
TUM School of Computation, Information and Technology
Technische Universität München

Efficient Control via Reachability Synthesis for Cyber-Physical
Systems

Kush Grover

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Helmut Seidl

Prüfende der Dissertation:
1. Prof. Dr. Jan Křet́ınský
2. Prof. Dr. Kim Guldstrand Larsen
3. Prof. Dr. Nils Jansen

Die Dissertation wurde am 08.11.2023 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information and Technology am 13.03.2024
angenommen.

Abstract

Cyber-physical systems merge computing with physical processes to interact and op-
erate in the physical world. These systems need to continuously make decisions in
order to complete their objectives. The plans that describe the decisions in each state
are called controllers and the problem of finding a right controller is called controller
synthesis. To ensure their reliability, these controllers need to be verified. Controller
synthesis is also possible using formal methods which produces correct by construc-
tion controllers and when done for reachability objectives can be called reachability
synthesis.

In this thesis, we employed Markov Decision Processes (MDPs) to model these sys-
tems in a stochastic environment. Since they frequently operate in continuous domains,
MDPs with finite states and actions may not accurately represent reality. Even though it
is possible to generalize the definition of an MDP to have uncountable state and action
spaces, this generalization, if left unchecked, can make the reachability problem unde-
cidable. To tackle this challenge, we introduced some restrictions on the system, while
trying to keep them as minimal as possible. Under these assumptions, we extended it-
erative algorithms Value Iteration and Bounded Real-time Dynamic Programming that
already exist for solving reachability problems in finite MDPs.

We also used existing algorithms for reachability in finite MDPs and applied them to
problems from the domain of robotics and aerospace. First is the task planning prob-
lem, where we modeled the high-level behavior of a robot using a finite MDP and
synthesized a plan satisfying a reachability objective. Second is fault isolation, in par-
ticular for satellites, where we synthesized strategies to isolate faults by modeling it as
an MDP. Both of these applications were supplemented with additional techniques to
improve their effectiveness.

In contrast to task planning, where high-level plans are devised, motion planning
deals with finding low-level paths adhering to reachability or temporal specifications,
such as Linear Temporal Logic (LTL). Another layer of complexity is introduced here
when the environment is assumed to be unknown i.e. the robot can only sense things
within a certain radius. We tackle this problem for the first time by learning the seman-
tic relations present in the environment and using them to bias the further search. Our
experiments report that this idea improves the movement of the robot by more than
50% when compared to a naive approach which explores the whole environment first
and then finds a path in the known environment.

iii

Zusammenfassung

Cyber-physische Systeme verbinden Datenverarbeitung mit physischen Prozessen, um
in der physikalischen Welt zu interagieren und zu arbeiten. Diese Systeme müssen
ständig Entscheidungen treffen, um ihre Ziele zu erreichen. Die Pläne, die die Ent-
scheidungen in jedem Zustand beschreiben, werden als Controller bezeichnet, und das
Problem, den richtigen Controller zu finden, heißt Controller-Synthese. Um ihre Zu-
verlässigkeit zu gewährleisten, müssen diese Controller verifiziert werden. Formale
Methoden können für die Synthese von Controllern benutzt werden. Werden insbe-
sondere Erreichbarkeitsziele untersucht, wird die Synthese auch als Errechbarkeitssyn-
these bezeichnet.

In dieser Arbeit haben wir Markov-Entscheidungsprozesse (MDPs) verwendet, um
solche Systeme in einer stochastischen Umgebung zu modellieren. Da sie häufig in kon-
tinuierlichen Domänen operieren, können MDPs mit endlichen Zuständen und Aktio-
nen die Realität nicht genau abbilden. Obwohl es möglich ist, die Definition eines MDP
auf nicht abzählbare Zustands- und Aktionsmengen zu erweitern, kann diese Erweite-
rung das Erreichbarkeitsproblem unentscheidbar machen, wenn diese nicht überprüft
wird. Um diese Herausforderung zu bewältigen, haben wir einige Einschränkungen
für das System eingeführt, wobei wir versuch t haben, diese so minimal wie möglich
zu halten. Unter diesen Annahmen haben wir die iterativen Algorithmen Value Itera-
tion und Bounded Real-time Dynamic Programming erweitert, die bereits zur Lösung
von Erreichbarkeitsproblemen in endlichen MDPs existieren.

