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Abstract

Multi-fidelity Monte Carlo sampling has proven to be an efficient method for quanti-
fying uncertainty in applications with a large number of stochastic input parameters
and computationally expensive models. The method consists of evaluating low-fidelity
models in addition to the given high-fidelity model in order to speed up the computa-
tion of high-fidelity model statistics. In the regular multi-fidelity Monte Carlo sampling
approach, low-fidelity models are static and cannot be changed. Context-aware multi-
fidelity Monte Carlo sampling takes into account that e.g., data-driven low-fidelity
models can be improved using evaluations of the high-fidelity model. This method
trades off refining the low-fidelity models and sampling both types of models. In this
thesis, we use sensitivity information to construct low-fidelity models that depend only
on subsets of important input parameters in addition to a full-dimensional low-fidelity
model. We explore the potential of such reduced-dimension low-fidelity models to
further reduce the mean squared error of context-aware multi-fidelity Monte Carlo
estimators. To this end, our method is used to perform uncertainty quantification
in a scenario from plasma micro-turbulence simulation that models the suppression
of turbulence by energetic particles, and for which quantifying uncertainty can be
challenging using traditional approaches. In our experiments, the context-aware Monte
Carlo algorithm with reduced-dimension low-fidelity models provided a speedup
of two orders of magnitude as compared to standard Monte Carlo sampling, which
corresponds to a reduction of the computational effort from 48 days to to six hours on
240 cores on parallel supercomputers.

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Background 6
2.1 Numerical Simulation of Plasma Micro-Turbulence . . . . . . . . . . . . 6

2.1.1 The Gyrokinetic Approach . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Gyrokinetic Maxwell-Vlasov Equations . . . . . . . . . . . . . . . 7

2.2 Monte Carlo Sampling in Uncertainty Propagation . . . . . . . . . . . . 8
2.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Standard Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . 9
2.2.3 Multi-Fidelity Monte Carlo Sampling . . . . . . . . . . . . . . . . 10

3 Context-Aware Multi-Fidelity Monte Carlo Sampling 15
3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Context-Aware Multi-Fidelity Sampling Algorithm . . . . . . . . . . . . 16

3.2.1 One Low-Fidelity Model . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Multiple Low-Fidelity Models . . . . . . . . . . . . . . . . . . . . 19

3.3 Reduced-Dimension Context-Aware Low-Fidelity Models . . . . . . . . 21

4 High- and Low-Fidelity Models for Plasma Micro-Turbulence Analysis 22
4.1 High-Fidelity Model: The Gyrokinetic Simulation Code Gene . . . . . . 22
4.2 A Data-Driven Low-Fidelity Model . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Interpolation on Sparse Grids . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Sensitivity-Driven Dimension-Adaptivity . . . . . . . . . . . . . . 25
4.2.3 Finding Reduced-Dimension Low-Fidelity Models . . . . . . . . 27

v



Contents

5 Numerical Results 29
5.1 Turbulence Suppression by Energetic Particles: Setup and High-Fidelity

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Full- and Reduced-Dimension Low-Fidelity Models for CA-MFMC . . . 32

5.2.1 Estimation of Accuracy and Cost Rates . . . . . . . . . . . . . . . 32
5.2.2 Full-Dimension Low-Fidelity Model . . . . . . . . . . . . . . . . . 34
5.2.3 Reduced-Dimension Low-Fidelity Models . . . . . . . . . . . . . 34

5.3 Context-Aware Multi-Fidelity Monte Carlo Sampling . . . . . . . . . . . 38
5.3.1 Analytical MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Selection of Low-Fidelity Models for CA-MFMC . . . . . . . . . 43
5.3.3 Estimated MSE for Fixed Computational Budget . . . . . . . . . 48

6 Conclusion 51

List of Figures 53

List of Tables 54

Bibliography 55

vi



1 Introduction

1.1 Motivation

Research towards the goal of the practical realization of nuclear fusion power plants as
a viable energy source has been ongoing for multiple decades. Harnessing fusion power
would supply clean and virtually unlimited electricity, thereby significantly reducing
greenhouse gas emissions and paving the way towards global carbon neutrality. Most
approaches to the design of fusion reactors make use of magnetically confined plasmas,
in which the fusion reactions take place. A plasma is a hot, ionized gas, which, due
to the electrically charged particles it contains, can be influenced by strong magnetic
fields. Devices used for this purpose are for example tokamas or stellarators. The aim
is to create a ”burning”, i.e., self-sustaining, plasma, in which the energy released by
the fusion reactions heats the surrounding plasma enough in order to sustain the fusion
process.

A significant challenge in maintaining this state for an extended period of time is
the occurrence of micro-turbulence due to intrinsically steep temperature and density
gradients. The resulting turbulent transport decreases the energy confinement time,
which must, however, reach a certain value to enable the plasma to sustain itself.
Therefore, a key step towards making nuclear fusion an attainable source of energy is
to further our understanding of the turbulent transport and its prevention.

To this end, the predictive numerical simulation of the physical processes taking
place in fusion plasmas plays an important role [14, 4, 31]. As for most real-world
applications, the input parameters to the models used for such simulations are, however,
inherently subject to uncertainty, e.g., due to measurement errors or even incomplete
knowledge. For this reason, it is paramount that proper uncertainty quantification (UQ),
see, e.g., [36], is conducted. In plasma micro-turbulence analysis, this is a challenging
task since there is typically a large number of parameters that affect the turbulent flows.
In addition to this, the underlying simulations are usually computationally expensive,
which renders the task even more difficult.

In cases such as this, the number of suitable methods for performing UQ is restricted
by the so-called curse of dimensionality, see, e.g., [5, 15]. The term describes the fact
that the required computational effort grows exponentially with the number of input
parameters if a full-grid approach is used to explore the space of uncertain inputs. This
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1 Introduction

fact does, however, not apply to sampling-based methods, for which the computational
effort needed to increase the precision does not depend on the stochastic dimensionality
of the problem.

The simplest method of this kind is standard Monte Carlo (MC) sampling [22],
in which the underlying model is evaluated for (pseudo-)random samples that are
subsequently used to compute a quantity such as an estimator for the mean or variance
of the model output, or even sensitivity information, see [35] for the latter. In view of
the characteristic slow convergence of the mean squared error (MSE) of MC estimators
with regards to the sampling budget, this approach is typically not feasible, especially
if the costs of evaluating the model are large.

Multi-fidelity Monte Carlo (MFMC) sampling [29, 28, 26, 32] is based on the control
variate technique [25] and speeds up this sampling process by employing a hierarchy of
so-called high- and low-fidelity models. Both kinds of models compute the same output
of interest, however, the low-fidelity models achieve this with smaller computational
costs than the high-fidelity model and are, in return, also less accurate. Here, the
high-fidelity model computes our output of interest, while low-fidelity models provide
a computationally less expensive approximation of the high-fidelity model. Such low-
fidelity models can, for example, be data-driven, projection-based, or use reduced
physics. Different types of low-fidelity models are discussed in [30].

The context-aware MFMC (CA-MFMC) sampling algorithm of [9, 11] takes into
account the fact that, when low-fidelity models are not readily available for the use
in MFMC, they must be especially constructed. To this end, they are often refined or
trained using evaluations from the high-fidelity model, which means that an additional
cost is incurred in order to obtain these samples. In this process, it is not immediately
clear how far a low-fidelity model should be refined since increased accuracy usually
also leads to increased evaluation costs, which in turn negatively affects the amount
of samples that can be evaluated within a given computational budget. CA-MFMC
addresses these points by balancing the costs of improving data-driven low-fidelity
models with the high- and low-fidelity evaluation costs in the subsequent sampling
process. The algorithm finds an optimal trade-off by computing the number of high-
fidelity evaluations that should be used to train the low-fidelity models in order to
minimize the MSE of the resulting estimators. When the low-fidelity models are refined
accordingly, they are context-aware in the sense that they are constructed specifically
to be used together with the high-fidelity model to reduce the variance of the MFMC
estimators. The CA-MFMC approach has recently been shown to be very promising
for making UQ at a large scale feasible in real-world applications, not least in the
simulation of plasma turbulence [9, 11].

The goal of this thesis is to further study the potential of CA-MFMC for the effi-
cient quantification of uncertainty in plasma turbulence simulations. Our key aim is
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1 Introduction

to explore the role that reduced-dimension low-fidelity models can play in further
speeding up the CA-MFMC computations. To this end, we make use of that fact that in
the simulation of many real-world applications, only a subset of the input parameters
affects the output of the corresponding model significantly and construct low-fidelity
models that depend only on such subsets.

1.2 Related Work

The CA-MFMC algorithm of [9, 11] generalizes a context-aware bi-fidelity MFMC
sampling method that was introduced in [27]. This bi-fidelity approach considers
the construction of a single, data-driven context-aware low-fidelity model for which
the accuracy and evaluation costs are described by algebraic rate depending on the
number of samples used to train the model. The work [41] analyses a bi-fidelity case,
in which the context-aware low-fidelity models are obtained by a polynomial chaos
approach. In [9, 11], the results from [27] are extended to models with more general
rates. Additionally, a method of sequentially introducing low-fidelity models into the
algorithm such that they are all context-aware is presented. The trade-off between
refining and sampling low-fidelity models is also discussed in [1] in the context of
importance sampling.

Regular, or static, MFMC has also been successfully used to perform UQ in plasma
physics problems [9, 19]. Both works employed the gyrokinetic simulation code Gene

[18, 16] as a high-fidelity model. The work [20] used MFMC to speed up computations
of the energy confinement time in the design of stellarators.

A sensitivity-driven dimension-adaptive sparse grid interpolation approach of [10,
9] has also previously been applied to quantify uncertainty in plasma turbulence
simulations. In [10], it was used to compute the expectation and variance of the
corresponding Gene output, and, in particular, to perform sensitivity analysis. A
parameter scan that allowed a subsequent dimensionality reduction of the stochastic
input space was conducted in [13]. The work [12] employed the sparse grid algorithm
to efficiently quantify uncertainty and compute sensitivity information in a nonlinear,
and therefore very computationally expensive, Gene setup.

In [19], static MFMC was used to perform UQ in a plasma micro-turbulence scenario
with 14 uncertain inputs and Gene as the high-fidelity model. Full- and reduced-
dimension data-driven low-fidelity models were constructed based on sensitivity in-
formation in the form of Sobol’ indices [37], which were obtained from the same
dimension-adaptive sparse grid procedure as mentioned above. These computationally
cheaper models were shown to be greatly effective in reducing the computational effort
of computing MFMC mean estimators compared to standard MC. The low-fidelity
models employed in that work were all obtained in a static manner, i.e., each one was
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refined once using a fixed number of interpolation points, without regard to the other
models in the hierarchy.

1.3 Our Contribution

In this thesis, we extend the static MFMC framework of [19] such that the employed
low-fidelity models are additionally context-aware. We use the CA-MFMC algorithm
of [9, 11] in conjunction with the sensitivity-driven interpolation approach of [10, 9]
to sequentially introduce full- and reduced-dimension low-fidelity models into the
hierarchy. In this way, for every added low-fidelity model, sensitivity information
is used to decrease the stochastic dimensionality appropriately, which reduces the
evaluation costs of the model but has only small effects on the accuracy. The obtained
model is then refined using an optimal number of high-fidelity samples that minimizes
the MSE of the resulting MFMC estimator.

We apply the proposed methodology to the numerical simulation of plasma micro-
turbulence in order to study its efficiency in the quantification of uncertainty. To this
end, we consider a realistic scenario that investigates the effect of energetic particles on
the suppression of micro-turbulence. As a high-fidelity model, we employ the plasma
turbulence code Gene to compute the growth rates of plasma micro-instabilities that
lead to turbulent transport. In our experiments, we compute the MSEs of CA-MFMC
estimators using full- and reduced-dimension models and compare them to static
MFMC and standard MC estimators. From analytical computations of the expected
MSEs, we find that, already for small computational budgets, CA-MFMC estimators
are more accurate than the static MFMC estimators that we consider in this work. We
confirm this for selected subsets of low-fidelity models and a given budget, where the
CA-MFMC estimators are by orders of magnitude more efficient than standard MC.
For larger budgets, our computations show that the speedup achieved by CA-MFMC
estimators using certain combinations of low-fidelity models amounts to around two
orders of magnitude, thereby providing a significant reduction of the computational
costs.

1.4 Outline of This Thesis

The remainder of this document is organized as follows. Chapter 2 summarizes the
mathematical modeling of plasma micro-turbulence and the standard MC and MFMC
algorithms used in uncertainty propagation. Based on these two algorithms, Chapter 3
introduces the CA-MFMC approach and discusses the construction of context-aware
reduced-dimension low-fidelity models. Chapter 4 presents details on the gyrokinetic
code Gene, which we use as a high-fidelity model in our experiments. Further, the
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chapter outlines the sensitivity-driven dimension-adaptive sparse grid interpolation
technique that we use to construct full- and reduced-dimension low-fidelity models.
Our numerical results are presented in Chapter 5. Therein, we apply CA-MFMC with
reduced-dimension models to a scenario from plasma micro-turbulence analysis with
14 uncertain inputs, in which the suppression of turbulence by fast ions is modeled.
Finally, we present a summary of the work conducted in this thesis and give an outlook
on future research in Chapter 6.
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2 Theoretical Background

This chapter provides a summary of standard MFMC sampling and of the real-world
application considered in this work. Section 2.1 describes the application background
in more detail and gives an overview of the modeling of plasma micro-turbulence using
the so-called gyrokinetic approach. In Section 2.2 we summarize the standard MC and
MFMC sampling algorithms on which the CA-MFMC approach employed in this work
is based.

