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Abstract

Graph Neural Networks (GNNs) are AI models that have become increasingly popular since

many real-world data can be represented as graphs. However, like other connectionist models,

GNNs lack transparency. In this thesis, we argue for the need for explanation methods

of GNNs that come with certain properties including naturalness (explanation in natural

language), sensitivity (matching user context), reference to graph topology (explanations

using graph properties such as substructures) and fidelity (accurate correspondence with

the model to be explained). While a number of sub-symbolic GNN explanation methods

and model-agnostic symbolic explanation methods exist, they don’t fulfill said properties

simultaneously.

We introduce three different types of explanation models that combine symbolic and sub-

symbolic elements, providing subgraph explanations, non-ontological and ontological ex-

planations. We have two different use cases to evaluate the explanation models, the first

dataset (molecular chemistry) is a widely used benchmark in the literature, while the second

dataset was created in an industrial setting with cybersecurity applications. The method

RERE outperforms the state of the art in terms of sensitivity, SUBGREX in terms of reference

to graph topology and OntExplainer by satisfying all four identified properties.

From our experiments, we can draw a number of conclusions, including the necessity

of a certain level of domain expertise in the explanation modelling process and the effect

of integration such domain knowledge on the properties sensitivity and reference to graph

topology. Furthermore, the integration of sub-symbolic and symbolic explainer methods,

while increasing complexity, results in a level of explainability for GNNs, that cannot be

achieved by either approach alone. Specifically regarding the properties fidelity, sensitivity

and reference to graph topology. Overall, when choosing an explanation approach for Graph

Neural Networks, there is no one-size-fits-all approach, but a number of different criteria

that should be taken into account, such as use case risk, availability of structured domain

knowledge and whether local and global explanations are needed.
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Kurzfassung

Graph Neural Networks (GNN) sind KI-Modelle, die immer beliebter werden, da viele reale

Daten als Graphen dargestellt werden können. Wie bei anderen konnektionistischen Modellen

mangelt es jedoch auch GNNs an Transparenz. In dieser Arbeit argumentieren wir für die

Notwendigkeit von Erklärungsmethoden für GNNs, die bestimmte Eigenschaften aufwei-

sen, darunter Naturalness (Erklärungen in natürlicher Sprache), Sensitivity (Anpassung an

den Benutzerkontext), Bezug auf die Graphentopologie (Erklärungen unter Verwendung

von Grapheneigenschaften wie Unterstrukturen) und Fidelity (genaue Übereinstimmung

mit dem zu erklärenden Modell). Es gibt zwar eine Reihe von subsymbolischen GNN-

Erklärungsmethoden und modellagnostische symbolische Erklärungsmethoden, doch erfüllen

sie nicht alle der genannten Eigenschaften.

Wir stellen drei verschiedene Arten von Erklärungsmodellen vor, die symbolische und sub-

symbolische Elemente kombinieren und subgraphische, nicht-ontologische und ontologische

Erklärungen liefern. Wir haben zwei verschiedene Anwendungsfälle, um die Erklärungs-

modelle zu evaluieren. Der erste Datensatz (Molekularchemie) ist ein weit verbreiteter

Benchmark in der Literatur, während der zweite Datensatz in einem industriellen Umfeld mit

Cybersicherheitsanwendungen erstellt wurde. Die Methode RERE übertrifft den Stand der

Technik hinsichtlichs der Sensitivity, SUBGREX hinsichtlich des Bezugs auf die Graphentopo-

logie und OntExplainer indem alle vier identifizierten Eigenschaften erfüllt werden.

Aus unseren Experimenten können wir eine Reihe von Schlussfolgerungen ziehen, darunter

die Notwendigkeit eines gewissen Maßes an Domänenwissen im Erklärungsmodellierungs-

prozess und die Auswirkung der Integration solchen Domänenwissens auf die Eigenschaften

Sensitivity und Bezug auf die Graphentopologie. Darüber hinaus führt die Integration

von subsymbolischen und symbolischen Erklärungsmethoden zwar zu einer Erhöhung der

Komplexität, aber auch zu einem Grad an Erklärbarkeit für GNNs, der mit keinem der

beiden Ansätze allein erreicht werden kann. Dies gilt insbesondere für die Eigenschaften

Fidelity, Sensitivity und Bezug auf die Graphentopologie. Insgesamt gibt es bei der Wahl
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eines Erklärungsansatzes für GNNs keinen Einheitsansatz, sondern eine Reihe verschiedener

Kriterien, die berücksichtigt werden sollten, wie z. B. das Risiko des Anwendungsfalls, die

Verfügbarkeit von strukturiertem Domänenwissen und die Frage, ob lokale und globale

Erklärungen erforderlich sind.
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1 Introduction

Graph Neural Networks (GNNs) are AI models that have become increasingly popular

since many real-world data can be represented as graphs, such as social networks, chemical

molecules, and financial data. GNNs are a class of artificial neural networks in the area of

machine learning, designed to perform predictions on data described by graphs.

An important criterion for successful AI applications is trustworthiness, which requires

transparency on the underlying AI system’s decision-making. The transparency requirement

is one of 7 key requirements of the European Commission’s guidelines for trustworthy AI.

It’s crucial for domain experts to trust in the AI’s results.

Like other connectionist models, GNNs lack such transparency. To provide transparency in

the inference process of GNNs, symbolic and sub-symbolic explanation methods have been

proposed in the literature.

Sub-symbolic explanation methods find explanations by using statistical techniques, such as

perturbation-based, gradient/feature-based, decomposition-based or surrogate-based meth-

ods. The output of sub-symbolic explanation methods are importance scores for individual

edges, nodes, or node/edge features in the graph(s).

Symbolic explanation methods such as formal methods and programming languages, often

associated with knowledge bases, such as ontologies or free form knowledge bases, come

with the key characteristic of being able to explain and reason about their decision-making in

a qualitative way. The output of symbolic explanation methods are qualitative explanations

of predictions.

Existing symbolic and sub-symbolic approaches provide either local (explaining individ-

ual input output pairs) or global explanations (explaining the entire model), not both.
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Important properties of explanation methods are naturalness (explanation in natural lan-

guage), sensitivity (matching user context), fidelity (accurate correspondence with the model

to be explained), and reference to graph topology (explanations using graph properties such

as substructures).

Sub-symbolic explanation methods do not provide naturalness, because importance scores

are not in natural language. Existing sub-symbolic explanation methods do not provide

sensitivity, because they do not consider the user context.

Most symbolic explanation methods do not consider the GNN itself, which means that they

are not able to explain the decision-making process of the GNN, and are therefore not able

to achieve fidelity. None of the existing symbolic explanation methods refers to the graph

topology.

We can categorize different types of explanations, including subgraph explanations, non-

ontological explanations, and ontological explanations, as shown in Figure 1.1. Subgraph

explanations correspond to sub-symbolic technologies and share their properties. Symbolic

explanation methods can be further divided into non-ontological and ontological explana-

tions. Both types come with naturalness, but non-ontological explanations lack structured

background knowledge and may not always provide sensitivity. In contrast, ontological

explanations can provide both local and global explainability.

Table 1.1 shows a matrix of explanation methods (including the contributions introduced in

this thesis) and their properties.

The goal of this thesis is to overcome the weaknesses of symbolic and sub-symbolic explana-

tion methods for GNNs by extending existing approaches and by combining symbolic and

sub-symbolic methods. Therefore, answering the following questions is the basis of this thesis.

Research Question: How to generate explanations for Graph Neural Networks with fidelity,

reference to graph topology, naturalness and sensitivity that come with local and global

explainability?

The main contributions are:

• A sub-symbolic local explanation method called RERE that generates subgraph expla-

nations, which uses reinforcement learning to enable the integration of sensitivity and

which overcomes the state-of-the-art methods by providing sensitivity.



Figure 1.1: Technologies, types, and properties for Graph Neural Network Explainability

• A global explanation method for free form knowledge bases that generates non-

ontological explanations, called SUBGREX [27], which combines symbolic and sub-

symbolic approaches using a post-processing rule-based companion to a sub-symbolic

explanation method, to complement sub-symbolic local explanations with global rules,

and which satisfies the three properties naturalness, sensitivity, and reference to graph

topology, but not fidelity.

• A global and local explanation method for ontology knowledge bases that generates on-

tological explanations, called OntExplainer [28]. It combines symbolic and sub-symbolic

approaches by extracting global and local symbolic explanations while taking into

account domain-specific ontologies, and which satisfies all four properties (naturalness,

sensitivity, fidelity, and reference to graph topology)

• The successful application and experimental evaluation of all three proposed explanation

methods RERE, SUBGREX, and OntExplainer for two use cases (molecular chemistry

and cybersecurity), in comparison with the relevant state-of-the-art methods.

The following publications in peer-reviewed international conferences and patents have been

achieved:



• Himmelhuber, A., Grimm, S., Zillner, S., Runkler, T., Ontology-Based Skill Description

Learning for Flexible Production Systems, IEEE International Conference on Emerging

Technologies and Factory Automation 2020,

• Himmelhuber, A., Ringsquandl, M., Joblin, M., Runkler, T., Demystifying Graph Neu-

ral Network Explanations & Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, ECML-PKDD 2021,

• Himmelhuber, A., Grimm, S., Zillner, S., Ringsquandl, M., Joblin, M., Runkler, T.,

Combining Sub-Symbolic Explanations with Semantic Web Technologies & International

Joint Conference on Rules and Reasoning 2021,

• Himmelhuber, A., Grimm, S., Zillner, S., Ringsquandl, M., Joblin, M., Runkler, T., A

New Concept for Explaining Graph Neural Networks & International Workshop on

Neural-Symbolic Learning and Reasoning 2021,

• Himmelhuber, A., Ringsquandl, M., Joblin, M., Runkler, T., Receptive Field Reducer for

Explaining Graph Neural Networks, IJCAI XAI Workshop 2023,

• Himmelhuber, A., Dold, D., Grimm, S., Zillner, S., Runkler, T., Sub-symbolic explainer

and symbolic methods for Cybersecurity, IEEE Symposium Series On Computational

Intelligence,

• Demir C., Himmelhuber A., Liu Y., Bigerl A., Mousallem D., Ngomo A., Rapid Ex-

plainability for Skill Description Learning & International Semantic Web Conference

Industry 2022,

• Himmelhuber A., Grimm S., Zillner S., Joblin M., Runkler T., Combining Symbolic and

Sub-symbolic Methods for Explainable AI, Chapter in Compendium of Neuro-Symbolic

Artificial Intelligence, Series: Frontiers in Artificial Intelligence and Applications

• Himmelhuber A., Zillner S., Grimm S. (2021). METHOD AND SYSTEM FOR SEMI-

AUTOMATED GENERATION OF MACHINE-READABLE SKILL DESCRIPTIONS OF

PRODUCTION MODULES. (U.S. Patent No. 2021/0334670). U.S. Patent and Trademark

Office.

• Himmelhuber A., Joblin M., Ringsquandl M. (2022). COMPUTER IMPLEMENTED

METHOD FOR CONTROLLING A CLASSIFICATION MADE BY A GRAPH NEURAL

NETWORK, CONTROL UNIT AND COMPUTER PROGRAM PRODUCT. (WO Patent

No. 2022/258292). World Intellectual Property Organization.



• Liu Y., Himmelhuber A., Joblin M., Ringsquandl M., Grimm S. (2022). METHOD AND

SYSTEM FOR MAINTAINING A PLANT. (EP Patent No. 4006674). European Patent

Office.

• Himmelhuber A., Joblin M., Ringsquandl M., Grimm S., Zillner S., Runkler T. (2022).

METHOD AND CONTROLLER FOR GENERATING A PREDICTIVE MAINTENANCE

ALERT. (WO Patent No. 2022/218685). World Intellectual Property Organization.

• Himmelhuber A., Liu Y. (2022). METHOD AND SYSTEM FOR PROVIDING RECOM-

MENDATIONS CONCERNING A PROJECT CONFIGURATION TO CONFIGURE AN

INDUSTRIAL SYSTEM. (EP Patent No. 4086825). European Patent Office.

This thesis is structured as follows: Chapter 2. provides the reader with the necessary

background on Graph Neural Networks, methods of symbolic AI and explainable AI. Chapters

3, 4, and 5 introduce the three proposed methods RERE (subgraph explanations), SUBGREX

(non-ontological explanations), and OntExplainer (ontological explanations). Chapter 6

evaluates the introduced methods on a molecular chemistry and cybersecurity use case.

Chapter 7 summarizes this thesis, draws the main conclusions from our experiments, and

closes with an outlook.



Table 1.1: Comparison of different GNN explainer methods with regard to the requirements
of naturalness, sensitivity, fidelity, graph topology; whether they are local or global
and whether or which knowledge base (free form, ontology, or knowledge graph
(KG)) they use.

Natural-
ness

Sensi-
tivity

Fidelity
Graph
Topol-
ogy

Local Global
Knowledge
Base

Sub-symbolic - Sub-
graph Explanations
GNNExplainer [1] ✗ ✗ ✓ ✓ ✓ NA
PGExplainer [2] ✗ ✗ ✓ ✓ ✓ ✗ NA
SubgraphX [3] ✗ ✗ ✓ ✓ ✓ ✗ NA
GraphMask [4] ✗ ✗ ✓ ✓ ✓ ✗ NA
Cf-GNNExplainer [5] ✗ ✗ ✓ ✓ ✓ ✗ NA
ZORRO [6] ✗ ✗ ✓ ✓ ✓ ✗ NA
Pope et al. [7] ✗ ✗ ✓ ✗ ✓ ✗ NA
Baldassarre et al. [8] ✗ ✗ ✓ ✗ ✓ ✗ NA
GNN-LRP [9] ✗ ✗ ✓ ✓ ✓ ✗ NA
Xiong et al. [10] ✗ ✗ ✓ ✓ ✓ ✗ NA
Relex [11] ✗ ✗ ✓ ✓ ✓ ✗ NA
PGM-Explainer [12] ✗ ✗ ✓ ✓ ✓ ✗ NA
GraphLIME [13] ✗ ✗ ✓ ✓ ✗ NA
XGNN [14] ✗ ✗ ✗ ✓ ✗ ✓ NA
RERE ✗ ✓ ✓ ✓ ✓ ✗ NA

Symbolic - Non-
ontological Explana-
tions
NIWT [15] ✓ ✓ ✗ ✗ ✓ ✗ Free form
TCAV [16] ✓ ✓ ✗ ✗ ✓ ✗ Free form
TREPAN [17] ✗ ✗ ✗ ✓ NA
Symbolic - Ontologi-
cal Explanations
TREPAN Rel.[18] ✓ ✗ ✗ ✓ Ontology
Sarker et al. [19] ✓ ✓ ✗ ✗ ✗ ✓ Ontology
Geng et al. [20] ✓ ✓ ✗ ✗ ✗ ✓ Ontology
X-NeSyL [21] ✗ ✓ ✗ ✗ ✓ ✗ KG
Widmer et al. [22] ✓ ✗ ✗ ✗ ✓ Ontology
Chen et al. [23] ✓ ✗ ✗ ✓ ✓ Ontology
Labaf et al. [24] ✓ ✗ ✗ ✗ ✓ Ontology
KDTCN [25] ✓ ✓ ✗ ✗ ✓ ✗ KG
Doctor XAI [26] ✓ ✓ ✗ ✓ ✗ Ontology

Symbolic + Sub-
symbolic
SUBGREX [27] (Non-
ontological Explana-
tions)

✓ ✓ ✓ ✗ ✓ Free form

OntExplainer [28]
(Ontological Explana-
tions)

✓ ✓ ✓ ✓ ✓ ✓ Ontology



2 Background and Challenges

In this chapter, the background information required for the rest of the thesis is presented.

We first introduce Graph Deep Learning, including the notation used in Table 2.1. Then, we

explore Graph Neural Networks (Section 2.1.2) and its variants (Section 2.1.3). In Section

2.2, we provide background information on symbolic methods in artificial intelligence and

Semantic Web Technologies (Section 2.2). A toy example that is used throughout the thesis

is introduced in Section 2.3. General explainable AI is introduced in Section 2.4, with a

focus on XAI for GNNs in Section 2.4.1. Sub-symbolic explanation methods for GNNs and

symbolic explanation methods are discussed in Sections 2.4.2 and 2.4.3.2. Finally, Section

2.4.4 introduces evaluation metrics for explanations.

2.1 Graph Deep Learning

Many important real-world data sets come in the form of graphs or networks, including

social networks [29] [30], knowledge graphs [31], protein-interaction networks [32], physical

systems [33], the World Wide Web and many more [34]. Due to their great expressive power,

analyzing graphs with machine learning has been become increasingly popular [35]. Graphs

are a kind of data structure which models a set of objects and their relationships, or in other

words, nodes and edges. Existing machine learning algorithms, such as Convolutional Neural

Networks (CNNs) popular in the image domain, have difficulties handling the complexity

of this non-Euclidean data. As graphs do not have specific ordering, and their nodes may

have a differing number of neighbors, operations like convolutions are difficult to apply in

the graph domain. Furthermore, the core assumption of many machine learning algorithms,

that instances are independent of each other, doesn’t hold for graph data because each node

is related to others by links of various types [36].

GNNs are deep learning based methods that operate on the graph domain, capturing the

dependency structure between the nodes of graphs and ignoring the node order on the input.

Unlike standard neural networks, GNNs retain a state that can represent information from its

neighborhood with arbitrary depth, as well as incorporate node feature information [37]. The

7



transformation function to update each node’s features might take only the node itself, or the

node and its neighbors, or the complete graph topology into account. Due to its convincing

performance, GNNs have been widely applied in graph analysis methods recently.

2.1.1 Definitions

A graph G is a tuple G = (V, E), with V being the set of nodes (vertices) and E being the set

of edges. We denote a single node as v ∈ V, using subscripts to distinguish between nodes

when necessary. Edges are pair-wise connections between nodes; we refer to an edge from

node vi to vj as eij = (vi, vj ) ∈ E. Nodes that are connected by an edge are also called adjacent.

The neighborhood of a node v is defined as N(v) = {u ∈ V|(u, v) ∈ E}. The adjacency matrix

A is a N × N matrix with Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E. A graph may have node

attributes X, where X ∈ RN×d. X is a node feature matrix with xi ∈ Rd representing the

feature vector of a node i. We use the k-hop neighborhood Nk(v) of a node v, which is the set

of all nodes connected to v by a path of length k. A directed graph is a graph with all edges

directed from one node to another, whereas an undirected graph is considered as a special

case of directed graphs where there is a pair of edges with inverse directions if two nodes are

connected.

Most commonly, a graph is represented by either an adjacency matrix or an adjacency list.

Both rely on defining a fixed but arbitrary node order, with the adjacency list being a list

of length |E|, containing an element (i, j), if an edge between the i-th and j-th node exists.

Edge features can be easily represented by using a separate edge feature matrix |E| × |E|,
whose i-th entry corresponds to the i-th entry in the adjacency list. For graph representation

learning, we use hv and ov as the hidden state and output vector of node v. Unless otherwise

specified, the notations used in this thesis are illustrated in Table 2.1. Motifs or network motifs

refer to characteristic patterns and substructures in graphs, such as cycles or triangles. Each

motif Mi = (Vi, Ei) is a subgraph of G. They can be found in biochemical, neurobiological,

ecological, engineering and social networks [38]. One example from the chemical domain is

the functional group hydroxide OH−, which typically implies high water solubility [39]. A

variety of algorithmic procedures exist to count or detect network motifs in order to identify

functional properties of a network. The frequency or existence of certain motifs can indicate

how nodes behave in the network.



Table 2.1: Symbols used in this thesis.
G Graph
V Set of Nodes
E Set of Edges
vi, vj i-th and j-th node in the population
eij Edge between i-th and j-th node
N (v), Nk(vi) Single-hop and k-hop neighbourhood of node vi
Vi, Eij Features of node vi, eij
A Adjacency matrix
X Node Feature matrix
N Total number of nodes
xi Feature vector belonging to node vi
deg(v) Degree of a node v
W Weight matrix representing the weights of each edge
wij Element of W representing edge weight between node i and j
k k nearest neighbors
IN Identity matrix of dimension N
gw ⋆ x Convolution of gw and x
⊙ Element-wise multiplication
⊕ Aggregation function
Θ Diagonal weight matrix which has one parameter per eigenvector
Mi Motif
ME Edge Mask
MX Node Feature Mask

2.1.2 Graph Neural Networks

Graph neural networks are useful tools on non-Euclidean structures, and there are various

methods proposed in the literature trying to improve the model’s capability. We are describing

the general graph neural network pipeline and then introduce several variants, which utilize

different propagation functions and advanced training methods, following [37]. A typical

GNN is usually built by combining the following computation models, shown in Figure 2.1.

The sampling module is needed to conduct propagation on graphs when these are large. It

tends to be combined with the propagation module, which is used to propagate information

between nodes. Here, the convolutions and recurrent operators aggregate information from

neighbors to capture feature and topological information. The skip connection operation

gathers historical information, and all these modules are used to propagate information in

each layer, which are stacked for better representations. The pooling operator extract informa-

tion from nodes for high-level information. This architecture applies to most GNNs, with

some exceptions. The most commonly used propagation operators for GNNs are convolution



Figure 2.1: General design pipeline for a Graph Neural Network

operators, which can be categorized as spectral approaches and spatial approaches.

2.1.2.1 Spectral Approaches

Spectral approaches use spectral graph theory to define convolutional layers, which transform

node features to a final representation. Their mathematical foundation is in graph signal

processing [40]. Here, a graph signal x is transformed to the spectral domain by the graph

Fourier transform F(x) = UTx, where then the convolution operation is conducted. The

resulting signal is transformed back using inverse graph Fourier transform F−1(x̂) = Ux̂,

where x̂ represents the resulted signal. U is the matrix of eigenvectors of the normalized

graph Laplacian L = IN + D− 1
2 AD

1
2 , where D is the degree and A the adjacency matrix.

The normalized graph Laplacian matrix being real symmetric positive semi-definite can be

factored as L = UΛ = UT with Λ being the diagonal matrix of eigenvalues (spectrum). The

convolution operation is defined as:

g ⋆ x = UgwUTx (2.1)

with the learnable diagonal matrix gw being the filter in the spectral domain.



2.1.2.2 Spatial Approaches

Spatial approaches define convolutions directly on the graph based on the graph topology.

Similarly to CNNs, spatial Graph Convolutional methods define graph convolutions based

on spatial relations existing between nodes. The challenge is to define these operations with

neighborhoods differing in size and maintaining the local invariance of CNNs [37]. The

main implementations are expressed as message passing approaches, which use only the

immediate neighborhood of a node to compute that node’s new features. A message function

M creates messages mij = M(vi, vj, eij) for node vi based on its neighboring nodes vj and

edges eij. Each node’s new features are then computed by a node update function Uv

V ′
i = Uv(Vi,

⊕
vj∈N (vi)

mij), (2.2)

with collation function
⊕

, which has to be transitive and associative to deal with the node

order. The most common implementation is a sum, followed by maximum and mean

operations. While the computational complexity is lower for spatial approaches compared to

spectral ones, spectral approaches are better suited for modelling of global graph structures.

2.1.3 Variants of Graph Neural Networks

There are a number of different variants of GNNS, that utilize different aggregators to

gather information from each node’s neighbors and specific updaters to update nodes’ hidden

states. Some of these variants, namely Graph Convolutional Network (GCN), Graph Attention

Networks and GraphSAGE are described as spatial approaches below. The activation functions

are omitted in the formalization.

