriving the ellipse from a measurement set, EYm

is defined by

a provided mean vector and covariance matrix. If we consider the case that the correlations

between the response quantities are unknown, the dependencies must be computed by the

first-order approximation of the function.

4.1.4 Post-Processing: Probability-Box Representation

The final step of the inverse hyperellipsoid framework is to find an appropriate representation

which enables the simultaneous variation of all uncertain model input quantities. To clarify
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this statement, we consider a model characterized by a set of uncertain inputs X ∈ Rnx . Let

us assume that a subset of X has been quantified from the hyperellipsoid approach whereas

the remaining parameters are described by probability distributions. In order to conduct a

sampling-based uncertainty propagation of all input parameters, an adequate representation

for Ex is sought which can be combined with other UQ models.

The first logical step is to express Ex with the help of Chebyshev’s inequality by its stochastic

moments. As the inverse UQ process is based on a scarce data set, assigning a specific

cumulative distribution function (CDF) to the parameter is hard to justify. Instead, a p-box rep-

resentation is suitable to account for the epistemic uncertainty. In the following, various p-box

concepts are discussed.

A consistent approach is to derive a distribution-free p-box from the Chebyshev inequality ac-

cording to Eq. (3.39). On the one hand, a great benefit is that no additional assumptions have

to be made because the bounding curves rely exclusively on the stochastic moments. On

the other hand, the rigor-preserving property can lead to a conservative p-box representation.

Hence, the wide envelopes may include CDFs with stochastic properties that differ significantly

from the desired ones. This is problematic when it comes to the uncertainty propagation be-

cause the resulting lower and upper p-box bounds in the response space tend to overestimate

the true variation.

This problem is illustrated in Figure 4.5. On the left side, an ellipsis Ex is shown which charac-

terizes the uncertainty of a two-dimensional input space. The corresponding distribution-free

p-boxes, derived from Chebyshev’s inequality, are depicted by the solid black lines. On the

right, the ellipsis EYs
is shown which is defined as the MVEE of the propagated set of sample

points Ys. Again, the associated p-boxes are aligned to the coordinate axes. The underlying

analytical function is equal to the one in Eq. (4.16) from Section 4.1.2.

To compare, the distribution-free p-boxes are directly propagated throughout the model by the

slicing algorithm. Therefore, they are discretized by a set of ns = 16 bivariate intervals of

equal probability XI
s = {xI,(1)

s , . . . ,x
I,(ns)
s } ⊂ IR2, also referred to as Dempster-Shafer struc-

ture. After that, the intervals are propagated separately through the model which yields a set

of bivariate intervals YI
s. Finally, the lower and upper bounds in every dimension are used to

define the p-box envelopes in the response space. An extensive discussion about this propa-

gation concept can be found in Section 3.3. The intervals as well as the resulting p-boxes are

depicted by gray lines in Fig. 4.5. One can see clearly, that the direct p-box propagation leads

to even wider, i.e., more conservative envelopes.

Hence, the distribution-free p-box concept is a valid option to represent the uncertainty on the

input space but the results from the uncertainty propagation should be treated with caution.

Due to the extreme degree of conservatism, the propagated bounds are only useful for ana-

lyzing the extreme values.

In order to overcome this issue, distributional p-box representations can offer an alternative. In

contrast to free p-boxes, the modeler can exclude undesired CDFs from the definition. How-
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Figure 4.5 2D example: Comparison between distribution-free p-box propagation and ellipsis propagation.

ever, this type offers less flexibility as it requires the specification of a certain distribution type.

As a reminder, the goal is to deduce a consistent p-box formulation from a known mean and

variance. Here, two concepts are compared with each other that are based on different distri-

bution types: beta and normal distribution.

The first one is a flexible distribution type which can take various shapes. In the standard-

ized form, it is defined on the closed interval [0,1] and described by the shape parameters

Θx = {α,β}> 0. Its CDF is given by

FX(x|α,β ) =
1

B(α,β )

∫ x

0
tα−1(1− t)β−1dt, (4.32)

where B(α,β ) denotes the beta function. The mean and standard deviation are directly related

to the shape parameters and can be determined by the following analytical expressions:

µx =
α

α +β
, and σx =

√
αβ

(α +β )2 (α +β +1)
. (4.33)

More detailed information about the characteristics of the beta distribution can be found in [8].

To define the beta distribution on a closed interval other than the standardized space, a lin-

ear transformation can be applied to Eq. (4.32) which shifts the bounds from [0,1] to [a,b].

Accordingly, the transferred mean and standard deviation in the physical space are

µ
′
x = a+(b−a)µx, and σ

′
x = (b−a)σx. (4.34)

The general idea is to use the beta distribution to generate an ensemble of CDFs which all

share the same mean (µ⋆
x ) and standard deviation (σ⋆

x ) obtained from the inverse UQ. Thereby,
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a set of distribution functions with various shape parameters is defined on the unit space. After

that, the lower and upper bound are determined according to

a = µ
⋆
x −

σ⋆
x

σx
µx, and b = µ

⋆
x +

σ⋆
x

σx
(1−µx), (4.35)

such that every single CDF fulfills the desired stochastic properties, i.e., µ ′
x = µ⋆

x and σ ′
x = σ⋆

x .

In many cases, it is reasonable to introduce additional constraints which restrict the feasible

space for α and β . For example, the modeler could define a lower bound for the standard

deviation or restrict the range of other stochastic descriptors in the unit space. With the help

of this preliminary setting, one can include experience-based information which has not been

considered in the hyperellipsoid identification process.

In the following, we consider a test case where the known stochastic properties are given by

µ⋆
x = 5.0 and σ⋆

x = 1.0. In addition to that, the feasible space for α and β is restricted by the

following assumptions:

• The probability density function (PDF) is unimodal → α,β > 1.0;

• The standard deviation in the unit space may not fall below 1/12;

• The skewness of the distribution lies within [−0.75, 0.75].

The second property ensures that the range of the physical space, i.e., the interval width of

[a,b], is not getting too large and thus does not contain meaningless values. In general, the

threshold on the standard deviation can be derived from Eq. (4.34) if the modeler wants to

restrict directly the physical space. The third and last criterion affects the skewness of the

p-boxes such that only CDFs with γx ∈ [−0.75, 0.75] are covered. As we apply a linear trans-

formation, the skewness property is not affected by the transition from unit to physical space.

In Fig. 4.6(b), the distributional p-box is depicted in gray and compared with the unconstrained

Chebyshev p-box. Figure 4.6(c) represents the constraints from the listing above in the α/β -

space.

(a) Skew normal p-box. (b) Beta p-box.

γx=−0.75

γx=0.75

σx=1/12

(c) Feasible α −β space.

Figure 4.6 Constructing a distributional p-box from a given mean and variance on the basis of a skew normal (left) and beta
distribution (middle).
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The enormous flexibility of the beta distribution can also be used to derive p-box represen-

tations for other constraints than the one discussed before. For example, one can introduce

bounding conditions on other stochastic descriptors like mean, mode or median. A deeper

discussion on this can be found in Section 5.2.1.

Since the beta distribution is defined on a closed interval, it is especially appropriate if X is

characterized by a crisp minimum and maximum value. A drawback of this property is that it

can lead to numerical problems for specific sampling strategies like the non-intrusive imprecise

stochastic sampling (NISS) approach discussed in Section 4.3.1. As this concept is based on

the importance sampling (IS), computing the ratio of different probability density function val-

ues is part of it, see Eq. (3.48). Here, the ratio can take the value zero if the two PDFs are

modeled by beta distributions defined on different interval ranges. In [133], different concepts

are analyzed to solve this issue, e.g., by adding further restrictions on the shape parameters

or introducing artificial density values on the sample points outside the physical range.

As an alternative, a p-box could be derived on the basis of a normal distribution. The reason

for choosing this type is related to the principle of maximum (information) entropy. To clarify

this, we have to dive into the field of information theory. There, a fundamental principle is to

quantify the information content of a random event P(X = xi) = pi by

I(pi) :=−log(pi). (4.36)

Basically, Eq. (4.36) states that rare events, i.e., pi is small, provide more information than

common ones. Based on that, the entropy H(X) of a random variable X is formally defined as

its expected information content. For a continuous random variable, the following expression

holds [86]

H(X) :=
∫ +∞

−∞

fX(x)I(x)dx =−
∫ +∞

−∞

fX(x) log( fX(x))dx. (4.37)

Coming back to the actual problem, the entropy concept can be used to determine a probability

distribution for a given set of data about the random quantity. As implied by the term "principle

of maximum entropy", the PDF with the highest entropy is chosen to characterize the random

variable. In comparison to all other distributions, the maximum entropy distribution introduces

the least amount of additional information and is therefore also the least biased one.

In case of knowing the first and second stochastic moment, the Gaussian distribution fulfills

this criterion. Within the framework of distributional p-boxes, the probabilistic modeling ap-

proach can be extended easily by the skew normal distribution function which is a generalized

form of the Gaussian. This distribution type is obtained by multiplying the Gaussian density

function with a skewing function that includes an additional shape parameter. Hence, its PDF

is conditional on three hyperparameters [14]

fX(x |ζ ,ω,δ ) =
2√

2π ω
e−

(x−ζ )2

2ω2

∫
δ ( x−ζ

ω
)

−∞

1√
2π

e−
t2
2 dt, (4.38)
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where ζ ∈ R and ω ∈ R+ denote the location and scale parameter, respectively. The third

parameter δ ∈ R is related to the skewness of the PDF. For the special case of δ = 0, the

skew normal distribution coincides with the Gaussian and the two remaining parameters are

equivalent to mean and variance.

Figure 4.6(a) shows the skew normal p-box derived from the same boundary conditions on

mean, variance and skewness range as the beta-distributional p-box illustrated to the right of

it. The enclosed area is in both cases significantly smaller than the one from the Chebyshev

p-box. The main reason lies in the rigor-preserving property of the free p-box. Besides from

that, the Chebyshev inequality does not consider any limitation on the skewness parameter.

Analyzing the two gray-shaded distributional p-boxes with each other demonstrates the higher

flexibility of the beta distribution. This impression is confirmed by measuring the area between

the envelopes which is roughly 56 % higher than for the skew normal type.

In the previous paragraphs, various concepts have been analyzed to model the stochastic

moments derived from the inverse UQ in an adequate manner. To summarize, the free p-box

concept is beneficial to represent the epistemic uncertainty. Due to the high degree of con-

servatism, it is not useful for the uncertainty propagation because it leads to extremely wide

bounds in the response.

For this reason, two different distributional p-box methods have been introduced. Here, the

family of beta distributions provides great flexibility for constructing a p-box from the known

mean and variance. A crucial downside is that any CDF is defined on a closed interval which

can lead to numerical problems. Alternatively, a p-box can be derived from the skew normal

distribution which is a logical approach from the entropy point of view. For a constant mean

and variance, the p-box is described by only one uncertain hyperparameter. Compared to the

beta distribution, this type is supported on the whole real line but it offers less flexibility with

regard to the shape of the CDFs.

In general, one could think about using a different distribution type than the beta and skew

normal. For example, if the focus of the uncertainty study is on determining the failure proba-

bility the chosen type should allow the modeler to control the tail thickness. The skew normal

distribution is not appropriate in this case because its rate of decay is at least as high as the

one from a Gaussian [15]. Instead, student’s t-distribution would be a better basis because it

is equipped with an extra tail weight parameter. Within the scope of this thesis, the overall goal

is to optimize the design under robustness criteria. Hence, providing a p-box with a large tail

flexibility is of minor importance.
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Figure 4.7 Flowchart of the modified hyperellipsoid approach.
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4.2 Epistemic Variable Screening

Sensitivity studies play a decisive role for the identification of important parameters and en-

able to reduce the model complexity. Especially in context of industrial problems, which are

usually characterized by a high-dimensional input space, reducing the number of parameters

is essential. The review on state-of-the-art sensitivity methods in Section 3.5 has shown that

a variety of concepts is available to identify the importance of aleatory uncertainty sources.

However, for pure epistemic or hybrid uncertainties comparatively little literature is available.

Within the following paragraphs, a sensitivity concept for hybrid uncertainties is introduced

which aims at separating important epistemic parameters from unimportant ones. The prin-

cipal idea is to quantify the relevance of all uncertain hyperparameters which supposes that

mixed aleatory-epistemic uncertainties are modeled by distributional p-boxes. If it turns out

that a subset of hyperparameters has a negligible effect, the corresponding epistemic compo-

nents are reduced to a constant value. This is illustrated by Fig. 4.8 which depicts a three-

dimensional input space X ∈ R3 on the left side where every X ∈ X is defined by a normal

distribution with uncertain mean and variance, i.e., µx and σx are given as interval-valued pa-

rameters. Let us assume that the sensitivity study has revealed a low importance for µx,1 and

σx,1 as well as a minor contribution of µx,2. This allows the modeler to apply a reduction in the

epistemic space by setting the mentioned distributional parameters to their nominal values.

Thus, X1 is represented by a single CDF and the p-box representation of X2 is solely based on

the uncertain standard deviation whereas the representation of X3 remains unchanged. The

reduced input space is shown on the right side of Fig. 4.8.

A critical aspect of the sensitivity framework is to introduce an appropriate measure to quan-

tify each parameter’s importance. Unlike for aleatory uncertainties, no standardized metric,

Epistemic
Sensitivity Analysis

No reduction

Red
uc

tio
n of

µ x,
σ x

Reduction of µx

Figure 4.8 Graphical representation of the epistemic variable screening concept.
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such as the decomposition of the response variance, has become established. Since we want

to achieve a robust design in the end, the SA is based on the analysis of ∆µy and ∆σy, i.e.,

the epistemic uncertainty of the response mean and standard deviation. A hyperparameter

θ
(i)
x ∈Θx is declared as irreducible if it has a decisive contribution on ∆µy or ∆σy.

In the sequel, the epistemic SA concept is explained in a detailed way. At first, the Taylor

series method is introduced as an alternative to sampling-based uncertainty propagation tech-

niques. After that, we are dealing with the determination of the epistemic sensitivity indices.

The approach we are pursuing here builds upon the one-at-a-time (OAT) sensitivity strategy,

see Section 3.5.1. The basic OAT principle will be extended in order to evaluate interactions

between the uncertain hyperparameters.

Taylor Series Method

Within the theoretical review provided in Section 3.3, a variety of uncertainty propagation meth-

ods has been exemplified which are all based on the calculation of sampling points. As an

alternative, a Taylor-series-based uncertainty propagation can be used which is typically more

time-efficient but offers therefore less accurate results [144].

Instead of computing functional values of random samples, partial derivatives of the input-

output relationship must be derived. For the general multivariate case, i.e., nx > 1, the Taylor

series expansion is given by [47]

g(x) = g(x⋆)+
nx

∑
i=1

∂g
∂xi

(xi − x⋆i )+
1
2!

nx

∑
i=1

nx

∑
j=1

∂ 2g
∂xi ∂x j

(xi − x⋆i )(x j − x⋆j)+ . . . , (4.39)

where x⋆ denotes the expansion point. In many study cases, the function g(x) is approximated

by a first-order Taylor series expansion, i.e., the model is linearized at x = x⋆. Consequently,

the uncertainty propagation becomes a cheap operation because only nx partial derivatives

must be evaluated. As outlined before, the gain in computation time happens in expense of

the approximation accuracy, especially for a nonlinear behavior of g(x).
For the epistemic variable screening, the potentially low accuracy is not the only reason why we

prefer a higher-order series expansion. When applying the method to the industrial application

case, the set of hyperparameters Θx comprises uncertain mean values, standard deviations

and skewness parameters. In order to take the latter into account, a Taylor series of at least

third order is needed to approximate the response mean whereas a second-order series is

sufficient for the standard deviation. As we assume independence between all input quantities

E
[
(xi − x⋆i )(x j − x⋆j)

]
= E [(xi − x⋆i )] E

[
(x j − x⋆j)

]
= 0 for i ̸= j (4.40)

holds which simplifies the expressions for µy and σy. The approximation of the first stochastic

moment is obtained by applying the expectation operator to Eq. (4.39). Considering the simpli-
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fications from the independence assumption, the approximation of the response mean yields

for the third order Taylor series

µy
3rd

≈ E [g(µx)]+
1
2!

nx

∑
i=1

(
∂ 2g
∂x2

i

)
E
[
(xi − x⋆i )

2]+ 1
3!

nx

∑
i=1

(
∂ 3g
∂x3

i

)
E
[
(xi − x⋆i )

3]︸ ︷︷ ︸
=γx,i E[(xi−x⋆i )

2]
3/2

= g(µx)+

nx

∑
i=1

{
1
2

(
∂ 2g
∂x2

i

)
σ

2
x,i +

1
6

(
∂ 3g
∂x3

i

)
γx,i σ

3
x,i

}
,

(4.41)

where the expansion point x⋆ should coincide with the input mean vector µx.

To repeat, a second-order Taylor series is sufficient to consider the input skewness for the

variance propagation. In a first step, the approximate mean, given by the first two terms of

Eq. (4.41), is subtracted from the second-order Taylor’s series. Squaring and applying the

expectation operator finally gives [110]

σ
2
y

2nd

≈
nx

∑
i=1

{(
∂g
∂xi

)2

σ
2
x,i + γx,i

(
∂g
∂xi

)(
∂ 2g
∂x2

i

)
σ

2
x,i

}
+

nx

∑
i=1

{
κx,i −1

4

(
∂ 2g
∂x2

i

)2

σ
4
x,i

}

+

nx

∑
i=1

nx

∑
j>i

{(
∂ 2g

∂xi∂x j

)2

σ
2
x,i σ

2
x, j

}
.

(4.42)

The computational effort of Eqs. (4.41) and (4.42) lies in the determination of the first, second

and third partial derivative. Unless g(x) is given by analytical expressions, the derivatives must

be approximated by a finite difference method. When using the central difference scheme, one

has to evaluate g(x) at the expansion point and additionally [17]:

• for the single-variable derivatives at x⋆i ±h and x⋆i ±2h in any dimension, and

• for the mixed second order term at (x⋆i +h,x⋆j +h) and (x⋆i −h,x⋆j −h) in any two-dimensional

projection.

The total number of model evaluations for the Taylor-series approximation is given by

nTS = 1+4nx +nx(nx −1). (4.43)

Thus, the computational burden increases quadratically with respect to the number of dimen-

sions. For applications with an extremely high-dimensional parameter set, even more efficient

techniques are required like clustering methods for example [145].

Nevertheless, for moderate input space dimensions, the Taylor-series based propagation re-

quires typically fewer model evaluations than sampling-based methods. The reason for this

is that the latter group suffers more from the curse of dimensionality. As the number of di-

mensions grows, also the amount of sampling points ns has to be adapted to keep up the
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approximation quality. In case of a crude Monte Carlo (MC) sampling, even an exponential

increase can be required [168]. It is important to understand that the curse of dimensionality

issue is not related to the MC convergence rate itself. The latter is independent from nx, see

Section 3.3.

Epistemic Sensitivity Indices

As mentioned before, the epistemic SA concept is an extension of the OAT procedure. In short,

the original strategy varies every single uncertain parameter individually around its nominal

value while keeping the remaining ones at their fixed positions. The impact of each parameter

is measured by the change of the model response. One decisive property is that no distribu-

tion function is required which matches with the interval characteristic of the hyperparameter

definition. In order to apply this method for an epistemic parameter screening, the following

modifications have been undertaken.

In its original configuration, the OAT belongs to the group of local SA techniques because the

parameters of interest are varied by making small changes to the nominal value. Here, we

want to consider the whole hyperparameter space [θ
(i)
x ,θ

(i)
x ] which is why θ

(i)
x is varied in a

comparatively wide range. This changes the character from a local to a global one.