2.1 Numerical Simulation of Plasma Micro-Turbulence

In the following, we summarize the ideas behind the gyrokinetic modeling of plasma
turbulence and outline its mathematical description using the gyrokinetic Maxwell-
Vlasov system. We refer the reader to [4, 16, 31] for more details on the gyrokinetic
approach.

2.1.1 The Gyrokinetic Approach

Gyrokinetic theory was first developed in the 1980s [16] and is a popular approach
for describing plasma micro-turbulence. In gyrokinetics, the plasma is modeled in a
five-dimensional phase space (three positions, two velocities). This is in contrast to
the classical kinetic model in six dimensions (three positions, three velocities), which
provides an appropriate description of the setting, however, computing a solution is
not feasible with current-day computational resources [9].

The gyrokinetic approach makes use of that fact that, in strongly magnetized plasmas,
the gyrofrequency of the charged particles, i.e., the frequency of their movement around
the magnetic field lines, takes place at a much larger time scale than the turbulence.
Gyrokinetics removes this high-frequency gyromotion from the model. This means
that the exact position of the particle in the orbit around the field line is not resolved
and particles are effectively modeled as moving rings in the magnetic field. Therefore,
the phase space is reduced from six to five dimensions solely by omitting information
that is not relevant to assessing the micro-turbulence and a computationally feasible
description of the setting is obtained.
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2 Theoretical Background

2.1.2 Gyrokinetic Maxwell-Vlasov Equations

The summary and notation presented in this section closely follows [9, 19]. In gyroki-
netics, the evolution of the plasma over time is modeled by a distribution function
πs(t, R, v‖, µm) for each of the particle species s, i.e., a function which describes the
number of particles at a time t for given five-dimensional gyrocenter coordinates. These
coordinates consist of the position R = (Rx, Ry, Rz) of the gyrocenter in real space,
the component v‖ of its velocity parallel to the magnetic field lines and its magnetic
moment µm := msv2

⊥/2B. Here, ms denotes the mass of the particle species s, v⊥ is
the velocity component perpendicular to the magnetic field lines, and B describes the
magnetic field. We assume that this distribution function can be decomposed as

πs(t, R, v‖, µm) = πs,0(R, v‖, µm) + πs,1(t, R, v‖, µm),

where only the non-static part πs,1 depends on t in addition to the gyrocenter coordi-
nates. For each particle species, the evolution of the distribution function is governed
respectively by a nonlinear partial differential equation: the gyrokinetic Vlasov equation
with collisions. It reads

π̇s + Ṙ · ∇πs + v̇‖
∂πs

∂v‖
= C(πs, πs′), (2.1)

where C(πs, πs′) is a collision operator. The time evolution of R and v‖ is described by

Ṙ = v‖b0 +
B0

B∗0,‖
(vE + v∇B + vc), and (2.2)

v̇‖ = −
Ṙ

msv‖

(
qs∇Φ̄1 +

qs

c
∂Ā1,‖

∂t
b0 + µm∇(B0 + B̄1,‖)

)
, (2.3)

where B0 is the modulus of the magnetic field vector B0 and b0 := B0
B0

is its normalized
unit vector, B∗0,‖ := b0B∗0 denotes the parallel component of B∗0 := B0 +∇×

(
B0v‖/Ωs

)
with Ωs := qsB0/msc being the gyrofrequency of the particle species s with charge qs.
Here, c is the speed of light. Furthermore, Φ̄1 describes the gyroaveraged perturbed
part of the electrostatic potential Φ, Ā1,‖ is the gyroaveraged modulus of the parallel
component of the perturbed vector potential, and B̄1,‖ is the gyroaveraged modulus
of the parallel component of the magnetic field perturbations. Additionally, vE =
c

B2
0
B0 ×∇ξ̄1 describes the generalized E×B drift velocity, where ξ̄1 is the gyroaveraged

modified potential ξ̄1 = Φ̄1− v‖
c Ā1,‖, v∇B = µmc

qsB2
0
B0×∇B0 is the gradient-B drift velocity,

and vc =
v2
‖

Ωs
(∇× b0)⊥ denotes the curvature drift velocity.

7



2 Theoretical Background

Additionally, Maxwell’s equations are needed for a complete description of the
plasma over time. Firstly, Φ1 can be computed from the Poisson equation

−∇2Φ1 = 4π ∑
s

qsn1,s, (2.4)

and secondly, using Ampère’s law, the quantities A1,‖ and B1,‖ are defined by

−∇2A1,‖ =
4π

c ∑
s

n1sqsu1s,‖ and (∇× B1)⊥ =
4π

c ∑
s

n1su1s,⊥, (2.5)

where, for particle species s, n1s is the 0th space moment, u1s,‖ is the 1st order velocity
moment in v‖ of πs, and u1s,⊥ denotes the 1st order velocity moment in µm of πs.
Together with the gyrokinetic Vlasov equation (2.1), Maxwell’s equations (2.4) and (2.5)
define the system of equations required for a gyrokinetic model of fusion plasmas. We
give specifics on the gyrokinetic simulation code employed in this work in Section 4.1.

2.2 Monte Carlo Sampling in Uncertainty Propagation

In forward UQ, or uncertainty propagation, the goal is to quantify the effect of un-
certainties in the input parameters on the output of the underlying model. In this
section, we summarize the mathematical basis of uncertainty propagation required for
this work and describe how standard MC and MFMC are used to compute mean and
variance estimators of the high-fidelity model output.

2.2.1 Preliminaries

We consider a high-fidelity model f (0) : X → Y , which maps from an input domain
X ⊂ Rd with dimensionality d ∈ N to the output domain Y . In the application
considered in this work, the output is scalar, i.e., Y ⊂ R. Uncertain inputs are modeled
by a random vector Θ : Ω → X with probability space (Ω,A,P), where Ω is the
sample space, A is a σ-algebra, and P : A → [0, 1] is the corresponding probability
measure. We denote a realization of the random vector Θ by θ := [θ1, . . . , θd]

T and its
probability density function (pdf) by π. In this work, we assume that the input space
has a product structure, i.e.,

X =
d⊗

i=1

Xi,

8



2 Theoretical Background

where Xi ⊆ R, i = 1, . . . , d. Similarly, we make the assumption for the pdf of Θ that

π(θ) =
d

∏
i=1

πi(θi),

where πi, i = 1, . . . , d, is the marginal pdf corresponding to θi. In particular, this implies
that the uncertain parameters θ1, . . . , θd must be independent. Moreover, the mean or
expectation of f (0)(Θ) is

µ0 := E[ f (0)(Θ)] =
∫
X

f (0)(θ)π(θ)dθ. (2.6)

Finally, we want to note that MC sampling of any type is always an outer-loop
application [29]. By this, we mean that any involved models are treated as black boxes,
where the actual implementation is irrelevant to the problem at hand and only the
input-output mapping provided by the model is of interest. The models are evaluated
for samples of the input pdf and the obtained evaluations are then used by the outer-
loop application to compute some overall output of interest. In uncertainty propagation,
these quantities are the statistics of the high-fidelity model output f (0)(Θ), such as
mean and variance. In this way, given a sample of the input distribution, the problem
becomes deterministic in that one or multiple models are evaluated for fixed inputs.
A schematic of uncertainty propagation as an outer-loop application is depicted in
Figure 2.1.

2.2.2 Standard Monte Carlo Sampling

In order to compute unbiased statistics of the high-fidelity model output using standard
MC sampling [22], the high-fidelity model f (0) is evaluated for a number of samples
m ∈N of the input probability distribution. The obtained model evaluations are then
used to compute an estimator for the mean of the high-fidelity model output as

ÊMC := Ē(0)
m =

1
m

m

∑
i=1

f (0)(θi) (2.7)

where θ1, . . . , θm are m independent and identically distributed (i.i.d.) samples of the
input random vector Θ.

For unbiased estimators, the mean squared error (MSE) is equal to its variance
[21]. Let w0 > 0 be the evaluation costs of the high-fidelity model f (0). Then, for a

9



2 Theoretical Background

uncertainty
propagation

1st model
2nd model

...
kth model

input
θ

ou
tp

ut
y

Figure 2.1: In uncertainty propagation, one or multiple models are evaluated for sam-
ples of the input random vector. The obtained evaluations are subsequently
used to compute the quantity of interest, such as mean and variance of the
high-fidelity model output (source: [30]).

computational budget p, the MSE of the standard MC mean estimator is

MSE[Ē(0)
m ] =

σ2
0

m
=

σ2
0
p

w0. (2.8)

Since f (0) is evaluated at m samples to compute Ē(0)
m and Var(0)m , the cost of computing

the standard MC estimator (2.7) is m× w0. Considering that the convergence of the
MSE (2.8) is in O(p−1), these costs are often prohibitive to obtaining an accurate result
using standard MC since an unfeasibly large number of – usually computationally
expensive – high-fidelity model evaluations may be necessary. Note that, in the sense
of traditional model reduction, standard MC sampling could also be applied using a
reduced model with lower evaluation costs in place of the high-fidelity model; this
would however introduce a bias to the resulting estimators and therefore, require a
reduced model with a high accuracy guarantee, which may not always be available.

2.2.3 Multi-Fidelity Monte Carlo Sampling

We have discussed that increasing the number of MC samples m in order to obtain more
accurate standard MC estimators is not always possible, especially if the high-fidelity
model has large evaluation costs. If m cannot be increased, a different option for
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error

cost

low-fidelity
model

low-fidelity
model

low-fidelity
model

low-fidelity
model

high-fidelity
model

Figure 2.2: Relationship between high- and low-fidelity models. The high-fidelity
model is characterized by its small error and high evaluation costs, while
low-fidelity models typically exhibit higher errors but are also less expensive
to evaluate (source: [30]).

reducing the MSE of standard MC estimators is to decrease the numerator of (2.8),
i.e., the term σ2

0 . Using control variates [25], this can be achieved by including in the
computation of the estimators additional random variables that are correlated with the
estimated quantity, i.e., in our case, with the high-fidelity mean. In MFMC sampling
[29, 26, 32], standard MC estimators for the mean of the low-fidelity models are used
for this purpose.

Therefore, assume that in addition to the high-fidelity model f (0), we have k low-
fidelity models f (1), . . . , f (k). Compared to the high-fidelity model, these typically are
much cheaper to evaluate, but are also less accurate. This trade-off is visualized in
Figure 2.2. The smaller evaluation costs are leveraged in MFMC, where they allow for
more model evaluations within a given computational budget. At the same time, the
accuracy and unbiasedness of the resulting estimators is still guaranteed by keeping
the high-fidelity model in the loop.

The low-fidelity models in MFMC are characterized in terms of their evaluation costs
wj, j = 1, . . . , k, and their Pearson correlation coefficients ρj, j = 1, . . . , k, with respect to
the high-fidelity model f (0). The correlation coefficient quantifies the linear correlation
between the two models and is defined as

ρj =
Cov[ f (0), f (j)]

σ0σi
∈ [−1, 1], j = 1, . . . k,

11
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where σ2
j := Var[ f (j)(Θ)], j = 1, . . . , k is the variance of the low-fidelity model f (j). The

evaluation costs, correlation coefficients as well as the variances of the low-fidelity
models act as inputs to the MFMC algorithm and are used to assign the amount of
evaluations performed by each of the models. When they are not known beforehand,
they can be estimated numerically using standard MC sampling. An estimator for the
correlation coefficient ρj is given by

ρ̄j =
1

n− 1

n

∑
i=1

(
f (0)(θi)− Ē(0)

n

σ0

)(
f (j)(θi)− Ē(j)

n

σj

)
, j = 1, . . . , k. (2.9)

MFMC estimators are computed as follows. Define the number of model evaluations
of each of the models f (0), f (1), . . . , f (k) as

1 ≤ m0 ≤ m1 ≤ . . . ≤ mk.

Here, we need to assure that the computational budget is large enough such that at
least one high-fidelity evaluation is possible. Otherwise, the resulting estimators will
be biased as discussed above. Draw mk i.i.d. samples θ1, . . . , θmk of Θ according to the
input pdf and evaluate model f (j), j = 0, 1, . . . , k, at the first mj samples, i.e., compute

f (j)(θ1), . . . , f (j)(θmj), j = 0, 1, . . . , k.