Graph Convolutional Networks Graph Convolutional Networks (GCNs) are an extreme

form of approximating the spectral convolution using only a first-order Chebyshev polynomial

approximation [41]. It can also be expressed as a message passing approach. A GCN layer

is based on a weighted sum of neighboring node features, which are then transformed by a

learned weight matrix. It can be expressed as a message passing approach, with message

function M creating messages mij for node vi based on its neighboring nodes vj and the edge

eij:

M(vi, vj, eij) = (deg(vi)deg(vj))
1/2AijVj, (2.3)



therefore depending only on the degrees of the corresponding nodes and the hidden features

of the neighbors, with collation function being a sum,
⊕

= ∑, and each node’s new features

are then computed by node update function Uv

Uv(vi) = Θ ∑
vj∈N+(vi)

mij. (2.4)

Graph Attention Networks Graph Convolutional Networks (GCNs) treat all neighbors

equally and generate a final output by combining their features in an equal manner. In contrast,

Graph Attention Networks (GATs) [42] compute attention weights for each neighboring node

based on its features. Specifically, GATs augment the original node update function with

edge-specific attention weights αij, which allow for more informative and selective feature

aggregation:

Uv(vi) = Θ ∑
vj∈N+(vi)

αijmij (2.5)

α is computed using the agreement between transformed source and target node features,

normalized using the soft max operator:

αij = so f tmaxN+(vi)(σ(ΘVi||ΘVj)).

GraphSAGE GraphSAGE [43] is a general inductive framework that leverages node feature

information to efficiently generate node embeddings for previously unseen data and is based

on a localized sampling of the neighborhood. Instead of training individual embeddings for

each node, a function is learned that generates embeddings by sampling and aggregating fea-

tures from a node’s local neighborhood. Each node is updated based on the k-neighborhood:

V ′
i = Θ(Vi||

⊕
Vj∈Nk(nodei)

(vj)) (2.6)

Three different aggregation functions are explored. The first aggregation function takes the

element-wise mean of the vectors, the second applies learned Long Short-Term Memory

(LSTM) units on a random permutation of the neighbors, and the third applies maximum

pooling on independently transformed node features.

Learning Tasks on Graphs The goal in graph-based machine learning tasks can be sorted

into one of three categories: Node-level task, edge-level tasks and graph-level tasks.

Node-Level Task:. Node-level prediction produces outputs per node. Trained on a set of



labelled nodes, the goal is to predict the output values for each node on unseen graphs.

Edge-Level Tasks: Edge-level tasks relate to the edge classification and link prediction tasks.

With two nodes’ hidden representations from GNNs as inputs, a similarity function or a

neural network can be utilized to predict the label or whether a link exists.

Graph-Level Tasks: Graph-level outputs relate to the graph classification task. To obtain

a compact representation on the graph level, GNNs are often combined with pooling and

readout operations. A classical example for this task is molecule property prediction, where

a molecule is modelled as a graph with atoms as nodes and chemical bonds as edges and

attributes such as mutagenicity [44] are predicted.



2.2 Symbolic AI Methods and Semantic Web Technologies

Methods in AI can be categorized into sub-symbolic or symbolic methods, neuro-symbolic

methods refer to the integration of both. Sub-symbolic methods establish correlations between

input and output variables, that come with high complexity, and are often formalized by

functions that map the input to the output data or the target variables [45]. Sub-symbolic

AI includes statistical learning methods, such as Bayesian learning, deep learning and

backpropagation, with GNNs being a sub-symbolic method. These methods are able to solve

complex tasks over unstructured data using supervised or unsupervised learning, including

problems which cannot reasonably be done by humans [46]. Their characteristics include

robustness again noisy data, high computing performance and scalability. Therefore, they are

suitable for big datasets and large knowledge graphs.

Symbolic AI refers to AI approaches that are based on explicit symbol manipulation which

can include term rewriting or natural language question answering, but tends to refer more

narrowly to methods based on formal logic, such as knowledge representation and reasoning

[47]. As these are defined by explicit symbolic methods, such as formal methods and

programming languages, they are usually used for deductive knowledge [48]. They consist of

first order logic rules, ontologies, decision trees, planning and reasoning [45] and are often

associated with knowledge bases and expert systems [49], with one of their key characteristic

being their ability to explain and reason about their decision-making. Further characteristics

are rule modularity, as rules are discrete and autonomous knowledge units that can easily be

inserted or removed from a knowledge base [50]. Examples for application fields of symbolic

systems include agent planning, constraint solving, data management and integration and

querying [46].

In terms of representation of data, information and knowledge, sub-symbolic and symbolic AI

differ fundamentally. Symbolic systems’ representation of knowledge is explicit and human-

understandable, e.g. through rules. The representations in sub-symbolic systems tend to be

through weighted connections between neurons and corresponding activations of a number of

neurons, which isn’t usually human-understandable. These distributed representations which

are learned during training are also known as embeddings. These vectors of real numbers are

in terms of entities within a high-dimensional and continuous, differentiable vector space,

whereas symbolic representations are discrete [47]. Neuro-symbolic AI focuses on finding

ways to combine sub-symbolic learning algorithms with symbolic reasoning techniques, to

get the best of both worlds. While symbolic systems are susceptible to noisy data or flaws in

the knowledge base, sub-symbolic systems show more robustness. Symbolic systems come



with inherent explainability and reasoning capabilities, whereas sub-symbolic systems tend

to be black-boxes [46]. Examples of neuro-symbolic integration include the translation of

symbolic knowledge into the network, the learning of addition knowledge from examples,

executing the network and symbolic knowledge extraction from the network, which provides

explanations [51]. Furthermore, integration can lead to utilization of background knowledge,

given as knowledge graphs or ontologies in deep learning applications [46] with the aim of

making them more transparent, understandable, verifiable, and trustworthy. This is however

no trivial problem, since the methodologies of distinct areas have to be conciliated — namely

predominantly statistics and logic — in order to combine the respective advantages and

circumvent the shortcomings and limitations.

Semantic Web Technologies Through the creation of the World Wide Web, content can

be created and made available online [52]. The Semantic Web was developed to unify such

content by tagging it with unique identifiers representing definitions from taxonomies and

ontologies, making it possible to reach semantic understanding of digital content and enable

data sharing [53]. To make the content explainable to a wider range of users, methods

have been developed in order to include provenance in the semantic representations [54]

and to enable reasoning mechanisms [55]. These are called Semantic Web technologies

and can provide formal description and semantic processing of data, therefore making the

data interpretable with regard to its content and meaning — making it a symbolic method.

Definitions of frameworks and tools related to the Semantic Web used in this thesis can be

found in Table 2.2. The explicit knowledge representation of the Semantic Web includes

modeling of knowledge and application of formal logics over the knowledge base. One

such knowledge base is a knowledge graph, where information is encoded in the form of

a directed labeled graph, with nodes representing entities and edges representing different

types of possible relationships between entities. Another approach are ontologies, which

enable the modeling of information and consist of classes, relations, and instances [56]. We

follow [19], in differentiating knowledge graphs (KGs) and ontologies insofar as KGs are

usually a set of triples most often expressed using the Resource Description Framework (RDF)

while ontologies additionally posses logics and are regularly expressed using Web Ontology

Language (OWL).

The basic constituents for representing knowledge in OWL are individuals, classes, and

properties. They are used to forming axioms, i.e., statements within the target domain, and an



ontology O is a set of axioms to describe what holds true in this domain. The most relevant

axioms for our work are class assertions τ(σ) assigning an individual σ to a class τ, property

assertions ρ(σ1, σ2) connecting two individuals σ1, σ2 by property ρ, and subclass axioms

τ1 ⊑ τ2 expressing that class τ1 is a subclass of class τ2
1. Classes can be either atomic class

names, such as ’Individual‘ or ’hasFriend‘, or they can be composed by means of complex

class expressions. An example of a complex class expression noted in Manchester syntax

is ’Individual and hasGender some female‘, which refers to all individuals having gender

female. For details about all types of axioms and the way complex concepts are constructed,

we refer to [57]. The Manchester OWL syntax is a user-friendly syntax for OWL Description

Logics, fundamentally based on collecting all information about a particular class, property,

or individual into a single construct [58].

The basic constituents for representing knowledge in OWL are individuals, classes, and

properties. They are used to forming axioms, i.e., statements within the target domain, and

an ontology.

The following definitions are related to the concepts of explainability used in this thesis:

Definition 1 (Entailment) Given ontology O, if axiom α logically follows from O, as can be derived

by a standard OWL reasoner, then we call α an entailment of O and write O |= α 2.

Definition 2 (Inductive Logic Learning (ILL)) Given an ontology O, a set of positive instances

E+ and a set of negative instances E−, a resulting target predicate class expression ε is constructed

such that O |= ε(σ) holds for all individuals σ ∈ E+ and does not hold for individuals σ ∈ E− 3.

In the context of OWL ontologies, ILL attempts to construct class expressions from an ontology

O and two sets E+, E− of individuals that act as positive and negative examples for being

instances of the target class, respectively. In this thesis, the DL-Learner [60] is used as the key

tool to derive OWL class expressions.

Definition 3 (Justification) Given an ontology O and an entailment α, the justification J (O, α)

for α in O is a set J ⊆ O, such that J |= α and J ′ ̸|= α for all proper subsets J ′ ⊂ J .

Justifications are a type of explanation for entailments in ontologies, with a justification being

the minimal subset of the ontology being sufficient for the respective entailment to hold.

1For better readability we will denominate variables represented in ontology form in Greek letters and sub-
symbolic graph representations in Latin letters.

2As defined in [59]
3As defined in [60]



Table 2.2: Semantic Web Technology Definitions

Description Logic A knowledge representation formalism based on a subset of
first-order predicate logic that is a declarative formalism for the
representation and expression of knowledge and sound, tractable
reasoning methods founded on a theoretical logical basis [61].

Ontology An ontology models the vocabulary and meaning of domains of
interest. The objects in domains, the relationships among those
things, the properties, functions, and processes involving those
things as well as constrains on and rules about those things [61].

Protégé Protégé is an ontology management tool developed and main-
tained by the Medical Informatics Laboratory at Stanford Uni-
versity and is recognized as an exemplary tool for managing
ontology [61].

Resource Defini-
tion Framework
(RDF)

Language that expresses local semantic relations phrased in terms
of a triple: <subject, verb object>, i.e., <object1, relation1, object2>
[61].

Resource Defini-
tion Framework
Schema (RDFS)

Language that expresses class-level semantic relations describing
acceptable local relations [61].

OWL Web Ontology Language is part of W3C’s Semantic Web Tech-
nology Stack and is designed to represent rich and complex
knowledge about things, groups of things, and relations between
things [61].

DL-Learner DL-Learner is a tool for learning concepts in DLs from user-
provided examples. It can also be used to learn classes in OWL
ontologies from selected objects [60].

LD2NL Verbalization framework for the three key languages of the Se-
mantic Web, i.e., RDF, OWL, and SPARQL. Based on a bottom-up
approach, resulting in verbalization that are close to natural lan-
guages [62].



2.3 Toy Example: SportsNetwork

Introducing SportsNetwork, a toy example to showcase the methods used in this thesis.

SportsNetwork is a social network that comprises individuals or organizations connected

by social interactions. Nodes in the network represent individuals, while edges depict the

connections between them. Graph-based methods can be used to analyze the structure of the

entire social entity and understand observed patterns [63]. Figure 2.2 illustrates a common

motif in which an individual’s connections are also connected to each other, which has

significance in both social networks and epidemiological contact networks [64]. This concept

dates back to the late 1970s, when 3-node motifs or triadic structures (as shown in Figure 2.3)

were first identified in small-scale social structures [65].

Figure 2.2: Social clustering network motif

Figure 2.3: Clustering triadic motif

SportsNetwork is a toy example of a social network, featuring athletes as nodes and con-

nections between them as edges. The node features include details about the athletes such

as gender, home country, and age. A glimpse of the network is shown in Figure 2.4. A



hypothetical node classification task, where a 2-layer Graph Neural Network (GNN) predicts

the athlete’s sport (e.g. equestrian or football player), is also demonstrated. The graph also

showcases triadic structures.

Figure 2.4: SportsNetwork excerpt showing the node classification for an equestrian node
(blue) and a football player node (orange) by a 2-layer GNN with their respective
receptive fields.

Table 5.1 shows an excerpt of the SportsNetwork Ontology OSportsNetwork pertaining to the

toy example. The ontology includes some hierarchies, e.g., ’Football‘ being a subclass

of ’TeamSports‘. Furthermore, structures known in social networks are included such as

’FootballTriadicMotif‘, which is a subclass of ’SocialStructure‘. Property assertions are

shown, such as ’fromCountry(Individual_3, Germany)‘, detailing the origin of individual

’Individual_3‘.



Table 2.3: Example excerpt of OSportsNetwork.
(1) Football ⊑ TeamSports football is a team sport
(2) FootballTriadicMotif ⊑ Clus-

teringTriadicMotif ⊑ Social-

Structure

football triadic motifs are clus-
tering triadic motifs, which are
social structures

(3) FootballPlayer(Individual_2) Individual_2 is a football player
(4) hasGender(Individual_2, male) Individual_2 has gender male
(5) fromCountry(Individual_3, Ger-

many)

Individual_3 is from Germany

(6) hasFriend(Individual_2, Indi-

vidual_1)

Individual_2 has friend Individ-
ual_1



2.4 Explainable AI

The development of black-box machine learning models such as deep neural networks have

revolutionized the field of artificial intelligence. As these models have achieved promising

performance in many research tasks, they are increasingly being employed to make important

predictions in critical contexts [66]. Very little human intervention is required for their design

and deployment. While the very first AI systems or “good old-fashioned AI" are more easily

interpretable, the last decade has witnessed the rise of opaque decision systems such as Deep

Neural Networks (DNNs), which combine efficient learning algorithms and a huge paramet-

ric space comprised of hundreds of layers and millions of parameters [67]. When critical

decisions are derived from such black-box systems which ultimately affect humans’ lives,

e.g., in medicine, law or defense, the demand for transparency is increasing [68]. Without

understanding the underlying mechanisms behind the predictions, black-box models cannot

be fully trusted, leading to problems regarding fairness, privacy, and safety [69]. Compa-

nies increasingly offer services and products by embedding sophisticated machine learning

models trained on massive datasets. These offers are often in safety-critical industries such

as robotics, medicine or self-driving cars [70]. Inherent and systematic bias in the training

data that leads to spurious correlation is one risk of using black-box models. Therefore, the

demand for explainable and accountable AI grows as tasks with higher sensitivity, safety and

social impact are increasingly decided by AI systems. Explainability is needed in holding

organizations responsible and accountable for their products, services, and communication of

information [71].

The legal right to explanations has been established in the European Union General Data

Protection Regulation (GDPR) commission. This right holds for all individuals to obtain

“meaningful explanations of the logic involved” when automated decision-making takes place

[70]. Furthermore, the European Commission’s High-Level Expert Group on AI recently

presented the “Ethics Guidelines for Trustworthy Artificial Intelligence". The guidelines put

forward a set of 7 key requirements that AI systems should meet in order to be deemed

trustworthy, including a transparency requirement [72]:

“The data, system and AI business models should be transparent. Traceability mechanisms can

help achieving this. Moreover, AI systems and their decisions should be explained in a manner

adapted to the stakeholder concerned. Humans need to be aware that they are interacting with an

AI system, and must be informed of the system’s capabilities and limitations.”



How the terms explainability and interpretability are used varies across AI communities, and

can reach from interpretations of how an AI system works to explanations mapping inputs of

a particular example to an output. As these terms are often interchangeably used in literature,

we will follow the definitions of [73], where a model that can provide human-understandable

interpretations by itself is defined as interpretable. A black-box model whose predictions are

explained by post hoc explanation techniques is explainable.

XAI Users and Goals Explainability is a very broadly defined concept, with different sci-

entific communities addressing the problem from a different perspective and providing a

different meaning to explanation [70]. The machine learning community is mostly focused on

designing new interpretable models and explain black-box models with ad-hoc explainers,

while the visual analytics community prioritize tools and methods for data and domain

experts to visualize complex black-box models and study interactions to manipulate machine

learning models [71]. While the increasing level of research activities regarding explainable

AI is a positive development, explanatory models are often built for AI experts. These are

machine learning scientists and engineers who design machine learning algorithms and

interpretability techniques for XAI systems. However, explanations should be targeted for

domain experts when necessary, since XAI and with it the widespread application of AI

models are more likely to succeed if the evaluation of these models is focused more on the

user’s needs [74]. In this algorithmic-centered discourse, understanding who interacts with

the black-box AI and what their distinct goals are, is of equal importance [75]. Domain

experts use machine learning for analysis, decision-making, or research in specialized forms

and domains such as cybersecurity [76] [77], medicine [78] [79], text analysis [80] [81], and

satellite image analysis [82]. While these users are experts of certain domain areas, they tend

to lack expertise in the technical specifics of the machine learning algorithms [71]. Further

user groups of XAI include business owners, decision-makers, who are direct users of AI

decision support applications, impacted groups and regulatory bodies [83].

There are a number of different goals the research communities around XAI have so far

exposed, dependent on the respective users’ needs. XAI Goals for domain experts include:

• User Trust and Reliance. Through providing explanations, the user can improve their

trust in the AI, as they can assess the system reliability and calibrate their perception

of system accuracy [71]. Domain experts can therefore benefit from machine learning

interpretability to inspect model uncertainty [84].



• Model Visualization and Inspection. Domain experts can identify and analyze failure

cases of machine learning models and systems [85]. Here, explanations help to visualize

models [86] and enable the inspection for problems like biased models [87].

• Algorithmic Transparency and Model Interpretability. Domain users’ mental models

of the underlying AI can be improved by providing explanations [88]. Furthermore,

through better understanding of the model output, user experience and interactions can

be enhanced [89].

Other explainability goals for AI experts include detecting dataset bias [90], adversarial attack

detection [91], model debugging and tuning [92] [93]. Furthermore, XAI is used for privacy

awareness [67] and bias mitigation [94] [95], that could result in discrimination in algorithmic

decision-making.

Global and Local Explanations Explanations can be classified into global and local ex-

planations, with the first category describing the entire machine learning model, whereas

the second category explains an individual input instance. Global explanations, also called

model-level explanations are, for example, model visualizations [96], decision rules [97] or

interpretable approximations of more complex models such as tree regularization [71] [98].

Local or instance-level explanations are focusing on explaining the results for an individual

prediction requested by the user. Local explanations are thought to be more easily understand-

able. Examples of local explanations are saliency methods [92] [1] that show what features in

the input strongly influence the model’s prediction or local approximations representing the

underlying model’s behavior [93] [71].

For local methods, more human supervisions are needed since experts need to explore the

explanations for different input graphs. It is left to the user to construct a global understand-

ing of the model’s decision-making process. It has been shown, that users have difficulties

forming a global understanding and assessing how representative instance explanations were

for the overall model behavior [99]. For global methods, since the explanations are high-level,

less human supervision is needed. However, the explanations for global methods may not be

human-intelligible. Especially for GNNs, the obtained graph patterns may not even exist in

the real world [100].

Type of Explanations There is no agreement on what constitutes an explanation, including

which shape it is provided in, nor which properties it has to exhibit [70]. This thesis focuses on

post-hoc explainability as opposed to interpretable models such as linear regression models



or decision trees. Complex models including Graph Neural Networks, that come with high

performance and robustness in real-world applications are not interpretable by human users

due to their large variable space [71]. Therefore, post-hoc explainability uses a number of

different means to enhance their interpretability, such as visual explanations, explanations

by simplification and feature relevance explanations techniques amongst others. These can

be model-agnostic, meaning they are designed to be plugged to any model with the intent

of extracting some information from its prediction procedure [66] or model-specific, only

applying to a specific type of model.

• Visual explanations. These explanation techniques aim at visualizing the model’s

behavior. These methods often come with dimensionality reduction techniques that

allow for a human interpretable simple visualization. Such visualizations can be coupled

with other techniques to improve their understanding, usually with feature relevance

techniques which provide the information the visualization is based on [66]. The inner

structure of the machine learning model to be explained is disregarded.

• Explanations by simplification. These explanation techniques rebuild new and simpli-

fied models based on the respective trained models to be explained. The complexity of

the student model (new model) is reduced compared to the teacher model (i.e. trained

model to be explained) while their resemblance is optimized.

• Explanations by example. These explanation techniques work by extracting represen-

tative examples that capture the internal relationships and correlations of the model

[101].

• Feature relevance explanations. These explanation techniques provide importance

scores for the variables of the model to be explained, which quantify the importance a

feature has upon the output of the model. The functioning of the model is explained by

ranking or measuring the influence, relevance, or importance each feature has in the

prediction output [66].

• Text explanations. These explanations techniques output text explanations, including

methods that generate symbols representing the logic of the model through appropriate

semantic mapping [101].



2.4.1 Explainability for GNNs

Similarly to other black-box machine learning methods, Graph Neural Networks require

explanations. This is exacerbated through their growing popularity and usage in various

domains, coming with increasingly complex models and growing complexity of the underly-

ing data they work on [102]. These data domains can consist of various types of graphs and

heterogeneous data, making many explanations meaningful only in a specific domain. While

most GNNs can be categorized as message-passing, recently there has been an increase in the

use of abstract constructs i.e., from graph theory such as motifs [103] [104], often requiring

not only data but also model-specific explanations. Further differences in explainability

techniques are regarding the learning tasks, namely node-level, edge-level and graph-level

tasks, which can affect its structure. While task-agnostic explanation methods exists, other

explainability techniques are tailored to one task. Although these differences in explanation

methods exist, the explanations are usually expressed as graphs with either nodes, edges, or

features that have been identified as important, highlighted in some way [105].

Properties of Explanations for GNNs There is a various number of explanation properties

that have been deemed desirable by different research communities. This thesis centers

around the challenge of making Graph Neural Networks explainable for domain experts,

an objective that comes with its own set of properties that should be fulfilled, which are

laid out in this section. While the emergence of explainable AI is positive, most explainer

models for GNNs are built for AI experts rather than the intended user of the AI, such as

domain experts. In order for the explainer models to succeed, properties that are focused

more on the user needs should be considered [74]. No conclusive evidence has been reached,

that feature-based explanations such as importance scores have a meaningful impact on user

decision accuracy [106]. Even data scientist have been shown to over-trust XAI, not being

able to accurately describe visual feature-based explanations provided [107]. Inspiration from

experiments on human psychology or cognitive science, e.g., dual-process theories [108] [109]

provides an approach to reduce subjectivity of understanding. Dual-process theory divides

the information processing of humans into two systems, the intuitive (System 1) and analytical

thinking (System 2). System 2 relies on careful, cognitively demanding reasoning, making

humans resort to System 1. Since mental shortcuts are used here, this system is susceptible to

cognitive biases [83]. These biases can also be present when interpreting XAI, where users

are unlikely to carefully consider every bit of the explanation [110] [83]. E.g., it has been

shown that users are vulnerable to anchoring bias, mentally sticking to model behaviors that



were observed early on [111] and associating a numerical presentation of explanations with

intelligence and algorithmic thinking [112]. This is more likely to happen, when the user lacks

the ability to understand the explanation in-depth [109]. In [113] it is shown that non-experts

gain less from XAI compared to AI experts. Leveraging textual explanation can be used

to reduce the cognitive workload and therefore be more understandable [113]. Therefore,

one of the desired properties is naturalness, entailing the use of natural language [114]. For

generating coherent natural language explanations, standard patterns of discourse employed

by humans should be followed.

