
Mathematical Foundations of
Supervised Learning

(growing lecture notes)

Michael M. Wolf

October 11, 2023

Contents

Introduction 3

1 Learning Theory 5
1.1 Statistical framework . 5
1.2 Error decomposition . 7
1.3 PAC learning bounds . 13
1.4 No free lunch . 17
1.5 Growth function . 18
1.6 VC-dimension . 21
1.7 Fundamental theorem of binary classification 29
1.8 Rademacher complexity . 31
1.9 Covering numbers . 40
1.10 Pseudo and fat-shattering dimension 49
1.11 Algorithmic stability . 51
1.12 Sample compression . 58
1.13 Relative entropy bounds . 62
1.14 Ensemble methods . 70

2 Neural networks 80
2.1 Information processing in the brain 80
2.2 From artificial neurons to networks 82
2.3 Representation and approximation 87
2.4 VC dimension of neural networks 99
2.5 Deep neural networks . 105
2.6 Rademacher complexity of neural networks 112
2.7 Training neural networks . 114
2.8 Backpropagation . 116
2.9 Gradient descent and descendants 121
2.10 (Un)reasonable effectiveness—optimization 130

3 Kernel methods 134
3.1 Linear maximal margin separators 134
3.2 Positive semidefinite kernels . 138
3.3 Reproducing kernel Hilbert spaces 141

1

CONTENTS 2

3.4 Universal and strictly positive kernels 143
3.5 Rademacher bounds . 146
3.6 Kernel ridge regression . 147

A Probability theory 150
Probability spaces . 150
Random variables . 151
Elementary inequalities . 152
Conditional probabilities . 152
Independence . 153
Law of large numbers . 153
Gaussian distributions . 154

Bibliography 156

Index 165

Introduction

These are (incomplete and growing) lecture notes of a course taught at the De-
partment of Mathematics at the Technical University of Munich. The course is
meant to be a concise introduction to some of the mathematical results of the
field.

Needless to say, if you spot mistakes, I would be happy to know—just drop
me an email. Thank you!

Text passages that are marked with a gray bar, like the one on the side, are
optional to read. The course will not build up on them and they are neither
relevant for the exercises nor for the final exam.

What is machine learning? Machine learning is often considered part of
the field of artificial intelligence, which in turn may largely be regarded as a
subfield of computer science. The aim of machine learning is to exploit opti-
mization techniques and, in most cases, vast amounts of data in order to devise
complex models or algorithms in an automated way. Loosely speaking, it is
about producing computer programs without writing them. Instead, one sets
up an optimization procedure, which in this context is often called ‘learning’
or ‘training’, that eventually leads to the sought computer program. Machine
learning techniques are typically used whenever large amounts of data are avail-
able and when one aims at a computer program that is (too) difficult to program
‘directly’. Standard examples are programs that recognize faces, handwriting,
or speech, drive cars, recommend products, translate texts or play Go. These
are hard to program from scratch so one uses machine learning algorithms that
produce such programs from large amounts of data.

In his 1950 paper Computing Machinery and Intelligence [Tur50], Alan M.
Turing writes about “Learning machines” that eventually aim at imitating the
human brain:

“Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the child’s?
If this were then subjected to an appropriate course of education
one would obtain the adult brain. [...] Our hope is that there is
so little mechanism in the child-brain that something like it can be
easily programmed. The amount of work in the education we can

3

CONTENTS 4

assume, as a first approximation, to be much the same as for the
human child. We have thus divided our problem into two parts. The
child-programme and the education process.”

Today, two main branches of the field of machine learning are supervised learning
and unsupervised learning. In supervised learning a learning algorithm is a
device that receives ‘labeled training data’ as input and outputs a program that
predicts the label for unseen instances and thus generalizes beyond the training
data. Examples of sets of labeled data are emails that are labeled ‘spam’ or ‘no
spam’ and medical histories that are labeled with the occurrence or absence of
a certain disease. In these cases, the learning algorithm’s output would be a
spam filter and a diagnostic program, respectively.

In contrast, in unsupervised learning there is no additional label attached
to the data and the task is to identify patterns and/or model the data. Un-
supervised learning is for instance used to compress information, to organize
data or to generate a model for it. In the following, we will exclusively deal
with supervised learning. At the time of writing these notes, supervised learn-
ing appears to be the best-developed and economically most influential part of
machine learning.

A first coarse classification of supervised learning algorithms is in terms of
the chosen type of representation, which determines the basic structure of the
generated programs. Common ones are:

• Decision trees

• Nearest neighbors

• Neural networks

• Support vector machines and kernel methods

These types of representations, though quite different in nature, have two im-
portant things in common: they enable optimization and they form universal
hierarchies.

The fact that their structure enables optimization is crucial in order to iden-
tify an instance (i.e., a program) that fits the data and presumably performs
well regarding future predictions. This optimization is typically done in a greedy
manner.

Forming a universal hierarchy means that the type of representation allows
for more and more refined levels that, in principle, are capable of representing
every possibility or at least approximating every possibility to arbitrary accu-
racy.

Only a few such representation types are known and the above examples
(together with variations on the theme and combinations thereof) already seem
to cover most of the visible universe.

We will focus on the last two of the mentioned types of representations,
neural networks, and kernel methods, which are arguably the most sophisticated
and most powerful ones. To begin with, however, we will have a closer look at
the general statistical framework of supervised learning theory.

Chapter 1

Learning Theory

1.1 Statistical framework
In this section, we set up the standard statistical framework for supervised
learning theory. A recapitulation of basic concepts of probability theory can be
found in the appendix.

Input of the learning algorithm is the training data that is a finite sequence S =(
(x1, y1), . . . , (xn, yn)

)
of pairs from X ×Y. yi is called the label corresponding

to xi.
Output of the learning algorithm is a function h : X → Y, called hypothesis,
that aims at predicting y ∈ Y for arbitrary x ∈ X , especially for those not
contained in the training data. Formally, a learning algorithm can thus be
seen as a map A : ∪n∈N(X × Y)n → YX . We will denote its range, i.e., the
set of functions that can be output and thus be represented by the learning
algorithm, by F . From a computer science perspective, the learning algorithm
is an algorithm that, upon input of the training data S, outputs a computer
program described by hS := A(S) ∈ F .
Probabilistic assumption. The pairs (xi, yi) are treated as values of random
variables (Xi, Yi) that are identically and independently distributed according
to some probability measure P over X ×Y. We will throughout assume that the
corresponding σ-algebra is a product of Borel σ-algebras w.r.t. the usual topolo-
gies. All considered functions will be assumed to be measurable. Expectations
w.r.t. P and Pn := P × . . . × P will be denoted by E and ES , respectively.
If we want to emphasize that, for instance, S is distributed according to Pn
we will use the more explicit notation ES∼Pn . Similarly, probabilities of events
A and B w.r.t. P and Pn will be denoted by P[A] and PS [B], respectively.
It is throughout assumed that P does not only govern the distribution of the
training data, but also the one of future, yet unseen instances of data points.
Goal of the learning algorithm is to find a good hypothesis h w.r.t. a suitably
chosen loss function L : Y × Y → R that measures how far h(x) is from the

5

CHAPTER 1. LEARNING THEORY 6

respective y. The smaller the average loss, called risk1 and given by

R(h) :=

∫

X×Y
L
(
y, h(x)

)
dP (x, y), (1.1)

the better the hypothesis. The challenge is, that the probability measure P is
unknown, only the training data S is given. Hence, the task of the learning
algorithm is to minimize the risk without being able to evaluate it directly.

Depending on whether Y is continuous or discrete one distinguishes two
types of learning problems with different loss functions: regression problems
and classification problems2.

Regression

If Y is continuous and the loss function is, colloquially speaking, a distance mea-
sure, the learning problem is called a regression problem. The most common loss
function in the case Y = R is the quadratic loss L

(
y, h(x)

)
= |y−h(x)|2 leading

to the L2-risk also known as mean squared error R(h) = E
[
|Y − h(X)|2

]
. For

many reasons, this is a mathematically convenient choice. One of them is that
the function that minimizes the risk can be handled:

Theorem 1.1: Regression function minimizes L2-risk

In the present context let h : X → Y = R be a Borel function and assume
that E

[
Y 2
]
and E

[
h(X)2

]
are both finite. Define the regression function

as conditional expectation r(x) := E(Y |X = x). Then the L2-risk of h
can be written as

R(h) = E
[
|Y − r(X)|2

]
+E

[
|h(X)− r(X)|2

]
. (1.2)

Note: The first term on the r.h.s. in Eq.(1.2) vanishes if there is a deterministic
relation between x and y, i.e., if P (y|x) ∈ {0, 1}. In general, it can be regarded
as unavoidable uncertainty or inaccuracy that may be due to noise or due to
the lack of information content in X about Y . The second term contains the
dependence on h and is simply the squared L2-distance between h and the
regression function r. Minimizing the risk thus means minimizing the distance
to the regression function.

Proof. (sketch) Consider the real Hilbert space L2(X×Y, P) with inner product
〈ψ, φ〉 := E [ψφ]. h can be considered as an element of the closed subspace of
functions that only depend on x and are constant w.r.t. y. The function r also

1The risk also runs under the name out-of-sample error or generalization error .
2Although this seems to be a reasonable working definition distinguishing regression from

classification, the difference between the two is not so sharp: discretized versions of continuous
regression problems may still be called regression problems and, conversely, if the space Y is
a space of probability distribution over the classes of interest, a problem may still be called a
classification problem.

CHAPTER 1. LEARNING THEORY 7

represents an element of that subspace and since the conditional expectation3

is, by construction, the orthogonal projection into that subspace, we have 〈y −
r, h− r〉 = 0. With this, Pythagoras’ identity yields the desired result

||y − h||2 = ||y − r||2 + ||h− r||2.

Classification

Classification deals with discrete Y, in which case a function from X to Y is also
called a classifier. The most common loss function in this scenario is the 0-1
loss L(y, y′) = 1− δy,y′ so that the corresponding risk is nothing but the error
probability R(h) = P [h(X) 6= Y] = E

[
1h(X) 6=Y

]
. We will at the beginning

often consider binary classification where Y = {−1, 1}. The error probability
in binary classification is minimized by the Bayes classifier4

b(x) := sgn
(
E [Y |X = x]

)
. (1.3)

1.2 Error decomposition
How can the learning algorithm attempt to minimize the risk R(h) over its
accessible hypotheses h ∈ F without knowing the underlying distribution P?
There are two helping hands. The first one is prior knowledge. This can for in-
stance be hidden in the choice of F and the way the learning algorithm chooses a
hypothesis from this class. Second, although R(h) cannot be evaluated directly,
the average loss can be evaluated on the data S, which leads to the empirical
risk, also called in-sample error

R̂(h) :=
1

n

n∑

i=1

L
(
yi, h(xi)

)
. (1.4)

The approach of minimizing R̂ is called empirical risk minimization (ERM). In
particular if |Y| < ∞, then there always exists a minimizer ĥ ∈ F that attains
infh∈F R̂(h) = R̂(ĥ) since the functions are only evaluated at a finite number of
points, which effectively restricts F to a finite space.

In general, ERM is a computationally hard task—an issue that we will dis-
cuss in greater detail in the following chapters, where specific representations
are chosen. In spite of this, we will sometimes make the idealizing assumption
that ERM can be performed. Keeping in mind, however, that only in a few
cases an efficient algorithm or a closed-form solution for ERM is known, like in
the following examples.

3If there is a probability density p(x, y), the conditional expectation is given by E(Y |X =
x) =

∫
Y y p(x, y)/p(x)dy if the marginal p(x) is non-zero. For a general treatment of condi-

tional expectations see for instance [JP04], Chap.23.
4Here and in the following we use the convention sgn(x) := 1 if x ≥ 0 and sgn(x) := 0 for

x < 0.

CHAPTER 1. LEARNING THEORY 8

Example 1.1 (Linear regression).Let X × Y = Rd ×R and F := {h : X →
Y | ∃v ∈ Rd : h(x) = 〈v, x〉} be the class of linear functions. The minimizer
of the empirical risk (w.r.t. the quadratic loss)

R̂(v) :=
1

n

n∑

i=1

(
yi − 〈v, xi〉

)2
, (1.5)

can be determined by realizing that the condition ∇R̂(v) = 0 can be rewrit-
ten as linear equation Av = b, where A :=

∑
i xix

T
i and b :=

∑
i yixi. This

is solved by v = A−1b where the inverse is computed on range(A).
Example 1.2 (Polynomial regression).Let X ×Y = R×R and F := {h : R→
R | ∃a ∈ Rm+1 : h(x) =

∑m
k=0 akx

k} be the set of polynomials of degree m.
In order to find the ERM w.r.t. the quadratic loss, define ψ : R → Rm+1,
ψ(x) := (1, x, x2, . . . , xm). Then the empirical risk can be written as

1

n

n∑

i=1

(
yi −

m∑

k=0

akx
k
i

)2

=
1

n

n∑

i=1

(
yi − 〈a, ψ(xi)〉

)2
.

Hence, it is of the form in Eq.(1.5) and one can proceed exactly as in the
case of linear regression in Exp.1.1. Note that instead of using the monomial
basis in the components of ψ, we could as well use a Fourier basis, Wavelets
or other basis functions and again follow the same approach.
If n, the size of the training data set, is sufficiently large, one might hope

that R̂(h) is not too far from R(h) so that ERM would come close to minimizing
the risk and converge to it in the limit n→∞. The mathematical underpinning
of this hope is the law of large numbers. The quantification of the difference
R̂(h) − R(h) (often called excess risk) for finite n is essentially the content of
the remaining part of this chapter.

To this end, and also for a better understanding of some of the main is-
sues in supervised machine learning, it is useful to look at the following error
decompositions.

Let R∗ := infhR(h) be the so-called Bayes risk , where the infimum is taken
over all measurable functions h : X → Y, and let RF := infh∈F R(h) quantify
the optimal performance of a learning algorithm with range F . Assume further
that a hypothesis ĥ ∈ F minimizes the empirical risk, i.e., R̂(ĥ) ≤ R̂(h) ∀h ∈ F .
Then we can decompose the difference between the risk of a hypothesis h and
the optimal Bayes risk as

R(h)−R∗ =
(
R(h)−R(ĥ)

)
︸ ︷︷ ︸
optimization error

+
(
R(ĥ)−RF

)
︸ ︷︷ ︸
estimation error

+
(
RF −R∗

)
︸ ︷︷ ︸

approximation error

. (1.6)

The approximation error does neither depend on the hypothesis nor on the data.
It quantifies how well the hypothesis class F is suited for the problem under
consideration. The optimization error depends on how good the optimization
that led to hypothesis h is relative to ideal empirical risk minimization. The

CHAPTER 1. LEARNING THEORY 9

estimation error measures how well the empirical risk minimizer ĥ performs rel-
ative to a true risk minimizer in F . By the law of large numbers, the estimation
error is expected to decrease with the size n of the training data set and to
vanish asymptotically. The estimation error can be bounded by

R
(
ĥ
)
−RF = R

(
ĥ
)
− R̂

(
ĥ
)

+ sup
h∈F

(
R̂
(
ĥ
)
−R(h)

)

≤ 2 sup
h∈F

∣∣∣R̂(h)−R(h)
∣∣∣, (1.7)

or in expectation w.r.t. the training data set S by

ES

[
R(ĥ)−RF

]
≤ ES

[
R(ĥ)− R̂(ĥ)

]
. (1.8)

The inequality in Eq.(1.8) can be proven by first adding and subtracting the
expectation of R̂(ĥ)+ R̂(hF), where hF is assumed to be a minimizer of the risk
within F , and then exploiting that R̂(ĥ)− R̂(hF) ≤ 0 and that R̂(hF)−RF has
zero expectation.

Bounds on the difference between the risk and the empirical risk (or, using
synonyms, between the out-of-sample error and the in-sample error) are called
generalization bounds. They quantify how well the hypothesis generalizes from
the observed data to unseen cases. Generalization bounds that hold uniformly
for all h ∈ F , as desired by Eq.(1.7), will be derived in the following sections.

Let us for the moment assume that the learning algorithm performs ideal
ERM so that the optimization error vanishes. Then we are typically faced with a
trade-off between the estimation error and the approximation error: while aim-
ing at a smaller approximation error suggests taking a richer hypothesis class F ,
the data required to keep the estimation error under control unfortunately turns
out to grow rapidly with the size or complexity of F (cf. following sections).
A closely related trade-off runs under the name bias-variance trade-off. It has
its origin in a refinement of the decomposition in Thm.1.1 and is exemplified in
Fig.1.1.

Theorem 1.2: Noise-bias-variance decomposition

In the setup of Thm.1.1 consider a fixed learning algorithm that outputs
a hypothesis hS upon input of S ∈ (X × Y)n. Regard S as a random
variable, distributed according to Pn and define h̄(x) := ES [hS(x)] the
expected prediction for a fixed x. If the expected risk ES [R(hS)] is finite,
then it is equal to

E
[
|Y − r(X)|2

]
︸ ︷︷ ︸

noise

+E
[
|h̄(X)− r(X)|2

]
︸ ︷︷ ︸

bias2

+E
[
ES

[
|hS(X)− h̄(X)|2

]]
︸ ︷︷ ︸

variance
(1.9)

Proof. We take the expectation ES of Eq.(1.2) when applied to hS and observe
that the first term on the r.h.s. is independent of S. For the second term we

CHAPTER 1. LEARNING THEORY 10

Figure 1.1: Bias-variance trade-off in polynomial regression: two samples (red
and blue points) are drawn from the same noisy version of a quadratic function
(gray). If we fit high-degree polynomials (top image), there is a large variance
from sample to sample, but a small bias in the sense that the average curve
asymptotically matches the underlying distribution well. If affine functions are
used instead (bottom image), the variance is reduced at the cost of a large bias.

obtain

ES

[
E
[
|hS(X)− r(X)|2

]]
= E

[
ES

[
|hS(X)− h̄(X) + h̄(X)− r(X)|2

]]

= E
[
|h̄(X)− r(X)|2

]

+ E
[
ES

[
|hS(X)− h̄(X)|2

]]

+ 2E
[
ES

[(
hS(X)− h̄(X)

)(
h̄(X)− r(X)

)]]
.

The term in the last line vanishes since
(
h̄(X)− r(X)

)
is independent of S and

ES

[(
hS(X)− h̄(X)

)]
= 0.

As can be seen in the example of polynomial regression in Fig.1.1, if we increase
the size of F , then the squared bias is likely to decrease while the variance will
typically increase (while the noise is unaffected).

There is a third incarnation of the phenomenon behind a dominating variance
or estimation error that is called overfitting . All these are possible and typical
consequences of choosing F too large so that it contains exceedingly complex
hypotheses, which might be chosen by the learning algorithm.5

5One says that ‘h overfits the data’ if it is overly optimistic in the sense that the in-sample-
error is significantly smaller than the out-of-sample-error—like in the example of high-degree
polynomials in Fig.1.1.

CHAPTER 1. LEARNING THEORY 11

As long as ideal ERM is considered, the three closely related issues just
discussed all ask for a balanced choice of F . In order to achieve this and to get
confidence in the quality of the choice many techniques have been developed.
First of all, the available labeled data is split into two disjoint sets, training data
and test data. While the former is used to train/learn/optimize and eventually
output a hypothesis hS , the latter is used to evaluate the performance of hS .
There is sometimes a third separate set, the validation data, that is used to tune
free parameters of the learning algorithm. In many cases, however, training data
is too precious to set aside a separate validation sample, and then validation is
done on the training data by a technique called cross-validation.

In order to prevent the learning algorithm from choosing overly complex
hypotheses, ERM is often modified in practice. One possibility, called structural
risk minimization, is to consider a sequence of hypotheses classes F1 ⊂ F2 ⊂
F3 ⊂ . . . of increasing complexity and to optimize the empirical error plus a
penalty term that takes into account the complexity of the underlying class.

A smoother variant of this idea is called regularization, where a single hy-
potheses class F is chosen together with a regularizer, i.e., a complexity penal-
izing function % : F → R+, and one minimizes the regularized empirical risk
R̂(h) + %(h). If F is embedded in a normed space, a very common scheme is
Tikhonov regularization, where %(h) := ||Ah||2 for some linear map A, which is
often simply a multiple of the identity. The remaining free parameter is then
chosen for instance by cross-validation. The term regularization is often used
very broadly for techniques that aim at preventing the learning algorithm from
overfitting.

In the end, choosing a good class F and/or a good way to pick not too
complex hypotheses from F is to some extent an art. In practice, one makes
substantial use of heuristics and of explicit or implicit prior knowledge about
the problem. In Sec.1.4 we will see a formalization of the fact that there is no
a priori best choice.

A central goal of statistical learning theory is to provide generalization
bounds. The simplest way to obtain such bounds in practice is to look at a
test set, which will be done in the remaining part of this section. Deriving gen-
eralization bounds without a test set is more delicate, but from a theoretical
point of view desirable. It is usually based on two ingredients: (i) a so-called
concentration inequality , which can be seen as a non-asymptotic version of the
law of large numbers, and (ii) a bound on a relevant property of the learn-
ing algorithm. This property could be the size or complexity of its range, the
stability, compressibility, description length or memorization-capability of the
algorithm. All these lead to different generalization bounds and some of them
will be discussed in the following sections. The traditionally dominant approach
is to consider only the range F of the algorithm. This seems well justified as
long as idealized ERM is considered (as ERM treats all hypotheses in F equally)
and we will have a closer look at various themes along this line until Sec.1.10
(incl.). In Sec.1.11-1.13 we will exploit more details and other properties of the
learning algorithms and discuss approaches in which the range F plays essen-
tially no role anymore. This class of approaches is potentially better suited to

CHAPTER 1. LEARNING THEORY 12

deal with the fact that in practice learning algorithms often deviate from their
ERM-type idealization.

Generalization bound from test error

Before we discuss how generalization bounds can be obtained prior to looking at
the test error, we will look at the test error and ask what kind of generalization
bounds can be obtained from it. To this end, we will assume that there is a test
set T ∈ (X × Y)m which has been kept aside so that the hypothesis h, which
has been picked by the learning algorithm depending on a training data set S,
is statistically independent of T . More precisely, we assume that the elements
of both, S and T , are distributed identically and independently, governed by a
probability measure P on X × Y, and that h may depend on S but not on T .
Testing the hypothesis on T then leads to the empirical test error

R̂T (h) :=
1

|T |
∑

(x,y)∈T

L
(
y, h(x)

)
.

If R = R(h) is the error probability, i.e., the 0 − 1 loss is considered, then
the empirical test error R̂T = R̂T (h) is a multiple of 1/m and we can express
the probability that it is at most k/m in terms of the cumulative binomial
distribution

PT∼Pm

[
R̂T ≤

k

m

]
=

k∑

j=0

(
m

j

)
Rj(1−R)m−j =: Bin(m, k,R). (1.10)

Since we want to deduce a bound on R from R̂T , we have to invert this formula
and introduce

Binv(m, k, δ) := max
{
p ∈ [0, 1] | Bin(m, k, p) ≥ δ

}
. (1.11)

This leads to:

Theorem 1.3: Clopper-Pearson bound

Let R(h) be the error probability of a hypothesis h : X → Y. With
probability at least 1− δ over an i.i.d. draw of a test set T ∈ (X × Y)m:

R(h) ≤ Binv
(
m,mR̂T (h), δ

)
≤ R̂T (h) +

√
ln 1

δ

2m
. (1.12)

Moreover, if R̂T (h) = 0, then

R(h) ≤
ln 1

δ

m
. (1.13)

CHAPTER 1. LEARNING THEORY 13

Proof. (Sketch) The probability that the empirical error probability is at most
k/m, if the ‘true’ error probability is given by R := R(h), is Bin(m, k,R). This
increases as a function of k and decreases as a function of R. The latter implies
that for any k,m the maximum p for which Bin(m, k, p) ≥ δ is the R for which
P

[
R̂T (h) ≤ k/m

]
= δ. This in turn is equivalent to saying that with probability

1− δ we have k < mR̂T (h). So

R = Binv(m, k, δ) ≤ Binv
(
m,mR̂T (h), δ

)
,

where the inequality, which uses monotonicity of Binv in the second argument,
only holds with probability 1 − δ. Hence, R ≤ Binv(m,mR̂T (h), δ) holds with
probability 1−δ. In order to further bound this in a more explicit way, we exploit
that the cumulative binomial distribution can be bounded by Bin(m, k, p) ≤
exp

[
− 2m(p− k/m)2

]
. Inserting this into the definition of Binv, we get

Binv(m, k, δ) ≤ max
{
p | exp

[
− 2m(p− k/m)2

]
≥ δ
}

=
k

m
+

√
ln 1

δ

2m
, (1.14)

which leads to Eq.(1.12). Following the same reasoning, Eq.(1.13) is obtained
from the bound Bin(m, 0, p) = (1− p)m ≤ e−pm.

The bound on R(h) in terms of Binv is optimal, by definition. Of course, in
practice, Binv should be computed numerically in order to get the best possi-
ble bound. The explicit bounds given in Thm.1.3, however, display the right
asymptotic behavior, which we will also find in the generalization bounds that
are expressed in terms of the training error in the following sections: while in
general, the difference between risk and empirical risk is inversely proportional
to the square root of the sample size, this square root can be dropped under
special assumptions.

Notes and literature Linear regression with quadratic loss goes back at least to Legen-
dre’s 1805 work in which he uses the method for the determination of comet orbits [Leg05].
Statistical learning theory was introduced in the late 1960’s by Vapnik and Chervonenkis
[VC68, VC71, VC74]. Binomial bounds on estimation errors appear in Clopper and Pear-
son’s work from 1934 [CP34]. Overviews on generalization bounds from test errors for
classification can be found in [AGGR11, Lan05].

1.3 PAC learning bounds
Since we consider the training data to be random, we have to take into account
the possibility to be unlucky with the data in the sense that it may not be a
fair sample of the underlying distribution. Hence, useful bounds for instance
on |R̂(h) − R(h)| will have to be probabilistic, like the ones we encountered in

CHAPTER 1. LEARNING THEORY 14

the last section. What we can reasonably hope for, is that, under the right
conditions, we obtain guarantees of the form

PS

[
|R̂(h)−R(h)| ≥ ε

]
≤ δ. (1.15)

Bounds of this form are the heart of the probably approximately correct (PAC)
learning framework. The bounds in this context are distribution-free. That is, ε
and δ do not depend on the underlying probability measure, which is typically
unknown in practice. The simplest bound of this kind concerns cases where a
deterministic assignment of labels is assumed that can be perfectly described
within the chosen hypotheses class:

Theorem 1.4: PAC bound for deterministic, realizable scenarios

Let ε ∈ (0, 1), consider the error probability as risk function and assume:

1. There exists a function f : X → Y that determines the labels, i.e.,
P[Y = y|X = x] = δy,f(x) holds ∀(x, y) ∈ X × Y.

2. For any S =
(
(xi, f(xi))

)n
i=1
∈ (X × Y)n the considered learning

algorithm returns a hypothesis hS ∈ F for which R̂(hS) = 0.

Then PS
[
R(hS) > ε

]
≤ |F|(1− ε)n and for any δ > 0, n ∈ N one has

n ≥ 1

ε
ln
|F|
δ

⇒ PS

[
|R̂(hS)−R(hS)| > ε

]
≤ δ.

Proof. We assume that |F| < ∞ since the statements are trivial or empty
otherwise. First observe that for any hypothesis

PS

[
R̂(h) = 0

]
= PS

[
∀i ∈ {1, . . . , n} : h(Xi) = f(Xi)

]

=

n∏

i=1

P
[
h(Xi) = f(Xi)

]
=
(
1−P[h(X) 6= f(X)]

)n

=
(
1−R(h)

)n
, (1.16)

where the i.i.d. assumption is used in the second line. With R̂(hS) = 0 and
hS ∈ F we can bound

PS

[
|R̂(hS)−R(hS)| > ε

]
= PS [R(hS) > ε]

≤ PS

[
∃h ∈ F : R̂(h) = 0 ∧R(h) > ε

]

≤
∑

h∈F :R(h)>ε

PS

[
R̂(h) = 0

]
≤ |F|(1− ε)n,

where in the third line we first used the union bound, which is applicable since
|F| <∞, and then we exploited Eq.(1.16). In addition, the number of terms in

CHAPTER 1. LEARNING THEORY 15

the sum
∑
h∈F :R(h)>ε was simply bounded by |F|. From here the final implica-

tion stated in the theorem can be obtained via |F|(1− ε)n ≤ |F|e−εn =: δ and
solving for n.

In the following we will relax the assumptions that were made in Thm.1.4
more and more. Many of the PAC learning bounds then rely on the following
Lemma, which was proven in [Hoe63]:

Lemma 1.1 (Hoeffding’s inequality). Let Z1, . . . , Zn be real independent ran-
dom variables whose values are contained in intervals [ai, bi] ⊇ range[Zi]. Then
for every ε > 0 it holds that

P

[
n∑

i=1

(
Zi −E [Zi]

)
≥ ε

]
≤ exp

[
− 2ε2∑n

i=1(ai − bi)2

]
. (1.17)

A useful variant of this inequality can be obtained as a simple corollary: the
probability P

[∣∣∑n
i=1 Zi −E [Zi]

∣∣ ≥ ε
]
can be bounded by two times the r.h.s.

of Eq.(1.17). This can be seen by first observing that Eq.(1.17) remains valid
when replacing Zi by −Zi and then adding the obtained inequality to the initial
one.

We will now use Hoeffding’s inequality to prove a PAC learning bound with-
out assuming that there is a deterministic assignments of labels that can be
perfectly described within F . In the literature, this scenario is often called
the agnostic case (as opposed to the realizable case considered in the previous
theorem).

Theorem 1.5: PAC bound for countable, weighted hypotheses

Consider a countable hypothesis class F and a loss function whose values
are contained in an interval of length c ≥ 0. Let p be any probability
distribution over F and δ ∈ (0, 1] any ‘confidence parameter’. Then with
probability at least (1−δ) w.r.t. repeated sampling of sets of training data
of size n we have

∀h ∈ F :
∣∣R̂(h)−R(h)

∣∣ ≤ c

√
ln 1

p(h) + ln 2
δ

2n
. (1.18)

Note: The bound is again independent of the underlying probability measure
P . It should also be noted that p(h) can not depend on the training data and
is merely used in order to allow the level of approximation to depend on the
hypothesis. In particular, p(h) can not be interpreted as a probability with
which the hypothesis h is chosen. More sophisticated versions of PAC bounds
depending on a priori fixed distributions over the space of hypotheses will be
discussed in Sec.1.13.

Proof. Let us first consider a fixed h ∈ F and apply Hoeffding’s inequality to
the i.i.d. random variables Zi := L(Yi, h(Xi))/n. Setting ε := c

√(
ln 2

p(h)δ

)
/2n

CHAPTER 1. LEARNING THEORY 16

we obtain
PS

[∣∣R̂(h)−R(h)
∣∣ ≥ ε

]
≤ p(h)δ. (1.19)

In order to bound the probability that for any of the h’s the empirical average
deviates from the mean, we exploit the union bound and arrive at

PS

[
∃h ∈ F :

∣∣R̂(h)−R(h)
∣∣ ≥ ε

]
≤
∑

h∈F

PS

[∣∣R̂(h)−R(h)
∣∣ ≥ ε

]
≤
∑

h∈F

p(h)δ = δ.

The ε in Eq.(1.19) depends on the hypothesis h. The smaller the weight
p(h), the larger the corresponding ε. Hence, effectively, the above derivation
provides reasonable bounds only for a finite number of hypotheses. If F itself
is finite, we can choose p(h) := 1/|F| and rewrite the theorem so that it yields
a bound for the size of the training set that is sufficient for a PAC learning
guarantee:

Corollary 1.2. Consider a finite hypothesis space F , δ ∈ (0, 1], ε > 0 and a
loss function whose range is contained in an interval of length c ≥ 0. Then
∀h ∈ F : |R̂(h) − R(h)| ≤ ε holds with probability at least 1 − δ over repeated
sampling of training sets of size n, if

n ≥ c2

2ε2

(
ln |F|+ ln

2

δ

)
. (1.20)

Due to Eq.(1.7) this also guarantees that R(ĥ)−RF ≤ 2ε, providing a quan-
titative justification of ERM. Consequently, in a deterministic scenario where a
function f : X → Y determines the ‘true’ label, we have R(ĥ) ≤ 2ε if f ∈ F .

Unfortunately, for infinite F the statement of the corollary becomes void —
a drawback that will to a large extent be corrected in the following sections.
Before going there, however, we will discuss some negative results in order to
understand better what we can not expect.

In the limit n → ∞ Thm. 1.5 can be regarded as a uniform law of large
numbers — one that holds uniformly over all elements of a function class. Unlike
the law of large numbers, its uniform counterparts do not hold in general but
only for special functions classes. These are called Glivenko-Cantelli classes
(or uniform Glivenko-Cantelli classes if uniformity holds in addition w.r.t. all
probability measures). That not all function classes are Glivenko-Cantelli classes
is shown by the following simple example:

Example 1.3 (Failure of a uniform law of large numbers).Consider the set of
indicator functions F := {z 7→ 1z∈A|A ⊆ R ∧ |A| < ∞} of finite subsets of
the real line. For any f ∈ F and any continuous probability distribution of
Z on R we have that E [f(Z)] = 0 and the sample average 1

n

∑n
i=1 f(zi) will

almost surely be zero as well. So the law of large numbers is trivially true in
this case. However, it does not hold uniformly, since supf∈F

1
n

∑n
i=1 f(zi) =

1 for all n.

CHAPTER 1. LEARNING THEORY 17

If F = YX with all sets finite, then Eq.(1.20) provides a PAC guarantee
essentially only if n exceeds |X |. The latter means, however, that the learning
algorithm has basically already seen all instances in the training data. The next
theorem shows that this is indeed necessary for PAC learning if all functions in
F = YX are equally relevant for describing the data.

Notes and literature The trace of ‘PAC learning’ goes back to the work of Valiant
[Val84], who has focused on both computational complexity and sample-complexity. The
statistical aspect, i.e. the sample-complexity, has been considered independently already
in the works of Vapnik and Chervonenkis [VC68, VC71, VC74]. The close relation between
these two lines of research was pointed out in [BEHW89].

1.4 No free lunch
If we are given part of a sequence, say 2 4 8 16, without further assumption
about an underlying structure, we can not infer the next number. As Hume
phrased it (first published anonymously in 1739): there is nothing in any object,
consider’d in itself, which can afford us a reason for drawing a conclusion beyond
it (§3.12 in [Hum39]). The necessity of prior information in machine learning
is put in a nutshell by the ‘no-free-lunch theorem’, of which one version is the
following:

Theorem 1.6: No-free-lunch

Let X and Y both be finite and so that |X | exceeds the size n of the
training set S. For any f : X → Y define Rf (h) := P [h(X) 6= f(X)]
where the probability is taken w.r.t to a uniform distribution of X over X .
Then for every learning algorithm the expected risk averaged uniformly
over all functions f ∈ YX fulfills

Ef

[
ES

[
Rf
(
hS
)]]
≥
(

1− 1

|Y|

)(
1− n

|X |

)
. (1.21)

Note: Here it is understood that f determines the joint distribution P (x, y) =
δy,f(x)/|X |. Consequently, the training data has the form

(
(xi, f(xi))

)n
i=1

.

Proof. (sketch) Denote by XS the subset of X appearing in the training data S.
Regarding XS as a multiset it satisfies |XS | = n. We can write

Ef

[
ES

[
Rf
(
hS
)]]

=
1

|X |
Ef

[
ES

[∑

x∈X
1hS(x)6=f(x)

]]
(1.22)

≥ 1

|X |
Ef

ES

∑

x 6∈XS

1hS(x)6=f(x)

 . (1.23)

CHAPTER 1. LEARNING THEORY 18

While inside XS the value of f(x) is determined by S, for x 6∈ XS all |Y| values
are possible and equally likely, so that hS(x) 6= f(x) holds with probability
1− 1/|Y| w.r.t. a uniform distribution over f ’s that are consistent with S. The
remaining factor is due to

∑
x6∈XS = |X | − n.

Let us compare this with random guessing. The risk, i.e., the average error
probability, of random guessing in the above scenario is 1−1/|Y|. Thm.1.6 only
leaves little room for improvement beyond this—an additional factor (1−n/|X |).
This factor reflects the fact that the learning algorithm has already seen the
training data, which is at most a fraction n/|X | of all cases. Regarding the
unseen cases, however, all learning algorithms are the same on average and
perform no better than random guessing. Note that the above proof also allows
us to derive an upper bound in addition to the lower bound in Eq.(1.21). To
this end, observe that the difference between Eqs.(1.22) and (1.23) is at most
n/|X |. Hence, in the limit n/|X | → 0 the average error probability is exactly
the one for random guessing, irrespective of what learning algorithm has been
chosen.

This sobering result also implies that there is no order among learning algo-
rithms. If one learning algorithm beats another on some functions, the converse
has to hold on other functions. This result, as well as similar ones, has to be
put into perspective, however, since not all functions are equally relevant.

The no-free-lunch theorem should not come as a surprise. In fact, it is little
more than a formalization of a rather obvious claim within our framework: if
one is given n values of a sequence of independently, identically and uniformly
distributed random variables, then predicting the value of the (n + 1)’st can
not be better than random guessing. If prediction is to be better than chance,
then additional structure is required. The inevitable a priori information about
this structure can be incorporated into machine learning in different ways. In
the approach we focus on until Sec.1.10 (incl.), the a priori information is re-
flected in the choice of the hypotheses class F . In addition, hypotheses in
F may effectively be given different weight, for instance resulting from SRM,
regularization or a Bayesian prior distribution over F . Throughout, the dis-
cussed approaches will be distribution-independent in the sense that they make
no assumption about the distribution P that governs the data. An alternative
approach (which we will not follow) would be to put prior information into P ,
for instance by assuming a parametric model for P .

Notes and literature Various ‘No-free-lunch theorems’ for machine learning and op-
timization appeared in [Wol96, WM97]. The one presented in this section is essentially
from Shalev-Shwartz and Ben-David [SSBD14].

1.5 Growth function
Starting in this section, we aim at generalizing the PAC bounds derived in
Sec.1.3 to beyond finite hypotheses classes. The first approach essentially re-

CHAPTER 1. LEARNING THEORY 19

places the cardinality of F by the corresponding growth function.

Definition 1.3 (Growth function). Let F ⊆ YX be a class of functions with
finite target space Y. For every subset Ξ ⊆ X define the restriction of F to Ξ
as F|Ξ := {f ∈ YΞ | ∃F ∈ F ∀x ∈ Ξ : f(x) = F (x)}. The growth function Γ
assigned to F is then defined for all n ∈ N as

Γ(n) := max
Ξ⊆X :|Ξ|≤n

∣∣ F|Ξ
∣∣.

For later convenience, we will in addition set Γ(0) := 1.

That is, the growth function describes the maximal size of F when restricted
to a domain of n points. Thus, by definition Γ(n) ≤ |Y|n.

Example 1.4 (Threshold functions).Consider the set of all threshold functions
F ⊆ {−1, 1}R defined by F := {x 7→ sgn[x− b]}b∈R. Given a set of distinct
points {x1, . . . , xn} = Ξ ⊆ R, there are n+1 functions in F|Ξ corresponding
to n + 1 possible ways of placing b relative to the xi’s. Hence, in this case
Γ(n) = n+ 1.

Theorem 1.7: PAC bound via growth function

Consider a hypothesis class F with finite target space Y and a loss func-
tion whose range is contained in an interval [0, c]. Let δ ∈ (0, 1]. With
probability at least (1 − δ) w.r.t. repeated sampling of training data of
size n we have

∀h ∈ F : |R(h)− R̂(h)| ≤ c

√
8 ln

(
Γ(2n) 4

δ

)

n
. (1.24)

Note: this implies a non-trivial bound whenever the growth function grows
sub-exponentially.

Proof. Let S and S′ be i.i.d. random variables with values in (X × Y)n dis-
tributed according to some product probability measure Pn. For every value of
S′ denote by R̂′(h) the corresponding empirical risk of a hypothesis h ∈ F . By
virtue of the triangle inequality, if |R(h) − R̂(h)| > ε and |R(h) − R̂′(h)| < ε

2 ,
then |R̂′(h)− R̂(h)| > ε

2 . Expressed in terms of indicator functions this is

1|R(h)−R̂(h)|>ε 1|R(h)−R̂′(h)|< ε
2
≤ 1|R̂′(h)−R̂(h)|> ε

2
. (1.25)

Let us assume that n ≥ 4c2ε−2 ln 2, which will be justified later by a particular
choice of ε. Taking the expectation value w.r.t. S′ in Eq.(1.25) affects the
second and third term. The former can be bounded using Hoeffding’s inequality
together with the assumption on n, which leads to

ES′

[
1|R(h)−R̂′(h)|< ε

2

]
≥ 1− 2 exp

[
− ε2n

2c2

]
≥ 1

2
.

CHAPTER 1. LEARNING THEORY 20

For the expectation value of the last term in Eq.(1.25) we use

ES′

[
1|R̂′(h)−R̂(h)|> ε

2

]
≤ PS′

[
∃h ∈ F : |R̂′(h)− R̂(h)| > ε

2

]
.

Inserting both bounds into Eq.(1.25) gives

1|R(h)−R̂(h)|>ε ≤ 2 PS′
[
∃h ∈ F : |R̂′(h)− R̂(h)| > ε

2

]
.

As this holds for all h ∈ F , we can replace the left hand side by 1∃h∈F :|R(h)−R̂(h)|>ε.
Taking the expectation w.r.t. S then leads to

PS

[
∃h ∈ F : |R(h)− R̂(h)| > ε

]
≤ 2PS,S′

[
∃h ∈ F : |R̂′(h)− R̂(h)| > ε

2

]
.

Note that the r.h.s. involves only empirical quantities. This implies that every
function h is only evaluated on at most 2n points, namely those appearing in
S and S′. Since restricted to 2n points there are at most Γ(2n) functions, our
aim is now to exploit this together with the union bound and to bound the
remaining factor with Hoeffding’s inequality. To this end, observe that we can
write

2PS,S′
[
∃h ∈ F : |R̂′(h)− R̂(h)| > ε

2

]
= (1.26)

2ESS′

[
Pσ

[
∃h ∈ F :

1

n

∣∣∣
n∑

i=1

(
L
(
Yi, h(Xi)

)
− L

(
Y ′i , h(X ′i)

))
σi

∣∣∣ > ε

2

]]
,

where Pσ denotes the probability w.r.t. uniformly distributed σ ∈ {−1, 1}n.
Eq.(1.26) is based on the fact that multiplication with σi = −1 amounts to in-
terchanging (Xi, Yi)↔ (X ′i, Y

′
i), which has no effect since the random variables

are independently and identically distributed. The advantage of this step is that
we can now apply our tools inside the expectation value ESS′ where S and S′
are fixed. Then h ∈ F

∣∣
S∪S′ is contained in a finite function class, so that we

can use the union bound followed by an application of Hoeffding’s inequality to
arrive at

PS

[
∃h ∈ F : |R(h)− R̂(h)| > ε

]
≤ 4ESS′

[∣∣F|S∪S′
∣∣] exp

[
−nε

2

8c2

]

≤ 4Γ(2n) exp

[
−nε

2

8c2

]
(1.27)

The result then follows by setting the final expression in Eq.(1.27) equal
to δ and solving for ε. The previously made assumption on n then becomes
equivalent to δ ≤ 2

√
2Γ(2n), which is always fulfilled as δ ∈ (0, 1].

Note that we have proven a slightly stronger result, in which the growth
function Γ(2n) is replaced by ESS′

[∣∣F|S∪S′
∣∣]. The logarithm of this expec-

tation value is called VC-entropy. The VC-entropy, however, depends on the

CHAPTER 1. LEARNING THEORY 21

underlying probability distribution P and is thus difficult to estimate in gen-
eral. The growth function, though independent of P , may still be difficult to
estimate. The following section will distill its remarkable essence for the binary
case (|Y| = 2), where Γ turns out to exhibit a simple dichotomic behavior.

For later use, let us state the behavior of the growth function w.r.t. compo-
sitions:

Lemma 1.4 (Growth functions under compositions). Consider function classes
F1 ⊆ YX ,F2 ⊆ ZY and F := F2 ◦ F1. The respective growth functions then
satisfy

Γ(n) ≤ Γ1(n)Γ2(n).

Proof. Fix an arbitrary subset Ξ ⊆ X of cardinality |Ξ| = n. With G := F1|Ξ
we can write F|Ξ =

⋃
g∈G{f ◦ g | f ∈ F2}. So

∣∣F|Ξ
∣∣ ≤

∣∣F1|Ξ
∣∣max
g∈G

∣∣{f ◦ g|f ∈ F2

}∣∣

≤ Γ1(n) max
g∈G

∣∣F2|g(Ξ)

∣∣

≤ Γ1(n)Γ2(n).

1.6 VC-dimension
In the case of binary target space (|Y| = 2) there is a peculiar dichotomy in the
behavior of the growth function Γ(n). It grows at maximal rate, i.e., exponen-
tially and exactly like 2n, up to some n = d and from then on remains bounded
by a polynomial of degree at most d. The number d where this transition occurs,
is called the VC-dimension of the function class and plays an important role in
the theory of binary classification.

Definition 1.5 (Vapnik-Chervonenkis dimension). The VC-dimension of a
function class F ⊆ YX with binary target space Y is defined as

VCdim(F) := max
{
n ∈ N0

∣∣ Γ(n) = 2n
}

if the maximum exists and VCdim(F) =∞ otherwise.

That is, if VCdim(F) = d, then there exists a set A ⊆ X of d points, such
that F|A = YA and the VC-dimension is the largest such number.

In general, if a subset A ⊆ X and binary function class F ⊆ YX satisfy
F|A = YA, one says that “F shatters A”.

Example 1.5 (Threshold functions).If F = {R 3 x 7→ sgn[x − b]}b∈R, then
VCdim(F) = 1 as we have seen in example 1.4 that Γ(n) = n + 1. More
specifically, if we consider an arbitrary pair of points x1 < x2, then the
assignment x1 7→ 1, x2 7→ −1 is missing in F|{x1,x2}. Hence, VCdim(F) < 2.

CHAPTER 1. LEARNING THEORY 22

Theorem 1.8: VC-dichotomy of the growth function

Consider a function class F ⊆ YX with binary target space Y and VC-
dimension d. Then the corresponding growth function satisfies

Γ(n)

{
= 2n, if n ≤ d.
≤
(
en
d

)d
, if n > d.

(1.28)

Proof. Γ(n) = 2n for all n ≤ d holds by definition of the VC-dimension. In order
to arrive at the expression for n > d, we show that for every subset A ⊆ X with
|A| = n the following is true:

∣∣F|A
∣∣ ≤

∣∣∣
{
B ⊆ A

∣∣ F|B = YB
}∣∣∣. (1.29)

If Eq.(1.29) holds, we can upper bound the r.h.s. by
∣∣{B ⊆ A

∣∣ |B| ≤ d}
∣∣ =∑d

i=0

(
n
i

)
, which for n > d in turn can be bounded by

d∑

i=0

(
n

i

)
≤

n∑

i=0

(
n

i

)(n
d

)d−i

=
(n
d

)d(
1 +

d

n

)n
≤
(n
d

)d
ed, (1.30)

where the last step follows from ∀x ∈ R : (1 + x) ≤ ex. Hence, the proof is
reduced to showing Eq.(1.29).

This will be done by induction on |A|. For |A| = 1 it is true (as B = ∅
always counts). Now assume as induction hypothesis that it holds for all sets of
size n− 1 and that |A| = n. Let a be any element of A and define

F ′ :=
{
h ∈ F|A

∣∣ ∃g ∈ F|A : h(a) 6= g(a) ∧ (h− g)|A\a = 0
}
, Fa := F ′|A\a.

Then |F|A| = |F|A\a| + |Fa| and both terms on the r.h.s. can be bounded by
the induction hypothesis. For the first term we obtain

∣∣F|A\a
∣∣ ≤

∣∣∣
{
B ⊆ A

∣∣ F|B = YB ∧ a 6∈ B
}∣∣∣. (1.31)

The second term can be bounded by
∣∣Fa
∣∣ =

∣∣F ′|A\a
∣∣ ≤

∣∣∣
{
B ⊆ A \ a

∣∣ F ′|B = YB
}∣∣∣

=
∣∣∣
{
B ⊆ A \ a

∣∣ F ′|B∪a = YB∪a
}∣∣∣

=
∣∣∣
{
B ⊆ A

∣∣ F ′|B = YB ∧ a ∈ B
}∣∣∣

≤
∣∣∣
{
B ⊆ A

∣∣ F|B = YB ∧ a ∈ B
}∣∣∣, (1.32)

where we use the induction hypothesis in the first line and the step to the
second line uses the defining property of F ′. Adding the bounds of Eq.(1.31)
and Eq.(1.32) then yields the result claimed in Eq.(1.29).