From these evaluations, compute for the high- and low-fidelity models the standard
MC estimators

Ē(j)
mj =

1
mj

mj

∑
i=1

f (j)(θi), j = 0, 1, . . . , k. (2.10)

For the low-fidelity models, compute the estimators

Ē(j)
mj−1 =

1
mj−1

mj−1

∑
i=1

f (j)(θi), j = 0, 1, . . . , k, (2.11)

which are obtained from a subset of the model evaluations used in (2.10), which makes
the two estimators in (2.10) and (2.11) dependent. The unbiased MFMC mean estimator
is computed as

ÊMFMC := Ē(0)
m0 +

k

∑
j=1

αj(Ē(j)
mj − Ē((j)

mj−1), (2.12)

where we use coefficients α1, . . . , αk ∈ R. These coefficients as well as the number of
model evaluations m0, m1, . . . , mk are chosen such that the MSE of the resulting mean

12
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estimator is minimized. This is achieved as follows. The low-fidelity models must be
ordered according to their correlation coefficients, i.e.,

1 =: ρ0 > |ρ1| > . . . > |ρk|, (2.13)

and must additionally satisfy

wj−1

wj
>

ρ2
j−1 − ρ2

j

ρ2
j − ρ2

j+1
, j = 1, . . . k,

where ρk+1 = 0. Then, the coefficients α∗1 , . . . , α∗k that minimize the MSE are α∗j = ρj.
Further, define

r∗j =

√√√√w0(ρ2
j − ρ2

j+1)

wj(1− ρ2
j )

, j = 0, 1, . . . , k,

and let r∗ := [r0, r∗1 , . . . , r∗k ] and w := [w0, w1, . . . , wk]. The optimal number of model
evaluations m∗0 , m∗1 . . . . , m∗k are computed as

m∗0 =
p

wTr∗
, m∗j = r∗j m∗0 , j = 1, . . . , k.

With this definition, we generally have that m∗j ∈ R, j = 1, . . . , k. In order to obtain
an integer number of model evaluations, we round down the computed values, i.e.,
we use bm∗j c, j = 0, 1, . . . , k, in the MFMC algorithm to ensure that the prescribed
computational budget is not exceeded.

In this work, we focus on estimating the mean of the high-fidelity output. We
note that the variance can be estimated in the same way as the mean by replacing
the standard MC mean estimators by ones for the variance. In this case, the values
given above for m∗0 , m∗1 , . . . , m∗k and α∗1 , . . . , α∗k do not minimize the MSE of the variance
estimator; in practice, they do, however, provide accurate results and can be used to
estimate the variance as well. We refer to [32] for a more in-depth discussion.

The MSE of the MFMC mean estimator ÊMFMC which uses the optimal coefficients
α∗1 , . . . , α∗k and number of model evaluations m∗0 , m∗1 , . . . , m∗k is

MSE[ÊMFMC] =
σ2

0
p

(
k

∑
j=1

√
wj(ρ

2
j − ρ2

j+1)

)2

. (2.14)

For a given budget p, this MSE is smaller than MSE of the standard MC mean estimator

13
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ÊMC from (2.8) if and only if

MSE[ÊMFMC]

MSE[ÊMC]
=

(
k

∑
j=1

√
wj

w0
(ρ2

j − ρ2
j+1)

)2

< 1. (2.15)

Given a set of low-fidelity models alongside the high-fidelity model, the model selection
algorithm in [29] uses (2.15) to select a subset of low-fidelity models that, when used in
MFMC, will lead to the MFMC mean estimator with the smallest possible MSE for the
given set of models. Note that in this procedure, the low-fidelity models are assumed
to exist with fixed correlation coefficients and evaluation costs and at this point, are not
refined or adapted further.

The costs of computing the MFMC estimators (2.12) and (??) are ∑k
i=0 miwi since the

whole computational budget is used on sampling the models. Here, the construction of
the low-fidelity models in not taken into account, which can however be highly relevant
for, e.g., data-driven models which require a high number of high-fidelity evaluations
for their refinement. These aspects are addressed by the CA-MFMC algorithm, which
is summarized in the following chapter.
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3 Context-Aware Multi-Fidelity Monte
Carlo Sampling

This chapter presents the CA-MFMC sampling algorithm of [9, 11], which will be
extensively used in our numerical results. Section 3.1 introduces notation and formalizes
the relation between the number of training samples and the accuracy and evaluation
costs of low-fidelity models. In Section 3.2, we first describe CA-MFMC in the bi-fidelity
case, i.e., if only one low-fidelity model is employed, and then summarize the use of
multiple low-fidelity models with the algorithm. In our presentation, we follow mainly
the notation used in [11].

3.1 Assumptions

Firstly, note that in the description of CA-MFMC, we assume w.l.o.g. that the evaluation
costs of the models are normalized w.r.t. to the high-fidelity evaluation costs w0 and
formulate the algorithm in terms of w̄0 := 1 and w̄j := wj

w0
, j = 1, . . . , k. In the same

manner, we normalize the available computational budget p w.r.t. w0 and view it as the
number of high-fidelity evaluations that can be obtained within the actual budget p,
i.e., we use p̄ := b p

w0
c, where we round down in order not to exceed p with any of the

following computations.
Further, in CA-MFMC, we use low-fidelity models which depend on the number of

high-fidelity evaluations that are used to improve their approximation quality. These
high-fidelity samples can for example describe interpolation points or training pairs
for neural networks. In contrast to static MFMC, where the correlation coefficient and
evaluation costs of a low-fidelity model are fixed quantities, they are now determined
by the number of high-fidelity samples used to refine the model.

We denote as f (j)
nj the jth low-fidelity model in the hierarchy which is constructed

using nj high-fidelity evaluations. This low-fidelity model has correlation coefficient
ρj(nj) w.r.t. the high-fidelity model f (0) and (normalized) evaluation costs w̄j(nj),
which both depend on nj. Assumption 1 formalizes the dependence of the correlation
coefficient on the number of high-fidelity samples nj.
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3 Context-Aware Multi-Fidelity Monte Carlo Sampling

Assumption 1 For every low-fidelity model f (j)
nj , j = 1, . . . , k, the accuracy 1− ρ2

j (nj) can be
bounded from above as

1− ρ2
j (nj) ≤ ca,jra,j(nj) (3.1)

where ca,j ∈ R+, and ra,j : (0, ∞) → (0, ∞) is decreasing and at least twice continuously
differentiable.

A similar assumption is made for the evaluation costs of the low-fidelity models in
Assumption 2.

Assumption 2 For every low-fidelity model f (j)
nj , j = 1, . . . , k, the normalized evaluation costs

w̄j(nj) can be bounded from above as

w̄j(nj) ≤ cc,jrc,j(nj) (3.2)

where cc,j ∈ R+, and rc,j : (0, ∞) → (0, ∞) is increasing and at least twice continuously
differentiable.

The accuracy and cost rates from Assumptions 1 and 2 must be estimated numerically
from pilot runs via regression if they are not available analytically (as they would be,
e.g., if the low-fidelity model interpolates the solution of an elliptic partial differential
equation [9]). If there are at least two evaluations of the high- and low-fidelity model
available, those can be used in importance sampling [2] to compute the rates.

Remark 1 High- and low-fidelity evaluations used to compute correlation coefficients and
evaluations costs in the regression step can be re-used in the subsequent MFMC computations.
This was shown in [19], where model evaluations computed to estimate correlation coefficients
and evaluation costs for regular MFMC were also used in the sampling process. A comparison
to MFMC with an independent set of samples showed that the bias introduced by this re-use
was negligible. Alternatively, the costs incurred by this preprocessing step can also be taken
into account in CA-MFMC by subtracting them from the total computational budget.

3.2 Context-Aware Multi-Fidelity Sampling Algorithm

In this section, we summarize the CA-MFMC algorithm and show how to refine the
low-fidelity models such that every model is designed explicitly to be used together
with the previous models in the hierarchy and so, is context-aware. Once the low-
fidelity models have been constructed accordingly, MFMC sampling as discussed in
Section 2.2.3 can be applied.
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3.2.1 One Low-Fidelity Model

We first study the bi-fidelity setting, in which only one low-fidelity model is used
together with the high-fidelity model. The goal of CA-MFMC is to determine how
many high-fidelity evaluations should be employed in the refinement of this low-fidelity
model in order for the resulting MFMC estimator to be as accurate as possible.

To this end, we examine the MSE (2.14) of the bi-fidelity CA-MFMC mean estimator
ÊCA-MFMC

n1
, in which n1 high-fidelity training samples are used to refine the low-fidelity

model. Since the correlation coefficient and evaluation costs of f (1)n1 now depend on
n1, this is true for the MSE as well. In order to optimally balance the training of the
low-fidelity model with the cost of the model evaluations for MFMC, CA-MFMC must
additionally take n1 into account when considering the computational budget available
for MFMC sampling. After f (1)n1 has been refined using n1 high-fidelity evaluations,
the remaining budget is p̄− n1. The corresponding MSE expressed in terms of the
normalized evaluation costs reads

MSE[ÊCA-MFMC
n1

] =
σ2

0
p̄− n1

(√
1− ρ2

1(n1) +
√

w̄1(n1) ρ2
1(n1)

)
. (3.3)

In [11], an upper bound on (3.3), which depends on the accuracy and cost rates of f (1)n1

defined in Assumptions 1 and 2, is derived as

MSE[ÊCA-MFMC
n1

] ≤ 2σ2
0

p̄− n1
(ca,1ra,1(n1) + cc,1rc,1(n1)) (3.4)

The explicit dependence of (3.4) on the rates, and therefore also n1, allows us to perform
a minimization of the upper bound on the MSE in order to compute an optimal number
of high-fidelity training samples n∗1 . Thus, we solve

arg min
n1∈N

1
p̄− n1

(ca,1ra,1(n1) + cc,1rc,1(n1))

s.t. 1 ≤ n1 ≤ p̄− 1.
(3.5)

We restrict n1 to be less or equal to p̄ − 1 in order to guarantee that at least one
high-fidelity evaluation is possible in MFMC sampling, meaning the resulting MFMC
estimator will be unbiased. Since (3.5) constitutes an integer program, we relax it and
find a solution ñ∗1 ∈ [1, p̄− 1], which we then round up to n∗1 := dñ∗1e ∈N.

Theorem 1 presents a condition derived in [11] under which the solution of (3.5) is a
unique global minimizer.
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Theorem 1 If the functions ra,1 and rc,1 satisfy Assumptions 1 and 2, and if additionally

ca,1r′′a,1(n1) + cc,1r′′c,1(n1) > 0 (3.6)

holds for all n1 ∈ [1, p̄− 1], then the objective function in (3.5) has a unique global minimum
with minimizer n∗1 ∈ [1, p̄− 1].

It follows that as long as the prerequisites to Theorem 1 are fulfilled, there exists an
optimal trade-off between refining the low-fidelity model and using the remaining
computational budget for MFMC sampling.

Remark 2 The condition (3.6) holds if ra,1 is strictly convex and rc,1 is convex.

Another property of the solution to the minimization problem (3.5) is that the
resulting optimal number n∗1 of high-fidelity evaluations used to construct f (1)n1 is
bounded from above for p→ ∞. We state this in the following theorem, the proof of
which can be found in [11].

Theorem 2 If Theorem 1 applies with (3.6) satisfied for all n1 ∈ (0, ∞), and if there exists
n̄1 ∈ (0, ∞) such that

ca,1r′a,1(n̄1) + cc,1r′c,1(n̄1) = 0, (3.7)

then n̄1 is unique and the minimizer n∗1 of the objective function in (3.5) is bounded from above
by n∗1 ≤ max{1, n̄1} independent of the computational budget.

This means that even for an infinite budget, the optimal number of samples used to
train the low-fidelity model is finite. Therefore, from a certain computational budget
onwards, refining the low-fidelity model any further only leads to an increase in the
MSE of the MFMC mean estimator and the remaining budget should instead be used
to sample the models. Together with the fact that, according to Theorem 1, there exists
a fixed optimal n∗1 for a given budget, this shows an important contrast to standard
model reduction techniques. Therein, the goal is typically to find reduced models that
approximate the high-fidelity model as closely as possible. In MFMC, however, the
increased evaluation costs of a very accurate low-fidelity model can make such a model
not beneficial for computing estimators that are as accurate as possible. Instead, the
low-fidelity trained on n∗1 high-fidelity samples is context-aware in that it is constructed
specifically to be used together with the high-fidelity model in order to minimize the
MSE of MFMC estimators.

Finally, we discuss the rate with which the MSE for CA-MFMC converges. For the
regular MFMC mean estimator (2.12), the MSE (2.14) decays with a rate in O(p−1).
For CA-MFMC with one low-fidelity model and algebraic accuracy and cost rates, it
was shown in [27] that if w̄1 � 1, the convergence of the MSE is faster than O(p−1)
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in a pre-asymptotic regime, meaning for small computational budgets p. A proof is
given in [27] for the limit case w̄1 = 0, where the convergence is in O(p−1−α1) for
ra,1(n1) = n−α1

1 , α1 > 0. On the other hand, once the limit described in Theorem 2 is
reached, the convergence can also be slower than O(p−1) if n1 is chosen larger than the
upper bound that exists for n∗1 and p→ ∞.

3.2.2 Multiple Low-Fidelity Models

We now discuss the extension of the CA-MFMC algorithm to MFMC with k > 1 low-
fidelity models. The task here is to find the optimal number of high-fidelity evaluations
n∗1 , . . . , n∗k that should be used to construct the low-fidelity models f (1)n1 , . . . , f (k)nk in order
to minimize the MSE of the corresponding MFMC mean estimator and thus, to achieve
an optimal balance between refining and sampling the low-fidelity models.