"Person A is classified as football player because they are friends with many other

football players"

It can also happen that explanations create information overload and distract people from

forming a useful mental model of how a system operates [115]. Using explanations that incor-

porate reasoning leads to better user satisfaction and insight [116]. Equally, [117] argues that

reasoning is a necessary component of true explainability, as leaving explanation generation

to human analysts based on importance scores or visualizations can be dangerous. As the

user depends on their background knowledge about the domain, the explanations about the

decision-making of the model might differ dependent on the user. Or in other words, such

explainability techniques that don’t include reasoning thus enable explanations of decisions,

but do not yield explanations themselves. In order to enable reasoning to achieve actionable

understanding beyond algorithmic explanations and to fill potential knowledge gaps of the

user, providing domain knowledge is necessary [83]. For actionable decision-making, domain

experts need appropriate reliance, an understanding about when to trust the AI’s prediction

and when to be cautious. Therefore, the domain knowledge should be adjusted to the user’s

knowledge, goal and context, or in other words, explanation sensitivity [114] should be

incorporated. This is particularly important when attempting to adjust the complexity of an

explanation, its novelty and coherence [118].

Domain knowledge: Football is a team sport → Football player have a higher connect-

edness on average.

For actionable decision-making, domain experts need appropriate reliance, an understanding

about when to trust the AI’s prediction and when to be cautious. The properties naturalness



and sensitivity enable explanations to be human-centric, ensuring a domain expert can un-

derstand them. While human-centricity is essential, objective metrics for evaluation should

be considered equally. Relying on user studies for evaluating explanations might suffer

from confirmation bias [119]. The limitations of the AI and equally the explainer techniques

should be transparently communicated to the user [83]. In order to evaluate how faithful an

explanation is, fidelity is a fundamental property, representing the closeness between model

and explanations. Fidelity is a measure of the accuracy of the explanations in relation to the

underlying ML model, which can be phrased as a measure of accuracy of the student model

w.r.t the teacher model. The student model being the explainability technique and the teacher

model being the GNN [120]. Without high fidelity, an apparently good and comprehensible

explanation can be simply wrong, which has been shown for popular XAI methods such as

LIME [121]. It has also been shown, that if an explanation is added to an AI system, high

fidelity is crucial for ensuring user trust [122].

Since GNNs are based on graphs, which contain topology information, existing explain-

ability techniques might not be suitable [69]. Graphs are represented as feature and adjacency

matrices, which only contain discrete values. These cannot be optimized in the same man-

ner as image classifiers, where input are treated as trainable variables and optimized via

back-propagation obtaining abstract images as explanation [123], [124]. Other explainability

techniques learn soft masks to capture important image regions [125] [126], which would also

not work with the discreteness property of adjacency matrices. Since graphs can represent

such complex data as molecules or social networks, the semantic meaning of the input data of

GNNs can be more difficult to understand for the user compared to images or texts [3]. Such

structural information is more important with respect to graph data as graph substructures,

such as network motifs, can be highly related to their functionalities, e.g. in biochemistry

or engineering domains [127]. Furthermore, since the nodes in the graphs can be unlabeled

and graph labels may be determined solely by graph structures, studying individual nodes is

meaningless as they don’t come with semantic information. Likewise, network motifs, which

are recurrent and statistically significant subgraphs or patterns of a larger graph, should

be considered by in the explanation. Therefore, in order to provide an explanation for the

decision-making of a GNN, it is essential to take into account graph-specific properties, in

other words, to provide reference to graph topology. Generally, graph data is less intuitive

than image and text data, where the semantic meaning of the input data is more straightfor-

ward, whereas complex graph data such as chemical graphs or citation networks are more



challenging to understand for the user [69].

“Person C is classified as football player because they are part of a triad cluster with

two other football players."

2.4.2 Sub-symbolic explanation methods: Subgraph Explanations

With the growing popularity of Graph Neural Networks and their usage in various do-

mains which require explanations for scientific or ethical reasons, explainability techniques

for GNNs have recently received a lot of attention [102]. As GNNs can carry out differ-

ent tasks, including node-level, edge-level and graph-level tasks, generating explanations

for different tasks can influence the explanation method, with some of them only being

applicable only to specific tasks. The majority of explainability techniques for GNNs pro-

duce a subgraph of important features, nodes and edges, as explanation for a GNN model

prediction, which are referred to as explainer subgraph [128]. The subgraph is based on

importance scores for the individual edges, nodes, or features. The methods generating

these importance scores can be categorized into perturbation-based, gradient/feature-based,

decomposition-based and surrogate-based methods. Perturbation-based methods monitor the

change of prediction with respect to different input perturbations, gradient/feature-based

methods employ the gradients or the feature values to indicate the importance of different

input features, decomposition methods decompose the prediction scores to the neurons in

the last hidden layer and back propagate these scores layer by layer until the input space

while surrogate-based methods sample a dataset from the neighbors of the given example

and fit a simple and interpretable model, such as the decision tree, to the sampled dataset [69].

Initial works towards explainable GNNs attempts to convert gradient/feature-based and

decomposition-based approaches initially designed for Convolutional Neural Networks

(CNNs) into graph domain [7] [8]. The gradient-feature based methods include contrastive

gradient-based saliency maps, describing the extent to which variations in the input would

produce a change in the output; Class Activation Mapping (CAM) identifying important,

class-specific features at the last convolutional layer as opposed to the input space; Grad-CAM,

improving upon CAM by relaxing the architectural restriction that the penultimate layer

must be a convolutional and Sensitivity Analysis (SA), producing local explanations for the

prediction of a differentiable function using the squared norm of its gradient w.r.t. the input.

Decomposition methods contain Excitation Backpropagation (EB), generating heat-maps that



Table 2.4: Comparison of different GNN explanation methods with regard to the requirements
of naturalness, sensitivity, fidelity, graph topology; whether they are local or global
and whether or which knowledge base they use.

Natural-
ness

Sensi-
tivity

Fidelity
Graph
Topology

Local Global

Perturbation
GNNExplainer [1] ✗ ✗ ✓ ✓ ✓

PGExplainer [2] ✗ ✗ ✓ ✓ ✓ ✗

SubgraphX [3] ✗ ✗ ✓ ✓ ✓ ✗

GraphMask [4] ✗ ✗ ✓ ✓ ✓ ✗

Cf-GNNExplainer [5] ✗ ✗ ✓ ✓ ✓ ✗

ZORRO [6] ✗ ✗ ✓ ✓ ✓ ✗

Gradient/Feature
Pope et al. [7] ✗ ✗ ✓ ✗ ✓ ✗

Baldassarre et al. [8] ✗ ✗ ✓ ✗ ✓ ✗

Decomposition
GNN-LRP [9] ✗ ✗ ✓ ✓ ✓ ✗

Xiong et al. [10] ✗ ✗ ✓ ✓ ✓ ✗

RelEx [11] ✗ ✗ ✓ ✓ ✓ ✗

PGM-Explainer [12] ✗ ✗ ✓ ✓ ✓ ✗

Surrogate
GraphLIME [13] ✗ ✗ ✓ ✓ ✗

Generation
XGNN [14] ✗ ✗ ✗ ✓ ✗ ✓

contain evidence for or against a network predicting any particular class and layer-wise

Relevance Propagation producing relevance maps by decomposing the output signal of every

transformation into a combination of its inputs.

The drawback of reusing explanation methods previously applied to CNNs are their in-

ability to incorporate graph-specific data such as the edge structure. To overcome these

problems, [1] created the model-agnostic perturbation-based approach GNNExplainer, that

finds a subgraph of input data which influence GNNs predictions in the most significant way

by maximizing the subgraph’s mutual information with the model’s prediction. Here, we

briefly introduce this method by taking a graph classification task as an example. We assume

a trained GNN model fθ employed as a label function to produce the predicted label ŷ of

the input graph G = A, X, whose ground truth label is y. The GNNExplainer’s goal is to

find a subgraph Gs = As, Xs ⊂ G. This subgraph then acts as the explanation for prediction



ŷ = fθ(G) by maximizing the mutual information (MI) between Gs and y:

max
Gs

MI(y, Gs)

GNNExplainer then proposes to learn an edge mask M ∈ R|V|×|V|, with |V| being the number

of nodes in G and the explanation Gs is calculated as follows:

Gs = {As, Xs} = {A ⊙ ω(M), X},

where ω denotes the sigmoid function.

Further perturbation-based explainer models, that obtain masks to indicate important input

features, include PGExplainer [2], which trains a parameterized mask predictor to predict

edge masks, which also comes with inductive properties. Given an input graph, it first obtains

the embeddings for each edge by concatenating node embeddings. Then the predictor uses

the edge embeddings to predict the probability of each edge being selected, similarly to an im-

portance score. The approximated discrete masks are then sampled via the parameterization

trick. Finally, the objective function maximizes the mutual information between the original

predictions and new predictions. Similarly to GraphMask [4] and SubgraphX [3], the gener-

ated masks are combined with the input graph to obtain a new graph containing important

input information, where the important input features captured by masks should lead to a

similar prediction to the original one. GraphMask also trains a classifier to predict whether an

edge can be dropped without affecting the original predictions, whereas SubgraphX explores

different subgraphs via node pruning and selects the most important subgraph from the

leaves of the search tree as the explanation of the prediction. CF-GNNExplainer [5] works

by perturbing input data at the local, where the instances are nodes. The method iteratively

removes edges from the original adjacency matrix based on matrix sparsification techniques,

keeping track of the perturbations that lead to a change in prediction, and returning the

perturbation with the smallest change w.r.t. the number of edges, after adding different

edges to the subgraph. ZORRO [6] employs discrete masks to identify important input nodes

and node features through a greedy algorithm, where nodes or node features are selected

step by step. The goodness of the explanation is measured by the expected deviation from

the prediction of the underlying model. For perturbation-based explanation methods for

GNNs, the output consists of masks, indicating important input features, including node

masks, edge masks or node feature masks depending on the explanation task. We can observe



three different types of masks that have been proposed, including soft masks [1][5], discrete

masks [6] and approximated discrete masks [2]. These masks are then applied to the input

graph(s) and fed into the trained GNNs to carry out predictions, which are targeted by the

objective function to be similar to the original prediction. A further decomposition method is

GNN-LRP, which studies the importance of different graph walks, with the GNN model being

treated as a function and providing a view of high-order Taylor decomposition to develop the

score decomposition rule [10].

A graph-specific surrogate explanation method is the PGM-Explainer [12], which entifies

crucial graph components and generates an explanation in the form of a PGM approximating

that prediction. Instead of drawing explanation from a set of linear functions of explained

features, PGM-Explainer provides dependencies of explained features in the form of condi-

tional probabilities. GraphLime [13] extends LIME [129] to deep graph models by studying

the importance of different node features. A Hilbert-Schmidt Independence Criterion (HSIC)

Lasso model is employed to fit the k-hop neighboring nodes and their predictions. The

surrogate model selects important features to explain the HSIC Lasso predictions, which are

then regarded as explanations of the original GNN prediction. However, graph structures

such as nodes and edges aren’t considered. RelEx [11] combines surrogate methods and

perturbation-based methods, by employing a GCN model as a surrogate model to fit the local

datasets and then applying perturbation-based methods to explain the predictions.

Reinforcement learning has been used in a global graph generation explainer approach [14],

that proposes to explain GNNs via graph generation. global explanations make the prediction

process of a particular model transparent, as opposed to a particular prediction instance. The

generator predicts how to add an edge to the current graph, and the generated graphs are

fed into the trained GNNs to obtain feedback to train the generator via policy gradient. The

then generated graphs function as global explanations for a certain target class and should

convey discriminating graph patterns.

In Table 2.4 it is shown how these methods fare in regard to the desired properties nat-

uralness, sensitivity, fidelity, reference to graph topology and whether they provide local

or global explanations. While there are a variety of methods that come with fidelity and

reference to graph topology, human-centricity through sensitivity and naturalness is not given.

[46] argues, that the main limitation of statistical methods is that it does not take domain

knowledge or general background knowledge into account when generating an explanation.

Based on experiences collected from real world applications, using a subgraph explainer



tends to be hard to understand, not only for domain experts but even for AI experts [128].

Furthermore, the majority of methods can only generate local explanations.

2.4.3 Symbolic explanation methods

As lined out above, symbolic methods come with inherent explainability. Using symbolic

methods to create explanations for sub-symbolic machine learning models come with advan-

tages, e.g., the establishing of reasoning rules that allows symbolic methods to be constrictive

[95]. Since black-box models usually process data in a quantitative manner, it means that

these probabilistic results have to be translated into qualitative notions containing causal

links to provide a satisfying explanation [74]. As there is a trade-off between the simplicity

of the information given by the system on its internal functioning and the exhaustiveness of

this description or, in other words, between human-centricity and completeness [130], being

selective when providing an explanation isn’t straightforward. As symbolic methods process

data directly in a qualitative way, they come with the ability for being selective and focusing

solely on the main causes of a decision-making process [95].

2.4.3.1 Symbolic explanation methods: Non-ontological Explanations

There are a number of methods that create rule-based explanations without taking into

account a knowledge base. Using decision trees to explain neural networks based on tabular

data, has also gained some traction in the past, starting with TREPAN [17], which queries the

neural network to induce a decision tree approximating the concepts represented by the net-

works by maximizing the gain ratio together with an estimation of the current model fidelity.

In [131] a prototype for each target class is generated by using genetic programming to query

the trained neural network, where the input features dataset is exploited for constraining the

prototypes. The best prototypes are then selected for inducing the learning of the decision

tree. Another method uses Genetic Programming to evolve decision trees [132] to mimic the

behavior of the machine learning model. Similarly, Genetic Programming is used for rule

extraction to explain a neural network, by using classical reverse engineering where random

annotated permutations of the original dataset are used as input [133]. [134] also uses reverse

engineering to generate classification rules for each class label, exploiting the data ranges

previously identified by pruning input neurons. Decision rules and counterfactual rules are

generated by a genetic algorithm on a synthetic neighborhood in [135]. Another rule extrac-

tion method proposes to learn rules in Conjunctive Normal or Disjunctive Normal Form [136],

whereas in [137] model simplification is formulated as a model extraction process by approxi-



mating a transparent model to the complex one. In [138] a Monte Carlo algorithm is used for

generation of decision rules as explanations by deriving a score based on formal requirements.

While some of these methods do provide fidelity and some naturalness, none of these

methods include the grounding of explanations in domain knowledge and therefore enabling

sensitivity or are able to consider graph-specific properties, as they have been designed for

tabular data. More recently, approaches have been developed that integrate a KB when gener-

ating rules with [15] using free form attributes and captions. Another method is TCAV [16],

where the authors use simple concept tags to produce human understandable explanations

and therefore providing sensitivity.

2.4.3.2 Symbolic explanation methods: Ontological Explanations

Using a Knowledge Base such as an ontology or knowledge graph allows data to be processed

directly in a qualitative way [66]. Furthermore, the integration of background knowledge via

a KB into explanations carries the promise of being much closer to human conceptualizations

and thus more useful for domain experts [46]. Using an ontological KB makes reasoning with

symbolic representation possible [139].

Using background knowledge for enhanced explainability has gained attention recently,

and there have been a number of XAI approaches developed that integrate Semantic Web

Technologies with connectionist models [140]. The majority of these methods have been

developed for image recognition, with one approach mapping network inputs or neurons

to classes of an ontology or entities of a knowledge graph [15]. This enables the linking of

a neuron’s weight to semantically grounded domain knowledge. The authors in [19] map

scene objects within images to classes of the Suggested Upper Merged Ontology. Based

on the image classification outputted by the Neural Network, the authors run DL-Learner

on the ontology to create class expressions that act as global explanations, resulting in an

input-ouput matching. In [81], the authors extract image contents as RDF triples and then

match them to DBpedia via the predicate same-concept, where user questions are translated

into a SPARQL query which is run over the combined knowledge base. Explanations for

image recognition on classes not included in the training data through zero-shot learning are

generated in a similar fashion by [20]. In [21], KGs are used to represent symbolic expert

knowledge to be leveraged by a convolutional neural network and Shapley explanations.

Concept induction together with a class hierarchy is used in [22] to generate explanations for

data differences in images.



Further neuro-symbolic approaches focus on how to integrate ontologies and how this influ-

ences the understandability of global explanations for artificial neural networks applied in

finance and medicine domains (TREPAN Reloaded [141]), which is an extension of TREPAN

[17]. [142] produces explanations for KG embeddings using domain ontologies. For gen-

erating local explanations of stock trend predictions, knowledge graphs were used [25]. A

model-agnostic explainer [26] exploits temporal dimensions along with a medical ontology for

explaining medical diagnosis predictions. The authors in [24] show how domain ontologies

together with description logic based concept induction can be used to explain input output

behavior of trained deep neural networks. In the domain of transfer learning, [23] use domain

knowledge to enhance the explanations regarding which features are beneficial for the transfer.

In Table 1.1 it is shown how these methods fare in regard to the desired properties nat-

uralness, sensitivity, fidelity, reference to graph topology, whether they provide local or global

explanations and which KB they use. It can be seen that most of these methods provide

naturalness, and all of them provide sensitivity as they give background knowledge by

integrating a KB. Fidelity isn’t considered at all, except partly in [18]. None of these methods

can provide reference to graph topology and, except for [23], they provide either local or

global explainability. Most KBs used are ontologies with [21] using knowledge graphs. For

some of these methods, such as [19] [22] [23] [24], the causal links given by the KB do not

directly reflect the operations that took place in the underlying machine learning model.

There is no connection between the KB and the black-box, which makes it impossible to

affirm that the explanation given is why the model predicted this output. Methods which

come with a stronger integration of the inner workings of the ML model and the KB, such

as [15] [21] also don’t provide any fidelity metric, therefore making it hard to evaluate how

close the student and teacher model are in reality. While the objective of reaching natural

explanations, that provide sensitivity through integrating a KB is reached, even formulating a

line of reasoning in some cases [23] [19], the explanation given might not be correct, defeating

its whole purpose.

Further Model-Agnostic explanation methods There is a variety of model-agnostic expla-

nation methods, that can be used on any type of machine learning algorithm with diversified

data types and output features, decision trees or rules as explanations. While some of these

methods do provide fidelity and some naturalness, none of these methods include the ground-

ing of explanations in domain knowledge and therefore enabling sensitivity or are able to



Table 2.5: Comparison of different explanation methods containing symbolic elements with re-
gard to requirements of naturalness, sensitivity, fidelity, reference to graph topology;
local or global; and which knowledge base they contain.

Natural-
ness

Sensi-
tivity

Fidelity
Graph
Topol-
ogy

Local Global Knowledge Base

Non-Ontological
Explanations:
NIWT [15] ✓ ✓ ✗ ✗ ✓ ✗ Free form
TCAV [16] ✓ ✓ ✗ ✗ ✓ ✗ Free form
TREPAN [17] ✗ ✗ ✗ ✓ NA
Ontological Ex-
planations:
TREPAN Rel. [18] ✓ ✗ ✗ ✓ Ontology
Sarker et al. [19] ✓ ✓ ✗ ✗ ✗ ✓ Ontology
Geng et al. [20] ✓ ✓ ✗ ✗ ✗ ✓ Ontology
X-NeSyL [21] ✗ ✓ ✗ ✗ ✓ ✗ Knowledge graph
Widmer et al. [22] ✓ ✗ ✗ ✗ ✓ Ontology
Chen et al. [23] ✓ ✗ ✗ ✓ ✓ Ontology
Labaf et al. [24] ✓ ✗ ✗ ✗ ✓ Ontology
KDTCN [25] ✓ ✓ ✗ ✗ ✓ ✗ Knowledge graph
Doctor XAI [26] ✓ ✓ ✗ ✓ ✗ Ontology



consider graph-specific properties, as they have been designed for tabular data. That’s why

we will give only a short overview. Prominent examples here are LIME [93], which does not

depend on the type of data or type of machine learning model. The explanations, which are

features along with importance values, are derived locally from records generated randomly

in their neighborhood and weighted according to their respective proximity. Extensions of

LIME have been developed, analyzing particular aspects and use cases [129] [143]. Another

well-known approach is SHAP (SHapley Additive exPlanations) [144], where an additive

feature importance score is calculated for each particular prediction with a set of desirable

properties.

2.4.4 Evaluation Measures and Metrics

With the emergence of a variety of different explainability techniques, the question of how to

evaluate these methods is posed. There is no consensus what the most suitable metrics are

to evaluate an explanation’s quality, especially since the target audience for explainability is

heavily heterogeneous [119] and scholars from different disciplines are focused on different

XAI goals [71]. One way to evaluate the explanatory value of the generated explanations are

questionnaires and interviews [71], such as evaluation explanation types based on satisfaction

and transparency [145]. Even though the overarching goal is explainability, different measures

and metrics are used to evaluate the respective goals [71]. Generally, the goodness of

the explanation, user satisfaction and human-understandability as well as user trust are

considered [66]. While user studies are commonly used to evaluate explanations and the

underlying XAI, these studies may suffer from confirmation bias [119]. Here, the issue of user

studies being constructed to confirm explanation effectiveness should not be underestimated

[146]. Furthermore, there is a large variability of human understanding [147], leading to

limited meaning of study results, which have been shown that they cannot capture the

connection between explanations and user performance. To rely on user studies to evaluate

explanations may lead to persuasive explanations rather than transparent systems due to user

preference for simple explanations [148]. This is especially likely for explanations generated

with a separate logic post-hoc via proxy methods, that differs fundamentally from the logic

used by the underlying AI [73]. This means, a user could be satisfied with and trusting

an explanation solely based on confirmation bias or preference for simple explanations,

while the explanation itself is simply wrong [119]. Therefore, objective metrics should be

used for evaluation. While both sub-symbolic and symbolic methods use accuracy metrics,

their implementation can differ. Metrics used later on in the thesis are introduced below.



Further metrics commonly used for evaluating explainability include computational efficiency,

stability of explanations or interpretability metrics.

Metrics for sub-symbolic explanation methods Many GNN explanation methods come

with differing evaluation protocols, which makes their comparison difficult. As outlined in

[149], evaluation of sub-symbolic explanation methods can come with a number of pitfalls,

including the choice of evaluation metrics. Validating explanations is generally a challenging

task because a ground-truth explanation is not always available. As there are several aspects

that can be considered when evaluating an explanation, we have included a number of differ-

ent metrics that have been recently proposed by [69], in order to evaluate our sub-symbolic

explanation method RERE. We are including fidelity and, in case of ground-truth availability,

accuracy in our quantitative analyses. Sparsity is used as a baseline to arrive at meaningful

comparisons between the explanation methods.

Accuracy In synthetic datasets, even though it is unknown whether the GNNs make predic-

tions in our expected way, the rules of building these datasets, such as graph motifs, can be

used as reasonable approximations of the ground truth. That is why, for any input graph, we

can compare its generated explanations with such ground truth motifs. For example, we can

study the matching rate for edges in the explanations with those in the ground truth, e.g., all

edges in a “house”-motif”. For comparability with methods, where a threshold is necessary

to arrive at the final explanation presented to the user, we choose F1-Score as accuracy metric.

Fidelity The model should identify input features that are important for the model, not

intuitive for humans. To evaluate this, the Fidelity metric is recently proposed. The predic-

tions shouldn’t change significantly, when as not important identified input features, which

aren’t discriminative to the model, are being removed. Let Gi denote the i-th input graph

and f denote the GNN model to be explained. Fidelity studies prediction change by keeping

important input features and removing unimportant features. Fidelity can be computed as

Fidelity =
1
N

N

∑
i=1

( f (Gi)yi − f (Gmi
i )yi), (2.7)

where Gm
i is the new graph when keeping important features of Gi based on explanation

mi. Lower values indicate less importance information are removed, resulting in better

explanations.