Now, the goal becomes to identify those points within [θ
(i)
x ,θ

(i)
x ] which correspond to the ex-

treme values in the output space. Hence, we seek for the minimum and maximum value of µy

and σy. After that, the FOI (first-order index) can be computed for the hyperparameter under

investigation, i.e., θ
(i)
x , with regard to mean and standard deviation according to

FOI(i)µ =
µy −µ

y

µy(θ
⋆(i)
x )

=
∆µy

µ⋆
y
, and FOI(i)σ =

σ y −σ y

σy(θ
⋆(i)
x )

=
∆σy

σ⋆
y
. (4.44)

The numerator of the two sensitivity indices expresses the interval width of response mean

and standard deviation. The most general way for the determination of ∆µy and ∆σy is to solve

four optimization problems given by

minimize
θ
(i)
x ∈[θ (i)

x ,θ
(i)
x ]

µy(θ
(i)
x )

σy(θ
(i)
x )

, and maximize
θ
(i)
x ∈[θ (i)

x ,θ
(i)
x ]

µy(θ
(i)
x )

σy(θ
(i)
x )

. (4.45)

If there is a monotonic relationship between θ
(i)
x and the stochastic moments, Eq. (4.45) can

be replaced by two model evaluations at θ
(i)
x and θ

(i)
x . For the general non-monotonic case,

the optimization procedure can become extremely costly in high dimensions. To counteract

this issue, we propose to define a set of equidistant grid points within [θ
(i)
x ,θ

(i)
x ] at which an

uncertainty propagation must be conducted to determine µy and σy. The lower and upper

bounds are simply approximated by their minimum and maximum value. The number of grid

points should be chosen with respect to the available amount of time and required precision.
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An alternative to improve the efficiency is to introduce two surrogate models which approx-

imate the relationship between stochastic moments and the hyperparameter θ
(i)
x . Thus, a

computationally cheap meta-model can be used for the optimization.

Once ∆µy and ∆σy are known, the interval ranges are divided by µ⋆
y and σ⋆

y , i.e., the stochas-

tic moments when all hyperparameters take their nominal values. This step is necessary to

ensure a normalized sensitivity measure which is independent from the measurement units.

With the help of a FOI, the modeler is able to quantify the importance of every individual

uncertain hyperparameter. A small value for FOIµ and FOIσ is a first indication for a negligible

impact. Nevertheless, this conclusion must be treated with caution because the indices from

Eq. (4.44) do not take any interactions into account. For this reason, the OAT approach is

extended by a sensitivity measure, denoted as SOI (second-order index), which analyzes the

pairwise interactive effects between two hyperparameters. The computation rule for a SOI is

equivalent with the one from the first-order effects with the difference that two instead of one

hyperparameters are varied simultaneously within their defined interval ranges. The SOI with

regard to the response mean is derived according to

SOI(i, j)µ =
µy −µ

y

µ⋆
y

with µ
y
= min

{
µy(θ

(i)
x ,θ

( j)
x )
}

µy = max
{

µy(θ
(i)
x ,θ

( j)
x )
}

s.t.
{

θ
(i)
x ,θ

( j)
x

}
∈
[
θ
(i)
x ,θ

(i)
x

]
×
[
θ
( j)
x ,θ

( j)
x

]
.

(4.46)

The metric for SOIσ is similar to the one from above and therefore not stated here. A key

aspect is the determination of the extreme values. Again, the straightforward approach is to

set up an optimization procedure which yields the most accurate result if the optimizer identifies

the global minima and maxima. In terms of time efficiency, the optimization can be replaced

by evaluating the stochastic moments at a finite set of grid points. For a monotonous model

relation, only the corner points are of relevance.

The latter is also used for the application case in Sec. 5.2.2 which is why the grid generation

is discussed here in greater detail. Figure 4.9 shows two examples of a two-dimensional

hyperparameter space. In Fig. 4.9(a), both θ
(i)
x and θ

( j)
x correspond to a mean value. In this

case, five equidistantly distributed points (●) have been generated along the main axes which

are the basis for the first-order sensitivity indices. In addition, another eight grid points (●)

have been added to quantify the interactions, four of which are placed at the corners. The

remaining ones are positioned at the quarter points, i.e., at

θ
⋆(i)
x ± 1/4(θ

(i)
x −θ

(i)
x ) and θ

⋆( j)
x ± 1/4(θ

( j)
x −θ

( j)
x ). (4.47)

Hence, the proposed deterministic design of experiments (DoE) is not a full factorial design.
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The reason for this is that each grid point is associated with nTS model evaluations, see

Eq. (4.43), because it represents an expansion point for the Taylor-series uncertainty prop-

agation. In view of the high-dimensional application case, a full factorial design would not be

affordable.

In contrast, Fig. 4.9(b) illustrates the combination between mean and standard deviation. The

black dots along the abscissa model the discretization of the uncertain mean value whereas

the black crosses (✖) on the ordinate stand for the grid points of the standard deviation. The

change in the marking reflects the difference in the computational effort for the uncertainty

propagation. If only the standard deviation is varied, no additional evaluations of g(x) are re-

quired. Instead, the grid point with the same mean value is chosen to conduct the uncertainty

propagation with the help of Eqs. (4.41) and (4.42). Thus, only the value of the standard de-

viation has to be exchanged in the analytical expressions to determine µy and σy. The same

holds if θ
(i)
x represents a skewness parameter. The negligible amount of computational effort

enables to generate a full factorial DoE. Accordingly, the grid points for the SOIs are marked

by gray crosses instead of dots, see Fig. 4.9(b).

The screening technique introduced so far can be extended easily for higher order effects

which improves the informative value of the study. The final decision whether to reduce an

uncertain hyperparameter to a constant is made by comparing all related first- and second-

order indices with predefined thresholds. Their precise values are strongly dependent on the

application case as well as the modeler’s subjective assessment. A discussion can be found

within Section 5.2.2.
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Figure 4.9 Arrangement of the grid points in the epistemic space in case of two mean values (left) and a combination
between mean and standard deviation (right).
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4.3 Robust Design Optimization for Hybrid Uncertainties

The RDO is the last component of the uncertainty study which builds upon the results from

the previous studies. Even though the epistemic variable screening can make a significant

contribution to reduce the model complexity, efficiency is still playing a key role for the RDO

because the considerations of hybrid uncertainties is, compared to a setup with only aleatory

parameters, more time-consuming. To counteract this issue, we make use of the so-called

NISS framework with the purpose to break the standard double-loop MC sampling for hybrid

uncertainties. The sampling scheme is introduced in Section 4.3.1 followed by an analytical

test case in Section 4.3.2. The illustrative example is used to discuss different RDO formula-

tions as well as the limitations of NISS. Moreover, some ideas are shown how to improve the

sampling procedure gathered in the multi-point non-intrusive imprecise stochastic sampling

(MNISS) concept, an extended version of the original NISS.

4.3.1 Non-Intrusive Imprecise Stochastic Sampling

The next paragraphs provide an overview over the NISS strategy developed by the authors of

[165, 174, 175]. As indicated by the name, it is a non-intrusive uncertainty propagation tech-

nique and thus applicable to any kind of black-box model. In principle, NISS is a composition

of two methods, namely EMCS (extended Monte Carlo sampling) and high-dimensional model

representation (HDMR), both of which are explained in the following.

Extended Monte Carlo Sampling

The first component, i.e., the EMCS, has been introduced by [173] and is strongly related to

the concept of IS, see Section 3.3. As a starting point, we assume that the input space is

described by a parameterized p-box formulation given by fX(x|ΘI
x). As the set of distributional

parameters are interval-valued quantities, the probabilistic response depends on the realiza-

tion Θx ∈ΘI
x. Here, we illustrate the uncertainty propagation by the evaluation of the response

mean which is a function of Θx:

µy(Θx) =
∫

∞

−∞

g(x) fX(x|Θx)dx. (4.48)

The idea of the EMCS is to create only one set of sample points from a specific PDF denoted

by fX(x|Θ⋆
x). In order to determine the mean value for Θx ̸= Θ⋆

x , Eq. (4.48) is extended

according to

µy(Θx) =

∫
∞

−∞

g(x)
fX(x|Θx)

fX(x|Θ⋆
x)

fX(x|Θ⋆
x)dx. (4.49)

This formulation shows strong similarities with the IS concept where the proposal distribution,

i.e., the PDF from which the samples are drawn, is also different from the desired one to in-
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crease the convergence rate of the numerical integration. The main difference between IS and

EMCS is that the latter provides an approximate relation between uncertain hyperparameters

and a stochastic response quantity of interest (QoI) whereas the first is a pure probabilis-

tic method that aims at determining a stochastic quantity in an efficient way. The numerical

approximation of Eq. (4.49) for a number of ns samples drawn from fX(x|Θ⋆
x) yields

µy(Θx)≈
1
ns

ns

∑
i=1

g(x(i)
s )

fX(x
(i)
s |Θx)

fX(x
(i)
s |Θ⋆

x)
. (4.50)

Within the framework of NISS, the procedure introduced so far is specified as local EMCS

because it performs better the closer the realizations of Θx are to Θ⋆
x . To achieve a more

balanced performance over the design space, an alternative technique has been discussed

in [174] where every single sample is drawn from a different distribution. The global version of

the EMCS requires a random sampling in the hyperparameter space which is usually based on

a multivariate uniform distribution. From the author’s point of view, the interval characteristics

of ΘI
x is affected hereby which is why the local EMCS is more unbiased in this sense. In the

following, we therefore stay with the local version of NISS.

Still, the question remains how to determine the value of Θ⋆
x to enable a proper approximation

quality for any Θx ∈ΘI
x. The authors of [173] propose to define Θ⋆

x for a normal distribution

with uncertain mean and standard deviation according to

µ
x
−aσ x = µ

⋆
x −a µ

⋆
x , and

µx +aσ x = µ
⋆
x +a µ

⋆
x ,

(4.51)

where the parameter a is usually set to three. These criteria ensure a sufficient sample cover-

age of the whole design space. The two criteria can also be used for non-Gaussian types.

One of the great benefits of the EMCS is that the uncertainty propagation relies only on one

set of sample points. Furthermore, it offers a great flexibility because it does not establish any

requirements on the distribution type. However, the EMCS shows a bad performance in high

dimensions which results in a large variance of the estimator [174]. Out of this reason, the

EMCS is combined with a HDMR which is reviewed in the subsequent paragraph.

High-Dimensional Model Representation

The underlying idea of the HDMR is to represent a functional relation, such as the input-output

mapping g(x), by a decomposition into a finite number of component functions

g(x) = g0 +
nx

∑
i=1

gi(xi)+
nx

∑
i=1

nx

∑
j>i

gi j(xi,x j)+ . . .+g1,...,nx(x1, . . . ,xnx). (4.52)

The first term, i.e., g0, expresses the mean value of g(x) and gi encompasses the contribution

of the i-th variable. All higher-order terms represent correlated effects between the corre-
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sponding variables. In most of the application cases, a second-order HDMR gives a sufficient

accuracy while simultaneously reducing the computational burden significantly [102].

For the determination of the component functions, various approaches are available in liter-

ature which lead to different decomposition schemes. A common feature of every HDMR

expansion is that all component functions are mutually orthogonal to each other. Within the

scope of Section 3.5.1, the ANOVA-HDMR has already been discussed which is the basis for

the determination of the Sobol indices. In context of NISS, the (local) EMCS is enriched by

the so-called cut-HDMR technique. Similar to a Taylor series, an expansion point x⋆ is chosen

close to the region of interest. The first component functions up to the second order of the

cut-HDMR are given by

g0 = g(x⋆),

gi(xi) = g(xi,x
⋆
−i)−g0, and

gi j(xi,x j) = g(xi,x j,x
⋆
−i j)−gi −g j −g0,

(4.53)

where x−i j contains all coordinates except the i-th and j-th one. Comparing the above terms

with the Taylor series expansion shows that the first term, i.e., g0, is equal for both concepts

whereas the second HDMR component functions comprise all Taylor series terms which de-

pend exclusively on xi. Consequently, gi is not limited to a linear dependency on xi. The

remaining higher-order components can be interpreted in the same fashion.

The last step for the derivation of NISS is to combine the cut-HDMR concept with the EMCS.

Hence, the decomposition from Eq. (4.52) is directly transferred to the functional relationship

of Eq. (4.49). This leads to the following expansion of µy(Θx) with respect to the nΘ-variate

hyperparameter space

µy(Θx) = µy,0 +
nΘ

∑
i=1

µy,i +
nΘ

∑
i=1

nΘ

∑
j>i

µy,i j + . . .+µy,{1,...,nΘ}. (4.54)

Again, the first three component functions are of major interest for us. Applying the cut-HDMR

technique from Eq. (4.53) and extending the formulation of µy,i and µy,i j by fX(x|Θ⋆
x) in the

numerator and denominator leads to

µy,0(Θ
⋆
x) =

∫
∞

−∞

g(x) fX(x|Θ⋆
x) dx,

µy,i(θ
(i)
x ) =

∫
∞

−∞

g(x)
fX(x|θ

(i)
x ,Θ

⋆(−i)
x )

fX(x|Θ⋆
x)

fX(x|Θ⋆
x) dx−µy,0, and

µy,i j(Θ
(i j)
x ) =

∫
∞

−∞

g(x)
fX(x|Θ

(i j)
x ,Θ

⋆(−i j)
x )

fX(x|Θ⋆
x)

fX(x|Θ⋆
x) dx−µy,i −µy, j −µy,0.

(4.55)
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The term Θ
⋆(−i j)
x denotes a set containing all hyperparameters except the one at the i− th and

j−th position, i.e., Θ⋆(−i j)
x = {θ

⋆(1)
x , . . . ,θ

⋆(i−1)
x ,θ

⋆(i+1)
x , . . . ,θ

⋆( j−1)
x ,θ

⋆( j+1)
x , . . . ,θ

⋆(nΘ)
x }. Due to

the HDMR, the EMCS becomes suitable for high-dimensional problems because the numer-

ator and denominator of the fractions in Eq. (4.55) differ by not more than two distributional

parameters. The component functions take the value zero if at least one of the variables is

set to its expansion point value, i.e., θ
(i)
x = θ

⋆(i)
x . The vanishing property induces the mutual

orthogonality between the component functions defined by [101]

µy,{i1,...,ia} µy,{ j1,..., jb}

∣∣∣
θ
(iu)
x =θ

⋆(iu)
x

= 0 for iu ∈ {i1, . . . , ia}∪{ j1, . . . , jb}. (4.56)

Finally, the numerical approximation for the three terms in Eq. (4.55) is derived. For a set of

ns independently and identically distributed (i.i.d.) sample points drawn from fX(x|Θ⋆
x), the

cut-HDMR components yield

µy,0 ≈
1
ns

ns

∑
k=1

g(x(k)
s ),

µy,i(θ
(i)
x )≈ 1

ns

ns

∑
k=1

g(x(k)
s )r(i)cut(x

(k)
s |θ(i)x ), and

µy,i j(Θ
(i j)
x )≈ 1

ns

ns

∑
k=1

g(x(k)
s )r(i j)

cut (x
(k)
s |Θ(i j)

x ),

(4.57)

where the expressions of r(i)cut and r(i j)
cut are given by

r(i)cut(x
(k)
s |θ(i)x ) =

(
fX(x

(k)
s |θ (i)

x ,Θ
⋆(−i)
x )

fX(x
(k)
s |Θ⋆

x)
−1

)
, and

r(i j)
cut (x

(k)
s |Θ(i j)

x ) =

(
fX(x

(k)
s |Θ(i j)

x ,Θ
⋆(−i j)
x )

fX(x
(k)
s |Θ⋆

x)
− fX(x

(k)
s |θ (i)

x ,Θ
⋆(−i)
x )

fX(x
(k)
s |Θ⋆

x)
− fX(x

(k)
s |θ ( j)

x ,Θ
⋆(− j)
x )

fX(x
(k)
s |Θ⋆

x)
+1.0

)
.

(4.58)

From the above equations it can be seen that both, the vanishing as well as the orthogonal

property are fulfilled by the approximate component functions. Moreover, it becomes clear that

the only computational cost of NISS is to evaluate the functional values of the sample points.

The determination of r(i)cut(x
(k)
s |Θ(i)

x ) and r(i j)
cut (x

(k)
s |Θ(i j)

x ) has basically no contribution because

it just involves the evaluation of PDF values and some mathematical operations.

So far, the NISS procedure has been demonstrated for analyzing the response mean function

but other stochastic descriptors can be computed in a similar fashion. Within this thesis,

the variance σ2
y is the second relevant QoI for the robustness assessment. For the sake of
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completeness, the numerical approximation of the HDMR expansion is provided for the first

three components by

σ
2
y,0 ≈

1
ns

ns

∑
i=1

(
g(x(k)

s )−µy,0

)2
,

σ
2
y,i(θ

(i)
x )≈ 1

ns

ns

∑
k=1

(
g(x(k)

s )−µy,i −µy,0

)2
r(i)cut(x

(k)
s |Θ(i)

x ), and

σ
2
y,i(Θ

(i j)
x )≈ 1

ns

ns

∑
k=1

(
g(x(k)

s )−µy,i j −µy,i −µy, j −µy,0

)2
r(i j)
cut (x

(k)
s |Θ(i j)

x ).

(4.59)

The expressions from Eqs. (4.57) and (4.59) are unbiased which means that the expected

values of the estimators are equal to the true values. To assess the accuracy for a specific

number of sample points, confidence intervals can be derived from the variance of the estima-

tors. The formula for each of the component functions can be found in Appendix B.1.

4.3.2 Analytical Test Case

To illustrate the NISS-framework for RDO problems more in detail, a two-dimensional test case

is set up. In the first subsection, the characteristics of the test function are discussed. This

is followed by a paragraph about different strategies to formulate a robust design optimization

under hybrid uncertainties. Last but not least, the NISS strategy is applied to the analytical

example to evaluate its performance. It will be seen that some modifications of the classical

NISS are necessary to improve the accuracy.

Test Case Setup

Let us consider an analytical model which maps a two-dimensional input space to a scalar

response quantity. The input vector X = {Xd,Xn} encompasses a single design and noise

parameter. The test function can be summarized as

g : R2 → R, x 7→ y =−1.5xd +5 cos(πxd)+ |xn|(2.0+
1
8 (x

d)2)

with: Xd ∼N (µd
x ,0.1)

Xn ∼N ([−0.75, 0.75], [1/3, 2.5/3]).

(4.60)

Problem (4.60) describes a RDO scenario with a mixture between Type I and II because both

design and noise parameter are uncertain. The design variable to be optimized is µd
x which

can take an arbitrary value within [0.5,3.25]. The noise factor is quantified by a Gaussian p-box

with uncertain mean and standard deviation.
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(a) Response mean for different µd
x . (b) Response stdv. for different µd

x . (c) Contour plot.

Figure 4.10 Graphical representation of Eq. (4.60).

Figure 4.10(c) shows a contour plot of the functional relationship which is a superposition of

the cosine and a linear function in the xd-coordinate. In the direction of the noise factor, g(x)
is a power function where the exponent is proportional to the value of xd. This property results

in an increasing steepness for |xn|> 1.0 as xd is taking larger values.

In Figs. 4.10(a) and 4.10(b), the response mean and standard deviation is depicted for different

realizations of µd
x , respectively. The solid gray lines represent the pure aleatory case, which

means that the noise factor is described by Xn ∼ N (0.0,1.75/3). In this case, the cosine

characteristic is dominating the distribution of µy and σy whereas the changing exponent leads

only to a slight increase of σy for large µd
x .

When taking the epistemic uncertainty components into account, the lower and upper bounds

of the stochastic moments are of relevance depicted by the dash-dotted and dashed lines.

For the response mean, the epistemic effect is comparatively low recognizable by the small

distance between µ
y

and µy. Conversely, a huge deviation of σ y from its aleatory value can

be observed, especially if µd
x tends to the upper bound. Thus, the epistemic uncertainty of

Xn has a significant effect on the response variation and therefore also on the robustness

assessment.

RDO Formulations

In this subsection, we want to reopen the discussion from Section 3.6.2 about different RDO

formulations. At first, we start with the pure aleatory case for which the robust optimization

problem is stated as
minimize

µd
x

wµ µy +wσ σy

s.t. 0.5 < µ
d
x < 3.25.

(4.61)

By analyzing the mean and standard deviation distribution in Figs. 4.10(a) and 4.10(b), it be-

comes obvious that the solution for Eq. (4.61) is given by µd
x ≈ 3.0 as long as wσ is not

substantially larger than wµ . This impression is confirmed by Figs. 4.11(a) and 4.11(b) where
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the aleatory objective function is shown for wµ = wσ = 0.5 by the black solid line.

In contrast, defining a mathematical expression for the RDO in presence of hybrid uncertain-

ties is not possible in a straightforward manner. In the following, we compare two different

approaches how to determine the optimal value for µd
x which have been introduced in Sec-

tion 3.6.2. The first one is a direct extension of the classical RDO scheme which considers

the epistemic effect by adding additional terms to the objective function. For the test case, the

extended RDO yields

minimize
µd

x

wµ µ̃y +wσ σ̃y +w∆µ ∆µy +w∆σ ∆σy

s.t. 0.5 < µ
d
x < 3.25,

(4.62)

where ∆µy and ∆σy stand for the epistemic variation of the response mean and standard

deviation. To repeat, the specific case of w∆µ = w∆σ = 0 is related to the aleatory scenario.