The MSE of a CA-MFMC mean estimator ÊCA-MFMC
n1,...,nk

which uses multiple low-fidelity
models can be bounded as

MSE[ÊCA-MFMC
n1,...,nk

] ≤ (k + 1)σ2
0

p̄k−1 − nk
(κk−1 + w̄k−1(nk−1)ca,kra,k(nk) + cc,krc,k(nk)), (3.8)

where p̄k−1 is the number of remaining high-fidelity evaluations after the first k− 1
low-fidelity models have been refined, i.e., p̄k−1 = p̄−∑k−1

j=1 nj and p̄0 := p̄, and with
w̄0(n0) = 1, we have

κk−1 =
k−2

∑
j=0

wj(nj)(1− ρ2
j+1(nj+1)), κ0 = 0. (3.9)

For k = 1, the MSE (3.8) corresponds to the MSE (3.3) in the bi-fidelity case. When we
have k > 1, the MSE depends on the correlation coefficients ρ1(n1), . . . , ρk−1(nk−1) and
evaluations costs w̄1(n1), . . . , w̄k−1(nk−1) of the first k− 1 low-fidelity models, which are
determined by the number of training samples n1, . . . , nk−1. The CA-MFMC algorithm
uses this fact to iteratively add the low-fidelity models to the hierarchy. In the first
iteration, the first low-fidelity model is added as described in Section 3.2.1. In every
iteration j > 1, we add the low-fidelity model f (j)

nj and compute the corresponding
optimal n∗j . Since at this point, n∗1 , . . . , n∗j−1 have already been computed, they are used
to obtain the correlation coefficients and evaluation costs of the previous models using
the accuracy and cost rate functions in Assumptions 1 and 2. Those values can then be
inserted into the MSE (3.8). In this way, the minimization problem solved to compute
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n∗j is again one-dimensional:

arg min
nj∈N

1
p̄j−1 − nj

(κj−1 + w̄j−1(nj−1)ca,jra,j(nj) + cc,jrc,j(nj))

s.t. 1 ≤ nj ≤ p̄j−1 − 1.

(3.10)

We again relax (3.10) and find a solution ñ∗j ∈ R, which is then up to obtain n∗j := dñ∗j e.
For subsequent iterations, it is assumed that the previous n∗1 , . . . , n∗j are integers.

It was shown in [11] that in iteration j, a unique global minimum to the one-
dimensional optimization problem (3.10) exists under similar circumstances as in the
case with a single low-fidelity model:

Theorem 3 If the functions ra,j and rc,j satisfy Assumptions 1 and 2, and if additionally, in
iteration j,

w̄j−1(nj−1)ca,jr′′a,j(nj) + cc,jr′′c,j(nj) > 0 (3.11)

holds for all nj ∈ [1, p̄j−1 − 1], then the objective function in (3.10) has a unique global
minimum with minimizer n∗j ∈ [1, p̄j−1 − 1].

In the same manner, the n∗1 , . . . , n∗k are bounded from above for p→ ∞ as well, as the
following theorem shows.

Theorem 4 If, in iteration j, Theorem 3 applies with (3.11) satisfied for all nj ∈ (0, ∞), and if
there exists n̄j ∈ (0, ∞) such that

w̄j−1(nj−1)ca,jr′a,j(n̄j) + cc,jr′c,j(n̄j) = 0, (3.12)

then there exists an upper bound n∗j ≤ n̄∗j with n̄∗j ∈ (0, ∞) independent of the computational
budget.

Moreover, Remark 2 can be applied iteratively to give a condition under which the
previous two theorems hold.

Remark 3 Since the low-fidelity models are added sequentially, the objective function in each
iteration j > 1 only differs by constant factors from the case with one low-fidelity model.
Therefore, Theorems 3 and 4 also hold if ra,j is strictly convex and ra,j is convex.

As in static MFMC, the low-fidelity models must be ordered according to their
correlation coefficients as in (2.13). If this condition is not satisfied by the ρj(n∗j ), j =
1, . . . , k, obtained by sequentially adding the low-fidelity models to the CA-MFMC
algorithm, we adjust the order in which the low-fidelity models are added. This changes
the order in which the n∗j are computed and will therefore result in changed correlation
coefficients for the individual models as well.
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3.3 Reduced-Dimension Context-Aware Low-Fidelity Models

We now introduce the methodological novelty of this work, which is the construction
of reduced-dimension context-aware low-fidelity models for MFMC. To the best of our
knowledge, such models have not yet been considered in other works.

In order to be able reduce the stochastic dimensionality in a meaningful way, knowl-
edge about the input sensitivities is required. In MFMC, this can often mean first
constructing a full-dimensional low-fidelity model and using the information obtained
from that process to determine the most important stochastic parameters. Following
that, reduced-dimension models depending only on subsets of important parameters
can be constructed.

We build on the work in [19], where the described approach was used to find
reduced-dimension low-fidelity models, which were subsequently used in static MFMC
sampling. The idea can be taken one step further by considering reduced-dimension
low-fidelity models which are also context-aware. Finding reduced-dimension models
for MFMC is a sequential process, where the dimensionality reduction can only take
place after some initial computations, i.e., after the low-fidelity model which depends
on all d inputs has been found. Afterwards, reduced-dimension models can be obtained
successively, where in each step, the dimensionality is reduced further. This process can
be carried out for as long as the obtained models are still useful for variance reduction
in MFMC, meaning as long as only insignificant input parameters are disregarded such
that the resulting model is still a good approximation of the high-fidelity model.

In the same manner, the CA-MFMC algorithm sequentially constructs and refines
low-fidelity models based on the properties of the previous models in the hierarchy.
Therefore, it is straightforward to connect the two approaches and make the low-fidelity
models with reduced dimensionality also context-aware. That is, we first find the
full-dimensional low-fidelity model in a context-aware manner and use it to determine
sensitivity information about the inputs, based on which we then sequentially add
reduced-dimension low-fidelity models using the CA-MFMC algorithm.
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4 High- and Low-Fidelity Models for
Plasma Micro-Turbulence Analysis

In this chapter, we summarize the high- and low-fidelity models used in the CA-MFMC
algorithm in our numerical experiments. Section 4.1 outlines the gyrokinetic code
Gene that constitutes our high-fidelity model for plasma micro-turbulence simulation.
The construction of data-driven low-fidelity models via a so-called sensitivity-driven
dimension-adaptive sparse grid interpolation approach is described in Section 4.2,
where we also summarize how reduced-dimension models of this type can be obtained.

4.1 High-Fidelity Model: The Gyrokinetic Simulation Code
Gene

The high-fidelity model we use to simulate micro-turbulence in magnetized fusion
plasmas is the gyrokinetic code Gene [18, 16]. We gave a short outline of gyrokinetic
theory and the equations used to model plasma turbulence in Section 2.1. Gene is
an Eulerian code that solves the five-dimensional gyrokinetic Maxwell-Vlasov system
presented in Equations (2.1), (2.4) and (2.5) on a fixed grid using finite difference, finite
volume and spectral methods.

In this work, we use Gene to perform local, or flux-tube, simulations. This means
that the simulation domain is a small box that is aligned to the magnetic field lines as
opposed to radially global, or full-torus, simulations, which can be orders of magnitude
more computationally expensive. Further, we study linear simulations of plasma
turbulence. In linear simulations, the parts of the gyrokinetic Vlasov equation (2.1)
which are nonlinear in the 5D gyrokinetic coordinates (R, v‖, µm) are omitted. Writing
the gyrokinetic equation for particle species s as

π̇s = Olin(πs) + Ononlin(πs),

with operators Olin and Ononlin comprising the linear and nonlinear terms of the
gyrokinetic Vlasov equation respectively, the (discretized) equation solved in linear
Gene simulations is

π̇s = Olinπs,

22



4 High- and Low-Fidelity Models for Plasma Micro-Turbulence Analysis

where π̇ is a vector containing the linearized values of the distribution function of
particle species s on a discretization grid, and Olin is the discretized version of the linear
operator Olin, i.e., Olin is a matrix.

Such linear simulations can be used to gain valuable insights regarding general
trends or parameter dependencies. The much more complex numerical simulations
of nonlinear turbulent transport, which are necessary to make reliable quantitative
predictions, will be considered in future research. These simulations represent chaotic
processes in space and time, in which a large number of degrees of freedom are usually
strongly coupled in a highly nonlinear fashion, and are computationally much more
expensive at, e.g., O(104) CPU hours on supercomputers or even more.

The output of interest for our simulations is the growth rate of the dominant eigen-
mode, which is given by the real part γ1 of the dominant eigenvalue, i.e., by the largest
real part of an eigenvalue, of the linear operator Olin. Therefore, to summarize, the
high-fidelity model is described by

f (0)(θ) = γ1(θ),

where γ1 is computed in linear flux-tube simulations using the gyrokinetic simulation
code Gene.

4.2 A Data-Driven Low-Fidelity Model

In this work, we use data-driven low-fidelity models based on the sensitivity-driven
dimension-adaptive sparse grid interpolation algorithm from [9, 10]. Section 4.2.1
summarizes sparse grid interpolation and establishes notation used in Section 4.2.2,
in which the dimension-adaptive refinement algorithm is detailed. We outline the
procedure by which we obtain reduced-dimension low-fidelity models of the same type
in Section 4.2.3. The notation in this section follows the references cited above as well
as the summary of this algorithm that is given in [19].

4.2.1 Interpolation on Sparse Grids

The low-fidelity model constructed using the approach presented in this section is an
interpolant of the high-fidelity model on a sparse grid. We refer to [5] for more details
on sparse grids. Such an approximation of the high-fidelity model f (0) reads

U d
L[ f (0)] = ∑

`∈L
∆d
`[ f (0)], (4.1)
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where L ⊂Nd is a finite set of multiindices ` = (`1, . . . , `d) ∈Nd, which describes the
refinement of the grid, and the terms ∆d

`[ f (0)] are the so-called hierarchical surpluses

∆d
`[ f (0)] = ∑

z∈{0,1}d

(−1)|z|1U d
`−z[ f (0)], (4.2)

where |z|1 = ∑d
i=1 zi. The multidimensional operators U d

`−z in (4.2) are tensorizations
of one-dimensional operators U i

`i−zi
:

U d
`−z[ f (0)] =

(
d⊗

i=1

U i
`i−zi

)
[ f (0)]. (4.3)

To construct the interpolation low-fidelity models, univariate Lagrange interpolation is
used to define the one-dimensional operators U i

`i
as

U i
`i

: C0(Xi)→ PP`i
, U i

`i
[g] :=

`i

∑
n=1

g(θn)Ln(θ), (4.4)

where PP`i
is the space of univariate polynomials of degree P`i , g : Xi → R is a

univariate function, and {Ln(θ)}`i
n=1 are the Lagrange polynomials of degree n − 1

satisfying Ln(θm) = δnm for Kronecker’s delta function δnm. To improve the numerical
stability of Lagrange interpolation, (4.4) is implemented using the barycentric formula
[3].

As interpolation nodes {θn}`i
n=1, we employ weighted (L)-Leja points [24], which are

computed as

θ1 = arg max
θ∈Xi

√
πi(θ) (4.5)

θn = arg max
θ∈Xi

√
πi(θ)

n−1

∏
m=1
|(θ − θm)|, n = 2, . . . , `i. (4.6)

We note that the (L)-Leja points are nested and so, increasing the refinement level `i
simply means adding new points to the set of interpolation nodes used on the previous
level. This property is of use in the dimension-adaptive construction of the low-fidelity
model, where, in refining the grid, all (computationally expensive) high-fidelity model
evaluations performed for previous points can be re-used. Moreover, only one new
point is added per level, i.e., only one additional high-fidelity evaluation must be
carried out when the refinement level is increased.
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In summary, the sparse grid approximation (4.3) can be written as

U d
` [ f (0)](θ) = ∑

p∈P`
f (0)(θp)Lp(θ) (4.7)

where θp = (θp1 , . . . , θpd) is the multivariate (L)-Leja point corresponding to p, Lp(θ) :=
∏d

i=1 Lpi(θi) is a multivariate Lagrange polynomial, and P` := {p ∈ Nd : 0 ≤ p ≤
(`1 − 1, . . . , `d − 1)}.

4.2.2 Sensitivity-Driven Dimension-Adaptivity

In the previous section, we have outlined the construction of a sparse grid interpolant of
the high-fidelity model. What is left to define such that the model can be fully computed
is the set of multiindices L. Evaluating the resulting sparse grid approximation (4.1)
means computing the hierarchical surpluses (4.2) for each ` ∈ L. In order to find a
low-fidelity model for MFMC that is cheap to evaluate, the aim is to keep L as small
as possible, while still guaranteeing that the model is an accurate approximation of
the high-fidelity model. This goal can be achieved by using the sensitivity-driven
dimension-adaptive algorithm of [9, 10] to compute L, which we describe in the
following.