CHAPTER 1. LEARNING THEORY 23

Now we can plug this bound on the growth function into the PAC bound
in Thm.1.7. After a couple of elementary manipulations we then arrive at the
following result, which, similar to Cor.1.2, provides a bound on the necessary
statistics, but with the VC-dimension d now playing the role of ln |F|.
Corollary 1.6. Consider a function class F ⊆ YX with binary target space
and VC-dimension d. Let (ε, δ) ∈ (0, 1]2 and choose the risk function R to be
the error probability. Then ∀h ∈ F : |R̂(h)−R(h)| ≤ ε holds with probability at
least 1− δ over repeated sampling of training sets of size n, if

n ≥ 32

ε2

[
d ln

(
8d

ε2

)
+ ln

6

δ

]
. (1.33)

Note: the bound in Eq.(1.33) can be slightly improved. In particular, the first
logarithm turns out to be unnecessary, cf. Eq.(1.45).

A useful tool for computing VC-dimensions is the following theorem:

Theorem 1.9: VC-dimension for function vector spaces

Let G be a real vector space of functions from X to R and φ ∈ RX . Then
F :=

{
x 7→ sgn[g(x) + φ(x)]

}
g∈G ⊆ {−1, 1}X has VCdim(F) = dim(G).

Proof. Let us first prove VCdim(F) ≤ dim(G). We can assume dim(G) <∞ and
argue by contradiction. Let k = dim(G) + 1 and suppose that VCdim(F) ≥ k.
Then there is a subset Ξ = {x1, . . . , xk} ⊆ X such that F|Ξ = {−1, 1}Ξ. Define
a map L : G → Rk via L(g) :=

(
g(x1), . . . , g(xk)

)
. L is a linear map whose range

has dimension at most dim(G). Hence, there is a non-zero vector v ∈ (range L)⊥.
This means that for all g ∈ G : 〈v, L(g)〉 = 0 and therefore

k∑

l=1

vl
(
g(xl) + φ(xl)

)
=

k∑

l=1

vlφ(xl) (1.34)

is independent of g. However, if F|Ξ = {−1, 1}Ξ, we can choose g such that
sgn[g(xl) + φ(xl)] equals sgn[vl] for all l ∈ {1, . . . , k} and there is also a choice
of g for which it equals −sgn[vl] for all l. Since v 6= 0 this contradicts Eq.(1.34).

In order to arrive at VCdim(F) ≥ dim(G), it suffices to show that for all
d ≤ dim(G) there are points x1, . . . , xd ∈ X such that for all y ∈ Rd there
is a g ∈ G satisfying yj = g(xj) for all j. To this end, consider d linearly
independent functions (gi)

d
i=1 in G and define G(x) :=

(
g1(x), . . . , gd(x)

)
. Then

span{G(x)}x∈X = Rd so that there have to exist d linearly independent vectors
G(x1), . . . , G(xd). Hence, the d × d matrix with entries gi(xj) is invertible
and for all y ∈ Rd the system of equations yj =

∑d
i=1 γigi(xj) has a solution

γ ∈ Rd.

Corollary 1.7 (VC-dimension of half spaces). The set F :=
{
h : Rd →

{−1, 1} | ∃(v, b) ∈ Rd × R : h(x) = sgn[〈v, x〉 − b]
}
, which corresponds to

the set of all half spaces in Rd, satisfies

VCdim(F) = d+ 1.

CHAPTER 1. LEARNING THEORY 24

Proof. The result follows from the foregoing theorem, when applied to the linear
space of functions spanned by gi(x) := xi for i = 1, . . . , d and gd+1(x) := 1 with
φ = 0.

As in the case of half spaces, we can assign a function f : Rd → {−1, 1} to any
subset C ⊆ Rd and vice versa via f(x) = 1⇔ x ∈ C. In this way we can apply
the notion of VC-dimension to classes of Borel subsets of Rd. Table 1.2 collects
some examples.

X VCdim see

l2-balls Rd d+ 1 [Dud79]
l∞-balls Rd b(3d+ 1)/2c [Des14]
half spaces Rd d+ 1 Cor.1.7
axes-aligned rectangles Rd 2d Exp.1.6
convex k-gons R2 2k + 1 [BEHW89]
semialgebraic sets Sk,m Rd ≤ 2k

(
m+d
m

)
ln
(
(k2 + k)

(
m+d
m

))
[BDL98]

≥ k
2

(
m+d
m

)

S1,m Rd
(
m+d
m

)
[Cov65, BDL98]

Aff(C) for fixed C ∈ Sk,m Rd O
(
d2 ln(dkm)

)
[BDL98]

{x 7→ sgn sin[αx] | α ∈ R} R ∞ Exp.1.8

Figure 1.2: VC-dimension of various classes of functions or corresponding
geometric objects. A convex k-gon means a polygon in R2 that is obtained
by intersecting k half spaces. Sk,m is the class of subsets of Rd that can be
obtained as Boolean combination of k sets of the form f−1

j

(
(0,∞)

)
where each

fj : Rd 7→ R, j = 1, . . . , k is a polynomial of maximal degree m. Aff(C) denotes
the class of all affine transformations of C.

Example 1.6 (Axes-aligned rectangles).Consider C := {C ⊆ Rd|∃a, b ∈ Rd :
C = [a1, b1]× . . .× [ad, bd]} the set of all axes-aligned rectangles in Rd and
let F := {f : Rd → {0, 1}|∃C ∈ C : f(x) = 1x∈C} be the corresponding class
of indicator-functions. For any set of points A = {x1, . . . , xn} ⊆ Rd there is
a unique smallest rectangle Cmin ∈ C so that A ⊆ Cmin. As long as n > 2d
we can discard points from A without changing Cmin. Let Ã ⊆ A be such
a reduced set with |Ã| ≤ 2d. Then every f ∈ F|A that assigns a value 1 to
all elements of Ã also assigns 1 to all A \ Ã, since those lie inside the same
box. Hence, if n > 2d, then the function f̃(x) := 1x∈Ã is not contained in
F|A and therefore VCdim(F) ≤ 2d.

To prove equality, consider the extreme points of the d-dimensional hyper-
octahedron (i.e., the l1-unit ball), which are given by all the permutations
of (±1, 0, . . . , 0). Denote them by x(+)

k and x(−)
k , k = 1, . . . , d, depending on

whether the k’th component is +1 or −1. Let f be an arbitrary assignment

CHAPTER 1. LEARNING THEORY 25

of values 0 or 1 to these 2d points. Then

bk :=
1

2
+ f

(
x

(+)
k

)
and ak := −1

2
− f

(
x

(−)
k

)

define a rectangle C ∈ C, which is such that x(±)
k ∈ C ⇔ f(x

(±)
k) = 1.

So, restricted to these 2d points, F still contains all functions and thus
VCdim(F) ≥ 2d.
The examples discussed so far, all considered convex sets. In this case,

the following Lemma is often helpful in computing or at least bounding the
VC-dimension. The observations is, that only affinely independent sets can be
shattered by F :

Lemma 1.8. Let F be the set of indicator functions of a collection of convex
subsets of Rd. If A ⊆ Rd is a finite set that is shattered by F , then every x ∈ A
is necessarily an extreme point of the convex hull of A.

Proof. If x would be a proper convex combination of other elements {xi}i∈I ⊆ A,
then every function f ∈ F that satisfies ∀i ∈ I : f(xi) = 1 would also have to
satisfy f(x) = 1. Hence, F could not shatter A since the function value at x
would be determined.

Example 1.7 (Compact convex sets).Let C be the collection of all convex and
compact subsets of R2 and F := {x 7→ 1x∈C |C ∈ C} the set of corresponding
indicator functions. Then VCdim(F) =∞. In order to prove this, consider a
set A of n points on the unit-circle. A is shattered by F since for every subset
B ⊆ A we can find a C ∈ C, namely C := conv(B), so that x ∈ B ⇔ x ∈ C
holds for any x ∈ A. As this works for any n, we have VCdim(F) =∞.
In the examples discussed so far, the VC-dimension was essentially equal

to the number of parameters that appear in the definition of the considered
hypotheses class. That such a relation is not generally true is shown by the
following example:

Example 1.8 (Sine-functions).Consider F := {x 7→ sgn sin(xα) | α ∈ R+}
and A := {2−k| k = 1, . . . , n}. Let f be an arbitrary assignment of values
±1 to the points xk := 2−k in A. If we choose

α := π

(
1 +

n∑

k=1

1− f(xk)

2
2k

)
, we obtain

α xl mod 2π = π

(
1− f(xl)

2

)
+ π

[
2−l +

l−1∑

k=1

2k−l
(

1− f(xk)

2

)]

=: π

(
1− f(xl)

2

)
+ π c, (1.35)

where c ∈ (0, 1). Consequently, sgn sin(αxl) = f(xl) and thus F|A =
{−1, 1}A. Since this holds for all n, we have VCdim(F) = ∞ despite the
fact that there is only a single real parameter involved.

CHAPTER 1. LEARNING THEORY 26

Although the VC-dimension is infinite in this example, there are finite
sets B for which F|B 6= {−1, 1}B . Consider for instance B := {1, 2, 3, 4} and
the assignment f(1) = f(2) = −f(3) = f(4) = −1. If α = 2πm− δ, m ∈ N
with δ ∈ [0, 2π) is to reproduce the first three values, then δ ∈ [π/3, π/2).
However, this implies that 4δ is in the range where the sine is positive so
that f(4) = −1 cannot be matched.
Let us finally have a closer look at sets of functions from Euclidean space to

{0, 1} that are constructed using Boolean combinations of a few elementary, for
instance polynomial, relations. In this context, it turns out that VC-dimension
and growth function are related to the question of how many connected compo-
nents can be obtained when partitioning Euclidean space using these relations.
Loosely speaking, counting functions becomes related to counting cells in the
domain space. A central bound concerning the latter problem was derived by
Warren [War68] for the case of polynomials:

Proposition 1.9 (Upper bound for polynomial arrangements). Let {p1, . . . , pm}
be a set of m ≥ k polynomials in k variables, each of degree at most d and with
coefficients in R. Let γ(k, d,m) be the number of connected components of
Rk \

⋃m
i=1 p

−1({0}) (and for later use, let us define it to be the largest number
constructed in this way). Then

γ(k, d,m) ≤ (4edm/k)k. (1.36)

With this ingredient, we can obtain the following result. To simplify its
statement, predicates are interpreted as functions into {0, 1}, i.e., we identify
TRUE = 1 and FALSE = 0.

Theorem 1.10: Complexity of semi-algebraic function classes

Let d, k,m, s ∈ N. Consider a set of s atomic predicates, each of which is
given by a polynomial equality or inequality of degree at most d in m+ k
variables. Let Ψ : Rm × Rk → {0, 1} be a Boolean combination of the
atomic predicates and F := {Ψ(·, w) | w ∈ Rk} a class of functions from
Rm into {0, 1} with corresponding growth function Γ. Then

Γ(n) ≤ γ(k, d, 2ns) , (1.37)
V Cdim(F) ≤ 2k log2(8eds) . (1.38)

Proof. W.l.o.g. we assume that all polynomial (in-)equalities are comparisons
with zero, i.e., of the form p#0 where p is a polynomial and # ∈ {<,≤,=,≥, >}.
We are going to estimate |F|A| for a set A ⊂ Rm with cardinality |A| = n.
Each a ∈ A corresponds to a predicate ψa : Rk → {0, 1} that is defined
by ψa(w) := Ψ(a,w). Denote by Pa the set of polynomials (in the variables
w1, . . . , wk) that appear in ψa. Then P :=

⋃
a∈A Pa has cardinality |P | ≤ ns.

Since different functions in F|A correspond to different truth values of the poly-
nomial (in-)equalities, we have that the number of consistent sign-assignments

CHAPTER 1. LEARNING THEORY 27

to the polynomials in P is an upper bound on the number of functions in F|A.
That is,

|F|A| ≤
∣∣∣
{
Q ∈ {−1, 0, 1}P

∣∣ Q(p) = sgn0

(
p(w)

)
, w ∈ Rk

}∣∣∣, (1.39)

where sgn0 := sgn on R\{0} and sgn0(0) := 0. For ε > 0 define P ′ := {p+ε|p ∈
P} ∪ {p − ε|p ∈ P}. Then |P ′| ≤ 2|P | ≤ 2ns and if ε is sufficiently small, the
number of consistent sign-assignments for P is upper bounded by the number
of connected components of Rk \

⋃
p∈P ′ p

−1({0}). Hence, |F|A| ≤ γ(k, d, |P ′|),
which implies Eq.(1.37).

The bound on the VC-dimension in Eq.(1.38) then combines this result with
Prop.1.9. If n equals the VC-dimension of F , then 2n = Γ(n) ≤ γ(k, d, 2ns) ≤
(8edns/k)k. Here, the last inequality used Prop.1.9 assuming that 2ns ≥ k.
Note, however, that if 2ns < k, then Eq.(1.38) holds trivially. After taking the
log2, we arrive at the inequality

n ≤ k log2(8eds) + k log2(n/k).

If the second term on the r.h.s. is smaller than the first, Eq.(1.38) follows
immediately. If, on the other hand, n/k ≥ 8eds, then n ≤ 2k log2(n/k), which
in turn implies n ≤ 4k and Eq.(1.38) follows as well.

Note that the first part of the proof, which relates the growth function to the
number of connected components of a particular partitioning of Rk, made no
essential use of the fact that the underlying functions are polynomials. That
means, all one needs is a sufficiently well-behaved class of functions for which
‘cell counting’ can be done in the domain space.

An alternative view on the problem is in terms of the computational com-
plexity of Ψ. By assumption, the function Ψ in Thm.1.10 can be computed using
a few elementary arithmetic operations and conditioning on (in-)equalities. The
number of these operations is then related to d and s. A closer analysis of this
point of view leads to:

Theorem 1.11: VC-dimension from computational complexity

Assume Ψ : Rm×Rk → {0, 1} can be computed by an algorithm that exe-
cutes at most t of the following operations: (i) basic arithmetic operations
(×, /,+,−) on real numbers, (ii) jumps conditioned on equality or inequal-
ity of real numbers, (iii) output 0 or 1. Then F := {Ψ(·, w) | w ∈ Rk}
satisfies

V Cdim(F) ≤ 2k
(
2t+ log2 8e

)
. (1.40)

This follows from Thm.1.10 by realizing that the algorithm corresponds to an
algebraic decision tree with at most 2t leaves and that it can be expressed in
terms of ≤ 2t polynomial predicates of degree ≤ 2t.

With some effort one can add one further type to the list of operations the
algorithm for Ψ is allowed to execute: computation of the exponential function

CHAPTER 1. LEARNING THEORY 28

on real numbers. Under these conditions the upper bound then becomes

V Cdim(F) = O
(
t2k2

)
. (1.41)

Finally, we have a look at how lower bounds on the VC-dimension can be
obtained for parameterized families of functions. A standard technique in this
context is bit extraction. Here, the basic idea is to encode bit-strings into the
parameters w while choosing the parameterized function Ψ so that the input x
determines which of those bits is returned by Ψ(x, a). In this way, the following
theorem shows that Eq.(1.40) in Thm.1.11 is optimal up to constants.

Theorem 1.12: Lower bound on VCdim via bit extraction

For all t, k ∈ N there is a Ψ : R2 × Rk → {0, 1} that can be computed
by executing O(t) operations of the form specified in Thm.1.11 so that
F := {Ψ(·, w) | w ∈ Rk} has V Cdim(F) ≥ kt.

Proof. For each (l, j) ∈ {1, . . . , k} × {1, . . . , t} =: A we choose an arbitrary
bit wl,j ∈ {0, 1} and encode it into a parameter vector w = (w1, . . . , wk) via
wl :=

∑t
j=1 wl,j2

−j ∈ [0, 1). Regarding (l, j) as an element of R2 we construct
Ψ so that it satisfies

Ψ
(
(l, j), w

)
= wl,j . (1.42)

This is done in terms of an algorithm that uses only operations of the form
specified in Thm.1.11: in order to extract the bit wl,j from wl we repeat the
following j − 1 times: we double the value, compare it to 1 and subtract 1 from
it if it was not smaller than 1. In the j’th step, we obtain the sought bit by again
doubling the value. This procedure of doubling, comparing and conditionally
subtracting and eventually returning an output terminates after j ≤ t iterations
and thus requires O(t) elementary operations, as claimed.

Eq.(1.42) then ensures that F|A = {0, 1}A so that V Cdim(F) ≥ |A| =
kt.

Notes and literature VC-theory goes back to Vapnik and Chervonenkis [VC68, VC71,
VC74]. In fact, [VC68] already introduces the growth function and what is now called VC-
dimension and applies them to statistical learning theory. The combinatorial dichotomy
of Thm.1.8 has been discovered and proven several times: a slightly weaker form was first
announced by Vapnik and Chervonenkis in [VC68] and then proven and strengthened in
[VC71, VC74]. Independently, Sauer, motivated by a question of Erdös, published it as
a purely combinatorial result in [Sau72]. Shortly before that, Shelah’s model theoretic
work [She71] appeared, which is said to contain the result as well. The VC-dimension
of geometric objects in Rd was already studied (without yet having the concept of the
‘VC-dimension’ at hand) in the 1960’s, in particular by Cover [Cov65]. Thm.1.9 goes
back to [Dud78]. The sin-function example, Exp.1.8, is taken from the book by Anthony
and Bartlett [AB99] who attribute its proof to Baxter and Long. Thms.1.10,1.11,1.12 are
from [GJ95]. The bound in Eq.(1.41) was proven in [KM97] where Warren’s upper bound
[War68], which was used in [GJ95], was replaced by a similar bound from [Kho91] that

CHAPTER 1. LEARNING THEORY 29

allows for more general functions.

1.7 Fundamental theorem of binary classification
In this section we collect the insights obtained so far and use them to prove
what may be called the fundamental theorem of binary classification. For its
formulation, denote by poly

(
1
ε ,

1
δ

)
the set of all functions of the form (0, 1] ×

(0, 1] 3 (ε, δ) 7→ ν(ε, δ) ∈ R+ that are polynomial in 1
ε and 1

δ .

Theorem 1.13: Fundamental theorem of binary classification

Let F ⊆ {−1, 1}X be any hypotheses class and n = |S| the size of the
training data set S, which is treated as a random variable, distributed ac-
cording to some product probability measure Pn. Choose the risk function
R to be the error probability. Then the following are equivalent:

1. (Finite VC-dimension) VCdim(F) <∞.

2. (Uniform convergence) There is a ν ∈ poly
(

1
ε ,

1
δ

)
so that for all

(ε, δ) ∈ (0, 1]2 and all probability measures P we have

n ≥ ν(ε, δ) ⇒ PS

[
∃h ∈ F : |R̂(h)−R(h)| ≥ ε

]
≤ δ.

3. (PAC learnability) There is a ν ∈ poly
(

1
ε ,

1
δ

)
and a learning algo-

rithm that maps S 7→ hS ∈ F so that for all (ε, δ) ∈ (0, 1]2 and all
probability measures P we have

n ≥ ν(ε, δ) ⇒ PS [|R(hS)−RF | ≥ ε] ≤ δ. (1.43)

4. (PAC learnability via ERM) There is a ν ∈ poly
(

1
ε ,

1
δ

)
so that

for all (ε, δ) ∈ (0, 1]2 and all probability measures P we have

n ≥ ν(ε, δ) ⇒ PS

[
|R(ĥ)−RF | ≥ ε

]
≤ δ,

where ĥ ∈ F is an arbitrary empirical risk minimizer.

Proof. 1.⇒ 2. is the content of Cor.1.6.
2.⇒ 4.: Assuming uniform convergence, with probability at least (1− δ) we

have that ∀h ∈ F : |R̂(h) − R(h)| ≤ ε
2 if n ≥ ν(ε2 , δ). By Eq.(1.7) this implies

R(ĥ)−RF ≤ ε.
4. ⇒ 3. is obvious since the former is a particular instance of the latter.

3.⇒ 1. is proven by contradiction: choose ε = δ = 1/4, n = ν(ε, δ) and suppose
VCdim(F) =∞. Then for any N ∈ N there is a subset Ξ ⊆ X of size |Ξ| = N
such that F|Ξ = {−1, 1}Ξ. Applying the no-free-lunch theorem to this space

CHAPTER 1. LEARNING THEORY 30

we get that there is an f : Ξ → {−1, 1}, which defines a probability density
P (x, y) := 1x∈Ξ ∧ f(x)=y/N on X × {−1, 1} with respect to which

ES [R(hS)] ≥ 1

2

(
1− n

N

)
(1.44)

holds for an arbitrary learning algorithm, given by a mapping S 7→ hS . Using
that R(hS) is itself a probability and thus bounded by one, we can bound

ES [R(hS)] ≤ 1 ·PS [R(hS) ≥ ε] + ε
(
1−PS [R(hS) ≥ ε]

)
.

Together with Eq.(1.44) and ε = 1
4 this leads to PS

[
R(hS) ≥ 1

4

]
≥ 1

3 −
2n
3N ,

which for sufficiently large N contradicts δ = 1
4 .

There is also a quantitative version of this theorem. In fact, the VC-
dimension does not only lead to a bound on the necessary statistics, it precisely
specifies the optimal scaling of ν. Let us denote by νF the pointwise infimum of
all functions ν taken i) over all functions for which the implication in Eq.(1.43)
is true for all P and all (ε, δ) and ii) over all learning algorithms with range F .
νF is called the sample complexity of F and it can be shown that

νF (ε, δ) = Θ

(
VCdim(F) + ln 1

δ

ε2

)
. (1.45)

Here, the asymptotic notation symbol Θ means that there are asymptotic upper
and lower bounds that differ only by multiplicative constants (that are non-zero
and finite).

Note that the scaling in 1/δ is much better than required—logarithmic rather
than polynomial. Hence, we could have formulated a stronger version of the
fundamental theorem. However, requiring polynomial scaling is what is typically
done in the general definition of PAC learnability.

What about generalizations to cases with |Y| > 2? For both, classification
(Y discrete) and regression (Y continuous), the concept of VC-dimension has
been generalized and there exist various counterparts to the VC-dimension with
similar implications. For the case of classification, the graph dimension dG
and the Natarajan dimension dN are two useful generalizations that lead to
quantitative bounds on the sample complexity of a hypotheses class with the
error probability as risk function. In the binary case they both coincide with
the VC-dimension, while in general

dN ≤ dG ≤ 4.67dN log2 |Y|. (1.46)

Known bounds on the sample complexity νF turn out to have still the form of
Eq.(1.45) with the only difference that in the upper and lower bound the role
of the VC-dimension is played by dG and dN , respectively.

CHAPTER 1. LEARNING THEORY 31

Notes and literature The fundamental theorem Thm.1.13 goes back to [BEHW89]. An
in-depth discussion can be found in [SSBD14] where quantitative versions of the theorem
are proven. Optimal constants in the resulting sample-complexity bounds are investigated
in [Han16] for the realizable case and in [KP19] for the agnostic case.
The relation between Natarajan dimension, graph dimension and learnability is studied
in [BDCBHL95]. The logarithmic gap between these two dimensions, stated in Eq.(1.46),
leads to the possibility of good and bad ERM learning algorithms (cf. [DSBDSS]).
In the case of regression, well-studied counterparts of the VC-dimension are Pseudo and fat-
shattering dimension discussed in greater detail in Sec.1.10. For particular loss functions
(e.g., the squared loss) Thm.1.13 then has a direct analogue, in the sense that under mild
assumptions uniform convergence, finite fat-shattering dimension and PAC learnability
are equivalent [BLW96]. In more general learning contexts, however, uniform convergence
turns out to be a strictly stronger requirement than PAC learnability [SSSSS10, DSBDSS].

1.8 Rademacher complexity
The approaches discussed so far were distribution independent. Growth function
and VC-dimension, as well as its various generalizations, depend only on the
hypotheses class F and lead to PAC guarantees that are independent of the
probability measures P . In this section we will consider an alternative approach
and introduce the Rademacher complexities. These will not only depend on
F , but also on P or, alternatively, on the empirical distribution given by the
data. This approach has several possible advantages compared to what we
have discussed before. First, a data dependent approach may, in benign cases,
provide better bounds than a distribution-free approach that has to cover the
worst case as well. In spite of this, however, Rademacher complexity bounds are
often used as an intermediate step in proving bounds that are again distribution
independent. The second advantage of the Rademacher complexity approach is
that it allows to go beyond binary classification and treat more general function
classes that appear in classification or regression on an equal footing.

Definition 1.10 (Rademacher complexity). Consider a set of real-valued func-
tions G ⊆ RZ and a vector z ∈ Zn. The empirical Rademacher complexity of
G w.r.t. z is defined as

R̂(G) := Eσ

[
sup
g∈G

1

n

n∑

i=1

σig(zi)

]
, (1.47)

where Eσ denotes the expectation w.r.t. a uniform distribution of σ ∈ {−1, 1}n.
If the zi’s are considered values of a vector of i.i.d.random variables Z :=
(Z1, . . . , Zn), each distributed according to a probability measure P on Z, then
the Rademacher complexities of G w.r.t. P are given by

Rn(G) := EZ

[
R̂(G)

]
. (1.48)

Note: The uniformly distributed σi’s are called Rademacher variables. When-
ever we want to emphasize the dependence of R̂(G) on z ∈ Zn, we will write

CHAPTER 1. LEARNING THEORY 32

R̂z(G). Similarly, we occasionally write Rn,P (G) to make the dependence on P
explicit. We will tacitly assume that all functions are measurable.

The richer the function class G, the larger the (empirical) Rademacher com-
plexity. If we define g(z) :=

(
g(z1), . . . , g(zn)

)
and write

R̂(G) =
1

n
Eσ

[
sup
g∈G
〈σ, g(z)〉

]
,

we see that the (empirical) Rademacher complexity measures how well the func-
tion class G can ‘match Rademacher noise’. If for a random sign pattern σ there
is always a function in G that is well aligned with σ in the sense that the inner
product 〈σ, g(z)〉 is large, the Rademacher complexity will be large. Clearly, this
might become more and more difficult when the number n of considered points
is increased, which means that Rn(G) is expected to be a decreasing function
of n.

Some first insight into the n-dependence of the Rademacher complexity can
be obtained by putting function classes aside for the moment and applying the
concept of the Rademacher complexity to any subset A of Rn. In analogy with
the foregoing definition set

Rn(A) :=
1

n
Eσ

[
sup
x∈A
〈σ, x〉

]
, (1.49)

where the expectation is again over a uniformly distributed random variable
σ ∈ {−1, 1}n.

Example 1.9 (Rademacher complexities of lp-unit balls).
The Rademacher complexity for Bp := {x ∈ Rn| ||x||p ≤ 1}, p ∈ [1,∞] can
be computed with the help of Hölder’s inequality. In fact, with q−1+p−1 = 1
we have that supx∈Bp〈σ, x〉 ≤ ||σ||q = n1/q holds with equality since we can
choose x = σ/||σ||p. So Rn(Bp) = n−1/p.

Lemma 1.11 (Massart’s Lemma [Mas00]). Let A be a finite subset of Rn that
is contained in a Euclidean ball of radius r. Then

Rn(A) ≤ r

n

√
2 ln |A|. (1.50)

Proof. W.l.o.g. we can assume that the center of the ball is at the origin since
Eq.(1.50) is unaffected by a translation. We introduce a parameter λ > 0 to be
chosen later and first compute an upper bound for the rescaled set λA:

Eσ

[
max
a∈λA

n∑

i=1

σiai

]
≤ Eσ

[
ln
∑

a∈λA

eσ·a

]
≤ lnEσ

[∑

a∈λA

eσ·a

]
(1.51)

= ln
∑

a∈λA

n∏

i=1

eai + e−ai

2
(1.52)

≤ ln
∑

a∈λA

e||a||
2
2/2 ≤ 1

2
r2λ2 + ln |A|. (1.53)

CHAPTER 1. LEARNING THEORY 33

Here, the first step is most easily understood when taking the exponential on
both sides of the inequality for a fixed value of σ. Then the first inequality in
Eq.(1.51) reduces to the statement that the maximum over positive numbers
can be upper bounded by their sum. The second inequality uses concavity of
the logarithm together with Jensen’s inequality Eq.(A.8). Eq. (1.52) uses that
the σi’s are independently and uniformly distributed. The step to Eq.(1.53)
exploits that ex + e−x ≤ 2ex

2/2 holds for all x ∈ R. The final inequality then
bounds the sum by its maximal element multiplied by the number of terms.

We then obtain the claimed result by inserting λ =
√

2 ln |A|/r into

Eσ

[
max
a∈A

n∑

i=1

σiai

]
≤
(

1

2
r2λ2 + ln |A|

)
/λ.

Since Massart’s Lemma does not use any structure within the considered
set, the obtained bound can be quite loose in some cases. An example would be
the l1-unit ball for which Rm(B1) = 1/n despite the fact that it is contained in
B2 and contains infinitely many points.

Let us return to function classes. The main tool that makes Rademacher
complexities appear in the discussion of uniform laws of large numbers is a
‘symmetrization’ argument that introduces a second sample like in the following
Lemma:

Lemma 1.12 (Ghost sample symmetrization). Let Z := (Z1, . . . , Zn) be i.i.d.
random variables with values in Z and G ⊆ RZ . For each g ∈ G define R̂(g) :=
1
n

∑n
i=1 g(Zi) and R(g) := EZ

[
R̂(g)

]
. Then

EZ

[
sup
g∈G

(
R(g)− R̂(g)

)]
≤ E

[
sup
g∈G

(
R̂′(g)− R̂(g)

)]
≤ 2 EZ

[
sup
g∈G

∣∣R(g)− R̂(g)
∣∣
]
,

where R̂′(g) is the sample average taken over an i.i.d. copy Z ′ of Z and E =
EZZ′ is the expectation w.r.t. both copies.

Proof. Using that R(g) = EZ′
[
R̂′(g)

]
we can write

EZ

[
sup
g∈G

(
R(g)− R̂(g)

)]
= EZ

[
sup
g∈G

EZ′
[
R̂′(g)− R̂(g)

]]
(1.54)

≤ EZZ′

[
sup
g∈G

(
R̂′(g)− R̂(g)

)]
. (1.55)

To show the second inequality of the Lemma, we first add and subtract R(g)
and split the supremum into two so that we can upper bound Eq.(1.55) by

EZ′

[
sup
g∈G

(
R̂′(g)−R(g)

)]
+EZ

[
sup
g∈G

(
R(g)− R̂(g)

)]
≤ 2EZ

[
sup
g∈G

∣∣R(g)− R̂(g)
∣∣
]
.

CHAPTER 1. LEARNING THEORY 34

An interesting property of the central term that involves the difference of the
two sample averages in Lemma 1.12 is that it is invariant under flipping the sign
since Z and Z ′ are identically distributed. We will now exploit this freedom to
bound the expected worst-case deviation of the mean from the sample-average
in terms of the Rademacher complexity:

Theorem 1.14: Rademacher bounds

Let Z := (Z1, . . . , Zn) be i.i.d. random variables in Z that determine
the Rademacher complexity Rn(G) of G ⊆ RZ . For each g ∈ G define
R̂(g) := 1

n

∑n
i=1 g(Zi) and R(g) := EZ

[
R̂(g)

]
. Then

EZ

[
sup
g∈G

(
R(g)− R̂(g)

)]
≤ 2 Rn(G). (1.56)

Conversely, if |g(z)| ≤ c for all g ∈ G, z ∈ Z, then

EZ

[
sup
g∈G

∣∣R(g)− R̂(g)
∣∣
]
≥ 1

2
Rn(G)− c

√
ln 2

2n
. (1.57)

Proof. Eq.(1.56) can be proven via Lemma 1.12: if σi = 1, then the inequality

EZ

[
sup
g∈G

(
R(g)− R̂(g)

)]
≤ 1

n
EZZ′

[
sup
g∈G

n∑

i=1

σi
(
g(Z ′i)− g(Zi)

)
]
, (1.58)

is nothing but the fist inequality of Lemma 1.12. As Zi and Z ′i are identically
distributed, Eq.(1.58) remains valid for any σ ∈ {−1, 1}n. Eq.(1.58) can be
further bounded by taking the expectation value Eσ w.r.t. uniformly distributed
Rademacher variables and then separating the supremum into two, leading to
an upper bound of the form Rn(G) +Rn(−G) = 2 Rn(G), as claimed.

In order to prove Eq.(1.57) we start with the observation that Rn(G) can be
bounded from above by adding and subtracting R(g) inside the supremum and
then separating terms so that

Rn(G) ≤ E

[
sup
g∈G

1

n

n∑

i=1

σi
(
g(Zi)−R(g)

)
]

+E

[
sup
g∈G

1

n

n∑

i=1

σiR(g)

]
. (1.59)

The first term in Eq.(1.59) can be bounded following the steps in the proof of
Lemma 1.12 by 2EZ

[
supg∈G

∣∣R(g)− R̂(g)
∣∣
]
. For the second term in Eq.(1.59)

we use the uniform boundedness of G so that

E

[
sup
g∈G

1

n

n∑

i=1

σiR(g)

]
≤ c

n
E

∣∣∣∣∣
n∑

i=1

σi

∣∣∣∣∣ = c Rn(A), (1.60)

with the two-element-set A := {(−1, . . . ,−1), (1, . . . , 1)} to which Massart’s
Lemma Lem. 1.11 can be applied (using r =

√
n). Inserting into Eq.(1.59),

rearranging terms and dividing by 2 then completes the proof.

CHAPTER 1. LEARNING THEORY 35

Since this theorem provides an upper and a lower bound in terms of the Rade-
macher complexity, it enables the following necessary and sufficient condition
for a uniform law of large numbers to hold:

Corollary 1.13. For any function class G ⊆ [−c, c]Z with G± := G ∪ (−G) the
following equivalence holds for n→∞:

EZ

[
sup
g∈G

∣∣R(g)− R̂(g)
∣∣
]
→ 0 ⇔ Rn(G±)→ 0. (1.61)

Proof. The only step on top of Thm.1.14 is the use of G± instead of G, which
effectively establishes absolute values inside the supremum of Eq.(1.56).

Another application of the symmetrization technique of Lem.1.12 together
with Massart’s Lemma Lem.1.11 is the following in-expectation generalization
bound for finite function classes:

Corollary 1.14. Let F ⊆ YX be finite and L : Y × Y → [0, 1] a loss function.
If S is an i.i.d. sample of size n, then

ES

[
max
h∈F

{
R(h)− R̂(h)

}]
≤
√

2 ln |F|
n

. (1.62)

Proof. With G := {g ∈ RX×Y |∃h ∈ F : g((x, y)) = L
(
y, h(x)

)
}, Zi := (Xi, Yi)

the use of Eq.(1.58) leads to

ES

[
max
h∈F

{
R(h)− R̂(h)

}]
≤ 1

n
EZZ′

[
sup
g∈G

n∑

i=1

σi
(
g(Z ′i)− g(Zi)

)
]
.

If we average over the Rademacher variables σi ∈ {−1, 1} and use |G| ≤ |F| and
(g(Z ′i)−g(Zi)) ∈ [−1, 1] we can apply Massart’s Lemma Lem.1.11 with r =

√
n,

which leads to the claimed result.

It should be noticed that, in contrast to the bounds of the previous sec-
tions that depend on the growth function or VC-dimension, the Rademacher-
complexity bounds of Thm.1.14 and Cor.1.13 do depend on the underlying dis-
tribution. They are uniform over the function class, but not w.r.t. P .

Another difference is that, so far, we have considered Rademacher bounds
merely ‘in expectation’ and not ‘with high probability’ (i.e. in the form of
PAC bounds). The central tool that enables these stronger bounds in terms of
Rademacher complexities is the following concentration inequality, which can
be seen as a refinement of Hoeffding’s inequality:

Lemma 1.15 (McDiarmid’s inequality[McD89]). Let (Z1, . . . , Zn) = Z be a
finite sequence of independent random variables, each with values in Z and
ϕ : Zn → R a measurable function such that |ϕ(z)−ϕ(z′)| ≤ νi whenever z and
z′ only differ in the i’th coordinate. Then for every ε > 0

P
[
ϕ(Z)−E [ϕ(Z)] ≥ ε

]
≤ exp

[
− 2ε2∑n

i=1 ν
2
i

]
. (1.63)

CHAPTER 1. LEARNING THEORY 36

Note: the same inequality holds with ϕ(Z) and E [ϕ(Z)] interchanged. This can
be seen by replacing ϕ with −ϕ.

Our first application of this inequality is to prove that the Rademacher com-
plexity is close to its empirical counterpart. This will imply that the Rademacher
complexity can, at least in principle, be estimated reliably from the data and
that no additional knowledge about P is required.

Lemma 1.16 (Rademacher vs. empirical Rademacher complexity). Let G ⊆
[a, b]Z be a set of real-valued functions. Then for every ε > 0 and any product
probability measure Pn on Zn it holds that

PZ

[(
Rn(G)− R̂Z(G)

)
≥ ε
]
≤ exp− 2nε2

(b− a)2
. (1.64)

Proof. Define ϕ : Zn → R as ϕ(z) := R̂z(G), which implies E [ϕ(Z)] =
Rn(G). Let z, z′ ∈ Zn be a pair that differs in only one component. Then
supg∈G

∑
i σig(zi) changes by at most |b−a| if we replace z by z′. Consequently,

|ϕ(z)− ϕ(z′)| = |R̂z(G)− R̂z′(G)| ≤ |b− a|
n

, (1.65)

and we can apply McDiarmid’s inequality to obtain the stated result.

Now we are prepared for the main result of this section and can prove a
PAC-type guarantee based on (empirical) Rademacher complexities:

Theorem 1.15: PAC-type bound via Rademacher complexities

Consider arbitrary spaces X ,Y, a hypotheses class F ⊆ YX , a loss func-
tion L : Y × Y → [0, c] and define Z := X × Y and G := {(x, y) 7→
L(y, h(x)) | h ∈ F} ⊆ [0, c]Z . For any δ > 0 and any probability measure
P on Z we have with probability at least (1− δ) w.r.t. repeated sampling
of Pn-distributed training data S ∈ Zn: all h ∈ F satisfy

R(h)− R̂(h) ≤ 2Rn(G) + c

√
ln 1

δ

2n
, and (1.66)

R(h)− R̂(h) ≤ 2R̂S(G) + 3c

√
ln 2

δ

2n
. (1.67)

Proof. Defining ϕ : Zn → R as ϕ(S) := suph∈F
(
R(h) − R̂(h)

)
, we can apply

McDiarmid’s inequality to ϕ with νi = c
n and obtain

PS [ϕ(S)−ES [ϕ(S)] ≥ ε] ≤ e−2nε2/c2 .

CHAPTER 1. LEARNING THEORY 37

Setting the r.h.s. equal to δ and solving for ε then gives that with probability
at least 1− δ we have

sup
h∈F

(
R(h)− R̂(h)

)
≤ ES [ϕ(S)] + c

√
ln 1

δ

2n
. (1.68)

It remains to upper bound the expectation on the right. To this end, we will
again introduce a second sample S′ that is an i.i.d. copy of S. Then

ES [ϕ(S)] = ES

[
sup
h∈F

1

n

n∑

i=1

ES′
[
L
(
Y ′i , h(X ′i)

)
− L

(
Yi, h(Xi)

)]
]

≤ ESS′

[
sup
h∈F

1

n

n∑

i=1

L
(
Y ′i , h(X ′i)

)
− L

(
Yi, h(Xi)

)
]

= ESS′Eσ

[
sup
h∈F

1

n

n∑

i=1

σi

(
L
(
Y ′i , h(X ′i)

)
− L

(
Yi, h(Xi)

))
]

≤ 2 ESEσ

[
sup
h∈F

1

n

n∑

i=1

σiL
(
Yi, h(Xi)

)
]

= 2Rn(G),

where between the second and third line we have used that multiplication with
σi = −1 amounts to interchanging (Xi, Yi) ↔ (X ′i, Y

′
i), which has no effect as

these are i.i.d. random variables. This proves Eq.(1.66). In order to obtain
Eq.(1.67) note that by Lemma 1.16 with probability at least 1− δ/2 we have

Rn(G) ≤ R̂(G) + c

√
ln 2

δ

2n
.

Combining this via the union bound with Eq.(1.66), where the latter is also
applied to δ/2 instead of δ, then yields the desired result.

When applying the previous theorem to the case of binary classification, one
can replace the Rademacher complexities of G by those of the hypotheses class
F :

Lemma 1.17 (Rademacher complexities for binary classification). Consider a
hypotheses class F ⊆ {−1, 1}X , L(y, y′) := 1y 6=y′ as loss function and G :=
{(x, y) 7→ L(y, h(x)) | h ∈ F}. Denote the restriction of S =

(
(xi, yi)

)n
i=1
∈

(X × {−1, 1})n to X by SX := (xi)
n
i=1. For any probability measure P on

X × {−1, 1} with marginal p on X we have

R̂S(G) =
1

2
R̂SX (F) and Rn,P (G) =

1

2
Rn,p(F). (1.69)

Proof. The second equation is obtained from the first by taking the expectation

CHAPTER 1. LEARNING THEORY 38

value. The first is obtained by exploiting that L(y, h(x)) = (1−yh(x))/2. Then

R̂S(G) = Eσ

[
sup
h∈F

1

n

n∑

i=1

σi
(
1− yih(xi)

)
/2

]

=
1

2
Eσ

[
sup
h∈F

1

n

n∑

i=1

σih(xi)

]
=

1

2
R̂SX (F),

where we have used that Eσ [σi] = 0 and that the distributions of −σiyi and σi
are the same.

If, similar to the last part of the proof, we use that σi and −σi are equally
distributed, we can write

R̂SX (F) = Eσ

[
sup
h∈F

1

n

n∑

i=1

−σih(xi)

]
= −Eσ

[
inf
h∈F

1

n

n∑

i=1

σih(xi)

]
.

Hence, computing the empirical Rademacher complexity is an optimization
problem similar to empirical risk minimization—so it may be hard. The Rade-
macher complexity Rn itself depends on an unknown distribution and is there-
fore difficult to estimate as well. However, it can be bounded for instance in the
discrete or binary case in terms of the growth function or the VC-dimension,
respectively. More specifically,

Rn(F) ≤
√

2 ln Γ(n)

n
and Rn(F) ≤ C

√
VCdim(F)

n
, (1.70)

for some universal constant C. These inequalities will be proven in Cor.1.18
and Cor.1.25.

Before going there, let us collect some properties of the Rademacher com-
plexities that turn out to be useful for their application and estimation.

Theorem 1.16: Properties of Rademacher complexities

Let G,G1,G2 ⊆ RZ be classes of real-valued functions on Z and z ∈ Zn.
The following holds for the empirical Rademacher complexities w.r.t. z:

1. If c ∈ R, then R̂(cG) = |c|R̂(G).

2. G1 ⊆ G2 implies R̂(G1) ≤ R̂(G2).

3. R̂(G1 + G2) = R̂(G1) + R̂(G2).

4. R̂(G) = R̂(conv G), where conv denotes the convex hull.

5. If ϕ : R→ R is L−Lipschitz, then R̂(ϕ ◦ G) ≤ L R̂(G).

CHAPTER 1. LEARNING THEORY 39

Proof. (sketch) 1.-3. follow immediately from the definition.
4. follows from the simple observation that

sup
λ∈Rm+ ,||λ||1=1

n∑

i=1

m∑

l=1

λlσigl(zi) = max
l∈{1,...,m}

n∑

i=1

σigl(zi).

5. Define V := {v ∈ Rn | ∃g ∈ G ∀i : vi = g(zi)}. Then

nR̂(ϕ ◦ G) = Eσ

[
sup
v∈V

n∑

i=1

σiϕ(vi)

]
(1.71)

=
1

2
Eσ2,...,σn

[
sup
v,v′∈V

ϕ(v1)− ϕ(v′1) +

n∑

i=2

σi
(
ϕ(vi) + ϕ(v′i)

)
]

≤ 1

2
Eσ2,...,σn

[
sup
v,v′∈V

L|v1 − v′1|+
n∑

i=2

σi
(
ϕ(vi) + ϕ(v′i)

)
]

= Eσ

[
sup
v∈V

Lσ1v1 +

n∑

i=2

σiϕ(vi)

]
, (1.72)

where in the last step we used that the absolute value can be dropped since the
expression is invariant w.r.t. interchanging v ↔ v′. Repeating the above steps
for the other n− 1 components then leads to the claimed result.

Remark: sometimes the definition of the (empirical) Rademacher complexity in
the literature differs from the one in Eqs.(1.47, 1.48) and the absolute value is
taken, i.e., the empirical quantity is defined as Eσ

[
supg

∣∣∑
i σig(xi)

∣∣] instead.
In this case Thm.1.16 essentially still holds with small variations: then 3. be-
comes an inequality ’≤’ and 5. requires in addition that ϕ(−z) = −ϕ(z) (see
[APHST07]).

We will finally prove the claimed relation between the Rademacher complex-
ities and the growth function of a function class:

Corollary 1.18 (Growth function bound on Rademacher complexity). Let Y ⊂
R be a finite set of real numbers of modulus at most c > 0. The Rademacher
complexity of any function class G ⊆ YX can then be bounded in terms of its
growth function by

Rn(G) ≤ c
√

2 ln Γ(n)

n
. (1.73)

Proof. The statement follows directly from Massart’s Lemma (Lem. 1.11) to-
gether with the fact that ||z||2 ≤ c

√
n if z := (g(x1), . . . , g(xn)) for some g ∈ G

and x ∈ Xn. Using r := c
√
n in Massart’s Lemma then gives

Rn(G) = EZEσ sup
g∈G

1

n

n∑

i=1

σig(xi)

≤ r

n

√
2 ln Γ(n) = c

√
2 ln Γ(n)

n
.

CHAPTER 1. LEARNING THEORY 40

Notes and literature Rademacher averages are a frequently used tool for instance in
the field of Banach space geometry [Pis89, TJ89]. In the context of learning theory, they
were introduced and investigated around 2000 [KP00, Mas00, BM02]. Instead of using
±1-valued random variables, one can alternatively use Gaussian random variables [BM02]
or so-called Steinhaus variables that are distributed uniformly over the complex unit cir-
cle. A refinement of the concept of the Rademacher complexity is the local Rademacher
complexity [BBM05]. This approach restricts the class of functions by considering only
those that perform sufficiently well on the empirical data set.

1.9 Covering numbers
Rademacher complexities, growth function and VC dimension all exploit some
form of discretization in order to quantify the complexity of a function class.
In this section, we will follow an approach that makes this more explicit: we
quantify the complexity of a function class directly in terms of the minimal
number of discretization points that is necessary to approximate any function in
the class to a given degree. The obtained covering and packing numbers will then
turn out to be a useful tool for deriving generalization bounds. For instance, in
generalizing the concept of the growth function or in enabling improved bounds
on Rademacher complexities.

Definition 1.19 (Coverings and packings). Let (M, d) be a pseudometric space6,
A,B ⊆M and ε > 0.

• A is called ε-cover of B if ∀b ∈ B ∃a ∈ A : d(a, b) ≤ ε. It is called an
internal cover if in addition A ⊆ B. The ε-covering number of B, denoted
by N(ε, B), is the smallest cardinality of any ε-cover of B. If only internal
covers are considered, we will write Nin(ε, B).

• A ⊆ B is called an ε-packing of B if a, b ∈ A ⇒ d(a, b) > ε. The ε-
packing number of B, denoted by M(ε, B), is the largest cardinality of
any ε-packing of B.

Note that by definition Nin(ε, B) ≥ N(ε, B). In fact, all those numbers are
closely related:

Lemma 1.20 (Packing vs. covering). For every pseudometric space (M, d) and
B ⊆M:

N(ε/2, B) ≥M(ε, B) ≥ Nin(ε, B).

Proof. Assume that A ⊆ B is a maximal ε-packing of B, i.e. such that no more
point can be added to A without violating the ε-packing property. Then for

6A pseudometric space lacks only one property to a metric space: distinct points are not
required to have distance zero.

CHAPTER 1. LEARNING THEORY 41

every b ∈ B there is an a ∈ A s.t. d(a, b) ≤ ε. Hence, A is an internal ε-cover of
B and therefore M(ε, B) ≥ Nin(ε, B).

Conversely, let C be a smallest ε/2-cover of B, i.e. |C| = N(ε/2, B). If A
is an ε-packing of B, then the ball {b ∈ B | d(c, b) < ε/2} around any c ∈ C
contains at most one element from A: if there were two elements a, a′ ∈ A, then
d(a, a′) ≤ d(a, c) + d(c, a′) < ε would contradict the ε-packing assumption. So
|C| ≥ |A| and thus N(ε/2, B) ≥M(ε, B).

One way of thinking about these numbers in terms of the number of bits
that are required to specify any point up to a given error:

Proposition 1.21 (Information encoding vs. covering numbers). Let A be a
subset of a metric space (M,d) and β(ε, A) the smallest number of bits sufficient
to specify every a ∈ A up to an error of at most ε in the metric. That is, the
smallest n, such that there is a γ : {0, 1}n → A so that ∀a ∈ A∃b ∈ {0, 1}n :
d(γ(b), a) ≤ ε. Then

log2N(ε, A) ≤ β(ε, A) ≤ dlog2M(ε, A)e.