Sparsity Good explanations should be sparse, which means they should capture the most im-

portant input features and ignore the irrelevant ones. Therefore, the sparsity metric measures

the fraction of features selected as important by explanation methods [7]. Given the graph Gi

and its features identified as important mi, the Sparsity metric can be computed as

Sparsity =
1
N

N

∑
i=1

(1 − |mi|
|Mi|

), (2.8)

where |mi|, denotes the number of important edges identified in mi and |Mi| means the total

number of edges in Gi. Higher values indicate the explanations are more sparse.

Metrics for symbolic explanation methods Accuracy We follow [17] and [141] and measure

accuracy and fidelity on the examples in the test sets. Accuracy is defined as the percentage

of test-set examples that are correctly classified, and is used to evaluate the explanation

method regarding unseen data. If ŷi is the predicted value of the i-th sample and yi is the

corresponding true value, then the fraction of correct predictions over N is defined as

Accuracy =
1
N

N

∑
i=1

1(ŷi = yi), (2.9)

where 1 is the indicator function. It has to be kept in mind, that if the black-box model to be

explained comes with low accuracy, the accuracy of the explanation method might be low as

well [150]. Furthermore, recall and precision are reported, to show the full picture.

Fidelity Here, we use a definition of fidelity, where the percentage of test-set examples

on which the classification made by a tree agrees with its black-box counterpart, is computed.

When y∗i is the predicted value of the black-box model, fidelity is defined as

Fidelity =
1
N

N

∑
i=1

1(ŷi = y∗i ), (2.10)

This is a very simplified notion of fidelity and should only be considered as an indication.

We use it to compare our method against the benchmark.

Comparative Evaluation In order to evaluate the quality of explanations in a quantita-

tive way, several approaches have been developed. While there are different terms used



for this metric in the literature, the core concept is similar, and we will be referring to it as

comparative evaluation. Several works [144] [151] [152] [153] use ground truth statements

(annotations) given by humans, which are then compared with the generated explanation.

Similarly to these concepts, we will use comparative evaluation. The comparison is qualitative

and quantitative. For quantitative evaluation, the rate of ground truth statements covered by

the explanations provided is computed.



3 Subgraph Explanations

3.1 Problem Definition

Existing perturbation-based methods as introduced in Section 2.4.2 focus on explaining

GNN predictions by obtaining masks to indicate important input features, for example by

maximizing the mutual information between the original predictions and predictions with

the masked graph [69]. While the majority of these methods do come with explanation

fidelity and reference to graph topology, they don’t provide sensitivity. No domain or general

background knowledge can be incorporated when generating explanations. Experiments

show that this can for example lead to a Label-Flip problem [149].

3.2 Concept

In contrast, we are proposing a sequential method, which uses reinforcement learning to

provide explanations in the form of a subgraph containing only the information that is most

critical to the decision-making process of the GNN. The approach is model-agnostic and

can explain predictions of any GNN. This includes node classification, link prediction, and

graph classification models. The approach is designed as a reinforcement learning agent

that operates within a subgraph reduction environment. Its state space is composed of the

graph used by the GNN to make a prediction (i.e., the receptive field) with its action space

containing the graph’s edges. The action itself is the removal of an edge chosen by the

agent, trained via policy gradient to optimize a reward composed of the prediction’s resulting

entropy.

Compared to other explainer methods, our approach can offer an even deeper insight

into the decision-making of the GNN, as the edges are removed step by step. Thereby, the

least informative nodes are removed first. The user can easily follow and understand the ex-

planation generation process, providing a traceability mechanism, which is a key requirement

for trustworthy artificial intelligence [72]. Due to its sequential operation, it is possible to

40



include constraints when generating the explanation. This enables the integration of domain

knowledge, e.g., eliminating the Label-Flip issue that is exhibited by other explainer methods.

The properties of this subgraph explanation method are shown in Figure 3.1. In our method,

the actions to generate the explanation are conditioned on the prior state as by the Markov as-

sumption, leading to a relaxation of the independence assumption found in existing methods

[69]. Additionally, our approach does not suffer from the conceptual “introduced evidence”

problem [125] as opposed to other perturbation-based methods [69], that output importance

masks as explanations. Here, any non-zero or non-one value in these masks may introduce

new semantic meaning or noise to the input graph, thus affecting the explanation results.

In comparison to the state-of-the-art graph explanation method GNNExplainer [1], where

masks are optimized for each input graph individually, we develop an inductive approach.

This means that the agent’s policy can be applied to graphs not appearing during policy

optimization, which demonstrates a global understanding of the trained GNN.

Figure 3.1: Technology, type and properties of our method

3.3 Proposed Method

We now introduce the details of our method, namely Receptive Field Reducer for Explaining

Graph Neural Networks (RERE), beginning with the rationale for our choice to leverage

reinforcement learning. A reinforcement learning approach for reducing the receptive field of

the center node presents several advantages compared to alternative optimization methods.

Firstly, through removing edges sequentially, the actions are conditioned on the prior state,



Figure 3.2: An overview of the proposed iterative explainer graph reduction method. Each
row corresponds to one step in the reduction process. (a) The state is defined as
the intermediate k-hop subgraph Gt (b) The policy network conducts message
passing to encode the state as node embeddings to then produce a policy Πθ . (c)
An action at,source and at,target are sampled from the policy. (d) The environment
performs a check on the intermediate state, and then returns (e) the next state
Gt+1 and (f) the associated reward rt.

consequently relaxing the broader independence assumptions introduced by earlier methods

where all actions are made independent of each other. Secondly, reinforcement learning is

capable of directly integrating hard constraints and desired properties of the final subgraph

into the optimization process (e.g., by integrating domain knowledge into the design of

environment dynamics and reward function). Constraints like the desired connectedness

of the subgraph or the avoidance of Label-Flips can be easily implemented. Thirdly, our

approach comes with inductive properties. The policy can be optimized and then applied to

explain instances that it hasn’t seen yet without the need for any further computations.

Figure 3.2 shows an overview of the proposed iterative explainer graph reduction method,

where each row corresponds to one step in the generation process. The state is defined as the

intermediate k-hop subgraph Gt, on which a GNN operates to encode the state in the form

of node embeddings. Based on the learned policy Πθ , action at,source and at,target are drawn.

Each action ai,source corresponds to a source node, for which subsequently a target node is

chosen through action ai,target. The source and target nodes must be connected by an edge,

which is removed. The environment performs a validity check with respect to the specified

constraints on the intermediate state, and then returns the next state Gt+1 along with the

associated reward rt, as lined out in Section 3.3.

Explainer Subgraph Reduction as Markov Decision Process RERE is modeled as a Markov

Decision Process, where we design an iterative subgraph reduction process defined as



M = (S, D, R, p, γ), where S = {Gi} is the set of states that consists of all possible subgraphs,

D = {ai} is the set of actions, where each action corresponds to a specific edge removal

resulting in adjacency matrix A without e = (vi, vj). R(Gi) is a reward function that computes

a reward according to the generated state Gi, p defines the environment dynamics of the

process and γ is the discount factor.

The process to reduce the subgraph sequentially can then be described by a trajectory

(G0, a0, r0, ..., Gn, an, rn), where Gn is the final subgraph. The reduction of the subgraph

at each time step t can be viewed as a state transition distribution p(Gt+1|Gt, ..., G0) =

∑at
p(at|Gt, ...G0)p(Gt+1|Gt, ...G0, at), where p(at|Gt, ...G0) is represented as a policy network

Πθ . A policy is defined as the probability distribution of actions given a state, and the

objective of a RL agent is to maximize the “expected” reward when following a policy Πθ as

detailed in Section 3.3.

RERE Environment RERE environment reduces the initial subgraph step by step through

edge removal actions. The environment consists of the state space, action space and reward

design.

State Space: Assuming there are k layers in the GNN, the prediction only relies on its

k-hop computation graph, denoted as G0. Therefore, the starting state is G0, which cor-

responds to the GNN’s receptive field. The subsequent state G1 equals the G0 with edge

e0 = (v0,source, v0,target) removed, determined by the action pair a0,source and a0,target, unless the

action was rejected due to a constraint violation defined by the environment dynamics p. In

case the action was rejected, Gi+1 equals Gi. The final state Gn is determined by the policy

network.

Action Space: Based on the initial k-hop subgraph, we define a set of nodes {v1, ..., vn}
that can be removed. The action space contains all nodes in the entire current subgraph and

a stop action. Each action ai,source corresponds to a source node, for which subsequently a

target node is chosen through action ai,target. The set of possible target nodes, are all nodes

that are linked through a direct edge to the source node. The source and target nodes must

be connected by an edge, which is then removed. Since the edge removal is modelled as

the action space, RERE is as expressive as other perturbation-based approaches using edge

masking methods. After the action has been carried out, the action space and the subgraph

Gt is reduced by the chosen edge. With this approach, the “introduced evidence" problem



is avoided, as no new semantic meaning or noise is added to the input graph. The feature

matrix Xt is analogously updated to Xt−1. If the action has been rejected, the state space

remains unchanged while the action space is reduced. If the stop action is selected at step t,

the agent stops removing further edges, and the final state Gn equals Gt−1.

State Transition Dynamics: Domain-specific rules are incorporated in the state transition

dynamics. The environment carries out actions that obey the given rules. Infeasible actions

proposed by the policy network are rejected and the state Gt equals Gt−1. This includes a con-

nectivity constraint for graph classifications, to arrive at a connected subgraph as explanation,

since unlike node classification, it is no longer true that the explanation would have to be a

connected subgraph. Therefore, the largest connected component is extracted as the explana-

tion. Here, it is possible to include domain knowledge, by rejecting any action that would

result in contradicting such. One such introduction of knowledge is the Label-Flip issue. With

subgraph perturbation, it is possible that Label-Flips occur. The originally predicted label

isn’t predicted anymore with the final explainer subgraph as GNN input, therefore defeating

its purpose of explaining the original prediction. To avoid this, any action that would result in

a Label-Flip is rejected. In case of node classification explanations, any action that would lead

to a removal of the center node is rejected. Furthermore, there is the possibility to include a

size constraint, when a certain minimum size or sparsity for final explanation is desired.

Reward Design: In our environment, we consider only final rewards to guide the behavior of

the reinforcement learning agent. The reward rT is calculated based on the certainty of the

classification decision given the final state of the reduced subgraph Gn. Since Gn functions as

the explanation for the decision-making of the GNN, it should therefore contain the informa-

tion that increased the certainty of the respective decision-making. To determine the certainty

with which a classification decision has been made by the GNN, we consider the entropy

of the predicted class distribution. Calculating the information of a random variable is the

same as calculating the information for the probability distribution for the random variable.

The entropy function E(X) = −∑n
i=1 P(xi) log2 P(xi) gives us the information for a random

variable. The lowest entropy is calculated for a random variable that has a single event with a

probability of 1, a certainty. For example, in the case of node classification, removing an edge

from the graph should not increase the entropy (i.e., uncertainty) regarding the center node’s

predicted class distribution but instead should preferably decrease or maintain the entropy.

This results in a more interpretable subgraph without any information loss. Here, the change



in entropy is rewarded or penalized, depending on its increase or decrease. The reward is

calculated as follows:

rt = E( f (G0, X0))− E( f (Gt, Xt)) (3.1)

where f denotes the GNN model.

Policy Network Having outlined the receptive field reduction process, we now introduce

the architecture of the policy network used by the agent to act in the environment. The policy

network takes the intermediate graph Gt and outputs a distribution over the actions at,source

and at,target, which are used to select which edge to remove, as described in Section 3.3.

Action prediction We formalize the action selection according to a two-step link prediction

task at time step t. First, either the stop action or a source node is selected. Secondly, in case

of the latter, a target node is selected. The components are sampled according to a predicted

distribution governed by the Equations 3.2 and 3.3.

at,source ∼ Πθ(Gt) = σ
(

H(L)
t,centreWΠ,source

[
H(L)

t ||hstop

]⊺)
(3.2)

at,target ∼ Πθ(Gt, at,source) = σ
(

H(L)
t,sourceWΠ,targetH

(L)
t

⊺
)

(3.3)

where H(L)
t = GNNθ(Gt, Xt), WΠ,source and WΠ,target are weight matrices and hstop is the latent

representation of the stop action. The information from the first action is incorporated in the

selection of the second node. The stop action is part of the action space for the first action

at,source. If the stop action is selected, the process terminates immediately, and no target action

at,target is sampled.

Policy Gradient Training To increase the stability of the training process by reducing the

variance in the reward, we introduce an additional network V̂ϕ which approximates the value

function as a state-dependent baseline [154]. The node embeddings H used by V̂ϕ are shared

with the policy network.

V̂ϕ(Gt) = ⟨wϕ, [H(L)
centre||H

(L)
source]⟩ (3.4)

The intuition here is that the center node embedding is a good state representation to estimate

the state’s value. Once a source node has been picked, its node embedding is concatenated to

the state for the target action state value estimation, otherwise H(L)
source = 0.

The policy network Πθ is optimized according to the policy gradient objective [154]:



∇θ J(θ) = ∇θ E
τ∼Πθ

[
T

∑
t=0

Jt

]
= E

τ∼Πθ

[
T

∑
t=0

∇θ log (Πθ(at|Jt))
(

Jt − V̂ϕ(Jt)
)]

, (3.5)

where Jt =
(

∑T
t′=t γt′−trt′

)
are the discounted rewards. The parameters of the value estimator

V̂ϕ are optimized w.r.t. 1
T ∑T

t
(
V̂ϕ(Jt)− rt

)2.

Label-Flip rate

Reducing the size of the original subgraph is a post-processing step, carried out after training

the GNN. It is possible that the originally predicted label can flip. This means, that the

final explainer subgraph would lead to a different prediction than the original subgraph,

defeating its purpose of explaining the original prediction. We pose the Label-Flip as domain

knowledge, as we know a Label-Flip should not occur, meaning this metric is used as a proxy

to measure sensitivity. The Label-Flip rate shows the average number of Label-Flips occurring

for the generated explanation subgraphs:

Label-Flip rate =
1
N

N

∑
i=1

1(ŷi
mi = ŷi), (3.6)

with ŷi being the predicted value of the i-th sample with the original graph Gi and ŷi and

ŷi
mi is the new prediction based on the new graph Gm

i .

3.4 Illustration for SportsNetwork

As described in Section 2.4.1, an explanation for GNN decision-making should come with

certain properties, namely naturalness, sensitivity, reference to graph-topology and fidelity.

We will look at to what extent our method RERE exhibits these properties illustrated on the

toy example SportsNetwork. Figure 3.3 shows an explanation example for SportsNetwork.

Here, the blue center node has been correctly classified as equestrian. Figure 3.3 (1) shows

the original receptive field used by the GNN to make this prediction. In (2), (3), (4) and (5)

the stepwise removal of edges can be seen. (6) shows the final explanation. The dashed red

lines show which edge is predicted to be removed next.

Since the explanation is presented as an explainer subgraph, naturalness isn’t given. However,

since this method is a sub-symbolic explanation method that incorporates the GNN and

outputs an explainer subgraph, reference to graph-topology is incorporated in the explanation



Figure 3.3: SportsNetwork example for an explanation for the classification of a node as an
equestrian (blue). The edge identified to be removed in the next step by RERE is
marked in dashed red.



method. Similarly, with fidelity, which will be shown in Section 6.

One advantage of our sub-symbolic explanation method over state-of-the-art methods is its

capability to include domain knowledge through its stepwise removal process of edges, and

therefore providing sensitivity to some extent. As introduced in Section 3.3, the Label-Flip

issue can be posed as the incorporation of domain knowledge. As shown in Figure 3.3 (5),

the red dashed edge has been predicted to be removed in the next step, however this action

is rejected as it would be contradicting the knowledge that Label-Flips can lead to a wrong

explanation. Therefore, the edge is not removed, and the domain knowledge is upheld.



4 Non-ontological Explanations

4.1 Problem Definition

While there are a number of different symbolic approaches extracting global explanations

from neural networks for enhanced naturalness and sensitivity by integrating a KB, none of

these methods provide reference to graph topology. An overview of these methods can be

found in Section 2.4.3.2. Graph topology can have significant impact on the decision-making

of a GNN. There, providing explanations that take it into account is essential for their accuracy

in explaining the GNN’s decision-making.

4.2 Concept

We address the lack of naturalness and sensitivity of sub-symbolic existing approaches and

the lack of reference to graph topology of symbolic ones by proposing a post-processing

rule-based companion to a sub-symbolic explanation method, with the conceptual schema

shown in Figure 4.2. Thereby, we aim to complement the sub-symbolic local or instance-level

explanations with global rules. By extracting and aggregating global rule-based explanations

through a standard white-box machine learning method from the generated explainer sub-

graph, we reduce the amount of additional interpretation needed by the user and provide an

explanation, that captures explanations about the global behavior of a model by investigating

what input patterns can lead to a specific prediction.

The goal is to generate systems that can provide global rule-based explanations, which

provide sensitivity and naturalness while including reference to graph topology, as shown

in Figure 4.1. We can achieve this by combining the results of a sub-symbolic explanation

method with a white-box rule generator, which satisfies the representation needs for human

comprehensibility. The rule-based explanation generation isn’t a stand-alone approach, but

an add-on post-processing method in order to enhance the explanations and make them

more user-centric. After training a GNN, the GNN’s decision-making process is interpreted
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Figure 4.1: Technologies, type and properties of our method

by identifying a sparse receptive field containing influential elements. Our post-processing

approach consists of taking these initial sub-symbolic explanations and lifting them to the

level of rules.

An edge mask ME and node feature mask MX are generated by a sub-symbolic explainer

model Fex. The edge mask ME contains all edges that have been identified as influential

by the explainer model, the remaining edges are masked out, the node feature mask MX

is created analogously. Subsequently, rules for edge and node features are created by the

white-box models DE and DX. The rules are created through a classification process, where

the individual edges and features are assigned binary labels “influential" or “not-influential"

based on their masking value. The white-box model is trained using the binary masks as

the target variable. Note that depending on the learning and explanation tasks, different

masks could be generated, including node masks, edge masks, and node feature masks.

The approach works for any type of learning problem and mask. The generated rules then

function as a global explanation for the respective classes of the original classification problem

and furthermore, introduce a verbalization element that comes with higher naturalness than

edge mask ME and node feature mask MX, resulting in an explainer subgraph GS as is shown

in Figure 4.3.

An important part of generating a user-centric explanation is to make the explanation

customizable and include provenance, e.g. by including information about the domain

knowledge utilized by the system to increase user-understandability and acceptability. Such

domain knowledge can be included by extracting attributes from the subgraphs depending



Figure 4.2: Conceptual schema of generating rule-based explanations

on the domain and classification task. An example of such inclusion of domain knowledge

are graph-specific attributes, such as motifs mapped to the domain language.

Figure 4.3: Explainer Subgraph as explanation of a node classification instance.

Personalization of explanations always comes with the drawback of reduced generalization.

Which domain knowledge to chose for which approach is an open research question and

very much dependent on the respective field and the needs of the user along with their

current scenario and context. It is not the intention of our approach to provide a one-size-

fit-all explanation method, but to show how such user-centric properties can be included in

an explainer system. That means, that depending on the application and the user’s need,

guidelines should be established regarding the inclusion of any domain-knowledge.



Algorithm 1: Rule-Based Explanation Generation
Data: Explanation Subgraph Model: Fex;
Graph adjacency: A(N × N);
Node features: X(N × d);
Set of attributes: L = {a1, . . . aL};
Attribute mapping dictionary: T = {a1 : t1, . . . aL : tT};
White-box model: DE, DX
foreach category = 1, 2, . . . , K do

foreach node = 1, 2, . . . , N do
MX, ME = Fex(node, A, X) foreach support_node in ME do

end
If ME(support_node) → ysupport
xsupport = Extract-Attributes(support_node, MX, ME, L)
xsupportm = Map-Attributes(xsupport, T)
DE.fit(xsupportm , ysupport)

end
foreach support_node in MX do

If ME(support_node) → ysupport
xsupport = Extract-Attributes(support_node, MX, ME, L)
xsupportm = Map-Attributes(xsupport, T)
DX.fit(xsupportm , ysupport)

end
end



4.3 Proposed Method

To test this conceptual approach, we propose the method SUBGREX, which enables the gener-

ation of global explanations. We chose the GNNExplainer [1] as the sub-symbolic explanation

method Fex. Our method will work with any other sub-symbolic explanation method that

generates importance scores for explainer subgraphs. The GNNExplainer takes a trained

GNN and its prediction(s), and it returns an explanation in the form of a small subgraph of

the input graph together with a small subset of node features that are most influential for the

prediction, or in other words edge mask ME and node feature mask MX. For their selection,

the mutual information between the GNN’s prediction and the distribution of possible sub-

graph structures is maximized, as is described in Section 2. For example, consider node vi, the

mutual information quantifies the change in the probability of prediction when vi’s receptive

field is limited to the explainer subgraph and its none masked-out node features as is shown

in Figure 4.3. Then, if removing vj from the subgraph strongly decreases the probability of

prediction ŷi, the node vj is a good counterfactual explanation for the prediction at vi. For

SUBGREX, the output of the GNNExplainer, edge mask ME and node feature mask MX, are

used as input for the rule generation step. As method for extracting the rules, the standard

machine learning mechanism decision tree is employed with DE = ID3E, DX = ID3X. The de-

cision tree ID3 is a flowchart-like structure in which each internal node represents a “test” on

an attribute such as a node feature and each branch represents the outcome of the test. Each

leaf node represents a class label, which is the decision taken after computing all attributes.

The decision trees can be linearized into decision rules RE and RX, where the outcome is the

contents of the leaf node, and the conditions along the path form a conjunction in the if-clause.

The classification by the decision tree is binary and based on whether the node vi is considered

influential by the chosen subgraph generation method stemming from the edge mask ME,

which is a 0/1-valued vector and therefore our target attribute for the white-box model DE.

As lined out in Section 2, decision trees are a popular surrogate model to explain the global

behavior of a black-box model, as is illustrated in Figure 4.4. As it is model-agnostic and

doesn’t require any information about the inner workings of the black-box, access to the data

and prediction function is sufficient. TREPAN [17] and TREPAN Reloaded [18] are the most

prominent examples of explaining sub-symbolic models, such as Neural Networks with a

decision tree. While [17] matches the input data with the output, [18] takes into account

domain knowledge by integrating ontologies into the explanations. The SUBGREX method

goes further, by integrating a sub-symbolic explanation method and graph-specific domain



knowledge such as motifs, shown in Figure 4.5.

Figure 4.4: Decision Tree used to explain black-box model

Figure 4.5: SUBGREX Workflow

Graph Attributes The attributes a1, . . . aL for the DE input are extracted from node, edge,

and graph meta information from the explanation subgraphs. Since graph architecture offers



more information than tabular data, it is vital to include reference to graph topology, such as

network motifs. Further graph-specific data could include node degree (for node classifica-

tion) or edge direction. In order to enhance the sensitivity of our approach, the attributes

are personalized to the domain by mapping them to the respective domain terminology, as

shown in Algorithm 1.

Especially, graph motifs have strong explanatory potential, as they usually contain semantic

meanings that are indicative of the characteristics of the whole graph [39]. The used motifs

should capture semantic meanings, e.g., similar to meaningful substructures in the respective

domains. Therefore, a motif dictionary, containing all potential meaningful motifs, should

come from domain knowledge. An example of a motif from the toy example SportsNetwork

introduced in Section 2.3 is the clustering triadic motif.