In general dimension-adaptivity [15, 17], a refinement indicator ε(`) is computed
for each subspace ` that is a candidate for further refinement and based on ε(`), the
next subspace to be refined is selected. In the dimension-adaptive algorithm employed
here, ε(`) is based on sensitivity information in the form of Sobol’ indices [37, 38],
which give information about the importance of the individual input parameters to the
approximated high-fidelity model output. They can be computed from the spectral
coefficients cp used in the pseudo-spectral representation [40] of the multivariate
interpolation operators U d

` that can be written as

U d
` [ f (0)](θ)

(4.7)
= ∑

p∈P`
f (0)(θp)Lp(θ) = ∑

p∈P`
cpΦp(θ), (4.8)

where Φp(θ) := ∏d
i=1 Φi(θi) are orthonormal polynomials w.r.t. the pdf π. The spectral

coefficients cp are obtained by solving the linear system of equations

∑
p∈P`

cpΦp(θk) = U d
` [ f (0)](θk)

for all (L)-Leja points θk corresponding to the multiindex `. Using the spectral coeffi-
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cients, the surpluses (4.2) can be re-written as

∆d
`[ f (0)](θ) = ∑

p∈P`
∆cpΦp(`), ∆cp = ∑

z∈{0,1}d

(−1)|z|1 cp−z, ∆c0 := c0. (4.9)

Further, it was shown in [9, 10] that the following holds:∥∥∥∆d
`[ f (0)]

∥∥∥2

L2
= ∑

p∈P`
∆c2

p = ∆c2
0 + ∑

p∈P`\{0}
∆c2

p = (E`[ f (0)])2 + ∆Var`[ f (0)], (4.10)

where E`[ f (0)]) is the expectation surplus corresponding to the subspace given by
`, and ∆Var`[ f (0)] is the associated variance surplus. Next, according to the equiva-
lence between pseudo-spectral projection and Sobol’ decompositions [38], the variance
surplus ∆Var`[ f (0)] can be further decomposed into surpluses ∆Vari

`[ f (0)] due to the
individual stochastic parameters as well as the surplus ∆Varinter

` [ f (0)] given by all of
their possible interactions:

∆Var`[ f (0)] =
d

∑
i=1

∆Vari
`[ f (0)] + ∆Varinter

` [ f (0)]. (4.11)

The individual variance surpluses can be computed as

∆Vari
`[ f (0)] := ∑

p∈Ji

∆c2
p, Ji := {p ∈ P` : pi 6= 0∧ pj = 0, ∀j 6= i}, (4.12)

∆Varinter
` [ f (0)] := ∑

p∈Jinter

∆c2
p, Jinter := {p ∈ P` : |p|0 ≥ 1}, (4.13)

for i = 1, . . . , d, where |p|0 denotes the number of non-zero entries in p. Here, we know
that the terms in (4.12) and (4.13) are unnormalized Sobol’ indices, which quantify the
local contribution to the high-fidelity model output of each uncertain input in the given
subspace as well as the contribution of the interaction of all the parameters. Based on
this information, the sensitivity-driven approach refines the grid only in directions that
are indicated as important to the model output. In this way, the algorithm exploits the
fact that in the simulation of real-world scenarios, the inputs are often anisotropically
coupled, as well as that the intrinsic stochastic dimensionality is often smaller than the
actual number of input parameters, i.e., only a subset of the uncertain inputs is in fact
important to the simulation. This is achieved in the following way.

The refinement indicator is defined as ε(`) := s`, where s` is the so-called sensitivity
score. In each refinement step, s` is computed as follows. We start with s` = 0 and
define tolerances τ := (τ1, . . . , τd, τd+1), which act as inputs to the algorithm. Here,
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τ1, . . . , τd describe a threshold for the directional variance in each of the d stochastic
dimensions, and τd+1 describes a threshold for the variance due to the interaction
between the directions. For a given multiindex `, we compute the variance surpluses,
or unnormalized Sobol’ indices, (4.12) and (4.13) as described above and compare
them with the respective entry in τ. If the surplus is larger than the corresponding
tolerance, s` is increased by 1. Therefore, s` takes values between 0 and d + 1, and
reflects the contribution of the corresponding subspace. Once all the sensitivity scores
are computed, the subspace corresponding to the ` with the highest score is refined. In
refining the multiindex `, we add to the set of multiindices L the forward neighbors
`+ ei, i = 1, . . . , d of `, where ei is the ith unit vector, such that the resulting set L
remains downward closed, i.e., for any ` ∈ L, we also have that `− ei ∈ L, i = 1, . . . d.
The refinement of the grid is finished if (i) for all of the possible subspace to be refined,
none of the tolerances in τ are exceeded, (ii) if a maximum refinement level is reached
for at least one of the dimensions, or (iii) if there are no multiindices left to refine.

4.2.3 Finding Reduced-Dimension Low-Fidelity Models

In Section 3.3, we discussed the context-aware construction of reduced-dimension
low-fidelity models for the use in MFMC. We described how, in order to reduce the
stochastic dimensionality of a problem, we need to know which input parameters
are the most relevant for the high-fidelity model output. Given that the refinement
approach described in the current section computes sensitivity information for all the
stochastic inputs, it provides exactly the information we need in order to select the
important parameters. Therefore, the sensitivity-driven algorithm is a very suitable
method for additionally constructing reduced-dimension low-fidelity models. We
describe how this can be achieved.

After a sparse grid approximation that depends on all d input parameters has been
found using the sensitivity-driven procedure, we can obtain total Sobol’ indices [38] of
the inputs from the data produced by the algorithm. These can be computed without
any additional high- or low-fidelity evaluations. Let {cp}PL

p=0 be the coefficients of
pseudo-spectral representation (4.8) of the interpolant at the end of the refinement
procedure and let PL be the multivariate degree of the resulting polynomial. Then the
total Sobol’ indices ST

i , i = 1, . . . , d, are computed as

ST
i =

∑p∈Ki
c2

p

Var[U d
` [ f (0)]]

, Var[U d
L[ f (0)]] = ∑

p 6=0
c2

p, (4.14)

where Ki = {0 < p < PL : pi 6= 0}. These Sobol’ indices give a measure of the
global importance of the d uncertain inputs parameters to the high-fidelity output. The
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index ST
i incorporates information about the individual contribution of parameter i

as well as its interaction with the other parameters. For this reason, the total Sobol’
indices are well suited to determine which stochastic parameters are overall the most
relevant to the high-fidelity model computations and to construct low-fidelity models
which depend only on these important inputs. The procedure for obtaining reduced-
dimension low-fidelity models based on the sensitivity-driven interpolation algorithm
is therefore as follows.

First, we apply the sensitivity-driven approach to the full set of parameters to obtain
a full-dimensional low-fidelity model, which allows us to compute the total Sobol’
indices for all uncertain inputs according to (4.14). We then choose a set of input
parameters with the largest total Sobol’ indices on which the reduced-dimension model
will depend. This selection can be made, e.g., by discarding all inputs whose Sobol’
indices are smaller than some threshold. A reduced-dimension low-fidelity model is
constructed by fixing all unimportant parameters to their deterministic mean value
and re-running the sensitivity-driven approach for the remaining set of parameters to
compute a sparse grid interpolant with a smaller dimensionality.

Consequently, the resulting reduced-dimension low-fidelity model will require fewer
grid points for its construction since only directions that are important for the high-
fidelity output will be explored. Therefore, fewer multiindices will be added to the set
L. This also means that fewer high-fidelity evaluations must be obtained in the process.
Because L is smaller, the resulting model will be less expensive to evaluate than a
full-dimensional model. At the same time, the accuracy of the reduced-dimension
model can be expected to be close to that of the full-dimensional model because only
parameters that do not contribute significantly are omitted.
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In this chapter, we present our numerical results obtained by using the CA-MFMC
algorithm with reduced-dimension low-fidelity models to quantify uncertainty in a
scenario from plasma micro-turbulence analysis with 14 uncertain input parameters.
Section 5.1 summarizes the considered plasma physics setup and describes relevant
details regarding the employed high-fidelity model. In Section 5.2, we construct
low-fidelity models of full- and reduced stochastic dimensionality using the sensitivity-
driven algorithm of [10, 9] and estimate their accuracy and cost rates. The results of
the experiments performed using CA-MFMC sampling and our full- and reduced-
dimension low-fidelity models are presented in Section 5.3.

5.1 Turbulence Suppression by Energetic Particles: Setup and
High-Fidelity Model

One of the avenues of research that has recently been shown to be highly promising
regarding the suppression of micro-turbulence in magnetically confined fusion plasmas
is the effect of fast ions on the instabilities. Such energetic particles are generated by
auxiliary heating schemes, and are, for example, fast deuterium created by Neutral
Beam Injection or Helium-3 obtained by Ion Cyclotron Resonance Heating. It is known
that the main cause of plasma micro-instabilities is often the so-called ion temperature
gradient (ITG) driven turbulence. Numerically, it has been shown, see, e.g., [7, 8, 6, 33],
that the mechanism by which fast ions interact with the other particles can significantly
reduce ITG driven micro-turbulence and thereby increase the plasma confinement
time and energy output. The effect of the fast particles on the micro-instabilities is
attributed to a wave-fast ion resonance interaction. A decrease of the turbulence can
be observed when the frequency of the ITG instability is similar to the magnetic-drift
frequency of the introduced energetic particles. When this is the case, the free energy
can be redistributed and micro-turbulence is reduced. For more details on this process,
see, e.g., [7]. Studying the stabilizing effect of the energetic particles in numerical
simulations is thus of high practical relevance to the research into the prevention of
plasma micro-turbulence, and therefore, to the realization of nuclear fusion power as a
whole. Generally, there is a large number of parameters that characterize the fast ions
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and other particle species, as well as the magnetic geometry of the setup, which could
all affect the quality of the achieved turbulence suppression. Naturally, such quantities
are all subject to uncertainties. Therefore, performing UQ is a key step in the research
and simulation of these processes.

In this work, we consider a scenario with 14 uncertain input parameters that models
the effect of fast deuterium and fast Helium-3 particles on the micro-turbulence. This
setting is inspired by experiments conducted in [7, 8] for a configuration similar to
a realistic plasma discharge in the JET fusion experiment. The same physics setup
was studied in [19]. Therein, the regular MFMC algorithm was applied to quantify
uncertainty in this scenario. In addition to a low-fidelity model of full dimension,
the work used reduced-dimension low-fidelity models to reduce the computational
effort needed to obtain accurate MFMC estimates. This approach led to a significant
decrease of the MSE of MFMC estimators by multiple orders of magnitude. In that
work, however, the full- and reduced-dimension low-fidelity models were constructed
in a static manner, i.e., they were constructed using a set number of interpolation
points. Given these already fixed models, the MFMC algorithm was used to find the
best possible allocation of model evaluations among the high- and low-fidelity models
such that the resulting estimators were as accurate as possible. With the numerical
experiments carried out in this thesis, we extend the work from [19] by performing
MFMC with data-driven low-fidelity models of full- and reduced-dimension, which are
additionally context-aware. In that, we construct models that are designed in an optimal
manner to be used together with the other models in the hierarchy, the goal being
to further decrease the MSE of such estimators compared to the non-context-aware
versions. We also mention the work [13], in which this application scenario was also
studied. Therein, to begin with, a setup with 21 uncertain inputs was considered.
Sensitivity analysis revealed the importance of the individual stochastic parameters,
based on which the stochastic input space was reduced to the same 14 inputs we treat
as uncertain in our experiments.

As a high-fidelity model, we employ the gyrokinetic code Gene [18, 16] for modeling
plasma micro-turbulence and conduct linear simulations in the flux-tube limit, see
Section 4.1 for a discussion. To compute the output of interest, i.e., the linear growth
rate γ1 of the micro-instabilities, we use Gene’s initial value solver.

We consider 14 uncertain input parameters. Twelve of these stochastic inputs are
the temperatures, densities, and the respective logarithmic gradients of the involved
particles. In total, we consider five different kinds of particles. Fast deuterium and
Helium-3 constitute the energetic particles. Additionally, we have deuterium ions and
electrons as the two other main species. As the fifth type of particles, we consider
Carbon impurities, whose simulation parameters are kept fixed to their deterministic
mean values. The two remaining stochastic inputs characterize the magnetic geometry:
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θ parameter symbol left bound right bound
θ1 safety factor q 1.3230 2.1705
θ2 magnetic shear ŝ 0.3920 0.6533
θ3 ion log temperature gradient ωTi 3.4230 5.7050
θ4 ion log density gradient ωni 0.0047 0.0078
θ5 ion temperature Ti 0.7500 1.2500
θ6 fastD log temperature gradient ωTD 0.7742 1.2903
θ7 fastD log density gradient ωnD 3.5412 5.9022
θ8 fastD density nD 0.0450 0.0750
θ9 fastD temperature TD 7.2500 12.2500
θ10 He-3 log temperature gradient ωT3He

5.5543 9.2573
θ11 He-3 log density gradient ωn3He

0.3770 0.6283
θ12 He-3 density n3He 0.0525 0.0875
θ13 He-3 temperature T3He 9.0000 15.0000
θ14 electron log temperature gradient ωTe 1.6695 2.7825

Table 5.1: Summary of the 14 uncertain input parameters to our application scenario
from plasma micro-turbulence analysis. All inputs are modeled with a
uniform probability distribution using the respective left and right bounds
given in the table.

the safety factor q and the magnetic shear ŝ. All uncertain parameters are modeled
as independent uniform random variables with 25% bounds around a nominal value
obtained from expert opinion and measurements. The parameters with their respective
bounds are listed in Table 5.1. The density of the deuterium ions and the electron
logarithmic density gradient are computed in terms of the densities and respective
gradients of the other particle species such that quasi-neutrality, a central plasma
characteristic, is fulfilled. In our experiments, we consider a fixed perpendicular wave
number kyρs = 0.5, which is known to be the most unstable since it exhibits the highest
linear ITG growth rate [7]. Additionally, an analytical Miller equilibrium [23] is used to
describe the magnetic geometry, while inter- and intra-species collisions are modeled
by a linearized Landau-Boltzmann operator.