Wir haben auch bestehende Algorithmen für die Erreichbarkeit in endlichen MDPs
verwendet und sie auf Probleme aus der Robotik und der Luft- und Raumfahrt an-
gewendet. Das erste Problem ist ein Aufgabenplanungsproblem, bei dem, auf einem
hohen Abstraktionsniveau, das Verhalten eines Roboters mithilfe eines endlichen MD-
Ps modelliert wird. Basierend auf dem MDP, haben wir anschließend eine Strategie
synthetisiert, der ein Erreichbarkeitsziel erfüllt. Das zweite Problem beschäftigt sich
mit Fehlerisolierung bei Satelliten. Dafür wurde das Verhalten des Satellieten mit ei-
nem MDP modelliert und anschließend eine Strategie zur Isolierung von Fehlern syn-
thetisiert. Beide Anwendungen wurden mit zusätzlichen Techniken ergänzt, um ihre
Effektivität zu verbessern.

Im Gegensatz zur Aufgabenplanung, bei der Pläne mit hohen abstraktionsniveau
entworfen werden, geht es bei der Bewegungsplanung darum, detaillierte Pfade zu
finden, die Erreichbarkeitsziele oder Temporale Formeln einhalten, wie zum Beispiel
Linear Temporal Logic (LTL). Eine weitere Ebene der Komplexität wird hier eingeführt,
wenn die Umgebung als un bekannt angenommen wird, d.h. der Roboter kann nur die
Umgebung im bestimmten Radius wahrnehmen. Wir gehen dieses Problem zum ers-
ten Mal an, indem wir die in der Umgebung vorhandenen semantischen Beziehungen

iv

Zusammenfassung

lernen und sie für die weitere Suche nutzen. Unsere Experimente zeigen, dass dadurch
die Bewegung des Roboters um mehr als 50% verbessert, verglichen mit einem naiven
Ansatz, wo zuerst die gesamte Umgebung erkundet wird und anschließend einen Pfad
in den bekannten Umgebungen findet.

v

sArA\f

sAŋgEZk -BOEtk -prZASy, BOEtk -jgEt a�trE�yA\ kt�� kAy� c sADEyt�\ sAŋgEZkkA-
yprZAlFEB, BOEtkprE�yAEB, c sh sEMmEltA, BvE�t। etAsA\ &yv-TAnA\ udd�[y\ p� Z�
kt�� Enr�tr\ EnZy, krZFy,। pr(y�k-yA\ av-TAyA\ EnZyAnA\ vZn\ k� vE�t t/ yojnA,
Eny�/kA, iEt uQy�t� tTA c sMyk̂ Eny�/k-y a�v�qZsm-yA Eny�/ks\l�qZm̂ iEt
uQyt�। t�qA\ EvvsnFytA\ s� Ency\ kt�� et�qA\ Eny�/kAZA\ s(yApnm̂ aAv[ykm̂। aOpcA-
ErkpdtFnA\ upyog�n Eny�/ks\l�qZ\ sMBvEt yt̂ EnmAZ�n sMyk̂ u(pAdyEt Eny�/kA,
tTA c ydA BvEt tdA prA=ytAs\l�qZm̂ iEt prA=ytAl#yAZA\ upyog�n।
aE-mn̂ foDprb�D� vy\ vAtAvrZ� aAkE-mktyA sh etAsA\ prZAlFnA\ aAdf prEt!pZAT�
mAkovEnZyprE�yA, EnyoEjtv�t,। pr�t� yt, tA prEtE�yA, bh� DA sttprA�t�q� kAy� k� v-