The choice of graph-specific attributes is dependent on the learning task. For node classifi-

cation problems, attributes such as whether the node is part of a motif, the distance to the

target node (or number of hops) or the node degree are collected for each node. Node n has

the following set of attributes:

L(ni) = {ain_moti f1(ni), ain_moti f2(ni), ..., ain_moti ft(ni), anode_distance(ni), anode_degree(ni)}

For graph classification or link prediction, the respective attribute whether the graph gi

contains a motif should be included:

L(gi) = {acontains_moti f1(gi), acontains_moti f2(gi), ..., acontains_moti ft(gi), aconnectivity(gi)}

By choosing a subset of these features and therefore personalizing the method to the domain,

it is inevitable that domain knowledge and potential bias is introduced into our approach. In

order to enhance the user-friendliness of our approach, the attributes are personalized to the

domain by mapping them to the respective domain terminology.

L(individuali) = {ain_triadic_cluster(individuali), anode_degree(individuali)}



SportsNetwork Explanations:

RE1(Equestrian) = If Individual is part of Equestrian triadic cluster (prob: 97%)

RE2(Equestrian) = If individual has node_degree smaller or equal than 5 (prob: 65%)

RE1(FootballPlayer) = If Individual is part of Football triadic cluster (prob: 78%)

RE2(FootballPlayer) = If individual has node_degree higher than 5 (prob: 66%)

Node Attributes The input used to generate feature selection rules are the instances xi of the

node features of all the nodes of the subgraph remaining based on the edge mask ME. This

means that the number of attributes L equals the combined amount of unique features xi of

all nodes in ME. The corresponding node feature mask MX is then used as target attributes

for classification.

X(individuali) = {xgender(individuali), xage(individuali)}

SportsNetwork Explanations:

RX1(Equestrian) = If Individual is female, then class ’Equestrian’ (prob: 85%)

RX1(FootballPlayer) = If Individual is male, then class ’Football Player’ (prob: 67%)

4.4 Illustration for SportsNetwork

As described in Section 2.4.1, an explanation for GNN decision-making should come with

certain properties for making explanations user-centric through naturalness and sensitivity

while upholding fidelity and reference to graph topology. As our white-box model is part

of a framework that builds on a sub-symbolic explanation method, we will evaluate how

and if the results of our white-box SUBGREX model enhance the explanations given by the

sub-symbolic GNNExplainer as exemplified in terms of the listed properties.

One of the desired properties is naturalness, entailing the use of natural language [114].

For generating coherent natural language explanations, standard patterns of discourse em-

ployed by humans should be followed. While the decision rules RE and RX linearized from

decision trees don’t reach the level of fluid natural language, their simple pattern of an

if-clause, makes it very easy to follow as is shown in the SportsNetwork explanation examples



in Section 4.3. Especially compared to an explainer subgraph as exemplified in Figure 4.3

(right).

By extracting features from the subgraphs depending on domain and classification task

and introducing domain terminology, domain knowledge is included, enabling sensitivity.

Contrary to standard sub-symbolic graph explainer techniques, our SUBGREX method pro-

vides the user with a mapping of topology-based information to domain terminology, e.g.

triangle motif to Equestrian triadic cluster/Football triadic cluster. This makes it easier for

the user, to understand graph topology and set it into context. Therefore, there is less scope

for a misinformed interpretation of the graph structure. By personalizing the rule-based ex-

planations through choosing the attributes to be included, the output can also be customized

according to the user’s need by the SUBGREX method.

Through extracting graph topology features from the graph structure based on domain

knowledge, these features feed into the explanations, whereas in a standard white box model,

they would be ignored and crucial information relating structural connections could be missed.

Furthermore, through domain knowledge mapping, there is less scope for a misinformed

interpretation of the graph structure by the user.

Since this method uses a sub-symbolic explanation element in its framework instead of

simple input-output mapping, it should come with a higher explanation fidelity.

Additionally, since our global approach is smoothing over many instance-level explana-

tions, it may also be less susceptible to noise. A stable global explanation may also improve

the classification decision understanding.



5 Ontological Explanations

5.1 Problem Definition

As explicated in Section 2.4.3.2, no approach exists that can provide explanations for GNNs

that come with naturalness, sensitivity, fidelity, and reference to graph topology. Furthermore,

most existing symbolic explanation methods either provide global or local explainability, but

not both.

Figure 5.1: Technologies, type and properties of our method

5.2 Concept

With the method OntExplainer, we aim to develop a hybrid method by combining GNNs, sub-

symbolic explanation methods and inductive logic learning. This enables human-centric and

causal explanations through extracting symbolic explanations from identified decision drivers

and enriching them with available background knowledge. These function as local as well as

global explanations, as shown in Figure 5.1. With this method, high-accuracy sub-symbolic
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Figure 5.2: Learning Explainer Classes process flow.

predictions come with symbolic-level explanations, and provide an effective solution for the

performance vs. explainability trade-off. The developed novel fidelity metric indicates how

close an explanation is to the GNN’s internal decision-making process. Additionally, the

employment of justifications in our method provides a reasoning component that makes use

of the background knowledge.

5.3 Proposed Method

We are proposing the hybrid method OntExplainer, within which the coupling of the sub-

symbolic explanation method GNNExplainer with the symbolic DL-Learner is used to

explain GNN local predictions. Our approach is task-agnostic and can be applied to graph

classification, node classification or link prediction. The process flow of learning explainer

classes can be seen in Figure 5.2.

For incorporating explicit domain knowledge into our explanation method on the side of

symbolic representation, we use ontologies expressed in the W3C OWL 2 standard1 [57]

based on the description logic formalism. The concepts Semantic Web ontology, entailment,

inductive logic learning as well as justifications have been introduced in Section 2.2. GNNs

and sub-symbolic explanation methods in Section 2.1.2 and Section 2.4.2.

Explainer Class Learning Firstly, a GNN is trained on and applied to training and testing

data and subsequently the sub-symbolic explanation method GNNExplainer is applied to

all generated predictions, as can be seen in Figure 5.2 (Step 1 and Step 2). The sub-symbolic

1https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/owl2-overview/


Table 5.1: Example excerpt of δSportsNetwork.
(1) Football ⊑ TeamSports football is a team sport
(2) FootballTriadicMotif ⊑ Clus-

teringTriadicMotif ⊑ Social-

Structure

football triadic motifs are clus-
tering triadic motifs, which are
social structures

(3) FootballPlayer(Individual_2) Individual_2 is a football player
(4) hasGender(Individual_2, male) Individual_2 has gender male
(5) fromCountry(Individual_3, Ger-

many)

Individual_3 is from Germany

(6) hasFriend(Individual_2, Indi-

vidual_1)

Individual_2 has friend Individ-
ual_1

explanation method takes a trained GNN and its prediction(s), and it returns an explanation

in the form of an explainer subgraph together with a small subset of node features that

are most influential for the prediction, or in other words, importance scores. For their

selection, the mutual information between the GNN prediction and the distribution of

possible subgraph structures is maximized through optimizing the conditional entropy. The

explanation method output is comprised of edge masks MEi ∈ {0, 1}n×n ⊂ Ai and node

feature masks MXi ∈ {0, 1}n×d ⊂ Xi, which are used as input to our framework. We chose the

GNNExplainer [1] for our framework, but our approach will work with any other explainer

subgraph generation method, including RERE.

Secondly, to create explainer classes for the GNN decision-making process, DL-Learner

is applied for a specific predicted category, with positive and negative examples labelled

accordingly through y_i (Step 4). The background knowledge used by the DL-Learner to learn

explainer classes is comprised of the adjacency matrices Ai and node feature matrices Xi,

edge masks MEi and node feature masks MXi and domain knowledge δ. As the DL-Learner

can only process ontologies, the matrices are mapped to an ontology (Step 3) through λ as

detailed below in the next step.

Extraction and Mapping Step A set of graphs detailed in their associated matrices Ai and

Xi
2 are modelled as set of individuals {ηi}. Their edges and node features are extracted from

Ai
′s and Xi

′s edge and feature lists and modelled as set of individuals {υj} and {χk}. If there

are structures relating to graph topology common in the respective domain, such as certain

2Their size is dependent on the number of layers used by the GNN, to keep the consistency in coupling the
sub-symbolic with the symbolic method.



motifs, e.g. a triadic or ring structure, the set of possible structures {moti fz} along with

their extraction functions {γz(Ai, Xi)} is defined and mapped through mapping function

S : {moti fz} 7→ {γz(Ai, Xi)}.

If moti f1 is contained in (Ai, Xi), extraction function γ1(Ai, Xi) returns all individuals con-

tained in the structure. The found structures are modelled as a set of individuals {ψg}. To

assign all individuals their type declarations and roles, a set of roles {ρv} and type declara-

tions {τw} as well as further mapping functions based on domain knowledge δ are needed.

Defining these sets and mapping functions has been done as a one-time manual step, with

their complexity depending on the domain.

P : {ηi} × ({υj} ∪ {χk} ∪ {ψg}) 7→ {ρv}, maps a pair of individuals to their role.

T : {ηi} ∪ {υj} ∪ {χk} ∪ {ψg} 7→ {τw} maps individuals to their types.

All extracted individuals, roles and type declarations are added as axioms to ontology

O through function AddAxiom(O, axiom) as is shown in Algorithm 2. Therefore, λ is defined

as λ(Ai, Xi, T, P, S) 7→ O. Equivalently, λ is carried out for all corresponding sub-symbolic

explainer subgraphs with their associated edge masks MEi and node feature masks MXi , with

the set of explainer graphs modelled as individuals η_subi.

Additionally, mapping function µ is defined as bijective function, as is shown in Algorithm

2. This function is needed for the fidelity calculation. Function µ is defined in such a way,

that if the input, e.g. σ1, doesn’t map to anything, σ1 will be returned as output. An example

ontology for our toy example SportsNetwork is shown in Table 5.1.



Example 5. (Mapping SportsNetwork Data with SportsNetwork Ontology)

The mapping functions SSportsNetwork = {FootballTriadicMoti f : γFootballTriadicMoti f ,

EquestrianTriadicmoti f : γEquestrianTriadicMoti f , ...},

RSportsNetwork = {(ηi, υj) : hasFriend, (ηi, χk) : hasAge, ...} and

TSportsNetwork = {ηi : Individual, υj : Link, χk : Country, ...} are defined based on domain

terminology δSportsNetwork. For example, from sports network graph G1 with associated matrices

X1 and A1, the edge individuals edge_1_2, edge_1_3, etc., are modelled. For extracting

structure FootballTriadicmoti f , which is defined as three football players connected among

each other, function γFootballTriadicmoti f (A1, X1) is employed. All accruing axioms are added to

the ontology OSportsNetwork. Through µ, the set of edges forming the identified structure, e.g. {

edge_1_2, edge_1_3, edge_1_4 } is mapped to the individual structure_1_1_1.



Algorithm 2: Graph Structure Extraction λ

Data: Set of graphs with adjacency matrices Ai, feature matrices Xi, mapping functions

for type declarations T(σ), roles P(σ1, σ2) and structures S(x)

Result: O, µ

O : {}
foreach graph in range(i) do

AddAxiom(O, T(graph) (ηgraph))

foreach edge in Edgelist(Agraph) do

AddAxiom(O, T(edge)(υedge_graph) )

AddAxiom(O, P(graph, edge)(ηgraph, υedge_graph) )

end

foreach feature in Featurelist(Xgraph) do

AddAxiom(O, T( f eature)(χ f eature_graph) )

AddAxiom(O, P(graph, f eature)(ηgraph, χ f eature_graph) )

end

foreach structure in {moti fz} do

if S(structure)(Agraph, Xgraph) not None then

foreach number in range(count(S(structure)(Agraph, Xgraph))) do

AddAxiom(O, T(structure)(ψgraph_structure_number) )

AddAxiom(O, P(graph, structure)(ηgraph, ψgraph_structure_number))

µ : S(structure)(Agraph, Xgraph) 7→ ψgraph_structure_number

end

end

end

end

Definition 4 (Explainer Class Learning) Given ontology O and a set of graph individuals {ηi} ∈
O 3 with their respective classifications {y1, y2, ...yi} provided by a GNN for a certain category, we

define explainer class learning as inductive logic learning such that ηj|yj = category ∈ E+ and

ηk|yk ̸= category ∈ E−.

O provides the background knowledge for inductive logic learning, and the classification

decision by the GNN provides the positive and negative examples in order to learn explainer
3Mapping sub-symbolic graph representations (Xi, Ai) 7→ O, resulting in individuals ηi is specified in Section

5.3



classes.

According to the GNN’s classifications, positive and negative examples of graphs are distin-

guished, and explainer classes are learned. The background knowledge is the ontology O =

δ ∪ λ(Ai, Xi, T, P, S) ∪ λ(MEi , MXi , T, P, S). We differentiate between two types of explainer

classes:

1. Input-Output Explainer Classes

Given Section 2.2 Def. 4, background knowledge δ ∪ λ(Ai, Xi, T, P, S), ηi|yi = category ∈
E+ and ηi|yi ̸= category ∈ E−, a set of Input-Output Explainer Classes {ϕ

category
i } are

learned. Input-output explainer classes are candidate explanations, that capture the

global behavior of a GNN through investigating what input patterns can lead to a

specific class prediction, comparable to the input-output mapping approach in [19].

2. Importance Explainer Classes

Given Section 2.2 Def. 4, background knowledge δ ∪ λ(MEi , MXi , T, P, S), η_subi|yi =

category ∈ E+ and η_subi|yi ̸= category ∈ E−, a set of Importance Explainer Classes

{φ
category
m } are learned. Importance Explainer classes show which edges, nodes, features,

and motifs are important for the GNN to predict a certain class. These class expressions

represent the inner workings of a GNN, by incorporating the output of the sub-symbolic

explainer.

Explainer Class Application for Local Explanations The pool of possible explainer classes

for all categories, consisting of {ϕi} and {φi}, are used in the application step to generate

local explanations through explainer class entailment and justification steps.

Explainer Class Entailment

Given Section 2.2 Def. 1., a set of explainer classes {ϕ
category
i } and {φcategory}, ontology O

and individual ηj classified as category, entailments for ηj are generated. By doing so, we

check if the learned overall decision-making pattern of the GNN applies to a specific instance.

For all available explainer classes, entailments for a specific individual ηj are generated. It is

possible, that several entailments hold, just as it is possible that a classification decision of

Gj is based on several factors. The set of entailments for ηj is given by CExp(ηj) = {ϕ | O |=
ϕcategory(ηj)} ∪ {φ | O |= φcategory(ηj)}.

Definition 5 (Entailment Frequency) Given an ontology O, explainer class ϕ
category
i and a set of

individuals {ηi}, we define the entailment frequency as the number of entailments for |{η ∈ {ηi} :

O |= ϕ
category
i (η)}| over the number of instances |{ηi}|.



Table 5.2: Example justification J (OSportsNetwork, ϕm
3 (η1)).

(1) η1 is Equestrian

(2) Equestrian refersTo HorseRiding

(3) HorseRiding SubClassOf IndividualSports

(4) ϕm
3 EquivalentTo does some IndividualSports

The entailment frequency gives insight over the generality or specificity of explainer classes

and representing the average frequency with which a certain explainer class is entailed.

Explainer Class Entailment Justification

Given O and entailment O |= ϕ
category
i (ηj), justification J (O, ϕ

category
i (ηj)) is generated. The

number of generated axioms gives some insight about the level of domain knowledge em-

ployed. As there can be several justifications for an entailment, we limit them to only one.

Since a shorter justification tends to be more efficient, the justification with the minimum

number of axioms is chosen.

Example 5. (Justification for SportsNetworks Explainer Class)

Table 6.15 shows an example justification for the entailment OSportsNetwork |= ϕm
3 (η1), which

contributes to a meaningful explanation, as it carries causal information present in expert

knowledge about the conclusion.

Fidelity Calculation

Fidelity is defined as the measure of the accuracy of the student model (DL-Learner) with

respect to the teacher model (GNN). High fidelity is therefore fundamental, whenever a

student model is to be claimed to offer a good explanation for a teacher model. Without

high fidelity, an apparently perfectly good explanation produced by an explainable system is

likely not to be an explanation of the underlying sub-symbolic system which it is expected to

explain [120]. We calculate Fidelity as follows:

Fidelity(ϕi, ηj) =
|µ−1(ind(J (O, ϕi(ηj)))) ∩ η_subj|

|µ−1(ind(J (O, ϕi(ηj))))|
, (5.1)

where ind() is a function that collects all individuals that are provable instances of a set of



axioms. The denominator equals the count of the set of edges or node features that have to

be part of ηi, for the entailment of explainer class ϕi to hold. The fidelity metric is defined

as the overlap of the sub-symbolic explainer output with the entailed explainer classes, as

can be seen in Figure 5.3, which means that the effectiveness of the sub-symbolic explanation

method in representing the GNN decision-making is therefore assumed.

Example 6. (Fidelity for Explainer Class hasMotif some FootballTriadicMotif )

As the explainer classes are represented through axioms, e.g. ϕn
2 = hasMotif some Football-

TriadicMotif, we apply the justification mechanism to arrive at the axioms containing the

corresponding individual(s) for the specific example η1, such as η1 hasMotif motif_1_2_3 ∈
J (ϕn

2 , η1). Since there might be a multiplicity of individuals, function ind(J (O, ϕ2(η1)) is

applied, which collects all individuals that are provable instances of the justification. These

individuals are then inversely mapped (µ−1) to their corresponding set of individuals, in this

example { edge_1_2, edge_1_3, edge_2_3 }. In case there is no corresponding set of individuals,

the inverse mapping simply returns the given individual. For the numerator, we count the

overlap of the identified set of individuals with the individuals in η_subi, the subgraph identified

by the GNNExplainer.

Definition 6 (Final Explanation)) Given the set of entailments, that hold for ηj, we define the final

explanation E(ηj) as the set of the respective justifications E(ηj) = {J (O, C(ηj))} | C ∈ CExp(ηj).

Example 7. (SportsNetwork G1) In Figure 5.3, the final explanation for the classification for

an individual as a football player can be seen, complete with justifications and fidelity score.

Verbalization

For increased user-friendliness, the class expressions are verbalized further with the state-

of-the-art LD2NL framework [62]. For example, through the verbalization step, the class

expression ϕm
3 EquivalentTo inAgeGroup some YoungAdult is translated to “Football player is

in age group Young adult".



Figure 5.3: Final explanation for individual η1 (blue node), which has been classified as
football player (fp).



5.4 Illustration for SportsNetwork

As outlined in Section 2.4.1, an effective explanation of a GNN’s decision-making process

must meet four criteria: naturalness, sensitivity, reference to graph topology, and fidelity.

The OntExplainer generates class expressions with a sentence-like structure, providing expla-

nations that are natural and easily understood. The verbalization step further strengthens

this by translating the explanations into fluid natural language.

The inclusion of structured domain knowledge in the form of an ontology adds sensitivity to

the explanations. Domain knowledge is incorporated, and the possibility of justifications for

the explanations adds a reasoning component.

The extraction and mapping step, which is based on available domain knowledge in the

ontology, enables important references to graph topology.

The OntExplainer uses a sub-symbolic explanation element in its framework, rather than a sim-

ple input-output mapping, leading to higher explanation fidelity. A fidelity measure for this

framework ensures that the verbalized explanations are close to the actual decision-making

process of the GNN. The measure also quantifies the level of accuracy of the verbalized

explainer class.



6 Experiments and Results

The methods presented in this research are evaluated on two distinct datasets. The first

dataset, Mutagenicity [44], is a chemical molecule use case commonly used in literature to

evaluate the sub-symbolic explanation methods of GNNs. The second dataset describes a

cybersecurity use case in an industrial setting and was generated using a demonstrator system

that reflects the design of modern industrial systems integrating information technology (IT)

and operational technology (OT) elements. To evaluate the accuracy of the RERE method,

additional experiments were conducted using synthetic datasets that provide ground truth

explanations.

As our identified properties are naturalness, sensitivity, reference to graph topology and

fidelity, we want to evaluate these properties, along with the XAI method’s ability to provide

global or local explanations. A number of accuracy and fidelity metrics exist and can be em-

ployed. Naturalness entails the use of natural language explanations. As this is a qualitative

notion, it has to be evaluated as such, whether a coherent textual explanation is produced.

For evaluating sensitivity, we use proxy metrics (data points which can be used to represent

the value of something else) and comparative qualitative evaluations given ground truth

concepts. Since the property reference to graph topology is a qualitative notion, measuring it

is difficult. Either topological information is considered or not. Therefore, we use accuracy to

determine in how far integrating graph topology into the explanation leads to improvements

compared to benchmark methods.

As we are using a variety of different methods, including a reinforcement learning algorithm,

decision trees and inductive logic learning as XAI, different metrics are necessary to evaluate

the accuracy and fidelity of the explanations. This is especially important in order to compare

our methods to the state-of-the-art methods in the respective XAI sub-field. The type of

metric used to evaluate the respective method and corresponding property is listed in Table

6.1. The used metrics have been introduced in Section 2.4.4 and Section 5.
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For subgraph explanations (RERE), the accuracy is calculated with F1-Score, however this

is only possible for the additional experiments, as ground-truth explanations are required.

Fidelity is calculated according to Equation 2.7 and the Label-Flip rate (Eq. 3.6) is included as

a proxy to measure sensitivity.

For non-ontological explanations (SUBGREX), predictive accuracy and fidelity are calculated

according to Equations 2.9 and 2.10 respectively. The naturalness of the explanations is

evaluated qualitatively, and the sensitivity is evaluated based on comparative evaluation.

For ontological explanations (OntExplainer), the predictive accuracy of the explanations is

calculated according to 2.9 for the Mutagenicity use case. Furthermore, we are looking at

the entailment frequency, defined in Section 5 Def. 5, to measure the generality or speci-

ficity of the explanations. As the cybersecurity use case is qualitatively different from the

Mutagenicity use case, the evaluation metrics for the utility of explanations differs somewhat.

In the cybersecurity use case, one of the tasks is to reduce the amount of false positives

in order to decrease the workload of the cybersecurity analysts. That’s why the reduction

rate of false positives, i.e., by how much percent is the number of false positives reduced, is

taken into account for evaluating our method instead of the predictive accuracy. For fidelity

measurement, we are employing a novel fidelity metric, that is based on the sub-symbolic

explanation method in the framework. The fidelity metric is defined in Section 5 Equation 5.1.

To measure the sensitivity, we are employing comparative evaluation. Furthermore, we can

look at the average number of justification axioms to see the structural depth of the domain

knowledge provided.



Table 6.1: Properties and Metrics for Evaluation

Method Property Metric

Subgraph Explanations

Fidelity Fidelity (Equation 2.7)
Sensitivity Label-Flip rate (Equation 3.6)
Reference to graph topology F1-Score

Non-ontological Explanations
Fidelity Fidelity (Equation 2.10)

Naturalness Qualitative Evaluation
Sensitivity Comparative Evaluation Score
Reference to graph topology Predictive Accuracy (Equation 2.9)

Ontological Explanations
Fidelity Fidelity (Equation 5.1)
Naturalness Qualitative Evaluation

Sensitivity
Comparative Evaluation Score
Number of Justification Axioms

Reference to graph topology
Predictive Accuracy (Equation 2.9)
Entailment Frequency (Equation 5)
False Positive Reduction rate



6.1 Chemical Molecule Use Case

Figure 6.1: Excerpt of the Mutagenicity dataset. Number of edges of total dataset: 133447.
Max. graph size: 103, avg. graph size: 29.76, std of graph size: 15.89.