The Gene runs are performed on the Linux cluster CoolMUC-2 at Leibniz Super-
computing Centre1, where 240 cores on nine Intel Xeon E5-2690 v3 nodes are used per
simulation. The number of points in each dimension of the grid used to discretize the
five-dimensional gyrokinetic phase space is

Nx = 21, Ny = 1, Nz = 24, Nv‖ = 32, Nµm = 16,

1https://doku.lrz.de/display/PUBLIC/Linux+Cluster
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which means that, in total, we have Nx × Ny × Nz × Nv‖ × Nµm = 258, 048 degrees of
freedom. All simulations were performed using double precision arithmetics. For this
setup, the average single-core runtime for one high-fidelity simulation is estimated
from 50 standard MC samples as 11, 574.8697 seconds. The variance of the high-fidelity
model is estimated from the same samples as σ2

0 = 0.004379.

5.2 Full- and Reduced-Dimension Low-Fidelity Models for
CA-MFMC

In this section, we construct full- and reduced-dimension low-fidelity models for the
described plasma physics scenario that are subsequently used for CA-MFMC. We
employ the sensitivity-driven dimension-adaptive sparse grid interpolation algorithm
of [10, 9], which was summarized in Section 4.2.

In our experiments, we compare two different kinds of low-fidelity evaluation costs
that arise from different ways in which the model evaluations are computed. Firstly,
we consider a simple evaluation operation in which the hierarchical surpluses of the
sparse grid construction are computed strictly according to (4.2). The same evaluation
function was used to obtain the numerical results in [19]. Secondly, we apply a newly
implemented, faster evaluation procedure, where the terms (−1)|z|1 , i.e., the signs of the
terms in the summation in (4.2), are computed and stored in advance. Therefore, they
do not have to be computed every time a model evaluation is obtained, which results
in significant savings in the runtime of the evaluation operation. For all low-fidelity
models, we estimate cost rates using both types of evaluation functions and use both in
the CA-MFMC sampling algorithm, which allows us to study the impact of changes
in the cost rate on CA-MFMC. We use w̄j,s with subscript s (”slow”) to refer to the

evaluation costs of low-fidelity model f (j)
nj when the first procedure is used, and employ

w̄j, f with subscript f (”fast”) to denote costs using the new implementation. Similarly,
if the context requires the evaluation procedure to be specified, nj,s and nj, f are used
to refer to the respective number of high-fidelity training samples from which the
model f (j)

nj is constructed. All low-fidelity evaluation costs reported in this chapter were
measured on a laptop computer with an Intel Core i5-8250U CPU at 1.60GHz.

5.2.1 Estimation of Accuracy and Cost Rates

In order for the CA-MFMC to be able to find the optimal number of high-fidelity
evaluations that should be used to construct the low-fidelity models, estimates of the
accuracy and cost rates of the models as defined in Assumptions 1 and 2 are needed.
We summarize the procedure we use to obtain these rates in the following.
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Firstly, we know that parametrized high-fidelity models generally have a finite
number of bounded derivatives [9]. This implies that interpolation approximations
of such models have algebraic accuracy rates [39]. Additionally, we have discussed
in Section 4.2.2 how the evaluation costs of the sparse grid interpolation low-fidelity
models are determined by the number of multi-indices in L as the hierarchical surpluses
are evaluated for each ` ∈ L. Whenever a multi-index is added to L, one new (L)-Leja
point is added as well. Therefore, the number of interpolation nodes is the same as
the number of multi-indices in L. For this reason, the sensitivity-driven low-fidelity
models also have algebraic cost rates, which, due to the facts mentioned above, can
even expected to be linear in the number of grid points. We can thus write the accuracy
and cost rates of model f (j)

nj , j = 1, . . . , k, as

ca,jra,j(nj) = ca,jn
−αj
j and cc,jrc,j(nj) = cc,jn

β j
j (5.1)

with constants ca,j, cc,j > 0 and αj, β j > 0.

Remark 4 The algebraic accuracy rate given in (5.1) is strictly convex for all nj ∈ [1, p̄− 1]
and p̄ > 0. In addition, if β j > 1 holds, the algebraic cost rate in (5.1) is strictly convex for
the same nj as well. In this case, as stated in Remarks 2 and 3, the objective functions that
are minimized in CA-MFMC in order to find the optimal number of high-fidelity training
samples n∗j all have a unique global minimum according to Theorems 1 and 3. Additionally, the
minimizer n∗j is bounded from above independent of the computational budget.

In our application, the values ca,j, cc,j, αj and β j must be estimated numerically. To this
end, for all low-fidelity models considered in this work, we apply the sensitivity-driven
algorithm using tolerances τ = 10−12 · 115 and a maximum refinement level Lmax = 20.
During the execution of the refinement procedure, we use 50 standard MC samples to
estimate the correlation coefficient ρj, according to (2.9), and the two different types
of evaluation costs w̄j,s and w̄j, f of the sparse grid interpolant at different values of nj.
Here, we choose these at intervals of 25 grid points. Since estimates for the evaluation
costs can be obtained using only (cheap) low-fidelity evaluations, unless otherwise
stated, we compute the costs as an average of 10 independent estimates of w̄j,s and w̄j, f ,
respectively, to ensure that the resulting cost rates are accurate. As stated in Remark 1,
the pilot samples used in this pre-processing step can be re-used as MFMC model
evaluations without significantly biasing the sampling results.

We note that in each refinement step of the dimension-adaptive algorithm, the
number of newly explored subspaces can be as large as the stochastic dimensionality
d. In practice, as the algorithm progresses and the sparse grid is refined further, the
amount of added multi-indices per refinement step is, however, generally much smaller
than that. This is due to the fact that the algorithm adapts to the structure of the
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underlying problem and only explores the important dimensions further. Despite this
fine granularity, not every value of nj generally defines a valid sparse grid obtained
by the algorithm. Therefore, whenever the number of grid points nj is not feasible, we
choose the next largest, valid value for nj.

Based on the obtained correlation coefficients and evaluation costs for different
values of nj, we perform numerical regression in order to estimate the constants in
(5.1). We write the problem in the form of a linear regression, see, e.g., [34], and use
the least-squares procedure lstsq2 provided by the scipy.linalg module for python
to compute a solution.

5.2.2 Full-Dimension Low-Fidelity Model

We begin by considering a low-fidelity model f (1)n1 that depends on all 14 uncertain
inputs. We apply the sensitivity-driven refinement procedure and estimate the accuracy
and cost rates of this full-dimensional model via regression as described above. The
results are depicted in Figure 5.1. It can be observed that the algebraic accuracy and
cost function do indeed approximate the rates well. We show the cost rate for the
slower, simple evaluation procedure of the sparse grid interpolant as well as the faster
implementation. We note that, for the first case, the evaluation costs are not estimated as
averages of multiple standard MC estimates and only for smaller values of n1. Because
of the high dimensionality and the orders of magnitude difference in runtime of the
two evaluation operations, computing more estimates would require a large amount of
computational effort. Nevertheless, we note that these (slow) evaluation costs behave
almost perfectly in a linear fashion with β1 = 0.9948, as we had expected, which is why
we assume the estimated rate to be accurate. Similarly to the slower implementation of
the evaluation function, the cost rate using the faster procedure behaves in a way that
is close to linear, however, here, the estimated rate is slightly larger at β1 = 1.3073. The
constants estimated for the accuracy and both cost rates are summarized in Table 5.2.
From these computations, we also observe that in the 14-dimensional setting, the new
implementation of the evaluation function is more efficient by about three orders of
magnitude, which presents significant savings.

5.2.3 Reduced-Dimension Low-Fidelity Models

We now apply the method we described in Section 3.3 to find reduced-dimension
low-fidelity models for CA-MFMC. Based on the low-fidelity model with full stochastic
dimension and the high-fidelity evaluations used to construct it, we compute sensitivity
information to inform the dimensionality reduction, see Section 4.2.3.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html
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1

Figure 5.1: Estimated accuracy (left) and cost rates (right) for the 14-dimensional low-
fidelity model f (1)n1 .

full-dimension low-fidelity model f(1)n1 (14D)
rate estimated constants

accuracy 1− ρ2
1 ca,1 = 1.3566× 10−1 α1 = 0.6652

evaluation costs w̄1,s cc,1 = 9.2829× 10−6 β1 = 0.9948
evaluation costs w̄1, f cc,1 = 1.8621× 10−9 β1 = 1.3073

Table 5.2: Estimated constants of the accuracy and cost rates for the 14-dimensional
low-fidelity model f (1)n1 .

We use (4.14) to obtain the total Sobol’ indices of the 14 input parameters from
the spectral coefficients of the sparse grid interpolation constructed from n1 = 101
high-fidelity samples. The high-fidelity evaluations used here were obtained when
the the accuracy and cost rates were estimated, meaning there are no additional high-
fidelity costs to these computations. The results are depicted in Figure 5.2. It can be
observed that especially the logarithmic ion temperature gradient ωTi is an important
parameter in this setup with total Sobol’ index ST

3 = 0.5759. Following that, the
density n3 He of the Helium-3 particles and their logarithmic temperature gradient ωT3 He

exhibit the next highest sensitivity indices with ST
12 = 0.1721 and ST

10 = 0.1085. As
discussed in [19], this is consistent with our plasma physics setup, where the micro-
turbulence is mainly driven by the ion temperature gradient and Helium-3 is one of the
energetic particle species introduced with the goal of reducing the turbulence. For the
five parameters θ2, θ4, θ6, θ7, and θ11, the computed Sobol’ indices are all smaller than
5× 10−4, which suggests that these inputs are not important to the high-fidelity model
output. Additionally, the total Sobol’ indices for θ8, θ9, θ13 all fall below 0.01. This means
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Figure 5.2: Total Sobol’ indices of the 14 stochastic input parameters obtained from
sensitivity-driven dimension-adaptive sparse grid interpolation using n1 =
101 grid points.

f (j) dj θj

f (0) 14 {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13, θ14}
f (1)n1 14 {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13, θ14}
f (2)n2 9 {θ1, θ3, θ5, θ8, θ9, θ10, θ12, θ13, θ14}
f (3)n3 6 {θ1, θ3, θ5, θ10, θ12, θ14}

Table 5.3: Summary of the high- and low-fidelity models with their input dimensionality
dj and input parameters θj.

that in total, there are at least eight parameters that do no contribute significantly. The
obtained sensitivity information is used to find reduced-dimension low-fidelity models.
Based on the computed total Sobol’ indices, we follow [19], where the input space was
first reduced to the most important nine, and in a second step, to the most important
six parameters. Table 5.3 summarizes the high- and low-fidelity models we use for
MFMC with their respective input parameters.

We fix the parameters that are not important to the mean values of their probability
distribution as given in Table 5.1. The dimension-adaptive algorithm is then applied to
find a low-fidelity model with nine and six parameters, respectively, and the accuracy
and cost rates are estimated as for the full-dimension low-fidelity model. The results of
the regression are shown in Figures 5.3 and 5.4, and the estimated rate constants are
summarized in Table 5.4.
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Figure 5.3: Estimated accuracy (left) and cost rates (right) for the nine-dimensional
low-fidelity model f (2)n2 .

101 102

number of hi-fi evaluations n3

2× 10−2

3× 10−2

4× 10−2 1− ρ2
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ca,3ra,3(n3)= 4.7933× 10−2 × n0.2366
3
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3

Figure 5.4: Estimated accuracy (left) and cost rates (right) for the six-dimensional low-
fidelity model f (3)n3 .