E�t , pErEmtAv-TAEB, E�yAEB, c sh mAkovEnZyprE�yA, kdAEct̂ v-t� jgt, pErd� [y-y
smFcFntyA up-TApn\ n k� vE�t। mAkov EnZyprE�yAZA\ pErBA	yA sAmA�yFkrZ\ sMBvEt
yt̂ agZnFyE-TEt, smE E�yA-TAnAEn c sE�t Ek�t� ett̂ sAmA�yFkrZ\ prA=ytAsm-
-yA\ aEnZyyo`yA\ kroEt। et-yA, sm-yAyA, smADAnAT� vy\ prZASyA\ kEt prEtb�DAn̂
prvtyAm, , tTA c tAn̂ yTAsMBv\ �y� �tm\ kt�� pry/fFlA,। etAsA\ DArZAnAm�tgt\ vy\
p� nrAvtnFy -eSgoErdm̂ m� Sy -p� nrAv� Ett\ tTA c sFmAbd -vA-tEvksmy -gEtk -�md�-h
iEt Ev-tAErtv�t, y� pErEmt -mAkovEnZyprE�yA, m@y� prA=ytA -sm-yAnA\ smADAnAT�
p� vm�v Evdy�t�।
vy\ pErEmt -mAkov - EnZy -prE�yAZA\ k� t� EvdymAn -s(yApn -eSgoErdm̂ - i(y-y up-
yog\ k� tv�t, , -vy\E�yy�/vAyvFy"�/-y c sm-yAs� tAn̂ pry� ktv�t,। prTm\ kAyEn-
yojnsm-yA aE-t , y/ vy\ pErEmtmAkovEnZyprE�yAZA\ upyog�n -vy\E�yy�/-y c
ucc-trFy&yvhAr-y prEt!pZ\ k� m, tTA c ek\ prA=ytAl#y\ s�t� \ k� (vA yojnA\ s\l�q-
yAm,। EdvtFy\ doqp� TkkrZ\ , Evf�qt, upg}hAZA\ k� t� , y/ vy\ doqp� TkkrZAy mAkovEnZ-
yprE�yA!p�Z t-y prEt!pZ\ k� (vA rZnFty, s\l�qyAm,। etyo, dvyo, aEp an� pryogyo,
prBAvfFltA\ vDEyt�\ aEtErktprEvEDEB, p� Ertm̂ aAsFt̂।
kAyEnyojn-y EvprFtm̂ y/ ucc-trFyyojnA, pErkS=y�t� gEtEnyojn\ r�KFykAlt-
kAEdk\ prA=ytAyA\ vA kAlEvEnd�fAnA\ vA an� srZ\ k� v�t, Enmn-trFymAgAn̂ a�v�� \ EnbnA-
Et। jEVltAyA, a�y, -tr, tdA BvEt ydA pyAvrZ\ ajAt\ BvEt aTAt̂ -vy\E�yy�/m̂
k�vl\ EnEctE/>yAyA, a�t, ev v-t� En iE�dý ygocr\ kroEt। vy\ prTm-TAvt pyAvrZ�
upE-TtAn̂ aTsMb�DAn̂ jA(vA ag}� a�v�qZ-y p� vAg}h\ kt�� t�qA\ upyog\ k� (vA et-yA,
sm-yAyA, EnvArZ\ k� m,। a-mAk\ pryogA, prEtv�dyE�t yt̂ eq, EvcAr, roboV-y gEt\
50%aEDk\ s\foDyEt ydA t-y t� lnA shjd� EkoZ-y BvEt y/ prTm\ sMp� Z� vAtAvrZ\
a�v�qyEt tt, jAt�q� vAtAvrZ�q� mAg� prApnoEt।

vi

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my advisor, Jan
Křetı́nský, whose unwavering support and guidance have been pivotal throughout my
Ph.D. His encouragement provided me with the strength and confidence to pursue my
projects and achieve success.

I want to thank Pranav for being my mentor and helping me settle in during the ini-
tial phases. I am also deeply grateful to my colleagues, Muqsit, Debraj, Sudeep, Tobias,
Steffi, Max, Sabine, and Maximillian, for the wonderful time we had together. I look
forward to continuing our enriching discussions and delightful interactions whenever
we meet again. Being part of our I7 chair at TUM and the ConVeY Research Training
Group broadened my perspective, and the social and learning aspects of our frequent
retreats nurtured me both personally and professionally. In that regard, I want to also
thank Prof. Helmut Seidl as head of ConVeY for always encouraging me to achieve
my goals. I also want to express my appreciation to my other co-authors, Fernando
Barbosa, Alexander Bork, Jonis Kiesbye, and, Shruti Misra for the outstanding col-
laborations we had. I am grateful to Prof. Jana Tumova for her guidance during my
exploratory days of entering robotics.

Beyond the academic realm, I am fortunate to have found a supportive community
in Munich. Special thanks to Shrestha, Naman, and Agnishrota for making my time
in Munich memorable. I am also deeply indebted to Ajeet and Ritika for being a daily
part of my life and enjoying cooking, movies, chai, discussions together. My friends
at home, Vasu Tyagi and Dhananjay Sharma, have been constant source of encour-
agement. Ritam Raha and Pankaj Pundir have been steadfast companions, and our
frequent meetups across different cities have been a source of joy. I extend my appre-
ciation to my friends from ISI and CMI, Aayush Agrawal, Jitesh Gupta, Badri Vishal
Pandey, Mridul Sachdeva, Tejaswi Tripathi, Vasudha Sharma, and Rajarshi Roy, for
catching up every now and then that evoke fond memories of our time at ISI and CMI.