Proof. If n = β(ε, A), then there is as assignment A 3 a 7→ γ(b(a)) that is ε-
close to a. Hence, the range of γ is an ε-cover of A, which implies N(ε, A) ≤ 2n

proving the lower bound.
For the upper bound, assume that {x1, . . . , xM} ⊆ A is a maximal ε-packing

of A and set n := dlog2Me. Then we can choose b = b(a) to be the binary
representation of i = argminid(a, xi) and define γ(b) := xi. If there would be an
a with d(γ(b), a) > ε, by construction, d(xj , a) > ε had to hold for all j, which
contradicts the assumption that we started with a maximal ε-packing.

Example 1.10 (Norm balls in Rd).Let ||·|| be any norm on Rd, Br(x) := {z ∈
Rd| ||z − x|| ≤ r} and {x1, . . . , xM} ⊂ Rd a maximal ε-packing of Br(0).
That is, w.r.t. the metric induced by the norm we have M = M(ε, Br(0)).
Then the balls Bε/2(xi) are mutually disjoint and lie inside Br+ε/2(0). If
v := vol(B1(0)) is the volume (i.e., Lebesgue measure) of the unit ball, then
vol(Bε/2(xi)) = (ε/2)dv and vol(Br+ε/2(0)) = (r + ε/2)dv. So under the
assumption that ε ≤ r we obtain the bound:

M
(
ε, Br(0)

)
≤ (r + ε/2)dv

(ε/2)dv
≤
(

3r

ε

)d
. (1.74)

In a similar way, we can obtain a lower bound from the simple fact that
the volume of Br(0) is upper bounded by the volume of an ε-ball times the
ε-covering number N(ε, Br(0)). Hence,

N(ε, Br(0)) ≥
(r
ε

)d
.

This example exhibits a typical behavior of covering and packing numbers:
the ε-packing number of a bounded object B of algebraic dimension d typically

CHAPTER 1. LEARNING THEORY 42

✏/2 ✏

Figure 1.3: Left: the set of blue points forms an ε-packing of the gray disk—
the ε/2-balls around them are non-intersecting. Right: an ε-cover of the gray
square. The cover is not internal.

scales as7

lnM(ε, B) ∼ d ln
1

ε
.

One of the central observations when using covering and packing numbers in
the context of statistical learning theory is that this relation still holds when
the algebraic dimension is replaced by a combinatorial dimension, such as the
VC-dimension. One bound of this type is the content of the subsequent Lemma.
In order to state it, we first need to introduce the metrics with respect to which
the covering and packing numbers will be considered. For any set Z, z ∈ Zn
and any function class G ⊆ RZ define the || · ||p,z-seminorm8 on the linear span
of G for p ∈ [1,∞) as

||g||p,z :=

(
1

n

n∑

i=1

|g(zi)|p
)1/p

, and ||g||∞,z := max
i
|g(zi)|. (1.75)

The corresponding pseudometric is then given by (g1, g2) 7→ ||g1 − g2||p,z. Note
that due to ||g||p,z ≤ ||g||q,z for p ≤ q there is a monotone behavior of pack-
ing/covering numbers when computed w.r.t. different values of p. For instance,

M(ε,G, || · ||p,z) ≤M(ε,G, || · ||q,z) if p ≤ q.

If the ranges of functions in G are uniformly bounded, then all these pack-
ing/covering numbers are finite, which can be seen by simply discretizing the
range space. If no further constraint is imposed on the class of functions, the
covering and packing numbers will grow exponentially with n. However, if, for

7In fact, this can be used to define a dimension (which is then called Minkowski-dimension),
for fractal objects or metric spaces where no algebraic notion of dimension exists.

8This should not be confused with an lp-norm, but rather be regarded as the Lp-norm of a
probability space whose measure is, in this case, given by a uniform distribution over the zi’s.

CHAPTER 1. LEARNING THEORY 43

instance, the VC-dimension of the considered function class is bounded, then
an n-independent bound on the packing number can be given:

Lemma 1.22 (Packing numbers for binary classifiers). For any F ⊆ {0, 1}X ,
x ∈ Xn, ε ∈ (0, 1] and p ∈ [1,∞) the ε-packing number w.r.t. || · ||p,x can be
bounded in terms of V Cdim(F) =: d via

M(ε,F) ≤
(9

εp
ln

2e

εp

)d
. (1.76)

Proof. It suffices to prove the statement for p = 1. Due to the particular binary
target space, the general case follows from ||f1 − f2||pp,x = ||f1 − f2||1,x, which
implies M(ε,F , || · ||p,x) = M(εp,F , || · ||1,x).

Let {f1, . . . , fM} ⊆ F be a maximal ε-packing of F . That is, for all k 6= l:
||fk−fl||1,x > ε andM = M(ε,F). Note that ||fk−fl||1,x can be interpreted as
the probability that fk(xi) 6= fl(xi) when xi is drawn uniformly from x (when
the latter is regarded as an n-element set). So if A is a random m-tuple with
i.i.d. entries from x, then PA[fk|A = fl|A] ≤ (1− ε)m ≤ e−mε. Using the union
bound, this leads to

PA

[
∃k, l : k 6= l ∧ fk|A = fl|A

]
< M2e−mε.

If this probability is smaller than one, as it is the case when m ≥ 2
ε lnM , then

there is an A on which all fk’s differ. This implies that F|A contains at least
M different functions and therefore M ≤ Γ(m). Using that Γ(m) ≤ (em/d)d

(Thm.1.8) and inserting m = 2
ε lnM this can be written as

M1/d ≤ 2e

ε
lnM1/d. (1.77)

Exploiting that a ≤ b ln a⇒ a ≤ (1−1/e)−1b ln b and applying it with a = M1/d,

b = 2e/ε to Eq.(1.77) then leads to M ≤
(

9
ε ln 2e

ε

)d
.

The ε-dependence of the bound in Eq.(1.76) can be improved to

M(ε,F) ≤ e(d+ 1)

(
2e

εp

)d
. (1.78)

The non-trivial proof of this improvement can be found in [?].
Another particular function class for which we derive an upper bound on

covering numbers is the class of bounded linear functions. A useful tool in this
context is a beautiful application of the ‘probabilistic method’, which yields the
following approximate version of Caratheodory’s theorem:

Lemma 1.23 (Maurey’s empirical method). Let C be a subset of a real inner
product space, φ ∈ conv(C) and b := supξ∈C ‖ξ‖. For any k ∈ N there are
elements ψ1, . . . , ψk ∈ C so that

∥∥∥φ− 1

k

k∑

i=1

ψi

∥∥∥
2

≤ b2

k
, (1.79)

CHAPTER 1. LEARNING THEORY 44

where the norm is the one induced by the inner product.

Proof. As φ is in the convex hull of C, there is a finite subset Ξ ⊆ C so that
φ =

∑
z∈Ξ λzz, where λ forms a probability distribution over Ξ. Let Z1, . . . , Zk

be i.i.d. random variables with values in Ξ, distributed according to λ. Hence, by
construction E [Zi] = φ. Using this and the i.i.d. property, it is straightforward
to show that

E

[∥∥∥φ− 1

k

k∑

i=1

Zi

∥∥∥
2
]

=
1

k

(
E
[
‖Zi‖2

]
− ‖φ‖2

)
.

Here, the r.h.s. can be bounded from above by b2

k . Since the resulting inequality
holds for the expectation value, there has to be at least one realization of the
random variables for which it is true as well.

This Lemma enables the construction of sparse approximations and coverings
in convex frameworks. We use it to derive an upper bound on the covering
number of bounded linear functionals:

Theorem 1.17: Covering number for bounded linear functionals

Consider the set F := {X 3 x 7→ 〈x, f〉| ‖f‖ ≤ β} of bounded linear
functionals on a ball X := {x ∈ H| ‖x‖ ≤ r} of a real inner product space
H. For any ε > 0, n ∈ N and X ∈ Xn we have with m := min{n,dimH}:

logN(ε,F , ‖ · ‖2,X) ≤ β2r2

ε2
log(2m). (1.80)

Proof. From X = (x1, . . . , xn) we construct a linear map X̂ : H → Rn, X̂ :
h 7→ (〈xi, h〉)ni=1. A set G ⊆ RX of linear functionals is an ε-covering of F w.r.t.
‖ · ‖2,X , if for all f ∈ F there is a g ∈ G s.t.

nε2 ≥
n∑

i=1

∣∣〈xi, f〉 − 〈xi, g〉
∣∣2 = ‖X̂(f − g)‖2.

We construct such a covering by using the singular value decomposition of X̂,
which yields singular values si and two orthonormal sets {φi} in Rn and {ϕi}
in H so that

X̂f =

m∑

i=1

si〈ϕi, f〉φi. (1.81)

We want to interpret Eq.(1.81) as convex combination of elements from C ∪{0}
where C := {±cφi}mi=1 with a suitably chosen constant c. To this end, the latter
is chosen as c := supf∈X

∑m
i=1 si|〈ϕi, f〉|, which by Cauchy-Schwarz (applied in

Rm) can be shown to be equal to β‖X̂‖2. In this way, X̂f ∈ conv(C ∪ {0}) =

CHAPTER 1. LEARNING THEORY 45

conv(C) so that we can exploit the previous Lemma. This guarantees that for
any k ∈ N there are ψ1, . . . , ψk ∈ C such that

∥∥∥∥∥X̂f −
1

k

k∑

i=1

ψi

∥∥∥∥∥

2

≤ c2

k
.

Choosing k := dc2/(nε2)e this produces an ε-cover when running over all |C|k
choices for the ψi’s from C. The size of the constructed ε-covering is thus
|C|k = (2m)k. To arrive at Eq.(1.80), it remains to relate ‖X̂‖2 to r, which is
readily done by realizing that ‖X̂‖22 =

∑n
i=1 ‖xi‖2 ≤ nr2.

Uniform covering numbers

In the case of a finite target space Y = {1, 2, . . . , |Y|} we saw in Sec.1.5 that
a sub-exponential growth-function Γ leads to a non-trivial PAC bound. The
growth function, in turn, can be regarded as a specific covering number since
for ε < 1 and g, f ∈ YX we have ||g − f ||∞,x < ε iff g|x = f |x. Consequently,
Nin(ε,F , || · ||∞,x) = |F

∣∣
x
|, which gives rise to the growth-function when taking

the maximum over all x ∈ Xn. This motivates the definition of the uniform
covering number

Γp(n, ε,F) := max
{
Nin(ε,F , || · ||p,x) | x ∈ Xn

}
, (1.82)

for classes F ⊆ RX of real-valued functions. Note that this is non-decreasing
as a function of p and non-increasing in ε. If the target space is finite, then
Γ∞(n, ε,F) equals the growth function for small enough ε. The following theo-
rem shows that the PAC-bound in Sec.1.5 can indeed be generalized to arbitrary
function classes when using uniform covering numbers in place of the growth
function:

Theorem 1.18: PAC-bound using uniform covering numbers

For any function class F ⊆ YX and Loss function L : Y ×Y → [0, c] define
G := {g : X × Y → [0, c]

∣∣∃h ∈ F : g(x, y) = L
(
y, h(x)

)
}. For any ε > 0

and any probability measure P on X × Y:

PS∼Pn
[
∃h ∈ F : |R(h)− R̂(h)| ≥ ε

]
≤ 4Γ1

(
2n, ε/8,G

)
e−

nε2

32c2 . (1.83)

Proof. We are copying the first steps of the proof of Thm.1.7, where an i.i.d.
copy S′ ∈ (X × Y)n of S was introduced. From Eq.(1.26) we know that

PS

[
∃h ∈ F : |R(h)− R̂(h)| ≥ ε

]
≤

2ES,S′Pσ

[
∃g ∈ G :

1

n

∣∣∣∣∣
n∑

i=1

σi
(
g(Xi, Yi)− g(X ′i, Y

′
i)
)
∣∣∣∣∣ > ε/2

]
, (1.84)

where σi ∈ {±1} are i.i.d. uniformly distributed random variables. Next, let us
work inside the expectation values and consider S, S′ and σ fixed. The aim of

CHAPTER 1. LEARNING THEORY 46

the next step is to approximate g by an element g′ of an ε/8-covering G′ of G
w.r.t. || · ||1,S∪S′ . To this end, note that the condition on g in Eq.(1.84) can be
read as |〈σ′, g〉|/n > ε/2, when using suggestive abuse of notation and regarding
g and σ′ as vectors in R2n—the latter ±1-valued. Then

ε

2
<

1

n
|〈σ′, g〉| ≤ 1

n
|〈σ′, g′〉|+ 1

n
|〈σ′, g − g′〉|

≤ 1

n
|〈σ′, g′〉| + 2||g − g′||1,S∪S′ ≤

1

n
|〈σ′, g′〉| +

ε

4
.

Therefore, the r.h.s. of Eq.(1.84) can be further upper bounded when replacing
g by g′ and at the same time ε/2 by ε/4.

In the last step, we evaluate Pσ by exploiting the union-bound together with
Hoeffding’s inequality. Interpreting Zi := σi

(
g′(Xi, Yi)− g′(X ′i, Y ′i)

)
as random

variable with zero mean (by varying over σi) and range in [−c, c], we finally
obtain

Pσ

[
∃g′ ∈ G′ :

1

n

∣∣∣∣∣
n∑

i=1

σi
(
g′(Xi, Yi)− g′(X ′i, Y ′i)

)
∣∣∣∣∣ > ε/4

]

≤
∑

g′∈G′
PZ

[∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > nε/4

]
≤ 2Γ1

(
2n, ε/8,G

)
e−

nε2

32c2 .

If, in the context of the foregoing theorem, the functions in F are real-valued
and the Loss-function is Lipschitz-continuous, then the covering number of F
can be used directly and the detour via G is not necessary. More precisely:

Lemma 1.24. Let Y, Ỹ ⊆ R, F ⊆ ỸX and L : Y×Ỹ → [0, c]. If there exists an
l ∈ R such that for all ỹ1, ỹ2 ∈ Ỹ and all y ∈ Y:

∣∣L(y, ỹ1)−L(y, ỹ2)
∣∣ ≤ l|ỹ1− ỹ2|,

then for all p ∈ [1,∞], ε > 0 and all n ∈ N:

Γp(n, ε,G) ≤ Γp(n, ε/l,F),

where G = L ◦ F as in the foregoing theorem.

Proof. The Lipschitz assumption implies that every ε/l-cover of F becomes an
ε-cover of G since for any f, h ∈ F :

(
1

n

n∑

i=1

|L(yi, f(xi))− L(yi, h(xi))|p
) 1
p

≤ l

(
1

n

n∑

i=1

|f(xi)− h(xi)|p
) 1
p

.

From covering numbers to Rademacher complexities

The following theorem exploits covering numbers to bound Rademacher com-
plexities.

CHAPTER 1. LEARNING THEORY 47

Theorem 1.19: Dudley’s theorem

For a fixed vector z ∈ Zn let G be any subset of the pseudometric space(
RZ , || · ||2,z

)
and set γ0 := supg∈G ||g||2,z. The empirical Rademacher

complexity of G w.r.t. z can be upper bounded in terms of the covering
numbers N(ε,G) via

R̂(G) ≤ inf
ε∈[0,γ0/2)

4ε+
12√
n

∫ γ0

ε

(
lnN(β,G)

)1/2
dβ. (1.85)

Remark: often Dudley’s theorem is stated without the additional infimum, by
choosing ε = 0. One advantage of the above form is that the expression remains
useful for function classes for which, for instance, lnN(β,G) grows faster than
1/β2 for β → 0. In this case, the integral would diverge, when starting at ε = 0.

Proof. Define γj := 2−jγ0 for j ∈ N and let Gj ⊆ RZ be a minimal γj-cover of
G. That is, |Gj | = N(γj ,G) and for every g ∈ G there is a gj ∈ Gj such that
||g − gj ||2,z ≤ γj . This inequality continues to hold for j = 0 if we set g0 := 0.
For later use, we estimate

1

n

(n∑

i=1

|gj(zi)− gj−1(zi)|2
)1/2

=
1√
n
||gj − gj−1||2,z

≤ 1√
n

(
||gj − g||2,z + ||g − gj−1||2,z

)

≤ γj + γj−1√
n

=
3γj√
n
. (1.86)

For some m ∈ N to be chosen later, insert g = g − gm +
∑m
j=1(gj − gj−1) into

the definition of the empirical Rademacher complexity. In this way, we obtain

R̂(G) =
1

n
Eσ

[
sup
g∈G

n∑

i=1

σi

(
g(zi)− gm(zi) +

m∑

j=1

gj(zi)− gj−1(zi)
)]

≤ 1

n
Eσ

[
sup
g∈G

n∑

i=1

σi

(
g(zi)− gm(zi)

)]
+ (1.87)

1

n

m∑

j=1

Eσ

[
sup
g∈G

n∑

i=1

σi
(
gj(zi)− gj−1(zi)

)
.
]

(1.88)

We bound the two summands separately. For the term in Eq.(1.87) we can
use Cauchy-Schwarz for the inner product related to || · ||2,z to obtain the up-
per bound γm. For the term in Eq.(1.88) we can exploit Massart’s Lemma
(Lem.1.11) together with the estimate in Eq.(1.86). Hence, we can continue

CHAPTER 1. LEARNING THEORY 48

with

R̂(G) ≤ γm +
3√
n

m∑

j=1

γj

√
2 ln

(
|Gj | · |Gj−1|

)

≤ γm +
12√
n

m∑

j=1

(γj − γj+1)
√

lnN(γj ,G) (1.89)

≤ γm +
12√
n

∫ γ0

γm+1

√
lnN(β,G) dβ, (1.90)

where we have used |Gj−1| ≤ |Gj | and γj = 2(γj − γj+1) in Eq.(1.89) and that
the integral in Eq.(1.90) is lower bounded by its lower Riemann sum appearing
in Eq.(1.89).

Finally, for any fixed ε ∈ [0, γ0/2) choose m so that ε < γm+1 ≤ 2ε.
Then γm ≤ 4ε and Eq.(1.90) can be bounded from above by the expression
in Eq.(1.85).

Now, let us apply Dudley’s theorem to the case of binary classification.
Recall that when bounding the estimation error (or Rademacher complexity) in
terms of the VC-dimension d directly via the growth function, an extra factor
ln d appeared. Dudely’s theorem improves this situation:

Corollary 1.25 (Improved bound for binary classifiers). Let F ∈ {0, 1}X have
V Cdim(F) =: d. Then its empirical Rademacher complexity w.r.t. an arbitrary
point in Xn can be bounded by

R̂(F) ≤ 31

√
d

n
. (1.91)

Proof. We use Eq.(1.85) from Dudely’s theorem with ε = 0 and γ0 ≤ 1. By
Lemma 1.20 we can upper bound the covering number by the corresponding
packing number for which we use the bound derived in Eq.(1.76). Using the
simple inequality lnx ≤ x/e this leads to lnN(β,F) ≤ d ln 18

β4 so that Dudley’s
theorem and numerical integration lead to

R̂(F) ≤ 12

√
d

n

∫ 1

0

√
ln 18 + 4 ln

1

β
dβ ≤ 31

√
d

n
.

Note: Since the r.h.s. of the bound does not depend on the empirical distri-
bution, it holds for the expectation value, i.e., for the Rademacher complexities
Rn(F), as well. The appearing constant 31 can, without effort, be improved to
26 by using the improved upper bound from Eq.(1.78).

CHAPTER 1. LEARNING THEORY 49

1.10 Pseudo and fat-shattering dimension
In this section we discuss generalizations of the concept of VC-dimension to
classes of real-valued functions. As in the binary case, we restrict the function
class to a finite domain and quantify the richness of the class as this domain
grows. To make the real-valued case amenable to the VC-dimension, the idea
is to binarize the target space in a way that allows the binarization to depend
on the point of the restricted domain. This leads to the concept of the pseudo
and the fat-shattering dimension, where the former can be regarded as a limit
of the latter:

Definition 1.26 (Pseudo-dimension). The pseudo-dimension of F ⊆ RX is
defined as

Pdim(F) := V Cdim
{
X ×R 3 (x, y) 7→ sgn[f(x)− y]

∣∣ f ∈ F
}
. (1.92)

In other words, if Pdim(F) ≥ d, then there are is a set of points {(xi, yi)}di=1 ⊆
X ×R such that for all subsets C ⊆ {1, . . . , d} there is a function f ∈ F satis-
fying

f(xi) ≥ yi ⇔ i ∈ C.

The pseudo-dimension is then the largest such d (or∞ if there is no maximum).
A scale-sensitive generalization of this notion is the following:

Definition 1.27 (α-fat-shattering dimension). Let α ∈ (0,∞) and F ⊆ RX .
The α-fat-shattering dimension fat(α,F) is the largest d ∈ N∪ {∞} for which
there exists {(xi, yi)}di=1 ⊆ X ×R such that for all subsets C ⊆ {1, . . . , d} there
is a function f ∈ F satisfying

f(xi) ≥ yi + α if i ∈ C,
f(xi) ≤ yi − α if i 6∈ C.

The following properties follow immediately from the definitions:

Corollary 1.28 (Relations between pseudo and fat-shattering dimensions). Let
F ′ ⊆ F ⊆ RX , α > α′ > 0 and sgn[F] := {x 7→ sgn[f(x)] |f ∈ F}. Then

i) Pdim(F) ≥ Pdim
(
sgn[F]

)
= V Cdim

(
sgn[F]

)
.

ii) Pdim(F) ≥ Pdim(F ′) and fat(α,F) ≥ fat(α,F ′).

iii) fat(α,F) ≤ fat(α′,F) ≤ Pdim(F).

iv) limα→0 fat(α,F) = Pdim(F).

v) If F is closed under scalar multiplication, then fat(α,F) = Pdim(F).

For vector spaces of functions we obtain that the algebraic dimension coin-
cides with the pseudo and fat-shattering dimension:

CHAPTER 1. LEARNING THEORY 50

Corollary 1.29. If F ⊆ RX is a d-dimensional vector space of functions, then
Pdim(F) = fat(α,F) = d for all α > 0.

Proof. The fact that Pdim(F) = d follows from the definition of the pseudo
dimension and the corresponding property of the VC-dimension: inserting the
definition of the pseudo dimension into Thm.1.9 with φ(x, y) := −y yields the
desired result. Since F is closed under scalar multiplication, the α-fat-shattering
dimension equals the pseudo dimension according to Cor.1.28v).

Example 1.11 (Spaces of polynomials).Let F be the space of real polynomials
on Rk of degree at most d. Since this is a vector space of dimension

(
k+d
d

)
,

we have Pdim(F) =
(
k+d
d

)
.

If additional constraints such as norm-bounds are imposed, then the dimen-
sion of the surrounding space no longer necessarily enters the α-fat-shattering
dimension. A good example is the set of bounded linear functionals:

Theorem 1.20: Fat-shattering dim. of bounded linear functionals

Consider the set F := {X 3 x 7→ 〈x, f〉| ‖f‖ ≤ β} of bounded linear
functionals on a ball X := {x ∈ H| ‖x‖ ≤ r} of a real inner product space
H with norm induced by the inner product. Then for any α > 0:

fat(α,F) = min

{
dim(H),

⌊(
βr

α

)2
⌋}

. (1.93)

Proof. We begin with proving “≤”, which is the slightly more involved direction.
Clearly, fat(α,F) is bounded by the dimension ofH. This follows from Cor.1.28
and Cor.1.29 by extending the function class to the vector space F ′ ⊇ F of all
linear functionals, which has dimension dim(H).

By definition, if fat(α,F) = d, then there are
(
(xi, yi)

)d
i=1

such that for all
b ∈ {−1, 1}d there is an f = f(b) in F that satisfies

∀i : bi
(
〈xi, f〉 − yi

)
≥ α. (1.94)

Exploiting this, we will show that there exists a σ ∈ {−1, 1}d such that

αd

β
≤

∥∥∥∥∥
d∑

i=1

σixi

∥∥∥∥∥ ≤
√
dr. (1.95)

Eq.(1.95) then completes the upper bound in the theorem, since a comparison
of the right and left side of Eq.(1.95) yields

√
d ≤ βr/α. We begin the proof of

Eq.(1.95) with the lower bound, which will be seen to hold for any σ ∈ {−1, 1}d.
Define s := sgn

∑d
i=1 σiyi and set g := sf(sσ). Then, from Eq.(1.94), after

taking the sum over i, we obtain:

d∑

i=1

σi〈xi, g〉 ≥ αd+ s

d∑

i=1

σiyi ≥ αd.

CHAPTER 1. LEARNING THEORY 51

Applying Cauchy-Schwarz to the l.h.s. together with the fact that ‖g‖ ≤ β then
proves the lower bound in Eq.(1.95). For proving the upper bound, we exploit
the probabilistic method. To this end, regard the σi’s as i.i.d. Rademacher
variables. Exploiting their independence and the fact that Eσ[σi] = 0, it is
readily verified that

Eσ

[∥∥∥
d∑

i=1

σixi

∥∥∥
2
]

=

d∑

i=1

‖xi‖2 ≤ dr2.

Since this holds on average, there has to be at least one realization of the σi’s
for which the upper bound in Eq.(1.95) is true. This completes the proof of
Eq.(1.95) and thus of the upper bound in the theorem.

For proving the ‘≥’ direction, let d be the claimed expression for fat(α,F)
and let {ei}di=1 be an orthonormal set in H. Set yi := 0, xi := rei and f =

f(b) := α
r

∑d
i=1 biei. By construction, bi(〈f, xi〉 − yi) = α for all i. So d

is indeed a lower bound on fat(α,F), if ‖f‖ ≤ β. The latter is true, since
‖f‖ = α

√
d/r.

Finally, we summarize known bounds on uniform covering numbers of real-
valued function classes in terms of their pseudo and fat-shattering dimensions.
These results are all non-trivial and stated here without proofs.

Theorem 1.21: Covering numbers from combinatorial dimensions

Let ε > 0, n ∈ N and F ⊆ [0, 1]X be a class of real valued functions.

1. With D := Pdim(F) it holds that:

Γ1(n, ε,F) ≤ e(D + 1)

(
2e

ε

)D
. (1.96)

2. With d := fat(ε/4,F), it holds for all n ≥ d that:

Γ∞(n, ε,F) < 2

(
4n

ε2

)d log2[4en/(dε)]

. (1.97)

3. For any p ∈ [1,∞) there are constants c, k > 0 such that

Γp(n, ε,F) ≤
(

2

ε

)k fat(cε,F)

. (1.98)

1.11 Algorithmic stability
So far, the type of the learning algorithm merely played a role through its
range—the considered hypotheses class F . In this section, we shift the focus

CHAPTER 1. LEARNING THEORY 52

from the range of the learning algorithm to its stability. Here, stability refers to
the stability of the hypotheses at the output of the algorithm w.r.t small changes
of its input. In this context, a ‘small change of the input’ typically means the
change or omission of a single data point in the training data set. A common
(since convenient) way to quantify changes in the hypothesis is by means of the
loss function. This leads to the following definitions:

Definition 1.30 (Stability). Consider a loss function L : Y × Y → R. A
learning algorithm that maps S ∈ (X × Y)n to a hypothesis hS is said to be

• uniformly stable w.r.t. L with rate ε : N → R if for all n ∈ N and all
(x, y) ∈ X ×Y the following inequality holds for all S, S′ ∈ (X ×Y)n that
differ in only one element:

∣∣∣L
(
y, hS(x)

)
− L

(
y, hS′(x)

)∣∣∣ ≤ ε(n).

• on-average stable w.r.t. L with rate ε : N → R if for all n ∈ N and all
probability measures P on X × Y:

∣∣∣ES∼PnE(x,y)∼PEi

[
L
(
yi, hS(xi)

)
− L

(
yi, hSi(xi)

)]∣∣∣ ≤ ε(n), (1.99)

where S = ((xi, yi))
n
i=1, Si is obtained from S by replacing the i’th ele-

ment with (x, y) and Ei denotes the expectation with respect to a uniform
distribution of i ∈ {1, . . . , n}.

Obviously, uniform stability implies on-average stability with the same rate.
The rate functions of interest will be those converging to zero when n→∞. In
this light, uniform stability will be less useful in classification contexts where L
has discrete values. In this case, it may, however, be applied to the loss function
before ‘binarizing’ (e.g. by applying sgn(·)) or to a surrogate loss function that
is used in the learning algorithm.

The presented definitions are often referred to as replace-one stability, as
opposed to leave-one-out stability, where instead of replacing one data point it
is omitted. Although the two ways of defining stability are conceptually very
similar, they are formally incomparable. We focus on replace-one stability, as
it is defined above. The following simple but crucial observation relates the
generalization error to on-average stability:

Theorem 1.22: on-average stability = on-average generalization

With the notation of the foregoing definition the following holds for any
learning algorithm S 7→ hS and any probability measure P :

ES

[
R(hS)− R̂(hS)

]
= ESE(x,y)Ei

[
L
(
yi, hSi(xi)

)
− L

(
yi, hS(xi)

)]

(1.100)

CHAPTER 1. LEARNING THEORY 53

Proof. On the one hand, since (xi, yi) and (x, y) are i.i.d. we can interchange
them and write

ES

[
R(hS)

]
= ESE(x,y)

[
L
(
y, hS(x)

)]
= ESE(x,y)

[
L
(
yi, hSi(xi)

)]
.

Since this holds equally for all i we may, in addition, take the expectation value
Ei on the r.h.s.. On the other hand, we have

ES

[
R̂(hS)

]
= ESEi

[
L
(
yi, hS(xi)

)]
= ESE(x,y)Ei

[
L
(
yi, hS(xi)

)]
,

so that the difference of the two identities gives Eq.(1.100).

As a consequence, we obtain for any on-average stable learning algorithm
with rate ε(n) that ∣∣∣ES

[
R(hS)− R̂(hS)

]∣∣∣ ≤ ε(n).

That is, the generalization error is, on average, bounded by the stability rate
function. This generalization bound is weaker than the PAC-type bounds that
we derived previously. In principle, closeness in expectation still leaves room for
significant fluctuations, while PAC-type bounds guarantee that the empirical
risk is close to the risk with high probability. However, such bounds can be
derived from stability as well:

Theorem 1.23: PAC bound from stability

Consider a loss function L with range in [−c, c] and any learning algorithm
S 7→ hS that is uniformly stable w.r.t. L with rate ε1 : N → R. Then
the following holds w.r.t. repeated sampling of training data sets of size
n. For all ε > 0 and all probability measures over X × Y:

PS

[∣∣R̂(hS)−R(hS)
∣∣ ≥ ε+ ε1(n)

]
≤ 2 exp

[
− nε2

2(nε1(n) + c)2

]
. (1.101)

Proof. We consider ϕ(S) := R̂(hS) − R(hS) as a function of n i.i.d. random
variables to which we want to apply McDiarmid’s inequality (Lemma 1.15).
To this end, observe that |E[ϕ(S)]| ≤ ε1(n), which follows from stability and
Eq.(1.100), and note that |ϕ(S)| ≥ ε+|E[ϕ(S)]| ⇒ |ϕ(S)−E[ϕ(S)]| ≥ ε. Hence,

PS

[∣∣R̂(hS)−R(hS)
∣∣ ≥ ε+ ε1(n)

]
≤ PS

[∣∣ϕ(S)−E[ϕ(S)]| ≥ ε
]

≤ 2 exp

[
− 2ε2

nν2

]
,

where the second step is McDiarmid’s inequality with ν an upper bound on
|ϕ(S)−ϕ(Si)| that is yet to be determined. This can be done by again applying
the assumed stability to the inequality

|ϕ(S)− ϕ(Si)| ≤ 1

n

∑

j 6=i

∣∣∣L
(
yj , hS(xj)

)
− L

(
yj , hSi(xj)

)∣∣∣

+
2c

n
+
∣∣R(hS)−R(hSi)

∣∣.

CHAPTER 1. LEARNING THEORY 54

We can bound the sum in the first line of the r.h.s. by ε1(n) and, similarly,

∣∣R(hS)−R(hSi)
∣∣ =

∣∣∣E(X,Y)

[
L
(
Y, hS(X)

)
− L

(
Y, hSi(X)

)∣∣∣ ≤ ε1(n).

The claim then follows with ν := 2(ε1(n) + c/n).

In order to guarantee a generalization error that decreases as 1/
√
n, the bound in

Eq.(1.101) requires a stability rate that decreases asymptotically as 1/n. With
more sophisticated arguments it can be shown that, up to logarithmic factors,
a stability rate of order 1/

√
n is, in fact, sufficient [BKZ19, FV19].

Uniform stability from strong convexity We will now analyze the use of
Tikhonov regularization and convexity as a means to guarantee uniform stabil-
ity. To this end, we need the following notion from convex analysis:

Definition 1.31 (Strong convexity). Let F be a convex subset of a real inner
product space and α > 0 a real number. A function Φ : F → R is called
α-strongly convex, if the map h 7→ Φ(h)− α

2 〈h, h〉 is convex on F .

Denoting by ||·|| the norm induced by the inner product, it is straightforward
to see that α-strong convexity is equivalent to requiring that

λΦ(h) + (1− λ)Φ(g) ≥ Φ
(
λh+ (1− λ)g

)
+
α

2
λ(1− λ)||h− g||2 (1.102)

holds for all g, h ∈ F and λ ∈ [0, 1]. If the minimum of an α-strongly convex
function exists, it is unique and the value of any other point can be bounded in
terms of its distance to the minimizer:

Lemma 1.32. If Φ : F → R is α-strongly convex and attains its minimum at
h, then for all g ∈ F :

Φ(g) ≥ Φ(h) +
α

2
||h− g||2. (1.103)

Proof. When using minimality of h in Eq.(1.102) we obtain λΦ(h)+(1−λ)Φ(g) ≥
Φ(h) +αλ(1− λ)||h− g||2/2, which can be simplified to Φ(g) ≥ Φ(h) +αλ||h−
g||2/2. Setting λ = 1 then completes the proof.

With this, we are equipped for the following relation between stability and
regularization:

Theorem 1.24: Uniform stability from regularization

Let λ > 0 and F ⊆ YX be a convex subset of an inner product space. If
for all (x, y) ∈ X ×Y the map h 7→ L(y, h(x)) is convex and l−Lipschitz
on F , then the learning algorithm that minimizes the functional fS(h) :=

R̂(h) + λ〈h, h〉 is uniformly stable w.r.t. L with rate 2l2

λn .

CHAPTER 1. LEARNING THEORY 55

Proof. With h := hS , h′ := hSi and the norm being the one induced by the
inner product we can bound

fS(h′)− fS(h) = R̂S(h′)− R̂S(h) + λ
(
||h′||2 − ||h||2

)

= R̂Si(h
′)− R̂Si(h) + λ

(
||h′||2 − ||h||2

)
(1.104)

+
1

n

[
L
(
yi, h

′(xi)
)
− L

(
yi, h(xi)

)
+ L

(
y, h(x)

)
− L

(
y, h′(x)

)]

≤ 2l

n
||hSi − hS ||,

where we have used that the term in Eq.(1.104) is negative, since h′ minimizes
fSi , together with the Lipschitz assumption. As fS is 2λ-strongly convex with
minimizer h we can, on the other hand, exploit Lemma 1.32 to obtain λ||h′ −
h||2 ≤ fS(h′)−fS(h). Combining these two bounds leads to ||h′−h|| ≤ 2l/(λn).
Using the Lipschitz property once again, we finally arrive at uniform stability:

∣∣∣L
(
y, h(x)

)
− L

(
y, h′(x)

)∣∣∣ ≤ l||h− h′|| ≤ 2l2

λn
.

It is possible to derive a similar implication when replacing the Lipschitz as-
sumption for the loss function by a Lipschitz assumption for its gradient. In
either case, there is a trade-off between stability, and thus small generalization
error, on the one hand, and an effective restriction of the hypotheses class on the
other hand: if λ is too small, there is no generalization guarantee. If λ is too
large, hypotheses with small norm dominate, whether they describe the data
adequately, or not. The following corollary aims at formalizing this trade-off:

Corollary 1.33 (Regularization trade-off). Let λ > 0 and F ⊆ YX be a convex
subset of an inner product space. Assume that for all (x, y) ∈ X × Y the map
h 7→ L(y, h(x)) is convex and l−Lipschitz on F and that h∗ = argminh∈FR(h).
Then the learning algorithm S 7→ hS that minimizes the functional fS(h) :=
R̂(h) + λ||h||2 satisfies

ES

[
R(hS)

]
≤ R(h∗) + λ||h∗||2 +

2l2

λn
. (1.105)

Proof. Since hS minimizes fS , we have

ES

[
R̂(hS)

]
≤ ES

[
fS(hS)

]
≤ ES

[
fS(h∗)

]
= R(h∗) + λ||h∗||2.

As uniform stability implies on-average stability, we can use Thm.1.24 together
with Thm.1.22 to obtain ES

[
R(hS) − R̂(hS)

]
≤ 2l2/(λn). Combining the two

bounds then leads to the claimed result:

ES

[
R(hS)

]
= ES

[
R̂(hS)

]
+ES

[
R(hS)− R̂(hS)

]

≤ R(h∗) + λ||h∗||2 +
2l2

λn
.

CHAPTER 1. LEARNING THEORY 56

The optimal value for λ that minimizes the r.h.s. of Eq.(1.105) is then

λopt =
l

||h∗||

√
2

n
⇒ ES

[
R(hS)

]
≤ R(h∗) + 2l ||h∗||

√
2

n
.

Clearly, in practice the norm ||h∗|| is not known, but one could try to estimate
it, for instance on the basis of a validation data set, and then work with the
estimate. It should also be noticed that, in principle, Tikhonov regularization
provides more freedom than the choice of λ, namely the choice of the inner
product.

We have used Tikhonov regularization in order to make a convex function
2λ-strongly convex. However, if the loss function exhibits this stronger form of
convexity already, no regularization is required and the above reasoning holds
for empirical risk minimization (ERM) right away:

Theorem 1.25: ERM-convergence under strong convexity

Let F ⊆ YX be a convex subset of an inner product space. Assume that
for all (x, y) ∈ X × Y the map h 7→ L(y, h(x)) is α-strongly convex and
l − Lipschitz on F . Then

1. The ERM algorithm S 7→ ĥ := argminh∈F R̂(h) is uniformly stable
w.r.t. L with rate 4l2

αn .

2. If h∗ = argminh∈FR(h), then for any δ ∈ (0, 1) with probability at
least 1− δ w.r.t. repeated sampling of an i.i.d. sample of size n:

R(ĥ)−R(h∗) ≤ 4l2

αδn
. (1.106)

Proof. The proof of part 1 follows the steps of the proof of Thm.1.24 with 2λ
replaced by α.

In order to prove part 2, we first use that ES [R(h∗)] = ES

[
R̂(h∗)

]
≥

ES

[
R̂(ĥ)

]
. This proves the first inequality of

ES

[
R(ĥ)−R(h∗)

]
≤ ES

[
R(ĥ)− R̂(ĥ)

]
≤ 4l2

αn
, (1.107)

while the second inequality is implied by part 1 together with the fact that
stability implies on-average generalization (Thm.1.22). Finally, since R(ĥ) −
R(h∗) ≥ 0 we can apply Markov’s inequality and derive the claimed result from
Eq.(1.107).

Randomized algorithms and differential privacy Instead of choosing a
hypothesis h ∈ F deterministically upon input of a training data set S ∈ (X ∈
Y)n, the learning algorithms we deal with in the remaining part of this section
choose a distribution of hypotheses, characterized by a probability measure µS

CHAPTER 1. LEARNING THEORY 57

on F . A hypothesis h ∈ F is then drawn according to µS . In this way, the
map from S to h becomes stochastic and the learning algorithm specifies the
assignment S 7→ µS .

The definitions of uniform stability and on-average stability can be used
verbatim for stochastic algorithms if we replace the loss of a hypothesis that
the learning algorithm outputs upon input of a training data set by the aver-
age loss, averaged w.r.t. the stochastic component of the algorithm. That is,
L(y, hS(x)) for instance is replaced by Eh∼µS [L(y, h(x))]. On-average stabil-
ity is then again equivalent to on-average generalization so that if ε(n) is the
corresponding stability rate function, then

∣∣ESEh∼µS
[
R(h)− R̂(h)

]∣∣ ≤ ε(n).

A concept that is closely related to stability of stochastic algorithms is dif-
ferential privacy. This has been introduced in the context of database analysis
w.r.t. privacy.

Definition 1.34 (Differential privacy). A stochastic algorithm that maps Zn 3
S 7→ µS, where µS is a probability measure over F , is called (ε, δ)-differentially
private if for any pair S, S′ ∈ Zn that differs in only a single element:

Ph∼µS
[
h ∈ H

]
≤ eε Ph∼µS′

[
h ∈ H

]
+ δ for any measurable H ⊆ F . (1.108)

Here, ε and δ are regarded as real-valued functions of n.

In the context that motivates this definition, S is a database and the map
S 7→ µS corresponds to a mechanism of querying that database. Differential
privacy (with ε, δ small) then tries to guarantee that sensitive information of
individuals, which corresponds to a single entry in S, is protected in a sensible
way. Ideally, this is done without sacrificing too much accuracy in the database
query.

While explaining this in greater detail is a different story, which is told for
instance in [DR14], we can show that differential privacy implies stability:

Corollary 1.35 (Differential privacy implies stability). A stochastic learning
algorithm that is (ε, δ)-differentially private is

(
2(eε − 1 + δ)

)
-uniformly stable

w.r.t. any loss function whose range is in [0, 1].

Proof. We will make use of the total variation distance dTV , which is a metric
on the space of probability measures over a given Borel sigma-algebra. Two
equivalent characterizations (cf. [BW07]) of the total variation distance between
µ and ν are

dTV (µ, ν) := sup
A

∣∣µ(A)− ν(A)
∣∣ (1.109)

=
1

2
sup
f

∣∣Eh∼µ[f(h)]−Eh∼ν [f(h)]
∣∣, (1.110)

where the supremum is taken over all measurable sets in Eq.(1.109) and over
all measurable functions with range in [−1, 1] in Eq.(1.110).

CHAPTER 1. LEARNING THEORY 58

If we apply the definition in Eq.(1.109) to µ := µS , ν := µS′ and use the
definition of differential privacy (Def.1.34) with µS(H) = Ph∼µS

[
h ∈ H

]
and

similar for µS′(H), then we obtain

dTV (µS , µS′) ≤ eε − 1 + δ. (1.111)

On the other hand, if we apply Eq.(1.110) to f(h) := L(y, h(x)), we obtain

dTV (µS , µS′) ≥
1

2

∣∣∣Eh∼µS
[
L(y, h(x))

]
−Eh∼µS′

[
L(y, h(x))

]∣∣∣. (1.112)

Combining Eqs.(1.111,1.112) then proves
(
2(eε − 1 + δ)

)
-uniform stability.

1.12 Sample compression
Seen from a distance, the method introduced and discussed in this section follows
a similar idea as the one pursued by the stability bounds of the previous section.
Stability means that the hypothesis at the output of a learning algorithm does
not depend on any of the training examples too strongly. The possibility of
sample compression means that this hypothesis does not depend at all on a
considerable fraction of the examples.

The underlying idea is that there is a subset of the training data that al-
ready contains the relevant information and that the learning algorithm can be
represented by a two-step procedure: the selection of this subset followed by the
construction of the hypothesis from this subset.

Definition 1.36 (Selection schemes). Let S :=
⋃
n∈N(X × Y)n. A selection

scheme is a pair (γ, ρ) consisting of a selection map γ : S → S satisfying
∀S ∈ S : γ(S) ⊆ S, in the sense of a subsequence9, and a reconstruction map
ρ : S → YX . The function κ(n) := sup|S|≤n |γ(S)| is called the size of the
selection scheme and we will say that (γ, ρ) has size k ∈ N if limn→∞ κ(n) = k.

Note that although ρ is called ‘reconstruction map’, its definition does not
require an underlying ‘reconstruction’ of the original sample S.

There are many ways of obtaining generalization bounds for learning algo-
rithms that admit a selection-scheme representation. Their common tenor is
that the smaller the size of the selection scheme, the better the generalization:

Theorem 1.26: Compression bound in expectation

Let S 7→ hS = ρ ◦ γ(S) be a learning algorithm represented in terms of
a selection scheme (γ, ρ) of size κ = κ(n). Then w.r.t. a loss function

9Here and in the following, we will for convenience abuse set-notation for finite
(sub)sequences, i.e. A ⊆ B should be understood as ‘A is a subsequence of B’ and |A|
will denote its length.

CHAPTER 1. LEARNING THEORY 59

L : Y × Y → [0, 1] and i.i.d. samples S of size n:

ES

[
R(hS)− R̂(hS)

]
≤ κ

n
+

√
2κ

n
ln
(ne
κ

)
. (1.113)

Proof. We divide an arbitrary sample S of size n into the selected subsample
and the rest as S = γ(S) ∪ γ(S) and define S′ := C ∪ γ(S) where C is an
independent sample of size |C| = |γ(S)|. By adding and subtracting terms we
can then express the empirical risk of a hypothesis h w.r.t. S as

R̂S(h) = R̂S′(h) +
|γ(S)|
n

[
R̂γ(S)(h)− R̂C(h)

]

≥ R̂S′(h)− κ

n
, (1.114)

where the inequality uses that the loss function has range in [0, 1] and that
|γ(S)| ≤ κ. The key insight is now that when applied to h = ρ◦γ(S), Eq.(1.114)
bounds the empirical risk in terms of a quantity that can be regarded an out-of-
sample error since S′ is independent of γ(S)—it contains only those examples
from S that are ignored by the selection scheme.

Instead of using a specific selection function γ, we will consider the worst
case over all selection functions of size κ. Together with Eq.(1.114) this leads to

ES

[
R(hS)− R̂(hS)

]
≤ κ

n
+ESS′

[
max
I:|I|≤κ

R
(
ρ(SI)

)
− R̂S′

(
ρ(SI)

)]
, (1.115)

where the maximum is taken over all subsets I ⊆ {1, . . . , n} of size |I| ≤ κ and
SI denotes the subsample

(
(xi, yi)

)
i∈I of S. The r.h.s. of Eq.(1.115) contains an

expectation of a maximum of finitely many bounded, zero-mean random vari-
ables. Using Cor.1.14, which is a corollary of Massart’s Lemma, this expectation
can be bounded from above by

√
2 ln(m)/n, where m is the cardinality of the

set. The cardinality, in turn, can be bounded by

m =

κ∑

l=0

(
n

l

)
≤
(en
κ

)κ
, (1.116)

where the inequality is taken from Eq.(1.30).

Theorem 1.27: High-probability compression bound

Let S 7→ hS = ρ ◦ γ(S) be a learning algorithm represented in terms of
a selection scheme (γ, ρ) of size κ = κ(n) and L : Y × Y → [0, 1] a loss
function. For any δ ∈ (0, 1), with probability at least 1− δ w.r.t. repeated

CHAPTER 1. LEARNING THEORY 60

sampling of an i.i.d. samples S of size n:

R(hS) ≤ n

n− κ
R̂(hS) +

√
κ ln

(
en
κ

)
+ ln

(
1
δ

)

2(n− κ)
(1.117)

Proof. Using the same notation and essentially the same ideas as in the proof
of Thm.1.26 we can write

P

[
R(hS)− R̂

γ(S)
(hS) ≥ ε

]
≤

∑

I:|I|≤κ

P

[
R
(
ρ(SI)

)
− R̂S\SI

(
ρ(SI)

)
≥ ε
]

≤
∑

I:|I|≤κ

exp
[
− 2(n− κ)ε2

]

≤ exp
[
κ+ κ ln

(n
κ

)
− 2(n− κ)ε2

]
, (1.118)

where the first inequality uses the union bound over a worst-case replacement of
the selection function, the second inequality follows from Hoeffding’s inequality
and the third is again an application of Eq.(1.116). To derive Eq.(1.117) from
here, we set the expression in Eq.(1.118) equal to δ and solve for ε. Finally, we
use that positivity of the loss function implies that

R̂(h) ≥ n− κ
n

R̂
γ(S)

(h).

Definition 1.37 (Compression schemes). Let S :=
⋃
n∈N(X ×Y)n. For a given

function class F ⊆ YX and loss function L : Y×Y → [0,∞), a selection scheme
(γ, ρ) is called a compression scheme if for all S ∈ S that are realizable10 by F :

R̂
(
ρ ◦ γ(S)

)
= 0, (1.119)

and it is called an agnostic compression scheme if

∀S ∈ S : R̂
(
ρ ◦ γ(S)

)
≤ inf
h∈F

R̂(h). (1.120)

The size of the compression scheme is the size of the corresponding selection
scheme.

Note that the definition of an (agnostic) compression scheme for F does
not require that the range of the reconstruction map is contained in F . In the
context of a compression scheme, the ‘reconstruction map’ deserves its name as,
by Eq.(1.119), ρ has to be capable of ‘reconstructing’ all the labels of S from
the subsequence γ(S) if S is realizable by F .