In Fig. 4.11(a) a variety of objective functions is depicted where each graph corresponds to

different weighting factors. Note, that all combinations have to fulfill the partition of unity. In

summary, two different positions are identified for the optimal choice of µd
x . The first one,

given by µd
x ≈ 3.0, coincides with the aleatory study. The alternative solution finds the robust

optimum at µd
x ≈ 1.0 characterized by a larger average mean but a significantly lower ∆σy-

value. One can see, that the associated objective functions put a large weight on ∆σy or σy,

respectively. In presence of epistemic uncertainty, the optimum at µd
x ≈ 1.0 is more reasonable

because the worst-case scenario deviates strongly from the aleatory case at µd
x ≈ 3.0.

Within Section 3.6.2, some other RDO formulations are mentioned. One of them proposes to

exclude the epistemic components from the objective function and define additional constraints

instead. For the analytical test case, the modified RDO problem is stated by

minimize
µd

x

wµ µ̃y +wσ σ̃y

s.t. 0.5 < µ
d
x < 3.25

µy ≤ µ
c
y

σ y ≤ σ
c
y ,

(4.63)

where µc
y and σ c

y denote the thresholds of the maximum mean and standard deviation. Simi-

lar to the RDO formulation from Eq. (4.62), the method is able to find the same two potential

robust designs, depending on the choice of σ c
y . The graphical representation in Fig. 4.11(b)

illustrates the objective from Eq. (4.63) and the restriction of the feasible design space for

µc
y = 0.0 and σ c

y = 2.75. Under this condition, all objective functions reach their minimum

close to µd
x = 1.0, regardless of the underlying weighting factors. Weakening the constraint of

the maximum standard deviation can shift the optimum into the region of the aleatory minimum

except if wσ is equipped with an extremely high value.
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(a) Epistemic RDO according to Eq. (4.62).

µy>0.0

σ y>2.75

(b) Epistemic RDO according to Eq. (4.63).

Figure 4.11 Graphical representation of the objective functions for the epistemic RDO.

The question remains which of the two approaches to prefer with regard to real-world applica-

tions. The first option according to Eq. (4.62) gives the modeler more flexibility because the

different components of the objective can be weighted individually. Also, the optimizer does

not have to deal with any constraints which is usually more efficient. However, it is question-

able how precisely ∆σy and ∆µy can be evaluated for high-dimensional problems. In principle,

the determination of each term requires two optimization procedures which can be extremely

time-consuming.

For the second RDO setup, these two terms must not be computed because of the constraint-

based expression. Even though one could argue that approximating the two maxima of

the stochastic moments is also associated with non-negligible effort, the RDO expression of

Eq. (4.63) is still preferable from the author’s point of view for mainly two reasons: First, the

determination of µy and σ y is less time-consuming as it is based on only one instead of two

optimizations. Second, the modeler can directly control the maximum response mean and

variance which is more intuitive than finding an appropriate combination of the various weight-

ing factors. Therefore, the constraint-based approach will be applied for the interdisciplinary

SAS model in Sec. 5.2.3.

For low-dimensional problems, such as the analytical test case, computational time is not play-

ing a role why standard MC techniques can be used. In preparation for the application case,

the same problem is analyzed by using the NISS approach.

NISS-based RDO

Conducting a RDO is, compared to a deterministic optimization, coupled with considerably

more effort. In particular, for a problem with hybrid uncertainties the evaluation of every single

design point requires a double loop MC sampling, see Section 3.3. Except for computationally

cheap models, this approach is not usable for any industrial application.
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In general, the optimization can be made more efficient by several ways. One option is to re-

place the original relationship by a mathematical surrogate model which approximates the

physical system by inexpensive analytical expressions. After that, standard MC sampling

schemes can be used. Within this thesis, we follow the idea to keep the original model and

break the double-loop sampling procedure instead. As discussed in Section 4.3.1, the NISS

approach is used for this purpose which requires only one set of samples for the uncertainty

propagation of different Θx-values. Thus, a simplified relation is derived between the uncertain

hyperparameters and the stochastic response moments instead of between the model’s input

and output quantities.

Coming back to the analytical example, we are faced with a two-dimensional input space where

both quantities are described by a distributional p-box. Note, that design and noise parameters

can be treated in the same fashion by the NISS framework. Thereof, the hyperparameter set

is given by Θx = {µx,1,σx,1,µx,2,σx,2}, where µx,1 equals the design parameter µd
x and σx,1

has a constant value. The remaining two parameters belong to the noise factor Xn.

The choice of Θ⋆
x is oriented towards the proposition from Eq. (4.51) which gives a bivariate

Gaussian with

fX(x|Θ⋆
x) =

X1 ∼N (1.625,0.54)

X2 ∼N (0.375,1.0)
. (4.64)

Note that the symmetry of g(x) in the x2-direction is exploited which leads to the mean value of

µx,2 = 0.375. After having drawn samples from fX(x|Θ⋆
x), Eqs. (4.57) and (4.59) can be used

to determine µy(Θx) and σ2
y (Θx). For the current test case, 6000 samples have been created

from Eq. (4.64).

In Fig. 4.12(a), the NISS approximation of the minimum, maximum and average mean value is

opposed to the MC solution. Note that the MC approach is based on an extremely large num-

ber of samples such that we refer to it as reference solution. All graphs show a high degree of

similarity over the whole design space and a decreasing accuracy for the tails of the sampling

(a) Comparison between NISS and MC approach.

CIµ̃y

CIµy

CIµy

C
IN

IS
S

µ
y

(b) Sampling PDF and approximation error.

Figure 4.12 Evaluation of the NISS-based mean value approximation for the analytical test case.
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distribution. This impression is confirmed by Fig. 4.12(b) showing the sampling distribution in

x1-direction as well as the confidence interval of the mean estimator. As expected, the accu-

racy is indirectly proportional to the sampling density and reaches its maxima at the bounds of

the design space. Within the scope of the test case, the confidence interval (CI) of the mean

and variance estimator is derived from a (±2σ)-range according to

CINISS
µy

= 4
√

Var[µy], and

CINISS
σ2

y
= 4

√
Var[σ2

y ].

(4.65)

From a first glance, the number of samples seems to be disproportionately high for a two-

dimensional problem. The reason for this lies in the nonlinearity of the model and the small

standard deviation of the design parameter. The latter leads to a strong deviation between

proposal and desired distribution. The analytical test case has been deliberately constructed

in this way to discuss the limitations of the NISS method.

This issue becomes even more acute when we analyze the approximation error of the variance

estimator. To give a short impression, the corresponding average CI among all evaluated de-

sign points is 44.82 and reaches a maximum of 155.82 close to the upper bound of the design

space, i.e., at µd
x = 3.25. The poor quality is also indicated by the σ2

y -values themselves as

they even become negative in areas where the true variance is small. The approximation of

the second stochastic moment by the classical NISS is therefore not useful.

The simplest approach would be to increase the sample number until the modeler is satis-

fied with the accuracy. This option is, except for models with a low computation time, out of

question as it can require a tremendously high number of samples. That’s why we propose

an alternative strategy which exploits the knowledge gained about the mean value distribution.

The aim is to analyze only those parts of the design space which are of interest for the RDO.

Furthermore, an extended version of the standard NISS, abbreviated as MNISS (multi-point

non-intrusive imprecise stochastic sampling), is introduced which stands for the multi-point

NISS strategy.

The first step is to apply the standard NISS to determine the response mean as discussed

in the previous sections. After that, the goal is to identify potential regions within which the

robust design optimum could lie. Since the estimation accuracy for σy is usually bad, the cri-

terion is solely derived from the µy-distribution. Here, the constraint-based RDO formulation

(Eq. (4.63)) is beneficial to extract relevant areas from the design space. Based on the mean

value constraint, a set of potentially robust design points can be defined according to

µ
p
x =

{
µ

d
x | µy(µ

d
x )≤ µ

c
y

}
. (4.66)
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For the analytical test case, any design fulfilling µy ≤ 1.0 is of relevance and covered by µ
p
x . In

Fig. 4.12(a), the area of interest is shaded in gray. One can see, that the promising region is a

composition of two local subregions such that µ
p
x = {µ

p,(1)
x ,µ

p,(2)
x } holds.

Once µ
p
x has been detected, the next step is to estimate σ2

y locally and thereby also the

epistemic robustness metric. Consequently, a separate sampling distribution is defined for

each µ
p,(i)
x and the standard NISS scheme is applied. The two bivariate Gaussian distributions

are once again derived from Eq. (4.51) by

fX(x|Θ⋆,(1)
x ) =

X (1)
1 ∼N (1.07,0.58)

X (1)
2 ∼N (0.375,1.0)

, and fX(x|Θ⋆,(2)
x ) =

X (2)
1 ∼N (2.78,0.51)

X (2)
2 ∼N (0.375,1.0)

.

(4.67)

As for the mean approximation, 6000 sample points are drawn from both local distributions.

Unfortunately, the CI of σ2
y shows still a poor performance despite narrowing down the design

space. Even a doubling of the sample points leads to an average CI width in both areas of

7.99 which is way more precise than without reducing the design space but still not usable for

a resilient proposition about the robustness.

At this point, the MNISS concept comes into play. As indicated by the name, the idea is to de-

fine multiple proposal distributions within every region µ
p,(i)
x . Hence, the evaluation of a design,

i.e., the uncertainty propagation of a certain Θx-realization, is derived from a superposition of

several NISS frameworks. Before discussing the exact mathematical concept behind MNISS,

meaningful hyperparameter values for the different proposal distributions must be determined.

In order to have a reasonable decision basis, the CI of every single HDMR component for the

variance estimator is analyzed. With the help of this study, one can figure out how the huge

approximation error for σ2
y is composed. In Table 4.1, the average estimation error of σ̃2

y , σ2
y

and σ
2
y is summarized for two designs which are lying in the first area of interest µ

p,(1)
x . As

we expect the lowest accuracy at the bounds of the design space, the two points represent

the lower and upper limit of µ
p,(1)
x . One can see, that the overall accuracy of both points is

strongly affected by the first and second order components which include the parameter σx,1.

This is reasonable if we recall that the uncertainty of Xd is characterized by an extremely small

standard deviation which differs substantially from σ⋆
x,1 of the proposal PDF, see Eqs. (4.60)

and (4.67). Thus, a noticeable improvement can be achieved if the proposal distribution was

modified in the x1-direction.

First-order Second-order

µd
x Θ⋆

x µ1 σ1 µ2 σ2 µ1,σ1 µ1,µ2 µ1,σ2 σ1,µ2 σ1,σ2 µ2,σ2

0.49 0.53 0.81 2.09 0.56 0.63 2.39 0.77 0.75 1.30 0.95 1.05

1.64 0.53 1.70 2.06 0.55 0.62 2.83 0.96 0.67 1.28 0.95 1.05

Table 4.1 HDMR component errors for the approximation of σ2
y from a standard NISS procedure with ns = 12,000.
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The core of the MNISS strategy is to decrease the estimation error by introducing a set of

proposal distributions which, taken as whole, cover the region of interest. Once the modeler

has identified a direction where the MNISS concept can lead to an accuracy enhancement,

a proper setup is sought for the decomposition of fX(x|Θ⋆
x). As a rule of thumb, the follow-

ing propositions are introduced to determine the number and characteristics of the proposal

distributions:

• The proposal’s standard deviation should not deviate from the desired one by more than

a factor of three.

• The distance between the mean values of two neighboring sample distributions should

not be larger than four times the standard deviation.

Based on these guidelines, a proper coverage of the design space is ensured. The basis of

the MNISS procedure is then given by

fX(x|Θ⋆
x) =

np⋃
i=1

fX(x|Θ⋆,(i)
x ), with i = 1, . . . ,np, (4.68)

where np denotes the number of proposal distributions and Θ
⋆,(i)
x the hyperparameter set

for the i-th sampling distribution. Within the scope of the thesis, MNISS is introduced for a

decomposition in only one direction. Of course, the strategy can be expanded for cases where

the modeler wants to modify the sampling distribution in several directions.

In addition to that, a so-called membership function wi(Θx) must be defined for every entry

fX(x|Θ⋆,(i)
x ) which quantifies the importance of the separate proposal distributions. In principle,

any kind of functional type can be used as long as the partition of unity is fulfilled, i.e., the sum

of all wi(Θx) equals one for any Θx. A straightforward way is to describe wi(Θx) by a triangular

function with a peak value of one at the mean value of the corresponding proposal distribution.

The lower and upper limits coincide with the coordinates of the neighboring mean values, i.e.,

µx
⋆,(i−1) and µx

⋆,(i+1). An exception is provided by the first and last weighting function. To

ensure the partition of unity, they take the value of one for µx ≤ µx
⋆,(0) and µx ≥ µx

⋆,(np),

respectively, because all remaining membership functions are zero.

Last but not least, the question remains how to modify the calculation rules from Eqs. (4.57)

and (4.59) to account for the partition of fX(x|Θ⋆
x). In case of µy, the HDMR components are

given for the MNISS strategy by

µy,0 ≈
np

∑
t=1

wt(Θx)

{
1
ns

ns

∑
k=1

g(x(k)
s )

}
=

np

∑
t=1

wt(Θx)µ
(t)
y,0,

µy,i(θ
(i)
x )≈

np

∑
t=1

wt(Θx)

{
1
ns

ns

∑
k=1

g(x(k)
s )r(i)cut(x

(k)
s |Θ(i)

x )

}
=

np

∑
t=1

wt(Θx)µ
(t)
y,i , and
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µy,i j(Θ
(i j)
x )≈

np

∑
t=1

wt(Θx)

{
1
ns

ns

∑
k=1

g(x(k)
s )r(i j)

cut (x
(k)
s |Θ(i j)

x )

}
=

np

∑
t=1

wt(Θx)µ
(t)
y,i j, (4.69)

where µ
(t)
y,0 denotes the contribution of the t-th proposal distribution to the zeroth-order com-

ponent function µy,0 and wt(Θx) the corresponding weight. The same holds for the first- and

second-order components. To summarize, the MNISS concept can be interpreted as a su-

perposition of several NISS-evaluations. The contribution of every local approximation is ex-

pressed by its weighting factor which, in turn, is derived from so-called membership functions.

The MNISS components for the estimation of σ2
y are defined in the same fashion and are given

in Appendix B.2.

Coming back to the analytical test case, the MNISS concept is applied to both promising

regions separately. To repeat, a decomposition in the x1-domain is meaningful due to the

dominating impact of the σx,1-parameter, see Tab. 4.1. Following the propositions from before

leads to np = 3 sampling distributions in each region depicted by the solid lines in Fig. 4.13(c).

Moreover, the triangular membership functions are represented as dashed lines in the same

plot.

For the test case, 4000 points are drawn from each proposal PDF which gives a total amount

of 12,000 samples within every subregion µ
p,(i)
x . Figure 4.13(a) compares the evaluation of

the response standard deviation from MNISS with the MC reference solution. Even though

there is a certain mismatch between the curves, especially close to the upper bound of µ
p,(2)
x ,

the MNISS estimation is able to capture the global characteristics of σ̃y, σ y and σ y. This

is confirmed by the analysis of the epistemic robustness metric in Fig. 4.13(b). The upper

half, showing the MC solution, is an extract from Fig. 4.11(b) whereas the lower part refers

to the MNISS solution. A fundamental finding of the study is that the robust optima identi-

fied by MNISS are very close to the reference solution for any weighting factor combination of

the robustness metric. Note that the marking style in Fig. 4.13(b) coincides with the one in

(a) Evaluation of σ2
y based on MC and

MNISS.
(b) Robustness metric derived from

MC and MNISS.
(c) Proposal distributions and

weighting factors.

Figure 4.13 Evaluation of the MNISS concept for the analytical test case.
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Fig. 4.11(b). To express the result in numbers, the MNISS robust optima deviate by a max-

imum of 2% from the true solution. Depending on the choice of the σy-threshold, the robust

design is either located within µ
p,(1)
x or µ

p,(2)
x .

Finally, the benefit of MNISS is demonstrated once again by a small comparative study. There-

fore, we contrast the σy-distribution from Fig. 4.13(a) with the initial NISS approach where only

a single proposal distribution is defined in each region µ
p,(i)
x according to Eq. (4.67). It is

important to notice that the total sample count is exactly the same in both cases. Table 4.2

comprises the average deviation from σ̃y, σ y and σ y at equally distributed positions within

both promising areas. The numbers in the table show clearly the higher global approximation

accuracy of the MNISS as the average offset is considerably smaller. Except for some few

evaluation points in the middle of the two regions, MNISS provides a more accurate approxi-

mation of σ̃y. The reason for this is the higher sampling density of the classical NISS. Thus,

the multi-point version of NISS is an advantageous extension to achieve a continuously high

performance over the whole design space.

µ
p,(1)
x µ

p,(2)
x

µd
x 0.49 0.67 0.87 1.05 1.26 1.44 1.64 2.33 2.47 2.64 2.78 2.94 3.08 3.25

NISS 3.16 1.51 0.16 0.24 1.08 2.80 5.06 5.67 4.49 2.44 0.93 0.46 0.96 1.92

MNISS 0.88 0.54 0.34 0.17 0.58 0.45 1.65 1.97 1.53 0.87 1.07 0.53 0.26 7.75

Table 4.2 Comparison between NISS and MNISS σy-deviation with ns = 12,000.

Within the previous paragraphs, a variety of concepts and solution approaches have been

discussed for conducting uncertainty studies in presence of epistemic uncertainties. At first,

a non-probabilistic concept was introduced to solve inverse problems for scarce data sets.

Furthermore, a method to screen out unimportant hyperparameters was discussed to reduce

the model complexity and thereof also the computational time. Finally, the focus was put on

the development of suitable RDO frameworks for hybrid uncertainties. A special attention has

been attached to finding a balance between approximation accuracy and time efficiency which

has led to the development of MNISS.

Within the scope of the next chapter, the methods from above are applied to the interdisci-

plinary jet engine model. It will turn out, that some minor modifications are needed to improve

the efficiency of some concept because of the high-dimensional input and output spaces.
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Chapter 5

APPLICATION CASE: Early Development Phase of a
Low-Pressure Turbine Secondary Air System

The following sections discuss the application of the stochastic methods, which have been

developed throughout Chap. 4, in context of an early jet engine development phase. To repeat,

the industrial use case is an interdisciplinary secondary air system (SAS) model of a low-

pressure turbine (LPT). The primary goal is to ensure a sufficient supply of cooling mass flow

in presence of engine-to-engine and flight-to-flight variations. From a methodological point of

view, the appropriate treatment of lack-of-knowledge uncertainty sources appears to be a key

aspect. The present chapter is structured in accordance to the aims and objectives presented

in Sec. 2.3.

Section 5.1 deals with the jet engine performance model which is the first component of the

interdisciplinary process chain. Here, the main challenge is to quantify the uncertainty of those

parameters being affected by the engine-to-engine variation because it requires to solve an

inverse problem. After that, Section 5.2 analyzes the interdisciplinary model of the SAS. As in

the section before, the lack-of-knowledge uncertainty quantification of selected input quantities

is part of it. Besides from that, the reduction of the epistemic parameter space, based on the

technique from Section 4.1.3, is applied. Finally, the goal is to identify the optimal choice of

the geometrical design parameters in order to guarantee a stable cooling of the LPT disk. This

goal will be achieved by conducting a robust design optimization (RDO).
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5.1 Uncertainty Quantification of a Jet Engine Performance Model

As described in Sec. 2.1, the performance model is the starting point of the jet engine de-

sign process. A detailed explanation of the thermodynamic simulation is given in Sec. 2.1.1

which also explains the significance for the overall development process. Furthermore, the

uncertainty sources of the performance calculation are summarized in Sec. 2.1.2. According

to Tab. 2.1, the set of uncertain parameters can be divided into two groups: engine-to-engine

and flight-to-flight variation. For the latter, a forward uncertainty quantification (UQ) is possible

because the available data set is directly related to the corresponding model parameters. In

contrast, the uncertainty on the quantities of the first group must be derived from an inverse

strategy. Within the scope of this section, only the inverse problem is analyzed whereas the

uncertainty characterization of the remaining quantities is discussed in Sec. 5.2.1.

At first, Section 5.1.1 provides a comprehensive description of the problem. Moreover, the

hyperellipsoid approach from Sec. 4.1.3 is applied with different configurations. Then, Sec.