I am grateful to Mr. Dinabandhu Chakravarty for his help in translating my abstract
into Sanskrit.

Finally, I would like to express my deepest gratitude to my parents, Ved Prakash
Grover and Sanjeeta Grover, for their unconditional love and support. Their encour-
agement has been the foundation of my academic pursuits. I am also grateful to my
sister-in-law, Nisha Arora, for bringing new light into my life, and to my brother, Love
Grover, for being my biggest fan and for instilling in me a passion for research and an
unwavering belief in my abilities.

vii

Contents

Abstract iii

Zusammenfassung iv

Acknowledgments vii

Contents viii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Summary of Contributions . 2
1.3 Publication Summary . 4
1.4 Outline of Thesis . 5

2 Preliminaries 6
2.1 Notation . 6
2.2 Markov Decision Processes . 6

2.2.1 Formal Definition . 6
2.3 Verification of MDPs . 8

2.3.1 Value Iteration . 9
2.3.2 Bounded Real-time Dynamic Programming 10
2.3.3 Representing Strategies Using Decision Trees 11

2.4 Linear Temporal Logic . 11
2.5 Motion Planning . 13

2.5.1 Rapidly-Exploring Random Graphs 13
2.5.2 Unknown Environments . 13

3 Uncountable Markov Decision Processes 15
3.1 State of the art . 16
3.2 Contribution: Verification of Uncountable MDPs 17

3.2.1 Assumptions: Value Iteration . 17
3.2.2 Value Iteration for Uncountable MDPs 18
3.2.3 Assumptions: Bounded Real-Time Dynamic Programming 19

viii

CONTENTS

3.2.4 BRTDP for Uncountable MDPs . 20
3.3 Outlook . 20

4 Applications of Markov Decision Process Verification 22
4.1 State of the art: Task Planning With Recovery 22
4.2 Contribution: Task Planning With Recovery 23

4.2.1 Our Approach . 24
4.2.2 Experimental Results . 25

4.3 State of the art: Fault Isolation for Satellites 26
4.4 Contribution: Fault Isolation for Satellites 27

4.4.1 Pruning the model using Monte Carlo Tree Search 28
4.4.2 Implementation and Experiments 29

4.5 Outlook . 29

5 Motion Planning in Unknown Environments 30
5.1 State of the art . 30
5.2 Contribution: SAG-RRG Algorithm . 31

5.2.1 Overview of Our Approach . 31
5.2.2 Algorithm . 34
5.2.3 Experimental Results . 36

5.3 Outlook . 37

Bibliography 38

I First Author Publications 48

A Anytime Guarantees for Reachability in Uncountable Markov Decision Pro-
cesses 49

B Semantic Abstraction-Guided Motion Planning for scLTL Missions in Un-
known Environments 71

II Non-first Author Publications 80

C Planning via Model Checking With Decision-tree Controllers 81

D Model Checking for Proving and Improving Fault Tolerance of Satellites 91

ix

List of Figures

2.1 Example of an MDP . 8
2.2 Example of an induced Markov chain for the MDP shown in Figure 2.1 . 8

4.1 Framework for the task planning solution with a feedback loop for im-
proving the model . 23

4.2 Part of a decision tree representing the values 24
4.3 Percentage of initial states which can reach a target state. Actions 1–6

are autonomous, meaning the robot can perform them on its own, and
actions 7–10 are semi-autonomous, requiring human intervention during
execution. 25

4.4 Number of reattempts required by 134 bin-picking cycles 26
4.5 Example of an architecture graph . 27

5.1 Overview of the SAG-RRG algorithm . 31

x

List of Tables

5.1 Mean and standard deviation of different values for 100 randomly gener-
ated environments. Each approach ran 3 times for every environment. . 36

xi

1 Introduction

1.1 Motivation

Cyber-Physical Systems. Cyber-physical systems are becoming increasingly preva-
lent in our daily lives and are poised to play an even more significant role in the
future. Examples of these systems include robot vacuum cleaners, autonomous cars
and robots, unmanned aerial vehicles (UAVs), etc. While interacting with the physical
world, they are required to do complex decision making. Their actions have conse-
quences which can endanger lives [Pri18], result in significant financial losses [Mal11],
or both [DH03]. To be able to trust such safety-critical systems, their behaviors need to
be verified.