We observe that for both reduced-dimension models, the cost rates can be described
well by algebraic, here even almost linear, functions. We point out that the difference in
evaluation costs between the two evaluation methods lessens with the dimensionality of
the low-fidelity model. This is because the number of terms in (4.2), and therefore, the
number of signs that have to be computed in the slower evaluation procedure decreases
exponentially with the number of dimensions d. Furthermore, we note that, for the
accuracy rate of the six-dimensional low-fidelity model, the exponent α3 is estimated to
be only 0.2366, whereas for the 14- and nine-dimensional models, we had α1 = 0.6652
and α2 = 0.7907. Additionally, towards the end of the examined range of values for
the number of interpolation points n3, the accuracy of the six-dimensional model starts
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reduced-dimension low-fidelity model f(2)n2 (9D)
rate estimated constants

accuracy 1− ρ2
2 ca,2 = 2.2399× 10−1 α2 = 0.7907

evaluation costs w̄2,s cc,2 = 2.0527× 10−7 β2 = 1.0842
evaluation costs w̄2, f cc,2 = 7.6353× 10−9 β2 = 1.1524

reduced-dimension low-fidelity model f(3)n3 (6D)
rate estimated constants

accuracy 1− ρ2
3 ca,3 = 4.7933× 10−2 α3 = 0.2366

evaluation costs w̄3,s cc,3 = 2.4116× 10−8 β3 = 1.2997
evaluation costs w̄3, f cc,3 = 4.8565× 10−9 β3 = 1.2399

Table 5.4: Estimated constants of the accuracy and cost rates for the 9- and 6-
dimensional reduced-dimension low-fidelity models f (2)n2 and f (3)n3 .

to stagnate and not decrease further. We attribute both of these observations to the
dimensionality reduction, where only six out of 14 inputs remained. Even though we
have only omitted inputs with small total Sobol’ indices, those values were nonetheless
greater than zero. Therefore, reducing the input dimensionality still means that some
information is lost and the model will not be as accurate as a full-dimensional model.
Consequently, increasing the number of grid points of the interpolation low-fidelity
model cannot replace the effect of the uncertainty introduced by the omitted inputs,
which was not captured when parameters were fixed to their mean values.

5.3 Context-Aware Multi-Fidelity Monte Carlo Sampling

Now, we apply the full- and reduced-dimension low-fidelity models obtained in the
previous section together with the high-fidelity model Gene to perform forward UQ
in our plasma micro-turbulence scenario. We use the CA-MFMC algorithm to obtain
estimators for the mean of the linear growth rate and compute the MSE w.r.t. a reference
solution. Additionally, we compare the results of CA-MFMC with those of standard
MC and MFMC with static low-fidelity models.

5.3.1 Analytical MSE

In order to provide an overview of the accuracy of CA-MFMC in the plamsa physics
application under consideration, we compute the analytical MSE (2.14) of CA-MFMC
mean estimators. We consider subsets of the three available low-fidelity models and
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computational budgets p ∈ [105, 1011] seconds, where we include the larger budgets in
this range in order to show the behavior of the convergence rates of the CA-MFMC
estimators dependent on the budgets.

Recall that applying the CA-MFMC algorithm means, given a computational budget,
finding the optimal number of high-fidelity evaluations that should be used to refine
the involved low-fidelity models. This is achieved by minimizing the upper bounds
(3.3) and (3.8) on the MSE of the MFMC mean estimator w.r.t. the number of training
samples, see the optimization problems (3.5) and (3.10). We solve this numerical
minimization using the minimize3 function in the scipy.optimize library for python.
Therein, we employ the trust-constr method to perform constrained optimization
using a trust-region algorithm in order to find an accurate minimizer. With the obtained
n∗j , j = 1, . . . , k, for each low-fidelity model in the respective model combinations, we
use Assumptions 1 and 2 to estimate the correlation coefficient and evaluation costs of
the model constructed using n∗j interpolation points. These can be used to compute
the analytical MSE (2.14). Since the optimal number of high-fidelity samples used for
refining a low-fidelity model is dependent on the computational budget, this process
must be carried out for each budget separately.

As discussed in Remark 4, an optimal n∗j exists for algebraic accuracy and cost rates
as defined in (5.1). The n∗j is unique and bounded when the accuracy rate is strictly
convex and the cost rate is convex, which is true if β j > 1. This condition holds for the
cost rates of all our full- and reduced-dimension low-fidelity models, except for the cost
rate w.r.t. the slower evaluation costs w̄1,s of the full-dimensional model f (1)n1 . For this
configuration, we have β1 = 0.9948 < 1, see Table 5.1. Since the corresponding cost rate
is therefore concave, it is not clear whether Theorems 1 and 3 hold. In our setup, the
14-dimensional low-fidelity model is the most accurate, implying that it always needs to
be added first to the multi-fidelity hierarchy. Therefore, it is sufficient to check whether
(3.6) in Theorem 1 applies for the considered computational budgets p ∈ [105, 1011]. If
this is the case, then the solution n∗1,s of the minimization problem (3.5) exists and is a
global minimizer of the objective function. The condition (3.6) reads

u(n1) := ca,1r′′a,1(n1) + ca,1r′′c,1(n1) > 0, (5.2)

where, in our setting, ca,1rc,1(n1) describes the cost rate w.r.t. w̄1,s. We verify whether
(5.2) holds for all computational budgets p ∈ [105, 1011] seconds. To this end, it is
sufficient to examine the values of u(n1) for the largest considered budget of 1011

seconds since u(n1) does not depend on the budget. For p = 1011 seconds, the
corresponding possible number of high-fidelity evaluations is n1 ∈ [1, 8.6394× 106]. If

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Figure 5.5: The function u(n1) defined in (5.2) for values of n1 corresponding to budgets
p ∈ [105, 1011]. For n1 > 8200, u(n1) becomes negative.

the condition (5.2) holds for all values of n1 in this range, then Theorem 1 applies to
computational budgets smaller than this as well. In Figure 5.5, we plot the function
u(n1) for the considered n1. We notice that u(n1) is only positive for n1 up to around
8200, which corresponds to a budget of 9.4× 107 seconds. This means that, using
Theorem 1, we can only guarantee the existence of a unique global minimum of
the objective function for budgets up to this size. However, condition (3.6) does not
necessarily need to hold for the minimum in the considered range of budgets to exist.
For our setting, we show this numerically. In Figure 5.6, we plot the objective function
for budgets p ∈ {108, 109, 1010, 1011}. It can be observed all the depicted functions are
clearly (stricly) convex and that a unique minimum exists. Based on these results, we
expect the objective to be convex for all budgets p ∈ [9.4× 107, 1011] seconds. Therefore,
we can assume that, for the budgets we consider here, a unique n∗1,s also exists when
CA-MFMC is performed using the 14-dimensional low-fidelity model and the slower
evaluation operation.

In addition to CA-MFMC mean estimators with all possible combinations of our
low-fidelity models f (1)n1 , f (2)n2 , and f (3)n3 , we also consider standard MC and static MFMC
mean estimators. We perform static MFMC using (i) a full-dimensional sparse grid
low-fidelity model with a fixed, small number of interpolation points, and (ii) the same
model with a larger number of grid points. The two considered models and their
correlation coefficients, evaluation costs and variances are summarized in Table 5.5.
To ensure a fair comparison to CA-MFMC, we take into account the fixed number of
high-fidelity samples used for constructing the static low-fidelity models and compute
the analytical MSE for regular MFMC for a budget p− n1 × w0. For standard MC, the
whole budget is used for model evaluations as usual.

We depict the analytical MSE for the considered computational budgets in the top

40



5 Numerical Results

100 101 102 103 104

n2

10−6

10−5

10−4

10−3

10−2

ob
je

ct
iv

e
va

lu
e

p = 108 seconds

100 101 102 103 104 105

n2

10−6

10−4

10−2

ob
je

ct
iv

e
va

lu
e

p = 109 seconds

100 101 102 103 104 105 106

n2

10−7

10−5

10−3

10−1

101

ob
je

ct
iv

e
va

lu
e

p = 1010 seconds

100 101 102 103 104 105 106 107

n2

10−7

10−4

10−1

102

ob
je

ct
iv

e
va

lu
e

p = 1011 seconds

Figure 5.6: The objective function from (3.5) for computational budgets p ∈
{108, 109, 1010, 1011} and the full-dimensional low-fidelity model f (1)n1 with
the slower evaluation operation. For all depicted budgets, the objective is
convex.

n1 ρ1 w1,s w1, f σ2
1

25 0.9860 2.6277 0.0014 0.0045
400 0.9860 44.3595 0.0578 0.0048

Table 5.5: Correlation coefficients ρ1, (unnormalized) slow and fast evaluation costs
w1,s and w1, f , and variances σ2

1 of the considered static, full-dimensional
low-fidelity models constructed from n1 high-fidelity evaluations.

plots in Figure 5.7 using the evaluation costs given by the slower evaluation function,
and in Figure 5.8 for the faster evaluation procedure. In the bottom plot in both
figures, we show again for easier readability the MSE values for the budget p = 1010

seconds, as an example budget for which CA-MFMC has reached the asymptotic regime,
meaning the numbers n∗j , j = 1, . . . , k, do not increase with the budgets anymore, and
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instead the MSE decreases linearly with p. Firstly, for both cost rates, we observe that
the convergence of the CA-MFMC mean estimator is faster than O(p−1) for smaller
computational budgets. For the slower evaluation procedure, the MSE stars to converge
with O(p−1) at about p = 108, whereas for the faster method, this regime begins at
around p = 5× 108. Secondly, the figures show that, as expected, all MFMC and
CA-MFMC estimators are multiple orders of magnitude more efficient than standard
MC estimators. The static MFMC estimators with both n1 = 25 and 400 continuously
provide the least accurate results for all budgets. The MSEs of CA-MFMC estimators in
which the number the number of high-fidelity training samples for f (1)n1 is determined
in a context-aware manner are at least one order of magnitude smaller than if n1 is
chosen as one of the two fixed values considered here. The fact that this difference in
accuracy stems only from choosing a different number of high-fidelity training samples
while the same computational budget is used underlines again the benefits of applying
the CA-MFMC approach instead of statically constructing the low-fidelity models.

Comparing the analytical MSEs of estimators using the slow vs. estimators using
the faster evaluation procedure, we observe that, of course, the faster method leads
to MFMC and CA-MFMC estimators with smaller MSEs. In the asymptotic limit, this
difference in accuracy amounts to up to around one order of magnitude for some of
the model combinations used in CA-MFMC, e.g., using only the 14-dimensional model,
where this has the most significant impact.

Furthermore, we can use these theoretical results to find the subsets of low-fidelity
models that lead to CA-MFMC estimators with the smallest MSEs, and which should
therefore be used when performing CA-MFMC sampling in practice. For the small
computational budgets considered here, the different accuracy and cost rates of the
models, and with that, the different convergence rates of the MSEs, mean that the
most efficient combination of models is dependent on the budget. We can observe
this, for example, in Figure 5.8, where the CA-MFMC estimator using f (1)n1 and f (2)n2

switches from being the one with the largest MSE for budget p = 105 to one of the most
efficient estimators for larger budgets. We examine the accuracy of selected CA-MFMC
estimators for one of these pre-asymptotic budgets in more detail in the following
section. We now discuss the most efficient combinations for larger budgets, i.e., once all
estimators converge with O(p−1). For the slower evaluation case, an accurate estimate
is provided by CA-MFMC using only the nine-dimensional low-fidelity model f (2)n2 ,
which is only improved by adding the six-dimensional model f (3)n3 to the hierarchy as
well. Other combinations of the 14-, nine- and six-dimensional models follow closely
behind CA-MFMC with only f (2)n2 . CA-MFMC using only the full-dimensional model
f (1)n1 is less accurate than those combinations. When the improved evaluation procedure
is used, CA-MFMC using both reduced-dimension low-fidelity models still provides
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the most accurate estimator, followed by the other combinations of 14-, nine- and
six-dimensional models. Here, the MSEs of CA-MFMC with either f (1)n1 or f (2)n2 are closer
than for the first evaluation function, with the nine-dimensional model still leading to
a more accurate estimate.

5.3.2 Selection of Low-Fidelity Models for CA-MFMC

Based on the theoretical analysis in the previous section, we select a number of model
combinations that we use to perform CA-MFMC in practice. As a computational
budget, we choose p = 5× 106, which means that the computed MSEs are still in
the pre-asymptotic regime, where the convergence is faster than O(p−1). This budget
corresponds to b(5× 106)/w0c = 431 high-fidelity evaluations.

Firstly, we choose to perform CA-MFMC with only the nine-dimensional low-fidelity
model f (2)n2 in addition to the high-fidelity model since we know that this selection
leads to small MSEs for both evaluation procedures. For comparison, we also compute
CA-MFMC estimators using only the full-dimensional model f (1)n1 , for which we expect
larger MSEs compared to estimators with only f (2)n2 . According to Figures 5.7 and 5.8
this difference will be more pronounced when the slower evaluation procedure is used.
Additionally, only with regards to the more expensive evaluation costs w̄j,s, we perform

CA-MFMC with both reduced-dimension models f (2)n2 and f (3)n3 , where the reduction
in MSE compared to using only f (2)n3 is more distinct than with the faster evaluation
operation.