By definition, the existence of an agnostic compression scheme for F implies
the existence of a compression scheme for F of the same size if L(y, y) = 0 for
all y ∈ Y. The following Lemma shows that in the case of classification with
the 0-1-loss the converse is true as well. For loss functions with more than two
values, however, this is no longer true in general.

10Here ‘realizable’ means that S is of the form
(
(xi, h(xi)

)n
i=1

for some h ∈ F .

CHAPTER 1. LEARNING THEORY 61

Figure 1.4: A simple and at the same time efficient sample compression scheme
of size 4 for the set of axes-aligned rectangles in R2 consists out of first selecting
the top-, bottom-, right-, left-most blue point and then choosing the smallest
axes-aligned rectangle that contains these four points.

Lemma 1.38. Consider the 0-1-loss function L : Y×Y → {0, 1} and a function
class F ⊆ YX . If there exists a compression scheme of size κ(n) for F , then
there exists an agnostic compression scheme of the same size.

Proof. Let (γ, ρ) be a compression scheme of size κ(n). We ‘compress’ an ar-
bitrary S ∈ (X × Y)n using the following scheme: first choose an f ∈ F s.t
R̂S(f) = minh∈F R̂S(h). Let C ⊆ S be the largest subsample of S for which
R̂C(f) = 0 and denote the resulting map by γ̃ : S 7→ C. Then C is realizable
by construction and R̂C

(
ρ ◦ γ(C)

)
= 0 by definition of a compression scheme.

So ρ ◦ γ(C) = ρ ◦ γ ◦ γ̃(S) is a hypothesis that agrees with f on C and can-
not be worse than f outside of C (since the loss function has only two values).
Consequently, R̂S

(
ρ ◦ γ ◦ γ̃(S)

)
≤ infh∈F R̂S(h) so that (γ ◦ γ̃, ρ) is the desired

agnostic compression scheme.

Whenever a class F of functions is considered and no loss function is speci-
fied, then a ‘compression scheme for F ’ always refers to the 0-1-loss.

Example 1.12 (Axes-aligned rectangles).Let F be the set of all indicator
functions of axes-aligned rectangles in Rd as in Exp.1.6. A compression
scheme of size κ(n) = min{2d, n} is then obtained as follows: let γ select
a minimal set of points that contains all extremal coordinates within the
label-1 subset S1 := {(x, y) ∈ S|y = 1} , i.e. γ(S) ⊆

⋃d
i=1 argminx∈S1

(xi) ∪
argmaxx∈S1

(xi). Since there are d coordinates and each has a minimum
and a maximum, we can ensure that |γ(S)| ≤ 2d. Then choose ρ so that
it returns the smallest axes-aligned rectangle that contains all points of its
argument. From the discussion in Exp.1.6 we know that the size of this
compression scheme for F coincides with the VC-dimension of F .

CHAPTER 1. LEARNING THEORY 62

Similar to the case of axes-aligned rectangles, many simple examples of bi-
nary function classes exhibit a close relation between the VC-dimension and the
minimal size of a compression scheme. In general, the following simple bound
holds:

Theorem 1.28: VC-dimension and bounded-size compression

If there exists a compression scheme of size k ∈ N for F ⊆ {0, 1}X , then

VCdim(F) < 5k. (1.121)

Proof. Let X = {x1, . . . , xd} ⊆ X be a set of size d = VCdim(F) that is
shattered by F and SX :=

{(
(xi, yi)

)d
i=1
|yi ∈ {0, 1}

}
the set of all |SX | = 2d

samples over X. If (γ, ρ) is a compression scheme for F , then |γ(SX)| = 2d since
X has to be shattered by ρ ◦ γ(SX) as well, by the definition of a compression
scheme. However, if the size of the compression scheme is bounded by k, then

|γ(SX)| ≤
k∑

i=0

(
d

i

)
2i ≤ 2k

k∑

i=0

(
d

i

)
≤
(

2ed

k

)k
, (1.122)

where the last inequality uses Eq.(1.116). Inserting now k = d/5 (or any smaller
value) leads to

|γ(SX)| ≤ (10e)d/5 < (32)d/5 = 2d,

contradicting |γ(SX)| = 2d.

The question of whether there exists an inequality in the other direction
can be answered in the affirmative if one extends the concept of compression
schemes and allows for side information. This means that one considers maps
of the form

S γ−→ S × B ρ−→ YX ,

where B :=
⋃
n∈N{0, 1}n is the set of all bit-strings. The size of the compression

scheme with side information is then the length of the subsequence plus the
length of the bit-string. It has been shown that for any binary function class F
such a generalized compression scheme of size exponential in VCdim(F) always
exists [MY16].

1.13 Relative entropy bounds
In this section, we will slightly extend the framework and allow for a stochastic
component in the learning algorithm. Instead of choosing a hypothesis h ∈ F
deterministically upon input of a training data set S ∈ (X ∈ Y)n, the learning
algorithms we deal with in this section choose a distribution of hypotheses,
characterized by a probability measure µS on F . A hypothesis h ∈ F is then
drawn according to µS . In this way, the map from S to h becomes stochastic and
the learning algorithm specifies the assignment S 7→ µS . In terms of probability

CHAPTER 1. LEARNING THEORY 63

theory, we may think of the learning algorithm as a Markov kernel. With slight
abuse of notation, we will denote the corresponding expected risk and empirical
risk by

R(µS) := Eh∼µS
[
R(h)

]
and R̂S(µS) := Eh∼µS

[
R̂S(h)

]
. (1.123)

A useful toolbox for such stochastic schemes is given by so-called PAC-Bayesian
bounds. These rely on a famous functional, which is ubiquitous in information
theory, thermodynamics and statistical inference:

For two probability measures µ and ν defined on the same space, theKullback-
Leibler divergence (KL-divergence a.k.a. relative entropy) is defined as

KL(µ||ν) :=

∫
log

[
dµ

dν

]
dµ (1.124)

if µ is absolutely continuous w.r.t. ν and KL(µ||ν) =∞ otherwise.11 Its main
properties are that it is (i) non-negative and zero only if µ = ν (almost ev-
erywhere w.r.t. µ), (ii) jointly convex and (iii) it satisfies a data-processing
inequality, i.e., it is non-increasing if the random variables corresponding to the
two arguments undergo the same stochastic map. The KL-divergence is not
a metric since it does neither satisfy the triangle inequality nor is it symmet-
ric. Nevertheless, it can be useful to think of it as a distance measure (in the
colloquial sense) between probability distributions. In the present context, the
KL-divergence enters the discussion via the following inequality:

Lemma 1.39 (Fenchel-Young inequality for KL-divergence). 12 Let µ, ν be
probability measures on F and ϕ : F → R a measurable function. Then

log

∫

F
eϕdν ≥

∫

F
ϕdµ−KL(µ||ν).

Here, equality holds if dµ/dν = eϕ/
(∫

eϕdν
)
.

Proof. We define a probability measure µ0 via dµ0/dν := eϕ/(
∫
eϕdν). Assum-

ing that KL(µ||ν) <∞ (as otherwise the statement is trivial) we known that µ
is absolutely continuous w.r.t. ν and thus also w.r.t. µ0. Therefore

∫

F
ϕdµ−KL(µ||ν) =

∫

F
ϕdµ−

∫

F
log

[
dµ

dν

]
dµ

=

∫

F
ϕdµ−

∫

F
log

[
dµ0

dν

]
dµ−

∫

F
log

[
dµ

dµ0

]
dµ

= log
[∫

F
eϕdν

]
−KL(µ||µ0).

The Lemma then follows from non-negativity of the Kullback-Leibler divergence,
applied to KL(µ||µ0).

11Here, dµ/dν is the Radon-Nikodym derivative (a.k.a. relative density). If the measures
are given by probability densities pµ and pν , then dµ/dν is the ratio of the two densities so
that KL(µ||ν) =

∫
pµ(x)

[
log pµ(x)− log pν(x)

]
dx.

12The fact that equality can be attained turns Lemma 1.39 into a useful variational principle
that runs under the name Gibbs variational principle in thermodynamics.

CHAPTER 1. LEARNING THEORY 64

This Lemma can now be used to derive a template for proving PAC-Bayesian
bounds:

Proposition 1.40 (Template for PAC-Bayesian bounds). Let ν be a probability
measure on F , and φ : F × (X ×Y)n → R. With probability at least 1− δ w.r.t.
repeated sampling of S ∈ (X×Y)n, distributed according to a probability measure
Pn, we have that for all probability measures µ on F :

Eh∼µ
[
φ(h, S)

]
≤ 1

n

(
KL(µ||ν) + log(1/δ) + logEh∼νES′∼Pn

[
enφ(h,S′)

])
.

Proof. Applying Lemma 1.39 to ϕ(h) := nφ(h, S) gives

Eh∼µ
[
φ(h, S)

]
≤ 1

n

(
KL(µ||ν) + logEh∼ν

[
enφ(h,S)

])
. (1.125)

From Markov’s inequality we know that with probability at least 1 − δ w.r.t.
repeated sampling of S according to Pn, we have

Eh∼ν
[
enφ(h,S)

]
≤ 1

δ
ES′∼PnEh∼ν

[
enφ(h,S′)

]
.

Using that ν does not depend on the sample S′ we can interchange the expecta-
tion values and insert the inequality into Eq.(1.125) to complete the proof.

It is essential that ν is independent of S, whereas µ is allowed to depend
on S. In fact, we will consider µ = µS , the distribution that characterizes the
stochastic learning algorithm. Also note that at this point Pn is not required to
be a product measure.

There are various reasonable choices for the function φ. The most popular
one leads to the bounds in the following theorem in which kl : [0, 1] × [0, 1] →
[0,∞] denotes the binary relative entropy, i.e.,

kl(p||q) := p log
p

q
+ (1− p) log

1− p
1− q

,

which is nothing but the relative entropy between the discrete probability dis-
tributions (p, 1− p) and (q, 1− q).

Theorem 1.29: PAC-Bayesian bounds

Let ν be a probability measure on F , δ ∈ (0, 1), and R a risk function with
values in [0, 1]. With probability at least 1 − δ w.r.t. repeated sampling
of S ∈ (X × Y)n, distributed according to a product probability measure

CHAPTER 1. LEARNING THEORY 65

Pn, the following inequalities hold for all probability measures µ on F :

kl
(
R̂S(µ)||R(µ)

)
≤ K

n
, (1.126)

∣∣R̂S(µ)−R(µ)
∣∣ ≤

√
K
2n
, (1.127)

∣∣R̂S(µ)−R(µ)
∣∣ ≤

√
2R̂S(µ)

(
1− R̂S(µ)

)
K

n
+
K
n
, (1.128)

where K := KL(µ||ν) + log(2
√
n/δ).

Proof. (sketch) In order to derive Eq.(1.126), we use Prop.1.40 with φ(h, S) :=
kl
(
R̂S(h)||R(h)

)
. The l.h.s. of the resulting inequality can be bounded by

Eh∼µ
[
kl
(
R̂S(h)||R(h)

)]
≥ kl

(
R̂S(µ)||R(µ)

)
using joint convexity of the relative

entropy. On the r.h.s. we have to estimate ES′∼Pn
[

expn kl
(
R̂S′ ||R(h)

)]
for

which the sharp13 upper bound 2
√
n has been shown by Maurer. Eq.(1.127)

follows from Eq.(1.126) via Pinsker’s inequality, which states that kl(p, q) ≥
2|p− q|2. Similarly, Eq.(1.128) follows from Eq.(1.126) via the estimate

|p− q| ≤
√

2p(1− p)kl(p||q) + kl(p||q).

Since the theorem holds uniformly over all probability measures µ, we may as
well allow the measure to depend on S and set µ = µS with µS characterizing
a stochastic learning algorithm.

As it is clear from the proof, Eq.(1.126) is the strongest among the three
stated inequalities. The main purpose of Eq.(1.127) is to display a familiar form
and the main purpose of Eq.(1.128) is to show that the original inequality has a
better n-dependence in the regime of extremal empirical error. The additional
logarithmic dependence on n turns out to be unnecessary since it can be shown,
using generic chaining techniques, that for some constant C

R(µ)− R̂S(µ) ≤ C
√
KL(µ||ν) + log(2/δ)

n
.

The role of ν is the one of a ‘free parameter’ in the bound, which has to
be chosen independent of S. It is often called a prior distribution although it
need not reflect our knowledge or believe about the distribution—any ν will
lead to a valid bound. Consider the simple case of a countable set F and a
deterministic algorithm leading to a hypothesis h. If ν assigns a probability
p(h) to the hypotheses, then KL(µ||ν) = log

(
1/p(h)

)
. Hence, we essentially

recover Thm.1.5.
So which prior ν should we choose? A smaller relative entropy term means

a better bound. We cannot make KL(µS ||ν) vanish though since ν must not
13Maurer also showed that

√
n is a lower bound.

CHAPTER 1. LEARNING THEORY 66

depend on S precluding ν = µS . However, ν is allowed to depend on n as
well as on the distribution P from which the training data is drawn. Although
P is unknown, we may obtain insightful bounds and/or be able to bound the
resulting term in a P -independent way. In light of this, it seems reasonable to
choose ν so that KL(µS ||ν) is minimized in expectation:

Lemma 1.41 (Optimal prior distribution). For any (not necessarily product)
distribution of S we obtain

argminνES
[
KL(µS ||ν)

]
= ES [µS], (1.129)

if the minimum is taken over all probability measures ν.

Proof. This follows from considering the difference

ES

[
KL(µS ||ν)

]
−KL

(
ES [µS]||ν

)
= H

(
ES [µS]

)
−ES

[
H(µS)

]
.

Whatever the r.h.s. is14, the crucial point is that this difference is independent
of ν. Hence, the measure ν that minimizes KL

(
ES [µS]||ν

)
must also minimize

ES

[
KL(µS ||ν)

]
. From the properties of the relative entropy we know, however,

that the former is minimized (to zero) for ν = ES [µS].

If we insert the optimal prior into the expected relative entropy, we obtain the
mutual information between the samples S and the hypotheses h. In general, if
two random variables X and Y are governed by a joint distribution PXY whose
marginals are PX and PY , then their mutual information is defined as

I(X : Y) := KL
(
PXY ||PX × PY

)
, (1.130)

i.e., the KL-divergence of PXY from the product of its marginals. The mutual
information quantifies correlations between random variables, it is symmetric in
its arguments, non-negative and zero iff the random variables are independent.

Lemma 1.42. ES
[
KL(µS ||ES′ [µS′])

]
= I(h : S), where S′ denotes an inde-

pendent copy of S.

Proof. The learning algorithm, described by µS , together with the distribution
of S defines a probability distribution on the product space F × (X × Y)n.
Let us denote by p(h, S) a corresponding probability density w.r.t. a suitable
reference measure, by p(h) and p(S) the marginals of p(h, S) and by p(h|S) :=
p(h, S)/p(S) the conditional probability density. Then

ES

[
KL(µS ||ES′ [µS′])

]
=

∫

(X×Y)n
p(S)

(∫

F
p(h|S) log

[
p(h|S)

p(h)

]
dh

)
dS

=

∫ ∫
p(h, S) log

[
p(h, S)

p(h)p(S)

]
dh dS = I(h : S).

14It is the difference of two differential entropies that are defined relative to a suitable
reference measure.

CHAPTER 1. LEARNING THEORY 67

Inserting this observation back into the PAC-Bayesian bound, we obtain the
following:

Theorem 1.30: Mutual Information PAC-bound

Let µS describe a stochastic learning algorithm, δ ∈ (0, 1) and let R be a
risk function with values in [0, 1]. With probability at least 1 − δ w.r.t.
repeated sampling of S ∈ (X × Y)n, distributed according to a product
probability measure Pn, the following holds

kl
(
R̂S(µS)||R(µS)

)
≤ 1

n

(
2I(h : S)

δ
+ log

[
4
√
n

δ

])
. (1.131)

Proof. We have to modify the proofs of Prop.1.40 and Thm.1.29 essentially
only at the step following Eq.(1.125). Using ν = ES [µS] as prior, we can exploit
Lem.1.42 together with Markov’s inequality and upper bound KL(µS ||ν) in
Eq.(1.125) by I(h : S)/δ. In order to take into account that this holds again
only with probability at least 1 − δ, we have to divide δ by two, invoking the
union bound. In this way, Eq.(1.131) is obtain analogous to Eq.(1.126).

In the same way as in the proof of Thm.1.29, we could derive variants of this
bound, which we omit, though. Although Thm.1.30 is not directly applicable,
as the mutual information depends on the unknown distribution of S, it has a
remarkable interpretation: it guarantees good generalization if the correlation
between hypotheses and training data is small. In other words, if the learning
algorithm manages to achieve small empirical risk without having learned too
much about the actual sample S, it will also perform well on unseen data. A
similar mutual information bound can also be derived for the expected general-
ization error:

Theorem 1.31: Mutual Information vs. expected generalization

Consider a stochastic learning algorithm, described by µS , a risk function
with values in [0, 1], and training data sets S drawn from a distribution
over n independent elements. Then

∣∣∣ES
[
R̂S(µS)−R(µS)

]∣∣∣ ≤
√
I(h : S)

2n
.

Proof. By definition, we can express the mutual information I(h : S) in terms
of the KL-divergence of the joint distribution from the product of its marginals.
The KL-divergence, in turn, can be lower bounded using the Fenchel-Young
inequality from Lem.1.39. With ϕ(h, S) := λR̂S(h) for λ ∈ R we obtain

I(h : S) ≥ λE
[
R̂S(h)

]
− log Ē

[
eλR̂S(h)

]

≥ λE
[
R̂S(h)

]
− λ2

8n
− λĒ

[
R(h)

]
, (1.132)

CHAPTER 1. LEARNING THEORY 68

where E = ESEh denotes the expectation w.r.t. the joint distribution of h and
S, while Ē denotes the expectation w.r.t. the product of their marginals. The
second step in Eq.(1.132) follows from an application of Hoeffding’s Lemma,
which together with the independence of the n elements in S implies

Ē

[
eλ
(
R̂S(h)−Ē[R(h)]

)]
≤ exp

λ2

8n
.

The statement in the Lemma is then obtained by taking the maximum over λ
in Eq.(1.132) and noting that Ē[R(h)] = E[R(h)].

An important property of the mutual information, which it inherits from
the relative entropy, is the data processing inequality: in general, if A,B,C are
random variables that form a Markov chain A − B − C (i.e., A depends on
C only via B), then I(A : C) ≤ I(A : B). Applied to the present context, if
h−B−S is a Markov chain that describes for instance preprocessing of the data
or postprocessing of the hypotheses, then I(h : S) ≤ min{I(h : B), I(B : S)}.

Let us return to the more general PAC-Bayesian framework. Lem.1.41 de-
rives the optimal prior ν for a fixed stochastic learning algorithm (‘posterior’)
µS . What about the converse? What is the optimal choice for µS if ν is given?
One possibility to interpret and address this question is to consider the expected
weighted sum of empirical risk and relative entropy

ES

[
R̂S(µS) +

1

β
KL(µS ||ν)

]
(1.133)

and ask for a µS that minimizes this expression. Here, β > 0 is a parameter
that balances empirical risk minimization and generalization (where the latter is
estimated by the relative entropy with prior ν, motivated by the PAC-Bayesian
bounds). The resulting µS is often called the Gibbs posterior and the approach
of sampling hypothesis according to the Gibbs posterior, the Gibbs algorithm.

Proposition 1.43 (Optimal posterior). For given β and ν, Eq.(1.133) is min-
imized for all (not necessarily product) distributions of S if µS is chosen as

dµS
dν

(h) =
e−βR̂S(h)

Eh′∼ν
[
e−βR̂S(h′)

] .

Proof. This is an immediate consequence of the Fenchel-Young inequality for the
relative entropy. Applying Lem.1.39 and setting ϕ(h) = −βR̂S(h) we obtain

ES

[
R̂S(µS) +

1

β
KL(µS ||ν)

]
≥ ES

[
Eh∼µS

[
R̂S(h) +

1

β
ϕ(h)

]
− 1

β
log

∫
eϕdν

]

= − 1

β
ES

[
log

∫
e−βR̂Sdν

]
.

Since this lower bound does not longer depend on µS , we can exploit the con-
ditions for equality in Lem.1.39 and arrive at the stated result.

CHAPTER 1. LEARNING THEORY 69

Note that the Gibbs algorithm can be regarded as a stochastic version of
empirical risk minimization, to which it converges in the limit β →∞.

Now it is tempting to combine the optimal posterior in Prop.1.43 with the
optimal prior from Lem.1.41 or even to see-saw these optimizations. Unfortu-
nately, the optimal prior turns out to be difficult to combine with the Gibbs
posterior. The analysis becomes feasible, however, for the following pair of pos-
terior and prior distribution, which is motivated by the above discussion. We
define µS and ν in terms of probability densities pS and q w.r.t. the same
suitable reference measure15 as

pS(h) :=
e−βR̂S(h)

Zp
, q(h) :=

e−βR(h)

Zq
, (1.134)

where Zp and Zq are normalization factors, defined by their purpose to let pS
and q become probability densities.

Theorem 1.32: Generalization bounds for Gibbs algorithms

Let µS and ν be given by Eq.(1.134) for some β > 0, and δ ∈ (0, 1). With
probability at least 1− δ w.r.t. repeated sampling of S ∈ (X × Y)n from
an i.i.d. distribution, the following two inequalities hold simultaneously

kl
(
R̂S(µS)

)
||R(µS

)
≤ 1

n

(
KL(µS ||ν) + log

[
2
√
n/δ
])
, (1.135)

KL
(
µS ||ν

)
≤ β2

2n
+ β

√
2

n
log

2
√
n

δ
. (1.136)

Moreover, I(h : S) ≤ min
{
β, β2/(2n)

}
, and

0 ≤ ES
[
R(µS)− R̂S(µS)

]
≤ β

2n
. (1.137)

Proof. The first inequality is just Eq.(1.126). In order to arrive at the second
inequality, observe that

KL
(
µS ||ν

)
= Eh∼µS log

Zq e
−βR̂S(h)

Zp e−βR(h)

= β Eh∼µS
[
R(h)− R̂S(h)

]
− log

Zp
Zq

= β Eh∼µS
[
R(h)− R̂S(h)

]
− log

∫
q(h) eβ

(
R(h)−R̂S(h)

)
dh

≤ β
(
Eh∼µS −Eh∼ν

)[
R(h)− R̂S(h)

]
, (1.138)

where we used Z−1
q = q(h)eβR(h) in the third line and concavity of the log in the

last line. Eq.(1.138) implies that an upper bound on KL
(
µS ||ν

)
can be derived

15Since we are interested in their relative entropy, the reference measure will drop out in
the end.

CHAPTER 1. LEARNING THEORY 70

by upper and lower bounding the expectation of R(h) − R̂S(h) w.r.t. µS and
ν, respectively. Both bounds can be obtained from Eq.(1.127) when applied to
µ = µS and µ = ν, respectively. Inserting these bounds into Eq.(1.138) we get

KL
(
µS ||ν

)
≤ β√

2n

(√
KL

(
µS ||ν

)
+ log

(
2
√
n/δ
)

+
√

log
(
2
√
n/δ
))

.

The largest value ofKL
(
µS ||ν

)
that is consistent with this inequality is obtained

by assuming equality and solving the resulting quadratic equation. This leads
to Eq.(1.136).

In order to obtain the claimed bound on the mutual information, we use that
combining Lem.1.41 with Lem.1.42 leads to I(h : S) ≤ ES

[
KL(µS ||ν)

]
. This

holds for an arbitrary probability measure ν and if we choose ν as assumed in
the statement of the theorem, we can further bound KL(µS ||ν) via Eq.(1.138).
In this way, we obtain

I(h : S) ≤ β ES
[
R(µS)− R̂S(µS)

]
. (1.139)

Note that the expectation values w.r.t. ν disappeared, due to ES . From
Eq.(1.139) we can obtain the stated bound on the mutual information by, on
the one hand, upper bounding the r.h.s. by β, and on the other hand, upper
bounding it using Thm.1.31 and solving the resulting quadratic equation. The
latter then leads to I(h : S) ≤ β2/(2n). Reinserting this into Thm.1.31 finally
leads to Eq.(1.137).

1.14 Ensemble methods
Ensemble methods are meta-algorithms that combine several machine learning
algorithms or predictors to form a more powerful one. A famous example for
the success of ensemble methods is the winner of the $1M Netflix prize in 2009,
which substantially improved Netflix’ recommender system. All the top sub-
missions in that competition were combinations of combinations of ... hundreds
of predictors. The name of one of the two teams that performed best was “The
Ensemble”.

The common idea behind all ensemble methods is to train many learning
algorithms, so-called base learners on (parts of) the training data and eventually
combine them, for instance by averaging the resulting hypotheses or, in the case
of classification, by combining them by means of a majority vote. The base
learners are often chosen to be relatively simple objects. Their training can
be done either in parallel or sequentially. This distinction can be seen as a
first coarse classification of ensemble methods. Parallel schemes usually use
different (possibly overlapping) subsets of the training data for the different
base learners. This reduces dependencies between the resulting hypotheses so
that averaging them has the tendency of reducing the variance and increasing
stability. Sequential schemes, on the other hand, usually use the entire training

CHAPTER 1. LEARNING THEORY 71

data set for every base learner and the training of each of them is adapted to
the performance of its precursors. This usually increases the expressivity of the
hypotheses class and decreases the bias but also the stability of the resulting
learning algorithm.

We will briefly discuss Bagging as a paradigm for a parallel ensemble scheme
and consider AdaBoost as well as the more general gradient boosting framework
as examples for sequential ensemble schemes.

Bagging

Bagging stands for Bootstrap AGGregatING, which already points out the two
main ingredients of the scheme: ‘bootstrapping’ of the training data for the
training of base learners that are eventually ‘aggregated’. Bootstrap sampling
is a simple resampling technique that produces a data set B by sampling with
replacement from the training data set S. Often B is chosen to be of the same
size as S. So if |S| = |B| = n and each element in S is chosen with probability
1/n, then the probability for a data point z ∈ S to be not contained in B
is (1 − 1/n)n ' 1/e ' 0.37. The idea is now to produce many such bootstrap
samples from S and to run a learning algorithm that yields a hypothesis hB ∈ F
upon input of any such B. In the end, the resulting hypotheses are combined.
In the case of regression, we may just take the average. To get an intuition
for the performance of the resulting hypothesis, which is then an element of
span[F] ⊆ YX , define H := EB [hB] the expected hypothesis obtained in this
way, where the expectation value is taken w.r.t. the bootstrap samples B.

Theorem 1.33: L2-risk for averaged hypotheses

Consider B as a random variable to which a hypothesis hB : X → Y = R is
assigned. Define H := EB [hB] and Var[hB(x)] := EB

[(
hB(x)−H(x)

)2].
The L2-risk R (a.k.a. mean squared error) then satisfies

R(H) = EB

[
R(hB)

]
−EX

[
Var[hB(X)]

]
. (1.140)

Proof. We can express the difference between the average risk and the risk of
the average as

EB

[
R(hB)

]
−R(H) = EBEX

[(
hB(X)− r(X)

)2]−EX
[(
H(X)− r(X)

)2]

= EX

[
EB

[(
hB(X)

)2]−H(X)2
]

= EX

[
Var[hB(X)]

]
,

where the first equality exploited the representation of the L2-risk in terms of
the regression function r from Thm.1.1.

Hence, if the base hypotheses hB vary significantly with B, i.e.Var[hB(x)] tends
to be large, for instance if the underlying learning algorithm is not very stable,

CHAPTER 1. LEARNING THEORY 72

then we can expect that averaging improves the performance—compared to
the average performance of the base learners. On the other hand, if (possibly
due to a large overlap in the chosen data samples and stability of the chosen
algorithm), the base hypotheses all perform very similarly, then Bagging is not
of much help. Consequently, in practice, Bagging is typically used for classes
of base learners that tend to be not very stable. Decision trees are a typical
example where Bagging, or variants thereof, improve results significantly.

AdaBoost

One of the most popular ensemble methods for binary classification is AdaBoost
(short for Adaptive Boost ing). The basis of AdaBoost is a fixed hypotheses
class F ⊆ {−1, 1}X whose elements we call base hypotheses. AdaBoost is a
sequential, iterative method that when stopped after the T ’th iteration returns
a hypothesis of the form

f := sgn

(
T∑

t=1

wtht

)
, wt ∈ R, ht ∈ F . (1.141)

That is, f is constructed so that its prediction is a weighted majority vote of
the predictions of T base hypotheses. Note that typically f 6∈ F , unless F
is incidentally closed under such operations. In every iteration of AdaBoost
an ERM-type algorithm for F is called as a subroutine, which returns one
of the ht’s. The key idea is that the empirical risk that is minimized within
this subroutine assigns different weights to the training data instances. The
algorithm puts more weight on those instances that appear to be hard in the
sense that they were misclassified by the previous ht’s. Suppose the training data
S consists of n pairs (xi, yi) ∈ X × {−1, 1}. Let p(t) be a yet-to-be-constructed
probability distribution over S that is used in the t’th iteration. Define by

εt :=

n∑

i=1

p
(t)
i 1ht(xi)6=yi (1.142)

the p(t)-weighted empirical risk of ht, i.e., the error probability of ht on S when
the entries in S are weighted according to p(t). Given p(t), the hypothesis
ht is ideally chosen so that it minimizes this weighted empirical risk. We will,
however, treat the selection of ht as a black box and do not require that ht really
minimizes the weighted risk. εt is simply defined as in Eq.(1.142), whether this
is optimal or not. From here define

wt :=
1

2
ln

(
1− εt
εt

)
. (1.143)

The details of this choice will become clear later. For now, observe that wt
increases with decreasing εt and that wt ≥ 0 whenever εt ≤ 1

2 , i.e., whenever
the hypothesis ht performs at least as good as random guessing. The update

CHAPTER 1. LEARNING THEORY 73

Figure 1.5: Schematic graphical depiction of four iterations of AdaBoost where
the base hypotheses correspond to half-spaces. (1): In the beginning all data
points are treated equally and obtain the same weight. A half space is chosen
that minimizes the standard empirical risk. (2)-(4): In the following iterations
the relative weight of the data points (depicted by their size) is changed depend-
ing on whether or not they were classified correctly by the previous hypothesis.

rule for the probability distribution then reads

p
(t+1)
i :=

p
(t)
i

Zt
×

{
e−wt if ht(xi) = yi

ewt if ht(xi) 6= yi

= p
(t)
i e−wtyiht(xi)/Zt,

where Zt is a normalization factor chosen so that
∑n
i=1 p

(t+1)
i = 1. Note that

the step from p(t) to p(t+1) aims at increasing the weight that corresponds to
(xi, yi) if xi has been misclassified by ht (in case ht performs better than random
guessing).

Upon input of the training data S, AdaBoost starts with a uniform distri-
bution p(1) and iterates the above procedure, where in each iteration εt, wt, ht
and p(t+1) are computed. The number T of iterations is a free parameter that
essentially allows balancing between the estimation error and the approximation
error. If the class F of base hypotheses is simple, then small T may lead to a
large approximation error, whereas choosing T very large makes it more likely
that overly complex hypotheses are returned.

CHAPTER 1. LEARNING THEORY 74

The following theorem shows that the empirical risk can decrease rapidly
with increasing T :

Theorem 1.34: Empirical risk bound for AdaBoost

Let f be the hypothesis that is returned after T iterations of AdaBoost
that led to intermediate weighted empirical risks ε ∈ [0, 1]T . Then the
error probability of f on the training data set is bounded by

R̂(f) ≤
T∏

t=1

2
√
εt(1− εt). (1.144)

With γ := min{|1/2−εt|}Tt=1 this implies in particular R̂(f) ≤ exp[−2γ2T].

Proof. Define F :=
∑T
t=1 wtht and observe that with p(1)

i = 1/n we can write

p
(T+1)
i = p

(1)
i ×

e−w1yih1(xi)

Z1
× · · · × e−wT yihT (xi)

ZT

=
e−yiF (xi)

n
∏T
t=1 Zt

. (1.145)

If f(xi) 6= yi, then yiF (xi) ≤ 0, which implies e−yiF (xi) ≥ 1. Therefore,

R̂(f) =
1

n

n∑

i=1

1f(xi) 6=yi ≤
1

n

n∑

i=1

e−yiF (xi) =

T∏

t=1

Zt, (1.146)

where the last step uses Eq.(1.145) together with the fact that the p(T+1)
i ’s sum

up to 1. Next, we write the normalization factors Zt in a more suitable form:

Zt =

n∑

i=1

p
(t)
i e−wtyiht(xi) =

∑

i:ht(xi)6=yi

p
(t)
i ewt +

∑

i:ht(xi)=yi

p
(t)
i e−wt

= εte
wt + (1− εt)e−wt = 2

√
εt(1− εt), (1.147)

where we have inserted wt from Eq.(1.143). This completes the proof of Eq.(1.144).
In order to arrive at the second claim of the theorem, we use that 1− x ≤ e−x

holds for all x ∈ R, which allows us to bound

2
√
εt(1− εt) =

√
1− 4(εt − 1/2)2 ≤ exp

[
− 2(εt − 1/2)2

]
.

The proof reveals two more things about AdaBoost. First, we can under-
stand the particular choice of the wt’s. Looking at Eq.(1.147) one is tempted
to choose them so that they minimize the expression εtewt + (1− εt)e−wt and,

CHAPTER 1. LEARNING THEORY 75

indeed, this is exactly what the choice in Eq.(1.143) does. Second, notice that
after inserting all expressions we obtain

∑

i:ht(xi)=yi

p
(t+1)
i =

∑

i:ht(xi)=yi

p
(t)
i

Zt
e−wt = (1− εt)

e−wt

Zt
=

1

2
.

This means that in every iteration the new probability distribution p(t+1) is
chosen so that the correctly classified instances all together get total weight one
half (and so do the misclassified ones). Hence, p(t+1) can be computed from p(t)

by a simple rescaling of the probabilities of these two sets.
Thm.1.34 shows that if we manage to keep the error probabilities εt a con-

stant γ away from 1/2 (the performance of flipping a coin), the empirical risk
will decrease exponentially in the number T of iterations. More precisely, it is
upper bounded by a decreasing exponential—it does in fact not have to decrease
monotonically itself.

Gradient boosting

At first glance, AdaBoost may seem somewhat mysterious. One way that might
shed some light on the mystery is to view AdaBoost as part of a larger family of
sequential ensemble methods that run under the name gradient boosting. The
basic idea behind those methods is to sequentially build up a linear combination
of base hypotheses by following gradient descent steps in function space. Here,
the function whose gradient is considered is the empirical risk (or a suitable
smooth and/or convex upper bound to it). In this way, the performance on the
training data is improved step-by-step.

In order to formalize this idea, let us fix a class F ⊆ RX of base hypotheses
and define a positive, symmetric bilinear form 〈f, g〉µ := 1

n

∑n
i=1 f(xi)g(xi) for

f, g ∈ span[F]. Here, µ indicates the ‘empirical measure’ that is determined by
the points x1, . . . , xn appearing in the training data. When restricted to the
latter, we can now regard every element of span[F] as an element of the inner
product space L2(µ), which in turn can be identified with Rn via f(xi) =: fi.
In this way, we can also regard the empirical risk as a function R̂ : L2(µ)→ R.
Starting from a base hypothesis h, it is in the light of empirical risk minimization
now tempting to continue with an improved hypothesis of the form

h− α∇R̂(h), (1.148)

i.e., to move with a suitably chosen step-size α > 0 in the direction of steepest
descent w.r.t. R̂. This direction is given by the negative gradient of R̂. If the
step in Eq.(1.148) can be made to work, it can be iterated yielding a sequen-
tially growing linear combination of hypotheses with decreasing empirical risk.
Assuming that the loss function is differentiable in its second argument we can
express the i-th component of the gradient as

(
∇R̂(h)

)
i

= ∂2L
(
yi, h(xi)

)
. (1.149)

CHAPTER 1. LEARNING THEORY 76

Before continuing with the general discussion, let us look at an instructive
example and consider the quadratic loss L(y, y′) := (y − y′)2/2 for which
∇R̂(h)i = h(xi) − yi. Inserting this with α = 1 into Eq.(1.148) exhibits some
closely related issues that have to be resolved before the underlying idea can
work: (i) already after the first step the resulting hypothesis h − ∇R̂(h) has
zero empirical risk, suggesting that the method is prone to overfitting; (ii) as
an element of L2(µ) the gradient is only defined for x ∈ {x1, . . . , xn}; (iii) there
is no general reason for the gradient to be realizable within F .

For these reasons, instead of choosing the gradient itself, one uses an approx-
imation of the gradient within F . This can be done for instance by choosing a
g ∈ F that maximizes the overlap with the negative gradient in the sense that
ideally

g := argmaxf∈F
−〈∇R̂(ht), f〉µ√

〈f, f〉µ
. (1.150)

From now on assume that F ⊆ {−1, 1}X , which implies that 〈f, f〉µ = 1 for
any f ∈ F . Moreover, we restrict the discussion to loss functions of the form
L(y, y′) := φ(yy′) with φ : R → R decreasing and differentiable (or convex in
which case a subderivative can be used instead of the derivative). Common
examples are φ(z) = e−z, giving rise to the exponential loss, φ(z) = max{1 −
z, 0}, leading to the hinge loss, or φ(z) = log2(1 + e−z) yielding the logit loss.
Note that these are all convex upper bounds on the 0-1-loss function in the sense
that φ(yz) ≥ 1y 6=sgn[z] for all z ∈ R and y ∈ {−1, 1}.

Expressing the overlap with the gradient, which appears in Eq.(1.150), in
terms of φ gives

〈∇R̂(ht), f〉µ =
1

n

n∑

i=1

f(xi)yiφ
′(yih(xi)

)

=
1

n

n∑

i=1

φ′
(
yih(xi)

)(
1− 21f(xi)6=yi

)
.

Therefore, the maximizers of Eq.(1.150) are the minimizers of a weighted em-
pirical risk function of the form

ε :=

n∑

i=1

pi1f(xi)6=yi , with pi :=
φ′(yih(xi))∑n
j=1 φ

′(yjh(xj))
.

Once a function g ∈ F that (ideally) minimizes this expression is chosen, it
remains to determine the step size α. A natural way to do this is via ‘line
search’, i.e., by minimizing R̂(h + αg) w.r.t. α. For the exponential loss this
minimization can be done analytically and, after few elementary steps, leads
precisely to the expression found in AdaBoost, namely

α =
1

2
ln

1− ε
ε

.

CHAPTER 1. LEARNING THEORY 77

Generalization bounds

In order to get a theoretical bound on the risk of ensemble methods like Ad-
aBoost, i.e., on the performance beyond the training data, we first look at the
VC-dimension:

Theorem 1.35: VC-dimension of linearly combined classifiers

Let d be the VC-dimension of F ⊆ {−1, 1}X and for T ∈ N define FT :=

{f = sgn
∑T
t=1 wtht | wt ∈ R, ht ∈ F}. Then the growth function Γ of

FT satisfies

Γ(n) ≤
(en
T

)T (en
d

)Td
and (1.151)

VCdim(FT) ≤ 2T (d+ 1) log2

(
2eT (d+ 1)

)
. (1.152)

Proof. In order to bound the growth function we regard FT = G ◦ H as a
composition of two function classes

G :=
{
g : RT → {−1, 1}

∣∣ g(z) = sgn

T∑

i=1

wizi, wi ∈ R
}
,

H :=
{
h : X → R

T
∣∣ h(x) =

(
h1(x), . . . , hT (x)

)
, ht ∈ F

}
.

Following Lemma 1.4 we have Γ(n) ≤ ΓG(n)ΓH(n) where ΓG and ΓH denote
the growth functions of G and H, respectively. Since the VC-dimension of G is
equal to T by Thm.1.9, we can apply Thm.1.8 and obtain ΓG(n) ≤ (en/T)T .
The product structure of H implies that ΓH(n) = ΓF (n)T where ΓF denotes
the growth function of F . The latter can by Thm.1.8 be bounded in terms of
the VC-dimension so that ΓF (n) ≤ (en/d)d. Collecting the terms this finally
leads to Eq.(1.151).

In order to arrive at a bound for the VC-dimension, note thatD ≥ VCdim(FT)
if 2D > Γ(D). Inserting the upper bound on the growth function from Eq.(1.151)
this is implied by

D > T (d+ 1) log2(eD)− T log2 T − dT log2 d.

Straight forward calculation shows that this is satisfied if we choose D equal to
the r.h.s. of Eq.(1.152).

Comparing the scaling of this bound for the VC-dimension with the one of the
empirical risk in Thm.1.34 is somewhat promising: while the VC-dimension
grows not much faster than linearly with T , the empirical risk ideally decreases
exponentially. In practice, AdaBoost has been observed to be remarkably resis-
tant against overfitting as long as the data is not too noisy.

Finally, we discuss a different class of bounds, variants of which are often used
for over-parameterized or parameter-free methods – so-called margin bounds.

CHAPTER 1. LEARNING THEORY 78

These bounds involve an additional parameter that corresponds to a particular
confidence level of the classifier.

For a simple example of such a bound, consider a loss function of the form
L(y, y′) := φ(y · y′), where φ : R→ R is defined as

φ(z) :=

0, z ≥ 0,

1− z
ρ , z ∈ [0, ρ],

1, z ≤ 0,

(1.153)

for some margin ρ ≥ 0. The function φ is an upper bound on the step-function
that corresponds to the 0-1-loss. More specifically, if y ∈ {−1, 1} and h(x) ∈ R,
then

1sgn(h(x)) 6=y ≤ 1h(x)y≤0 ≤ φ
(
h(x)y

)
≤ 1h(x)y≤ρ . (1.154)

If we denote by Rρ(h) the risk of a given hypothesis h w.r.t. this loss function
and by R(h) the risk w.r.t. the 0-1-loss of sgn ◦ h, then the inequality from the
first to the third term in Eq.(1.154) implies that R(h) ≤ Rρ(h). Combining this
with results about Rademacher complexities from Sec.1.8 we get:

Theorem 1.36: Margin-Rademacher bound for binary classifiers

Let F ⊆ RX , ρ ∈ (0,∞), δ ∈ (0, 1]. With probability at least (1− δ) w.r.t.
repeated sampling of an i.i.d. training data set from (X ×{−1, 1})n, every
h ∈ F satisfies

R(h) ≤ R̂ρ(h) +
2

ρ
Rn(F) +

√
ln 1

δ

2n
. (1.155)

Note: The rightmost inequality of Eq.(1.154) implies that R̂ρ(h) can be upper
bounded by the fraction of data points that have either been misclassified or
classified correctly with h(xi)yi ≤ ρ.

Proof. Applying Eq.(1.66) to the case with loss function L(y, y′) := φ(y · y′) we
obtain that with probability at least (1− δ) any h ∈ F satisfies

Rρ(h) ≤ R̂ρ(h) + 2Rn(G) +

√
ln 1

δ

2n
,

where G := {(x, y) 7→ φ(h(x)y) | h ∈ F}. Since |y| = 1 and φ is 1/ρ-Lipschitz,
the properties of the Rademacher complexity stated in Thm.1.16 imply in ad-
dition that Rn(G) ≤ Rn(F)/ρ.

Notes and literature Ensemble methods entered the focus of machine learning around
1990 when Hansen and Salamon [HS90] observed that ensembles of neural networks can
perform better than both, individual and average networks. At the same time, Schapire
[Sch90] investigated the possibility of ‘boosting hypothesis’ from a purely theoretical per-
spective and thereby solved an open problem of Kearns and Vailant [KV89] by showing
that two a priori different notions of learnability (‘weak’ and ‘strong’) coincide. Schapire

CHAPTER 1. LEARNING THEORY 79

showed that in the PAC-learning framework it is possible to boost hypotheses that perform
only slightly better than random guessing to hypotheses that perform well on almost all
data points. This is in particular achieved by the AdaBoost algorithm that was introduced
by Freund and Schapire [FS95, FS97] who received the 2003 Gödel Prize in theoretical com-
puter science for their paper. One of the most widespread applications of a result of an
AdaBoost-type algorithm is the Viola-Jones face detection algorithm [VJ01]. Despite the
existence of better deep-learning algorithms, it is still used a lot due to its remarkable
efficiency.
The gradient descent perspective on boosting algorithms goes back to Friedman [Fri01] and
Mason, Baxter, Bartlett, and Frean [MBBF99]. A related optimization perspective has
been taken in earlier work by Breiman [Bre97]. Margins were first used in the analysis of
kernelized support vector machines [BGV92]. In the context of boosting algorithms margin
bounds were introduced in an effort [SFBL97] of explaining the surprising effectiveness of
AdaBoost. In particular, the observation that the method tends to be unexpectedly robust
against overfitting and that the test error often decreases even after the training error has
reached zero.
Bagging was introduced by Breiman in [Bre96]. One of its most frequently used variants
runs under the name random forests [Bre01], which refers to the fact that the method
is based on random ensembles of decision trees. The latter are prone to overfitting and
unstable behavior—a problem that is to a large extent cured by using a variance-reducing
ensemble method such as Bagging. A real-world application of random forests is for in-
stance the human pose recognition algorithm that is used in Microsoft’s Kinect for the
Xbox [SFC+11].
More details can be found in textbooks on ensemble methods in general [Zho12] or boosting
[SF12] in particular.

Chapter 2

Neural networks

2.1 Information processing in the brain
The human brain contains nearly 1011 neurons, which can be regarded as its
basic information processing units. A typical neuron consist of a cell body, den-
drites, which receive incoming signals from other neurons, and an axon, which
transmits signals to other neurons. While there are typically several dendrites
originating from the cell body and then branching out in the neighborhood of
the neuron, there is only one axon, which may have a local branching in the
neighborhood of the cell body and a second branching at a distance. This can
mean everything from 0.1mm to 2m.

On the macroscopic scale, if we regard the human brain as a whole, we see
it covered with a folded outer layer, which is about 3mm thick (when unfolded),
and called the cerebral cortex . The largest part of the cerebral cortex is also
its evolutionary youngest part and for this reason called the neocortex. This
structure, which is also called the six-layered cortex, is present only in the brain
of mammals and makes up more than 3/4 of the human brain.

If we look at slices of the brain, we see the cerebral cortex as gray matter
clearly separated from the white matter , which it surrounds. White matter
almost exclusively consists of axons that connect more distant parts of the brain.
The axons originate from neurons (mainly so-called pyramidal neurons, named
after their shape), which are part of the gray matter, then leave the gray matter,
traverse parts of the brain in the white matter, which is formed by them, and
then reenter the gray matter and connect to other neurons. In this sense, white
matter is related to (long distance) communication, whereas information storage
and processing happens in the gray matter. The difference in color stems from
the myelin, a fatty white substance which covers the axons in the white matter.
The main purpose of the myelin sheaths is to increase the speed at which signals
travel down the axons. Therefore, only the long distance connections are covered
with myelin.

The gray matter exhibits horizontal as well as vertical substructures. In

80

CHAPTER 2. NEURAL NETWORKS 81

many regions, six horizontal layers can be identified that are distinguished de-
pending on the occurring neuronal cell types and/or the types of connections
with other regions.1 There are also vertical units, called cortical (mini)columns,
which are sometimes regarded as the basic functional units (or elementary pat-
tern recognizers) in the brain. However, this viewpoint is subject of debate.

A typical pyramidal neuron in the neocortex forms a highly connected local
network in the gray matter where it is connected to about 104 of its neigh-
bors that are less then 1mm apart. In addition, via the axon traversing the
white matter, the neuron is connected to a similar number of distant neurons.
There is evidence that connections between different regions of the neocortex
are typically two-way connections in the sense of region-to-region, but usually
not point-to-point.

The neocortex is very homogeneous throughout the brain so that different
functions that are assigned to different areas are not obviously reflected physi-
ologically. The assignment of special functions to specific areas clearly depends
on which parts or sensory inputs the area is connected to.

The signals between neurons are electrical pulses that originate in a change
of the electrical potential of in total about 100mV—the action potential . Such
a pulse takes about 1ms and travels down the axon where it reaches so-called
synapses at the axon’s branches. A synapse connects the axon of one neu-
ron with the dendrite of another neuron. The signal transmission within most
synapses is of chemical nature. The arriving electrical pulse induces a chemical
process inside the synapse, which in turn leads to a change of electrical potential
in the postsynaptic neuron. The time it takes for a signal to pass a chemical
synapse is around 1ms.

In the dendritic part of the postsynaptic neuron all the incoming signals
are integrated. If they lead to a joint stimulus above a certain threshold, they
will cause an action potential and the neuron will fire. This is an all-or-nothing
process and all stimuli above threshold lead to the same pulse with standardized
amplitude and duration. While the outgoing signal in this way can be considered
digital, the integration/accumulation of the incoming signals appears to be more
of analog nature.

The effect of an incoming pulse on the postsynaptical neuron can vary
significantly—over time, in duration and in strength. It may change the po-
tential from milliseconds to minutes and during this period have an excitatory
or an inhibitory effect.2 The variability of the strength of this effect is considered
crucial for purposes of learning and memorization.