5.1.2 compares the hyperellipsoid with the convex hull strategy for a reduced set of output

quantities. Here, the focus is more on the results interpretation of the different strategies. Note

that parts of the following paragraphs have been published in [108].

5.1.1 Inverse Problem Definition and Full-Scale Uncertainty Quantification

The final step of a jet engine production process is the so-called pass-off test. Here, the main

purpose is to ensure that every manufactured engine delivers the same amount of predefined

thrust when setting the throttle lever into take-off position. This is achieved by trimming the

rotational speed of the low-pressure spool (N1). As a result, the remaining station boundary

conditions, e.g., temperature (T (i)) and pressure (P(i)), are also deviating from their nominal

values because of the thermodynamic interrelationships.

In its original configuration, the performance model is used to simulate the jet engine’s thermo-

dynamic behavior for a set of design points, i.e., the phases of a flight mission. Every operation

point is characterized by different ambient conditions and a specific setting of the thrust level.

As a result, one can analyze the change of the station boundary conditions during a flight

mission. In order to consider the production scatter, i.e., the trimming effect of the pass-off

run, the components’ efficiency (η(i)) and flow capacity (∆W (i)) must be treated as uncertain

parameters. This enables us to determine how the station boundary conditions are affected by

the engine-to-engine variation in every flight phase. In addition to that, one can simulate the

flight-to-flight variation by varying the ambient conditions at a specific design point. Within this

section, we conduct performance calculations for the cruise phase under constant ambient

conditions, i.e., the flight-to-flight variation is neglected.

From a mathematical point of view, the performance model can be seen as a black box. The

input parameters being relevant for the uncertainty studies are comprised by η(i) and ∆W (i)
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which stand for the efficiency and flow capacity of the seven jet engine components, see

Fig. 2.2. The response space is described by twelve gas flow parameters of interest. For a de-

tailed explanation of the various input and output quantities, the reader is referred to Sec. 2.1.1.

A mathematical representation of the performance calculation is given by

g : R14 → R12,


∆W (FAN)

η(FAN)

...
∆W (NA)

η(NA)

 7→


T (25)

P(25)

...
N1
N2

 . (5.1)

The actual problem we are facing here is to quantify the uncertainty on the input quantities dur-

ing an early stage of the development process. In this phase, the main goal is to break down

the jet engine’s performance requirements to the component level. In detail, the stations’ tem-

perature and pressure values as well as the spool speeds are defined for every design point.

Consequently, the effect of the production scatter is also expressed by the variation around

the nominal station boundary conditions.

In the current application case, we are provided with a set of standard deviations represented

as CoV (coefficient of variation) in Tab. 5.1. Note that these values have been manipulated as

they are part of the company proprietary information. The epistemic character of the inverse

problem comes from the fact that these variations are derived throughout expert estimates.

The more reliable measurement data from the pass-off test are not available during this phase

of the development process.

To summarize, the aim is to identify the uncertainty of η(i) and ∆W (i) which leads to the

given variation of the gas flow parameters. Therefore, we have to backward propagate the

response uncertainty through the performance model. The total amount of data encompasses

the stochastic moments in Tab. 5.1 and the nominal values for η(i) and ∆W (i) which are not

given here for reasons of confidentiality.

Since the station boundary conditions serve as input quantities for the subsequent disciplines,

the question arises why not to directly vary these parameters in the interdisciplinary SAS

model. In principle, two reasons speak against this approach.

Firstly, the correlations between the gas flow parameters are not part of the provided data set.

Hence, running the performance model ensures a thermodynamically consistent variation of

the temperature and pressure boundary conditions. Secondly, analyzing the combined effect

QoI CoV QoI CoV QoI CoV QoI CoV QoI CoV QoI CoV

T (25) 0.62% T (3) 0.58% T (4) 0.63% T (45) 0.79% T (49) 0.85% N1 0.57%

P(25) 1.30% P(3) 1.03% P(4) 1.03% P(45) 0.70% P(49) 0.77% N2 0.77%

Table 5.1 Variation of the station boundary condition due to production scatter, expressed by the CoV.

118



of production scatter and changing ambient conditions is only possible by a simultaneous vari-

ation of all performance input parameters.

In the following two subsections, the hyperellipsoid approach from Sec. 4.1.3 is applied to the

performance model by using a local and global optimization strategy. Since the inverse UQ

strategies require a huge number of samples, the performance model is replaced by a math-

ematical surrogate model based on the Gaussian process. The training and test set from the

high-fidelity model comprises 10,000 and 100 samples, respectively. As a measure for the

approximation quality, the RMSE (root mean square error) is determined which takes a value

between 0.5% and 0.9% in the various dimensions. Thus, the quality of the metamodel is

precise enough for the uncertainty studies. For further information on the Gaussian process

regression, the reader is referred to [139].

Local Optimization

In order to set up the optimization procedure, a linearization of the performance model at the

nominal input values is required to approximate the unknown correlations between the gas

flow parameters. After that, the measurement ellipsoid EYm
can be derived from Chebyshev’s

inequality.

The linearization is also used to define the starting ellipsoid Ẽx for the gradient-based opti-

mization strategy. The analytical solution of the linearized problem did not yield a feasible

result as some entries of σ̃2
x become negative which is why a numerical solution is derived

from Eq. (4.27). Unfortunately, this leads to a huge offset from the target standard deviation

vector in many response dimensions. Of course, a certain mismatch from the measurement

standard deviation was expected because of the nonlinear characteristics of the performance

model. However, the absolute difference reaches values up to even 53%. This finding puts

into question whether Ẽx is a reasonable starting point for the optimization.

To allow a better understanding of the mismatch, the data from Tab. 5.1 is compared with real

pass-off measurements from a similar jet engine. As a result, a significant offset is observed

for some station boundary conditions. Based on experts’ opinion, it can be presumed that the

provided set of standard deviations is partially applied with safety factors. As a consequence,

the response space is reduced by the parameters T (25), P(25) and P(45) from twelve to nine

dimensions. When considering only the reduced set of response quantities, the linear inverse

UQ leads to an average offset of less than 10% from the standard deviations in Tab. 5.1.

Based on the reduced configuration, the inverse UQ is conducted with the SciPy1 implemen-

tation of the L-BFGS-B algorithm. In short, this optimization technique relies only on the

first-order derivative of the objective and is able to deal with specified bounds on the design

space. A detailed discussion about this type of local optimizer can be found in [178].

The uncertainty propagation of the hyperellipsoid in every iteration is based on ns = 25,000

1 SciPy is an open-source library for Python, see https://scipy.org/.
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LPC FAN HPC HPT LPT NA NC

k ∆W η ∆W η ∆W η ∆W η ∆W η ∆W η ∆W η CT

|∆
µ
|[%

]

9 0.03 0.21 0.10 0.09 0.24 0.07 0.01 0.03 0.00 0.00 0.27 0.02 0.01 0.23 37.9h

13 0.00 0.11 0.10 0.05 0.21 0.02 0.0 0.11 0.19 0.06 0.20 0.01 0.01 0.17 52.5h

17 0.00 0.05 0.10 0.07 0.13 0.02 0.00 0.03 0.11 0.03 0.14 0.02 0.03 0.10 42.6h

36 0.12 0.16 0.14 0.04 0.03 0.04 0.07 0.23 0.23 0.09 0.28 0.06 0.03 0.20 23.8h

90 0.14 0.16 0.13 0.07 0.29 0.06 0.06 0.13 0.24 0.03 0.27 0.05 0.08 0.21 30.5h

Lin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Obj

C
oV

[%
]

9 0.26 0.56 0.58 0.04 1.04 0.02 0.21 0.52 0.53 0.05 0.21 0.13 0.26 0.15 0.22

13 0.26 0.56 0.58 0.03 1.02 0.02 0.24 0.50 0.44 0.03 0.18 0.14 0.26 0.13 0.35

17 0.22 0.56 0.57 0.02 1.01 0.01 0.29 0.46 0.43 0.04 0.16 0.12 0.25 0.11 0.35

36 0.22 0.55 0.54 0.02 0.96 0.01 0.27 0.46 0.43 0.04 0.17 0.13 0.25 0.12 0.52

90 0.20 0.49 0.38 0.02 0.93 0.01 0.19 0.39 0.42 0.03 0.15 0.11 0.25 0.11 0.48

Lin 0.25 0.70 0.71 0.02 1.27 0.02 0.37 0.58 0.52 0.04 0.04 0.15 0.31 0.10 —

Table 5.2 Mean value deviations and CoVs derived from the local hyperellipsoid approach.

samples. As discussed in Section 4.1.1, it is sufficient to create sample points only from the

surface of the hyperellipsoid because the performance model has a monotonic behavior.

Within the scope of this study, the inverse UQ is performed several times with different specifi-

cations for the corresponding probability bound of EYm
. To repeat, the parameter k of Cheby-

shev’s inequality determines the minimum probability that a random sample lies inside the

derived ellipsoid. Thus, the k-factor decides about the size of EYm
, see Eq. (4.19). In detail,

the parameter is set to four different values which corresponds to a range of minimum probabil-

ities between 0% (k = 9) and 90% (k = 90). For every setting, the mean and standard deviation

vector is computed according to Eqs. (4.28) and (4.29) from the identified hyperellipsoid Ex.

Since input and output space do not have the same dimensionality, the k-factor in the input

space must be modified such that Ex and EYm
represent the same probability bound.

A summary of the study results is given by Tab. 5.2. In the first half, the entries of the mean

vector are expressed in terms of their absolute deviation from the nominal values. The sec-

ond part of the table shows the derived standard deviations, represented as CoV. Every row

of the table corresponds to a different realization of k. Note, that the parameter values are

related to the response space, e.g., the scenario for k = 17 describes a hyperellipsoid with

P(y ∈ EYm
) ≥ 47%. The last row in each section contains the stochastic moments of the lin-

earized solution. Furthermore, the computation time2 as well as the final objective value is

summarized by the very right column.

Coming back to the outcome of the study, it can be seen that the identified mean vector entries

deviate only slightly from their nominal values. The identified mean vector is reasonable when

considering that the uncertainty is caused by the production scatter. By logic, the mean vector

2 Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz
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of the linearized solution equals the deterministic configuration. The overall review of the CoVs

shows a clear consistency between the various UQ settings. Regardless of the k-factor, the

derived entries of σx are all in the same order of magnitude. With only a few exceptions, the

standard deviation tends to decrease with increasing value of k. This effect can be attributed to

the nonlinearity of the performance model. When choosing a low value for k, which automat-

ically leads to a small enclosed area of EYm
, the nonlinear characteristics has a less strongly

influence compared to a large k-factor. The hypothesis is confirmed by the standard deviations

obtained from the linearized model approximation. For almost all of the input quantities, σ̃x is

larger than the maximum standard deviation among all hyperellipsoid approaches.

In Fig. 5.1, the response space is illustrated for k = 17 by the two-dimensional projections of

the hyperellipsoids. Note that the response space has been normalized with respect to the

mean values. The linear approach is depicted by the dashed black lines whereas the solid

ones stand for the final result of the hyperellipsoid strategy. In all of the subspaces, a high

EYm

EYs

ẼYs

Figure 5.1 2D projections of EYm
, EYs

and ẼYs
from the local hyperellipsoid approach. The response quantities are

normalized with respect to the mean values.
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conformity between EYs
and EYm

can be observed. In contrast, the projections of ẼYs
enclose

the measurement ellipsis in any dimension which results from the conservative approximation

of σ̃x. Apart from assessing the quality of the inverse UQ results, Fig. 5.1 makes the corre-

lations between the gas flow parameters visible. Especially temperatures and pressures at

consecutive stations show a high level of dependency. In case EYm
is based on thermody-

namically consistent data, a reduction of the response space can be conducted without loss

of information.

Finally, the question remains how to use the derived data from Tab. 5.2 for subsequent studies.

The randomness on the stochastic moments themselves could be included into a p-box rep-

resentation with uncertain mean and variance. In the present study case, it has been decided

to use the average mean value for the uncertainty representation due to the small variation

of the stochastic descriptor. For the standard deviation, the maximum value is taken out of

Tab. 5.2. The reason for choosing a more conservative approach is the early design stage

of the development process. Nevertheless, the missing information regarding the shape of

the true distribution is considered by the p-box concept from Sec. 4.1.4. To repeat, the dis-

tributional p-box is characterized by a set of CDFs with equal mean and standard deviation

but different skewness values. Since the p-box representation must be applicable to the non-

intrusive imprecise stochastic sampling (NISS) concept, the continuous family of skew normal

distributions is used for the characterization.

All in all, the local optimization strategy of the hyperellipsoid has proven to deliver reasonable

results for the uncertainty identification of the components’ efficiency and flow capacity. A de-

cisive factor for the good performance is certainly the quality of the initial guess. Especially for

the determination of µx, the linear solution is close to the optimal one which is meaningful for

analyzing the production scatter effect. Within the next section, the same study is conducted

with a global optimization approach.

Global Optimization

The purpose of this section is to compare the two different optimization strategies with each

other in context of a real-world application. One of the main aspects is to assess the compu-

tation time as well as the quality of the results.

A great benefit of the global approach is that no initial guess is needed, such as the linearized

solution Ẽx, to set up the optimization problem. Instead, only a lower and upper bound for each

of the hyperellipsoids’ angular points is required. In case there is no preliminary information,

the modeler can select conservative limit points to avoid any interference from subjective as-

sessments.

The term global means that a population-based optimization is used in place of the gradient-

based strategy from the previous section. Among the large variety of algorithms, the DE

(differential evolution) principle has proven to be an efficient method which has even been
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adapted by the ESA (European Space Agency) [23]. Within the scope of this thesis, the adap-

tive version from the SciPy implementation is used.

A clear downside of any global optimization is the increased computational effort. For the in-

verse UQ, the optimization settings are adjusted such that one population encompasses 28
individuals. This means that a set of 28 hyperellipsoids must be evaluated for a single iteration.

Without any changes of the algorithm, a computation time of several weeks must be foreseen

which is no viable alternative to the local procedure. For this reason, the following changes

are applied to the original setup:

Two-phase optimization strategy :

The first modification is to subdivide the optimization into two phases: exploration and

exploitation. In the first stage, the inverse UQ is conducted with a comparatively low

sample count and a limited number of iterations to narrow down the initial bounds of

the design space. The updated limits are obtained by enlarging the main axis lengths

from the identified explorative hyperellipsoid. In the second phase, the inverse UQ is

conducted based on a larger number of samples and the updated design bounds.

Data point reduction:

Another improvement concerns the determination of EYs
. In principle, only the surface

points of Ys are of relevance for the minimum-volume enclosing ellipsoid (MVEE). In

order to filter out non-relevant points, the following transformation is applied to the original

point cloud:

Ýs =R−1/2 Yu
s, (5.2)

where Yu
s represents the standardized simulation set which is enclosed by the hyper-

rectangle [−1,1]ny . The term R denotes the empirical correlation matrix derived from

Yu
s . After that, the reduced point cloud is derived by

Ý
red
s =

{
ý
(i)
s | ∥ý(i)

s ∥2 > c
}
, (5.3)

where c denotes a threshold value for the Euclidean distance from the coordinate center.

Finally, the inverse transformation from Eq. (5.2) must be applied to Ý
red
s to get back the

physical values. As a result, the original set is reduced by those points located around

the center and having thereof no influence on the shape of EYs
.

A more comprehensive reduction could be achieved by determining the convex hull of

Ys. However, the computational burden is extremely high for large dimensions which will

be discussed in greater detail within Sec. 5.1.2.

In order to compare the global optimization results with the local ones, the identical weighting

factors are used for the components of the objective function. The number of sample points

for the explorative and exploitative step has been set to 1,000 and 25,000, respectively.
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LPC FAN HPC HPT LPT NA NC

k ∆W η ∆W η ∆W η ∆W η ∆W η ∆W η ∆W η CT

∆
µ
[%

]

9 0.06 0.33 0.52 0.79 0.14 0.09 0.01 0.25 0.55 0.20 1.07 0.29 0.09 1.72 228.9h

13 0.03 0.35 0.18 0.08 0.52 0.23 0.01 0.41 0.84 0.29 0.27 0.07 0.04 1.40 181.0h

17 0.17 0.40 0.52 0.44 0.48 0.26 0.00 0.24 0.55 0.21 1.18 0.03 0.04 0.79 184.5h

36 0.17 0.52 0.73 0.53 0.33 0.24 0.01 0.56 1.53 0.58 3.36 0.04 0.16 1.57 183.7h

90 0.32 0.85 0.82 0.36 0.11 0.08 0.02 0.39 1.35 0.47 3.16 0.11 0.19 0.46 182.0h

Lin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Obj

C
oV

[%
]

9 0.32 0.49 0.64 0.10 1.18 0.07 0.22 0.38 0.63 0.14 0.24 0.11 0.33 0.16 0.16

13 0.47 0.59 0.37 0.17 1.63 0.15 0.23 0.38 0.53 0.04 1.14 0.08 0.25 0.32 0.61

17 0.49 0.54 0.60 0.15 0.96 0.10 0.25 0.44 0.41 0.12 0.49 0.10 0.24 0.13 0.21

36 0.36 0.48 0.19 0.10 0.87 0.03 0.19 0.39 0.68 0.10 0.51 0.12 0.17 0.19 0.17

90 0.30 0.49 0.27 0.01 0.80 0.03 0.15 0.38 0.49 0.08 0.15 0.11 0.19 0.42 0.12

Lin 0.25 0.70 0.71 0.02 1.27 0.02 0.37 0.58 0.52 0.04 0.04 0.15 0.31 0.10 —

Table 5.3 Mean value deviations and CoVs derived from the global hyperellipsoid approach.

In Tab. 5.3, the results of the global inverse UQ are summarized in the same fashion as before,

i.e., the first half represents the absolute deviation of the mean vector from the nominal values

whereas the second half contains the derived CoVs. The very right column of the table shows

clearly that the global strategy is able to identify better solutions in terms of the objective func-

tion value except for k = 13. However, the required computational time is significantly higher

than for the gradient-based optimization. When putting the focus on the first half, one can see

that the derived mean values have a stronger deviation from the nominal ones compared to

the previous study. For example, the offset for ∆W (NA) yields more than 3% in case of the two

largest k-factors.

The two main reasons for this are the non-uniqueness of the inverse problem and the explo-

rative characteristics of a global optimization. Due to the missing initial solution, the optimizer

is given more flexibility to minimize the objective function’s components. A deeper analysis

reveals that this has been achieved by a lower value for ∆A, i.e., a better matching of the

hyperellipsoids arc lengths. At the same time, ∆b is getting larger which results in a higher

discrepancy between the center points of EYs
and EYm

.

The obtained results for the CoV are lying in a similar range as those from Tab. 5.2. However,

the overall consistency between the results is lower because of the reasons discussed before.

Once again, the CoV tends to decrease for increasing realizations of the k-factor which goes

back to the nonlinear characteristics of the performance model. To repeat, the outcome of the

global optimization study is not used in the sequel. Instead, the stochastic moments from the

gradient-based approach are the basis for the analysis of the interdisciplinary SAS model as

we expect a mean vector close to the parameters’ nominal value.
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5.1.2 Comparative Study: Hyperellipsoid vs Convex Hull Approach

The following paragraphs put the focus on the comparison between the hyperellipsoid and

hyperrectangle approach. Again, the performance model serves as application case for the

study but the set of input and output quantities has been decreased beforehand to run the

simulations within a reasonable period.

In detail, the original response space from Tab. 5.1 is reduced by the parameters P(25), P(3),

T (4), T (49), and N1 based on evaluating the correlation coefficients between the gas flow

parameters. For the input space, the parameter selection is derived from the correlation co-

efficients between input and output quantities which leads to a reduction of the parameters

η(FAN), η(LPC), η(NC), ∆W (LPC), ∆W (LPT) and ∆W (NA). A deeper discussion about the variable

screening is deliberately omitted here because the focus of the comparative study is not on

absolute numbers but on the relative difference between the methods’ results. From a mathe-

matical point of view, the reduced performance model can be described by g : R8 → R7.

Comparison of the Identified Geometrical Shapes

The following paragraphs aim to compare the convex shapes from the hyperellipsoid and hy-

perrectangle approach. Therefore, the reduced setup of the performance model is analyzed

with both inverse UQ techniques.