We first compute CA-MFMC estimators using only the 14-dimensional low-fidelity
model. For the budget p = 5× 106, we showed numerically in Section 5.3.1 using
Theorem 1 that even though the cost rate w.r.t. w̄1,s is concave and Remark 4 does not
apply, a unique global minimizer n∗1,s of the objective function used to find the number
of high-fidelity training samples still exists. By performing the minimization of the
objective using the scipy.optimize.minimize procedure as described in the previous
section, we obtain n∗1,s = 122 and n∗1, f = 173. In practice, we use 127 and 180 points,
respectively, since the computed n∗1,s and n∗1, f do not correspond to a valid sparse grid
obtained by the sensitivity-driven algorithm. We adjust the budget used for sampling
the models accordingly. In the left plot in Figure 5.9, we depict the convergence of n∗1,s
and n∗1, f with regards to the computational budget. It can be observed that, for both
kinds of evaluation costs, the number of high-fidelity training samples is bounded from
above, albeit the upper bound is significantly smaller when the low-fidelity evaluation
are more expensive. Here, the obtained bounds were n̄1,s = 254 and n̄1, f = 6874. These
numbers underline the trade-off computed by the CA-MFMC algorithm. When fewer
low-fidelity samples can be obtained in a given budget due to higher evaluation costs,
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Figure 5.7: Analytical MSE of different combinations of low-fidelity models in CA-
MFMC, MFMC with static full-dimensional models, and standard MC for
the slower evaluation procedure. The bottom plot shows the MSE values
for p = 1010.
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Figure 5.8: Analytical MSE of different combinations of low-fidelity models in CA-
MFMC, MFMC with static full-dimensional models, and standard MC for
the faster evaluation procedure. The bottom plot shows the MSE values for
p = 1010.
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Figure 5.9: Optimal number of high-fidelity evaluations used to refine the low-fidelity
models f (1)n1 (left) and f (2)n2 (right) when either are used as the only low-
fidelity model in CA-MFMC.

less effort is spent on improving the model such that a sufficient number of high- and
low-fidelity evaluations can be acquired in the sampling step. Note that, for the slow
evaluation operation, the number of high-fidelity samples n1 = 400, which we chose to
construct one of the static low-fidelity models in the previous section, was larger than
the upper bound n∗1,s computed here. This shows an instance where too much effort
was spent on refining the low-fidelity model, leading to a ratio of (high) accuracy to
evaluation costs that did not achieve as high of a variance reduction in MFMC as a
smaller number n∗1,s could have.

Next, we perform CA-MFMC using the nine-dimensional model f (2)n2 . For the con-
sidered budget, the algorithm computes n∗2,s = 187 and n2, f = 191, where, in practice,
we use 188 and 192 points to construct the sparse grids. The right plot in Figure 5.9
shows the convergence of n∗2,s and n∗2, f for CA-MFMC with only the nine-dimensional
low-fidelity model. Similarly to the 14-dimensional case, the upper bound n̄2, f using
the less expensive evaluation operation is much larger than for the more expensive
ones with n̄2, f = 5739 and n̄2,s = 1404.

For both CA-MFMC with only either f (1)n1 or f (2)n2 , the optimal number of refinement
samples is similar for both types of evaluation costs when the computational budgets
are small. This is due to the large high-fidelity evaluations costs, which mean that,
for example, a budget of 105 seconds corresponds only to b8.63c = 8 high-fidelity
evaluations, 106 seconds to b86.39c = 86 evaluations and so on. Therefore, for small
budgets, the number of high-fidelity training samples cannot be large, regardless of
the low-fidelity evaluation costs, since the remaining budget must allow for enough
evaluations of the low-fidelity model and especially, the expensive high-fidelity model.
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Figure 5.10: Left: The objective function that is minimized to find n∗3,s after n∗2,s has been
computed. Right: Optimal number of high-fidelity evaluations n∗3,s used to

refine the low-fidelity model f (3)n3 when it is sequentially introduced into
the CA-MFMC algorithm after f (2)n2 .

Thirdly, we examine the effects of adding the six-dimensional low-fidelity model f (3)n3

to the CA-MFMC algorithm using only f (2)n2 with the slower evaluation method. When
f (3)n3 is introduced as the second low-fidelity model, we find that, for small budgets, the
real-valued minimizer of the objective function in (3.10) lies between 1 and 2, i.e., in
practice n∗3,s = 2 would be used. We plot the objective function for p = 5× 106 seconds

in the left plot in Figure 5.10. This indicates that the remaining budget after f (2)n2 has
been constructed is not large enough to refine f (3)n3 further and allow for a sufficient
number of MFMC samples to be evaluated by all models. The right plot in Figure 5.10
shows the convergence of n∗3,s with regards to the computational budget. We observe
that n∗3,s only starts increasing for budgets around p = 2× 107 seconds. The upper
bound on n∗3,s is comparatively small as well at n̄3,s = 33. This can be explained by the
slow convergence of the corresponding accuracy rate, meaning the model will gain
relatively little in accuracy, while the evaluation costs keep increasing roughly linearly
with the number of points n2, see Figure 5.4. However, even for a small number of
training samples, the six-dimensional model still contributes to variance reduction in
MFMC if the computational budget is large enough. This demonstrates the fact that,
in MFMC, low-fidelity models need not necessarily be very accurate as long as the
ratio of evaluation costs to accuracy is beneficial to the algorithm. As observed in
Figure 5.7, the CA-MFMC estimator using the nine- and six-dimensional low-fidelity
models analytically still presents a small improvement compared to CA-MFMC with
f (2)n3 alone. For this reason, we also perform CA-MFMC with both models for the budget
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p = 5× 106, where n∗3,s = 2. Since the sensitivity-driven approach does not allow for a
sparse grid using only two points, we use the next largest grid, which contains seven
points.

5.3.3 Estimated MSE for Fixed Computational Budget

We compute CA-MFMC mean estimators using the three subsets of low-fidelity models
described in the previous section for a computational budget of p = 5× 106 seconds.
For comparison, we also compute standard MC estimators. We obtain a reference result
for the mean value of the high-fidelity output by applying CA-MFMC for a budget
pref = 107 seconds, where the nine-dimensional f (2)n2 is used as a low-fidelity model
together with the fast evaluation procedure. We know from Figure 5.8 that this will
lead to an accurate estimator. Here, we obtained n∗2, f = 380. In practice, we use 385
training samples to construct the model. The obtained reference mean is µref = 0.1972.
We compute 10 independent replicates of the considered standard MC and CA-MFMC
estimators. The MSE is estimated as

MSE[Ê(·)] =
1
10

10

∑
i=1

(µ̂ref − Ê(·)
i )2, (5.3)

where Ê(·) and Ê(·)
i are either standard MC or CA-MFMC mean estimators.

The MSEs of the computed estimators for p = 5× 106 are shown in the right plot in
Figure 5.11 with the analytical MSEs, which were shown previously in Figures 5.7 and
5.8, on the left. The computed MSEs confirm the predictions and the trends observed
in the results of the analytical computations. As expected, using more computationally
expensive low-fidelity models given by the slower evaluation procedure leads to larger
MSEs. The difference in MSE is larger when only the 14-dimensional model is employed
in CA-MFMC compared to using the nine-dimensional model, which can be explained
by the larger reduction of the evaluation costs when the faster implementation is
used, see the cost rates in Figures 5.1 and 5.3. CA-MFMC using either the 14- or
nine-dimensional low-fidelity model and the fast evaluation procedure is more accurate
than standard MC by at least two orders of magnitude, with f (2)n2 as the low-fidelity
model leading to the more accurate estimator. For CA-MFMC using the nine- and
six-dimensional low-fidelity models and the slow evaluation procedure, the MSE of the
computed estimators is slightly larger than what would be expected given the analytical
results. Besides the fact that the number n∗3,s that was computed by the CA-MFMC
algorithm could not be used exactly, we attribute this to one main factor. Considering
the results of the regression in Figure 5.4 (left) used to determine the accuracy rate
of f (3)n3 , we see that the accuracy of the model at n3 = 7 presents, to some extent, an
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Figure 5.11: Analytical (left) and computed MSE (right) of standard MC and CA-MFMC

estimators for different model combinations and p = 5× 106.

outlier. The accuracy of the model at this value of n3 is not approximated well by the
computed accuracy rate. In fact, the model is less accurate in reality than the accuracy
rate suggests. The CA-MFMC algorithm therefore assumes the low-fidelity model to be
higher correlated with the high-fidelity model than it actually is, explaining why the
MSE of the corresponding estimator is larger than the analytical value would imply.

For the numerical results we obtained, we observe the following speedup. Out of
the estimators we computed here, we consider the most accurate one, which is the
CA-MFMC estimator using the nine-dimensional low-fidelity model and the faster
evaluation procedure. The computational budget p = 5× 106 corresponds to around 5.7
hours of runtime on 240 cores on the CoolMUC-2 Linux cluster. To obtain a standard
MC estimator of the same MSE on 240 cores, a computational budget of 48 days
would be needed. These numbers illustrate the potential of the CA-MFMC algorithm
as a method for tackling the propagation of uncertainty in settings with expensive
high-fidelity models, where, as shown here, standard MC may not be feasible approach.

Finally, we discuss the split of the computational budget in CA-MFMC between
offline and online costs, i.e., between improving the low-fidelity models and evaluating
high- and low-fidelity models for samples of the input distribution. We depict the
distribution of the budget between those two steps in Figure 5.12 for the example of the
CA-MFMC estimator using the 14-dimensional low-fidelity model. It can be observed
for both evaluation procedures that in the pre-asymptotic regime, the percentage of the
budget used for either refining or sampling the models decreases only slightly, which
is consistent with the fact that, here, n∗1 grows with the budget. Once the convergence
of the CA-MFMC estimators reaches O(p−1), the share of the budget that is used
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Figure 5.12: CA-MFMC with the 14-dimensional low-fidelity model: Distribution of
the computational budgets between refining the low-fidelity model and
sampling the high- and low-fidelity model for the slow (left) and fast
evaluation functions (right).

in the offline stage decreases until almost all of the computational effort is invested
in sampling the high- and low-fidelity model. For example, at p = 1011 using fast
evaluation operation, only 0.0007% of the budget is used for refining the low-fidelity
model.

50



6 Conclusion

In this thesis, we considered the propagation of uncertainty in plasma micro-turbulence
simulations, which play an important part in nuclear fusion power research. Performing
UQ in such scenarios can often be challenging due to the high stochastic dimensionality
and large computational costs of evaluating the underlying models.

We expanded on the work of [19], in which static MFMC with full- and reduced-
dimension low-fidelity models obtained from sensitivity-driven dimension-adaptive
sparse grid interpolation was applied to quantify uncertainty in plasma physics prob-
lems. We formulated an extension of this methodology by combining the construction
of data-driven low-fidelity models of reduced input dimensionality with the applica-
tion of the CA-MFMC sampling algorithm. Using this approach, context-aware full-
and reduced-dimension low-fidelity models are obtained, which are refined using an
optimal number of high-fidelity evaluations such that the resulting MFMC estimators
are as accurate as possible. At the same time, further speedup is gained by leveraging
the low evaluation costs of the reduced-dimension models.

We demonstrated the potential of our method by applying it to a plasma physics
scenario with 14 uncertain inputs that simulates the suppression of micro-turbulence by
fast particles such as deuterium and Helium-3. As a high-fidelity model, the gyrokinetic
plasma turbulence code Gene was employed. We used the dimension-adaptive sparse
grid algorithm to first construct a low-fidelity model that depends on all 14 inputs. The
sensitivity information revealed by this process was employed to reduce the stochastic
dimensionality of further models, first down to nine, and then to six parameters. We
computed accuracy and cost rates for all three models via regression from pilot runs
and used them in the CA-MFMC algorithm to sequentially find the optimal number
of grid points used to construct the sparse grid interpolation models. Moreover, we
examined the analytically computed MSE of MFMC mean estimators using different
subsets of the low-fidelity models. This information was employed to select subsets
of low-fidelity models that lead to accurate estimators, for which we showed the
convergence and boundedness of the optimal number of training samples w.r.t. to
the computational budget. The effect of the cost rate on CA-MFMC was studied
by computing estimators for low-fidelity models using both a slower and a faster
evaluation procedure. Furthermore, we applied the CA-MFMC algorithm in practice
using the selected model combinations and computed the MSE for a budget of 5× 106
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6 Conclusion

seconds, which is still part of the pre-asymptotic regime. The most efficient of these
estimators achieved a speedup of about two orders of magnitude, which corresponds
to a runtime reduction from 48 days on 240 cores using standard MC down to less than
six hours using CA-MFMC with the nine-dimensional low-fidelity model. A significant
reduction of the analytical MSE was observed in the asymptotic regime w.r.t. the budget,
i.e., when the convergence of CA-MFMC estimators has decreased to O(p−1). Once
this limit is reached, the most efficient CA-MFMC estimator considered here is around
two orders of magnitude more accurate than the examined static MFMC estimators.
These results showed the potential of using context-aware reduced-dimension models
in MFMC for performing UQ in settings with a large number of input parameters and
computationally expensive high-fidelity models.

We conclude with a direction for future research. In the current work, we studied
linear gyrokinetic simulations of plasma micro-turbulence. High-fidelity computations
in which the nonlinear parts of the gyrokinetic equations are taken into account as well
are typically multiple orders of magnitude more computationally expensive, posing
a very significant increase of the already high evaluation costs in the realistic linear
scenario we considered here. Nonlinear simulations are, however, of great importance
since they additionally provide quantitative results as opposed to the more qualitative
predictions obtained from linear runs. Based on the promising results we obtained
in this work, CA-MFMC with reduced-dimension data-driven low-fidelity models
could be a useful tool in the current efforts to find ways for efficient UQ in nonlinear
gyrokinetic plasma turbulence simulations as well as other large-scale real-world
problems. Examining the power of the framework presented in this thesis for such an
application is part of future work.
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