A neuron can fire several hundred times per second (while the average firing
rate appears to be closer to 1Hz). A limiting factor to higher rates is the duration
of each pulse and a corresponding refractory period of about 1ms after initiation
of an action potential during which no stimulus can lead to firing. Within about
4ms after this strict refractory period stimuli still have to be stronger than usual

1These layers, however, are very different from the layers we will encounter later on.
2However, connections between pyramidal neurons, which are believed to belong to the

majority of synapses in the cerebral cortex, are exclusively excitatory.

CHAPTER 2. NEURAL NETWORKS 82

to lead to an action potential. This period is called relative refractory period.
Everything said in this section merely describes (in a nutshell) the basic

structure and physiology that is thought to be relevant for information process-
ing in the brain. How memory and learning actually work on the basis of the
described pieces, is much less understood and has to be left aside here.

Let us finally make a rough comparison between the human brain and present
day computers in terms of the basic numbers. The power consumption of the
brain is around 20 Watts and thus about the same as the one of a present day
laptop. Also the estimated number of neurons (1011) is not too far from the
number of transistors, e.g. 1.6·1010 on the Apple M1 chip. Significant differences
lie in the connectivity, the frequency and the related logical depth. A transistor
is only directly connected to a few others, it runs with a clock rate of several
GHz and can be involved in computations of enormous logical depth. A neuron
in comparison is connected to 104 or more others, but operates at frequencies
of only a few hundred Hz, which is a factor of 107 below the computers clock
rates. Since most ‘computations’ in the brain are nevertheless done within a
fraction of a second, they cannot have logical depth significantly beyond 100.

Other noticeable differences between computers and brains are that while
the former work deterministically, use universal clock cycles and are still essen-
tially 2D structures, the latter appear to be of stochastic nature, work without
universal clock cycles and make better use of the third dimension.

Notes and literature The neuron doctrine, i.e. the view that the brain is composed of
separate cellar units—the neurons—goes back to Santiago Ramón y Cajal. Ramón y Cajal
beautifully visualized (see [SNA+17]) individual neurons including their dendrites and
axons using the silver staining technique developed by Camillo Golgi. Together, Ramón y
Cajal and Golgi received the Nobel Prize in Physiology in 1906. 75 years later, the Prize
went to David Hubel and Torsten Wiesel. In addition to deepening our understanding of
the functioning of the brain, their work on the information processing in the visual system
turned out to be a source of inspiration for the development of artificial neural networks.
For more details and insights into neural science see for instance [KSJ+13].

2.2 From artificial neurons to networks
Artifical neurons A simple artificial neuron model that incorporates some
of the properties of biological neurons described in the last section is the Per-
ceptron, introduced by Rosenblatt in 1957. More specifically, the Perceptron
model of a single artificial neuron incorporates (i) several inputs whose effects
are determined by variable weights, (ii) a single output (which may, however,
be copied/fanned out an arbitrary number of times), (iii) integration of input
signals and (iv) an all-or-nothing process with adjustable threshold.

Mathematically, each input is characterized by a real number xi where i =
1, . . . , d runs over the number of inputs. Each of the input lines gets assigned a

CHAPTER 2. NEURAL NETWORKS 83

dendrites cell body axon

output
x1

x2

xd

�
⇣
w0 +

dX

i=1

wixi

⌘w1

w2

wd

Figure 2.1: Schematic depiction of a biological neuron and the corresponding
mathematical model given by a simple Perceptron.

weight wi ∈ R. The mapping from the inputs to the output is then modeled by

x 7→ σ

(
w0 +

d∑

i=1

wixi

)
, (2.1)

where w0 ∈ R plays the role of a threshold value and the activation function
σ : R→ R is, in the case of the Perceptron, given by the step-function σ(z) =
1z≥0. It is sometimes convenient to regard w0 as the weight of a constant input
x0 = 1. We will call the model in Eq.(2.1) a simple Perceptron.

Nowadays, one usually considers generalizations of this model that differ
from the original Perceptron in the choice of the activation function. The main
motivation for choosing a different activation function is to enable gradient de-
scent techniques for learning algorithms. Possible choices of activation functions
are:

• Hyperbolic tangent σ(z) = tanh(z),

• Logistic sigmoid3 σ(z) = 1
1+e−z , which is related to the hyperbolic tangent

via the affine transformation 2σ(2z)− 1 = tanh(z),

• Rectified linear σ(z) = max{0, z}. An artificial neuron described by
Eq.(2.1) with such a rectified linear activation function is called a rec-
tified linear unit (ReLU).

• Modifications of the ReLU that avoid constant pieces, such as the leaky
ReLU with σ(z) = max{αz, z} for some α ∈ (0, 1), the softplus σ(z) =

3“Sigmoidal” just means S-shaped.

CHAPTER 2. NEURAL NETWORKS 84

Figure 2.2: Activation functions. Left: the logistic sigmoid (red) and the hy-
perbolic tangent (blue) can be regarded as smooth variations of step-functions.
Right: softplus (red) and exponential linear function (dashed violet) are mod-
ifications of the rectified linear activation function (blue).

ln(1 + ez), or the exponential linear unit (ELU) with σ(z) = z · 1z≥0 +
(ez − 1) · 1z<0.

Note that the logistic sigmoid function and the hyperbolic tangent are smooth
versions of the step functions 1z≥0 and sgn(z), respectively. In practice, the lo-
gistic sigmoid and tanh, which were used over decades, were essentially replaced
in the 2010’s by rectified linear activation functions and their modifications.

A multivariate function of the form Rd 3 x 7→ σ(w · x) with σ : R → R

is often called a ridge function – especially in the context of approximation
theory. Note that every ridge function is constant on hyperplanes characterized
by w · x = c. In the case of a simple Perceptron with σ(z) = 1z≥0 we have
that the set of points in Rd that are mapped to 1 forms a closed half space.
This relation between simple Perceptrons and half spaces is obviously bijective
and often provides a useful geometric depiction. However, the simplicity of
this geometry also suggests that a simple Perceptron will only be sufficiently
expressive in very few cases. Richer function classes can be obtain from the
model in Eq.(2.1) in at least three a priori different ways:

• By using the function class defined by Eq.(2.1) as base hypotheses for
boosting algorithms as discussed in Sec.1.14.

• By first embedding the data in a larger (typically infinite-dimensional)
space and applying the linear structure of Eq.(2.1) in this larger space.
This is the approach of kernel-based support vector machines, which will
be discussed in chapter 3.

• By combining and composing several artificial neurons to a neural network.

Neural networks Composing several artificial neurons of the type just in-
troduced by making use of the possibility to fan out their outputs we obtain a

CHAPTER 2. NEURAL NETWORKS 85

a) b)

c) d)

Figure 2.3: Graphs that correspond to a) a recurrent neural network (where
the cycles are indicated by loops), b) a feedforward neural network, c) a layered
feedforward neural network and d) a fully connected layered feedforward neural
network.

neural network. This is then described by a weighted directed graph G = (V,E)
where vertices correspond to single neurons or input/output nodes, directions
mark the flow of signals and the weights are the wi’s assigned to every individual
neuron’s inputs. For a weighted directed graph to represent a neural network in
the usual sense, there need to be input and output nodes, which are usually ver-
tices with only outgoing and only incoming edges, respectively. In addition, we
have to assign an individual threshold value w0 to every neuron and choose an
activation function σ. The latter is often chosen equally for all hidden neurons.
The activation function of the output neuron(s) is sometimes chosen differently
or simply omitted. A simple reason for a different choice at the output is to
match the desired range, e.g. R in case of regression or a particular discrete set
in case of classification.

The graph underlying a neural network is called the network’s architecture,
which then neglects the values of weights and thresholds. If the graph is an
acyclic directed graph, meaning it does not contain directed cycles, then the
network is called a feedforward network. Otherwise, it is called a recurrent
network. A particular class of feedforward neural networks are layered (a.k.a.
multilayered) feedforward neural networks. In this case the vertices V =

⋃m
l=0 Vl

are arranged into disjoint layers {Vl}ml=0 so that connections only exist between
neighboring layers, i.e., E ⊆

⋃m−1
l=0 {(u, v)|u ∈ Vl, v ∈ Vl+1}. m is then called

the depth of the network and m − 1 is the number of hidden layers (“hidden”
in the sense of in between input and output). The width of such a network

CHAPTER 2. NEURAL NETWORKS 86

denotes the maximum number of neurons in a single layer, i.e., maxl |Vl| . In
the following we will focus on layered feedforward networks. If there is no further
specification, we will always assume that neighboring layers are fully connected ,
i.e., every element of Vl is connected to every element in Vl+1.

Other models Before analyzing in greater detail layered feedforward neural
networks, let us make one step back and have a quick look at other models that
run (or might run) under the name ‘artificial neural network’ as well. What
all these models have in common is an underlying graph structure with the
vertices of the graph playing the role of ‘artificial neurons’. That is, they are
all graphical models. Probably the biggest distinction is between directed and
undirected graphs.

In models using directed graphs, the neurons can directly be seen as ‘in-
formation processing units’ for which the directions of the edges specify the
directions of the information flow. Mathematically speaking, in this case one
assigns to each neuron a function from a product space corresponding to the
incoming edges to the one of the outgoing edges. In principle, this could be
any function. In practice, however, the traditional structure of this function
is an affine mapping composed with a non-affine and component-wise acting
function σ : R→ R composed with a fan-out. Here the ‘activation function’ σ
is usually fixed so that all the free parameters of the model are contained in the
affine transformations. While in the case of recurrent networks one has to deal
with time series, in the case of feedforward networks the entire network then is
characterized by a single function from the input to the output space. In the
layered case this is thus of the form

R
d 3 x 7→ σm ◦Am ◦ σm−1 ◦ . . . ◦A2 ◦ σ1 ◦A1x,

i.e., an alternation of affine maps A1, . . . , Am, which carry all free parameters,
with fixed activation functions. The latter are often chosen all equal and from
R to R (then applied component-wise), but are not necessarily so. It seems that
this structure is relaxed more and more. Nevertheless, for the largest part of
the analysis, we will consider this ‘traditional’ structure. This also concerns the
use of deterministic functions A and σ rather than the application of stochastic
mappings, which would probably be closer to the biological origin and fall into
the realm of Bayesian networks.

Models based on undirected graphs are of different nature and will not be
discussed beyond this paragraph. The idea in this case is to assign a random
variable to each vertex and to let them ‘interact’ according to the pattern spec-
ified by the graph. This leads to Markov random fields and models that are
well-studied in statistical physics under the names Ising-/Potts model or Spin
glasses. Used as neural networks, where the parameters of the interactions are
to be learned, these models are called Boltzmann machines.

Notes and literature An early simple mathematical model of a neuron was suggested
by McCulloch and Pitts in 1943 [MP43]—following the work of Pitts’ advisor Rashevsky
[Ras38]. The McCulloch-Pitts-cell can be viewed as a special case of a simple Perceptron

CHAPTER 2. NEURAL NETWORKS 87

where signals are restricted to {0, 1} and weights only occur by grouping incoming sig-
nals into inhibitory and excitatory ones. The work of McCulloch and Pitts made clear
that every Boolean function can be computed by a network composed of such cells. The
Perceptron was introduced by Frank Rosenblatt [Ros58, Ros61]. In 1969, Rosenblatt’s
High school mate Minsky together with Papert published the book “Perceptrons” [MP69],
which described capabilities as well as limitations of Perceptrons. Because Minsky was
an influential opponent of the neural network-focused direction of A.I. and advocated an
alternative symbolic approach, the critical discussion of the book is often credited with
contributing to the onset of the first ‘A.I. winter ’. This term describes a period of signif-
icantly reduced interest in of A.I. research in general and neural networks in particular in
the 1970s and early 1980s. During this time, funding for A.I. research was substantially
cut.
As an information-theoretic model of a biological neuron, a simple perceptron seems to
over-idealize in at least two ways: while the assumption of a ‘digital’ output appears
to be well justified overall, the dendritic (input) side of biological neurons is less linear
(cf. [GZF+20]) and more dependent on temporal relations between incoming signals (cf.
[BCH10]) than this simple mathematical model reflects.

2.3 Representation and approximation
A feedforward neural network with d inputs and d′ outputs represents a function
f : Rd → Rd

′
. In this section we address the question, which functions can be

represented (exactly or approximately) by a layered feedforward neural network,
depending on the architecture and on the chosen activation function. We will
start with the discrete case.

Representation of Boolean functions As a warm-up, consider a single
Perceptron with two Boolean inputs. Can it represent basic Boolean functions
like AND, OR, NAND or XOR? The simple but crucial observation for answering
this question is that the function fw : Rd → R in Eq.(2.1) that describes a
Perceptron is, for every choice of the weights w ∈ Rd+1, constant on hyperplanes
that are orthogonal to the vector (w1, . . . , wd). Moreover, due to the special
choice of σ as a step function fw separates half-spaces and by choosing suitable
weights any half-space can be separated from its complement in this way.

If we regard the inputs of AND, OR or NAND as points in R2, then in all
three cases the subsets that are mapped to 0 or 1 can be separated from each
other by a line. Consequently, AND, OR and NAND can be represented by a
single Perceptron. This is already somewhat promising since we know that every
Boolean function can be obtained as a composition of many of such building
blocks. XOR, on the other hand, cannot be represented by a single Perceptron
since in this case the inputs that are mapped to 0 cannot be linearly separated
from the ones mapped to 1. This implies that representing an arbitrary Boolean
function by a feedforward neural network requires at least one hidden layer. The
following theorem shows that a single hidden layer is already sufficient.

Theorem 2.1: Representation of Boolean functions

CHAPTER 2. NEURAL NETWORKS 88

Every Boolean function f : {0, 1}d → {0, 1} can be represented exactly
by a feedforward neural network with a single hidden layer containing at
most 2d neurons, if σ(z) = 1z≥0 is used as activation function.

Proof. If a, b ∈ {0, 1} are Boolean variables, then 2ab− a− b ≤ 0 with equality
iff a = b. With this observation we can write 1x=u = σ

(∑d
i=1 2xiui − xi − ui

)

for x, u ∈ {0, 1}d. Denoting by A := f−1
(
{1}
)
the set of all vectors u for which

f(u) = 1, we can then represent f as

f(x) = σ
(
− 1 +

∑

u∈A
1x=u

)
= σ

(
− 1 +

∑

u∈A
σ
(d∑

i=1

2xiui − xi − ui
))
, (2.2)

which is the sought representation using a single hidden layer with |A| ≤ 2d

neurons.

We will see in Sec.2.4 that the exponential increase of the number of neurons
cannot be avoided.

Binary classification in Rd:
The representation of arbitrary Boolean functions on {0, 1}d in Thm.2.1 can be
viewed as finding a neural network that implements a binary function on Rd
whose values have been predetermined on 2d points. In the case of this theorem,
these points were the corners of a hypercube, i.e. the elements of {0, 1}d. The
following theorem generalizes this result and allows for an arbitrary set of points
with predetermined values.

Theorem 2.2: Binary classification of finite sets in Rd

Let A = {x1, . . . , xN} be a finite subset of Rd and f : A → {−1, 1} arbi-
trary. There is a feedforward neural network that implements a function
F : Rd → {−1, 1} with a single hidden layer containing m ≤ N neurons
and using σ = sgn as activation function so that F |A = f . If the points in
A are in general position (i.e., no hyperplane in Rd contains more than d
of them), then m ≤ 2dN/(2d)e neurons suffice.

Proof. Denote by A+ and A− the subsets of A that are mapped to 1 and −1,
respectively. W.l.o.g. assume that |A+| ≤ |A−| so that |A+| ≤ N/2. For every
x ∈ A+ we can find a hyperplane H := {z ∈ Rd|a · z + b = 0} characterized by
a ∈ Rd and b ∈ R so that A ∩ H = {x}. Due to finiteness of A we can now
find two hyperplanes that are parallel to H, contain H, and thus x in between
them, but none of the other points from A. In other words, we can choose ε 6= 0
appropriately, so that the map z 7→ σ(ε + a · z + b) + σ(ε − a · z − b) takes on
the value 2 for z = x but is zero on A \ {x}. Repeating this for all points in A+

we can finally construct

F (z) := σ

−1 +

∑

x∈A+

σ
(
εx + ax · z + bx

)
+ σ

(
εx − ax · z − bx

)

 , (2.3)

CHAPTER 2. NEURAL NETWORKS 89

Figure 2.4: The subsets of Rd that are classified by a neural network with a
single hidden layer containing m hidden neurons with σ(z) = 1z≥0 are unions of
convex polyhedra that are obtained as intersections of subsets of m half-spaces.
Here m = 7, the hyperplanes that delimit the half spaces are gray lines and the
blue regions exemplify f−1({1}).

so that F |A = f . Then F has the form of a neural network with a single hidden
layer that contains m = 2|A+| ≤ N neurons.

Now assume the points in A are in general position. Then we can in every
(but the last) step of the construction choose the hyperplane H so that it con-
tains d points from A+ and no other point from A. In this way, we reduce the
number of terms essentially by a factor d and we get m ≤ 2dN/(2d)e.

Let us consider binary classification of subsets of Rd via neural networks
from a more geometric point of view. Consider a network with a single hidden
layer with m neurons and σ(z) = 1z≥0 as activation function. As mentioned
before, every individual Perceptron can be characterized by a half-space, say
Hj for the j’th hidden neuron, in such a way that the output of the Perceptron
upon input of x is given by the value of the indicator function 1x∈Hj . In this
way, we can write the function f : Rd → {0, 1} that is implemented by the
network as

f(x) = σ
(
w0 +

m∑

j=1

wj1x∈Hj

)
.

Defining by A := {A ⊆ {1, . . . ,m} |
∑
j∈A wj ≥ −w0} the set of all subsets

of hidden neurons that are capable of activating the output neuron by firing
together, we can write

f−1
(
{1}
)

=
⋃

A∈A

⋂

j∈A
Hj . (2.4)

CHAPTER 2. NEURAL NETWORKS 90

Note that
⋂
j∈AHj is, as an intersection of at most m half spaces, a convex

polyhedron with at most m facets. Hence, the set of points that are mapped to
1 by the network is given by a union of convex polyhedra that are obtained as
intersections of some of m half spaces (see Fig.2.4).

It should be mentioned that this picture can change considerably if the
activation function is changed. As we have just seen, the geometry of binary
classification with m neurons with a step activation function in a single hidden
layer is determined by m hyperplanes. However, if we replace the step function
with a rectified linear function σ(z) := max{0, z}, a much larger number of
hyperplanes can occur. As a consequence, some functions that have a simple
representation when using rectified linear units are difficult to represent using
step activation functions:

Proposition 2.1. A representation of the function f : Rd 7→ {−1, 1}, f(x) :=

sgn
[
− 1 +

∑d
i=1 max{0, xi}

]
in terms of a neural network with a single hidden

layer that contains m neurons and uses σ = sgn exists only if m ≥ 2d − 1.

Remark: clearly, the function can be represented using rectified linear acti-
vation functions in a single hidden layer with only m = d neurons.

Proof. The region f−1({1}) is the union of all half spaces of the form HA :=
{x ∈ Rd|

∑
i∈A xi ≥ 1} where A is any non-empty subset of {1, . . . , d}. Since

there are 2d − 1 such sets, f−1({−1}) could have this number of facets, which
would indeed imply that m ≥ 2d−1 as for σ = sgn the number of hyperplanes is
at most the number of neurons in the hidden layer. So, it remains to show that
none of these half-spaces is redundant in the characterization of f−1({−1}).
This is done by constructing a point x for every nonempty A ⊆ {1, . . . , d} so
that x ∈ HA′ ⇒ A′ = A. A possible choice for such a point is

xi =

{ 1
|A| , i ∈ A
−1 , i 6∈ A

Let us conclude the geometric discussion with a classical theorem that pro-
vides a tight bound on the number of regions into which Rd is cut by n hyper-
planes. For its proof we again use the relation between VC-dimension and ‘cell
counting’ that has led to Thm.1.10, but now in the opposite direction.

Theorem 2.3: Zaslavsky’s theorem

Let h1, . . . , hn ⊆ Rd be hyperplanes. The number N of connected compo-
nents of Rd \

⋃n
i=1 hi then satisfies

N ≤
d∑

i=0

(
n

i

)
≤
(en
d

)d
. (2.5)

CHAPTER 2. NEURAL NETWORKS 91

Remark: the first inequality can be shown to be tight. A generic collection of n
hyperplanes turns out to cut Rd into exactly

∑d
i=0

(
n
i

)
regions.

Proof. (sketch) By translation, we can always ensure that none of the considered
hyperplanes goes through the origin. Under this assumption, every hyperplane
can be characterized by a vector w ∈ Rd via h := {x ∈ Rd|〈x,w〉 = 1}.
Denote by X the set of all these hyperplanes in Rd, and define a set of functions
F ⊆ {−1, 1}X via F := {h 7→ sgn[g(h)] | g ∈ G}, where G := {h 7→ 〈x,w〉 −
1 | x ∈ Rd} with w being the vector characterizing h. Every function in F then
corresponds to a single point in Rd and assigns a value ±1 to a hyperplane,
depending on whether the point lies on one side of the plane or on the other. As
G ' Rd forms a d-dimensional affine space Thm.1.9 implies that V Cdim(F) =
d.

Assume now that a collection A ⊆ X of n hyperplanes separate N regions
in Rd. That is, there are N points in Rd so that for any pair of them, there
is one separating hyperplane among the n considered ones. In other words,
F|A contains at least N different functions and since |A| = n this implies that
N ≤ Γ(n), where Γ denotes the growth function of F . Using Thm.1.8 we
can bound the growth function in terms of the VC-dimension, and thus d, in
precisely the way stated in Eq.(2.5).

Representing real-valued functions on finite sets

Now we move to real-valued functions and first consider the case of finite
domains. The following theorem provides an example of a feedforward neural
network in which the number of parameters required in order to exactly repre-
sent an arbitrary assignment of real numbers to N points in Rd scales linearly
with N . The network that implements the function involves weight sharing—
here in the sense that the weights assigned to the edges between the d inputs and
the neurons of the hidden layer do not depend on the hidden neuron.

Theorem 2.4: Representation with few parameters

Let A = {x1, . . . , xN} be a finite subset of Rd and f : A → R arbitrary.
There is a feedforward neural network that implements a function F :
Rd → R with a single hidden layer containing N neurons and 2N + d
parameters so that F |A = f . The network can be chosen such that it uses
the ReLU activation function σ(x) = max{0, x} in the hidden layer and
the identity as activation function at the output.

Proof. The function F : Rd → R,

F (x) :=

N∑

j=1

aj max{0, w · x− vj}

CHAPTER 2. NEURAL NETWORKS 92

has 2N + d parameters given by w ∈ Rd, a, v ∈ RN and it can be implemented
using a neural network of the specified type. We have to show that there is
always a choice of parameters that solves the set of equations F (xi) = f(xi),
i = 1, . . . , N . Such a solution exists, if the N × N matrix M with entries
Mi,j := max{0, w · xi − vj} is invertible, since we can then simply choose aj :=∑
iM
−1
j,i f(xi). We choose w ∈ Rd so that all zi := w ·xi are distinct. Almost all

w will fulfill this requirement. Assuming in addition that the zi’s are arranged
in increasing order (and otherwise relabeling them accordingly) we can choose
v so that v1 < z1 < v2 < z2 < In this way, M becomes a triangular matrix
with non-vanishing diagonal entries and is thus invertible.

Note: In the construction used in the proof, the d parameters w depend only
weakly on A and f since a random choice will do the job with probability one.
In fact, the same is true for the N parameters v since the matrix M will be
invertible (albeit not triangular) almost surely. Hence, after a random choice of
w, v only the N parameters in a, which are the weights of the output neuron,
have to be fine-tuned to A and f .

Bounded storage capacity Thm.2.4 shows, that the number of data points
that can be ‘memorized’ exactly by a ReLU-based neural network scales at least
linearly with the number of parameters. On the other hand, counting dimen-
sions, one would expect that the number of data points that can be memorized
cannot exceed the number of parameters, either, irrespective of the chosen acti-
vation function and the number of hidden layers. This intuition is made rigorous
by the following theorem. As in the previous theorem, the number of parame-
ters is given by the number of free weights (incl. biases), possibly reduced by
weight sharing.

Theorem 2.5: Maximal storage capacity

Consider a feedforward neural network that depends on M real parame-
ters (weights and biases) and for any given parameter-vector w ∈ RM is
described by a map Rd 3 x 7→ F (x,w) ∈ Rd′ . Assume that (i) all acti-
vation functions are piecewise continuously differentiable with derivatives
that are bounded on bounded domains and (ii) there is a set of inputs
x1, . . . , xN ∈ Rd such that for any y1, . . . , yN ∈ Rd

′
there is a w ∈ RM for

which F (xi, w) = yi ∀i ∈ {1, . . . , N}. Then necessarily

N ≤ M

d′
. (2.6)

Proof. Consider the activation function σ : R→ R at an arbitrary node in the
network. Since it is, by assumption, piecewise C1 with bounded derivatives, we
can extend each ‘piece’ to a C1-function defined on the entire real line and in
this way obtain a countable set of functions {σα ∈ C1(R)}α∈N such that for
any x ∈ R there is an α so that σ(x) = σα(x). In particular,

⋃
α σα(x) ⊇ σ(x)

for any x ∈ Rd. Applying this idea to each of the (finitely many) activation

CHAPTER 2. NEURAL NETWORKS 93

functions in the network, we can lift the argument to the entire network: there
is a countable family of functions Fα ∈ C1(Rd × RM) with the property that
F (x,w) ⊆

⋃
α Fα(x,w).

Assumption (ii) demands that the mapping Φ : RM → Rd
′N , Φ(w) :=(

F (x1, w), . . . , F (xN , w)
)
satisfies Φ(RM) = Rd

′N . Defining similarly Φα(w) :=(
Fα(x1, w), . . . , Fα(xN , w)

)
we can bound

⋃
α Φα(RM) ⊇ Φ(RM).

Now suppose Nd′ > M and let µ be the Nd′-dimensional Lebesgue-measure.
For the next step we use that C1-functions map sets of measure zero (like RM
as a subspace within RNd

′
) to sets of measure zero. Using in addition the fact

that a countable union of such sets still has measure zero we obtain

µ
(
Φ(RM)

)
≤ µ

(⋃

α

Φα(RM)

)
= 0.

Since this contradicts assumption (ii), we have to have Nd′ ≤M .

Approximating real-valued functions We will begin with the one-dimen-
sional case f : R → R and later lift the obtained results to the case of higher
dimensional input and output spaces. Let us denote by Fσ,m the class of func-
tions representable by a feedforward network with a single hidden layer that
contains m neurons, which use σ as activation function. That is,

Fσ,m :=
{
f : R→ R

∣∣ f(x) = f0+

m∑

v=1

avσ(wvx−bv), av, bv, wv, f0 ∈ R
}

(2.7)

and define Fσ :=
⋃
m∈N Fσ,m. Note that there is no activation function (or,

equivalently, just the identity) at the output.
In the case of σ(z) = 1z≥0 every element in Fσ,m is a staircase-function

with at most m steps. Conversely, every staircase function with m steps can be
represented by an element of Fσ,m. This is seen most easily when setting wv = 1
for all v, as these parameters are anyhow redundant in this case. Then the bv
are the locations of the steps and the av’s are their heights. Any function that
can be approximated well by a staircase function therefore can be approximated
well within Fσ. If f ∈ C1

(
[x0,∞)

)
, the approximation within Fσ is, in fact,

closely related to the fundamental theorem of calculus, which can be expressed
as

f(x) = f(x0) +

∫ ∞

x0

f ′(b)σ(x− b) db. (2.8)

So, an approximation in terms of Eq.(2.7) can be regarded as a discretization
of the integral in Eq.(2.8). In the course of this discretization, the derivative f ′,
which governs the local change of the function value, gets replaced by the av’s.

The following approximation theorem uses the insight from the case of the
step-function and generalizes the result to a larger class of ‘sigmoidal’ activation
functions. It is formulated in terms of the modulus of continuity of the function
f to be approximated. This is defined as

ω(f, δ) := sup
x,y:|x−y|≤δ

∣∣f(x)− f(y)
∣∣. (2.9)

CHAPTER 2. NEURAL NETWORKS 94

Note that if f is uniformly continuous, then ω(f, δ) → 0 for δ → 0. Moreover,
if f is L−Lipschitz, then ω(f, δ) ≤ δL.

Theorem 2.6: Approximations using bounded sigmoids

Let σ : R → R be any bounded function that satisfies limz→−∞ σ(z) = 0
and limz→∞ σ(z) = 1. There is a constant c so that for every f ∈ C

(
[0, 1]

)

and every m ∈ N we have

inf
fm∈Fσ,m

||f − fm||∞ ≤ c ω(f, 1/m). (2.10)

Note: From the proof we get that c = 2 + 2||σ||∞ is a valid constant (where
||σ||∞ = supz∈R |σ(z)|). A more careful analysis shows that c = ||σ||∞ suffices.
The assumption that σ is asymptotically either 0 or 1 is convenient for the proof
but not really crucial. The same argument works if the limits limz→±∞ σ(z)
exist inR and differ from each other. Similarly, the domain [0, 1] can be replaced
by any compact subset of R.

Proof. The idea is to first approximate f by a piecewise constant function hm
and then hm by an appropriate fm. Define xi := i/m and hm(x) so that it
takes the value f(xi) in the interval x ∈

[
xi−1, xi

)
where i = 1, . . . ,m. By

construction ||f − hm||∞ ≤ ω(f, 1/m). With j := bmxc write

hm(x) = f(x1) +

j∑

i=1

(
f(xi+1)− f(xi)

)
and define

fm(x) := f(x1)σ(α) +

m−1∑

i=1

(
f(xi+1)− f(xi)

)
σ
(
α(mx− i)

)
, (2.11)

for some α ∈ R to be chosen shortly. Note that fm is of the desired form.
The claim is that fm approximates hm well for large α. To bound the distance
between the two functions, fix any ε > 0 and choose α such that |σ(z)−1z≥0| ≤
ε/m whenever |z| ≥ α. This is possible since σ is assumed to be a sigmoidal
function. Note that, by the choice of α, we get that if i 6∈ {j, j + 1} the term
σ
(
α(mx− i)

)
is ε/m-close to the step function 1i≤bmxc. Consequently, we can

bound

|fm(x)− hm(x)| ≤ ε

m

[
|f(x1)|+ (m− 2)ω(f, 1/m)

]

+
∣∣f(xj+1)− f(xj)

∣∣
∣∣∣1− σ

(
α(mx− j)

)∣∣∣

+
∣∣f(xj+2)− f(xj+1)

∣∣
∣∣∣σ
(
α(mx− j − 1)

)∣∣∣,

where the r.h.s. of the first line can be made arbitrarily small by the choice of ε
and the sum of the last two lines can be bounded by ω(f, 1/m)(1+2||σ||∞).

CHAPTER 2. NEURAL NETWORKS 95

As a consequence, an arbitrary L-Lipschitz function can be approximated
uniformly by a feedforward network with a single hidden layer ofm neurons with
a “sigmoidal” activation function so that the approximation error is O(L/m).

What about non-sigmoidal activation functions? For the special case of the
rectified linear function σ(z) = max{0, z}, there is again an integral equation
that could be discretized: if f ∈ C2

(
[x0,∞)

)
, then Taylor approximation with

remainder (proven by partial integration) leads to

f(x) = f(x0) + f ′(x0)(x− x0) +

∫ ∞

x0

f ′′(b)σ(x− b) db .

Expressing x as x = σ(x) − σ(−x) and approximating the integral by a sum
then again leads to a function in Fσ.

Instead of going through potential activation functions one by one, the fol-
lowing proposition characterizes the class of all continuous activation functions
for which an approximation result similar to that in Thm.2.6 can be obtained.

Proposition 2.2 (Universality of all non-polynomial activation functions). Let
σ ∈ C(R). The set of functions Fσ representable by a neural network with
a single hidden layer and activation function σ is dense in C(R) w.r.t. the
topology of uniform convergence on compacta iff σ is not a polynomial.

Proof. (sketch) Suppose σ is a polynomial of degree k. Since these form a closed
set under linear combinations, Fσ will still only contain polynomials of degree
at most k and thus cannot be dense in C(R).

For the converse direction we will first restrict ourselves to the case σ ∈
C∞(R). It is known (for instance as a non-trivial consequence of Baire’s cate-
gory theorem, cf. [BB96]) that for any non-polynomial σ ∈ C∞(R) there is a
point z such that σ(k)(z) 6= 0 for all k ∈ N. Since x 7→

[
σ(λx + z) − σ(z)

]
/λ

represents a function in Fσ for all λ 6= 0, we get that

d

dλ
σ(λx+ z)

∣∣∣
λ=0

= x σ(1)(z), (2.12)

as a function of x, is contained in the closure of Fσ. Similarly, by taking higher
derivatives, we can argue that x 7→ xkσ(k)(z) is in the closure of Fσ. Since all
derivatives of σ are non-zero at z, all monomials and therefore all polynomials
are contained in the closure of Fσ. As these are dense in C(R), by Weierstrass’
theorem, so is Fσ.

The idea for reducing the case σ ∈ C(R) to the smooth case is to consider
the convolution

σφ(z) :=

∫

R

σ(z − y)φ(y)dy, (2.13)

of a merely continuous activation function σ ∈ C(R) with a smooth and com-
pactly supported function φ. Approximating the Riemann-integral in Eq.(2.13)
by a Riemann-sum shows that σφ can be approximated by a neural network
of the considered type. Moreover, σφ is smooth by construction and non-
polynomial if φ is chosen appropriately. So σφ can effectively be used as ac-
tivation function to which the foregoing result for smooth functions applies.

CHAPTER 2. NEURAL NETWORKS 96

Note that if σ is polynomial, then an increasing number of layers in the
network will lead to polynomials of increasing degree and thus enable better
and better approximations of an arbitrary continuous function. The foregoing
discussion shows that if σ is non-polynomial, then depth of the network can be
traded for width.

It is tempting to ask: which is the smallest width/number of neurons that
is required in order to achieve a given approximation accuracy when arbitrary
activation functions are allowed? The following shows that this question has a
simple but practically useless answer:

Proposition 2.3 (All-powerful activation function). There is a function σ ∈
C∞(R) for which Fσ,1 is dense in the set of continuous functions C(K) on any
compact domain K ⊂ R.

Proof. For simplicity, assume K = [0, 1]. Let Q ⊂ C∞([0, 1]) be the set of
all polynomials with rational coefficients. Since Q is countable, we can write
Q = {qb}b∈Z. The function σ : R → R is now constructed by putting all
the polynomials in Q next to each other and smoothly interpolating between
them. More precisely, for x ∈ [2b, 2b + 1] we define σ(x) := qb(x − 2b) and for
x ∈ (2b+1, 2b+2) we interpolate smoothly between the neighboring polynomials
(e.g. via a convolution with a ‘mollifier’). Since Q is dense in C([0, 1]), for any
f ∈ C([0, 1]) and ε > 0, we can find a qb ∈ Q s.t. ||f − qb||∞ < ε. Expressed in
terms of σ, this means that there is a b ∈ Z for which

sup
x∈[0,1]

∣∣f(x)− σ(x+ b)
∣∣ < ε.

The proof of Prop.2.3 constructs a function whose translates constitute a
dense set of functions when restricted to a fixed compact domain. In fact, there
is a well-known/notorious function that exhibits such a property and that we
could have used instead: the Riemann ζ-function [Vor75].

Approximating functions between Euclidean spaces In order to lift the
one-dimensional results to higher dimensions, we use the following Lemma:

Lemma 2.4 (Approximation by exponentials). Let K ⊆ Rd be compact. Then
E := span{f : K → R | f(x) = exp

∑d
i=1 wixi, wi ∈ R} is dense in

(
C(K), || ·

||∞
)
.

Proof. This is an immediate consequence of the Stone-Weierstrass theorem,
which says that E is dense if (i) E forms an algebra (i.e., it is closed under mul-
tiplication and linear combination), (ii) E contains a non-zero constant function
and (iii) for every distinct pair x, y ∈ K there is an f ∈ E so that f(x) 6= f(y).
Here (i) holds by the property of the exponential and the construction of E as
linear span, (ii) holds since 1 ∈ E and (iii) holds since for w := (x − y) we get
ew·x 6= ew·y.

CHAPTER 2. NEURAL NETWORKS 97

Theorem 2.7: Approximation of multivariate functions

Let d, d′ ∈ N, K ⊆ Rd be compact and σ : R→ R any activation function
that is (i) continuous and non-polynomial or (ii) bounded and so that the
limits limz→±∞ σ(z) exist in R and differ from each other. Then the set
of functions representable by a feedforward neural network with a single
hidden layer of neurons with activation function σ is dense in the space of
continuous functions f : K → Rd

′
in the topology of uniform convergence.

Note: A norm inducing the topology of uniform convergence would be ||f || :=

||
(
||fi||∞

)d′
i=1
||′ where || · ||′ is an arbitrary norm on Rd

′
.

Proof. First note that it suffices to show the result for d′ = 1 by considering the
d′ components in

(
f1(x), . . . , fd′(x)

)
= f(x) separately. If each of the fi’s can

be approximated up to ε using m neurons in the hidden layer, then the same
order of approximation is obtained for f with md′ neurons just by stacking the
d′ hidden layers on top of each other.

In order to prove the statement for the case f : K → R we first approximate
f by exponentials and then the exponentials by linear combinations of activation
functions. According to Lemma 2.4 for every ε > 0 there is a k ∈ N, a set of
vectors v1, . . . , vk ∈ Rd and signs s ∈ {−1, 1}k so that g : Rd → R, g(x) :=∑k
i=1 sie

vi·x satisfies ||f − g||∞ ≤ ε/2.
Define K1 :=

⋃k
i=1{vi · x | x ∈ K} and note that K1 ⊆ R is compact.

Following Thm.2.6 and Prop.2.2 there is an l ∈ N and a set of real numbers
aj , wj , bj so that supy∈K1

∣∣ey −∑l
j=1 ajσ(wjy − bj)

∣∣ ≤ ε/(2k). Combining the
two approximations we obtain

∣∣∣
∣∣∣f −

l∑

j=1

k∑

i=1

siajσ(wj vi · x− bj)
∣∣∣
∣∣∣
∞

≤
∣∣∣
∣∣∣f −

k∑

i=1

sie
vi·x
∣∣∣
∣∣∣
∞

+

k∑

i=1

∣∣∣
∣∣∣ey −

l∑

j=1

ajσ(wjy − bj)
∣∣∣
∣∣∣
∞
≤ ε,

where the sup-norms are understood as supx∈K and supy∈K1
, respectively.

Let us finally make a remark, primarily of historical interest, concerning
the relation of the above discussion to Kolmogorov’s solution of Hilbert’s 13th
problem. Hilbert conjectured that a solution of the general equation of degree
seven cannot be expressed as a finite superposition of continuous functions of two
variables. In 1957 Kolmogorov and his student Arnold disproved this conjecture
by showing that every continuous multivariate function can even be represented
as a finite superposition of continuous functions of only one variable. This
eventually led to the following [Spr65]:

Proposition 2.5 (Kolmogorov’s superposition theorem). For every n ∈ N
there exist functions ϕj ∈ C

(
[0, 1]

)
, j = 0, . . . , 2n and constants λk ∈ R+,

CHAPTER 2. NEURAL NETWORKS 98

k = 1, . . . , n such that for every continuous function f : [0, 1]n → R there exists
φ ∈ C

(
R
)
so that

f(x1, . . . , xn) =

2n∑

j=0

φ

(
n∑

k=1

λkϕj(xk)

)
. (2.14)

This theorem can be extended in various directions. First, one can restrict to
increasing continuous functions ϕj and even show that the set of 2n+ 1 tuples
of such functions that fulfill the proposition is ‘fat’, in the sense of being of
second Baire category. Moreover, one can show that there is a single continuous
function ϕ in terms of which the ϕj ’s can be expressed as ϕj(x) = cϕ(aj+x)+bj
with constants a, b, c.

Kolmogorov’s superposition theorem is sometimes paraphrased by saying
that there is no genuine multi-variate function other then the sum. From the
point of view of neural networks, Eq.(2.14) can be interpreted as a feedforward
network with two hidden layers where the first hidden layer contains n(2n+ 1)
neurons, which use the ϕj ’s as activation functions, the second hidden layer con-
tains 2n + 1 neurons with activation function φ and the output neuron uses a
linear activation function σ(z) = z. Hence, Eq.(2.14) provides an exact represen-
tation using only finitely many neurons, but at the cost of having an activation
function, namely φ, that depends on f .

Replacing φ with the ‘all-powerful activation function’ of Prop.2.3, which is
then used to approximate φ on any compact domain, one readily obtains the
following multivariate version of Prop.2.3:

Corollary 2.6 (Dense function space from fixed architecture). Let n ∈ N and
K ⊆ Rn compact. There is a feedforward neural network with two hidden layers,
width n(2n + 1), and fixed continuous activation functions so that the space of
functions represented by the network is dense in the set of continuous functions
f : K → R in the topology of uniform convergence.

Notes and literature The number of neurons that are required to represent arbitrary
Boolean functions by a neural network with threshold activations was analyzed in detail
in [HH94] and references therein. Results on binary classification of finite sets in Rd such
as Thm.2.2 appeared in [Bau88]. The fact that ReLU-networks can be exponentially more
efficient in representing certain functions compared to threshold-networks, as exemplified
in Prop.2.1, was pointed out in [PS16]. Thm.2.4 appeared in [ZBH+16] and can be seen
as a special case of a more general interpolation result: Pinkus [Pin99] showed for any
non-polynomial continuous activation function, that a single hidden layer with N neurons
is capable of representing any function f : A→ R on a set A of N points (when the iden-
tity function is used as activation at the output). Prop.2.3 and Cor.2.6 can be found (in
a slightly stronger form) in [MP99]. Sets of activation functions that enable fixed-size ar-
chitectures that give rise to a dense set of functions are called ‘superexpressive’ in [Yar21].
There it has been shown that {sin, arcsin} is such a superexpressive pair as well as the
floor function b·c in combination with any real analytic function that is non-polynomial in
some neighborhood. Bounds on the maximal storage capacity, as expressed in Thm.2.5,

CHAPTER 2. NEURAL NETWORKS 99

can be found in [EPM96, NMM08]. The assumption in Thm.2.5 can be relaxed to lo-
cally Lipschitz activation functions [Sch18]. The first proofs that networks with a single
hidden layer can approximate any continuous functions on a compact domain appeared
in 1989 in [Fun89, HSW89, Cyb89]. The corresponding result for arbitrary continuous
non-polynomial activation functions stated in Prop.2.2 and Thm.2.7 is from [LLPS93]. A
quantitative version of these results can be found in [Mha96]. For in-depth reviews of
the large variety of approximation results for neural networks see [Pin99, GRK20]. For
a discussion of the relation between neural networks and the Kolmogorov superposition
theorem see [SH21]. The latter, in turn, is closely related to the possibility of over-the-air
computation [Ove23].

2.4 VC dimension of neural networks
We will now look into bounds on the VC-dimension of feedforward neural net-
works. These will depend, among other things, on the chosen activation func-
tion. We will start with the simplest case where σ is a step function. For a
simple Perceptron Thm.1.9 and Cor.1.7 tell us that its VC-dimension is equal
to the number of its parameters. The following theorem shows that this rela-
tion still almost holds for layered feedforward networks of simple Perceptrons:

Theorem 2.8: VC-dimension—step-activation functions

For arbitrary n0, ω ∈ N fix an architecture of a multilayered feedforward
neural network with n0 inputs, a single output and ω parameters (i.e.,
weights and threshold values). Denote by F the set of all functions f :
Rn0 → {−1, 1} that can be implemented by any feedforward network with
this architecture when using σ(z) = sgn(z) as activation function. Then

VCdim(F) < 2ω log2(eω). (2.15)

Note: ω equals the number of edges in the graph that represents the network
if we add to every neuron an additional edge that corresponds to the constant
input related to the threshold value. Not surprisingly, the bound in Eq.(2.15)
also holds (via the same argument) if σ(z) = 1z≥0 and functions into {0, 1} are
considered.

Proof. Suppose the considered network has depth m and let ni be the number
of nodes (i.e., neurons or inputs) in the i’th layer with i = 0, . . . ,m. Then n0

is the number of inputs and nm = 1. We can decompose every function f that
the considered architecture implements into functions fi : Rni−1 → {−1, 1}ni
that represent the mappings corresponding to the individual layers. Then f =
fm◦· · ·◦f1. Furthermore, we can breakdown every fi(x) =

(
fi,1(x), . . . , fi,ni(x)

)

into its ni components, each of which describes the action of a single neu-
ron. Denote by ωi,j the number of free parameters in fi,j , i.e., the number

CHAPTER 2. NEURAL NETWORKS 100

of weights (including the threshold value) of the corresponding neuron. Then
ω =

∑m
i=1

∑ni
j=1 ωi,j and we can bound the growth function of F via

Γ(n) ≤
m∏

i=1

Γfi(n) ≤
m∏

i=1

ni∏

j=1

Γfi,j (n)

≤
m∏

i=1

ni∏

j=1

(
en

ωi,j

)ωi,j
≤ (en)ω. (2.16)

Here, the first inequality is an application of the composition property of the
growth function shown in Lemma 1.4. Γfi and Γfi,j denote the growth functions
of the function classes corresponding to the i’th layer and the j’th neuron in the
i’th layer, respectively. The step from the first to the second line in Eq.(2.16)
exploits that by Thm.1.9 the VC-dimension of a single neuron is equal to the
number of weights ωi,j , which then leads to an upper bound to the growth
function following Thm.1.8. Finally, the last inequality simply uses 1/ωi,j ≤ 1.

From Eq.(2.16) we obtain that VCdim(F) < D if 2D > (eD)ω. This is
satisfied by D = 2ω log2(eω) for all ω > 1. For ω = 1, however, Eq.(2.15) holds
as well since the VC-dimension in this case is at most 1.

The bound on the VC-dimension given in Eq.(2.15) turns out to be asymp-
totically tight. That is, there are neural networks of the considered type for
which a lower bound of order Ω(ω logω) can be proven. This implies that the
VC-dimension of those networks is strictly larger than the sum of their compo-
nents’ VC-dimension.

In Thm.2.1 we saw that an arbitrary Boolean function on d inputs can be
represented by a neural network with 2d neurons. As an implication of the above
theorem on the VC-dimension of feedforward neural networks we can now show
that an exponential number of neurons is indeed necessary:

Corollary 2.7. For any d ∈ N consider feedforward neural networks with d
inputs, a single output and activation function σ(z) = 1z≥0. Within this setting
the number of neurons ν(d) of the smallest architecture that is capable of repre-
senting all Boolean functions f : {0, 1}d → {0, 1} satisfies ν(d) + d ≥ 2(d−2)/3.

Proof. The VC-dimension corresponding to the smallest such architecture has
to be at least the VC-dimension of the class of Boolean functions, which is 2d.
On the other hand, it is at most 2ω log2(eω) by Thm.2.8. If we let G = (V,E) be
the underlying graph and use that |E| ≤ |V |2/2 and thus ω ≤ |E|+ |V | ≤ |V |2,
we can estimate

2d ≤ 2ω log2(eω) ≤ 2|V |2 log2

(
e|V |2

)
≤ 4|V |3.

With ν(d) + d = |V | we arrive at the desired result.

The same type of argument also applies to many other classes of activation
functions once a (non-exponential) upper bound on the VC-dimension is estab-
lished. Before we come to these bounds, we will have a look a small example

CHAPTER 2. NEURAL NETWORKS 101

that helps understanding the necessity of rather specific assumptions on the
activation function for obtaining finite VC-dimension.

In principle, the ‘all-powerful’ activation function from Prop.2.3 already tells
us that non-trivial bounds on the VC-dimension of a neural network that de-
pend only the number of parameters will require constraints on the activation
function. Unfortunately, very benign-looking activation functions can still give
rise to infinite VC-dimension. In order to see this, consider the following family
of activation functions:

σc(z) :=
1

1 + e−z
+ cz3e−z

2

sin(z), c ≥ 0. (2.17)

The members of this family have many of the properties of the standard logis-
tic sigmoid function, which is given by σ0: the functions are analytic, satisfy
limz→∞ σc(z) = 1, limz→−∞ σc(z) = 0 and for sufficiently small but not neces-
sarily vanishing c we have that the second derivative σ′′c (z) is strictly positive for
z < 0 and strictly negative for z > 0. That is, the function is convex/concave
in the respective regions.

Proposition 2.8 (Neural network with infinite VC-dimension). Consider feed-
forward networks with one input, a single output neuron whose activation func-
tion is z 7→ sgn(z) and a single hidden layer with two neurons using σc with
c > 0 as activation function. The class of functions f : R → {−1, 1} repre-
sentable by such networks has infinite VC-dimension.