For the first use case, we use data from a chemical domain, as it comes with complex domain

knowledge that is universally accepted and can therefore be considered as ground truth when

evaluating explanations. Furthermore, it comes with a benchmark dataset that is widely used,

for evaluating our method against others. Here, a collection of nitro aromatic compounds or

molecules are used with the goal to predict their mutagenicity, which refers to the induction

of permanent transmissible changes in the amount or structure of the genetic material of

cells or organisms. We use a real-life dataset, Mutagenicity, for graph classification. The

dataset contains 4377 molecule graphs labeled according to their mutagenic effect on the

gram-negative bacterium Salmonella typhimurium. An excerpt of the graphs can be seen

in Figure 6.1. Graph nodes have 14 labels, and each graph is labelled as belonging to 1 of

2 classes [44]. Input graphs are used to represent chemical compounds, where nodes stand

for atoms and are labeled by the atom type, which is represented by one-hot encoding. The

atoms included are listed in Table 6.2 along with their chemical symbol. They are color-coded

according to the widely used Corey–Pauling–Koltun coloring system [155]. Edges between

vertices represent bonds between the corresponding atoms.



Table 6.2: Mutagenicity graph node labels with chemical symbol in its corresponding color.

Chemical Symbol Element

0 C Carbon
1 O Oxygen
2 Cl Chlorine
3 H Hydrogen
4 N Nitrogen
5 F Fluorine
6 Br Bromine
7 S Sulfur
8 P Phosporus
9 I Iodine
10 Na Natrium
11 K Kalium
12 Li Lithium
13 Ca Calcium

It is well-established that molecules containing carbon rings (as depicted in Figure 6.2) and/or

Azanide NH2 groups (as shown in Figure 6.3) or Nitrogen NO2 have mutagenic properties,

according to the study by Debnath et al. [44]. Additionally, it has been found that chemicals

with three or more fused rings exhibit higher mutagenic potency compared to those with

one or two fused rings. These five observations and their inverse serve as the benchmark for

comparative evaluation.



Figure 6.2: Example for molecule graph containing three fused carbon rings C6. Correspond-
ing edges are colored magenta.

Figure 6.3: Example for molecule graph containing the functional group NH2 or Azanide.
Corresponding edges are colored magenta.



6.1.1 Subgraph Explanations

We follow the experimental settings in GNNExplainer [1]. We train a three-layer GNN and

then apply all introduced explainer methods to explain predictions made by the GNN. We

use the Adam optimizer to train the GNN. All GNN models are trained for 1000 epochs with

learning rate 0.001, reaching accuracy of at least 85% for the graph classification datasets. The

train/validation/test split is 80/10/10% for all datasets.

For RERE we train for at least, 30000 episodes. This is efficient, as RERE policy only needs

to be trained once and can then be applied to unseen nodes. We use the Adam optimizer

and learning rate 0.001. For RERE, we train ten policies based on randomly chosen graphs

for each class and average the results. For better comparison of the quantitative results, we

include a size constraint to arrive at a similar sparsity as the alternative baseline approaches.

Benchmark Methods We compare our approach with the benchmark methods GNNEx-

plainer [1], PGExplainer [2] and SubgraphX [3]. These methods have been introduced in

Section 2.4.2. All three methods are perturbation-based and produce a subgraph as explana-

tion for a GNN model prediction based on importance scores. The results for these methods

in terms of fidelity, Label-Flip rate and sparsity can be seen in Table 6.3. Is it shown that

GNNExplainer performs best in terms of fidelity.

Table 6.3: Performance evaluation of RERE and alternative baseline explainability approaches
for Mutagenicity. Bold indicates best result.

Fidelity (Eq. 2.7) Label-Flip rate Sparsity

GNNExplainer 0.32 0.43 0.69
PGExplainer 0.34 0.4 0.65
SubgraphX 0.39 0.49 0.63
RERE 0.33 0 0.62

Quantitative Results The quantitative results, including fidelity and Label-Flip rate, are

shown in Table 6.3. The metric Label-Flip rate functions as a proxy for measuring the

capability for sensitivity. The results show, that for the Mutagenicity dataset, a Label-Flip rate

of 0% can be achieved with similarly high levels of fidelity compared to the baseline methods.

Qualitative Results The successive removal of edges by the agent is shown in Figure 6.4,

with the respective last step being the final explanation. As demonstrated in these Figures,



mutagenic properties such as certain chemical groups are being correctly identified by RERE.

While the baseline methods GNNExplainer and PGExplainer have also shown to identify

such motifs, RERE comes with the option to follow the edge removal process successively,

where the least informative edges are being removed first. This property can increase the

trustworthiness of the explanations, as the user can follow the subgraph reduction procedure

more closely, which provides traceability [72].

Figure 6.4: Step-wise removal of edges in a molecule based on RERE. The node labels give
the action probability of an edge connected to the respective node being removed.

Figure 6.4 shows, that RERE correctly identifies the chemical group NO2 as mutagenic

property, with this chemical group having continuously a low probability of being removed

and being part of the final subgraph. Figure 6.5 shows how edges with attached Chlorine,



Figure 6.5: Step-wise removal of edges in a molecule based on RERE. The node labels give
the action probability of an edge connected to the respective node being removed.

Carbon and Hydrogen nodes are being removed, resulting in a final explanation containing a

remaining carbon ring, another chemical group that is known to be mutagenic.



6.1.2 Non-ontological Explanations

We carry out graph classification with a Graph Convolutional Network. We use the Adam

optimizer to train both the GNN for 1000 epochs with learning rate 0.001, reaching accuracy

of more than 85%. The train/validation/test split is 80/10/10%, that means we have 3469

training graphs, 434 validation graphs and 434 testing graphs. In the next step, we generate the

edge mask MEi and node feature mask MXi for the molecule graph gi with the GNNExplainer.

The same optimizer and learning rate is used as with the GNN, and we train for 100 epochs.

Table 6.4 shows the free form knowledge used as domain knowledge. All motifs are extracted

from the edge and node features masks. Decision trees are generated for graph attributes

L(moleculei) with the motifs taken from the domain knowledge as well as for the node

attributes X(moleculei):

L(moleculei) = {acontains_Carbon_5−Ring(moleculei), acontains_Carbon_6−Ring(moleculei),

acontains_Azanide(moleculei), acontains_Methyl(moleculei), acontains_Nitro(moleculei)}

X(moleculei) = {xCarbon(moleculei), xOxygen(moleculei), ..., xCalcium(moleculei)}

Decision tree training and testing data follows a random 80% - 20% split.

Table 6.4: Graph Motifs for Mutagenicity.

Motif Functional Group
Carbon 5-Ring C5

Carbon 6-Ring C6

Azanide NH2

Methyl CH3

Nitro NO2

Figure 6.6: GNNExplainer results for Mutagenicity dataset classifications. Figure adapted
from Figure 4 and Figure 5 in [1].



GNNExplainer Output for Mutagenicity Dataset Classifications

The GNNExplainer is applied to identify the most influential parts of the respective graph for

the classification decision. Figure 6.6 shows the original graph, its edge mask ME as identified

by the GNNExplainer and the ground truth for a mutagenic (left) and nonmutagenic (middle)

molecule as well as the identified node feature mask MX (right). It can be seen that the

identified important graph motifs and node features align with some ground truth mutagenic

properties, as given by [44]. These include ring structures and the node features C, O, N and

H. However, the fact that these results represent a carbon ring as well as the chemical group

NO2 (Nitrogen dioxide) is left to the user for interpretation.

Benchmark Methods In order to test the effectiveness of our method for being a global

explainer method, we compare it to a decision tree explainer method without taking into

account any edge mask ME and node feature masks MX. This means, the features are

extracted from the original input graphs as opposed to the explainer subgraphs, similarly to

[18], which we call Standard Decision Tree Explainer (SDTE). The free form domain knowledge

included in this method is identical for better comparability. The quantitative comparison to

a method analogously to [17], as illustrated in Section 4 Figure 4.4, which doesn’t include any

domain knowledge (SDTE w/o KB) results in decision rules that only include node features,

comparably to SDTE RX. All insight gained from SDTE DX or SUBGREX DX respectively is

missing.

Quantitative Results We report the accuracy as defined Def. 2.9 to show to which extent

our explanations can function as a global explanation. Accuracy indicates the ability of the

decision tree to correctly classify a node or feature as influential. The accuracy for SUBGREX

DE is at 82% and therefore 27 percentage point higher than the benchmark method SDTE

DE, as shown in Table 6.19 Similarly, the accuracy for SUBGREX DX lies at 73% compared

to 54% for SDTE DX, which is little higher than random. In terms of fidelity, defined as the

percentage of test-set examples on which the classification made by a decision tree agrees with

its GNN counterpart (Eq. 2.10), the results are analogous. In order to quantitatively evaluate

sensitivity, we look at the percentage of coverage regarding the ground truth explanations

provided by humans. The results in Table 6.6 show that without including domain knowledge

(SDTE w/o KB), none of the ground truth statements are covered, while for SDTE 30% are.

With SUBGREX 80% of ground truth statements are covered by the generated explanation.



Table 6.5: Accuracy, Recall, and Fidelity for DE and DX for Mutagenicity

Model Accuracy
(Def. 2.9)

Recall Precision Fidelity
(Def. 2.10)

SUBGREX DE 0.82 0.64 1 0.82
SDTE DE 0.55 0.07 0.42 0.48
SUBGREX DX 0.73 0.71 0.74 0.74
SDTE DX 0.54 0.2 0.51 0.53
SDTE w/o KB DX 0.54 0.2 0.51 0.53

Table 6.6: Comparative Evaluation for Mutagenicity: Percentage of ground-truth statements
covered.

SUBGREX SDTE SDTE w/o KB

0.8 0.3 0

Qualitative Results In the following, linearized rule-based explanations RE and RXfrom

the respective decision trees for Mutagen and Non-Mutagen classifications are listed:

Table 6.7: REi(Mutagen)

Rule Probability

if (Methyl > 0.5) 100.0%
if (Methyl <= 0.5) and (Nitro > 0.5) 100.0%
if (Methyl > 0.5) and (Nitro > 0.5) and (Azanide > 0.5) 100.0%
if (Methyl > 0.5) and (Nitro <= 0.5) and (CarbonSixRing > 0.5) 66.67%

The generated decision rules REi(Mutagen) (Table 6.7) give the user a comprehensible idea of

the network motifs that are influential in the GNN’s decision-making. While an if-then rule

doesn’t provide fully fluent natural language, the explanation is in textual form and provides

enhanced naturalness compared to an explainer subgraph. Rules including Methyl, Nitro,

Azanide and Carbon 6-Ring as decision drivers are generated. The latter three motifs are

known to have mutagenic properties. Analogously, REi(Non − Mutagen) (Table 6.9) shows

that the non-existence of these motifs and motif Carbon 5-Ring additionally in the explainer

subgraph, are the decision rules for Non-Mutagenicity.

The node feature rules RXi(Mutagen) (Table 6.8) are somewhat more convoluted and also

come with lower probabilities. While there are some clear rules indicating the existence of



Table 6.8: RXi(Mutagen)

Rule Probability

if (Hydrogen > 0.5) and (Bromine <= 0.5) and (Oxygen <= 0.5) and (Carbon >
0.5) and (Chlorine <= 0.5) and (Phosphorus <= 0.5) and (Fluorine <= 0.5) and
(Nitrogen <= 0.5) and (Potassium <= 0.5) and (Sulfur <= 0.5)

87.07%

if (Hydrogen > 0.5) and (Bromine <= 0.5) and (Nitrogen <= 0.5) and (Phos-
phorus <= 0.5)

74.6%

if (Carbon > 0.5) 74.4%
if (Carbon > 0.5) and (Bromine <= 0.5) and (Nitrogen <= 0.5) 69.49%
if (Carbon > 0.5) and (Bromine <= 0.5) and (Chlorine <= 0.5) 68.34%
if (Hydrogen > 0.5) and (Bromine <= 0.5) 66.15%

Table 6.9: REi(Non − Mutagen)

Rule Probability

if (Methyl <= 0.5) and (Nitro <= 0.5) and (Azanide <= 0.5) 71.43%
if (Methyl <= 0.5) and (CarbonSixRing <= 0.5) and (Azanide <= 0.5) and
(CarbonFiveRing <= 0.5) and (Nitro > 0.5)

62.5%

if (Methyl <= 0.5) and (Nitro <= 0.5) 57.49%

Carbon as a decision driver for mutagenicity, Nitrogen’s existence is not identified as such.

However, Hydrogen and Nitrogen’s non-existence, which make up the known mutagen Nitro,

are included in RXi(Non − Mutagen) (Table 6.10). The difference between REi and RXi shows,

that the inclusion of domain knowledge and reference to graph topology in the shape of

motifs leads to much more user-friendly and more accurate explanations.



Table 6.10: RXi(Non − Mutagen)

Rule Probability

if (Hydrogen <= 0.5) and (Nitrogen > 0.5) and (Carbon <= 0.5) 100.0%
if (Hydrogen <= 0.5) and (Nitrogen <= 0.5) and (Oxygen > 0.5) and (Carbon
<= 0.5)

100.0%

if (Hydrogen <= 0.5) and (Nitrogen > 0.5) 91.51%
if (Carbon <= 0.5) and (Nitrogen <= 0.5) and (Oxygen <= 0.5) and Hydrogen
<= 0.5) and (Sulfur <= 0.5) and (Chlorine <= 0.5) and (Bromine <= 0.5) and
(Phosphorus <= 0.5)

74.61%

if (Hydrogen <= 0.5) 63.51%



6.1.3 Ontological Explanations

We carry out graph classification with a Graph Convolutional Network. We use the Adam

optimizer to train both the GNN for 1000 epochs with learning rate 0.001, reaching accu-

racy of more than 85%. The train/validation/test split is 80/10/10%, that means we have

3469 training graphs, 434 validation graphs and 434 testing graphs. We used a subset of 530

molecule graphs as training data to learn explainer classes, and 800 molecule graphs as testing

data. All molecule graphs come with adjacency matrices AMutag
i and feature matrices XMutag

i

and their corresponding GNNExplainer importance masks (MMutag
Ei

and XMutag
Ei

), equally split

between mutagenic and nonmutagenic classifications. The DL-Learner can create arbitrarily

many class expressions, functioning as explainer classes, which are ordered by predictive

accuracy (number of correctly classified examples divided by the number of all examples).

We are taking a cut-off point of > 50% predictive accuracy, as an explainer class with less than

50% predictive accuracy, would not represent a pattern for mutagenic classification decisions,

but rather the opposite, and v.v. for nonmutagenic classification decisions.

As we are combining GNNs and ontologies, graph data has to be available as triples as

well as background knowledge. The domain knowledge used in our approach is given by the

Mutagenesis ontology OMutag 1, which is exemplified in Table 6.11.

Table 6.11: Example excerpt of OMutag.

(1) Carbon ⊑ Atom carbons are atoms
(2) Hetero_aromatic_5_ring ⊑ Ring_Size_5

⊑ RingStructure

hetero-aromatic rings of size 5 are rings
of size 5, which are ring structures

(3) Nitrogen(feature_100_5) feature_100_5 is a nitrogen
(4) Compound(graph_100) graph_100 is a compound
(5) hasAtom(graph_100, feature_100_5) graph_100 has atom feature_100_5

Benchmark Methods Classifications and their accompanying explanations can be generated

using only a symbolic classifier like DL-Learner, which performs inductive logic learning as

outlined in Section 2.2. Hence, we evaluate our method against a purely symbolic approach

1https://github.com/SmartDataAnalytics/DL-Learner/tree/develop/examples
/mutagenesis



to determine if and what benefits our hybrid approach offers.

Additionally, we aim to examine the advantages of incorporating a sub-symbolic explainer

into our framework, rather than relying on the input-output matching method for explaining

GNN predictions, as seen in previous works such as [19] and [22].

Quantitative Results The entailment frequency gives us insight over the generality or speci-

ficity of explainer classes. As can be seen in Table 6.12 (Avg. Entailment Rate), there is a wide

range of entailment rates. Some explainer classes, e.g. ϕm
4 = hasAtom some Carbon always ap-

ply, while others are quite rare, such as ϕn
4 = hasAtom some Phosphorus, that comes with only

a 4% entailment rate. As expected, we have an overall lower entailment rate for nonmutagenic

explainer classes, as there are also less distinct factors indicating nonmutagenicity [44]. Most

nonmutagenic classifications come with about 3 entailments, while mutagenic classifications

come with more than 5 entailments on average. This is due to a lower generality of the

explainer classes, which implies that such an explainer class only applies to specific instances.

This is also confirmed by the lower average predictive accuracy of the DL-Learner results for

nonmutagenic (57%) as opposed to mutagenic (63%) explainer classes, as can be seen in Table

6.12 (Avg. Pred. Acc). The predictive accuracy of the DL-Learner is defined as the number of

correctly classified examples divided by the number of all examples [156].

Table 6.12: Input-output(ϕm
i for mutagenic classifications, ϕn

i for nonmutagenic) and impor-
tance explainer classes (φi) with avg. pred. accuracy (DL-Learner), entailment rate
and fidelity with their respective standard deviations (SD).

Explainer Class
Type

Number
(n)

Avg. Pred. Acc.
(SD)

Avg. Entailment
Rate (SD)

Avg. Fidelity (SD)

ϕm
i 1,...,10 0.56 (0.04) 0.64 (0.3) 0.88 (0.12)

ϕn
i 1,...,5 0.59 (0.03) 0.09 (0.04) 0.82 (0.12)

φm
i 1,...,4 0.77 (0.06) 0.86 (0.15) 0.99 (0.01)

φn
i 1,...,7 0.56 (0.01) 0.41 (0.25) 0.81 (0.05)

Fidelity gives the user a measure of reliability of the explanation, with the average fidelity

ranging from 64% for ϕn
5 = hasStructure some Carbon_5_ring to 100% for e.g. φm

2 = hasAtom

some Hydrogen. While an explainer class with an average fidelity of 64% might still give the

user some insight, its explanatory value cannot be considered as reliable as for an explainer



Table 6.13: Average fidelity for true positives and false positives.

TPm FPm TPn FPn

Number of instances 371 29 374 26
Average fidelity 0.96 0.66 0.82 0.44

class with a higher fidelity. An explainer class, that has a low generality, meaning it is rarely

applied to explain a classification, can nonetheless come with a high fidelity such as ϕn
4 (100%).

This suggests that also low generality explainer classes can be valuable for specific instances.

We can observe a positive correlation of 88% between the average fidelity and predictive

accuracy for {φi} and of 50% between the average fidelity and {φi} and {ϕi} respectively,

signalizing the effectiveness of representing the sub-symbolic decision-making process with

the DL-Learner. As the predictive accuracy of the output given by the DL-Learner is the

metric on which we base our choice of explainer classes included in the pool, the correlation

with the fidelity indicates that this approach leads to reliable explanations.

Explainability of sub-symbolic methods is desirable not only to justify actions taken based on

the predictions made by the system, but also to identify false predictions. Therefore, it is also

important to evaluate our method based on its ability to not generate explanation for wrong

predictions. Table 6.13 shows the difference in entailments for the correctly classified (true

positives TP) and incorrectly classified graphs (false positives FP). We can see, that the average

fidelity for entailments is 30 percentage points lower for mutagenic FP than mutagenic TP, and

38 percentage points for nonmutagenic FP. While this might not be sufficient to clearly identify

a wrong classification, it indicates the validity of the fidelity metric, as it is significantly lower

for explainer classes applied to incorrect classification.

In terms of comparative evaluation, 100% of all ground truth statements are covered by

the explanations by our method, as is shown in Table 6.14. However, if there was no domain

knowledge (including reference to graph topology) used, only 47% of ground truth statements

would be covered.

Justification Axioms: Through justifications, we provide causality for explanations, based on

domain knowledge. The ontology OMutag utilized has little structural depth, as can be seen



Table 6.14: Comparative Evaluation for Mutagenicity: Percentage of ground-truth statements
covered.

OntExplainer OntExplainer without OMutag

1 0.47

in the example excerpt in Table 6.10. Nonetheless, there is a minimum of 3 axioms for all

entailments in any justification. For 20% of explainer classes, 4 axiom justifications and for 8%

of explainer classes, 5 axiom justifications are generated. This means, that for all explanations

generated, the explanations carry some causal information about the conclusion, supported

by expert knowledge.

Comparison of our OntExplainer with DL-Learner Explanations: When comparing this

purely symbolic approach with our hybrid method, we find that using only the DL-Learner

comes with significantly lower prediction accuracy and also explanatory value. The predic-

tive accuracy of the GNN using the same subset of training data is 85%, so, considerably

above the DL-Learner result, as shown below. When applying the DL-Learner to carry out

classifications, we are restricted to only one classifier. The DL-Learner might generate several

possible classifiers, but only one can be chosen to carry out the classification. This would

usually be the one with the highest predictive accuracy. This means, even if we allow more

complex class expressions, we only have one explanation for the target predicate mutagenic:

hasStructure some Nitrogen_dioxide or hasThreeOrMoreFusedRings

value true (pred. acc.: 65.76%)

Comparison of our OntExplainer with Input-Output Explanations: We can see, that

for some explainer classes such as ϕm
3 = φm

3 = hasAtom some Nitrogen, we have overlap of

the importance explainer classes with the input-output explainer classes. However, the

importance explainer classes come with a significantly higher predictive accuracy of 77% as

can be seen in Table 6.12, indicating their significance for the classification decision. For the

nonmutagenic classifications, explainer class φn
2 = hasStructure some Carbon_6_ring, which

is equivalent with the ground truth as shown in Figure 6.6, would not have been included

in ϕn
i . Here, we can clearly see the added benefit of generating explainer classes from the

GNNExplainer as opposed to only observing the input-output behaviour of a GNN. The main

benefit of including such a sub-symbolic explainer, however, is the provision of the fidelity



metric. Without such a metric, there is no means to quantify the reliability of the explanation.

Qualitative Results The generated pool of explainer classes provides a total of 14 explainer

classes for mutagenic and 12 explainer classes for nonmutagenic classifications. All the

comprehensible explanation for mutagenic classification decisions that can be identified

and interpreted from the GNNExplainer output, as outlined above, have been learnt by the

DL-Learner. These include

ϕm
2 = hasStructure some Carbon_6_ring,

ϕm
7 = hasStructure some Nitrogen_dioxide,

φm
1 = hasAtom some Carbon,

φm
2 = hasAtom some Hydrogen,

φm
3 = hasAtom some Nitrogen,

φm
4 = hasAtom some Oxygen,

along with several others, which have not been identified by the GNNExplainer.

The explainer class ϕm
6 = hasStructure some Phenanthrene is a compelling example for the

effectiveness of our hybrid approach, as Phenanthrene is a strong indicator for mutagenic

potency [44], but isn’t identifiable in the GNNExplainer output. This shows that our hybrid

method can identify and verbalize decision-making processes of the GNN, which a compre-

hensible sub-symbolic explainer system, whose output might not be easily understood and

interpreted by a user, is missing. An example for a justification of an entailment is given in

Table 6.15, along with its verbalization.

Table 6.15: Example justification J (OMutag, ϕm
8 (η1)).

(1) η1 hasStructure structure_1_1_1 Graph 1 has Structure 1_1_1
(2) structure_1_1_1 Type Het-

ero_aromatic_5_ring

1_1_1 is of type Hetero Aromatic Five
Ring

(3) Hetero_aromatic_5_ring SubClassOf

Ring_size_5

Hetero Aromatic Five Ring is a subclass
of Ring of size 5

(4) ϕm
8 EquivalentTo hasStructure some

Ring_size_5

Explainer Class 8 is equivalent to has
Structure Ring of size 5



6.1.4 Discussion

All three methods have been applied to the Mutagenicity dataset, integrating different levels

of domain knowledge and providing different types and levels of explainability.