At first, we start with the analysis of the local hyperellipsoid approach. As for the full-scale

model setup, the Jacobian matrix is computed by using a finite difference scheme to approx-

imate the first-order derivatives at the nominal value. After having solved Eqs. (4.25) and

(4.26), the off-diagonal entries of Σy as well as Ãx and b̃x can be derived. Here, the value

of the k-factor was exemplarily set to 15. Thus, the probability that a sample lies inside the

corresponding hyperellipsoid is at least 53.3% according to the Chebyshev inequality. If the

response quantities were normally distributed, the same hyperellipsoid would contain ≈ 95%
of the population.

Based on the approximate solution Ẽx, the final result of the inverse UQ has been derived by a

subsequent local optimization strategy. For the propagation of the uncertainty throughout the

performance model, a sampling procedure with 1,000 samples was chosen. In order to check

if the number of realizations is sufficient, 10,000 samples were generated for the final result Ex.

It figured out that only a single sample point was lying outside EYs
derived from the reduced

sampling scheme.

In Fig. 5.2, the 2D projections of the output space are represented in the lower left part. Every

subplot shows the projected ellipsoids EYm
and EYs

in the normalized subspace. As the ob-

jective value of the final result is rather small (< 0.02), the study is not repeated with a global

optimization technique.

In a second step, the inverse UQ of the performance model was also conducted with the

hyperrectangle approach. Therefore, the convex hull CYm
was created by generating 1,000
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EYm
,CYm

EYs
,CYs

Figure 5.2 2D projections of the reduced performance model output space for the local hyperellipsoid (lower left) and
hyperrectangle (upper right) approach. The response quantities are normalized with respect to the mean values.

sample points from the surface of EYm
. As the exact computation of the overlapping volume

between CYm
and CYs

is rather time-consuming in seven dimensions, it has been replaced by

a simplified procedure. The algorithm generates a set of uniformly distributed sample points

within CYm
. Then, the overlapping volume is approximated by counting the number of points

that lie inside CYs
. The 2D projections of CYm

as well as the final result CYs
are depicted in the

upper right part of Fig. 5.2.

Comparing the results with the ones from the hyperellipsoid approach, one could get the im-

pression that the discrepancy between CYm
and CYs

is larger as between the corresponding

hyperellipsoids. However, the value of the objective function indicates a very precise matching

between the two convex hulls. The obvious mismatch in Fig. 5.2 is therefore resulting from the

projections.

In the following, the input uncertainties identified by the two approaches are compared with

each other. For the hyperrectangle approach, the midpoint coordinates and the radii of the
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∆W (Fan) ∆W (HPC) ∆W (HPT) ∆W (NC) η (HPC) η (HPT) η (LPT) η (NA)

H
E 2a−1

x [%] 0.07 9.58 3.65 3.19 4.22 2.08 4.27 0.41

∆µx [%] −0.01 −0.01 −0.04 0.01 −0.02 0.06 −0.02 −0.01
H

R x− x [%] 0.60 5.21 2.89 1.94 2.54 1.53 1.89 0.11

(x+ x)/2 [%] −0.05 0.73 −0.03 0.01 0.12 −0.12 −0.03 −0.02

Table 5.4 Comparison between the identified hyperellipsoid (HE) and hyperrectangle (HR).

multi-dimensional interval are expressed as percentage deviation from the nominal value. In

case of the hyperellipsoid approach, the center point coordinates as well as the main axis

lengths of Ex are represented. Again, the values are normalized with respect to the determin-

istic solution.

When analyzing the results from Tab. 5.4 in detail, one can observe certain similarities with the

analytical example from Section 4.1.2. With the exception of ∆W (Fan), the uncertainty ranges

of Ex are wider than the interval widths of Cx. This comes from the fact that the hyperrect-

angle Cx covers also the extreme combinations of the input quantities. Moreover, the center

point of Cx and Ex differs only marginally from the nominal value. This confirms the impression

from Sec. 5.1.1 that the performance model is approximately linear in the range close to the

deterministic solution.

Assessment of the Computational Efficiency

Another important aspect when comparing the two approaches with each other is the compu-

tation time. In order to obtain a full picture of the computational efficiency, the hyperellipsoid

method is also tested with a global optimization technique. For this investigation, the inverse

UQ was repeated several times with a different number of sampling points. Note that the same

SciPy implementations have been used as in Sec. 5.1.1.

Figure 5.3(a) compares the computation times of the global and local hyperellipsoid approach

with respect to the number of sample points. For every configuration, the global optimization

has been repeated three times with a different seed. Thus, it can be checked if the optimiza-

tion algorithm identifies the same result for different initial populations. Here, it figured out that

the repeated optimization runs lead to similar results.

In general, the computation time of the local approach is significantly shorter. Similar to the

analysis of the full-scale performance model, the objective values of the final solution are

slightly worse than the ones obtained from the global strategy. As discussed in the previous

sections, the reason lies in choosing the nominal values as initial solution and the explorative

characteristics of the global optimization strategy. Nevertheless, the local strategy provides

convincing results especially when taking the savings in computation time into consideration.

Another point of discussion is the influence of the amount of sample points on the final result of
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(a) Computation times for global (top) and local (bottom)
hyperellipsoid approach.

(b) Computation times for hyperrectangle approach.

Figure 5.3 Comparison of the computation time between hyperellipsoid (left) and hyperrectangle (right) approach.

the optimization. For both the local and the global approach the value of the objective function

decreases with an increasing number of samples. Simultaneously, the computation time is

getting longer because the determination of the minimum volume ellipsoid is more expensive

for a large number of samples. Even for the largest set of sample points, the global method

achieves convergence within less than six minutes3. The inverse UQ was also conducted with

the hyperrectangle approach for a different number of sample points. Again, the optimization

was repeated three times with varying seed values to evaluate the robustness of the inverse

UQ. In addition, a specific sampling procedure which comprises only the corner points of the

hyperrectangle in the input space was applied. The results are summarized in Fig. 5.3(b).

When comparing the results with the hyperellipsoid approach, one can observe certain simi-

larities. Increasing the number of samples has the consequence that the uncertainty quantifi-

cation requires more time. Furthermore, the objective values of the converged solutions are

decreasing.

At first glance, it seems that the results from the corner point sampling do not coincide with

the conclusions drawn before. A hyperrectangle in the eight-dimensional input space has 256
corners. Thus, one would expect that the computation time is only slightly higher than in case

of 200 sample points. Furthermore, the objective function values should not deviate too much

from the sampling procedure with 200 samples. However, the computation takes considerably

more time and the objective function values of all optimization runs are even higher than the

ones obtained when generating only 50 samples in the input space.

In principle, both observations can be attributed to the approximately linear characteristic of

the performance model. In case of the corner point sampling procedure, almost all sample

points represent a vertex of the convex hull in the output space. In contrast, when generating

3 Intel(R) Xeon(R) CPU E3-1271 v3 @ 3.60GHz
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sample points uniformly within a hyperrectangle, only a fraction of the samples corresponds to

a vertex of EYs
. For example, the convex hull which is derived from 200 samples has only 170

vertices. The number of vertices has a direct impact on the computation time of the convex

hull as can be seen in Eq. (5.4).

Still the question remains, why the objective function values are comparatively high. Propagat-

ing a hyperrectangle throughout the performance model by its corner points leads to a convex

hull in the output space which takes the shape similar to a skewed hyperrectangle. Since the

convex hull is compared with a hyperellipsoid, a perfect matching between these two geome-

tries is not possible. This hypothesis can be supported by propagating the input uncertainty

obtained from the uniform sampling strategy throughout the performance model once again by

a corner point sampling strategy and comparing the newly obtained objective function value

with the original one. In case of 200 sample points, the optimized solution has an objective

value of 0.013. The corresponding objective value obtained from the corner sampling proce-

dure is 0.14.

On the whole it can be stated that the hyperrectangle requires significantly more time than the

hyperellipsoid approach. Especially for a large number of samples, the discrepancy becomes

extremely clear. For 200 sample points, the inverse UQ takes roughly five minutes in case of

the global hyperellipsoid approach but roughly 2.5 hours for the hyperrectangle approach.

The main reason for the discrepancy in the computation time are the different time complexi-

ties for determining CYs
and EYs

. The complexity for computing the convex hull based on the

QuickHull algorithm of a given set of points yields for high dimensions (d > 10) in the worst

case

O(vd/2/(d/2)!), (5.4)

where v is the number of vertices of the hull [16]. Thus, the computation time grows exponen-

tially with respect to the dimensionality of the problem. In contrast, the approximation of the

MVEE based upon the Khachiyan algorithm has an upper bound time complexity of

O(pd2(ε−1 + ln(p)+ ln ln(p))), (5.5)

where ε is related to the accuracy and p denotes the number of enclosed points [93]. Regard-

ing the computation time, the hyperellipsoid approach is especially beneficial for problems with

a high-dimensional output space because the computation of the convex hull can get extremely

time-consuming in such cases. Moreover, analyzing the geometric discrepancy between two

convex hulls is also a time-consuming operation in high dimensions whereas the comparison

between two hyperellipsoids requires less effort.

The previous paragraphs have demonstrated the capability of two different methods to con-

duct an inverse UQ under scarce data. First, the newly introduced concept from Sec. 4.1.3

has been applied to the full-scale performance model with two different optimization strategies.

Within the following studies of the interdisciplinary SAS model, the results from the local opti-
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mization algorithm are used because they show a higher consistency for the different setups

compared to the global optimization technique.

In addition, a comparison with the interval-based UQ method from Sec. 3.4.2 has been carried

out for a reduced setup of the performance model. A main aspect was to show the difference

between the input quantities’ uncertainty representation, i.e., the geometrical dimensions of

the hyperrectangle and hyperellipsoid. Apart from that, a comprehensive study on the com-

putation time has been conducted which shows the superior efficiency of the hyperellipsoid

method in high dimensions.

5.2 Analysis of the Interdisciplinary Secondary Air System Model

Upon the stand-alone analysis of the performance calculation, we can proceed with the in-

vestigation of the interdisciplinary SAS model. The basis for all of the studies is the input

quantities’ uncertainty characterization. Section 5.2.1 covers the modeling approach of some

selected parameters which are based upon scarce information. After that, an epistemic sensi-

tivity analysis (SA) is performed in Sec. 5.2.2 to reduce the complexity of the interdisciplinary

system. Finally, Sec. 5.2.3 addresses the issue of finding a robust optimum for the geometric

design parameters.

5.2.1 Forward Uncertainty Quantification of Selected Input Quantities

The extensive summary in Section 2.1.2 has shown that the total set of input parameters can

be categorized according to their root cause in two groups: engine-to-engine and flight-to-flight

variation. For both classes, the uncertainty quantification is demonstrated for a small set of

parameters within the following subsections. Contrary to the inverse UQ studies from Sec. 5.1,

the available information is directly related to the parameters which is why it is referred as

forward UQ.

Flight-to-Flight Variation

As can be seen from Tab. 2.1 on page 19, the flight-to-flight variation affects the thrust level

(XThr), flight altitude (XAlt), ambient temperature (XTemp) and Mach Number (XMach). Within the

next paragraphs, the underlying data bases and the resulting modeling approaches for these

four quantities are discussed.

The parameter XTemp expresses the temperature deviation from the ISA (international stan-

dard atmosphere) and is important for the consideration of changing weather and climate

conditions. The primary data source comprises two sets of temperature increments describ-

ing the offset from the ISA condition for a WWA (world-wide average) as well as a hot operator
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scenario. In principle, the two data sources are represented by nine decile values

XWWA =
{

D(1)
WWA, . . . ,D

(9)
WWA

}
, and XHOT =

{
D(1)

HOT, . . . ,D
(9)
HOT

}
, (5.6)

which represent the cumulative distribution function (CDF) value at the 10th, 20th, . . . ,90th

percentile. Both of them are depicted by the black and red step function in Fig. 5.4(a).

Basically, the uncertainty on XTemp is represented as distribution-free p-box. If the temperature

deviation of an arbitrarily chosen jet engine is measured over the whole life time, any kind of

cumulative distribution between the red and black curve is a possible realization. Jet engines

operating exclusively in cold regions could be characterized by a cumulative distribution which

is not enclosed by the p-box. Since cold operators are uncritical for the design process, no

specific data has been gathered. Thus, the p-box concept is able to account for the lack of

knowledge regarding the geographical region in which the jet engine goes into action.

To transfer the free p-box form into a distributional one, we make use of the beta-distribution

due to its high flexibility. In short, this family is defined within the unit-interval by two shape

parameters α and β . A more comprehensive summary has been given in Sec. 4.1.4. Here, the

goal is to extract all combinations for α and β leading to a CDF that lies inside the step-function

envelopes in Fig. 5.4(a). Formally, this procedure is formulated by

{α,β}=
{

α,β
∣∣∣ D(i)

WWA ≤ F−1
X (q(i)|α,β )≤ D(i)

HOT

}
for i = 1, . . . ,9

with α,β > 1.0

with σ [XTemp] ≥ 1/12(XTemp −XTemp),

(5.7)

where q(i) stands for the above-mentioned percentiles. The first constraint in Eq. (5.7) en-

sures that exclusively unimodal CDFs are part of the distributional p-box. Further, the possible

XWWA

XHOT

(a) Distribution-free and distributional
p-box.

(b) α-β parameter space. (c) µx-σx space.

Figure 5.4 Modeling approach for the uncertainty on the ambient temperature (XTemp). The original data set has been
normalized to unity.
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shape-parameter space is restricted by a lower limit on the standard deviation. In detail, the

minimum value for σ [XTemp] is defined by one twelfth of the whole ambient temperature range.

Figure 5.4(b) illustrates all restrictions from Eq. (5.7) and the corresponding feasible set of α-β

combinations. The black and red solid line depicts the p-box envelopes derived from XWWA

and XHOT, whereas the unimodality and standard deviation limitation are shown by dashed

lines. Note, that the data from XWWA and XHOT as well as the σx-constraint has been mapped

to the unit space beforehand.

A clear drawback of this modeling approach is that the distributional parameters do not contain

direct stochastic information. For this reason, the bounds on the α-β space are transferred to

the µx-σx domain shown in Fig. 5.4(c). One can see that the stochastic moments are no longer

independent from each other which must be considered in the subsequent studies. The closer

µx is to the lower or upper bound, the smaller the allowable range for the standard deviation.

Next, we deal with the flight altitude (XAlt) and Mach number (XMach). Contrary to the ambient

temperature, varying FCIs (flight cost indices) are identified as main driver for the uncertainty.

In order to understand the relation between this index and the variation of altitude and air

speed, we have to dive into the topic of flight profile calculation.

The planning of an optimal flight route is affected by the goal conflict of minimizing time (Ct)

and fuel costs (Cf) at the same time. A low aircraft speed certainly reduces the fuel costs but

it automatically leads to higher cabin crew costs, leasing costs or, in the worst case, to com-

pensation payments if passengers cannot get their onward flights. Modern flight management

systems thereof take the flight cost index (FCI) into account, which is given by the ratio [160]

FCI =
Ct

Cf

[
kg
min

]
. (5.8)

To summarize, the FCI has a significant impact on the flight trajectory and the aircraft speed

during the different flight phases. The latter, also referred to as ECON speed, is of key im-

portance to minimize the overall costs. Doubtlessly, the flight profile is also affected by other

(a) Flight altitude variation. (b) Cruise speed variation.

Figure 5.5 Flight altitude (left) and cruise speed (right) for different FCIs and flight distances. Both figures are taken
from [148].
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elements, such as weather or air traffic conditions. For the study case within this thesis, we

concentrate exclusively on the FCI due to its predominant role.

In [148], more than 4,000 flight planes have been simulated for FCIs between 0 and 999 kg/min

to analyze its impact on the flight trajectory. The relevant data for our investigation is the aver-

age speed and flight altitude during the cruise phase shown by the two diagrams in Fig. 5.5.

Both of the plots sort the simulation results with respect to the FCI and flight distance.

The first step of the uncertainty quantification is to extract the minimum and maximum value

of XAlt and XMach. For both parameters, the data points for flight distances of less than 250
NM (nautical mile) are falling out of line. As these missions are extremely scare, they are

not considered for the UQ approach. In case of the aircraft speed, the remaining data points

are mainly located above 0.77 Mach. This information is considered by introducing an upper

bound on the CDF at the 20th percentile. Based on the limitation, a distribution-free p-box

is deduced, see Fig. 5.6(a). Together with additional constraints on the standard deviation, a

distributional p-box representation is derived with the help of the beta-distribution family. The

modeling approach for XMach is determined in a similar fashion but not explained here in further

detail.

A closer examination of Fig. 5.5 reveals a certain correlation between XAlt and XMach which is

why the parameters may not be treated as independent. For high FCI values (> 130 kg/min),

a strong decrease of the flight altitude can be observed whereas the cruise speed is placed

in the upper range (> 0.78 Mach). Therefore, a coupling between µ[XAlt] and µ[XMach] is in-

troduced which prevents the combination of a low mean value for altitude and Mach number.

Figure 5.6(b) shows the restricted µ[XAlt]-µ[XMach] space allowing only mean value combina-

tions inside the polygon.

The last parameter, which has not been mentioned so far, is the adjusted thrust level (XThr). By

logic, the generated thrust is strongly correlated to the Mach number. Again, the dependency

is modeled by introducing a coupling between the mean values of XMach and XThr.

xMach

(a) P-box representation of XMach.

µ
[X

M
ac

h]

µ[XAlt]

(b) Coupling between µ[XAlt] and µ[XMach].

Figure 5.6 Modeling approach for XMach (left) and mean value coupling (right).
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Contrary to the previous case, a one-by-one dependency is introduced which degrades XThr

to a pure aleatory parameter. The functional relationship is derived from an MTU-internal

database which comprises the performance parameters for various flight missions.

Of course, the direct dependency is a simplified UQ strategy because it neglects the interac-

tion with other parameters like the XAlt for example. The low level of detail is compensated by

assigning a large standard deviation to XThr which is a reasonable approach during an early

stage of the design process.

Engine-to-Engine Variation

The second category encompasses parameters from the performance model as well as ge-

ometrical quantities of the SAS. The parameters from the performance model have already

been discussed within Sec. 5.1 and will not be covered here. Due to the large number of

geometrical parameters of the SAS, a detailed review on the p-box concept is only shown for

XIAS1_lip_e.

In short, this variable describes the sealing lip eccentricity at the first inner air seal (IAS) which

is, in combination with other parameters, one of the main influencing factors on the overall gap

width. A detailed description about this sealing type has been given in Sec. 2.1.2. The root

cause for the uncertainty on XIAS1_lip_e lies in the manufacturing process. If the component

was produced perfectly no eccentricity would occur which corresponds to a value of zero for

XIAS1_lip_e. However, a certain offset is unavoidable under real conditions and tolerated as long

as the eccentricity does not exceed certain threshold values.

As the eccentricity value is not documented, we are facing a typical lack-of-knowledge un-

certainty source. Basically, only the nominal and lower/upper bound is available to perform

the UQ. The existence of strict bounds makes the usage of distribution families with closed

intervals attractive. Again, the beta-distribution type is preferred because of its high flexibility.

For the definition of the distributional p-box, also experience-based knowledge from the man-

ufacturing department is used to exclude illogical CDFs. The provided information has led to

the assumption that the true mean and median value do not deviate by more than 10% from

the nominal one. Additionally, a criterion on the unimodality and a lower limit on the standard

deviation is introduced.

Figure 5.7 summarizes the known information on XIAS1_lip_e and the resulting modeling ap-

proach. On the left, i.e., in Fig. 5.7(a), the free p-box and its distributional representation are

illustrated in the unit space. It can be seen that the corresponding constraint regarding the

mean does not lead to a further limitation compared to the median value condition. This goes

back to the fact that the p-box envelopes, depicted by the dash-dotted line, enclose CDFs with

mean values other than the prescribed ones. The remaining two figures depict the constraints

in the α-β and µx-σx space. Due to the dominating role of the median constraints, Fig. 5.7(b)

contains exclusively the restrictions on the 50th percentile. Any shape parameter combination
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(a) Probability-box representation. (b) Feasible α-β space.

µx

σ
x

(c) µx-σx space representation.

Figure 5.7 Modeling approach for the sealing lip eccentricity of the first inner air seal (XIAS1_lip_e).

complying with this condition leads automatically to a fulfillment of the mean criterion. A note-

worthy aspect is that the median constraints repeal the independency between µx and σx, see

Fig. 5.7(c).