Proof. From Exp.1.8 we know that F := {f : R+ → R | ∃α ∈ R+ : f(x) =
sgn sin(αx)} has infinite VC-dimension. So the proposition follows by show-
ing that F is contained in the function class representable by the considered
networks. To this end, we choose the weights and threshold so that

f(x) = sgn [σc(αx) + σc(−αx)− 1]

= sgn
[
2c(αx)3e−α

2x2

sin(αx)
]

= sgn sin(αx).

Of course, this example is only of academic interest and, not surprisingly,
the VC-dimensions for practically used activation functions is finite. In fact, in
all known cases, it is bounded by a low degree polynomial in the size-parameters
(such as number of neurons, parameters or layers, see Fig.2.5). The usual ap-
proach for obtaining upper bounds on the VC-dimension for networks with
non-trivial activation function is to exploit the ‘cell counting’ method that gave
rise to Thm.1.10 and Thm.1.11, either via those theorems or more directly. Here
is one example:

Theorem 2.9: VC-dimension—piecewise polynomial units

Consider an arbitrary architecture of a feedforward neural network with
N neurons, m inputs, a single output and ω real parameters (i.e., weights
and threshold values). Let F be the set of functions from Rm to {0, 1}

CHAPTER 2. NEURAL NETWORKS 102

Activation function VCdim Reference

sgn O(ω logω) [BH89]
Ω(ω logω) [Maa94]

piecewise polynomial O(ωN) [Sak98, HLM]
O(ωδ2 + ωδ logω) [BMM98]
O(ωt) [GJ95]

piecewise linear O(ωδ logω) [HLM]
Ω
(
ωδ log(ω/δ)

)
[HLM]

Pfaffian, incl. 1/(1 + e−x) O(ω2N2) [KM97]

lim
x→∞

σ(x) 6= lim
x→−∞

σ(x) ∧ ∃z : σ′(z) 6= 0 Ω(ωδ) [KS97, BMM98]

Figure 2.5: VC-dimension bounds for various classes of feedforward neural
networks depending on the activation function. N,ω and t denote the numbers
of neurons, parameters and computational steps, respectively. δ is the depth,
often assuming a layered architecture. Lower bounds of the form Ω(. . .) mean
that there exist networks with the stated asymptotic scaling.

that is representable within this architecture when every hidden neuron
uses a piecewise polynomial activation function of degree at most d and
with at most p pieces and the output neuron uses σ(z) = 1z≥0. Then

V Cdim(F) ≤ 2ω
[
N log2 p+ log2

(
8emax

{
δ + 1, 2dδ

})]
, (2.18)

where δ ∈ {0, . . . , N − 1} denotes the depth of the network.

Remark: Here, depth means the largest number of hidden neurons along any
path through the network. Hence, in a layered network δ is the number of
hidden layers. The number ω only counts distinct parameters, i.e., if weight
sharing is used each weight is only counted once.

Proof. Considering the ω parameters as additional variables, the network can be
regarded as a function Ψ : Rm×Rω → {0, 1}. We interpret Ψ as a predicate and
aim at expressing it as a Boolean combination of polynomial (in-)equalities, so
that Thm.1.10 applies. To this end, we have to bound the number of polynomial
predicates and their degree.

We use i ∈ {1, . . . , N} to label the neurons, ordered so that the network
graph contains no path from i to j < i. Denote by δ(i) ∈ {0, . . . , δ} the maximal
depth of the i’th neuron in the network graph and by ai ∈ R the value of the
i’th neuron’s output before applying the activation function.

Define I : R → {1, . . . , p} so that I−1({j}) is the interval corresponding to
the j’th piece in the domain of the piecewise polynomial activation function.
Clearly, I(a) can be obtained from the truth values of p − 1 inequalities that

CHAPTER 2. NEURAL NETWORKS 103

are linear in a. Since a1 is a quadratic function on Rm ×Rω the value of I(a1)
can be obtained from p − 1 polynomial predicates over Rm × Rω of degree 2.
Now consider I(ai). Conditioned on I(a1), . . . , I(ai−1), ai is a polynomial of
degree at most dδ(i) +

∑δ(i)
j=0 d

j =: deg(i) over Rm × Rω. Consequently, I(ai)
can be determined from the truth values of p − 1 polynomial predicates over
Rm × Rω of degree deg(i). However, there are pi−1 different possibilities for
I(a1), . . . , I(ai−1) leading to up to pi−1(p − 1) different polynomial predicates
that, together with all previously obtained ones, determine I(ai).

So for determining I(aN−1) we need at most
∑N−1
j=1 pj−1(p− 1) = pN−1 − 1

polynomial predicates of degree at most deg(N−1). Finally, determining 1aN≥0

requires, for each value of I(a1), . . . , I(aN−1), one predicate that is linear in aN
and thus polynomial of degree deg(N − 1) ≤ max{δ + 1, 2dδ}. This is also the
maximal degree of all the, in total less than pN , polynomial predicates. With
these numbers, we can now enter Thm.1.10, which completes the proof.

To summarize, if d and p are fixed, then

V Cdim(F) = O(ωN).

The proof technique is quite flexible in some directions: weight sharing or max
pooling as used in convolutional neural networks, as well as product units or
small variations of the architecture are easily incorporated without changing
the picture. Under additional assumptions, such as a layered architecture or
piecewise linear activation functions, the above bound can even be improved
further, in the latter case down to O(ωδ logω). However, if the basic units
are not piecewise algebraic, then ‘cell counting’ can become considerably more
difficult. For the logistic sigmoid σ(x) = (1 + e−x)−1 this can, however, still be
done leading to a bound based on Eq.(1.41). Fig.2.5 summarizes some of the
known results and points to the corresponding references.

Approximation bounds via VC-dimension
Upper bounds on the VC-dimension, like the ones discussed in the previous
paragraph, can in some cases be used to derive lower bounds on the achievable
approximation accuracy of a function class. For later use, we will look into the
following example:

LetW 1,∞([0, 1]d
)
be the space of Lipschitz-functions on [0, 1]d equipped with

the norm ||f ||1,∞ := max{||f ||∞, ||∂jf ||∞}dj=1 and B1,∞ its unit ball.4

Theorem 2.10: VC-dimension and approximation accuracy

Let F ⊆ R[0,1]d and ε > 0 be such that for any f ∈ B1,∞ there is a h ∈ F

4Here || · ||∞ is the L∞-norm and the Sobolev space W 1,∞ is a subspace of L∞ so that
its elements are, strictly speaking, equivalence classes of functions. ∂jf denotes the weak j’th
partial derivative of f , which coincides with the ordinary partial derivative if the latter exists.

CHAPTER 2. NEURAL NETWORKS 104

1

-1/2 1/2

x1 x2 x3 x4 x5

Figure 2.6: Top: the dashed line displays the triangular function that the smooth
function ϕ (solid line) approximates. In order to not increase the support of
the function and still have ϕ(0) = 1, ϕ has to have maximal slope C > 2.
Bottom: the function f takes on predefined values at the lattice points xm
and is constructed by gluing together rescaled and shifted versions of ϕ with
mutually disjoint supports.

for which ||f − h||∞ ≤ ε. Then

VCdim
(
F̃
)1/d

ε ≥ 1

4
, (2.19)

where F̃ is the class of all functions in F composed with a fixed step
function of the form z 7→ 1z≥b for a suitable constant b.

Proof. For N ∈ N to be chosen later, let x1, . . . , xM ∈ [0, 1]d be M := (N + 1)d

points on a cubic lattice such that ||xi − xj || ≥ 1/N for all i 6= j. We will
now construct a smooth function f ∈ C∞

(
[0, 1]d

)
that takes on predetermined

values on those lattice points. Specifically, for any y ∈ RM define

f(x) :=

M∑

m=1

ymφ
(
N(x− xm)

)
, (2.20)

where φ(z) :=
∏d
j=1 ϕ(zj) and ϕ ∈ C∞(R) is a smooth approximation of a

triangular function as shown in Fig.2.6. In this way, we can achieve that φ(0) =
1, φ(x) = 0 if ||x|| > 1/2 and |∂jφ(x)| ≤ C for any C > 2. This implies, in
particular, that f(xm) = ym for all m ∈ {1, . . . ,M}.

For any α ∈ {0, 1}M we set ym := αm/(CN). The fact that |ym| ≤ 1/(CN)
then implies that the corresponding function f from Eq.(2.20) is an element of

CHAPTER 2. NEURAL NETWORKS 105

B1,∞. So by assumption there is an h ∈ F for which |h(xm) − ym| ≤ ε since
ym = f(xm).

If we choose N such that ε < 1/(2CN), e.g. N := b(C2ε)−1c, then h̃(x) :=
1h(x)≥b with b := 1/(2CN) satisfies h̃(xm) = ym for all m ∈ {1, . . . ,M}. Con-
sequently, the function class F̃ that is built by all these h̃’s has

VCdim
(
F̃
)
≥M = (N + 1)d ≥

(
1

C2ε

)d
, (2.21)

which proves the theorem when considering the limit C → 2.

Thm.2.10 is clearly not restricted to neural networks but applies to arbitrary
function classes. However, if we plug in upper bounds on the VC-dimension
of neural networks in terms of numbers of parameters, layers or neurons, then
Thm.2.10 translates these bounds into corresponding bounds on the approxi-
mation capability of neural networks.

2.5 Deep neural networks
For about half a century the majority of feedforward neural networks that were
used in practice were shallow in the sense that they did not contain more than
one hidden layer. This limitation was partly caused by difficulties in training
multi-layered networks (which we will discuss in later sections). Moreover, the
universality results of Sec.2.3 that were proven for one-hidden-layer networks
around 1990 may not have motivated the investigation of deeper networks, ei-
ther. The situation began to change in the mid 2000’s and then seemingly
underwent a phase transition around 2012. Thereafter “deeper is better” be-
came a dominant mantra. Confronted with the question “Why should deeper be
better?” one is tempted to tell a story about hierarchical structures. The fact
that the world surrounding us as well as our understanding of it is organized
hierarchically, resonates well with the idea that such hierarchical structures are
expressed more easily if the different layers of the hierarchy have a counterpart
in the chosen model. As plausible as this may seem, it is difficult to formal-
ize mathematically. This section summarizes some first steps in this direction.
They all aim at proving that in order to approximate certain functions to a
given accuracy, deep neural networks can be vastly more efficient in the sense
of requiring drastically fewer parameters and neurons.

One of the first results in this direction was obtained in [ES16] for radial
functions, i.e. functions of the form Rd 3 x 7→ f

(
||x||2

)
. The underlying idea is,

that for a suitable choice of f it could be difficult to approximate this map with
only a single hidden layer, whereas a network with two hidden layers can simply
first approximate x 7→ ||x||2 in the first hidden layer and then f in the second
hidden layer. In fact, for f being a particular Bessel function, it was shown in
[ES16] that the corresponding radial function can be approximated by a two-
hidden-layer network of width polynomial in d, but requires a single-hidden-layer
network of width exponential in d to achieve the same approximation accuracy.

CHAPTER 2. NEURAL NETWORKS 106

Figure 2.7: Fig. a) - c) show the graphs of Λ,Λ2 and Λ3. d) shows the set S for
k = 3. By construction, it is part of the graph of Λ3.

The proof of this result is relatively involved so that we will not dive into the
details but rather follow a different line of results.

The idea that will be worked out in detail in the following two paragraphs is
the following: the number of oscillations of functions R→ R tends to be multi-
plicative under composition but additive under linear combination. Increasing
the depth of a neural network corresponds to composing with further functions
whereas increasing the width corresponds to adding further functions. There-
fore, highly oscillatory functions should be represented/approximated more ef-
ficiently using deep networks than with shallow ones.

Representation benefits of deep classifiers Define F(m, l) ⊆ RR as the
set of functions that can be represented by a feedforward neural network with
l layers, m neurons within every hidden layer, a single neuron at the output
and the rectified linear unit σR(z) := max{0, z} as activation function. In
order to make an f ∈ F(m, l) into a classifier, define f̃(x) := 1f(x)≥1/2 and
let R̂(f) := 1

|S|
∑

(x,y)∈S 1f̃(x) 6=y be the corresponding empirical risk w.r.t. a
training data set S.

Theorem 2.11: Exponential benefit of deep classifiers

Let k ∈ N, k ≥ 2, n = 2k and S :=
(
(xi, yi)

)n−1

i=0
with xi := i/n and

yi := i mod 2.

1. There is an h ∈ F(2, k + 1) for which R̂(h) = 0.

CHAPTER 2. NEURAL NETWORKS 107

2. If m, l ∈ N and m ≤ 2
k
l −2, then R̂(f) ≥ 1

6 holds for all f ∈ F(m, l).

Proof. 1. Define a function Λ : [0, 1]→ [0, 1] as

Λ(x) :=

{
2x, 0 ≤ x ≤ 1/2,
2(1− x), 1/2 < x ≤ 1.

(2.22)

Since this can be written as Λ(x) = σR
(
2σR(x) − 2σR(2x − 1)

)
we have Λ ∈

F(2, 2). If we compose the function k-times with itself, the graph of h(x) :=
Λk(x) is a saw-tooth with 2k−1 ‘teeth’ (see Fig.2.7). By construction, h(xi) =
yi for all i = 1, . . . n and thus R̂(h) = 0. Moreover, by simply iterating the
network we see that h ∈ F(2, 2k). However, since the activation function at
the outputs of all intermediate networks has no effect due to positivity, i.e.
Λ(x) = 2σR(x)− 2σR(2x− 1), we can drop all the corresponding layers so that,
in fact, h ∈ F(2, k + 1).

2. Every f ∈ F(m, l) is piecewise affine with at most 2lml−1 pieces. This
is a consequence of the following simple fact: suppose f1 and f2 are piecewise
affine with t1 and t2 pieces, respectively. Then f1 + f2 and f1 ◦ f2 are again
piecewise affine with at most t1 + t2 and t1t2 pieces.

With at most t = 2lml−1 affine and thus monotone pieces, the graph of a
function f ∈ F(m, l) crosses 1/2 at most t times—not more than once inside
every interval. Therefore, f̃ is piecewise constant with at most t + 1 intervals
with values 0 or 1. Let us now consider how the n points, whose values alternate
between zero and one, can be distributed over these t+ 1 intervals. Clearly, at
most t+ 1 points can be in intervals that contain no more than one point. The
other n− t− 1 points have to be in intervals that contain more than one point.
At least one third of these points are thus misclassified so that the empirical
risk can be bounded from below as

R̂(f) ≥ n− t− 1

3n
≥ 1

3
− t+ 1

3n
.

Inserting t and using the assumption thatm ≤ 2k/l−2 this can be shown to be at
least 1/6 for all m, k ≥ 2. The case m = 1 can easily be treated separately.

Approximation benefits of deep networks The idea of the previous para-
graph also leads to an inapproximability result for R-valued functions. Instead
of using the L∞-norm like for the positive results of Sec.2.3, the following the-
orem uses the L1-norm. In this way, the negative result becomes stronger since
distance in L1-norm means that the considered functions differ on a large set.

Theorem 2.12: L1-approximation benefits of deep networks

For any k ∈ N, k ≥ 4 there exists a function f : [0, 1]→ [0, 1] that

1. can be represented exactly by a ReLU-network of k2 hidden layers
and width 2,

2. is such that every function g that is implemented by a ReLU-network

CHAPTER 2. NEURAL NETWORKS 108

Figure 2.8: The L1-norm distance between the saw-tooth function f (violet) and
the function g (orange) is estimated by counting elementary triangles with base
b and area ∆ that are on the ‘opposite side’ of the constant line 1/2 (dashed).
If the graph of g does not cross this line within an interval [ci, ci+1] of length at
least 2b, then the L1-norm distance between f and g within this interval is at
least ∆.

with at most k hidden layers, which contain at most 2k neurons in
total, satisfies ∫

[0,1]

∣∣f(x)− g(x)
∣∣ dx ≥ 1

11
. (2.23)

Proof. 1. We use the saw-tooth function f(x) := Λk
2

(x) with Λ as defined in
Eq.(2.22). For later use let us consider one of the 2k

2 − 1 equal triangles that
appear when we draw the constant line 1/2 on top of the graph of f (see Fig.2.8).
The length of the base of each of these triangle is b := 2−k

2

and their height is
1/2. Consequently, each triangle has an area ∆ := 2−k

2

/4.
2. Suppose the ReLU-network representing g has δ hidden layers and de-

note by mi the number of neurons in the i’th hidden layer. An elementary
argument as in the proof of the previous theorem then shows that g has at most
2
∏δ
i=1(2mi) affine pieces. This expression can be simplified by the arithmetic-

geometric-mean inequality

2

δ∏

i=1

(2mi) ≤ 2

(
2
∑δ
i=1mi

δ

)δ
,

so that plugging in the assumptions leads to an upper bound of t := 2k
2+k+1/kk

affine pieces for g.
Denote by 0 ≤ c1 < c2 < c3 . . . ≤ 1 the points where the graph of g crosses

the constant line 1/2.5 There are at most t such points since every affine piece
can cross this line at most once. We add two more points to the list, namely
the two boundary points 0 and 1 so that there are at most t + 2 points now.
If an interval [ci, ci+1] has length at least 2b, then within this interval the L1-

5If an affine piece is constant 1/2, then we will only take the left-most point into account.

CHAPTER 2. NEURAL NETWORKS 109

norm distance between f and g is at least the area ∆ of one of the elementary
triangles. Using this observation, we can thus bound

∫

[0,1]

∣∣f(x)− g(x)
∣∣ dx ≥

∑

i

⌊ci+1 − ci
2b

⌋
∆

≥
∑

i

(
ci+1 − ci

2b
− 1

)
∆

≥
(

1

2b
− t− 2

)
∆ =

1

4

(
1

2
− 2k+1

kk
− 21−k2

)
.

The last expression is an increasing function in k that can be bounded from
below by 1/11 for k = 4.

Note that in the proof of part 2. of Thm.2.12 the specific form of the activation
function is only used in order to bound the number t of times that g crosses
the constant line 1/2. Via Warren’s inequality for polynomial arrangements in
Prop.1.9 such a bound can also be derived in the case where piecewise poly-
nomial activation functions are used, as long as the number of pieces and the
degree of the polynomials is bounded. In this way, the result can be generalized
to a larger class of networks [Tel16].

Converting shallow into deep networks The results of the previous para-
graphs show that some functions can be represented or approximated more
efficiently by deep networks. For these functions shallow networks require expo-
nentially more parameters in order to achieve the same approximation accuracy.
This raises the question whether the opposite can occur as well? That is, are
there functions for which wide & shallow networks are significantly more efficient
than narrow & deep ones? The following simple argument shows that there is
not much room for shallow networks to be more efficient than deep networks.

Proposition 2.9 (Conversion from wide & shallow to narrow & deep). Con-
sider the class of layered feed-forward neural networks with d input and l output
nodes and activation functions that are taken from a fixed set that includes the
identity σ(z) = z. Within this class, every function representable with a single
hidden layer of m neurons admits a representation by a network with m hidden
layers each of which contains at most d+ l + 1 neurons.

This is easily seen by rotating the hidden layer and adding two parallel
busses whose sizes equal the ones of the input and output layer, as depicted
in Fig.2.9. There, matching colors of the arrows indicate matching types of
activation functions, where gray arrows mean that the identity function is used,
so that the information is passed along from one layer to the next. If the
ReLU activation function σR is to be used everywhere, then one could emulate
the identity function at the cost of doubling the number of neurons in the
input/output busses by exploiting that

x = σR(x)− σR(−x).

CHAPTER 2. NEURAL NETWORKS 110

a) b)

Figure 2.9: a) Schematic representation of a neural network with a single hidden
layer containing m neurons. Green an red box depict the input and output
layer, respectively. The links/arrows are only drawn pars pro toto. b) The
same functions can be represented using a layered network of constant width
and depth m+ 1. The construction ’rotates’ the hidden layer by 90◦ and adds
an ’input bus’ and an ’output bus’ whose purposes are to keep a copy of the
input and to sequentially collect the output, respectively.

However, if the input of the network is restricted to a compact domain, then
doubling the number of neurons in this way is unnecessary:

Theorem 2.13: Representation via deep, narrow networks

Let K ⊆ Rd be compact. Every continuous function f : K → Rl can
be approximated arbitrary well in || · ||∞ by a layered feed-forward neural
network of width at most d+ l+ 1 using a continuous activation function
σ, if the latter is not affine but contains a non-constant affine piece. Here,
the output layer is assumed to use the identity as activation function.

Proof. From Thm.2.7 we know that continuous functions on compact domains
can be arbitrary well approximated by a shallow network using arbitrary non-
polynomial activation functions and a single hidden layer. Using Prop.2.9 we
can convert this into a deep network of width at most d+ l + 1 when allowing
for identity activation functions. The latter can, however, be effectively im-
plemented using the given activation function σ and resorting to compactness.
This is seen by observing that for any bounded domain there are affine maps
A,B so that A◦σ ◦B becomes the identity on that domain. The required affine
maps can be implemented by adjusting weights (for the linear part) and biases
(for the offset) in the network.

Optimal approximation of Lipschitz functions
The results discussed on the preceding pages that separate deep networks from
shallow ones w.r.t. their capability of approximating certain functions effi-
ciently, are far from dealing with practically relevant functions. A questionable

CHAPTER 2. NEURAL NETWORKS 111

Figure 2.10:

property of the considered sequence of functions is that in
the limit their derivatives diverge everywhere. This is in con-
flict with the intuition that functions that appear in practice
should not oscillate too wildly and be mostly Lipschitz. Before
we will consider functions with bounded Lipschitz constant
in the light of the approximation-efficiency-depth tradeoff, we
make a small excursion and review a more general result from
approximation theory. The underlying question is: what can
be said in general about the number of parameters that is
required by any model in order to achieve a certain approxi-
mation accuracy?

More specifically, let K be a subset of some normed space
X and suppose we want to approximated all elements in K
to a given accuracy using a model with as few real parameters as possible.
What can be said about the number m of parameters? Mathematically, we
assign to every element f ∈ K a point in Rm via a map E : K → Rm that in
turn parametrizes an element in X via a map D : Rm → X (see Fig.2.10). A
reasonable quantity to consider then is the worst-case error

inf
f∈K
||f −D ◦ E(f)||. (2.24)

However, if X is separable, then the infimum of this worst-case error taken over
all possible maps E,D turns out to be zero, even for m = 1, due to existence of
space-filling curves. Hence, in order to get a non-trivial relation between m and
the approximation accuracy, one has to restrict at least one of the maps E,D.
The approach taken in [DHM89], from where the following result is taken, is to
assume continuity of the encoding map E.

Theorem 2.14: Optimal nonlinear approximation

Let X be a normed space, K ⊆ X, E ∈ C(K,Rm) and D : Rm → K.
Then:

sup
f∈K

∣∣∣∣f −D ◦ E(f)
∣∣∣∣ ≥ sup

V
sup

{
λ |λBV ⊆ K

}
, (2.25)

where the supremum is taken over all subspaces V ⊆ X with dim(V) =
m+ 1 and BV := {x ∈ V

∣∣ ||x|| ≤ 1}.

Note: the expression on the r.h.s. of Eq.(2.25) is called Bernstein width of K.

Proof. Suppose λ > 0 and V is an m + 1 dimensional subspace of X s.t.
λBV ⊆ K. If we denote by ∂λBV the boundary of λBV within V , then
Ẽ := E

∣∣
∂λBV

is a continuous map from a unit-sphere (w.r.t. some norm) of
an m + 1 dimensional space into Rm. For such maps the Borsuk-Ulam theo-
rem guarantees the existence of a f ∈ ∂λBV for which E(f) = E(−f). Then
2f =

(
f −D ◦ E(f)

)
−
(
− f −D ◦ E(−f)

)
implies that

2λ = ||2f || ≤
∣∣∣∣f −D ◦ E(f)

∣∣∣∣+
∣∣∣∣− f −D ◦ E(−f)

∣∣∣∣.

CHAPTER 2. NEURAL NETWORKS 112

Hence, f or −f is approximated with error at least λ.

We will now apply this to the specific class of Lipschitz functions for which
Thm.2.10 relates the approximation accuracy to the VC-dimension. Let B1,∞

be the closed unit ball of the Sobolev space W 1,∞([0, 1]) of Lipschitz functions,
equipped with the norm ||f ||1,∞ := max{||f ||∞, ||f ′||∞}.

Corollary 2.10 (Optimal approximation of Lipschitz functions). Let X :=
L∞([0, 1]), K := B1,∞, E ∈ C(K,Rm) and D : Rm → K. Then

sup
f∈K

∣∣∣∣f −D ◦ E(f)
∣∣∣∣
∞ ≥

1

2(m+ 1)
. (2.26)

Proof. For i ∈ {0,m} let φi ∈ W 1,∞([0, 1]) be a ‘saw-tooth function’ that is
supported in the interval

[
i/(m+ 1), (i+ 1)/(m+ 1)

]
, has norm ||φi||∞ = 1 and

is 2(m+ 1)-Lipschitz and thus ||φi||1,∞ = 2(m+ 1). In order to obtain a lower
bound for the r.h.s. of Eq.(2.25) we define V := span{φi}mi=0. Then ϕ ∈ ∂λBV
means that ϕ =

∑m
i=0 ciφi with ||ϕ||∞ = max{|ci|} = λ. On the other hand,

since the φi’s have disjoint supports

||ϕ||1,∞ = max
{
|ci| ||φi||1,∞

}
= 2λ(m+ 1).

This implies that λBV ⊆ K iff λ ≤ 1
2(m+1) and the result follows by choosing λ

maximal.

... to be completed ...

2.6 Rademacher complexity of neural networks
Rademacher complexities of feedforward neural networks are most easily esti-
mated, if the network obeys a layered structure. Then, with the help of the
properties of the (empirical) Rademacher complexities, which were summarized
in Thm.1.16, we can express the Rademacher complexities at the outputs of one
layer in terms of the ones corresponding to the foregoing layer:

Theorem 2.15: Rademacher complexity progression

Let a, b ∈ R, σ̃ : R → R l-Lipschitz and F0 ⊆ RX . The empiri-
cal Rademacher complexity of F :=

{
x 7→ σ̃

(
v +

∑m
j=1 wjfj(x)

)∣∣ |v| ≤
a, ||w||1 ≤ b, fj ∈ F0

)}
⊆ RX w.r.t. any point x ∈ Xn can be bounded in

terms of the one of F0 (w.r.t. the same point) by

R̂(F) ≤ l
(

a√
n

+ 2b R̂(F0)

)
. (2.27)

The factor 2 can be dropped if F0 = −F0.

CHAPTER 2. NEURAL NETWORKS 113

Note: the number m of neurons in the layer enters the bound only indirectly
via the || · ||1-constraint on the weights.

Proof. First, we exploit the Lipschitz-property of σ̃ together with the corre-
sponding property of the Rademacher complexity (point 5. in Thm.1.16) and
obtain

R̂(F) ≤ l

n
Eσ

 sup
v,w,fj

n∑

i=1

σi

v +

m∑

j=1

wjfj(xi)

 . (2.28)

Next, note that
∑
j wjfj ∈ b conv{F0−F0} =: G1. With G2 := {x 7→ v | |v| ≤ a}

we can regard the function class that appears in Eq.(2.28) as a sum of function
classes so that (following property 3. in Thm.1.16) we can write

R̂(F) ≤ l
(
R̂(G1 + G2)

)
= l

(
R̂(G1) + R̂(G2)

)

≤ l

(
a√
n

+ 2b R̂(F0)

)
. (2.29)

In the second line, we used separate bounds for the two appearing empirical
Rademacher complexities. On the hand, we used that (again by Thm.1.16)

R̂(G1) = bR̂(conv{F0−F0}) = bR̂(F0−F0) = b
(
R̂(F0)+R̂(−F0)

)
= 2bR̂(F0),

where the factor 2 is unnecessary if F0 = −F0 as in this case G1 = bconv{F0}.
On the other hand, we have used that R̂(G2) ≤ aE(|Z|)/n with Z :=

∑n
i=1 σi,

which in turn can be bounded via Jensen’s inequality leading to

E[|Z|] ≤ E[Z2]1/2 =
√
n,

when exploiting the independence of the Rademacher variables.

In order to arrive at an upper bound for the empirical Rademacher complex-
ity of en entire network, we can now apply the previous theorem recursively.
Only the first layer requires a different treatment. One possibility is to use the
following ingredient:

Lemma 2.11. For b, c > 0, consider X := {x ∈ Rd| ||x||∞ ≤ c} and G := {X 3
x 7→ 〈x,w〉| ||w||1 ≤ b}. The empirical Rademacher complexity of G w.r.t. any
z ∈ Xn can be bounded by

R̂(G) ≤ bc√
n

√
2 ln(2d). (2.30)

Proof. The proof is an application of Hölder’s and Massart’s inequality:

nR̂(G) = Eσ

sup

w

d∑

j=1

n∑

i=1

σiwjzi,j

 ≤ b Eσ

[
max
j

∣∣∣∣∣
n∑

i=1

σizi,j

∣∣∣∣∣

]

= b Eσ

[
max
a∈A

n∑

i=1

σiai

]

≤ bc
√

2n ln(2d),

CHAPTER 2. NEURAL NETWORKS 114

where we used Hölder’s inequality in the first line, we set A := {±x1, . . . ,±xd} ⊆
Rn with (xj)i := zi,j in the second line and we exploited Massart’s inequality
from Eq.(1.50) with |A| ≤ 2d and ||xj ||2 ≤

√
n||xj ||∞ ≤

√
nc in the last line.

Combining Lemma 2.11 and Thm.2.15 then leads to the following:

Corollary 2.12 (Rademacher complexity of layered network). Let a, b > 0 and
X := {x ∈ Rd| ||x||∞ ≤ 1}. Fix a neural network architecture with δ hidden
layers that implements F ⊆ RX s.t.

1. the activation function σ : R→ R is 1−Lipschitz,

2. for every neuron the vector w that collects all weights of incoming edges
satisfies ||w||1 ≤ b,

3. the moduli of the threshold values are bounded by a.

Then the empirical Rademacher complexity of F w.r.t. any z ∈ Xn satisfies

R̂(F) ≤ 1√
n

(
bδ+1

√
2 ln(2d) + a

δ∑

i=0

bi

)
. (2.31)

Proof. The result follows by replacing the function class G1 in the proof of
Thm.2.15 with the class G of Lemma 2.11. Moreover, we use l = 1 as well
as F0 = −F0 for every single layer. The (δ − 1)-fold recursive application of
Thm.2.15 then gives rise to the partial sum of the geometric series.

The appearance of bδ, which bounds the product of the maximum norms of
the weight vectors of all layers, motivates the use of expressions of this type for
regularization (as opposed to the sum of the squares of all weights in Tikhonov
regularization).

2.7 Training neural networks
In this section, we will sketch the framework for training a neural network.
Particular aspects and issues will then be discussed in greater detail in the
following sections. Training means to optimize the parameters of the model so
that that the model describes the training data well. Hence, we will have to
choose a loss function and an optimization algorithm. The architecture of the
network is supposed to be fixed.

Loss function. In case of regression, the most common choices for the loss
function are the quadratic loss and the l1-distance. The latter is less sensitive
to ‘outliers’ than the former.

In case of classification, a common practice is the following: If Y is the set of
possible classes, then instead of choosing one output node with values ranging

CHAPTER 2. NEURAL NETWORKS 115

in Y, one uses |Y| output nodes with real values, say z ∈ RY . To those the
so-called softmax activation

σmax(z)y :=
eβzy∑
y∈Y e

βzy
, β ∈ [0,∞) (2.32)

is applied. Note that the softmax function is, in contrast to other activation
functions, not a scalar function that can be applied to each coordinate sepa-
rately, but maps RY into (0,∞)Y . More precisely, it turns a vector with real
entries into a probability distribution that indicates the maximum entry in the
limit β →∞ and is a ‘soft’ version thereof otherwise. Usually, β = 1 is chosen.

Using such an output layer, the network maps every input x ∈ X to a prob-
ability distribution, which can be interpreted as a quantification of the levels
of confidence. Let us denote the components of the distribution by p(y|x,w),
where w is the collection of parameters the network depends on. The training
data set

(
(x1, y1), . . . , (xn, yn)

)
, on the other hand, defines an empirical distri-

bution p̂(y|xi) := δy,yi . For every data point xi the deviation between the two
distributions can be quantified using the Kullback-Leibler divergence

DKL

(
p̂(xi)||p(xi, w)

)
:=

∑

y∈Y
p̂(y|xi) log

p̂(y|xi)
p(y|xi, w)

= − log p(yi|xi, w). (2.33)

To cast this into a loss function of the form defined in Sec.1.1 we can use the
modified space of labels Ỹ := RY with ỹi := (δy,yi)y∈Y . The loss function
L : Ỹ × Ỹ → [0,∞] giving rise to Eq.(2.33) then takes on the form

L
(
ỹ, h(x)

)
= −〈ỹ, log h(x)〉,

which is sometimes simply called the log-loss. It is also known as cross entropy
(when viewed as arising from the Kullback-Leibler divergence) or the negative
log-likelihood (when w 7→ p(y|x,w) is viewed as likelihood function for the pa-
rameters w). Irrespective of these motivations the main reason for choosing
this type of loss-function is, however, that it appears to work well, on heuristic
grounds.

Algorithm The risk-function that has to be optimized as a function of the
parameters, which we denote by w ∈ RN , is always an average of the loss-
function over the n training data points. That is, formally we have to minimize
a function of the form

f(w) =
1

n

n∑

i=1

fi(w).

Gradient descent is a greedy (and probably the conceptually simplest) algorithm
for dealing with such an optimization problem: choose an initial point w0 ∈ RN
and a (possibly time-dependent) step size α > 0 and then move along the
sequence given by

wt+1 := wt − α∇f(wt),

CHAPTER 2. NEURAL NETWORKS 116

where ∇f(wt) denotes the gradient of f at wt. In other words, follow the
negative gradient. Leaving aside issues of convergence, non-global minima and
saddle-points for the moment, there are (at least) two obstacles to overcome if
both n and N are very large. Consider a naive numerical way of computing
the gradient: due to linearity, the gradient is the sum of n gradients ∇fi(wt)
each of which requires of the order of N function evaluations to be estimated
numerically sinceN is the dimension of the underlying space. Hence, before even
a single step can be made downhill, n ·N function evaluations are required. In
our case, this means n · N evaluations (a.k.a. ‘forward passes’) of the neural
network, which can easily be around 1014 — not very encouraging.

Two crucial ingredients reduce these nN evaluations, loosely speaking, to 2:

1. Backpropagation: For each fi the gradient can be computed analytically.
Using the chain rule combined with some bookkeeping this requires only
one forward and one ‘backward’ pass (and in this sense 2 evaluations).
This routine is called ‘backpropagation’.

2. Stochastic gradient descent: Instead of computing the gradient of f ex-
actly, one uses the gradients of the fi’s as stochastic approximation. After
all, on average the gradients of the latter are equal to the gradient of the
former.

With these two ingredients, which will be discussed in detail in Sec. 2.8 and Sec.
2.9, one possible way of proceeding is then as follows: start at a random initial
point w0, choose a data point (xi, yi) at random (in practice, usually without
replacement), compute the gradient of the corresponding fi using backpropa-
gation, update w by moving opposite to that gradient, and then iterate this
procedure.

One complete run over the set of n training data points is called an epoch.
Instead of making n steps in parameter space during an epoch, it is often ad-
vantageous to form disjoint groups, so-called mini-batches, of k data points each
and to average the corresponding k gradients before making one step. In this
way, the stochastic gradient becomes less ‘noisy’, the step size can be increased
and, since the gradients within one mini-batch are computed using the same
parameters but different data points, it opens a door for parallelization.

2.8 Backpropagation
The backpropagation algorithm exploits the network structure of the function
for computing its gradient. A central ingredient of the algorithm is the chain
rule, which governs the derivative of composed functions. However, the back-
propagation algorithm differs significantly from symbolic differentiation. First,
it carefully exploits computationally efficient bookkeeping and second, every
building block of the function is evaluated (and not kept symbolically) as soon
as possible.

We will first look at what has become the standard derivation of the algo-
rithm when applied to feedforward layered neural networks. After that, we will

CHAPTER 2. NEURAL NETWORKS 117

revisit the algorithm from a more general perspective and thereby find connec-
tions to the method of Lagrange multipliers. The second part supersedes the
first, but requires slightly more mathematical and computational background.

Standard derivation of the algorithm Consider a layered feedforward
neural network whose layers will be labeled by an upper or lower index l ∈
{0, . . . ,m}. Here, the 0’th layer corresponds to the input and the m’th to the
output. Nl will be the number of neurons in the l’th layer. By wljk we will de-
note the weight that corresponds to the connection from the k’th neuron in layer
l−1 to the j’th neuron in layer l. Similarly, blj will be the threshold value of the
j’th neuron in layer l. The vector xl, whose components xlj are the outputs of
the neurons of the l’th layer, can then be expressed in matrix/vector notation as
xl = σ(wlxl−1 + bl), where the activation function σ is applied component-wise.
We introduce a separate variable zl := wlxl−1 + bl to denote the output before
application of the activation function.

Consider a function f : RNm → R that maps the output xm to a real
number—such as the loss function, which acts as L(y, xm) =: f(xm) for a fixed
pair (x0, y) of the training data. By expanding xm in terms of previous layers
and the corresponding weights and threshold values, we may interpret f as
a function of different kinds of variables. In particular, we will consider the
mappings (w, b) 7→ f(xm), xl 7→ f(xm) and zm 7→ f(xm). Abusing notation all
these mappings will be denoted by f .

Our aim is to compute the partial derivatives of f w.r.t. all weights and
threshold values. To this end, we introduce intermediate quantities δlj := ∂f

∂zlj
in

terms of which all the sought derivatives will be expressed by use of the chain
rule. The latter is also central in computing the δlj ’s themselves. Beginning
with the output layer, we obtain

δmj =
∑

k

∂f

∂xmk

∂xmk
∂zmj

= σ′(zmj)
∂f

∂xmj
, (2.34)

where the summation runs over all neurons in the considered layer. Next, we
show that δl can be expressed in terms of δl+1, so that all δ’s can be computed
by going layerwise backwards from the output layer:

δlj =
∂f

∂zlj
=

∑

k

∂f

∂zl+1
k

∂zl+1
k

∂zlj

=
∑

k

δl+1
k wl+1

kj σ′(zlj). (2.35)

Finally, we can express the sought derivatives in terms of the δ’s:

∂f

∂blj
=

∑

k

∂f

∂zlk

∂zlk
∂blj

= δlj , (2.36)

∂f

∂wljk
=

∑

i

∂f

∂zli

∂zli
∂wljk

= δlj x
l−1
k . (2.37)

CHAPTER 2. NEURAL NETWORKS 118

As a result we obtain that in order to compute the partial derivatives of f w.r.t.
all weights and threshold values it suffices to run the network once forward (to
obtain all x’s and z’s) and once ’backwards’ (to obtain the δ’s). This has to be
contrasted with the naive approach, where for every individual partial derivative
the network had to be evaluated at least once already.

Algorithmic differentiation and Lagrange multipliers The backpropa-
gation algorithm for layered feedforward neural networks can be embedded into
a larger picture, which we want to discuss in this section.

We will first recall and reformulate some facts from Analysis that enable us
to compute derivatives under constraints. We will denote the total derivative
(i.e., Fréchet derivative) of a function f at a point x by Df(x). That is, Df(x)
is the best linear approximation to f at x. If f has two arguments, we will write
D1f(x0, y0) for the total derivative of the map x 7→ f(x, y0) at x0 and likewise
D2f(x0, y0) for the total derivative of the map y 7→ f(x0, y) at y0.

Proposition 2.13 (Partial derivations with Lagrange multipliers). Let F ∈
C1(RK ×RN ,R) and H ∈ C1(RK ×RN ,RK) be such that at (v0, w0) ∈ RK ×
RN H(v0, w0) = 0 and D1H(v0, w0) is invertible.

1. There is an open neighborhood W of w0 and a unique ϕ ∈ C1(W,RK)
such that ϕ(w0) = v0 and ∀w ∈W : H(ϕ(w), w) = 0 while D1H(ϕ(w), w)
remains invertible.

2. Defining f(w) := F (ϕ(w), w) and L(v, w, λ) := F (v, w) + λTH(v, w) we
have for all w ∈W :

Df(w) = D2L
(
ϕ(w), w, λ

)
(2.38)

if λ ∈ RK satisfies

λTD1H(ϕ(w), w) +D1F (ϕ(w), w) = 0. (2.39)

Note: L is a Lagrange functional, which combines the function F under
consideration with the constraints given by H via the Lagrange multipliers λ.

Proof. 1. is nothing but the implicit function theorem. In order to arrive at 2.
we begin with differentiating the equation 0 = DH(ϕ(w), w). This leads to

0 = D1H(ϕ(w), w)Dϕ(w) +D2H(ϕ(w), w) and thus

Dϕ(w) = −
[
D1H(ϕ(w), w)

]−1
D2H(ϕ(w), w). (2.40)

Inserting this into

Df(w) = D2F (ϕ(w), w) +D1F (ϕ(w), w)Dϕ(w)

= D2F (ϕ(w), w)−D1F (ϕ(w), w)
[
D1H(ϕ(w), w)

]−1

︸ ︷︷ ︸
=:λT

D2H(ϕ(w), w)

proves the claim.

CHAPTER 2. NEURAL NETWORKS 119

v4 = w1 + w2

f(w) = v1 = sin(v2)

v2 = v3 + v5

w3

v3 = ev4

v5 = w2w3

w2w1 w3w2w1

�1 = 1

�2

�3

�4 �5

Figure 2.11: Left: A computational graph for the example function f(w) =
sin [ew1+w2 + w2w3]. The vi’s are intermediate/output variables and the arrows
indicate the dependencies among the variables. Right: Since every vi is con-
strained by its relation to the ‘incoming’ variables, there is a Lagrange multiplier
λi associated to each of them. The graph displays the dependencies among the
λi’s and is a reversed version of the initial computational graph (without input
variables).

Eq.(2.38) relates the derivative (i.e., the gradient, which is the vector repre-
sentation of the derivative) of the function f to the one of the Lagrange func-
tional L and Eq.(2.39) provides an implicit specification of the corresponding
Lagrange multipliers. The latter will now be made explicit for functions with a
particular computational structure.

Assume f ∈ C1(RN) is given in a way so that we can break down its com-
putation into elementary steps that are assembled according to a computational
graph. This graph is supposed to

(i) have vertices assigned to input and output variables as well as to interme-
diate variables that correspond to elementary computational steps,

(ii) be acyclic directed,

(iii) have directed edges that specify the dependencies among variables. That
is, there is an edge i→ j iff the variable assigned to vertex i enters directly
the computation of the variable at vertex j.

Note that different computational graphs can be associated to one function and
that there might also be different reasonable meanings of ‘elementary computa-
tional step’.

Example 2.1 (Computational graph).A computational graph for the function
f(w1, w2, w3) := sin [ew1+w2 + w2w3] is shown in Fig.2.11.

CHAPTER 2. NEURAL NETWORKS 120

Consider a computational graph for f ∈ C1(RN) with K + N vertices and
associated variables z := (v, w) ∈ RK × RN enumerated such that zi only
depends on zj with j > i. More specifically, for vertex i ∈ V := {1, . . . ,K +N}
we separate the adjacent vertices into

α(i) := {j ∈ V |i← j} incoming edges at i,
β(i) := {j ∈ V |i→ j} outgoing edge at i.

Then j ∈ α(i) only if j > i. To any i ≤ K we assign a function fi ∈ C1(RK ×
RN) that depends only on zj if j ∈ α(i) and governs the relation zi = f(z). In
the example in Fig.2.11 the fi’s are written in gray right of the vi’s. Setting
F (z) := z1 and H(z) := (fi(z)− zi)Ki=1 we see that

f(w) = F (v, w) subject to H(v, w) = 0. (2.41)

For computing the derivative of f this form is now amenable to Prop.2.13, which
leads to:

Theorem 2.16: Algorithmic differentiation

Consider a function f ∈ C1(RN) with an associated computational graph
as described above. The j’th component of the gradient of f at w is given
by

∂jf(w) =

K∑

i=1

λi∂j+Kfi(z), (2.42)

where z is determined by a forward-pass of w through the computational
graph and λ can be determined recursively through a backward-pass via

λj =
∑

i∈β(j)

λi∂jfi(z), with λ1 = 1. (2.43)

Proof. In order to be able to apply Prop.2.13, we need to check that D1H(v, w)
is invertible. To this end, the chosen convention for the order of the variables
turns out to be useful since for i, j = 1, . . . ,K we have that ∂jHi(z) equals −1 if
i = j and it is 0 if i > j. Hence, D1H(v, w) is represented by a triagonal matrix
with non-zero diagonals. It is thus invertible and Prop.2.13 can be applied.

F (v, w) = v1 implies that D2F (v, w) = 0 so that Eq.(2.38) becomes

Df(w) = λTD2H(v, w),

which is Eq.(2.42). In the this context, the implicit equation Eq.(2.39) for the
Lagrange multipliers reads

0 = ∂jz1 +

K∑

i=1

λi∂j
(
fi(z)− zi

)
.

Exploiting that ∂jzi = δj,i and that ∂jfi(z) 6= 0 only if i ∈ β(j) then gives
Eq.(2.43).

CHAPTER 2. NEURAL NETWORKS 121

Let us now analyze Thm.2.16 w.r.t. the computational effort that is required
for computing the gradient ∇f(w). We will do this in a rather vague manner by
only considering the scaling w.r.t. N . There are two major computational parts:
the forward-pass, in which the components of z are computed and stored, and
the backward-pass, which yields the components of λ. Both follow essentially
the same graph, albeit in different directions.

For the analysis we make three assumptions: (i) we regard the computation
of the partial derivatives of the fi’s as elementary steps, on the same level
as the evaluation of the fi’s, (ii) we assume that the maximal degree of the
computational graph is a constant that does not increase with N and (iii) the
number of intermediate variables should be O(N). Under these assumptions
both forward and backward pass require O(N) elementary steps and so does
the computation of the gradient.

An interesting consequence of this observation is the following. If g ∈
C2(RN) has a computational graph of size O(N), then for any w′ ∈ RN the
function f(w) := 〈w′,∇g(w)〉 has a computational graph of size O(N) as well.
Applying the above reasoning again to f , we see that ∇f(w) with components

∂jf(w) =

N∑

i=1

w′i∂i∂jg(w) (2.44)

can be computed in O(N) steps. Eq.(2.44), however, is nothing but the product
of the Hessian of g at w with an arbitrary vector w′. Clearly, this argument can
iteratively be applied to higher derivatives as long as we only consider products
with fixed vectors. Needless to say, the full Hessian for instance already requires
N2 elements to be specified.

2.9 Gradient descent and descendants
This section is a first excursion into optimization theory. Motivated by but not
restricted to the training of neural networks, we will have a look at iterative
optimization methods that can be regarded as descendants of the gradient de-
scent method. The common strategy of these methods for minimization of a
function f : Rd → R is as follows. Start at a randomly/cleverly chosen point
x0 ∈ Rd and then step-by-step move along a path given by xt+1 = xt + ∆t

that is iteratively constructed and ideally ‘descending’ regarding the value of
the function. Here, the increment ∆t depends on (stochastic approximations
of) local properties of the function at xt and, in some cases, on the history of
the path up to that point. The central ‘local property’ is the gradient of the
function at xt. Using higher order derivatives is in principle beneficial, but the
computational costs per step often exceed the feasibility limit if the problem at
hand is very high-dimensional (especially, if d� 105)6.

Gradient descent and its descendants are ideally suited for the realm of high
dimensions. The main reason for this is that its oracle complexity is essentially

6Neural networks are trained with currently up to d ∼ 1011 parameters.

CHAPTER 2. NEURAL NETWORKS 122

dimension-free. That is, the number of times the gradient (or function value)
has to be computed before convergence is achieved up to some accuracy ε, is
essentially independent of the dimension. In fact, all bounds that are derived
in this section are independent of d. They do involve constants characterizing
continuity or convexity properties of the function and, of course, those may
implicitly depend on the dimension. Also the cost of each evaluation of the
function or of its gradient depends on d. In contrast to other methods (such
as interior point or ellipsoid methods, which when applicable would have much
faster convergence) gradient descent techniques, however, do not add additional
dimension factors.

Steepest descent Before going into details, let us consider different choices
for the increment ∆t from a more distant perspective. Assuming differentia-
bility, we can approximate the function in a neighborhood around a point x
as

f(x−∆) ' f(x) + 〈∆,∇f(x)〉.