The results for RERE applied to the Mutagenicity dataset show that our methods achieve

similar or higher fidelity compared to sub-symbolic benchmark methods. Sensitivity is

evaluated with the Label-Flip rate. With a resulting 0% Label-Flip rate, it can be shown that

such a constraint can be integrated without harming the quality of the explanations. As the

Mutagenicity dataset doesn’t come with ground truth explanations, an accuracy score cannot

be calculated here. However, common motifs known to indicate mutagenicity, such as carbon

rings, can be found in the final explanation subgraphs.

This approach is sensible for users who desire local interpretability and have a basic knowl-

edge of graphs to comprehend the explanation effectively. The option of incorporating

domain knowledge constraints is not overly complex and can be utilized whenever deemed

appropriate.

The results for SUBGREX show, that using decision trees to extract if-then rules from explainer

subgraphs enhances the naturalness of explanations. Integrating this sub-symbolic element

furthermore leads to rules with significantly higher accuracy and comparative evaluation

scores. This is due to the filtering effect, where only things that have been considered as

influential by a sub-symbolic explainer are taken into consideration for the global rules. Fur-

thermore, it can be shown that by including domain knowledge, even unstructured free-form

domain knowledge, sensitivity, and reference to graph topology can be provided. The utility

of these properties is explicated in the substantially increased accuracy score as well as the

comparative evaluation score. Without any domain knowledge and therefore reference to

graph topology, the explanations would be very limited. While the fidelity metric employed

here is only an indication, the integration of sub-symbolic importance scores shows promising

results.

This approach is ideal for users that want global rules to understand the overall decision-

making pattern of a GNN, without prior knowledge of graph theory. While it comes with

some added complexity and matching efforts, integrating both a sub-symbolic explainer

element and domain knowledge with reference to graph topology is indispensable for this

use case to arrive at meaningful and accurate explanations.

The OntExplainer results show, that naturalness of explanations is given through verbal-



ized complete axioms containing the class expressions. The level of sensitivity provided is

dependent on the domain knowledge available in the used ontology. With integrating the

Mutagenesis ontology it has been shown that for all explanations generated, the explanations

carry some causal information about the conclusion, supported by expert knowledge. Without

including domain knowledge and also reference to graph topology, only 47% of ground truth

statements would be covered by the explanations as opposed to 100%, showing their utility.

Furthermore, the difference in fidelity between false positives and true positives, shows the

validity of the fidelity metric used. As a positive correlation between average fidelity and

predictive accuracy could be found and integrating sub-symbolic explainer subgraphs leads

to higher predictive accuracy, the validity of this hybrid approach is shown.

This approach is suitable for users who desire both global and local explanations of the

decision-making process of a GNN, without prior knowledge of graph theory. The key

requirement is access to a domain knowledge ontology, which provides a reference point for

the explanation. However, if such structured domain knowledge is not available, the explana-

tion may not be presented in the user’s domain language, and will lack reference to graph

topology and reasoning. Integrating a sub-symbolic element can increase complexity, as the

results from the sub-symbolic explainer must be integrated into the ontology. Nevertheless, if

one wants to validate the explanation, the additional effort may be worthwhile, depending on

the level of risk associated with the use case.



6.2 Cybersecurity Use Case

The second use case is in a real-life industrial setting which has the focus of the evaluation on

the efficacy of the method in an industrial context. The continuous increase in cyberattacks

has given rise to a growing demand for modern intrusion detection approaches that leverage

ML to detect both simple security risks as well as sophisticated cyberattacks [157]. These

approaches identify patterns in data and highlight anomalies corresponding to attacks. Such

detection tasks are particularly poised to benefit from the ability to automatically analyze

and learn from vast quantities of data. There are many relevant examples of the application

of deep learning and similar techniques for intrusion detection systems (IDS) [158] based on

anomaly detection methods able to find deviations from a previously learned baseline [159].

However, their drawbacks include alarm flooding problems [160] and a lack of explainability,

e.g., for why certain network traffic is flagged as anomalous by the IDS [161].

This is not just relevant for the defense of conventional IT systems, but also in the context

of modern operational technology (OT) systems, such as those used in factories and other

industrial automation settings. While these industrial control systems used to be exclusively

deterministic in their operation, modern Industry 4.0 automation settings are characterized

by a convergence of IT and OT infrastructure [162]. This convergence comes with increasingly

complex activity patterns and network topologies that make extensive use of autonomous

systems and components such as AI-enabled software applications [159]. While this has

the potential to substantially improve the flexibility, reliability and efficiency of industrial

systems and consumer-oriented manufacturing, it also poses new cybersecurity challenges

[163] and demands a high degree of domain-specific knowledge from analysts assessing

potential integrity issues or indications of security compromises.

Therefore, there is a clear need for XAI that enables analysts to understand how the system is

reaching its conclusions and allow them to interact with it in a collaborative manner [157].

One of the biggest drivers for successful adoption of ML models is how well human users

can understand and trust their functionality. Trust in automation can break down quickly

and be hard to reestablish, in cases of conspicuous systems faults or when there are alarm

flooding problems [119]. The benefits afforded by explanations only fully come to bear when

these are human-centered and the users are able to understand and interact with them. This

is especially crucial in the cybersecurity domain, where experts require far more information

from the model than a simple binary output for their analysis [159].



Figure 6.7: The hardware demonstrator of an OT system is represented here as a multi-
relational graph.



Figure 6.8: Industrial automation demonstrator consisting of an automation part, a devel-
opment environment and an industrial edge. Image adapted from [167] (©2021
IEEE).

XAI in the Cybersecurity Domain XAI in cybersecurity has been gaining more attention in

the last two years. The authors of [157] and [164] focus on what constitutes a good explanation

for the user, including what information requirements a human needs for decision-making.

In [159], the authors propose a taxonomy for XAI methods and introduce a black box attack

for analyzing the consistency, correctness, and confidence properties of gradient-based XAI

methods. In [165] a rule extraction process is proposed that allows to explain the causes of

cyber threats, while in [21] a system is proposed that combines experts’ written rules and

dynamic knowledge generated by a decision tree algorithm. Similarly, in [166] a concrete

proposal for an Explainable Intrusion Detection System including a neural network combined

with decision trees is presented, together with an empirical evaluation of its prototype

implementation.

Experimental Setup The demonstrator system for e.g., measuring the height of objects

for quality control amongst other capabilities, is described in Figure 6.8, following the

design of modern industrial systems integrating IT and OT elements. The automation side

is equipped with a programmable logic controller (PLC) connected to peripherals via an

industrial network. These include a drive subsystem controlling the motion of a conveyor

belt, an industrial camera, a human-machine interface, and a distributed I/O subsystem with

modules interfacing with various sensors for object positioning and other measurements



(Fig. 6.8, left). The PLC exposes values reported by these sensors as well as information

about the state of the system by means of an OPC-UA server2. The variables exposed by

the server are consumed on the IT part of the demonstrator by applications hosted on edge

computing servers (Fig. 6.8, bottom right), i.e., computing infrastructure directly located at

the factory floor which is typically devoted to data driven tasks that require close integration

with the automation system and short response times, such as real-time system monitoring,

fault prediction or production optimization. Industrial edge applications have dynamic

life cycles, and this is captured in the prototype by recreating a development environment

(Fig. 6.8, top right). This cycle starts with development hosts consuming potentially high

volumes of data from a historian, a database that constantly stores process data from the

automation system. Finally, edge computing hosts fetch application updates periodically. To

make the behavior more realistic, development hosts occasionally access the internet with

low traffic volumes. The environment is fully virtualized and performs these activities in

an autonomous manner, with an option to manually induce different types of anomalous

behaviors in order to test the response of our IDS system. A knowledge graph is built out of

the running prototype by integrating three main sources of knowledge: information about

the automation system, observations at the network level (e.g., connections between hosts),

and observations at the application level (e.g., data access events). A sizeable portion of

the information is related to the automation system, which is extracted from engineering

tools in the Automation ML format and ingested into the graph using a readily available

ontology [169]. Information about application activity is obtained from the OPC-UA server

logs, including session information, i.e., which variables are accessed and in which way.

Finally, all network traffic is passed through the security monitoring tool Zeek [170], which

produces a stream of observed connections that are ingested using a simple custom data

model.

Anomaly Detection Initially, a baseline is captured with the system under normal operating

conditions, and the collected data is used to train the link prediction algorithm in an unsuper-

vised manner. Thereafter, in order to qualitatively evaluate its predictions, we trigger a set

of actions which result in events not observed during normal operation, but which would

be assigned a wide range of severity levels by a human expert upon detailed analysis of the

available contextual information. Suspicious behavior is novel behavior given the baseline

definition. These scenarios are defined following the ATT&CK framework for Industrial

2OPC-UA server is a machine to machine communication protocol for industrial automation [168]



Control Systems3, i.e., a standardized collection of cyberattack patterns, to guarantee a high

degree of realism. The employed scenarios are listed in Table 6.16. One example is sniffing,

where an app accesses data variables completely unrelated to those usually accessed (Scenario

1.2), e.g., not served by the PLC, or with a different data type, such as strings instead of

numeric data types like int, real, etc. This could be an event where system information is

extracted, like serial numbers of devices or firmware versions, which is useful information for

discovering back doors and vulnerabilities of the system.

Graph Neural Networks for Anomaly Detection We apply a GNN to detect unexpected

activity in industrial automation systems, which are control systems, such as computers

or robots, and information technologies for handling different processes and machines in

a factory. Use of machine learning methods is possible on knowledge graphs, typically by

means of so-called graph embeddings: vector representations of graph entities which are more

suitable for processing via neural networks and similar methods than their original symbolic

representations. In [159], relational learning on knowledge graphs is applied to security

monitoring and intrusion detection by mapping the events in an industrial automation system

to links in a knowledge graph. This way, the anomaly detection task can be rephrased as

a link prediction task in the knowledge graph representation of the modeled system. In

particular, [159] report that the collective learning properties of graph embedding methods

allow the resulting models to generalize beyond individual observations, benefiting from the

context provided by a rich set of entity and relationship types. Here, we follow the same

paradigm of phrasing the security monitoring task as a knowledge graph link prediction task,

with a 2-step process. (1) Learning a baseline of normal behavior by training a GNN on a

graph built from a training dataset. (2) Applying the GNN in a link prediction setting to rank

the likelihood of triple statements resulting from events observed at test time and determine

whether they represent an anomaly. A GNN usually consists of graph convolution layers

which extract local substructure features for individual nodes and a graph aggregation layer

which aggregates node-level features into a graph-level feature vector [90].

3https://collaborate.mitre.org/attackics/index. php/Main Page



Application activity

1.1 App changes the way it accesses some variables (e.g. writes instead of reads).

1.2 App accesses variables completely unrelated to those accessed usually.

Network activity (HTTPS)

2.1 A local address not corresponding to a dev. host (e.g. an edge server) accesses the
historian.

2.2 A local address not corresponding to a dev. host (e.g. an edge server) accesses a public
IP address.

2.3 A high-volume HTTP access is made to a public IP address (high volumes only from
historian in baseline).

Network activity (SSH)

3.1 The historian host (not a dev. host, but on the same network) accesses the app repository
via SSH.

3.2 A dev. host accesses an edge server via SSH, but during training, no edge servers
received SSH connections.

3.3 SSH connection between two edge servers. Usually, no edge servers started or received
SSH connections.

Credential use

4.1 Access to OPC-UA server from an IP address that corresponds to a development host.

Network Scan

5.1 Connection which does not match any source-destination pair usually observed.

5.2 Attempt to connect to an IP which is not assigned to any host.

Table 6.16: Attack Scenarios



6.2.1 Subgraph Explanations

We train a two-layer GraphSAGE model and then apply all introduced explainer methods to

explain predictions made by the GNN. Training is done for 1000 epochs with learning rate

0.01, reaching a ROC AUC score of at least 81%. The train/validation/test split is 80/10/10%.

For RERE we train for at least 10000 episodes. We use the Adam optimizer and learning rate

0.001. We train ten policies based on randomly chosen graphs for each class and average

the results. For better comparison of the quantitative results, we include a size constraint to

arrive at a similar sparsity as the alternative baseline approaches.

Benchmark Methods Again, we compare our RERE approach with the benchmark methods

GNNExplainer [1], PGExplainer [2] and SubgraphX [3]. The results for these methods in

terms of fidelity, Label-Flip rate and sparsity can be seen in Table 6.17.

Table 6.17: Performance evaluation of RERE and alternative baseline explainability approaches
for cybersecurity. Bold indicates best result.

Fidelity (Eq. 2.7) Label-Flip rate Sparsity

GNNExplainer 0.11 0.38 0.96

PGExplainer 0.21 0.39 0.94

SubgraphX 0.14 0.41 0.95

RERE 0.08 0 0.97

Quantitative Results The quantitative results, including Fidelity and Label-Flip are shown

in Table 6.17. The results show, that for the cybersecurity dataset, that in terms of Label-Flip

rate and fidelity, RERE outperforms the baseline methods with similar levels of sparsity.

Qualitative Results The successive removal of edges by the agent is shown in Figure 6.9,

with the respective last step being the final explainer subgraph. The figure shows a link

predicted as anomalous by the GNN between the nodes opc#app3 and zeek#192.168.0.80,

a credential use attack scenario. It can be seen that RERE correctly identifies the connec-

tion to a development host as influential in the decision-making of the GNN, as the node

new#devNetwork remains in the final explainer subgraph. The corresponding attack scenario



Figure 6.9: Step-wise removal of edges in a for link classified as suspicious between the
node opc#app3 and the node zeek#192.168.0.80. Step 17 shows the final explainer
subgraph.

can be found in Table 6.16: "Access to OPC-UA server from an IP address that corresponds to

a development host".



6.2.2 Non-ontological Explanations

We carry out link prediction with a 2-layer GraphSAGE model. We use the Adam optimizer to

train the GNN. Training is done for 1000 epochs with learning rate 0.01, reaching a ROC AUC

score of at least 81%. The train/validation/test split is 80/10/10%. We generate the edge

masks MEi and node feature masks MXi for the cybersecurity graph with the GNNExplainer.

Decision trees are learned for links that have been classified as an anomaly and are therefore

considered suspicious, which are a total of 105 links over 5 categories. As a 2-layer GNN is

used for the prediction, the 2-hop neighborhoods of the two nodes between the link predicted

as anomaly is used as graphi. The same optimizer and learning rate is used as with the GNN,

and we train for 100 epochs.

Table 6.18 shows an excerpt of the free form knowledge used as domain knowledge. As there

are a total of 4317 different node features, including all of them would lead to convoluted

and incomprehensible decision rules. Therefore, the extracted node features are mapped to

one of 37 entity types. Decision trees are generated for edge attributes L(moleculei) with the

available edge features as well as for the node attributes X(moleculei) taken from the domain

knowledge:

L(graphi) = {ainitiated_ f rom(graphi), aread(graphi), ..., awrite(graphi)}

X(graphi) = {xDestination_port(graphi), xNetwork(networki), ..., xPLCtag(graphi)}

Decision tree training and testing data follows a random 80% - 20% split.

Benchmark Methods Like in Section 6.1.2 we compare SUBGREX to SDTE (features being

extracted from the original input graphs as opposed to the explainer subgraph) and SDTE

w/o KB.

Quantitative Evaluation The accuracy for SUBGREX DE is at 90% and therefore 66 per-

centage point higher than the benchmark method SDTE DE and 82 percentage points higher

than SDTE w/o KB, as shown in Table 6.19. Similarly, the accuracy for SUBGREX DX lies at

92% compared to 26% for SDTE DX. In terms of fidelity, the results are analogous. In order

to quantitatively evaluate sensitivity, we look at the percentage of coverage regarding the

ground truth explanations provided by humans. The ground truth statements are taken from

the introduced attack scenarios, shown in Table 6.16, and encompass a total of 11 statements.



Table 6.18: Entity Type Dictionary Excerpt

Entity type Data type Example values

Destination_port
(id.resp_p)

addr id.resp_p_categorical_5355.0,
id.resp_p_categorical_49155.0,
id.resp_p_categorical_443.0

Network string edgeNetwork, automationNetwork, devNetwork

PLCtag string PLCtag − currentL1, PLCtag − activePowerL2,
PLCtag − driveEnabled

UAVariable string UAVariable−ExecuteReaderParameters.objectId,
UAVariable−ReaderData.hwConnect.Static.bu f 199

Client string app4, app5, app1

Responder-
payload-bytes
(resp_bytes)

count resp_bytes − logCategorical_10to2,
resp_bytes − logCategorical_10to6,
resp_bytes − logCategorical_10to3

IpAddress addr 192.168.0.3, 192.168.0.18

Application-
protocol (service)

string service_categorical_ssh,
service_categorical_s7comm,
service_categorical_ssl

Transport_layer-
protocol

transport-
proto

proto_categorical_tcp, proto_categorical_udp,
proto_literal

Duration_literal string duration_kmean_cluster_305.6,
duration_kmean_cluster_0.39,
duration_kmean_cluster_140.35



Table 6.19: Accuracy, Recall, and Fidelity for DE and DX for Mutagenicity

Model Accuracy
(Def. 2.9)

Recall Precision Fidelity
(Def. 2.10)

SUBGREX DE 0.9 1 1 0.88

SDTE DE 0.24 0.28 0.1 0.21

SDTE w/o KB DE 0.08 0.05 0.04 0.08

SUBGREX DX 0.92 0.98 1 0.93

SDTE DX 0.26 0.2 0.33 0.23

SDTE w/o KB DX 0.24 0.28 0.1 0.21

The results in Table 6.20 show that without including domain knowledge (SDTE w/o KB) 9%

of the ground truth statements are covered, while for SDTE 27% are. With SUBGREX 73% of

ground truth statements are covered by the explanations.

Table 6.20: Comparative Evaluation for Cybersecurity

SUBGREX SDTE SDTE w/o KB

0.73 0.27 0.09

Qualitative Evaluation Linearized rule-based explanations RE and RX from the respective

decision trees for as anomalous predicted links are listed in Table 6.21 and 6.22.

The generated decision rules RXi(Anomaly) and REi(Anomaly) are sorted according to their

category as given in Table 6.16. For category application activity, the decision rules clearly

find the attack scenario pattern introduced, where the way variables are accessed (e.g., read

instead of write) by a client is the anomaly. For network activity HTTPS, the decision rules fall

short in finding the introduced patterns of local addresses not corresponding to a dev. host

accessing the historian or a public IP address. Instead, both RXi(Anomaly) and REi(Anomaly)

find the duration to be the decision driver, which likely relates to the high-volume HTTP

access made (Scenario 2.3). For network activity SSH, the decision rules RXi(Anomaly) show

an anomaly regarding the destination IP, which relates to Scenario 3.2. The decision rules



Table 6.21: RXi(Anomaly)

Rule Probability

Application activity

if (read > 0.5) and (initiated_from <= 0.5) 100.0%

if (read > 0.5) and (initiated_from > 0.5) and (write > 0.5) 100.0%

HTTPS

if (duration > 0.5) 100.0%

SSH

if (Destination_IP <= 0.5) 100.0%

Credential Use

if (Application_protocol ( > 0.5) 100.0%

if (Application_protocol ( <= 0.5) and (initiated_from > 0.5) then class 100.0%

if (Originator_payload_bytes > 0.5) 100.0%

if (Originator_payload_bytes <= 0.5) and (initiated_from > 0.5) 100.0%

if (Client > 0.5) 100.0%

Network Scan

if (Application_protocol > 0.5) and (Destination_port > 0.5) and (Origina-
tor_payload_bytes > 0.5) and (initiated_from <= 0.5)

100.0%

if (Application_protocol > 0.5) and (Destination_port > 0.5) and (Origina-
tor_payload_bytes > 0.5) and (initiated_from > 0.5) and (Connection_state <=
0.5) and (Transport_layer_protocol <= 0.5)

66.67%



Table 6.22: REi(Anomaly)

Rule Probability

Application activity

if (IPAddress <= 0.5) 100.0%

if (Client > 0.5) 100.0%

HTTPS

if (Duration_literal > 0.5) 100.0%

SSH

if (Client > 0.5) and (Destination_Port> 0.5) 100.0%

Credential use

if (Destination_Port > 0.5) 100.0%

if (IP_Address> 0.5) 100.0%

Network Scan

if (Client <= 0.5) 100.0%

if (IP <= 0.5) 100.0%

REi(Anomaly) covers Scenario 3.1, finding that accessing apps from an unusual destination

port being the decision driver for finding an anomaly. Also, for the credential use category,

the destination port being unusual is identified. For category network scan, an unusual

destination port is identified among others, covering Scenario 5.1.



6.2.3 Ontological Explanations

We carry out link prediction with a 2-layer GraphSAGE model. We use the Adam optimizer

to train the GNN. Training is done for 1000 epochs with learning rate 0.01, reaching a ROC

AUC score of at least 81%. The train/validation/test split is 80/10/10%. The training data

encompasses more than 37k data events, with 4347 nodes and 37 edge types. The testing data

contains 1367 data events, evenly distributed across all 5 attack scenarios. The links predicted

come with adjacency matrices Ai and feature matrices Xi and their corresponding GNNEx-

plainer importance masks (MEi and XEi ) based on their 2-hop receptive field. The DL-Learner

can create arbitrarily many class expressions, functioning as explainer classes, which are or-

dered by predictive accuracy (number of correctly classified examples divided by the number

of all examples). We are taking a cut-off point of > 50% predictive accuracy, as an explainer

class with less than 50% predictive accuracy, wouldn’t represent a pattern for anomalous links.

Ontology Creation: Analysis of security incidents typically requires consideration of multiple

data sources, some of which are often exchangeable between organizations. In order to

facilitate this, common schemas and data representation formats, such as STIX [171], have

been introduced that enable organizations to exchange threat intelligence in a consistent

way. More recently, these have evolved into fully-fledged ontologies enabling inference and

reasoning [172]. These ontologies model a wide range of cybersecurity-relevant knowledge

such as product information, known vulnerabilities and attack patterns, and can additionally

be linked to domain-specific knowledge, e.g. coming from industrial automation systems

[173]. Once constructed, these knowledge graphs find a wide range of applications, e.g.,

intrusion and threat detection [174], [175]. Construction of high-quality knowledge graphs

is a challenging task, especially when it requires extraction of information from unstruc-

tured textual or heterogeneous data. To use the DL-Learner, we first have to transform the

knowledge graph into an ontology. Here, a class hierarchy that follows the separation of the

industrial automation system into three domains following STIX [171] is adapted:

• Automation part: Summarizes the engineering design of the manufacturing prototype.

Further separated into InternalStructure, containing InternalElements, ExternalInter-

faces, Attributes and InternalLinks as subclasses as well as UAVariables, containing

PLCtags and Attributes as subclasses.

• Edge part: Contains app initialization events, data events and the applications.

• Network part: Contains network connections and their properties as subclasses, as well



Figure 6.10: Screenshot of Cybersecurity Ontology in Protégé.



as IPs and their subdomains with local and global and automation, development and

edge networks as subclasses.

For relations, domain and range are provided. To enable DL-Learner to use properties (like

network connection properties), these have to be promoted to classes, e.g., every possible

instance for network volumes is its own class. We do the same for applications, InternalEle-

ments and ExternalInterfaces, network types (DevNetwork etc.) and attributes. Figure 6.10

shows a screenshot of the described ontology in the Protégé application [176].