To repeat, transferring the available knowledge into a distributional p-box concept is a neces-

sary requirement for applying the NISS strategy in context of the robust design optimization

(RDO). Apart from that, the distributional representation helps to reduce the degree of conser-

vatism. In contrast to the modeling of XTemp, the free p-box for XIAS1_lip_e still contains some

undesired CDFs such as the envelopes themselves. Thus, the segregation of CDFs caused

by the change of the p-box representation cannot be interpreted as a pure loss of information.

As mentioned before, the remaining parameters are not analyzed in detail because the UQ

concepts for lack-of-knowledge uncertainties differ only slightly from the ones explained so

far. For the rim seal parameters (#22, . . . , #27) and the variables corresponding to the stator

eccentricity of the inner air seals (#30, #33), the available information is rather similar to the

sealing lip eccentricity. On the basis of the manufacturing tolerances, distributional p-boxes

are derived which also take assumptions about the expected mean and median range into

account.

All the other noise factors listed in Tab. 2.1 are categorized as aleatory because the underlying

database enables the assignment of specific distribution functions. For the turbine blade plat-

form gaps (#19, #20, #21), we can rely on a set of approximately 1,000 measurements from a

similar jet engine. In Fig. 5.8(a), the histogram including the representative probability distri-

bution is shown for the platform area of the first rotor stage. Here, a Gaussian distribution has

been fitted with a p-value of 0.84 which indicates strong evidence in favor of the null hypothe-

sis.

The situation is similar for the parameters related to the sealing lip diameter variation of the first

and second inner air seal. In this case, the total data set comprises 682 measurements char-

acterized by the right-skewed histogram in Fig. 5.8(b). It turned out that the three-parameter

burr distribution fits the data well with a p-value of 0.45.
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(a) Normalized measurement data for XPlat_1. (b) Normalized measurement data for XIAS1_lip_c.

Figure 5.8 Measurement data representation and distribution fitting of the turbine blade platform gap width (left) and the
sealing lip diameter of the inner air seal (right). Both data sets have been scaled w.r.t. to their nominal values.

Last but not least, some explanatory remarks about the modeling of the design parameters’

uncertainty are still to be made which have their origin in the engine-to-engine variation. In

general, the uncertainty representation follows the same scheme for every entry of Xd. As for

most of the noise factors, strict bounds limit the feasible design space which makes the us-

age of the beta distribution advantageous. Even though the standard deviation is not exactly

quantifiable, an aleatory treatment is preferred by assigning a crisp value to the stochastic

moment. Accordingly, a comparatively large standard deviation value is chosen to cover con-

servative scenarios for the subsequent robustness assessment and optimization. The reason

for the probabilistic treatment of the epistemic uncertainty will be described within the scope of

Sec. 5.2.3. A thorough explanation of the design parameters’ database is skipped at this point

because the focus of the dissertation lies on the modeling of epistemic uncertainty sources.

Moreover, non-normalized data may not be illustrated for reasons of confidentiality.

Having found an appropriate description for all design and noise factors, the foundation has

been laid to continue with the screening of the epistemic parameters. To summarize, the in-

put space of the interdisciplinary SAS model is characterized by 33 noise parameters among

which 28 are modeled by distributional p-boxes. Bearing in mind that some performance pa-

rameters are quantified by p-box definitions with only one uncertain shape parameter, we are

faced with a 40-dimensional uncertain hyperparameter space. Considering all of the shape

parameters would require a tremendous computational effort which is why a reduction of the

hyperparameter space is inevitable.
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5.2.2 Epistemic Variable Screening

For the epistemic SA the method introduced in Sec. 4.2 is applied. Without going into detail,

the basic idea is to derive the impact of all uncertain hyperparameters on the variation of the

response mean and standard deviations. The core concept of the screening method rests

upon the conduction of repeated uncertainty propagations. Instead of using a sampling-based

approach, the strategy is based on Taylor series expansions. The great benefit is that only a

set of derivatives must be evaluated at the various expansion points in the epistemic space

which requires significantly less computational effort in high dimensions.

Before starting with the examination of the screening results, the required modifications are

discussed which are necessary for adapting the screening strategy to the industrial use case.

In its original configuration, the method assumes a totally independent set of hyperparameters,

i.e., the epistemic space can be described by a hyperrectangle. Even though the noise factors

themselves are independent, we have to take certain dependencies between the stochastic

descriptors of the single parameters into account. Thereof, the mean and standard deviation

cannot be varied individually over the full uncertainty range while fixing the other moment to

its nominal value.

The modification of the grid point layout for dependent hyperparameters can be explained by

Fig. 5.9. The black-dotted points mark the data set for evaluating the first-order index (FOI)

associated to the uncertain mean value. It can be seen that changing the first stochastic mo-

ment goes along with a change of the standard deviation to avoid unfeasible hyperparameter

combinations. In the current example, the effect does not occur for determining the standard

deviation’s main effect because of the symmetry of the hyperparameter space with respect to

µx.

The modeler must be aware that the resulting first-order indices (FOIµ , FOIσ ) may be influ-

enced by the coupling. For this reason, it has been decided not to sort out single hyperpa-

rameters of a noise factor. By proceeding in this way, the inadvertent reduction of significant

µ[XIAS1_lip_e]

σ
[X

IA
S

1_
lip

_e
]

Grid point FOIµ

Grid point FOIσ

Figure 5.9 Taylor series grid points for the determination of the first-order effects of XIAS1_lip_e.
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parameters can be ruled out at the price of reaching not the full simplification potential.

Within the next paragraphs, the screening results are summarized. Due to the large number of

epistemic variables, a two-step procedure is carried out. First, only the performance model is

investigated with the covert goal to scale down the epistemic performance parameter space.

After that, we continue with the more time-consuming analysis of the interdisciplinary SAS

model.

Monodisciplinary Sensitivity Analysis of the Performance Model

As stated before, we put the focus on running only the performance calculation without con-

sidering the subsequent models. The total set of input parameters is then comprised by 18
quantities which are all described by p-boxes. The ones characterizing the ambient conditions

are equipped with two hyperparameters whereas the definition of flow capacity and efficiency

has only one uncertain hyperparameter, namely the skewness. All in all, the epistemic param-

eter set encompasses 20 input quantities.

The decision whether to keep or retain the epistemic uncertainty relies on the value of the

first- (FOIµ , FOIσ ) and second-order (SOIµ , SOIσ ) indices, see Eqs. (4.44) and (4.46). The

relevant response quantities of the performance calculation are P(45), T (45), P(49) and T (49),

which stand for the temperature and pressure at the inlet and outlet of the LPT. In addition,

the station boundary conditions P(3) and W (25) are of interest as they play a decisive role for

the cooling mass flow supply, see Sec. 2.1.1.

In Fig. 5.10, the indices are displayed as percentage values in tabular form for P(45). The

upper triangle represents the screening indices for the response mean and the lower part for

the standard deviation. For example, the first-order index FOIµ(µ[XMach]) indicates that the

uncertainty on µ[XMach] causes a variation of 13.18% on µ[YP(45)]. Note, that the two parts of

the table must be viewed separately because they both include the diagonal values.

A p-box is degraded into a pure probabilistic representation if its first- and second-order in-

dices are small for all of the response quantities under investigation. As a threshold value for

the parameter reduction, we have chosen 5% and 10% for the mean and standard deviation

indices, respectively. From the inspection of Fig. 5.10, none of the parameters comes into

question according to the previous criteria. Bearing in mind that the second-order indices also

enclose the grid points for deriving the first-order indices, its value should be compared with

the corresponding FOIs. As an example, the interactive effect between γ[X
η (Fan) ] and µ[XMach]

on the response standard deviation is 20.14% but the FOI of the latter is 20.11%. Hence,

the pure interactive effect between these hyperparameters is negligible and γ[X
η (Fan) ] belongs

to the potential group of reducible parameters. The screening results for the remaining sta-

tion boundary conditions can be found in Appendix C.1. For the final decision, the maximum

screening indices among all response quantities are essential. As a result, it has been found

out that the variation of the skewness is of subordinate importance and thereof treated as crisp
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Figure 5.10 Variable screening of the performance model for P(45) showing the first- and second-order indices for the
response mean (upper right) and standard deviation (lower left) triangle.

value. Contrary, all p-box definitions of the ambient conditions are retained. With the monodis-

ciplinary investigation, a tremendous reduction has been achieved which saves computational

effort for the second step of the screening procedure.

Interdisciplinary Sensitivity Analysis of the Secondary Air System

For the second part, the set of input quantities is extended by the geometrical parameters of

the SAS model. Among those, ten quantities are represented as p-box with uncertain mean

and standard deviation. Together with the ambient conditions, we have to consider a 26-

dimensional uncertain hyperparameter space. A major difference to the previous study is that

none of the p-box representations include the skewness.

Since running the multidisciplinary model is more time-consuming, only a first-order Taylor se-

ries is used for the uncertainty propagation at the various expansion points. As a reminder, the

approximation of µy and σy in the previous study was derived from a second- and third-order

expansion to capture the impact of the varying skewness factor.

The response QoIs are given by six critical cooling mass flow rates located at the transition

between SAS and the core gas path. At each of the three LPT rotor stages, the outflowing

cooling air before and after the rotor is analyzed. The parameters’ abbreviation is YRot_1_l,

YRot_1_r, YRot_2_l, YRot_2_r, YRot_3_l and YRot_3_r where the number is standing for the stage and

the subscripts "l" and "r" for left and right, respectively. For a detailed explanation on the SAS

as well as the location of the above-mentioned cooling flows, the reader is referred to Sec. 2.1.

Apart from lowering the order of the Taylor series expansion, the interdisciplinary variable
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screening is identical to the stand-alone analysis of the performance parameters. Again, just

a single response quantity is shown here whereas the remaining ones can be found in Ap-

pendix C.2. In the following, YRot_2_l is chosen as exemplary quantity of interest (QoI) and

summarized by Fig. 5.11 in the same fashion as before.

One important finding is that the ambient conditions have a significant effect on YRot_2_l with

regard to its mean value variation which confirms the decision from the previous study to keep

those hyperparameters. Taking a look at the response variance, a surprisingly high impact

of µ[XAlt] and µ[XMach] can be identified compared to the low significance of the parameters’

standard deviation. This effect is due to the various coupling conditions which prevents a clear

separated evaluation of the hyperparameters’ individual importance.

When putting the focus on the set of the geometric SAS quantities, the parameters related to

the first inner air seal, i.e., XIAS1_lip_e and XIAS1_stat_e, are standing out. Especially the epis-

temic uncertainty components of the stator eccentricity have a huge impact on the response

mean variation expressed by a FOI of more than 100%. In addition, XIAS1_stat_e is one of the

few geometrical quantities that has a noticeable impact on the variance of YRot_2_l. Besides

from that, Fig. 5.11 shows also a considerable influence of µ[XRim_2_l] on the mean variation.

The identification of these specific parameters is a meaningful outcome because the spatial

distance between the components and the cooling mass flow location is short.

A closer inspection of the second-order indices reveals that there are only few relevant inter-

actions which occur mainly between those quantities for which high main effects have been

detected. Analyzing the interactions between the geometric descriptors shows that the SOIs

(second-order indices) are mostly obtained by superposing the main effects.

In case of the ambient condition parameter set, the situation is different. Here, the interactive

effect is not directly deducible from the first-order indices. The cause is partially attributable

to the fact that the performance parameters influence the cooling system indirectly throughout

changing boundary conditions whereas the geometrical quantities have a direct impact on the

SAS performance.

Again, the reduction of the hyperparameter space is based on determining the maximum

screening indices from the six cooling mass flow rates. The limit values for deciding on whether

to degrade a p-box representation remain unchanged compared to the performance model in-

vestigation. Finally, all of the uncertain rim seal hyperparameters could have been declared as

insignificant except the ones from XRim_2_l. From a first glance, the reduction does not seem to

be meaningful because these parameters directly affect the cooling airflows under investiga-

tion. However, one has to keep in mind that we analyze the impact on the stochastic moments

rather than the model response which does not reflect the importance of the parameters them-

selves. Furthermore, the significance of a hyperparameter certainly correlates with its interval

width.
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In Tab. 5.5, a final overview is provided for the noise factors’ uncertainty representation after

the screening. To summarize, the epistemic SA has helped to clearly simplify the complexity

of the parameter setup. The number of uncertain hyperparameters could be decreased from

initially 40 to 16 stochastic moments which is equivalent to a reduction of 60%. In view of the

subsequent robust design optimization, the parameter screening is an important step because

the total parameter space will be further enlarged by the random vector Xd containing the set

of design parameters.

A drawback of the method is that it returns more a qualitative instead of a quantitative mea-

sure for the parameters’ importance due to the Taylor series based uncertainty propagation.

An exact ranking is thereof only possible if the screening indices demonstrate a significant

difference.

Model Source Aleatory Hybrid

Performance
engine-to-engine X

η (i) , X∆W (i) —–

flight-to-flight XThr XAlt, XTemp, XMach

SAS engine-to-engine

XPlat_1, XPlat_2, XPlat_3, XRim_1_l, XRim_2_l,XIAS1_lip_e,

XRim_1_r, XRim_2_r, XRim_3_l, XRim_3_r, XIAS1_stat_e, XIAS2_lip_e,

XIAS1_lip_c, XIAS2_lip_c XIAS2_stat_e

Total number of parameters: 25 8

Table 5.5 Reduced set of noise factors Xn after the epistemic variable screening.

5.2.3 Robust Design Optimization under Hybrid Uncertainties

The final step deals with optimizing the entries of the design vector Xd to ensure a sufficient

cooling mass flow supply at the transition between SAS and core gas flow. Similar to the

uncertainty studies from the previous chapters, the main focus is put on the appropriate treat-

ment of the epistemic uncertainty components.

This section is subdivided into two parts. First, a robustness assessment of the SAS is con-

ducted. The purpose of this paragraph is to illustrate the problem statement for the following

optimization as well as the need for the advanced NISS scheme from Sec. 4.3.1. The second

paragraph contains the actual RDO. Besides from the results discussion it includes how to

further exploit the properties of the NISS approach to maximize the efficiency of the optimiza-

tion.

Robustness Assessment of the Critical Cooling Mass Flows

Before we dive into the methodological parts of the robustness study, it must be clarified how

to define robustness in context of the SAS. For the development of earlier jet engine gener-

ations, the evaluation of the SAS was based on deterministic criteria expressed by minimal
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QoI µy [%] max(CoVy) QoI µy [%] max(CoVy) QoI µy [%] max(CoVy)

YRot_1_l 3.36×10−2 0.16 YRot_2_l 3.27×10−2 0.20 YRot_3_l 3.15×10−2 0.20

YRot_1_r 3.14×10−2 0.33 YRot_2_r 3.16×10−2 0.29 YRot_3_r 3.15×10−2 0.20

Table 5.6 Boundary conditions on the critical cooling mass flows for the robustness assessment.

cooling mass flow rates at certain positions. The goal of the development procedure was to

identify a design which fulfills these requirements under nominal conditions.

Within the scope of the robustness analysis, these criteria are re-introduced as boundary

conditions on the mass flows’ mean value. Apart from that, the second relevant stochastic

descriptor for the robustness is the mass flows’ variation, expressed in terms of their variance.

Since we have no comparable metric from earlier projects, the bounding conditions are based

upon personal judgments. In Tab. 5.6, the two criteria are listed for each of the six cooling

mass flows introduced before. Note, that the mean values are expressed as percentage of

W (25), which represents the core mass flow rate at the LPT inlet. Further, a scaling factor has

been added for reasons of confidentiality.

After having defined a set of distinct bounds for the response mean and standard deviation, we

are able to proceed with the assessment of the SAS. The complete set of input quantities com-

prises the noise factors from Tab. 5.5 as well as the six design parameters. For the robustness

assessment, the latter are described by a set of distributional p-boxes with uncertain mean but

constant standard deviation. Hence, the number of uncertain hyperparameters is increased

from 16 to 22. In order to determine the relevance of considering the epistemic uncertainty, we

compare three different approaches with each other:

I. Aleatory treatment of the epistemic uncertainty

As indicated by the name, the basic idea is to handle the epistemic uncertainty in a proba-

bilistic manner. Thereof, a multivariate uniform distribution is assigned to the uncertain hy-

perparameter space. Due to the probabilistic framework, an integration is performed over the

epistemic space and the uncertainty representation degrades to a single CDF. As an example,

the expression for the response mean yields

µy =
∫ Θx

Θx

∫
∞

−∞

g(x) fX(x|Θx) fΘx(Θx) dx dΘx, (5.9)

where fΘx(Θx) stands for the nΘ-variate uniform distribution. In the same way, the response

standard deviation is reduced from an integral to a constant value. For the numerical approxi-

mation, a set of ns sampling points are generated according to the following scheme:

• At first, an (ns×(nx+nΘ))-dimensional array is generated where each column contains

samples that have been drawn from a standard uniform distribution U[0,1].
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• After that, the inverse transformation method (see Eq. (3.43)) is applied to the last nΘ

columns based upon the multivariate uniform distribution in the epistemic space. The

resulting values within the (ns×nΘ)-dimensional array represent the entries of the hyper-

parameter sample set {θ(1)x , . . . ,θ
(ns)
x } ⊂ RnΘ .

• Finally, the inverse transformation method is carried out for the first nx columns. This step

corresponds to drawing random sample points where each realizations x
(i)
s stems from a

different probability density function (PDF) fX(x|θ (i)
x ). The sample sets {x(1)

s , . . . ,x
(ns)
s }⊂

Rnx are then propagated throughout the computational model.

The previous steps are demonstrated for XIAS1_lip_e in Fig. 5.12 for a set of 30 points. Fig-

ure 5.12(b) shows the random samples in the hyperparameter space by the gray dots, which

have been generated from the rejection sampling technique to ensure uniformity within the

coupled µx-σx-space. The resulting empirical CDF is shown in Fig. 5.12(a). For comparison,

the envelopes of the free p-box are depicted by the two black lines which illustrate the loss of

information due to the probabilistic treatment of the epistemic space.

For the aleatory robustness assessment of the interdisciplinary SAS model, no distinction is

made between the uncertainty source, i.e., Θx encloses both the uncertain hyperparameters

from the engine-to-engine as well as the flight-to-flight variation. The final robustness assess-

ment has been performed with ns = 10,000 sample points.

II. Evaluation of selected hyperparameter combinations

In the second strategy, we use the standard double-loop Monte Carlo (MC) sampling intro-

duced within the scope of Sec. 3.2. As this method requires an enormous number of samples,

the realizations of Θx in the outer loop are chosen manually. It has been decided to ana-

lyze exclusively cases where the hyperparameters are taking extreme values. A schematic

overview is given by Fig. 5.12(c) which shows the different Θx-realizations for an independent

µx-σx-space. As an example, the first point (●) represents the case where all distributional

(a) CDF realizations and free p-box. (b) Hyperparameter realizations.

µ
x

µx

σ x

σ x

(c) Illustration for strategy II.

Figure 5.12 Graphical representation of the robustness assessment strategy I (gray) and II (black) by the example of the first
inner air seal eccentricity (XIAS1_lip_e).
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descriptors take their minimum value. The two points lying not in the corners are selected to

regard the maximum value for σx if the hyperparameters are subject to a dependency struc-

ture. The actual positioning is shown for XIAS1_lip_e in Fig. 5.12(b) by the same labeling as the

scheme next to it.

To summarize, the robustness study is made by a double loop MC approach with six manually

chosen points in the outer loop and ns = 6,000 samples in the inner loop. The long compu-

tational time of around seven days is the decisive factor why the number of CDFs was limited

to six. The analysis of a full factorial design, i.e., considering all corner points in the outer

loop, would simply take too much effort. For the same reason, there is no separation between

engine-to-engine and flight-to-flight variation.

III. NISS-based nested robustness study

The third approach includes the application of the NISS strategy which requires the definition

of a proposal distribution denoted as fX(x|Θ⋆
x). Next, a set of samples must be drawn from

it followed by the repeated simulation of the interdisciplinary SAS model. Once this step is

finished, the approximation of µy(Θx) and σy(Θx) for any Θx ̸=Θ⋆
x is rather cheap as no ad-

ditional simulation runs are needed. A detailed introduction about the method can be found in

Sec. 4.3.1.

The great efficiency of NISS enables us to carry out a more detailed robustness assess-

ment of the cooling system. The idea is to evaluate various randomly chosen CDFs of the

geometric parameters by analyzing the system’s mean and standard deviation at the critical

locations. More in detail, a nested approach is developed which separates engine-to-engine

from flight-to-flight variation in a double-loop procedure. The two-step scheme, which may not

be confused with the MC sampling from before, is demonstrated in Fig. 5.13.