Aiming at a descending path, a reasonable choice for the increment ∆ is thus
one that minimizes the inner product with the gradient. This will determine the
direction of steepest descent. Bounding the step size by α > 0, which is ideally
chosen so that the linear approximation is still reasonably good, this means

∆ = argmin
{
〈∆,∇f(x)〉

∣∣ ||∆|| ≤ α
}
. (2.45)

At this point, we have to choose the norm (or even a more general normalizing
functional) that constrains ∆. Suppose we choose ||x|| := 〈x, Px〉1/2 for some
positive definite matrix P . Then

∆ = − αP−1∇f(x)

||P−1∇f(x)||
(2.46)

solves the minimization problem. If P = 1, which means that || · || = || · ||2 is the
Euclidean norm, then ∆ equals the step size times the negative gradient. This
is the choice made in the gradient descent method. However, the Euclidean
norm may not be the most natural or most relevant choice. For instance, if
we regard the constraint due to α as a guarantee for the quality of the linear
approximation, then the norm where P equals the Hessian of f at x seems
to be more appropriate. In fact, this is the choice made in Newton’s method.
Other choices can be well-motivated as well. Having in mind generalization,
regularization or sparsity, one may for instance want to have preferred directions,
which are then reflected in the chosen normalizing functional. We will, however,
now close this door again and have a closer look at the relatives of gradient
descent, where the Euclidean norm lies beneath the update rule xt+1 = xt −
α∇f(xt).

Gradient descent For gradient descent to become a meaningful algorithm,
the gradient should not be too wild. One way to formalize this is to demand

CHAPTER 2. NEURAL NETWORKS 123

the gradient to be Lipschitz continuous. The following Lemma summarizes two
central implications of this assumption.

Lemma 2.14. Let x, y ∈ Rd and f ∈ C1(Rd) be such that ∇f is L-Lipschitz.
Then the following holds with the norm induced by the inner product:

1.
∣∣f(x)− f(y)− 〈∇f(x), x− y〉

∣∣ ≤ L
2 ||x− y||

2.

2. If f is convex: f(x)− f(y)− 〈∇f(x), x− y〉 ≤ − 1
2L ||∇f(y)−∇f(x)||2.

Note: The first inequality shows how the function can be bounded by a
quadratic function. The second inequality can be regarded as a strengthening
of the convexity condition. In fact, if we set the r.h.s. of the second inequality
to zero (L = ∞), then validity of the inequality for all x, y is equivalent to
convexity of f . Geometrically, this is the tangent plane lying below the graph.

Proof. 1. By the fundamental theorem of calculus, we can write f(x)− f(y) =∫ 1

0
〈∇f

(
y + t(x − y)

)
, x − y〉dt. With the help of Cauchy-Schwarz and the

Lipschitz-property of the gradient, this leads to

∣∣f(x)− f(y)− 〈∇f(x), x− y〉
∣∣ ≤

∫ 1

0

∣∣∣〈∇f
(
y + t(x− y)

)
−∇f(x), x− y〉

∣∣∣dt

≤
∫ 1

0

‖∇f
(
y + t(x− y)

)
−∇f(x)‖ ‖x− y‖dt

≤
∫ 1

0

tL‖x− y‖2dt =
L

2
‖x− y‖2.

2. To prove the second inequality, we introduce the auxiliary variable z :=
y + (∇f(x)−∇f(y))/L. Then

f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

≤ 〈∇f(x), x− z〉+ 〈∇f(y), z − y〉+
L

2
||z − y||2

= 〈∇f(x), x− y〉 − 1

2L
||∇f(x)−∇f(y)||2, (2.47)

where the step to the second line used convexity of f for the first two terms and
exploited the just proven inequality 1. to bound f(z)− f(y).

If we insert x = xt and y = xt+1 = xt−α∇f(xt) into inequality 1. of Lemma
2.14, we obtain, after collecting terms

f(xt)− f(xt+1) ≥ α
(

1− αL

2

)
||∇f(xt)||2. (2.48)

Assuming that the gradient is not vanishing, the r.h.s. of Eq.(2.48) is posi-
tive, which means that gradient descent is indeed descending, if α ∈ (0, 2/L).
Furthermore, it is maximal when α = 1/L. If the update rule would be

CHAPTER 2. NEURAL NETWORKS 124

xt+1 = xt − P∇f(xt) for some positive matrix P , then the operator norm
||P ||∞ would play the role of α and ||P ||∞ ∈ (0, 2/L) would imply monotonic-
ity. We will, however, not pursue this direction further and stick to the standard
update. The following theorem collects the implications of Eq.(2.48). It shows,
in particular, that under reasonable assumptions gradient descent converges to
a stationary point.

Theorem 2.17: Gradient descent - convergence to stationarity

Let f ∈ C1(Rd) have L-Lipschitz gradient and consider the sequence
xt+1 = xt − α∇f(xt) for some α ∈ (0, 2/L) and x0 ∈ Rd. Then

1. f(xt+1) < f(xt) unless ∇f(xt) = 0.

2. If f is bounded from below, then ∇f(xt)→ 0 for t→∞.

3. If f attains a minimum at x∗ and we choose α = 1/L, then for all
T ∈ N:

min
t<T
||∇f(xt)||2 ≤

2L
(
f(x0)− f(x∗)

)

T
. (2.49)

Proof. 1. follows immediately from Eq.(2.48). In order to arrive at 2. and 3.
we take the sum

∑T−1
t=0 over Eq.(2.48). Then

f(x0)− f(xT) ≥ α

(
1− αL

2

) T−1∑

t=0

||∇f(xt)||2

≥ α

(
1− αL

2

)
T min
t<T
||∇f(xt)||2.

By assumption, the l.h.s. in the first line is uniformly bounded for all T . So we
can take the limit T →∞ and observe that the r.h.s. can only remain bounded
if ∇f(xt)→ 0. 3. follows from f(xT) ≥ f(x∗) when inserting α = 1/L.

In order to obtain results that are stronger than mere (and rather slow)
convergence towards a stationary point, we need stronger assumptions. An
often made assumption is strong convexity (see Def.1.31). An alternative and
slightly more general condition is the Polyak-Łojasiewicz inequality for some
µ > 0:

∀x ∈ Rd :
1

2
||∇f(x)||2 ≥ µ

(
f(x)− f(x∗)

)
, (2.50)

where f : Rd → R is supposed to attain a global minimum at x∗. Note that
the validity of this inequality for µ > 0 implies that every stationary point is a
global minimum. The condition is independent of convexity7, but it is implied
by µ-strong convexity:

7For instance, x 7→ x2 + 3(sinx)2 is not convex but satisfies Eq.(2.50) with µ = 1/32 and,
on the other side, x 7→ |x| is convex but does not satisfy Eq.(2.50) for any µ > 0.

CHAPTER 2. NEURAL NETWORKS 125

Lemma 2.15 (Polyak-Łojasiewicz from strong convexity). If there is a µ > 0
for which f : Rd → R is µ−strongly convex, then Eq.(2.50) holds for every
subgradient.

Note: recall that v ∈ Rd is a subgradient of f at x iff

∀y ∈ Rd : f(y) ≥ f(x) + 〈v, y − x〉. (2.51)

If f is convex and continuous, then at every point x the set of subgradients is
non-empty. If it is in addition differentiable at x, then the subgradient at x is
unique and given by the gradient ∇f(x). Where convenient, we will use the
notation ∇f(x) also for subgradients in the non-differentiable case.

Proof. By definition f is µ-strongly convex iff the map x 7→ f(x)− µ||x2||/2 is
convex. Applied to this map, Eq.(2.51) reads

f(y) ≥ f(x) +
µ

2
||x− y||2 + 〈∇f(x), y − x〉. (2.52)

Minimizing both sides w.r.t. y then gives f(x∗) ≥ f(x)−||∇f(x)||2/(2µ), which
is the Polyak-Łojasiewicz inequality.

Theorem 2.18: Gradient descent - exponential convergence

Let f ∈ C1(Rd) satisfy the Polyak-Łojasiewicz inequality in Eq.(2.50) for
some µ > 0, have L−Lipschitz gradient and a global minimum attained
at x∗. For α ∈ [0, 2/L] and x0 ∈ Rd the sequence xt+1 := xt − α∇f(xt)
satisfies for all T ∈ N:

f(xT)− f(x∗) ≤
(

1 + αµ(αL− 2)
)T (

f(x0)− f(x∗)
)

(2.53)

=
(

1− µ

L

)T (
f(x0)− f(x∗)

)
, for α = 1/L.

Note: Depending on the community this type of convergence is called linear,
exponential or geometric convergence.

Proof. We begin with applying inequality 1. from Lemma 2.14 and inserting
the update rule. Then

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
||xt+1 − xt||2

= f(xt)− α(1− αL/2) ||∇f(xt)||2

≤ f(xt) + αµ(αL− 2)
(
f(xt)− f(x∗)

)
, (2.54)

where the last step used the Polyak-Łojasiewicz condition. Subtracting f(x∗)
from both sides of the inequality and applying it recursively then leads to the
claimed result.

CHAPTER 2. NEURAL NETWORKS 126

Note that the speed of convergence in this bound is governed by L/µ. If
f ∈ C2, then locally L/µ corresponds to the condition number of the Hes-
sian. So, loosely speaking, the better the Hessian is conditioned, the faster the
convergence. Note that also Newtons methods appears well-motivated in this
light, since it aims at minimizing the condition number of the Hessian by locally
transforming it to the identity matrix. In fact, in this way, Newton’s method
achieves super-exponential convergence.

Stochastic gradient descent We will now consider variants of the stochastic
gradient descent method, where the gradient is replaced by a stochastic approx-
imation. This is no longer a strict ‘descent’, since the direction of the increment
now becomes a random variable, which is only proportional to the gradient on
average.

Theorem 2.19: Stochastic gradient descent - fixed step size

Let f ∈ C1(Rd) satisfy the Polyak-Łojasiewicz inequality in Eq.(2.50) for
some µ > 0, have L−Lipschitz gradient and a global minimum attained at
x∗. For any T ∈ N, x ∈ Rd let g1(x), . . . , gT (x) be i.i.d. random variables
with values in Rd such that E[gt(x)] = ∇f(x). With x0 ∈ Rd consider
the sequence xt+1 := xt − αgt(xt).

1. If ∀x, t : E
[
||gt(x)||2

]
≤ γ2 and α ∈ [0, 1/(2µ)], then

E
[
f(xT)

]
− f(x∗) ≤ (1− 2µα)T

(
f(x0)− f(x∗)

)
+
Lα2γ2

4µ
. (2.55)

2. If ∀x, t : E
[
||gt(x)||2

]
≤ β2||∇f(x)||2 and α = 1/(Lβ2), then

E
[
f(xT)

]
− f(x∗) ≤

(
1− µ

Lβ2

)T (
f(x0)− f(x∗)

)
. (2.56)

Proof. We begin as in the proof of Thm.2.18 and insert the update rule into
inequality 1. from Lemma 2.14. In this way, we obtain

f(xt+1) ≤ f(xt)− α〈∇f(xt), gt(xt)〉+ α2L||gt(xt)||2/2.

Next, we take the expectation value w.r.t. gt conditioned on fixed g1, . . . , gt−1:

Egt

[
f(xt+1)

]
≤ f(xt)− α||∇f(xt)||2 + α2LEgt

[
||gt(xt)||2

]
/2. (2.57)

In order to prove Eq.(2.55) we proceed with bounding the last term in Eq.(2.57)
in terms of γ2 and the second term using the Polyak-Łojasiewicz inequality.
Subtracting f(x∗) from both sides of the inequality and taking the expectation
value also w.r.t. g1, . . . , gt−1 then leads to

E
[
f(xt+1)− f(x∗)

]
≤ E

[
f(xt)− f(x∗)

]
(1− 2µα) + α2Lγ2/2.

CHAPTER 2. NEURAL NETWORKS 127

Figure 2.12: Whereas gradient descent (left) with step size 1/L always converges
to a stationary point (see Thm.2.17), stochastic gradient descent (right) with
constant step size can only be expected to converge towards a region, depicted
by the yellow ellipsoid, around a critical point (see Eq.(2.55)).

Now we can apply the resulting inequality recursively, so that with T = t+ 1:

E
[
f(xT)− f(x∗)

]
≤
(
f(x0)− f(x∗)

)
(1− 2µα)T +

α2Lγ2

2

T−1∑

k=0

(1− 2µ)k,

which, after upper bounding the sum by the geometric series, becomes Eq.(2.55).
To obtain Eq.(2.56) we proceed similarly from Eq.(2.57), but now bound

the last term in terms of β2||∇f(xt)||2 and then apply the Polyak-Łojasiewicz
inequality. Again, we subtract f(x∗) from both sides of the resulting inequality
and take the expectation value w.r.t. the remaining random variables. This
leads to

E
[
f(xt+1)− f(x∗)

]
≤ E

[
f(xt)− f(x∗)

](
1− µα(2− Lαβ2)

)
,

which can be iterated and then leads to Eq.(2.56) after inserting α = 1/(Lβ2).

Eq.(2.55) exhibits a central aspect of stochastic gradient descent: a fragile
relation between the speed of convergence on large scales and the prevention of
convergence by stochastic noise. One the one hand, the first term on the r.h.s. in
Eq.(2.55) motivates a large steps size that guarantees fast convergence. The sec-
ond term, on the other hand, shows that beyond a certain value, which grows
with the step size, there is no convergence anymore. This is where stochas-
tic noise dominates (cf. Fig.2.12). In the second statement of the theorem,

CHAPTER 2. NEURAL NETWORKS 128

Eq.(2.56), by assumption, the stochastic noise gets suppressed more and more
when coming closer to the minimum. This implies that all stochastic gradients
have to vanish simultaneously at the minimum. As this is an extremely strong
(and typically unjustified) assumption, we will not pursue it further after having
mentioning that the two cases can easily be combined into one assuming that
∀x, t : E

[
||gt(x)||2

]
≤ β2||∇f(x)||2 + γ2.

Eq.(2.55) is consistent with a heuristic strategy that is often used in practice:
use constant step size for a long time (until stochastic noise prevents progress),
then halve the step size and iterate this procedure.

The next theorem shows that appropriately decreasing the step size can
indeed guarantee convergence when the function is convex. For this, neither
differentiability nor the Polyak-Łojasiewicz condition are necessary. The state-
ment is proven under the additional constraint, that the path remains inside a
given compact convex set.

Theorem 2.20: Stochastic subgradient descent

Let PC : Rd → C be the projection onto a compact convex set C ⊂ Rd
with diameter δ (i.e., x, y ∈ C ⇒ ||x − y||2 ≤ δ) and let f : C → R be
convex with global minimum at x∗ ∈ C. For any T ∈ N and x ∈ Rd
let g1(x), . . . , gT (x) be i.i.d. random variables so that E[gt(x)] is any
subgradient ∇f(x) of f at x and E[||gt(x)||2] ≤ γ2. Let α ∈ RT be
s.t. 0 ≤ αt ≤ αt−1 and consider a sequence starting at x0 ∈ Rd and
defined by xt := PC

(
xt−1 − αtgt(xt−1)

)
. Then x := 1

T

∑T−1
t=0 xt satisfies

E
[
f(x)

]
≤ f(x∗) +

1

2T

(
δ2

αT
+ γ2

T∑

t=1

αt

)
and

≤ f(x∗) +

√
2

T
δγ for αt :=

δ√
2tγ

. (2.58)

Proof. We first use that PC , being a projection, is norm non increasing, i.e.,
in particular ||xt − x∗||2 ≤ ||xt−1 − x∗ − αtgt(xt−1)||2. Taking the expectation
w.r.t. gt we obtain for fixed g1, . . . , gt−1:

Egt

[
||xt − x∗||2

]
≤ ||xt−1 − x∗||2 − 2αt〈∇f(xt−1), xt−1 − x∗〉+ α2

tγ
2

≤ ||xt−1 − x∗||2 − 2αt
(
f(xt−1)− f(x∗)

)
+ α2

tγ
2,

where we used E[||gt(x)||2] ≤ γ2 and the last inequality exploited the subgradi-
ent inequality, Eq.(2.51). Taking the expectation also w.r.t. to g1, . . . , gt−1 we
can rewrite the resulting inequality as

E
[
f(xt−1)

]
− f(x∗) ≤ γ2

2
αt +

1

2αt
E
[
||xt−1 − x∗||2 − ||xt − x∗||2

]
. (2.59)

CHAPTER 2. NEURAL NETWORKS 129

As an intermediate step, consider the sum

T∑

t=1

1

αt

(
||xt−1 − x∗||2 − ||xt − x∗||2

)

=
1

α1
||x0 − x∗||2 −

1

αT
||xT − x∗||2 +

T∑

t=2

(
1

αt
− 1

αt−1

)
||xt−1 − x∗||2

≤ δ2

α1
+ δ2

T∑

t=2

(
1

αt
− 1

αt−1

)
=

δ2

αT
, (2.60)

where the inequality uses that the αt’s are positive and non-increasing together
with the finite diameter of the set C that contains all considered points. Using
convexity of f in combination with Eq.(2.59) and Eq.(2.60) we obtain

E
[
f(x)

]
≤ 1

T

T∑

t=1

E[f(xt−1)]

≤ f(x∗) +
1

2T

(
δ2

αT
+ γ2

T∑

t=1

αt

)
.

Finally, after inserting αt = δ/(
√

2tγ), we can simplify the expression by using
that

∑T
t=1 t

−1/2 ≤
∫ T

0
t−1/2dt = 2

√
T , which then leads to Eq.(2.58).

Theorem 2.21: Gradient descent - strongly convex case

Assume that f ∈ C1(Rd) is µ-strongly convex, attains a minimum at x∗
and is such that ∇f is L−Lipschitz. With x0 ∈ Rd and α ∈ (0, 2/(L+µ)]
consider the sequence given by xt+1 = xt − α∇f(xt). Then for all t ∈ N:

||xt − x∗||2 ≤
(

1− 2αLµ

L+ µ

)t
||x0 − x∗||2. (2.61)

Moreover, with κ := L/µ and the choice α = 2/(L+ µ):

f(xt)− f(x∗) ≤ L

2

(
κ− 1

κ+ 1

)2t

||x0 − x∗||2. (2.62)

Proof. Consider the auxiliary function g(x) := f(x)−µ||x||2/2. g is convex and
its gradient ∇g(x) = ∇f(x) − µx is (L − µ)−Lipschitz. Hence, we can apply
inequality 2. from Lemma 2.14. Applying this also with the roles of x ↔ y
interchanged and adding the two resulting inequalities leads to

〈∇g(x)−∇g(y), x− y〉 ≥ 1

L− µ
||∇g(x)−∇g(y)||2,

CHAPTER 2. NEURAL NETWORKS 130

which, when inserting the definition of g and after rearranging terms, becomes

〈∇f(x)−∇f(y), x− y〉 ≥ 1

L+ µ
||∇f(x)−∇f(y)||2 +

Lµ

L+ µ
||x− y||2.

This is now utilized together with ∇f(x∗) = 0 to bound

||xt+1 − x∗||2 = ||xt − α∇f(xt)− x∗||2

= ||xt − x∗||2 + α2||∇f(xt)||2 − 2α〈∇f(xt), xt − x∗〉

≤
(

1− 2αLµ

L+ µ

)
||xt − x∗||2 + α

(
α− 2

L+ µ

)
||∇f(xt)||2.

As α ∈ (0, 2/(L + µ)], the second term in the last line is negative or zero and
can thus be dropped from the inequality. Iterating the resulting inequality then
leads to Eq.(2.61). In order to arrive at the second statement, note first that
we can use inequality 1. in Lemma 2.14 together with ∇f(x∗) = 0 to conclude
that

f(xt)− f(x∗) ≤ L

2
||xt − x∗||2.

Inserting Eq.(2.61) and the choice α = 2/(L+ µ) then completes the proof.

2.10 (Un)reasonable effectiveness—optimization
We begin with two examples that show how hard problems can arise—even in
the absence of a complex architecture and without a large number of non-global
minima or saddle points.

NP-hardness of empirical risk minimization Consider an arbitrary graph
G = (V,E) whose vertices are numbered so that V = {1, . . . , d}. Assign a set
SG ∈

{
{0, 1}|V | ×{0, 1}

}n with n := |V |+ |E|+ 1 to the graph in the following
way: denoting by ei ∈ {0, 1}|V | the unit vector whose i’th component is equal
to one, we set SG = {(ei, 0), (ei + ej , 1), (0, 1)}i∈V,(i,j)∈E .

Recall that G is called 3-colorable iff there exists a map χ : V → {1, 2, 3}
with the property that (i, j) ∈ E ⇒ χ(i) 6= χ(j). That is, there is an assignment
of ’colors’ to vertices such that no pair connected by an edge has the same color.

Proposition 2.16. Consider feedforward neural networks with d inputs, a sin-
gle hidden layer with three neurons and a single output neuron. Assume all
activation functions are σ(z) = 1z≥0 and that the output neuron has all weights
and the threshold fixed so that it acts as x 7→ σ(

∑3
i=1(xi−1)). Let Fd ⊆ {0, 1}R

d

be the function class that can be represented by such networks. Then for any
graph G with d vertices there is an f ∈ Fd that correctly classifies SG iff G is
3-colorable.

Proof. Note first that the output neuron is set up so that it ‘fires’ iff all three
hidden neurons do so. Assume G is 3-colorable via χ : V → {1, 2, 3}. Choose

CHAPTER 2. NEURAL NETWORKS 131

the weight wl,i that connects the i’th input and the l’th hidden neuron so that
wl,i = −1 if χ(i) = l and wl,i = 1 otherwise. The threshold values of the
three hidden neurons are all set to 1/2, which leads to an f ∈ Fd that can be
characterized by

f(x) = 1 ⇔ ∀l ∈ {1, 2, 3} :
∑

k

wl,kxk ≥ −
1

2
.

Now we have to verify that f correctly classifies SG. Clearly, f(0) = 1. It also
holds that f(ei) = 0 since if χ(i) = l, then wl,i = −1 so that

∑
k wl,k(ei)k =

wl,i 6≥ −1/2. In order to verify f(ei + ej) = 1 for all (i, j) ∈ E, note that for
any l ∈ {1, 2, 3} we have χ(i) 6= l ∨ χ(j) 6= l since χ is a coloring. Therefore∑
k wl,k(ei + ej)k = wl,i + wl,j is non-negative for all l.
Let us now show the converse implication and assume that there is an f ∈ Fd

that correctly classifies SG. Associating a half space Hl to each of the hidden
Perceptrons we can express this assumption as f−1({1}) = H1 ∩H2 ∩H3 =: H
where 0 ∈ H, ∀(i, j) ∈ E : ei + ej ∈ H and ∀i ∈ V : ei 6∈ H. We define
χ(i) := min{l|ei 6∈ Hl} and claim that this is a 3-coloring. First note that due
to convexity ofH and the fact thatH contains the origin, we have (ei+ej)/2 ∈ H
for every edge (i, j) ∈ E. Suppose, aiming at a contradiction, that there would
be an edge for which χ(i) = χ(j) = l. Then since ei, ej 6∈ Hl this would, again
by convexity, imply that (ei + ej)/2 6∈ Hl – a contradiction.

Via reduction from 3-SAT, the 3-coloring problem is known to be NP-
complete. Hence, the above Proposition shows that (NP-)hard problems can
already be found in instances of empirical risk minimization for neural net-
works with very simple architecture. However, admittedly, the example is of
combinatorial nature and uses an activation function that has been practically
abandoned—essentially for this reason. So let us consider a ‘smoother’ problem
...

NP-hardness of classifying stationary points An instructive example for
understanding, when and which problems can be hard, is given by homogeneous
quartic polynomials. For a symmetric matrix Q ∈ Zd×d, define f : Rd → R as

f(x) :=

d∑

i,j=1

Qi,jx
2
ix

2
j . (2.63)

At x = 0 both the gradient and the Hessian of f are zero. Hence, x = 0 is
a stationary point, but the Hessian does not provide any information about
whether it is a minimum, maximum or merely a saddle point. We do know,
however, that there is a global minimum at x = 0 if there is a local minimum:
suppose it not global, i.e., there is an x with f(x) < 0, then R 3 λ 7→ f(λx) =
λ4f(x) shows that it cannot be a local minimum, either. Moreover, it shows
that f is unbounded from below iff 0 is not a local minimum. Consequently, the
two following problems are equivalent:

CHAPTER 2. NEURAL NETWORKS 132

P1 Does f have a saddle point at 0 that is not a local minimum?

P2 Is f unbounded from below?

A negative answer to both these questions is a property of the matrix Q that
is called copositivity. That is, Q is copositive by definition if 〈z,Qz〉 ≥ 0 for all
entrywise non-negative z. By relating the problem to one (e.g. the subset-sum
problem) that is known to be NP complete, one can prove that showing that Q is
not copositive is NP complete as well [?]. Hence, despite the apparent simplicity
of f , both P1 and P2 are NP-complete problems. Note that the hardness in this
case does not come from a large number of non-global minima or saddle points.
It is simply the growing dimension that makes the problem hard.

Saddle points

Lemma 2.17 (Center-stable manifold theorem [?, ?]). Let g : Rd → Rd be a
local C1-diffeomorphism with fixed point z = g(z). Let the Jacobian Dg(z) have
k eigenvalues (counting algebraic multiplicities) of modulus less than or equal to
one. Then there is a k−dimensional manifold Wz ⊆ Rd and an open ball Bz
around z s.t. g(Wz) ∩ Bz ⊆ Wz and if gt(x) ∈ Bz holds for all t ∈ N0, then
x ∈Wz.

Wz is called center-stable manifold.

Lemma 2.18 (Gradient descent update is a diffeomorphism). Let f ∈ C2(Rd)
be such that ∇f is L-Lipschitz w.r.t. the Euclidean norm. If α ∈ (0, 1/L), then
g(x) := x− α∇f(x) defines a C1-diffeomorphism on Rd.

Proof. We first prove injectivity. Suppose g(x) = g(y), which is equivalent to
(x− y)/α = ∇f(x)−∇f(y). Taking norms and using the Lipschitz property of
the gradient, this implies ||x− y||/α ≤ L||x− y||. Since 1/α > L this can only
hold if x = y. So g is injective.

It remains to show that g, which is C1 by construction, is a local C1-
diffeomorphism. To this end, note first that ∇f being L-Lipschitz is equivalent
to ∀x : ∇2f(x) ≤ L1, i.e., the eigenvalues of the Hessian being not larger than L.
This implies that the Jacobian of g, which is Dg(x) = 1−α∇2f(x) is invertible.
By the inverse function theorem, g is thus a local C1-diffeomorphism.

Theorem 2.22: Almost no convergence to strict saddle points

Let f ∈ C2(Rd) be such that ∇f is L-Lipschitz w.r.t. the Euclidean norm
and define g(x) := x − α∇f(x) for some α ∈ (0, 1/L). Let S ⊆ Rd be
the set of stationary points of f for which the Hessian has at least one
negative eigenvalue. Then S∞ := {x ∈ Rd|∃z ∈ S : limt→∞ gt(x) = z}
has Lebesgue measure zero.

CHAPTER 2. NEURAL NETWORKS 133

Proof. First note that if z ∈ S is such a stationary point, then the Jacobian
Dg(z) has strictly less than d eigenvalues of modulus at most one. Consequently,
the manifold Wz that corresponds to z in the center-stable manifold theorem
(Lemma 2.17) has reduced dimension. Define B :=

⋃
z∈S Bz with the balls from

Lemma 2.17. By the Lindelöf covering theorem, there is a countable subcover.
That is, there exist zi ∈ S so that S ⊆ B =

⋃
i∈NBzi . If gt(x) converges to

z ∈ S, then z ∈ Bzi for some zi ∈ S and there is a τ ∈ N so that for all
t ≥ τ we have that gt(x) ∈ Bzi . Therefore, by Lemma 2.17, gτ (x) ∈ Wzi ,
which means that x ∈ g−τ (Wzi). Arguing like this for all x ∈ S∞ we obtain
S∞ ⊆

⋃
i∈N

⋃
τ∈N g

−τ (Wzi). This is a countable union of sets of measure zero
(as the differentiable map g−τ maps nullsets to nullsets), so it has measure zero
as well.

Non-global minima ... to be written ...

Chapter 3

Kernel methods

3.1 Linear maximal margin separators
Separable case. Consider a real Hilbert space H and a training data set S =(
(xi, yi)

n
i=1

)
∈
(
H×{−1, 1}

)n. Suppose the two subsets of points corresponding
to the labels ±1 can be separated by a hyperplane H. That is, there are w ∈ H
and b ∈ R that characterize the hyperplane via H = {x ∈ H | 〈w, x〉 + b = 0}
so that ∀i : sgn

(
〈w, xi〉+ b

)
= yi. If there is no point exactly on the hyperplane

this is equivalent to
yi
(
〈w, xi〉+ b

)
> 0 ∀i. (3.1)

The separating hyperplane is not unique and the question arises, which separat-
ing hyperplane to choose. The standard approach in the support vector machine
(SVM) framework is to choose the one that maximizes the distance to the closest
points on both sides. In order to formalize this, we need the following Lemma.

Lemma 3.1 (Distance to a hyperplane). Let H be a Hilbert space and H :=
{z ∈ H | 〈z, w〉+b = 0} a hyperplane defined by w ∈ H and b ∈ R. The distance
of a point x ∈ H to H is given by

d(x,H) := inf
z∈H
||x− z|| = |〈x,w〉+ b|

||w||
. (3.2)

Proof. Let us first determine the distance of an arbitrary hyperplane to the ori-
gin: since infz∈H ||z|| is attained for z = −bw/||w||2 we get that d(0, H) =
|b|/||w||. Using that translations are isometries, we can rewrite d(x,H) =
d(0, H − x) and apply the previous observation to the hyperplane H − x =
{z|〈z, w〉+ b′ = 0} with b′ := 〈x,w〉+ b.

Using Lemma 3.1 and Eq.(3.1) we can write the distance between a separat-
ing hyperplane and the closest point in S as

ρ := min
i
d(xi, H) =

mini yi
(
〈w, xi〉+ b

)

||w||
. (3.3)

134

CHAPTER 3. KERNEL METHODS 135

Figure 3.1: a) Red and blue points are separated by both hyperplanes. b) The
black hyperplane is the one that maximizes the margin ρ. If the two margin
hyperplanes are characterized by 〈w, x〉+ b = ±1, then ρ = 1/||w||.

ρ is called the margin of the hyperplane w.r.t. S and the aim is now to deter-
mine the hyperplane that maximizes the margin. To this end, note that there is
a scalar freedom in the characterization of the hyperplane: if we multiply both
w and b by a positive scalar, then the hyperplane is still the same and also the
margin does not change. We can now use this freedom to fix either the denom-
inator in Eq.(3.3) or the enumerator and in this way obtain two different albeit
equivalent constrained optimization problems. Constraining the denominator
for instance leads to

max
(b,w)

ρ = max
(b,w):||w||≤1

min
i

yi
(
〈w, xi〉+ b

)
.

Assuming that the sets of points that correspond to the two labels are not empty,
a maximum is attained since the closed unit ball in a Hilbert space is weakly
compact. So writing max instead of sup is indeed justified.

Alternatively, in order to obtain the hyperplane that maximizes the mar-
gin, we may use the mentioned scalar freedom to impose a constraint on the
enumerator in Eq.(3.3) and minimize the denominator ||w|| or, for later con-
venience, ||w||2/2, which leads to the same minimizer. That is, the maximal
margin hyperplane is the one that achieves the minimum in

min
(b,w)

1

2
||w||2 s.t. ∀i : yi

(
〈w, xi〉+ b

)
≥ 1. (3.4)

This is an optimization problem with strictly convex target function and affine
inequality constraints. Due to strict convexity the minimum is unique. We
further apply a standard tool from convex optimization:

Proposition 3.2 (Convex KKT). Let H be a real Hilbert space, {fi : H →
R}ni=0 a set of continuously differentiable convex functions and assume that
there is a z ∈ H for which fi(z) < 0 holds for all i = 1, . . . , n. Then for every
z̃ that satisfies fi(z̃) ≤ 0 for all i = 1, . . . , n the following are equivalent:

CHAPTER 3. KERNEL METHODS 136

1. f0(z̃) = minz∈H{f0(z) | fi(z) ≤ 0 ∀i = 1, . . . , n}.

2. There exist λi ≤ 0 so that

∇f0(z̃) =

n∑

i=1

λi∇fi(z̃) and (3.5)

λifi(z̃) = 0 ∀i = 1, . . . , n. (3.6)

Applying this to the optimization problem in Eq.(3.4) leads to the follow-
ing crucial insight: if w̃ corresponds to the maximal margin hyperplane, then
Eq.(3.5) implies w̃ =

∑n
i=1 yiλixi. That is, the minimizing w̃ is a linear combi-

nation of the training data points xi. In addition, Eq.(3.6), which in our case
reads λi

[
1 − yi

(
〈w̃, xi〉 + b

)]
= 0, implies that only those xi’s contribute for

which the i’th constraint is active. This means yi
(
〈w̃, xi〉 + b

)
= 1 so that the

corresponding xi is sitting on one of the two margin hyperplanes. These xi’s
are called support vectors.

Non-separable case Now we drop the assumption that the data is exactly
linearly separable. However, we still seek a predictor that is given in terms of
a hyperplane and that in some sense still has maximal margin. The difference
to the foregoing discussion is that we now allow for outliers that may either be
on the wrong side of the hyperplane or inside the margin. In order to formalize
this, one introduces slack variables ξi ≥ 0 that measure the extent to which
the i’th constraint is violated. In addition, one penalizes these violations in the
object function. This leads to the optimization problem

min
(b,w,ξ)

λ

2
||w||2 +

1

n

n∑

i=1

ξi

s.t. yi
(
〈w, xi〉+ b

)
≥ 1− ξi ∧ ξi ≥ 0 ∀i = 1, . . . n,

(3.7)

where λ > 0 is a free parameter that can be used to adjust the strength of the
penalty. There is some arbitrariness in how one penalizes large ξ. In Eq.(3.7)
we have essentially chosen the l1-norm of ξ. Another common choice would be
the l2-norm.

The optimization problem in Eq.(3.7) can be written as ERM problem w.r.t.
the so-called hinge loss Lhinge : R×R→ R+ that is defined as

Lhinge(y, y
′) := max{0, 1− yy′}.

The hinge loss provides an upper bound on the usually taken loss function
for binary classification in the sense that if y ∈ {−1, 1}, then 1y 6=sgn(h(x)) ≤
Lhinge(y, h(x)). Other noticeable properties are that y′ 7→ Lhinge(y, y

′) is convex
and w 7→ Lhinge(y, 〈w, x〉+ b) is ||x||-Lipschitz.

CHAPTER 3. KERNEL METHODS 137

Figure 3.2: a) Outliers (points that are either inside the margin corridor, or on
the wrong side) are penalized using slack variables ξi. b) The hinge loss (blue),
plotted for the case y = 1, is a convex upper bound for the 0-1-loss (red) that
is usually used for binary classification.

The optimization problem in Eq.(3.7) can now be written as

min
(b,w)

λ

2
||w||2 +

1

n

n∑

i=1

max
{

0, 1− yi
(
〈w, xi〉+ b

)}

= min
(b,w)

λ

2
||w||2 + R̂hinge(h), (3.8)

where h(x) := 〈w, x〉 + b. Note that Eq.(3.8) is a regularized ERM problem
without additional constraints.

Separation after embedding Rather than applying the optimization over
hyperplanes in Eqs.(3.4,3.8) directly to the data, the following pages aim at
developing tools for applying them after an embedding into a different, pos-
sibly infinite dimensional space. One of the motivations for doing this is to
obtain richer function classes: the separation by linear means after a non-linear
embedding is effectively a non-linear separation. In order to see that embed-
dings (into higher-dimensional spaces) can be beneficial, consider the example
in Fig.3.3. Here the interior of the Euclidean unit disc in R2 is to be separated
from the exterior. This becomes feasible by a hyperplane after the embedding
φ : R2 → R3, (x, y) 7→ (x, y, x2 + y2).

The embeddings φ that we discuss in the next sections often map into an
infinite dimensional space. In principle, this could severely complicate the op-
timizations over hyperplanes in Eqs.(3.4,3.8). Fortunately, however, the opti-
mization can be restricted to the subspace that is spanned by the images of the
data points under φ. This is the content of the following theorem:

CHAPTER 3. KERNEL METHODS 138

1

a) b)

Figure 3.3: a) Inside and outside of the unit disc in R2 can clearly not be
separated by linear means, i.e., via a hyperplane. b) After an embedding
φ : (x, y) 7→ (x, y, x2 + y2) the sets can be separated from each other by the
hyperplane that is characterized by the third coordinate z = 1.

Theorem 3.1: Representer theorem

Let H be a Hilbert space, g : R → R non-decreasing, f : Rn → R,
{x1, . . . , xn} ⊆ H, Hx := span{xi}ni=1 and F : H → R, F (w) := g(||w||) +
f(〈w, x1〉, . . . , 〈w, xn〉). Then

inf
w∈H

F (w) = inf
w∈Hx

F (w) (3.9)

and if g is strictly increasing, then every minimizer of the l.h.s. of Eq.(3.9)
is an element of Hx.

Proof. We use that H = Hx⊕H⊥x and that every w ∈ H admits a corresponding
decomposition of the form w = wx + v where wx ∈ Hx and v ∈ H⊥x . Then
〈w, xi〉 = 〈wx, xi〉 holds for all i and from Pythagoras we obtain

g(||w||) = g
(√
||wx||2 + ||v||2

)
≥ g(||wx||).

Here, strict inequality holds if g is strictly increasing and w 6= wx. Hence, the
claims follow by replacing w by wx in the argument of F .

3.2 Positive semidefinite kernels
Definition 3.3 (PSD kernel). Let K ∈ {R,C} and X be an arbitrary set. A
map K : X ×X → K is called positive semidefinite kernel (PSD kernel) iff for
all n ∈ N and all x ∈ Xn the n × n matrix G with entries Gij := K(xi, xj) is
positive semidefinite.

The terminology varies considerably throughout the literature. PSD kernels
also run under the names positive definite kernels, positive definite symmetric

CHAPTER 3. KERNEL METHODS 139

kernels, kernel functions or just kernels. Recall that a matrix G is positive
semidefinite iff G is hermitian, i.e., Gij = Ḡji, and G has only non-negative
eigenvalues. The latter condition can be replaced with

∀α ∈ Kn :

n∑

i,j=1

ᾱiαjGij ≥ 0. (3.10)

IfK = C, then Eq.(3.10) is necessary and sufficient for G to be positive semidef-
inite. The matrix G is sometimes called Gram matrix. This name is used for
matrices that are constructed from inner products – a relation that becomes
clearer in the following theorem:

Theorem 3.2: PSD kernels and feature maps

Let X be any set, K ∈ {R,C} and K : X ×X → K.

1. K is a PSD kernel, if there is an inner product space H and a map
φ : X → H so that

K(x, y) = 〈φ(x), φ(y)〉 ∀x, y ∈ X. (3.11)

2. Conversely, if K is a PSD kernel, then there exists a Hilbert space
H and a map φ : X → H so that Eq.(3.11) holds.

Note: the map φ is often called feature map and the inner product space H the
feature space.

Proof. 1. If K is of the form in Eq.(3.11), then for all α ∈ Kn and x ∈ Xn we
have

∑n
i,j=1 ᾱiαj〈φ(xj), φ(xi)〉 = 〈Φ,Φ〉 ≥ 0 where Φ :=

∑n
i=1 αiφ(xi). Her-

miticity of the respective matrix follows from hermiticity of the inner product.
2. Assume K to be a PSD kernel and define

H0 := span
{
kx : X → K | ∃x ∈ X : kx(y) = K(x, y)

}
(3.12)

the space of all finiteK-linear combination of functions of the form y 7→ K(x, y).
We aim at equipping this space with an inner product. For two arbitrary ele-
ments of H0 given by f(y) :=

∑
i αiK(xi, y) and g(y) :=

∑
j βjK(xj , y) define

〈f, g〉 :=
∑

i,j

αiβ̄jK(xi, xj)

=
∑

i

αig(xi) =
∑

j

β̄jf(xj),

where the second line shows that the definition is independent of the particular
decomposition of f or g. So 〈·, ·〉 is a well defined hermitian sesquilinear form
on H0. Moreover, since K is a PSD kernel, we have 〈g, g〉 ≥ 0 for all g ∈ H0.
Hence, the Cauchy Schwarz inequality holds. Applying it to

f(y) =
∑

i

αiK(xi, y) = 〈f, ky〉, (3.13)

CHAPTER 3. KERNEL METHODS 140

we obtain |f(y)|2 = |〈f, ky〉|2 ≤ 〈ky, ky〉〈f, f〉. This shows that 〈f, f〉 = 0 implies
f = 0 and thus 〈·, ·〉 is indeed an inner product. Note that if we apply Eq.(3.13)
to f = kx, we obtain

kx(y) = K(x, y) = 〈kx, ky〉. (3.14)
So if we denote by H the completion of the inner product space H0 and define
φ : X → H so that φ(x) is the isometric embedding of kx into H, then Eq.(3.14)
implies K(x, y) = 〈φ(x), φ(y)〉.

Proposition 3.4 (Building new PSD kernels). Let K ∈ {R,C}, K1,K2, . . .
PSD kernels on a set X and f ∈ KX . Then

1. K(x, y) := f(x)f(y) is a PSD kernel.

2. K(x, y) := λK1(x, y) is a PSD kernel for all λ ≥ 0.

3. K(x, y) := K1(x, y) +K2(x, y) is a PSD kernel.

4. K(x, y) := limn→∞Kn(x, y) is a PSD kernel, if the limits exist in K.

5. K(x, y) := K1(x, y)K2(x, y) is a PSD kernel.

Proof. In all cases hermiticity is rather obvious, so we only have a look at posi-
tive semidefiniteness. 1. K is PSD since

∑n
i=1 αiᾱjf(xi)f(xj) =

∣∣∑n
i=1 αif(xi)

∣∣2
is always positive. 2. and 3. are elementary consequences of the definition. 4. is
implied by the closedness of the set of PSD matrices, or more explicitly by pos-
itivity of

∑m
i=1 αiᾱjK(x, y) = limn→∞

∑m
i=1 αiᾱjKn(x, y) as a limit of positive

numbers. 5. follows from the fact the set of PSD matrices is closed under taking
element wise products (called Schur products or Hadamard products).

With these tools at hand, many kernels can easily be shown to be PSD.
Some of the most common examples are:

Example 3.1 (Polynomial kernels).On X = Rd any polynomial in 〈x, y〉 with
non-negative coefficients is a PSD kernel as a consequence of 2., 3. and 5.
in Prop. 3.4 together with the fact that (x, y) → 〈x, y〉 is (the paradigm
of) a PSD kernel. In particular, K(x, y) := (1 + 〈x, y〉)2 is a PSD kernel.
On R2 this can be obtained from the feature map φ(x) : R2 → R6, φ(x) :=
(x2

1, x
2
2,
√

2x1x2,
√

2x1,
√

2x2, 1). Like in this example, all polynomial kernels
have corresponding finite dimensional feature spaces.
Example 3.2 (Exponential kernels).For any γ > 0, K(x, y) := exp[γ〈x, y〉] is
a PSD kernel on X = Rd since it is a limit of polynomial kernels so that 4.
in Prop. 3.4 applies.
Example 3.3 (Gaussian kernels).The Gaussian kernel, a.k.a. RBF-kernel1 or
squared-exponential kernel, K(x, y) := exp

[
− γ

2 ||x−y||
2
]
with the Euclidean

norm is a PSD kernel on X = Rd for all γ > 0. To see this write

exp
[
− γ

2
||x− y||2

]
= exp[−γ||x||2/2] exp[−γ||y||2/2]︸ ︷︷ ︸

f(x)f(y)

exp[γ〈x, y〉]

1RBF=radial basis function

CHAPTER 3. KERNEL METHODS 141

and apply 1. and 5. of Prop. 3.4.
Example 3.4 (Binomial kernels).On X := {x ∈ Rd | ||x||2 < 1} K(x, y) :=(
1 − 〈x, y〉

)−p is a PSD kernel for any p > 0. This follows again from
the previous proposition by noting that for t ∈ (−1, 1) the binomial se-
ries (1 − t)−p =

∑∞
n=0(−1)n

(−p
n

)
tn has positive coefficients (−1)n

(−p
n

)
=

(−1)n
∏n
i=1(1− p− i)/i.

We will see in Sec.3.4 that, whereas polynomial kernels have finite dimen-
sional feature spaces, exponential, Gaussian and binomial kernels require infinite
dimensional feature space.

For later use, we will introduce a simplifying notation that makes it easier
to refer to Gram matrices of PSD kernels: if a ∈ Xn, b ∈ Xm, then we define
K(a, b) ∈ Kn×m the matrix with entries

(
K(a, b)

)
i,j

:= K(ai, bj). (3.15)

The combination of Eq.(3.11) with the representer theorem Thm.3.1 leads
to a powerful procedure called the kernel trick. This encapsulates the idea of
embedding the data into a larger, possibly infinite dimensional feature space
H, and expressing everything in terms of the kernel rather than using φ or
elements of H. If the functional to optimize has the right form, the representer
theorem then guarantees that all computation can be done within a space whose
dimension is equal to the number of data points.

3.3 Reproducing kernel Hilbert spaces
For a given PSD kernel, the corresponding feature map and feature space are not
unique. However, there is a canonical choice for the feature space, a so-called
reproducing kernel Hilbert space.

Definition 3.5 (Reproducing kernel Hilbert space). Let X be a set, K ∈ {R,C}
and H ⊆ KX a K-Hilbert space of functions on X with addition (f + g)(x) :=
f(x) + g(x) and multiplication (λf)(x) := λf(x). H is called a reproducing
kernel Hilbert space (RKHS) on X iff for all x ∈ H the linear functional δx :
H → K, δx(f) := f(x) is bounded (i.e., supf∈H\{0} |f(x)|/||f || <∞).

Note: Since δx is linear, boundedness is equivalent to continuity. That is,
the defining property of a RKHS is that evaluation of its functions at arbitrary
points is continuous w.r.t. varying the function.

Example 3.5.If X is countable, then l2(X) := {f ∈ KX |
∑
x∈X |f(x)|2 <

∞} equipped with 〈f, g〉 :=
∑
x∈X f(x)g(x) is a RKHS since for all x ∈ X

we have |f(x)| ≤
(∑

y∈X |f(y)|2
)1/2

= ||f ||. Hence, δx is bounded.
Example 3.6.L2([0, 1]) is not a RKHS. Since its elements are equivalence
classes of functions that differ on sets of measure zero, f(x) is not defined.
Even if we restrict to the subspace of continuous functions, where f(x) is

CHAPTER 3. KERNEL METHODS 142

defined, its magnitude is not bounded by imposing ||f || ≤ 1. So δx is not
bounded.
Since l2(N) and L2([0, 1]) are isomorphic, these two examples show that

Hilbert space isomorphisms do not necessarily preserve the RKHS property.
A crucial consequence of the continuity of δx in any RKHS is that one can

invoke the Riesz representation theorem. This states that every continuous
linear functional on a Hilbert space can be represented as inner product with a
unique vector. In particular, if H is a RKHS, then for every x ∈ X there is a
kx ∈ H so that f(x) = 〈f, kx〉 for all f ∈ H. Since inner products are always
continuous, this can be regarded as equivalent characterization of a RKHS. As kx
is an element of H and therefore a function on X, we can defineK : X×X → K,
K(x, y) := kx(y). K is called the reproducing kernel of the RKHS H. By
construction, this satisfies for every f ∈ H and x ∈ X that

f(x) = 〈f,K(x, ·)〉, (3.16)

which is called the reproducing property of K. Using that kx(y) can itself be
expressed in terms of an inner product with some element ky, we obtain

K(x, y) = 〈kx, ky〉. (3.17)

Before we relate reproducing kernel Hilbert spaces to PSD kernels, let us mention
some elementary properties:

Proposition 3.6. Let H ⊆ KX be a RKHS with reproducing kernel K and
kx(y) = K(x, y). Let f, fn ∈ H and δx(f) := f(x) for x ∈ X, f ∈ H. Then

1. For all x ∈ H we have ||δx||2 = K(x, x).

2. limn→∞ ||fn − f || = 0 ⇒ ∀x ∈ X : limn→∞ fn(x) = f(x).

3. span{kx | x ∈ X} is dense in H.

Proof. 1. follows with f(x) = 〈f, kx〉 from

||δx||2 = sup
f∈H\{0}

|〈kx, f〉|2

||f ||2
= ||kx||2 = 〈kx, kx〉 = K(x, x), (3.18)

where the second equality is the one of the Cauchy Schwarz inequality. Similarly,
also 2. is obtained from Cauchy Schwarz by noting that

∣∣fn(x)− f(x)
∣∣ =

∣∣〈kx, fn − f〉
∣∣ ≤ ||kx|| ||fn − f || → 0.

For 3. it suffices to show that there is no non-zero element that is orthogonal
to the considered span. Indeed, suppose f ∈ H is orthogonal to all kx, then for
all x ∈ X we have that 0 = 〈f, kx〉 = f(x), which means f = 0.

CHAPTER 3. KERNEL METHODS 143

Theorem 3.3: RKHS and PSD kernels

1. If H is a RKHS on X, then its reproducing kernel K : X ×X → K

is a PSD kernel.