Formal Methods. Formal verification deals with techniques to ensure correctness and
reliability of software and hardware systems. These methods can also be applied to syn-
thesize verified controllers for cyber-physical systems. Controllers synthesized using
these methods are also called correct by construction. There are several types of verifica-
tion queries that can be asked for cyber-physical systems, such as reaching specific goal
states (reachability), avoid ever reaching bad states (safety), and ensuring specific tempo-
ral relations between events (e.g., ”after every request, there is a grant”), etc. Temporal
logic, particularly Linear Temporal Logic (LTL) [Pnu77] is a natural and widely used
specification language for expressing such temporal relations while abstracting away
from precise event timings. Even though LTL is an expressive and powerful tool, reach-
ability holds fundamental importance in verification, often serving as a foundation for
addressing more intricate specifications. For instance, LTL model checking can be re-
duced to reachability problem [BK08, Section 10.3].

Various formalisms are available to model cyber-physical systems. Hybrid automata
[Hen96] can represent both continuous time dynamics through differential equations
and discrete changes in the system. On the other hand, Markov Decision Process (MDP)
[Put94] is suitable for modeling the stochastic behavior within the system and its en-
vironment. When modeling systems with continuous domains (e.g., robot position co-
ordinates or speed in a real number interval) using MDPs, they are typically assumed
to be finite state models, achieved by discretization. While efficient in practice, some-
times these approximations are not good enough and a more precise analysis is desired.
But, verifying systems with uncountable domains while giving strong guarantees is a
challenging task. In fact, the reachability problem for an MDP with uncountable state
and action spaces becomes undecidable in the general case (see Section 3.1). Neverthe-

1

1 Introduction

less, many real-world systems exhibit structural characteristics that, when leveraged
alongside specific restrictions, can make their analysis feasible. We identified these as-
sumptions and gave two algorithms that solve the reachability problem. First algorithm
only gives a lower bound on the result but the second algorithm, gives both lower and
upper bound.

The verification techniques are now being developed more than ever with the grow-
ing formal methods community. New applications are being discovered where these
techniques can be effectively employed. While some applications readily accommodate
these techniques right off the shelf, others demand customized adaptations to cater to
their specific requirements. One such application domain is task planning [JZK+19],
which revolves around the challenge of devising a high-level plan for a robot to reach
a desired goal state. In practice, things like imprecise control and inaccurate percep-
tion introduce probabilistic elements into the planning process. Given the ”high-level”
nature of the problem, it operates in a finite domain, task planning becomes an ideal
candidate to be modeled as a finite MDP. We used a probabilistic model checker, in
particular, PRISM [KNP11] to solve the MDP and generate a controller.

Another domain with increased autonomy is aerospace where of satellites, it be-
comes necessary to predefine protocols for handling faults that may arise during their
missions. Fault Detection, Isolation, and Recovery (FDIR) [MMG+20] concepts ad-
dress how satellite faults are managed. Following fault detection, the fault is isolated
by observing different architectural elements. Once isolated, the recovery part assess
whether the component can be replaced by a redundancy or if an alternate assembly
can perform its function. In this thesis, our main focus is on the fault isolation part.
The cost of checking the modules combined with the failure probabilities of compo-
nents again suggests the use of finite MDPs. Using verification algorithms, we can
derive cost-optimal strategies for efficiently isolating faults. However, we encountered
the state space explosion problem [CKN+12] for our case study. To tackle this issue,
we employed a Monte Carlo Tree Search (MCTS) [Cou07] based technique to trim the
model and reduce it to a reasonable size.

In contrast to task planning, motion planning [Jau01] deals with finding a low-level
plan that also considers the dynamics of the robot. Motion planning problems have
been studied for different objectives, starting with just reachability [LaV98; KF11] to
specifications from µ-calculus [KF09] or LTL [VB13]. However, these works assume
knowledge of where the obstacles are and where the things of interest are. We look at
the problem when these things are not known beforehand and the robot needs to satisfy
a complex temporal tasks. We gave an algorithm, that learns from the explored regions
and uses that information to bias the future search to quickly find a path that adheres
to the specification.

1.2 Summary of Contributions

We give a brief and high-level overview of the main contributions. Additional details
can be found in Chapters 3 to 5.

2

1 Introduction

Verification of Uncountable MDPs. In our paper [GKM+22a], we introduce two al-
gorithms, designed to solve the reachability problem in MDPs with uncountable state
and action spaces. The general reachability problem is undecidable however by impos-
ing certain assumptions, we can extend existing iterative methods designed for finite
MDPs to work here. Our primary contribution in this paper is the identification of these
necessary assumptions, striving to keep them as minimal as possible, thus pushing the
boundaries of systems that can be reliably analyzed.