FX(x) ∈ [FX(x),FX(x)] j = 1, . . . ,20

i= 1, . . . ,n

µ
( j)
y σ

( j)
y

Figure 5.13 Graphical representation of the robustness assessment strategy III.
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In detail, the approach comprises the following steps:

• In the outer loop, a random sample is drawn from the hyperparameter space that corre-

sponds to the set of design and noise factors affected by the engine-to-engine variation.

Hence, a specific probability distribution is assigned to those parameters of the SAS

model being quantified by a p-box. As a reminder, the corresponding parameters from

the performance model (X
∆W (i),Xη(i)) have all been degraded from a p-box to a single

CDF.

• Within the inner loop, the focus is put on the parameters which describe the flight-to-

flight variation, i.e., XAlt, XMach and XTemp. For the uncertain mean value space of those

three quantities, a two-level full factorial design is introduced which gives a set of eight

corner points. In addition to that, two mean values are added which are located close

to the center point. Each of the ten mean value realizations is then combined with the

minimum and maximum standard deviation which gives a total number of 20 points, see

the table in Fig. 5.13.

• The actual robustness assessment is done by combining each CDF from the outer loop

with all scenarios of the inner loop. Finally, we derive the response mean and standard

deviation for all combinations with the help of NISS. As a measure for the designs’ ro-

bustness, the minimum mean and maximum standard deviation is opposed to the limit

values from Tab. 5.6.

For the investigation of the interdisciplinary SAS model, the number of iterations in the outer

loop has been set to 200. Thus, we have assessed 200 geometrical designs for 20 different

scenarios of the ambient conditions. The total number of uncertainty propagations required for

this analysis is 4,000 which is not possible with a standard MC sampling. The approximation

with the help of NISS is based upon a set of approximately 100,000 points which requires a

computation time of roughly two weeks.

All of the three above-mentioned robustness strategies have been summarized within Fig. 5.14.

The upper right off-diagonal entries refer to the mean value variation whereas the lower sub-

plots depict the standard deviation of the cooling mass flow rates under investigation. Note that

only the flow paths at the first and second rotor stage are shown here as they are of higher

importance due to the downstream temperature decrease. The results of the robustness as-

sessment are given by the following scheme:

• The first approach is depicted by the green diamond (◆). Due to the probabilistic treat-

ment, only a single value is obtained for the mean and standard deviation in any dimen-

sion.

• The resulting stochastic moments of the second strategy are illustrated by the six blue

marks from Fig. 5.12. To evaluate the quality of the NISS approximation, the same study
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has been repeated based upon the sample set from the third strategy. The respective

outcome is shown by the identical symbols colored in black.

• Robustness strategy III corresponds with the gray dots, each of which represents one of

the 4,000 evaluations from the nested robustness strategy.

In all of the subplots, the predefined thresholds on the stochastic moment are plotted by the

black dashed lines.

Let us start with the analysis of the upper right half of Fig. 5.14, i.e., the mean value varia-

tion. It is first of all apparent that the probabilistic point of view leads to a single mean vector

with sufficient safety margin to all mean value boundaries. In contrast, the six scenarios from
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Figure 5.14 Robustness assessment for the cooling mass flows at the first and second rotor stage.
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the second approach reveal a certain scatter which includes realizations located close to the

threshold or even beyond. For example, the limit on µ[YRot_1_l] is slightly undershot by two

CDF realizations. A more distinct deviation can be observed in case of µ[YRot_2_r] for a single

CDF (✶). So, the selection of various scenarios demonstrates the importance of treating lack-

of-knowledge in a non-probabilistic way.

The comparison between the blue and black markers shows a high level of consistency be-

tween the MC and NISS scheme for most of the cases. Overall, the average deviation between

the two sampling methods is less than 3.7%. This bears witness to a huge degree of trustwor-

thiness given the fact that the chosen hyperparameter combinations are covering exclusively

extreme scenarios. One exception here is the case shown by the black dot which describes the

assumption of Θx =Θx, i.e., all hyperparameters take their minimum values. In order to under-

stand the significant discrepancy, we have to take a look at the proposal distribution. Contrary

to the original assumption of setting all hyperparameters to their center values, some entries of

Θ⋆
x have been assigned with deviating values. Due to the fact that high ambient temperatures

in combination with high flight altitudes are critical for the engine performance, the values of

µ⋆[XAlt] and µ⋆[XTemp] have been shifted towards their maxima. The above-mentioned desired

PDF has therefore the largest difference to the proposal distribution causing the low approxi-

mation quality in this case.

Still, the limited selection of Θx-realizations does not capture the full variation of µy as can

be seen from the comparison with the gray scatter points. The third robustness assessment

shows clearly that all of the mean threshold conditions can be undershot for certain ambient

scenarios. This observation will be clarified more in detail later on.

When putting the focus on the lower left half of Fig. 5.14 the cooling mass flows’ standard

deviation, expressed in terms of the CoV, can be analyzed. Starting with the probabilistic ap-

proach, the resulting mass flows’ variation can be interpreted as an averaged CoV compared

to the other two robustness strategies. Once again, none of the threshold limits is exceeded.

In most of the subplots, the second robustness approach leads to a clear separation between

input distributions with a low (●, ■, ✶) and high (▲, ▼, ✖) standard deviation. For some of the

realizations with a minimum σx-value, no corresponding outcome from the NISS-evaluation

is depicted. The reason for the missing information is the low approximation quality of NISS

which has led to a negative sample variance. Similar to the mean value analysis, the root

cause goes back to the enormously higher standard deviation of the proposal distribution. To

overcome this problem, the multi-point non-intrusive imprecise stochastic sampling (MNISS)

concept from Sec. 4.3.2 can help to increase the approximation quality. Since we are mainly

interested in the largest σx realizations for the robustness study, no further modification has

been applied here.

For the third robustness evaluation, a certain clustering is visible in most of the subplots. This

effect stems from the fact that the scenarios are separated into ambient conditions with min-

imum and maximum variance. Once again, the third robustness approach reveals that the
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Figure 5.15 Average and minimum mean value analysis at the first (left) and second (right) rotor stage.

boundary conditions on the CoV can be violated for certain scenarios.

As stated before, a deeper inspection of the mean value variation from the third robustness

strategy is carried out. In Figure 5.15(a) and (b), the minimum as well as the average mean

value of the 200 realizations from the outer loop are plotted. Putting the result into numbers,

only 4% of the average points are lying within the infeasible range. In contrast, 94.5% of the

minimum mean realizations are violating at least one of the bounds from either the first or

second rotor stage. A more detailed analysis of the infeasible points has shown that differ-

ent ambient conditions are responsible for breaking the threshold values. Hence, it is hard to

further reduce the hyperparameter space for the RDO.

Optimization of the Geometric Design Parameters

The previous studies have clarified the importance of treating epistemic uncertainties appro-

priately to judge about the robustness of the cooling system. In the following, the RDO formu-

lation is introduced followed by the discussion about the outcome of the optimization.

Within the scope of Sections 3.6.2 and 4.3.2, various metrics for a robust optimization have

been compared. One major finding from the analytical study was that a constraint-based ex-

pression offers more flexibility to the modeler for controlling the optimization procedure. The

mathematical term for the RDO of the SAS is given by:

minimize
µd

x∈R6

{
−w1 µ̃[YRot_2_l]−w2 µ̃[YRot_2_r]

}
s.t. σ

(i)
y < σ

⋆,(i)
y for i = 1, . . . ,6

µ
(i)
y

> µ
⋆,(i)
y for i = 1, . . . ,6

µ
d,( j)
x

< µ
d,( j)
x < µ

d,( j)
x for j = 1, . . . ,6.

(5.10)
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The above equation expresses the goal to maximize the cooling mass flows’ average mean

value. For the purpose of illustration, only the two mass flows at the second rotor stage are

part of the objective function. The formulation could be extended easily by further QoIs.

As stated before, the robustness criterion is implemented by limiting the maximum standard

deviation instead of extending the objective function. In addition to that, constraints are intro-

duced on the minimum mean values which have been discussed within the robustness analy-

sis in Sec. 5.2.3. To repeat, the corresponding values for µ
⋆,(i)
y and σ

⋆,(i)
y are summarized in

Tab. 5.6. Contrary to the objective function, all critical mass flow rates at the first, second and

third rotor stage are taken into account. The last set of constraints in Eq. (5.10) refers to the

bounds of the six design parameters, i.e., the mean vector entries of Xd.

Similar to the robustness assessment strategy III, the RDO is conducted by a nested approach.

This time, the outer loop contains the design parameters µd
x ∈ R6 whereas the noise factors

Xn ∈ R33 are assigned to the inner loop. To repeat, eight noise parameters are described by

distributional p-boxes with uncertain mean and standard deviation, see Tab. 5.5. As the focus

of the RDO metric from Eq. (5.10) is to limit the maximum response standard deviation, the

noise factors’ uncertain variance is set to their upper bounds. Bearing in mind that all entries

of Xd are assigned with a constant variance, the set of uncertain hyperparameters covers only

mean values.

To realize a two-level full factorial design like in case of the robustness assessment, 256 evalu-

ations are required in the inner loop. Due to the large computational effort, it has been decided

to perform a random sampling based upon a Sobol sequence of length 100. Thus, the deter-

mination of Eq. (5.10) for a single design point requires the evaluation of 100 random CDF

realizations. As the computation of the single points can be performed independently, a paral-

lelization of the inner loop is implemented.

In addition, we make use of the NISS characteristics to further reduce the runtime. The basic

idea is to exploit the high-dimensional model representation (HDMR) concept by saving a cer-

tain portion of the component functions during the optimization. The matrix in Fig. 5.16 is an

illustration of the design parameter space µd
x ∈R6 as well as the noise factors’ uncertain mean

value µn
x ∈ R8. Thus, for a single design point 14 first-order and 91 second-order component

functions must be evaluated for each of the 100 inner loop random samples to approximate

µy. The same must be repeated for the approximation of σ2
y which gives a total number of

21,000 operations.

Due to the fact that some of the component functions remain constant, we do not have to re-

compute all of them within each iteration. The total set of component functions can be divided

into three categories, see Fig. 5.16:

• Category A : This part includes first- and second-order components from the design

parameter space. The respective computation must be performed only once per design

assessment.
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• Category B : The second group captures all components that correspond exclusively

to the noise factors’ hyperparameter space. For this reason, a one-time evaluation is

sufficient for the whole optimization.

• Category C : The last set of component functions represents the interactive effects be-

tween µd
x and µn

x . Here, no computational effort can be saved.

The reduction is only possible if the sample points in the inner loop are not changed during the

optimization, i.e., the same starting point must be chosen for the Sobol sequence. Otherwise,

all of the first- and second-order components from category B and C must be re-determined

for every single design iteration. By saving the component functions of category A and B , the

total number of NISS-evaluations can be reduced from 21,000 to 9,642 which is a decrease of

more than 50%.

Coming back to the RDO of the secondary air system, the differential evolution strategy from

the SciPy4 package is used which has also been applied for the inverse UQ in Sec. 5.1.1.

The reason for choosing this global approach is the missing information about promising initial

guesses to determine the optimal design. The inequality constraints from Eq. (5.10) are im-

plemented with the help of two quadratic penalty functions which are added to the objective.

Compared to a direct constraint formulation, this approach allows the usage of unconstrained

optimization algorithms which are more reliable [138].

Finally, the RDO problem has been analyzed for 21 different combinations of w1 and w2. A

summary of the optimization results is given in Fig. 5.17. On the left hand side, the cooling
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Figure 5.16 Categorization of the HDMR component functions.

4 SciPy is an open-source library for Python, see https://scipy.org/.
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Figure 5.17 Minimum (left) and average (right) mean value of the cooling mass flows at the second rotor stage for the
aleatory and epistemic RDO. Both figures show the percentage deviation from the threshold values.

mass flows’ minimum mean value are depicted for the second rotor stage whereas Fig. 5.17(b)

denotes the average mean values of the same cooling mass flows. The two coordinates,

µ[YRot_2_l] and µ[YRot_2_r], correspond with the components of the objective function. Note,

that the axes are scaled w.r.t. the constraints from Tab. 5.6, i.e., they denote the percentage

deviation from the required minimum mean values.

Each of the orange circles represents the optimization result of a specific combination be-

tween the weighting factors w1 and w2. A high color saturation indicates a large value for w2

and thereof a high importance of µ[YRot_2_r] in the objective. As a result, the various weight-

ing factor combinations lead to a Pareto front identification of the multiobjective optimization.

However, some of the results are dominated in both coordinates and thereof not contributing

to the Pareto set. The reason for this are the additional constraints on the maximum standard

deviation, see Eq. (5.10). Since the inequality constraints are implemented by a set of penalty

functions, a slight exceedance of the limits is possible without influencing the objective function

too much.

A closer inspection of Fig. 5.17(a) reveals that all of the identified designs are in accordance

with the postulated constraints on the minimum mean value. Furthermore, they fulfill the

boundary conditions on the standard deviations which is shown by Fig. 5.18. The left hand

side, i.e., Fig. 5.18(a), illustrates the maximum response CoV (CoV ) for the cooling mass flows

at the first rotor stage and Fig. 5.18(b) for the second stage. In accordance with Fig. 5.17, ev-

ery orange circle represents the outcome for one specific weighting factor combination. One

can see, that only very few designs violate the constraints of the maximum standard deviation

slightly.

Apart from the epistemic RDO discussed so far, a second study has been conducted which

treats the lack-of-knowledge uncertainties in a probabilistic manner. All noise factors, that

have been modeled with p-boxes so far, are now assigned with a single CDF characterized

by a comparatively high variance. As a consequence, no nested iteration scheme is required
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Figure 5.18 Maximum coefficient of variation (CoV ) for the first (left) and second (right) rotor stage. Both figures show the
result from the aleatory and epistemic RDO studies.

anymore for the evaluation of a design which makes the RDO significantly cheaper. Accord-

ingly, the optimization problem from Eq. (5.10) must be modified by replacing the minimum and

maximum stochastic moments of the constraint formulations by their aleatory counterparts.

The actual result of the second RDO is shown by the orange diamonds in Fig. 5.17(b). In

accordance with the epistemic robust optimization, the identical set of weighting factor com-

binations has been analyzed. For the comparison with the epistemic results, a subsequent

robustness assessment has been conducted by combining the aleatory designs with the same

100 inner loop scenarios from the epistemic RDO.

From the analysis of the two scatters in the right part of Fig. 5.17, one could conclude that the

designs from the aleatory optimization are superior as they lead to an overall higher supply of

cooling mass flow for all weighting factor combinations. The first impression is revised by the

investigation of the minimum mean values in Fig. 5.17(a). For weighting factor combinations

with a high value of w1, the minimum mean values violate the constraint on µ[YRot_2_r] in many

cases. In turn, the aleatory RDO seems to provide a better cooling system configuration when

increasing the value of w2, i.e., trying to maximize µ[YRot_2_r]. However, a deeper examination

of the maximum standard deviations in Fig. 5.18 shows that all aleatory designs are violating

at least one of the constraints. Hence, the partially better mean value performance has been

achieved at the cost of higher maximum standard deviations.

To summarize, the comparison of the two optimization schemes has demonstrated the im-

portance of taking epistemic uncertainties into account. One of the main findings is that the

epistemic RDO is able to detect design points which maximize the average critical cooling

mass flows while complying with the constraints under all considered scenarios. In contrast,

the aleatory design results show a better SAS performance when assuming an averaged dis-

tribution for the lack-of-knowledge parameters but lead to a violation of several constraints

when conducting a subsequent epistemic robustness assessment based upon p-box repre-

sentations for the parameter set with unknown distributions. Thus, the additional effort pays
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off to identify a geometrical design which guarantees a stable cooling mass supply under any

condition. Especially for nonlinear systems, such as the SAS model, the high efficiency of

NISS is beneficial as a large number of uncertainty propagations is required to capture the

variation of the stochastic moments.

Since the noise factors’ uncertain standard deviation have been deliberately set to their max-

imum values, the NISS scheme yields a high approximation quality for both of the stochastic

moments. To express the accuracy in figures, the average sample standard deviation among

all 100 case scenarios has been determined for each of the 21 optimal designs. To remind,

the expressions for Var[µy] and Var[σ2
y ] are given by Eq. (B.1) and (B.2) in the appendix.

For the response mean, the sample standard deviation reaches from 7% to 10% whereas in

case of the variance, the error is lying in a range between 16% and 55%. In order to increase

the accuracy of the sample variance, modifications such as the MNISS must be implemented

into the robustness assessment. These aspects and future ideas how to improve the RDO are

discussed within the conclusion chapter.
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Chapter 6
CONCLUSION

The last paragraphs provide a critical reflection and give an outlook for future research topics

based upon the study results of this thesis. The structure of the chapter is divided into two

parts. At first, the methodological aspects are discussed followed by a section about the

technical improvements of the interdisciplinary process chain.

Methodological Conclusion & Outlook

Similar to the previous chapters, the conclusive remarks are oriented towards the aims and

objectives of this work. The first main point was the quantification of lack-of-knowledge uncer-

tainty sources with a special focus on inverse problem. The newly introduced hyperellipsoid

approach has proven to be an efficient method in context of the performance model. Especially

the local version of the algorithm has led to consistent results within a reasonable amount of

time. In contrast, the global strategy has shown a superior performance in terms of the objec-

tive function but requires significantly more time which offers room for improvement.

Within the current configuration, the minimum-volume enclosing ellipsoid (MVEE) of the prop-

agated samples is determined by the Khachiyan algorithm. The computational efficiency could

be increased by replacing it with the algorithm introduced in [167]. The authors of the cited ref-

erence have demonstrated the MVEE computation for a 30-dimensional test case with 30,000
samples in less than 30 seconds on a personal computer. Thus, exchanging the MVEE metric

holds great potential to improve the global hyperellipsoid strategy and applying it to problems
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of even higher dimensionality.

The second bottleneck is the high number of sample points needed for a sufficient coverage

of the hyperellipsoid mapping. For this reason, the jet engine performance model has been

replaced by a surrogate model leading to an additional numerical error in the framework. One

opportunity to use the more time-consuming high-fidelity model would be the storage and re-

usage of existing sample points. Alternatively, the hyperellipsoid procedure could be combined

with an adaptive surrogate model technique instead of defining one global metamodel at the

beginning.

Besides from the inverse also the forward uncertainty quantification (UQ) under scarce infor-

mation was a significant contribution of the thesis. For many cases, the parameters’ uncer-

tainty has been described with distributional p-boxes based upon the beta distribution family.

Due to the great flexibility and the existence of distinct bounds on the parameter range, the

p-box approach is suitable for representing the incomplete knowledge. A drawback is the re-

sulting dependency structure within the epistemic hyperparameter space which complicates

the subsequent uncertainty studies. As a future research task, a distributional p-box definition

could be developed with the help of the generalized lambda distribution. The four parametric

density function offers even more flexibility as it can take the form of a Weibull, Gaussian, uni-

form or Student’s t distribution [63, 179]. Since it can exhibit an unbounded PDF for certain

parameter combinations, the generalized lambda distribution is applicable to the NISS strat-

egy without further modifications. Moreover, one can directly control the tail properties which

is beneficial for investigating the reliability of a system.

The second objective of this work concerns the reduction of the epistemic hyperparameter

space. To repeat, the goal was to establish a screening methodology for identifying uncertain

stochastic moments with a negligible importance on the system response. The developed

approach is built upon repeated Taylor series expansions at distinct locations in the epistemic

space. As a result, one obtains a sensitivity measure for every single hyperparameter as well

as for the first interaction term.

All in all, the screening has helped to clearly reduce the complexity of the interdisciplinary

model by degrading more than half of the p-box representations to a single cumulative distri-

bution function (CDF). However, the interpretation of the derived sensitivity coefficients suffers

from the above-mentioned loss of independency. Hence, a rather conservative target corridor

has been chosen to decide about the reduction of a parameter, thereby undermining the poten-

tial of the method. The variable screening serves as a preparation step for the robust design

optimization which is why the sensitivity indices are designed for measuring the importance on

the response mean and standard deviation. Since the p-box definitions include uncertain third

order stochastic moments, a Taylor series expansion of the same order is required to quantify

the importance of the input skewness.