2. Conversely, if K : X×X → K is a PSD kernel, then there is a unique
RKHS H ⊆ KX so that K is its reproducing kernel.

Proof. 1. If K is the reproducing kernel of a RKHS H, then by Eq.(3.17) and
the properties of the inner product:

∀x, y ∈ X : K(x, y) = 〈kx, ky〉 = 〈ky, kx〉 = K(y, x) and
n∑

i,j=1

αiᾱjK(xi, xj) =

n∑

i,j=1

αiᾱj〈kxi , kxj 〉 =
∣∣∣
∣∣∣
n∑

i=1

αikxi

∣∣∣
∣∣∣
2

≥ 0.

2. (sketch) The construction of the sought RKHS is the one in the proof of
Thm.3.2. Eqs.(3.13,3.14) show that K fulfills the requirement of a reproducing
kernel on H0. A more careful consideration shows that the relevant properties
are indeed preserved when going from H0 to its completion H.

To address uniqueness suppose H1 and H2 are two RKHS with reproducing
kernel K. Following 3. in Prop.3.6 the space H0 = span{kx|x ∈ X} is dense
in both H1 and H2. Moreover, if f ∈ H0 with f(x) =

∑
i αikxi , then ||f ||2l =∑

i,j αiᾱjK(xi, xj) for l = 1, 2. Hence, the norms || · ||1 and || · ||2 coincide on
H0.

Suppose f ∈ H1. Then there are fn ∈ H0 so that ||fn−f ||1 → 0. As (fn)n∈N
is Cauchy inH1 it is also Cauchy inH2 and therefore there exist a g ∈ H2 so that
||fn − g||2 → 0. According to 2. in Prop.3.6 we have f(x) = limn→∞ fn(x) =
g(x) for all x ∈ X. Hence, f = g ∈ H2 and consequently H1 = H2. Since
the norms, and by polarization also the inner products, coincide on a dense
subspace, the do so on its completion.

3.4 Universal and strictly positive kernels
Definition 3.7 (Universal kernels). A PSD kernel K : X×X → K on a metric
space X is called universal iff for all ε > 0, all compact subsets X̃ ⊆ X and
every continuous function f : X → K there exists g ∈ span{kx : X → K | ∃x ∈
X : kx(y) = K(x, y)} so that

∣∣g(x)− f(x)
∣∣ ≤ ε ∀x ∈ X̃. (3.19)

Note that if φ : X → H is a feature map corresponding to K, then Eq.(3.19)
means that there exists a w ∈ H so that

∣∣〈w, φ(x)〉 − f(x)
∣∣ ≤ ε ∀x ∈ X̃. (3.20)

CHAPTER 3. KERNEL METHODS 144

Corollary 3.8 (Universal kernels separate all compact subsets). Let φ : X → H
be a feature map of a universal PSD kernel on a metric space X. For any pair
of disjoint compact subsets A+, A− ⊆ X there exists a w ∈ H so that for all
x ∈ A+ ∪A−:

sgn〈w, φ(x)〉 =

{
+1, x ∈ A+

−1, x ∈ A−
(3.21)

Proof. As the distance between A+ and A− is non-zero, we can extend the
function A+ ∪A− 3 x 7→ 1x∈A+

− 1x∈A− to a continuous function f on X. By
universality there exists a w ∈ H for each ε ∈ (0, 1) so that |〈w, φ(x)〉−f(x)| ≤ ε
for all x ∈ A+ ∪A−. Hence,

〈w, φ(x)〉
{
≥ 1− ε, x ∈ A+

≤ ε− 1, x ∈ A−
(3.22)

Note that in this case the sets are separated with margin (1− ε)/||w||.

Theorem 3.4: Taylor criterion for universality

Let f(z) :=
∑∞
n=0 anz

n be a power series with radius of convergence r ∈
(0,∞] and X := {x ∈ Rd | ||x||2 <

√
r}. If an > 0 for all n, then

K : X ×X → R, K(x, y) := f(〈x, y〉) is a universal PSD kernel.

Proof. First note that K is well defined since |〈x, y〉| ≤ ||x||2||y||2 < r. Using
multinomial expansion we can write

K(x, y) =

∞∑

n=0

an

(
d∑

k=1

xkyk

)n
=

∞∑

n=0

an
∑

k1 + · · ·+ kd = n
k1, . . . , kd ≥ 0

n!

k1! · · · kd!

d∏

i=1

(xiyi)
ki

=
∑

k1,...,kd≥0

ak1+...+kd

(k1 + . . .+ kd)!

k1! · · · kd!︸ ︷︷ ︸
=:ck

d∏

i=1

xkii

d∏

j=1

y
kj
j . (3.23)

This enables us to introduce a feature map φ : X → l2
(
Nd0

)
as φk(x) :=

√
ck
∏d
i=1 x

ki
i for k ∈ Nd0 so that K(x, y) = 〈φ(x), φ(y)〉. Since all an’s are

strictly positive, the same holds true for all ck’s. Consequently, span{φk}k∈Nd0
is the space of all polynomials and by the Stone-Weierstrass theorem dense in
the set of continuous functions on compact domains. The claim then follows
from the observation that every finite linear combination of functions of the
form x 7→ φk(x) can be regarded as an inner product 〈w, φ(x)〉 for some vector
w. Since the latter has only finitely many non-zero components, it is indeed an
element of l2

(
Nd0

)
.

Corollary 3.9. On X = Rd the following are universal PSD kernels:

CHAPTER 3. KERNEL METHODS 145

1. Exponential kernel: K(x, y) := exp
(
γ〈x, y〉

)
, γ > 0.

2. Gaussian kernel: K(x, y) := exp
(
− γ

2 ||x− y||
2
2

)
, γ > 0.

Proof. Universality of the exponential kernel follows directly from Thm.3.4 with
an = τn/n!. This in turn can be used to prove universality of the Gaussian
kernel: if φ : X → H is a feature map of the exponential kernel, then φ̃ :
x 7→ φ(x)/||φ(x)|| is a feature map of the Gaussian kernel. Now take any
compact subset X̃ ⊆ X and define c := supx∈X̃ ||φ(x)||−1. By universality of
the exponential kernel, for every continuous function f : X → R there is a
w ∈ H so that ∣∣∣f(x)||φ(x)|| − 〈w, φ(x)〉

∣∣∣ ≤ ε

c
∀x ∈ X̃.

Dividing by ||φ(x)|| and taking the supremum over x ∈ X̃ on the resulting r.h.s.
leads to

∣∣f(x)− 〈w, φ̃(x)〉
∣∣ ≤ ε for all x ∈ X̃.

Proposition 3.10 (Strict positivity of universal kernels). Let K : X ×X → K

be a universal PSD kernel on a metric space X. Then K is strictly positive
definite, i.e., for all n ∈ N, every set of n distinct points x1, . . . , xn ∈ X and
all α ∈ Kn\{0} we have

∑n
i,j=1 αiᾱjK(xi, xj) > 0.

Proof. Assume K is not strictly positive definite, i.e.,
∑n
i,j=1 αiᾱjK(xi, xj) = 0

for some α ∈ Kn\{0} and x ∈ Xn. Expressing this in terms of the canon-
ical feature map φ : X → H, where H is the corresponding RKHS, we ob-
tain that

∑n
i=1 αiφ(xi) = 0 since it has vanishing norm. Now for an arbi-

trary function induced by the kernel via g(x) :=
∑m
j=1 βj〈φ(x), φ(yj)〉 we obtain∑n

i=1 αig(xi) =
∑
i,j αiβj〈φ(xi), φ(yj)〉 = 0. Hence, the set of functions induced

by the kernel cannot be dense in the set of continuous functions on the compact
set X̃ :=

⋃n
i=1{xi} since any continuous function f for which

∑n
i=1 αif(xi) 6= 0

cannot be approximated to arbitrary accuracy. So K cannot be universal.

Proposition 3.11 (Properties of strictly positive definite kernels). Let K :
X × X → K be a strictly positive definite kernel on a set X. That is, for all
n ∈ N, every set of n distinct points x1, . . . , xn ∈ X and all α ∈ Kn\{0} we
have

∑n
i,j=1 αiᾱjK(xi, xj) > 0 and K(xi, xj) = K(xj , xi). Then:

1. Every corresponding feature space is infinite dimensional.

2. Every corresponding feature map is injective.

3. If A+, A− are disjoint finite subsets of X and φ : X → H is any feature
map corresponding to K, then there is a w ∈ H and b ∈ R so that

Re〈w, φ(x)〉
{
> b, if x ∈ A+

< b, if x ∈ A−
(3.24)

CHAPTER 3. KERNEL METHODS 146

Proof. 1. If φ : X → H is any feature map for K and d := dim(H) < ∞, then
any set of n > d vectors {φ(xi)}ni=1 is linearly dependent. Therefore, there is
an α ∈ Kn\{0} so that 0 =

∑n
i,j=1 αiᾱj〈φ(xi), φ(xj)〉 =

∑n
i,j=1 αiᾱjK(xi, xj),

which implies that K is not strictly positive definite.
2. As argued in the proof of 1., if x 6= y, then φ(x) and φ(y) have to be

linearly independent. So in particular φ is injective.
3. The central observation is again linear independence of the set of vectors

{φ(x)}x∈A+∪A− . If we define C± := conv{φ(x)}x∈A± as the convex hulls of the
images of the sets A+ and A− under φ, then linear independence implies that C+

and C− are disjoint sets. Moreover, they are closed and bounded convex subsets
contained in finite dimensional subspace so that we can invoke the geometric
Hahn-Banach separation theorem for compact convex sets to arrive at Eq.(3.24).

Theorem 3.5: Translation invariant kernels

Let µ be a finite non-negative Borel measure on X := Rd and denote by
χ ∈ C(X) its Fourier transform

χ(x) :=

∫

X

e−ix·zdµ(z). (3.25)

Then K(x, y) := χ(x − y) is a PSD kernel on X. Moreover, K is strictly
positive definite, if the complement of the largest open set U ⊆ X that
satisfies µ(U) = 0 has non-zero Lebesgue measure.

Proof. Consider distinct points x1, . . . , xn ∈ X and α ∈ Cn\{0}. Then
n∑

k,j=1

αkᾱjK(xk, xj) =

n∑

k,j=1

αkᾱj

∫

X

e−i(xk−xj)·zdµ(z)

=

∫

X

∣∣∣∣∣
n∑

k=1

αke
−ixk·z

∣∣∣∣∣

2

︸ ︷︷ ︸
=:ψ(z)

dµ(z) ≥ 0. (3.26)

So K is a PSD kernel. Moreover, strict inequality holds in Eq.(3.26) unless the
support of µ is contained in the zero set ψ−1({0}). However, ψ−1({0}) always
has zero Lebesgue measure so that every µ whose support has non-zero Lebesgue
measure leads to a strictly positive definite kernel.

3.5 Rademacher bounds
Theorem 3.6: Rademacher bound for bounded inner products

Let ρ, r > 0 be positive constants, x1, . . . , xn points in a real Hilbert space

CHAPTER 3. KERNEL METHODS 147

H so that ||xi|| ≤ r for all i and G := {g : H → R | g(z) = 〈z, w〉, ||w||−1 ≥
ρ}. With Gij := 〈xi, xj〉 the empirical Rademacher complexity of G w.r.t.
{x1, . . . xn} satisfies

R̂(G) ≤ tr[G]1/2

nρ
≤ r

ρ
√
n
. (3.27)

Proof. The first inequality follows from

R̂(G) =
1

n
Eσ

[
sup

||w||≤1/ρ

〈 n∑

i=1

σixi, w
〉
]

≤ 1

nρ
Eσ

∣∣∣
∣∣∣
n∑

i=1

σixi

∣∣∣
∣∣∣ ≤ 1

nρ

[
Eσ

∣∣∣
∣∣∣
n∑

i=1

σixi

∣∣∣
∣∣∣
2
]1/2

=
1

nρ

Eσ

n∑

i,j=1

σiσj〈xi, xj〉

1/2

=
1

nρ

[
n∑

i=1

〈xi, xi〉

]1/2

.

Here the first inequality is implied by Cauchy-Schwarz and the second by Jensen’s
inequality (applied to the concave square root function). The last step in the
chain follows from the fact that if i 6= j, then Eσ[σiσj] = Eσ[σi] Eσ[σj] = 0
since the Rademacher variables are independent and uniform.

The second inequality in Eq.(3.27) uses in addition that
∑n
i=1〈xi, xi〉 ≤

nr2.

3.6 Kernel ridge regression
In this section we return to the least squares linear regression problem discussed
in example 1.1. In order to be able to exploit the “kernel trick”, we will, however,
modify the problem in two ways: (i) we will first embed the data points into a
feature space in a way that will eventually enable us to express everything in
terms of a PSD kernel and (ii) we will make use of Tikhonov regularization to
counteract overfitting (and also to circumvent degenerate scenarios). That is,
given n pairs of data points (xi, yi) ∈ X ×R and a map φ : X → H into a real
Hilbert space H, we aim at minimizing

λ‖w‖2 +
1

n

n∑

i=1

(
〈w, φ(xi)〉 − yi

)2
, (3.28)

over all w ∈ H for some regularization parameter λ > 0. Note that λmay also be
interpreted as Lagrange multiplier of a constraint of the form ‖w‖2 = const.. If
K is the kernel defined by φ via Eq.(3.11), the problem of minimizing Eq.(3.28),
which runs under the name kernel ridge regression, has the following solution:

CHAPTER 3. KERNEL METHODS 148

Theorem 3.7: Kernel ridge regression

For any λ > 0, there exists a minimizer w ∈ H of Eq.(3.28). This is

w :=

n∑

j=1

αjφ(xj) with α :=
(
nλ1+K(x, x)

)−1
y. (3.29)

If we use this to define a hypothesis h : X → R, h(z) := 〈w, φ(z)〉, then

h(z) = K(z, x)
(
nλ1+K(x, x)

)−1
y. (3.30)

Furthermore, if K(x, x) is invertible, then the minimizing α in Eq.(3.29)
is unique.

Note: Here, we have used the notation introduced in Eq.(3.15) for the ker-
nel/Gram matrix.

Proof. The representer theorem Thm.3.1 guarantees that in determining the
infimum of Eq.(3.28) we can restrict to w =

∑n
j=1 αjφ(xj) so that we are left

with an optimization over α ∈ Rn. Due to the quadratic term resulting from
the Tikhonov regularization we can further restrict to a compact subset, which
together with continuity of the objective function implies that a minimum is
attained. Inserting the ansatz for w and expressing everything in terms of the
kernel K, Eq.(3.28) becomes

λ αTK(x, x)α+
1

n

(
αTK(x, x)K(x, x)α+‖y‖2−2αTK(x, x)y

)
=: R̂(α). (3.31)

Due to the quadratic nature of R̂(α) the set of minimizers coincides with the
set of α for which ∇R̂(α) = 0. This, in turn, is equivalent to

K(x, x)
(
nλ1+K(x, x)

)
α = K(x, x)y, (3.32)

which is solved by the α stated in Eq.(3.29) and has only that solution if K(x, x)
is invertible.

A remarkable point about Eq.(3.30) is that there is no need to ever use the
map φ or elements of H. Everything can be computed from the kernel matrices
by means of linear algebra in Rn. That is, the relevant dimension is equal to
the number of data points. However, this also means that the feasibility of the
method depends on the size of the data set—with the inverse n×n matrix being
the computational bottleneck.

If the kernel that is used in kernel ridge regression is universal, such as e.g.
the Gaussian kernel, then Eq.(3.20) tells us that the regression becomes perfect
in the limit λ→ 0 (see Fig.3.4).

CHAPTER 3. KERNEL METHODS 149

Figure 3.4: Toy example that exemplifies kernel ridge regression using a Gaus-
sian kernel for different values of the regularization parameter λ. R̂ refers to
the resulting empirical risk (w.r.t. the quadratic loss) without the regularizing
term.

Appendix A

Probability theory

This appendix will rather quickly recall some of the concepts and notions of
probability theory. More details and proofs can be found in almost any textbook
on probability theory, e.g. in [Dur10], which is available online.

Probability spaces For an arbitrary set Ω, a collection F of subsets of Ω is
called a σ-algebra on Ω if (i) Ω ∈ F , (ii) A ∈ F ⇒ Ac := Ω \A ∈ F and (iii) F
is closed under countable unions. This implies that ∅ ∈ F and that F is closed
under countable intersections. The pair (Ω,F) is then called a measurable space
and it becomes a probability space (Ω,F , P) when adding a probability measure
P . That is, a function P : F → [0, 1] that satisfies P (Ω) = 1 and

P

(⋃

i

Ai

)
=
∑

i

P (Ai), (A.1)

for any countable family of disjoint sets Ai ∈ F . This implies that for not
necessarily disjoint Ai ∈ F , the r.h.s of Eq.(A.1) is always at least the l.h.s..
The resulting inequality is called the union bound .

In the context of probability theory, Ω is often called the sample space and
the elements of F events. In general measurable spaces, the subsets of Ω that
are elements of F are called measurable.

If the probability measure is clear from the context and/or we want to em-
phasize the probabilistic interpretation of an expression, then we will often write
P [A] for the probability of the event A ∈ F instead of P (A).

Example A.1 (Discrete probability spaces).If Ω is countable, i.e., finite or
countably infinite, then the notion of a σ-algebra is practically superfluous
since in this case one can always choose F to contain every subset of Ω. The
most general probability measure is then of the form

P (A) =
∑

a∈A
p(a), where p(a) ≥ 0,

∑

a∈Ω

p(a) = 1.

150

https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf

APPENDIX A. PROBABILITY THEORY 151

Example A.2 (Probability measures on Rd).If Ω = Rd, a standard choice
for F is the Borel σ-algebra B. This is the smallest1 σ-algebra that contains
all open (and thus all closed) subsets of Rd. The elements of B are called
Borel sets. Loosely speaking, any subset of Rd that can be constructed
explicitly (without e.g. invoking the axiom of choice) is a Borel set. A special
class of probability measures on (Rd,B) is the one of absolutely continuous
probability measures. For those, there exists a Lebesgue-intergrable function
p : Ω→ R+, called probability density , s.t.

P (A) =

∫

A

p(x) dx, ∀A ∈ B. (A.2)

Unlike a probability, a probability density function can take on values larger
than one. Since Eq.(A.2) implies that no single point can be assigned a
non-zero probability, it should be clear that not every probability measure
on (Rd,B) admits a probability density function.

Functions and random variables A function between measurable spaces is
called a measurable function if all preimages of measurable sets are measurable.
This turns out to be the right notion of ‘well-behavedness’ for such functions. In
fact, if the target space is (R,B), then measurability is a prerequisite for being
able to define the Lebesgue integral of that function.

A measurable function on a probability space (Ω,F , P) is called a random
variable. Often the target space is (R,B) so that the random variable is of
the form X : Ω → R. In this case, sums and products of random variables,
compositions with measurable functions as well as inf, sup, lim inf, lim sup again
lead to random variables.

Example A.3 (Indicator functions).A simple class of random variables on a
probability space (Ω,F , P) is the set of indicator functions. For any A ∈ F ,
the corresponding indicator function is defined as

Ω 3 x 7→ 1x∈A :=

{
1, x ∈ A
0, x 6∈ A

.

Any random variable X induces a probability measure µ := P ◦ X−1 on
the target space2. µ is called the distribution of X and it is common to write
X ∼ µ meaning that X has distribution µ. Another notational tradition is to
use capital letters for random variables and lower case letters for their specific
values. We will at least occasionally follow this convention.

Using the distribution of X, we can write the probability for X to lie in a
measurable set B as

P [X ∈ B] := P
({
a ∈ Ω|X(a) ∈ B

})
= µ(B). (A.3)

1Talking about the smallest σ-algebra with a given property makes sense because if {Fi}
is a (possibly uncountable) family of σ-algebras, then

⋂
i Fi is one too.

2Here, X−1 should be understood as set-valued inverse. That is, for any A ∈ F , X−1(A)
means the preimage of A under X.

APPENDIX A. PROBABILITY THEORY 152

Similarly, for a real-valued random variable, we can express its expectation value
as

E [X] :=

∫

Ω

X(a) dP (a) =

∫

R

x dµ(x), (A.4)

assuming the integrals are well-defined in Lebesgue’s sense. As we already see
on the right hand sides of Eqs.(A.3,A.4), when dealing with random variables,
the initial probability space (Ω,F , P) often disappears from the stage.

If f is a measurable function and X ∼ µ a random variable, then Y := f ◦X
is again a random variable and its distribution is given by P ◦ Y −1 = µ ◦ f−1.
Moreover, in the real-valued case,

E [f(X)] =

∫

R

f(x) dµ(x).

Elementary inequalities If X is a real-valued random variable, and f : R→
[0,∞) and A ⊆ R both measurable, then rather obviously

E [f(X)] ≥ P [X ∈ A] · inf{f(x)|x ∈ A} . (A.5)

By specifying the function in Eq.(A.5) to be either f(x) = |x| or f(x) = x2 and
choosing A = R \ (−a, a) for any a > 0 this leads to

P [|X| ≥ a] ≤ E [|X|]
a

, (A.6)

P [|X −E [X] | ≥ a] ≤
E
[
(X −E [X])2

]

a2
, (A.7)

which are referred to as Markov’s inequality and Chebyshev’s inequality , re-
spectively. The enumerator on the r.h.s. of Eq.(A.7) is called the variance of
X.

For any convex function g : R→ R, Jensen’s inequality states that

E [g(X)] ≥ g
(
E [X]

)
(A.8)

if both expectation values exist, i.e., if E [|X|] ,E [|g(X)|] <∞. If g is concave,
the inequality in Eq.(A.8) is reversed.

Conditional probabilities If A,B ∈ F are events in a probability space
(Ω,F , P), then the conditional probability of A given B is defined as

P (A|B) :=
P (A ∩B)

P (B)
(A.9)

if P (B) > 0. This can be interpreted as the probability that A occurs when
only taking into account those cases in which B occurs. This implies, in par-
ticular, that for fixed B the map A 7→ P (A|B) defines a probability measure
on (Ω,F). This is not true if we instead fix A and regard B as a variable. In
particular, P (A|B) 6= P (B|A) in general. However, if we apply the definition of

APPENDIX A. PROBABILITY THEORY 153

the conditional probability twice, we obtain Bayes’ theorem, which relates the
two via

P (A|B) =
P (B|A) P (A)

P (B)
. (A.10)

Independence Two events A,B defined on the same probability space are
said to be independent if P (A∩B) = P (A)P (B) and therefore P (A|B) = P (A).

If (Ωi,Fi, Pi), i ∈ {1, 2} are two probability spaces, Ω := Ω1 × Ω2 and F
is the smallest σ-algebra on Ω that contains all sets of the form A1 × A2 with
Ai ∈ Fi, then there exists a unique probability measure P on (Ω,F) for which

P (A1 ×A2) = P1(A1)P2(A2) ∀Ai ∈ Fi. (A.11)

P is called the product measure and one writes P = P1×P2. W.r.t. this product
measure, the events A1×Ω2 and Ω1×A2, which one may dare to identify with
A1, A2, are independent.

Two real-valued random variables Xi ∼ µi, i ∈ {1, 2} defined on the same
probability space are called independent if

P [X1 ∈ B1 ∧X2 ∈ B2] = P [X1 ∈ B1]P [X2 ∈ B2] ∀Bi ∈ B. (A.12)

This holds iff the probability measure induced by the random variable (X1, X2)
on (R2,B) is equal to the product measure µ1 × µ2. Moreover, two events are
independent iff their indicator functions are independent random variables.

If two (or more) random variables are independent and have the same dis-
tribution, they are said to be i.i.d., meaning independent and identically dis-
tributed.

Law of large numbers The law of large numbers formalizes that in a sta-
tistical experiment the average of a large number of trials converges to the ex-
pectation value. More formally, if X1, X2, . . . is a sequence of i.i.d. real-valued
random variables that satisfy E [|Xi|] <∞, then the average Xn := 1

n

∑n
i=1Xi

satisfies that for any δ > 0

lim
n→∞

P
[∣∣Xn −E [Xi]

∣∣ ≥ δ
]

= 0. (A.13)

Eq.(A.13) is known as the weak law of large numbers. The type of convergence
of Xn that is expressed in the weak law is called convergence in probability . A
stronger notion of convergence of a sequence of random variables is almost sure
convergence. That this still holds under the same assumptions is the content of
the strong law of large numbers. According to the strong law

P

[
lim
n→∞

Xn = E [Xi]
]

:= P
(
a ∈ Ω

∣∣∣ lim
n→∞

Xn(a) = E [Xi]
)

= 1 (A.14)

if (Ω,F , P) is the underlying probability space.

APPENDIX A. PROBABILITY THEORY 154

Gaussian distributions A real-valued random variable X is Gaussian, or
synonymously normally distributed, and we write X ∼ N (µ, σ2), with mean
µ ∈ R and variance σ2 if it is governed by a probability density of the form

p(x) =
1

σ
√

2π
exp− (x− µ)2

2σ2
for σ > 0, (A.15)

or concentrated at the point µ in the case σ = 0.
AnRd-valued random vectorX is called Gaussian if there is a vector µ ∈ Rd,

a linear map L : Rd → Rd and a random vector Y ∈ Rd with i.i.d. components
Yi ∼ N (0, 1) such that X = µ+LY . In this case, we write X ∼ N (µ,Γ), where
again µ is the mean and Γ := LLT is the covariance matrix. As their names
suggest, these satisfy µi = E [Xi] and

Γij = E [(Xi −E [Xi])(Xj −E [Xj])] . (A.16)

For i 6= j, the quantity ρij := Γij/
√

ΓiiΓjj is called the correlation between
Xi and Xj . It is well-defined whenever the variances Γii,Γjj are non-zero.
Moreover, it is contained in the interval [−1, 1], which follows from the fact that
Γ is necessarily positive semidefinite. If L is invertible and thus Γ > 0, the
distribution is non-degenerate and there is again a probability density

p(x) =
(

det(Γ)(2π)d
)− 1

2 exp−1

2
(x− µ)TΓ−1(x− µ). (A.17)

That X depends on L only through Γ reflects the fact that Y is invariant
under orthogonal transformations. Other useful properties of the set of Gaussian
distributions are that the set is closed under affine transformations as well as
under taking sums, cartesian products and marginals. Moreover, the conditional
distribution of a Gaussian remains Gaussian. More precisely, if (X,Y) ∈ Rd1 ×
Rd2 is Gaussian with

(
X
Y

)
∼ N

((
µx
µy

)
,

(
A C
CT B

))
(A.18)

APPENDIX A. PROBABILITY THEORY 155

and A is invertible, then the conditional distribution of Y given that X takes
on the value x is of the form

Y |X ∼ N
(
µ,Γ

)
where

µ := µy + CTA−1(x− µx), (A.19)
Γ := B − CTA−1C.

Bibliography

[AB99] Martin Anthony and Peter L. Bartlett. Neural Network Learning:
Theoretical Foundations. Cambridge University Press, 1999.

[AGGR11] D. Anguita, L. Ghelardoni, A. Ghio, and S. Ridella. Test error
bounds for classifiers: A survey of old and new results. In 2011
IEEE Symposium on Foundations of Computational Intelligence
(FOCI), pages 80–87, 2011.

[APHST07] Amiran Ambroladze, Emilio Parrado-Hernández, and John
Shawe-Taylor. Complexity of pattern classes and the Lipschitz
property. Theor. Comput. Sci., 382(3):232–246, 2007.

[Bau88] Eric B. Baum. On the capabilities of multilayer perceptrons.
Journal of Complexity, 4(3):193–215, 1988.

[BB96] Ralph P. Boas and Harold P. Boas. A Primer of Real Functions.
Cambridge University Press, 1996.

[BBM05] Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local
Rademacher complexities. The Annals of Statistics, 33(4):1497 –
1537, 2005.

[BCH10] Tiago Branco, Beverley A Clark, and Michael Häusser. Dendritic
discrimination of temporal input sequences in cortical neurons.
Science, 329(5999):1671–1675, August 2010.

[BDCBHL95] Shai Ben-David, N. Cesa-Bianchi, D. Haussler, and P. Long.
Characterization of learnability for classes of n-valued functions.
J. Comput. Syst. Sci., 50:74–86, 1995.

[BDL98] Shai Ben-David and Michael Lindenbaum. Localization vs. Iden-
tification of Semi-Algebraic Sets. Mach. Learn., 32:207–224, 1998.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Man-
fred K. Warmuth. Learnability and the Vapnik-Chervonenkis di-
mension. J. ACM, 36(4):929–965, 1989.

156

BIBLIOGRAPHY 157

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik.
A training algorithm for optimal margin classifiers. In Proceed-
ings of the Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, page 144–152, New York, NY, USA, 1992.
Association for Computing Machinery.

[BH89] Eric B. Baum and David Haussler. What Size Net Gives Valid
Generalization? Neural Comput., 1(1):151–160, 1989.

[BKZ19] Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy.
Sharper bounds for uniformly stable algorithms, 2019.

[BLW96] P.L. Bartlett, P.M. Long, and R.C. Williamson. Fat-shattering
and the learnability of real-valued functions. J. Comput. Syst.
Sci., 52(3):434–452, 1996.

[BM02] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaus-
sian complexities: Risk bounds and structural results. J. Mach.
Learn. Res., 3:463–482, 2002.

[BMM98] Peter L Bartlett, Vitaly Maiorov, and Ron Meir. Almost Lin-
ear VC-Dimension Bounds for Piecewise Polynomial Networks.
Neural Comput., 10(8):2159–2173, 1998.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–
140, 1996.

[Bre97] Leo Breiman. Technical report 486: Arcing the edge. Technical
report, Statistics Department University of California, Berkeley,
1997.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[BW07] Rabindra Nath Bhattacharya and Edward C Waymire. A basic
course in probability theory, volume 69. Springer, 2007.

[Cov65] Thomas M. Cover. Geometrical and statistical properties of sys-
tems of linear inequalities with applications in pattern recog-
nition. Electronic Computers, IEEE Transactions on, EC-
14(3):326–334, 1965.

[CP34] C. J. Clopper and E. S. Pearson. The use of confidence or fidu-
cial limits illustrated in the case of the binomial. Biometrika,
26(4):404–413, 1934.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals, and Systems (MCSS),
2:303–314, 1989.

BIBLIOGRAPHY 158

[Des14] Christian J.J. Despres. The Vapnik-Chervonenkis dimension of
cubes in Rd. arXiv:1412.6612v3, 2014.

[DHM89] Ronald A. DeVore, Ralph Howard, and Charles Micchelli.
Optimal nonlinear approximation. manuscripta mathematica,
63(4):469–478, 1989.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations
of differential privacy. Found. Trends Theor. Comput. Sci.,
9(3–4):211–407, August 2014.

[DSBDSS] Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-
Shwartz. Multiclass Learnability and the ERM principle.

[Dud78] R. M. Dudley. Central Limit Theorems for Empirical Measures.
The Annals of Probability, 6(6):899 – 929, 1978.

[Dud79] R. M. Dudley. Balls in Rk do not cut all subsets of k + 2 points.
Adv. Math. (N. Y)., 31(3):306–308, 1979.

[Dur10] Richard Durrett. Probability: theory and examples. Cambridge
University Press, fourth edition, 2010.

[EPM96] André Elisseeff and Hélène Paugam-Moisy. Size of multilayer
networks for exact learning: Analytic approach. In Proceedings
of the 9th International Conference on Neural Information Pro-
cessing Systems, NIPS’96, page 162–168, Cambridge, MA, USA,
1996. MIT Press.

[ES16] Ronen Eldan and Ohad Shamir. The power of depth for feed-
forward neural networks. In Vitaly Feldman, Alexander Rakhlin,
and Ohad Shamir, editors, 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research,
pages 907–940, Columbia University, New York, New York, USA,
23–26 Jun 2016. PMLR.

[Fri01] Jerome H. Friedman. Greedy function approximation: A gradient
boosting machine. The Annals of Statistics, 29(5):1189 – 1232,
2001.

[FS95] Yoav Freund and Robert E. Schapire. A decision-theoretic gen-
eralization of on-line learning and an application to boosting. In
European Conference on Computational Learning Theory, pages
23–37, 1995.

[FS97] Y. Freund and R. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1):119–139, 1997.

BIBLIOGRAPHY 159

[Fun89] Ken-Ichi Funahashi. On the approximate realization of contin-
uous mappings by neural networks. Neural Networks, 2(3):183–
192, 1989.

[FV19] Vitaly Feldman and Jan Vondrak. High probability generaliza-
tion bounds for uniformly stable algorithms with nearly optimal
rate. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings
of the Thirty-Second Conference on Learning Theory, volume 99
of Proceedings of Machine Learning Research, pages 1270–1279,
Phoenix, USA, 25–28 Jun 2019. PMLR.

[GJ95] Paul W Goldberg and Mark R Jerrum. Bounding the Vapnik-
Chervonenkis dimension of concept classes parameterized by real
numbers. Mach. Learn., 18(2):131–148, 1995.

[GRK20] Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity
of deep neural networks. arXiv: 2007.04759, 2020.

[GZF+20] Albert Gidon, Timothy Adam Zolnik, Pawel Fidzinski, Fe-
lix Bolduan, Athanasia Papoutsi, Panayiota Poirazi, Martin
Holtkamp, Imre Vida, and Matthew Evan Larkum. Dendritic
action potentials and computation in human layer 2/3 cortical
neurons. Science, 367(6473):83–87, January 2020.

[Han16] Steve Hanneke. The Optimal Sample Complexity of PAC Learn-
ing. Journal of Machine Learning Research, 17(38):1–15, 2016.

[HH94] Bill G. Horne and Don R. Hush. On the node complexity of
neural networks. Neural Networks, 7(9):1413–1426, 1994.

[HLM] Nick Harvey, Chris Liaw, and Abbas Mehrabian. Nearly-tight
VC-dimension bounds for piecewise linear neural networks.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. J. Am. Stat. Assoc., 58(301):13–30, 1963.

[HS90] L.K. Hansen and Peter Salamon. Neural network ensembles. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on,
12:993 – 1001, 11 1990.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multi-
layer feedforward networks are universal approximators. Neural
Networks, 2(5):359–366, 1989.

[Hum39] David Hume. A Treatise of Human Nature. London, 1739.

[JP04] Jean Jacod and Philip Protter. Probability Essentials. Springer
Berlin / Heidelberg, 2 edition, 2004.

[Kho91] A.G. Khovanski. Fewnomials. Amer. Math. Soc., 1991.

BIBLIOGRAPHY 160

[KM97] Marek Karpinski and Angus Macintyre. Polynomial Bounds for
VC Dimension of Sigmoidal and General Pfaffian Neural Net-
works. J. Comput. Syst. Sci., 54(1):169–176, 1997.

[KP00] Vladimir Koltchinskii and Dmitriy Panchenko. Rademacher pro-
cesses and bounding the risk of function learning. In Evarist Giné,
David M. Mason, and Jon A. Wellner, editors, High Dimensional
Probability II, pages 443–457, Boston, MA, 2000. Birkhäuser
Boston.

[KP19] Aryeh Kontorovich and Iosif Pinelis. Exact lower bounds for the
agnostic probably-approximately-correct (PAC) machine learning
model. The Annals of Statistics, 47(5):2822 – 2854, 2019.

[KS97] Pascal Koiran and Eduardo D Sontag. Neural Networks with
Quadratic VC Dimension. J. Comput. Syst. Sci., 54(1):190–198,
1997.

[KSJ+13] Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A.
Siegelbaum, and A.J. Huspeth, editors. Principles of Neural Sci-
ence. MCGraw-Hill, New York, fifth edition, 2013.

[KV89] M. Kearns and L. G. Valiant. Cryptographic limitations on learn-
ing Boolean formulae and finite automata. In Proc. of the 21st
Symposium on Theory of Computing, pages 433–444. ACM Press,
New York, NY, 1989.

[Lan05] J. Langford. Tutorial on practical prediction theory for classifi-
cation. Journal of Machine Learning Research, 6:273–306, 2005.

[Leg05] A.M. Legendre. Nouvelles méthodes pour la détermination des
orbites des comètes. Nineteenth Century Collections Online
(NCCO): Science, Technology, and Medicine: 1780-1925. F. Di-
dot, 1805.

[LLPS93] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon
Schocken. Multilayer feedforward networks with a nonpolyno-
mial activation function can approximate any function. Neural
Networks, 6:861–867, 1993.

[Maa94] W G Maass. Neural networks with superlinear {VC} dimension.
Neural Comput., 6:877–884, 1994.

[Mas00] Pascal Massart. Some applications of concentration inequalities
to statistics. Annales de la Faculté des sciences de Toulouse :
Mathématiques, Ser. 6, 9(2):245–303, 2000.

[MBBF99] Llew Mason, Jonathan Baxter, Peter L. Bartlett, and Marcus R.
Frean. Boosting algorithms as gradient descent. In Sara A. Solla,
Todd K. Leen, and Klaus-Robert Müller, editors, NIPS, pages
512–518. The MIT Press, 1999.

BIBLIOGRAPHY 161

[McD89] Colin McDiarmid. On the method of bounded differences, 1989.

[Mha96] H. N. Mhaskar. Neural networks for optimal approximation of
smooth and analytic functions. Neural Computation, 8:164–177,
1996.

[MP43] Warren Mcculloch and Walter Pitts. A logical calculus of ideas
immanent in nervous activity. Bulletin of Mathematical Bio-
physics, 5:127–147, 1943.

[MP69] Marvin Minsky and Seymour Papert. Perceptrons: An Introduc-
tion to Computational Geometry. MIT Press, Cambridge, MA,
USA, 1969.

[MP99] Vitaly Maiorov and Allan Pinkus. Lower bounds for approxi-
mation by mlp neural networks. Neurocomputing, 25(1):81–91,
1999.

[MY16] Shay Moran and Amir Yehudayoff. Sample compression schemes
for vc classes. J. ACM, 63(3), June 2016.

[NMM08] Pramod L. Narasimha, Michael T. Manry, and Francisco Maldon-
ado. Upper bound on pattern storage in feedforward networks.
Neurocomputing, 71(16):3612–3616, 2008. Advances in Neural In-
formation Processing (ICONIP 2006) / Brazilian Symposium on
Neural Networks (SBRN 2006).

[Ove23] A survey on over-the-air computation. IEEE Communications
Surveys & Tutorials, pages 1–1, 2023.

[Pin99] Allan Pinkus. Approximation theory of the MLP model in neural
networks. Acta Numer., 8:143, 1999.

[Pis89] G. Pisier. The Volume of Convex Bodies and Banach Space Ge-
ometry. Cambridge Tracts in Mathematics. Cambridge Univer-
sity Press, 1989.

[PS16] Xingyuan Pan and Vivek Srikumar. Expressiveness of rectifier
networks. In Maria Florina Balcan and Kilian Q. Weinberger, ed-
itors, Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 2427–2435, New York, USA, 2016.

[Ras38] Nicolas Rashevsky. Mathematical biophysics : physicomathemat-
ical foundations of biology. University of Chicago Press, Chicago,
1938.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for in-
formation storage and organization in the brain. Psychological
Review, 65(6):386–408, 1958.

BIBLIOGRAPHY 162

[Ros61] Frank Rosenblatt. Principles of Neurodynamics. Perceptrons and
the Theory of Brain Mechanisms. Defense Technical Information
Center, Cornell Aeronautical Lab Inc., Buffalo NY, 1961.

[Sak98] A. Sakurai. Tight bounds for the VC-dimension of piecewise
polynomial networks. Adv. Neural Inf. Process. Syst., 11:323–
329, 1998.

[Sau72] N. Sauer. On the density of families of sets. Journal of Combi-
natorial Theory, Series A, 13(1):145–147, 1972.

[Sch90] Robert E. Schapire. The strength of weak learnability. Machine
Learning, 5(2):197–227, 1990.

[Sch18] Philipp Scholl. Storage capacity of feedforward neural networks.
Master’s thesis, TUM Department of Mathematics, Munich, 8
2018.

[SF12] R. Schapire and Y. Freund. Boosting: Foundations and Algo-
rithms. The MIT Press, 2012.

[SFBL97] Robert E. Schapire, Yoav Freund, Peter Barlett, and Wee Sun
Lee. Boosting the margin: A new explanation for the effectiveness
of voting methods. In Proceedings of the Fourteenth International
Conference on Machine Learning, ICML ’97, page 322–330, San
Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[SFC+11] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp,
Mark Finocchio, Richard Moore, Alex Kipman, and Andrew
Blake. Real-time human pose recognition in parts from single
depth images. In CVPR 2011, pages 1297–1304, 2011.

[SH21] Johannes Schmidt-Hieber. The kolmogorov–arnold representa-
tion theorem revisited. Neural Networks, 137:119–126, 2021.

[She71] Saharon Shelah. Stability, the f.c.p., and superstability; model
theoretic properties of formulas in first order theory. Annals of
Mathematical Logic, 3(3):271–362, 1971.

[SNA+17] Larry W. Swanson, Eric A. Newman, Alfonso Araque, Janet Du-
binsky, Lyndel King, and Eric Himmel. The beautiful brain : the
drawings of Santiago Ramón y Cajal. Abrams, New York, 2017.

[Spr65] David A. Sprecher. On the structure of continuous functions of
several variables. Transactions of the American Mathematical
Society, 115:340–355, 1965.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Ma-
chine Learning - From Theory to Algorithms. Cambridge Univer-
sity Press, 2014.

BIBLIOGRAPHY 163

[SSSSS10] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik
Sridharan. Learnability, Stability and Uniform Convergence. J.
Mach. Learn. Res., 11:2635–2670, 2010.

[Tel16] Matus Telgarsky. Benefits of depth in neural networks. In Vitaly
Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th
Annual Conference on Learning Theory, volume 49 of Proceed-
ings of Machine Learning Research, pages 1517–1539, Columbia
University, New York, New York, USA, 23–26 Jun 2016. PMLR.

[TJ89] Nicole Tomczak-Jaegermann. Banach-Mazur Distances and
Finite-dimensional Operator Ideals. Pitman monographs and
surveys in pure and applied mathematics. Longman Scientific &
Technical, 1989.

[Tur50] A. M. Turing. Computing Machinery and Intelligence. Mind,
LIX(236):433–460, 1950.

[Val84] L. G. Valiant. A theory of the learnable. In Proceedings of the Six-
teenth Annual ACM Symposium on Theory of Computing, STOC
’84, page 436–445, New York, NY, USA, 1984. Association for
Computing Machinery.

[VC68] V. N. Vapnik and A. Ya. Chervonenkis. Uniform Convergence of
Frequencies of Occurrence of Events to Their Probabilities. Soviet
Mathematics Doklady, 9:915–918, 1968.

[VC71] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform con-
vergence of relative frequencies of events to their probabilities.
Theory of Probability and its Applications, 16(2):264–280, 1971.

[VC74] V. N. Vapnik and A. Ya. Chervonenkis. Theory of Pattern Recog-
nition [in Russian]. Nauka, 1974.

[VJ01] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings of the 2001 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recog-
nition. CVPR 2001, volume 1, pages I–I, 2001.

[Vor75] S M Voronin. Theorem on the Universality of the Riemann
Zeta Function. Mathematics of the USSR-Izvestiya, 9(3):443–
453, 1975.

[War68] Hugh E. Warren. Lower bounds for approximation by nonlinear
manifolds. Transactions of the American Mathematical Society,
133(1):167–178, 1968.

[WM97] David H. Wolpert and William G. Macready. No free lunch theo-
rems for optimization. IEEE Transactions on Evolutionary Com-
putation, 1(1):67–82, 1997.

BIBLIOGRAPHY 164

[Wol96] D. H. Wolpert. The lack of a priori distinctions between learning
algorithms. Neural Computation, 8(7):1341–1390, 1996.

[Yar21] Dmitry Yarotsky. Elementary superexpressive activations. arXiv,
abs/2102.10911, 2021.

[ZBH+16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,
and Oriol Vinyals. Understanding deep learning requires rethink-
ing generalization. arxiv:1611.03530; published in ICLR 2017,
2016.

[Zho12] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms.
Chapman & Hall/CRC, 1st edition, 2012.

Index

A.I. winter, 87
action potential, 81
activation function, 83

superexpressive, 98
universality, 95

AdaBoost, 72
empirical risk bound, 74

agnostic PAC, 15
architecture, 85
axon, 80

Bagging, 71
base hypotheses, 72
base learner, 70
Bayes classifier, 7
Bayes’theorem, 153
Bayesian network, 86
bias-variance trade-off, 9
Boltzmann machine, 86
Boolean function, 87
Bootstrap sampling, 71
Borel

σ-algebra, 151
set, 151

Chebyshev’s inequality, 152
classification, 6

binary, 7
Clopper-Pearson bound, 12
concentration inequality, 11
conditional probability, 152
convergence

almost sure, 153
in probability, 153

cortex, 80

cross-validation, 11

dendrite, 80
depth

neural network, 85
distribution

of a random variable, 151

ELU, 84
empirical risk minimization, 7
ensemble method, 70
ERM, 7
error

approximation, 8
estimation, 9
generalization, 6
in-sample, 7
optimization, 8
out-of-sample, 6
test, 12

expectation value, 152
exponential loss, 76

feedforward, 85
fully connected, 86
function

activation, 83
Boolean, 87
measurable, 151
ridge, 84
Riemann, 96

Fundamental theorem of binary
classification, 29

generalization bound, 9

165

INDEX 166

ghost sample, 33
Glivenko-Cantelli class, 16
Golgi, 82
gradient boosting, 75
graph dimension, 30
graphical model, 86
gray matter, 80
growth function, 19

hidden layer, 85
Hilbert

13’th problem, 97
hinge loss, 76
Hoeffding’s inequality, 15
Hubel and Wiesel, 82
hypothesis, 5

independent
events, 153
random variables, 153

indicator function, 151
inequality

Chebyshev, 152
Hoeffding, 15
Jensen, 152
Markov, 152
McDiarmid, 35

Ising model, 86

Jensen’s inequality, 152

Kolmogorov superposition theorem,
97

law of large numbers, 153
strong, 153
weak, 153

learning algorithm, 5
Lemma

ghost sample symmetrization,
33

Massart, 32
logistic sigmoid, 83
logit loss, 76
loss

0-1, 7
exponential, 76

function, 5
hinge, 76
logit, 76
quadratic, 6

margin bound, 77
Markov random field, 86
Markov’s inequality, 152
Massart’s Lemma, 32
McCulloch, 86
McDiarmid’s inequality, 35
measurable

space, 150
function, 151
set, 150

measure
probability, 150
product, 153

modulus of continuity, 93
myelin, 80

Natarajan dimension, 30
Netflix prize, 70
neural network, 84

architecture, 85
feedforward, 85
fully connected, 86
layered, 85
recurrent, 85
storage capacity, 92
width, 85

neuron, 80
artificial, 82
doctrine, 82
pyramidal, 80

no-free-lunch, 17

overfitting, 10

PAC, 13
agnostic, 15

PAC
learnability, 30

PAC bound
growth function, 19
Rademacher complexity, 36

INDEX 167

Perceptron, 82
Pitts, 86
Potts model, 86
probability

density, 151
measure, 150
space, 150
conditional, 152

product measure, 153

Rademacher
complexity, 31
variable, 31

Ramón y Cajal, 82
random forest, 79
random variable, 151
Rashevsky, 86
recurrent, 85
regression, 6

linear, 8
polynomial, 8

regression function, 6
regularization, 11

Tikhonov, 11
ReLU, 83

leaky, 83
ridge function, 84
Riemann ζ-function, 96
risk, 6

Bayes, 8
excess, 8

Rosenblatt, 82

sample complexity, 30
shattering, 21
sigmoid, 83
softplus, 83
spin glass, 86
structural risk minimization, 11
symmetrization, 33
synapse, 81

test data, 11
theorem

Bayes’, 153
Kolmogorov superposition, 97
no-free-lunch, 17
Zaslavsky, 90

training data, 5

union bound, 150

validation data, 11
variance, 152
VC

dichotomy, 22
dimension, 21

neural networks, 99
entropy, 20

weight sharing, 91
white matter, 80
width, 85

Zaslavsky, 90

	Introduction
	Learning Theory
	Statistical framework
	Error decomposition
	PAC learning bounds
	No free lunch
	Growth function
	VC-dimension
	Fundamental theorem of binary classification
	Rademacher complexity
	Covering numbers
	Pseudo and fat-shattering dimension
	Algorithmic stability
	Sample compression
	Relative entropy bounds
	Ensemble methods

	Neural networks
	Information processing in the brain
	From artificial neurons to networks
	Representation and approximation
	VC dimension of neural networks
	Deep neural networks
	Rademacher complexity of neural networks
	Training neural networks
	Backpropagation
	Gradient descent and descendants
	(Un)reasonable effectiveness—optimization

	Kernel methods
	Linear maximal margin separators
	Positive semidefinite kernels
	Reproducing kernel Hilbert spaces
	Universal and strictly positive kernels
	Rademacher bounds
	Kernel ridge regression

	Probability theory
	Probability spaces
	Random variables
	Elementary inequalities
	Conditional probabilities
	Independence
	Law of large numbers
	Gaussian distributions

	Bibliography
	Index