Explanation Generation: Tools specially designed to address tasks related to the detection of

malicious behavior typically tend to focus more on events or observations that are considered

to be unexpected or unusual [157]. Similarly to that, detected unexpected events serve as

the trigger for explanations in our approach, where the type of abnormality is identified.

For testing, events of a certain device (e.g., activity of a certain app, or network connections

between two certain IPs) are compared based on severity classes against each other, such as

the suspicious class against the baseline. We do this by using model predictions, based on

a ranked list with suspiciousness scores. Thus, one can compare, e.g., the top entry with

compatible baseline events. This is how positive and negative examples for the DL-Learner

are generated.

Sub-symbolic explanations in the shape of subgraphs are generated by the GNNExplainer,

as can be seen in Figure 6.11. Here, the flagged data event App4 read UAVariable −
HardwareRevision can be seen. The greyed out nodes and edges are considered not in-

fluential in the flagging by the GNN, as opposed to the remaining subgraph. This information

is then used to calculate the fidelity score of the entailed explainer class for each flagged

event. As can be seen in the figure, the entailed explainer class is part of the identified

subgraph, with the data event client being App4 and the UAVariable − HardwareRevision

(orange nodes) having datatype string (blue node). Therefore, the explanation generated by

the DL-Learner shows fidelity with respect to the GNN.

Benchmark Methods Classifications and their accompanying explanations can be generated

using only a symbolic classifier like DL-Learner, which performs inductive logic learning as

outlined in Section 2.2. While link prediction isn’t possible with inductive logic learning, we

can frame the problem as a classification task by using anomalous data events as positive

examples and non-anomalous data events as negative examples. Hence, we evaluate our

method against a purely symbolic approach to determine if and what benefits our hybrid



Figure 6.11: Explanation subgraph for flagging data event “App4 Read UAVariable-
HardwareRevision" as suspicious generated by GNNExplainer. They greyed
out nodes and edges are considered non-important and are not part of the expla-
nation.



Explainer Class Verbalization

(dataevent_client some App5) and
(dataevent_operation some WriteOp)
7→ Attack Scenario 1.1

Sniffing is something whose data event

client is an App5 and whose data event

operation is a Write Operation

(dataevent_client some App4) and
(dataevent_variable some (hasDataType
some (not (DataType_REAL))))
7→ Attack Scenario 1.2

Sniffing is something whose data event

client is App4 and whose data event vari-

able is something that has data type

something that is not data type real

Network_CL and (service some
service_ssh)
7→ Attack Scenario 3.2

Security Breach is something whose ser-

vice is SSH

(id.resp_p some id.resp_p_22.0) and
(orig_bytes some orig_bytes_log_10to2)
7→ Attack Scenario 3.3

Security Breach is something whose port

is an 22 and whose origin volume is

10 to 2

(init_client some App3) and (init_server
some (isPartO f some DevNetwork))
7→ Attack Scenario 4.1

Credential Use is something whose ini-

tial client is an App3 and whose initial

server is something that is part of a

development network

id.resp_p some id.resp_p_22.0
7→ Attack Scenario 5.1

Network Scan is something whose port is

22

Table 6.23: Explainer Classes with Verbalization

approach offers.

As already explicated, we aim to examine the advantages of incorporating a sub-symbolic

explainer into our framework, rather than relying on the input-output matching method

for explaining GNN predictions, as seen in previous works such as [19] and [22]. In these

approaches, no connection between the KB and the black-box are considered, which makes it

impossible to affirm that the explanation given is why the model predicted this output.

Quantitative Results A total of 16 explainer classes have been created through framing

the problem as classification task and therefore explaining anomalies. As can be seen in

Table 6.24, a total of 105 data events have been predicted as unexpected, or in other words,

105 alerts have been triggered, with nearly 40% being false positives. The learned explainer



classes apply to only 14 of the total 41 false positives, while covering 100% of all true positive

alerts. This gives the domain expert the possibility to filter out all triggered alerts that have

been created based on the availability of an explanation, reducing the need to investigate

false positives by 66%. In a further step, the fidelity of the explanation per alert can be taken

into account. Such an additional filtering step would lead to a reduction of the false positives

by 93%. However, 39% of true positives would be missed.

Therefore, depending on the preferences of the domain expert, it might be preferable to use

the fidelity score as a means to prioritize the alerts. The use of these filter and prioritization

techniques significantly reduces the time and resources need by the domain expert. Addition-

ally, more time will be saved in the analysis of the remaining alerts, as explanations for these

are available as seen in Section 6.2.3. While this is a relatively small example, we can see the

potential benefit of applying such a method in a large-scale OT system.

In terms of comparative evaluation, 90% of all ground truth statements are covered by the

explanations generated by our method.

To evaluate our method based on its ability to not generate explanation for wrong predictions

and therefore validating them, we look at the fidelity of false and true positives. Table

6.25 shows the difference in entailments for the correctly classified (true positives TP) and

incorrectly classified data events (false positives FP). We can see, that the average fidelity for

entailments is 54 percentage points lower for false positive than true positives, showing the

efficacy of our method.

Justification Axioms: Through justifications, we provide causality for explanations, based on

domain knowledge. As the domain knowledge for cybersecurity use case comes with some

structural depth as elaborated in 6.2, the size of the justifications ranges from 3 axioms to 9

axioms.

Comparison of our OntExplainer with DL-Learner Explanations: When comparing this

purely symbolic approach with our hybrid method, we find that using only the DL-Learner

comes with significantly lower prediction accuracy and also explanatory value. The predictive

accuracy of the GNN using the same subset of training data is 81%. When applying the

DL-Learner to carry out classifications, we are restricted to only one classifier. This means,

even if we allow more complex class expressions, we only have one explanation for the target

predicate, i.e., id.orig_h some (isPartOf some devNetwork (pred. acc.: 72.73%)



Manual
alert secu-
rity check
by analyst

Alert with
Explana-
tion

Number
of alerts
reduced by
%

Average
fidelity for
alert > 0

Number
of alerts
reduced by
%

Total (TP + FP) 105 78 0.26 42 0.60

App. activity 12 12 0 6 0.50

Network
(HTTPS)

29 23 0.21 18 0.38

Network (SSH) 23 13 0.43 11 0.52

Credential Use 12 6 0.50 3 0.75

Network Scan 29 23 0.21 4 0.86

TP (total) 64 64 0 39 0.39

App. activity 11 11 0 6 0.45

Network
(HTTPS)

23 23 0 18 0.22

Network (SSH) 8 8 0 8 0

Credential Use 3 3 0 3 0

Network Scan 18 18 0 4 0.78

FP (total) 41 14 0.66 3 0.93

App. activity 1 1 0 0 1

Network
(HTTPS)

6 0 1 0 1

Network (SSH) 14 5 0.64 3 0.79

Credential Use 9 3 0.67 0 1

Network Scan 11 5 0.55 0 1

Table 6.24: Quantitative Results for all as suspicious flagged data events (True Positives TP
and False Positives FP)



Table 6.25: Average fidelity for true positives and false positives.

TP FP

Number of instances 64 41

Average fidelity 0.61 0.07

Qualitative Results Through the verbalization step the class expressions’ human-centricity

is enhanced, where entailments reach a real level of human readability and are not relying on

technical expressions for experts anymore. E.g. the class expression (dataevent_client some

App4) and

(dataevent_variable some (hasDataType some (not (hasDataType_REAL)))) of the class Sni f f ing

is translated to “Sniffing is something whose data event client is App4 and whose data event

variable is something that has data type something that is not data type real". In Table 6.23, a

selection of explanations can be seen, along with their verbalization and correspondence with

a sub-scenario. For example, the verbalized explanation “Credential Use is something whose

initial client is an App3 and whose initial server is something that is part of a development

network" corresponds to Scenario 4.1. “Access to OPC-UA server from an IP address that

corresponds to a development host." The explanation captures the anomaly and is even more

specific to the concrete data example, as it also gives information about the initial client,

providing the analyst with more details to work with. This explanation of a Credential Use

anomaly is, for example, entailed for the triple App3 initiatedFrom 192.168.0.80.

The explanation “Network Scan is something whose port is 22", which is, amongst others,

entailed for connection 192.168.0.18 to 192.168.0.60, may need some additional information

for a layman, but should give ample information for a domain expert. Here, a network scan

is carried out with a certain IP Address and, of course, also IPs are scanned that it normally

connects to, but with the wrong port - SSH (22) instead of HTTPS (443). Overall, we can

see that the explanations capture the general scenarios, while often being more specific in

describing the concrete anomaly in the data. An example for a justification of an entailment

for an as suspicious flagged data event is given in Table 6.26, showing that since in the specific

data event App3 is accessed and and the IP Address is part of a development network, the

explainer class is entailed.



Table 6.26: Example justification J (OCybersecurity, (data_event_231)).

(1) data_event_231 init_server 192.168.0.80

(2) data_event_231 init_client app3_cl

(3) 192.168.0.80 isPartOf devNetwork

(4) app3_cl Type App3

(5) CredentialUse EquivalentTo (init_client some App3) and (init_server some

(isPartOf some devNetwork))

6.2.4 Discussion

All three methods have been applied to the cybersecurity dataset, integrating different levels

of domain knowledge and providing different types and levels of explainability.

The results for RERE applied to the cybersecurity dataset show that our method achieves

higher fidelity compared to sub-symbolic benchmark methods. Sensitivity is evaluated with

the Label-Flip rate. With a resulting 0% Label-Flip rate, it can be shown that such a constraint

can be integrated without harming the quality of the explanations. As the cybersecurity

dataset doesn’t come with ground truth explanations, an accuracy score cannot be calculated

here.

The results for SUBGREX show, that using decision trees to extract if-then rules from explainer

subgraphs enhances the naturalness of explanations, albeit the explanations might be hard to

understand for a non-expert. It can be shown that by including domain knowledge, in this

case an entity type dictionary, sensitivity can be provided. The utility of these properties is

explicated in the substantially increased accuracy score as well as the comparative evaluation

score compared to the baseline methods. For this use case, reference to graph topology plays

only a secondary role, as there are no recurrent graph motifs or structures present in the

domain ontology. However, without any domain knowledge, the explanations would be very

convoluted or non-existent. While the fidelity metric employed here is only an indication,

the integration of sub-symbolic importance scores shows promising results, similarly to the

Mutagenicity use case.

The OntExplainer results show, that naturalness of explanations is given by the class expres-

sions and further enhanced by the verbalization step. An extensive amount of cybersecurity



domain knowledge has been modelled in the ontology used, as described above, providing a

high level of sensitivity and reference to graph topology as nodes and edges, along with their

features, are modelled likewise. This leads to a high level of ground truth statement coverage

in the results and explanations that come with domain knowledge vocabulary with justifica-

tions that contain up to 9 axioms. In this use case, one of the tasks is to reduce the amount of

false positives in order to decrease the workload of the cybersecurity analysts. That’s why

the reduction rate of false positives is taken into account for evaluating our method. Here,

the fidelity metric can provide the additional function to prioritize explanations based on

their fidelity score in case triage has to be done by cybersecurity analysts. Furthermore, the

significant difference in fidelity between false positives and true positives, shows the validity

of the fidelity metric used.



6.3 Additional Experiments

We include this additional experiments for the RERE method, in order to test the efficacy of

the method for synthetic datasets that come with ground truth. This enables computing the

accuracy score.

6.3.1 Subgraph Explanations

Synthetic Data: We follow the setting in the baseline approaches and construct different

kinds of node classification datasets including BA-SHAPES, TREE-CYCLES, and TREE-GRID.

Using synthetic data sets come with the benefit of intuitive motifs and labelling, which is

understandable by humans [149] and makes it therefore possible to quantify the accuracy

of the explanations compared to real-world datasets. BA-SHAPES is a node classification

dataset with a base graph of 300 nodes and a set of 80 five-node “house”-structured network

motifs, which are attached to randomly selected nodes of the base graph. The resulting

graph is further perturbed by adding 0.1N random edges and nodes are assigned to 4 classes

based on their structural roles (the top, middle, and bottom node of the house and nodes

not belonging to a house). TREE-CYCLES is a node classification dataset with two different

labels, that consists of a base 8-level balanced binary tree and 80 six-node cycle motifs, which

are attached to random nodes of the base graph. TREE-GRID is the same as TREE-CYCLES,

except that 3-by-3 grid motifs are attached to the base tree graph in place of cycle motifs.

REDDIT-BINARY Data: REDDIT-BINARY is a dataset of 2000 graphs, each represent-

ing an online discussion thread on Reddit [177], classified based on the type of discussion.

We follow the experimental settings in GNNExplainer [1]. We train a three-layer GNN

and then apply all introduced explainer methods to explain predictions made by the GNN.

We use the Adam optimizer to train the GNN. All GNN models are trained for 1000 epochs

with learning rate 0.001, reaching accuracy of at least 85% for graph classification datasets, and

95% for node classification datasets. Like for the other experiments, the train/validation/test

split is 80/10/10for all datasets. For RERE we train for at least 30000 episodes. We use the

Adam optimizer and learning rate 0.001. For RERE, we train ten policies based on randomly

chosen graphs for each class and average the results.
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Figure 6.4: F-1 Scores plotted for different levels of sparsity for BA-SHAPES, TREE-CYCLES
and TREE-GRID data sets.

Benchmark Methods As with the other RERE experiments, we compare our approach with

the benchmark methods GNNExplainer [1], PGExplainer [2] and SubgraphX [3].

Quantitative Results As you can see in Table 6.27 for fidelity, RERE delivers the best results.

Furthermore, when looking at the Label-Flip rate, RERE significantly outperforms the other

methods, as it can include constraints that prevent any Label-Flips. This is a substantial

improvement over the baseline approaches, which can include Label-Flips for up to 85% of

explanations for the PGExplainer, 81% for SubgraphX and 70% for the GNNExplainer. The

low Label-Flip rate for RERE aligns with its comparatively low overall fidelity score. The

change in prediction, by keeping important input features and removing unimportant features,

should be as low as possible. In terms of F1-Score, RERE continuously outperforms the other

three methods, by up to 15 percentage points. For a more comprehensive comparison, we

compare the different methods using F1-Score under a variety of different levels of sparsity.

The results are reported in Figure 6.4 where the curves of F1-Scores are plotted with respect

to the sparsity scores. We can see that for all experiments, RERE outperforms the comparing

methods significantly and consistently for different sparsity levels.

Qualitative Results The successive removal of edges by the agent is shown in Figure 6.5,

with the respective last step being the final explanation. As demonstrated in these Figures,

the ground-truth motifs are being correctly identified by RERE. While the baseline methods

GNNExplainer and PGExplainer have also shown to identify such motifs, RERE comes with

the option to follow the edge removal process successively, where the least informative edges

are being removed first. This property can increase the trustworthiness of the explanations,

as the user can follow the subgraph reduction procedure more closely, which provides



Table 6.27: Performance evaluation of RERE and alternative baseline explainability approaches.
Bold indicates best result.

Fidelity (Eq. 2.7) Label-Flip F1-Score Sparsity

BA-SHAPES

GNNExplainer 0.26 0.18 0.59 0.68

PGExplainer 0.26 0.29 0.35 0.69

SubgraphX 0.21 0.31 0.41 0.69

RERE 0.16 0 0.74 0.68

TREE-CYCLES

GNNExplainer 0.12 0.14 0.68 0.13

PGExplainer 0.12 0.13 0.44 0.1

SubgraphX 0.04 0.19 0.30 0.11

RERE 0.02 0 0.71 0.09

TREE-GRID

GNNExplainer 0.54 0.7 0.56 0.36

PGExplainer 0.7 0.85 0.24 0.43

SubgraphX 0.39 0.81 0.35 0.38

RERE 0.11 0 0.60 0.38

REDDIT-BINARY

GNNExplainer 0.12 0.18 NA 0.47

PGExplainer 0.17 0.12 NA 0.48

SubgraphX 0.16 0.21 NA 0.46

RERE 0.06 0 NA 0.47



Figure 6.5: Step-wise removal of edges based on RERE for BA-SHAPES. The node labels give
the action probability of an edge connected to this node being removed. The red
node has the highest probability of a connected edge being removed in the next
step, and the turquoise node is the centre node for the node classification.

traceability [72]. In Figure 6.5, the individual steps are shown for a BA-SHAPES graph to

explain a node classification. In this example, the bottom node of a “house”-motif is the

centre node. The node labels give the action probability of an edge connected to this node

being removed, indicating its respective importance for the prediction of the centre node

label. Through this step-wise process we get some additional insights into the GNN, as we

don’t only get a final explanation, but can also analyze how RERE arrives there. Here, we

can see that up until Step 8, all nodes in the house motif have zero probability of having an

edge removed next, whereas the edges outside the house motif are being removed step by

step. Furthermore, we can detect, that the node which is closest to the centre node with only

2 hops distance, is removed only in the last step. This indicates that proximity to the centre

node plays a role in the classification decision by the GNN.

6.3.2 Discussion

We included the synthetic dataset into the evaluation in order to evaluate RERE’s capability to

produce accurate explanations. The results for RERE applied to the synthetic datasets show

that our method furthermore achieves higher levels of fidelity compared to sub-symbolic

benchmark methods. Additionally, even with integrating a domain knowledge constraint and

therefore providing sensitivity, the accuracy of our method outperforms the baseline.



7 Conclusions and Outlook

In this chapter, we draw conclusions from the preceding chapters. We present the main

conclusions from each of the previous chapters. Lastly, in Section 7.2, we provide an outlook.

7.1 Conclusions

In this thesis, we created three distinct methods that incorporate the identified properties

naturalness, sensitivity, reference to graph topology and fidelity to varying degrees, and

evaluated them using two different datasets. We can draw several general conclusions from

our experiments:

• To effectively create explanations for domain experts, it is necessary to possess a certain level of

expertise in the relevant field.

In other words, an explanation for a domain expert comes with the requirement to

have the respective domain knowledge available. Hence, the profile of the intended

audience, or "explainee," should be considered as part of the modeling process. Struc-

tured domain knowledge, such as ontologies, is not always readily accessible. For

technical applications that, for example, involve chemical or physical knowledge, this

information is usually available. However, in other domains, the knowledge may not be

as well-structured. If the necessary domain expertise isn’t too complex, as seen in our

toy example, common sense explainability might be sufficient. In our evaluation, we

focus on use cases where structured domain knowledge is present, and our method is

parameterizable using the available background knowledge, allowing it to be adapted

to the specific requirements of the explainee. In cases where no information about the

explainee is available, the challenge of explaining becomes more complex.

• Integrating domain knowledge improves properties sensitivity (RERE +38pp, SUBGREX +18pp,

OntExplainer + 53pp) and reference to graph topology (RERE + 6%).
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Through the integration of domain knowledge (even unstructured free-form domain

knowledge), the quality of explanations in terms of sensitivity is improved as well as

reference to graph topology, as is shown by the experiments. Using the RERE method

for the cybersecurity use case, the sensitivity as quantified by the Label-Flip rate is

increased by 38pp in comparison with the best state-of-the-art method GNNExplainer.

Using the SUBGREX method for the cybersecurity use case, the sensitivity as quantified

by the comparative evaluation score is increased by 18pp in comparison with same

method not including domain knowledge. Using the OntExplainer method for the

chemical molecule use case, the sensitivity as quantified by the comparative evaluation

score is increased by 53pp. Furthermore, using the RERE method, for the synthetic data

sets, the reference to graph topology, as quantified by the accuracy method, is increased

by +6% in comparison with the best state-of-the-art method GNNExplainer.

• The integration of sub-symbolic and symbolic explainer methods increases complexity, but it

results in a level of explainability for GNNs, that cannot be achieved by either approach alone:

– Fidelity +7% (OntExplainer)

– Sensitivity +46pp (SUBGREX)

– Reference to graph topology +77% (OntExplainer), +35% (SUBGREX)

This combination of methods satisfies properties that are not attainable through either

approach individually. The added complexity is justifiable if it leads to the desired level

of explainability, which encompasses both naturalness and sensitivity, as well as refer-

ence to the graph topology and fidelity. The integration of symbolic and sub-symbolic

models can be challenging due to the intricate mapping processes involved. However,

if a more limited set of explanation properties is sufficient, a simpler solution may be

adequate.

The experiments demonstrate that the integration of a sub-symbolic explanation com-

ponent into the method leads to an improvement in the fidelity of the explanations,

as anticipated. Furthermore, by selectively determining which features have a sig-

nificant impact on the decision-making process of a GNN, the results show that the

sensitivity and reference to graph topology of the results are also improved. Using the

OntExplainer method for the chemical molecule use case, the fidelity as quantified by

the fidelity metric is increased by 7% in comparison with omitting the sub-symbolic

element. Reference to graph topology is increased by 77% as quantified by predictive

accuracy. Using the SUBGREX method for the cybersecurity use case, the sensitivity as



quantified by the comparative evaluation score is increased by 46pp in comparison with

omitting the sub-symbolic element. Reference to graph topology is increased by 35% as

quantified by the predictive accuracy.

• Additional criteria for the choice of the best explanation method are: use case risk, availability of

structured domain knowledge and whether local and global explanations are needed.

A number of methods exist, each with its own set of benefits and drawbacks, and

the choice of approach depends on the user’s specific requirements and considera-

tions. Using ontological explanations or in other words, utilizing structured domain

knowledge, if available, provides more insightful results compared to non-ontological

explanations as it enables reasoning. Through the entailment capabilities of ontologies,

both local and global explanations can be achieved. Furthermore, as it is also necessary

to map free-form knowledge for integration, there isn’t necessarily a complexity reduc-

tion for non-ontological explanations. Nevertheless, if no structured domain knowledge

is available, incorporating free-form knowledge is still advantageous as it can reference

graph topology. The risk associated with low-fidelity explanations should be evaluated

based on the use case, and measures to enhance fidelity should be incorporated as

needed.

• The proposed method RERE which provides subgraph explanations, has properties

fidelity, reference to graph topology and sensitivity and is therefore very well suited

for users that want a local explanation with the option to include domain knowledge

constraints and have a basic knowledge of graphs, and can due to its sensitivity be

considered superior to other sub-symbolic explanation methods.

• The proposed method SUBGREX which provides non-ontological explanations, has

properties naturalness, reference to graph topology and sensitivity and is therefore well

suited for users that want a global explanation, and can due to its reference to graph

topology be considered superior to other symbolic explanation methods.

• The proposed method OntExplainer which provides ontological explanations, has

properties naturalness, sensitivity, reference to graph topology and fidelity and is

therefore well suited for users that want a local or global explanation, and can due to

its reference to graph topology and fidelity be considered superior to other explanation

methods.



7.2 Outlook

As this thesis has argued, we believe that explainability for GNNs should come with a certain

set of properties to ensure comprehensible user-friendly and faithful explanations. In our

work we only discussed domain experts as explainees, but along the AI life cycle there are

further types of users that have to be taken into consideration, such as users affected by model

decisions, regulatory entities or product owners. These user groups might require a different

type of explainability or background knowledge. Furthermore, there might be no information

about the potential explainee available. If there is none, one possible solution could be to

gather more information about the explainee through various means, such as surveys or

user interviews, to better understand their needs and tailor the explanation accordingly.

Additionally, analyzing the effect on explanations when the coupling of available domain

knowledge with GNNs training is deepened before training is another interesting research

direction. In summary, we believe that explaining Graph Neural Networks by using structured

domain knowledge such as ontologies is well-suited to generate explanations for many user

groups. We look forward to future developments in this field and to the deployment of such

models on real-world tasks.
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