In context of the interdisciplinary process chain, the performance model has been analyzed as

stand-alone configuration before starting with the variable screening of the coupled secondary
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air system (SAS) model. The two-step approach is possible because of the sequential con-

catenation of the disciplines and has helped to reduce the overall computational burden. For

application cases of even higher dimensionality, the Taylor series based uncertainty propaga-

tion might be inefficient. However, decreasing the order of the expansion is not reasonable as

it is linked to a loss of prediction accuracy for nonlinear models. Instead, the basic screening

concept could be combined with alternative mapping techniques such as the point estimation

method for example [144, 157]. A good starting point is the work of [82] which introduces an

enhancement of the standard point estimation method to efficiently consider the input param-

eters’ skewness for the uncertainty propagation.

The third and last focal point of the thesis entails the robust design optimization of the low-

pressure turbine (LPT) cooling system with a special focus on the consideration of epistemic

uncertainty sources. The prerequisite for the actual optimization is the definition of an objec-

tive function which captures the system’s robustness by means of an analytical expression.

After an intensive discussion about different metrics throughout Sec. 4.3, it has been decided

to follow a constraint-based formulation. From the author’s point of view, the modeler has more

control over the optimization result compared to a robustness metric with an extended objec-

tive function.

The optimization procedure itself is an extremely time-consuming task because it is based

upon a nested iteration scheme. Contrary to a pure aleatory robust design optimization (RDO),

the evaluation of every single design requires the analysis of various CDF realizations. As the

application of standard sampling techniques is limited to low-dimensional problems, it has

been made use of the non-intrusive imprecise stochastic sampling (NISS) concept. The great

benefit is that only one set of sample points must be generated from a single proposal distribu-

tion. However, the gain in efficiency is achieved at the expense of decreasing approximation

accuracy, especially if the desired CDF differs significantly from the proposal distribution.

For the optimization of the interdisciplinary SAS model, the NISS approach has demonstrated

a high accuracy for the derivation of the first stochastic moment. Further improvement is nec-

essary for the approximation of the response variance which shows a considerably higher

inaccuracy. The chosen RDO metric has helped to counteract this deficit because it focuses

solely on the maximum standard deviation. A possible way forward to improve the advanced

sampling procedure has been outlined by the multi-point non-intrusive imprecise stochastic

sampling (MNISS) strategy within Sec. 4.3.2. The general idea is to approximate the out-

put variance in possible robust design regions by locally defined proposal distributions. Here,

further research is necessary on how to determine the number and shape of the additional

proposal distributions in an automated way. Therefore, a metric could be derived which quan-

tifies the expected gain in approximation accuracy when introducing an additional proposal

distribution at a certain location in the epistemic space. A reasonable basis is the publication

of [173] about the extended Monte Carlo sampling (EMCS), which is a key component of the

NISS concept. The authors address, inter alia, the question how to choose an optimal pro-
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posal distribution to minimize the average approximation error of the response mean.

With the help of the modified NISS strategy, also the response variance of high-dimensional

problems, such as the interdisciplinary SAS model, could be derived more accurately. This

would enable the usage of other RDO metrics which directly optimize the output variance.

Technical Conclusion & Outlook

The coupling of the SAS model with the preceding disciplines makes a more detailed analy-

sis of the cooling system possible. Especially the interface with the performance calculation

enables the modeler to investigate the impact of changing ambient and flight conditions in a

thermodynamically consistent way. The robustness analyses in Sec. 5.2.3 have demonstrated

the need to take performance parameters into account for assessing the operational behavior

of the cooling system.

With regard to the aerodynamic simulation, the convergence rate of the streamline curva-

ture method (SCM) must be improved significantly to include the uncertainty sources into the

stochastic framework. Within the current configuration, the outcome of the aerodynamic sim-

ulation is only affected by changing station boundary conditions at the module’s inlet and exit.

The production induced variation of geometrical features is not considered as it would lead to

an extremely high failure rate of the sampling procedure. Thus, the iterative solution scheme

of the SCM must be revised to increase the precision of the simulation results.

An essential aspect for the future development is the extension of the interdisciplinary pro-

cess chain by the thermal and structural-mechanical discipline. Basically, the derived cooling

mass flow rates from the SAS model can be interpreted as a strong indication for or against

a sufficient cooling of the LPT disk. A more solid interpretation is only possible with a thermal

simulation because the suitability of a design is assessed by certain criteria of the components’

material temperature. Here, the results from the SAS model serve as input for a realistic mod-

eling of the thermal boundary conditions.

In order to formulate a statement about the component’s life time requirement, one has to

make a structural assessment. Without going into detail, this final step requires the conduc-

tion of several FE-calculations representing the different points of a flight mission. In context

of a stochastic life time validation, the analysis of multiple varying flight missions is neces-

sary which leads to even higher calculative costs. To put this objective into practice, further

research is needed to improve the efficiency of both the computational models and stochastic

methods.

To summarize, the thesis has shown the necessity to model lack-of-knowledge uncertainties

by non-probabilistic frameworks in context of a jet engine design process. Important contribu-

tions have been made by the development of an inverse UQ approach and the application of

the NISS concept for a robust design optimization. The latter has shown strongly the effect of

assuming specific distribution functions when having only limited information about the uncer-
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tainty source at hand by comparing the epistemic optimization results with a pure probabilistic

RDO formulation. The key issues for most of the objectives are related to the higher com-

putational burden which results from the additional epistemic component in the uncertainty

representation. As has been summarized within the previous remarks, new scientific ques-

tions have raised throughout the thesis which offers potential for future research proposals.
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Appendix A
Statistical Fundamentals

The following sections include amendments to Chap. 3 about the definition of probability dis-

tribution functions used throughout the thesis. Furthermore, supplementary details are given

about the derivation of p-boxes based upon the Chebyshev inequality.

A.1 Definition of Common Distribution Functions

Within the scope of this work, different distribution functions have been used. Among those,

the uniform and Gaussian distribution have not been introduced which will be added here.

The definitions given in the next two paragraphs can be found in many literature sources such

as [25] for example.

A.1.1 Uniform Distribution

A continuous random variable Xi is said to be uniformly distributed on the interval [a,b] if the

probability density function (PDF) has a constant value. Hence, the definition of the density

function for X ∼ U(a,b) yields

fX(x) =

 1
b−a if a < x < b

0 otherwise.
(A.1)
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The cumulative distribution function (CDF) of the uniform distribution is given by the integration

of Eq. (A.1) according to

FX(x) =


0 if ≤ a
x−a
b−a if a < x < b

1 if ≥ b.

(A.2)

A.1.2 Gaussian Distribution

The most widely used distribution function in statistics is the Gaussian, also referred to as

normal, distribution. As discussed in Sec. 3.3, its importance stems from the central limit the-

orem (CLT). This proposition states that the sample mean of independently and identically dis-

tributed (i.i.d.) random samples converges, regardless of their underlying distribution, towards

a Gaussian one for a sufficiently large population size. The definition of a normal distribution

is based upon its mean and standard deviation, i.e., X ∼N (µ,σ), and its bell-shaped PDF is

characterized by

fX(x) =
1√

2πσ2
exp

(
−1

2

(
x−µ

σ

)2
)
. (A.3)

The expression for the CDF is given by the integral

FX(x) =
1√
2π

∫ x

−∞

e−t2/2dt. (A.4)

A.2 Probability-Box Definition based on Chebyshev’s Inequality

Throughout Sec. 3.2.3, the derivation of a distribution-free p-box has been introduced which

is based upon Chebyshev’s inequality, see Eq. (3.39). In case of having further information

besides the mean and variance, the envelopes can be shrunken, thereof reducing the degree

of conservatism.

The authors of [60] have formulated an expression when having knowledge about the minimum

(x) and maximum (x) value as well as the first two stochastic moments of the random value.

The lower and upper bound on the CDF, derived from the one-sided Chebyshev inequality, are

expressed by

FX(x) =



0, if x ≤ µ + σ2

µ−x

1− b(1+a)−c−b2

a , if µ + σ2

µ−x < x < µ + σ2

µ−x
1

1+ σ2

(x−µ)2

, if µ + σ2

µ−x ≤ x < x

1, if x ≥ x

, (A.5)
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and

FX(x) =



0, if x ≤ x
1

1+ (x−µ)2

σ2

, if x < x ≤ µ + σ2

µ−x

1− b2−ab+c
1−a , if µ + σ2

µ−x < x < µ + σ2

µ−x

1, if x ≥ µ + σ2

µ−x

, (A.6)

with

a =
x− x
x− x

, b =
µ − x
x− x

, and c =
σ2

(x− x)2 .

Another scenario addressed in Sec. 3.2.3 is the exclusion of multimodal distribution functions

from the p-box definition. Here the Vysochanskij–Petunin inequality can help which is a refine-

ment of the general Chebyshev formulation for unimodal distributions with known mean and

variance [136]. Based upon the one-sided version of the inequality, a p-box definition can be

determined according to

FX(x) =


0 if x < µ +σ

4
3 −

4σ2

3(x−µ)2 if µ +σ ≤ x ≤ µ +
√

8
3σ

1− 4σ2

9(x−µ)2 if x > µ +
√

8
3

, (A.7)

and

FX(x) =


4σ2

9(x−µ)2 if x < µ −
√

8
3σ

−1
3 +

4σ2

3(x−µ)2 if µ −
√

8
3σ ≤ x ≤ µ −σ

1 if x > µ −σ

. (A.8)

The two envelope equations are derived in the same fashion as the Chebyshev p-box con-

struction shown in [123].
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Appendix B

Non-Intrusive Imprecise Stochastic Sampling

The non-intrusive imprecise stochastic sampling (NISS) approach plays a crucial for the de-

velopment of the robust design optimization (RDO) framework. Within this appendix, the

equations for the sample variance of the NISS component functions are added. They are

required for the determination of the confidence intervals which are used as metric to judge

about the quality of the approximated response mean and variance. In addition, the multi-point

non-intrusive imprecise stochastic sampling (MNISS) expression for the response variance is

stated in the second section.

B.1 Sample Variance Expressions

As stated before, the sample variance for the component functions up to the second order

are summarized below. For the first stochastic response moment, the equations are given

by [174]

Var[µy,0] =
1

n(̇n−1)

[
n

∑
k=1

{
(g(x(k)

s ))2
}
−n(µy,0)

2

]
,

Var[µy,i] =
1

n(̇n−1)

[
n

∑
k=1

{
(g(x(k)

s ))2(r(i)cut)
2
}
−n(µy,i)

2

]
, and
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Var[µy,i j] =
1

n(̇n−1)

[
n

∑
k=1

{
(g(x(k)

s ))2(r(i j)
cut )

2
}
−n(µy,i j)

2

]
. (B.1)

Accordingly, the following expressions hold for the sample variance of the second stochastic

moment:

Var[σ2
y,0] =

1
n(̇n−1)

[
n

∑
k=1

{
(g(x(k)

s )−µy)
4
}
−n(σ2

y,0)
2

]
,

Var[σ2
y,i] =

1
n(̇n−1)

[
n

∑
k=1

{
(g(x(k)

s )−µy)
4(r(i)cut)

2
}
−n(σ2

y,i)
2

]
, and

Var[σ2
y,i j] =

1
n(̇n−1)

[
n

∑
k=1

{
(g(x(k)

s )−µy)
4(r(i j)

cut )
2
}
−n(σ2

y,i j)
2

]
.

(B.2)

B.2 Multi-Point Non-Intrusive Imprecise Stochastic Sampling
Variance Equation

Within Sec. 4.3.2, the classical NISS concept has been extended by a multi-point sampling

procedure. In Eq. (4.69), the metric for the response mean has been discussed. In the sequel,

the MNISS component functions for the response variance are supplemented:

σ
2
y,0 ≈

np

∑
t=1

wt(Θx)

{
1
ns

ns

∑
k=1

(
g(x(k)

s )−µy,0

)2
}

=
np

∑
t=1

wt(Θx)σ
2,(t)
y,0 ,

σ
2
y,i(θ

(i)
x )≈

np

∑
t=1

wt(Θx)

{
1
ns

ns

∑
k=1

(
g(x(k)

s )−µy,i −µy,0

)2
r(i)cut(x

(k)
s |Θ(i)

x )

}

=

np

∑
t=1

wt(Θx)σ
2,(t)
y,i , and

σ
2
y,i j(Θ

(i j)
x )≈

np

∑
t=1

wt(Θx)

{
1
ns

ns

∑
k=1

(
g(x(k)

s )−µy,i j −µy,i −µy, j −µy,0

)2
r(i j)
cut (x

(k)
s |Θ(i j)

x )

}

=

np

∑
t=1

wt(Θx)σ
2,(t)
y,i j .

(B.3)
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Appendix C
Epistemic Screening Results

The last section of the appendix deals with the summary of the epistemic variable screening

for those parameters which are not covered in the main part. To repeat, the sensitivity analysis

has been conducted for the performance model and the interdisciplinary secondary air system

(SAS) model. For the first, only the sensitivity w.r.t. to the response mean and variance of

P(45) has been shown. In case of the secondary air system, Sec. 5.2.2 discusses the sensitiv-

ity indices exemplarily for the cooling mass flow rate YRot_2_l. In the following two sections, the

results for all the remaining response parameters are shown.

The tabular structure is the same for every figure. The first- and second-order sensitivity in-

dices for the response mean are in the upper right part whereas the lower left triangle contains

sensitivity indices for the response standard deviation.
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C.1 Performance Model
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Figure C.1 Variable screening of the performance model for W (25).
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Figure C.2 Variable screening of the performance model for P(3).
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Figure C.3 Variable screening of the performance model for T (45).
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Figure C.4 Variable screening of the performance model for T (49).
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Figure C.5 Variable screening of the performance model for P(49).

168
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Figure C.6 Variable screening of the interdisciplinary SAS model for YRot_1_l.

169



Te
mp

Mac
h

Altit
ud

e

Rim
_1

_l

Rim
_1

_r

Rim
_2

_l

Rim
_2

_r

Rim
_3

_l

Rim
_3

_r

IA
S1_

lip
_e

IA
S1_

sta
t_e

IA
S2_

lip
_e

IA
S2_

sta
t_e

Te
mp

Mac
h

Altit
ud

e

Rim
_1

_l

Rim
_1

_r

Rim
_2

_l

Rim
_2

_r

Rim
_3

_l

Rim
_3

_r

IA
S1_

lip
_e

IA
S1_

sta
t_e

IA
S2_

lip
_e

IA
S2_

sta
t_e

Figure C.7 Variable screening of the interdisciplinary SAS model for YRot_1_r.
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Figure C.8 Variable screening of the interdisciplinary SAS model for YRot_2_r.
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Figure C.9 Variable screening of the interdisciplinary SAS model for YRot_3_l.
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Figure C.10 Variable screening of the interdisciplinary SAS model for YRot_3_r.
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Mathematical Symbols

Random Variable Notation
X Random input quantity
X Random input vector
Xd Design input vector
Xn Noise input vector
x Realization of X
x Lower bounds of an interval-valued random variable X
x Upper bounds of an interval-valued random variable X
Xi i-th element of X
xi i-th element of x
xi i-th element of x
Y Random response quantity
Y Random response vector
y Realization of Y
y Realization of Y
Yi i-th element of Y
fX(x) Joint probability density function
FX(x) Joint cumulative distribution function
fX(x) Probability density function
FX(x) Cumulative distribution function of X
FX(x) Lower bound of an input quantity’s probability-box
FX(x) Upper bound of an input quantity’s probability-box
Bel(S) Measure for the belief in the subset S ⊂ Fe

Pl(S) Measure for the plausibility of the subset S ⊂ Fe

FY(y) Cumulative distribution function of Y
FY(y) Lower bound of a response quantity’s probability-box
FY(y) Upper bound of a response quantity’s probability-box

Stochastic Descriptor Notation
µx Mean value vector for X
σ2

x Variance vector for X
σx Standard Deviation vector for X
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µx Mean value of X
σx Standard deviation of X
µ̌x Sample mean value of X
σ̌x Sample standard deviation of X
X̃ Median value of X
X̂ Mode value of X
γx Skewness of X
κx Kurtosis of X
σ I

x Interval-valued standard deviation of X
µ I

x Interval-valued mean value of X
Σx Covariance matrix of X
µy Mean value vector for Y
σ2

y Variance vector for Y
µy Mean value of Y
σy Standard deviation of Y
µ̌y Sample mean value of Y
σ̌y Sample standard deviation of Y
σ2

y Variance of Y
Σy Covariance matrix of Y

Hyperparameter Notation

θ
I,(i)
x i-th element of ΘI

x

θ
(i)
x i-th element of Θx

Θg Calibration parameters of the computational model
Θx Set of hyperparameters of a probabilistic model
ΘI

x Interval-valued set of hyperparameters of a probabilistic model

θ
(i)
x Lower bound of the i-th element of ΘI

x

θ
(i)
x Upper bound of the i-th element of ΘI

x

Uncertainty Quantification & Propagation
Us Set of sample points drawn from the unit space

u
(i)
s i-th element of Us

Xm Set of measurement data related to the model’s input quantities
Xs Set of sample points drawn from probabilistic distributions of the model’s input quantities
XI

s Set of interval bounds drawn from free p-boxes of the model’s input quantities

x
(i)
m i-th element of Xm

x
(i)
s i-th element of Xs

x
I,(i)
s i-th element of XI

s
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x
(i)
s Lower bound of the i-th element of XI

s

x
(i)
s Upper bound of the i-th element of XI

s

Ym Set of measurement data related to the model’s response quantities
Ys Set of sample points obtained from propagating Xs throughout a computational model
YI

s Set of propagated interval-valued sample points

y
(i)
m i-th element of Ym

y
(i)
s i-th element of Ys

y
I,(i)
s i-th element of YI

s

y(i)
s

Lower bound of the i-th element of YI
s

y
(i)
s Upper bound of the i-th element of YI

s

Notation related to the Hyperrectangle & Hyperellipsoid approach
Cx Convex hull describing the uncertainty on X
Ex Ellipsoid describing the input quantity uncertainty
Ẽx Ellipsoid describing the input quantity uncertainty derived from a linearized model
CYm

Convex hull of the measurement set Ym

EYm
MVEE of the measurement set Ym

CYs
Convex hull of the propagated sample point set Ys

EYs
MVEE of the propagated sample point set Ys

ẼYs
MVEE of the propagated sample point set drawn from Ẽx

Dimensionality
nf Number of focal elements in Fe

nm Number of measurement points
np Number of proposal distributions for the MNISS concept
ns Number of sample points
nΘ Number of hyperparameters
nTS Number of model evaluations for the finite difference method
nx Number of dimensions in the input space
ny Number of dimensions in the output space

Performance Parameters
η(i) efficiency of the i-th jet engine component
∆W (i) flow capacity of the i-th jet engine component
T (i) temperature at the i-th station
P(i) pressure at the i-th station
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Abbreviations
ADP aerodynamic design point
ANOVA analysis of variance
BPA basic probability assignment
CBF cumulative belief function
CDF cumulative distribution function
CI confidence interval
CLT central limit theorem
CoV coefficient of variation
CPF cumulative plausibility function
CT computation time
DEQ differential equation
DE differential evolution
DoE design of experiments
EMCS extended Monte Carlo sampling
ESA European Space Agency
FAST Fourier amplitude sensitivity testing
FCI flight cost index
FOI first-order index
HDMR high-dimensional model representation
HPC high-pressure compressor
HPT high-pressure turbine
IAS inner air seal
i.i.d. independently and identically distributed
ISA international standard atmosphere
IS importance sampling
IVP interval-valued probability
KS Kolmogorov-Smirnov
LH Latin hypercube
LPC low-pressure compressor
LPT low-pressure turbine
MCMC Markov Chain Monte Carlo
MC Monte Carlo
MMR minimax regret
MNISS multi-point non-intrusive imprecise stochastic sampling
MVEE minimum-volume enclosing ellipsoid
NISS non-intrusive imprecise stochastic sampling
NM nautical mile
OAT one-at-a-time
OLH optimal Latin hypercube
OPUS optimization utility system
p-box probability-box
PBH power-by-the-hour
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PCC partial correlation coefficient
PDF probability density function
PI pinching index
PRCC partial rank correlation coefficient
QoI quantity of interest
RDO robust design optimization
RMSE root mean square error
SAS secondary air system
SA sensitivity analysis
SCM streamline curvature method
SFC specific fuel consumption
SI sensitivity index
SNR signal-to-noise ratio
SOI second-order index
SOP second-order probability
SRC standard regression coefficient
SRRC standard rank regression coefficient
SSC scaled sensitivity coefficient
UQ uncertainty quantification
WWA world-wide average
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