We present extensions of Value Iteration and Bounded Real-time Dynamic Programming,
two well known algorithms for solving reachability in finite MDPs. The value iteration
algorithm provides a lower bound on the target value, requiring fewer assumptions in
comparison to previous approaches with guarantees. In contrast, the BRTDP algorithm
provides both lower and upper bounds but demands more assumptions due to the
inclusion of the additional upper bound. Importantly, both of these algorithms are any-
time algorithms, continuously improving their estimations and ultimately converging
to the true value in the limit.

Task Planning Using Verification of MDPs. In the domain of robotics, task planning is
the problem of finding a high-level plan for a robot satisfying some given specification.
In our paper [KGA+22], we converted it to a reachability problem for MDP by abstract-
ing away from low level dynamics and only take into account the high level actions
such as ”move to a certain pose, etc”. The task at hand was for a Franka Emika robotic
arm to efficiently retrieve objects from a container and place them onto a conveyor
belt. During runtime, this bin-picking task can be susceptible to various faults such as
environmental changes, inaccurate perception, or imprecise robot control, resulting in
failure of the high-level actions. These faults require some kind of recovery action to
be taken by the robot. We used the PRISM model checker to derive a controller that
acts as a universal plan in contrast to other planners which gives a sequence of actions
to execute. This universal controller usually is quite large making it an undesirable
choice. We solved the problem by employing dtControl to transform it into a decision
tree. The decision tree controller was significantly compact, more explainable (in terms
of understandability by humans), and orders of magnitude faster in finding the next
action compared to the replanning approach. In addition to enhancing the controller,
we generated another decision tree that pinpointed states with less likelihood of reach-
ing the target state. This insight allowed for the incorporation of additional recovery
actions, thereby enhancing the model’s effectiveness.

Fault Isolation Using Verification of MDPs. Fault tolerance is a critical requirement
for various systems, particularly in the context of space systems like satellites. Han-
dling this is achieved through Fault Detection, Isolation and Recovery (FDIR) con-
cepts. Fault isolation is a crucial component of FDIR, and in [KGK23], we reduced
it to the reachability problem for MDPs which can then be solved by a probabilistic
model checker to find an optimal strategy. However, the state space can grow exponen-
tially with the number of variables, leading to a state-space explosion issue. To address

3

1 Introduction

this, we employ a method based on Monte Carlo Tree Search (MCTS) to trim the state
space, that leads to retaining only significant decisions and states. This results in a
much smaller MDP, for which we can quickly find an optimal policy. Ultimately, this
policy is converted into a decision tree using dtControl as before.

In addition to fault isolation, we generate analysis reports that provide information
about components that are not entirely isolable. This information can be used to im-
prove the architecture during the development phase of a satellite. We built a compre-
hensive tool for these tasks, complete with a user-friendly GUI.

Motion Planning in Unknown Environments. Going in another direction, our work
in [GBT+21] delved into LTL motion planning in unknown environments. Unknown
environment means that the robot could only perceive obstacle and labeling within a
certain radius around it. We gave an algorithm which learns the semantic relations
present in the environment to figure out similar transitions it should look for in the
future to satisfy the formula as soon as possible. Additionally, to maintain record of
explored and unexplored area we employed a frontier-based approach which can also
suggest the direction with most unexplored area to guide the robot’s movements. We
combined the two biases and incorporated them in an RRG style algorithm.

1.3 Publication Summary

We list the publications by the thesis author that we discuss in this publication-based
thesis. All papers are included in the appendix, preceded by a page that presents the
full citation, a short summary, and a description of the thesis author’s contributions.

Part I of the appendix contains two publications in which the author of this thesis is the
first author. In these publications, the thesis author contributed more than 50% of the
substantive findings:

B Kush Grover, Fernando S. Barbosa, Jana Tumova and Jan Křetı́nský. “Semantic
Abstraction-Guided Motion Planning for scLTL Missions in Unknown Environ-
ments”.
RSS, 2021. [GBT+21]

A Kush Grover, Jan Křetı́nský, Tobias Meggendorfer, Maximilian Weininger. “Any-
time Guarantees for Reachability in Uncountable Markov Decision Processes”.
CONCUR, 2022. [GKM+22a]

Part II of the appendix contains the following two publications in which the author of
this thesis is not the first author:

C Jonis Kiesbye, Kush Grover, Pranav Ashok and Jan Křetı́nský. “Planning via
Model Checking With Decision-tree Controllers”.
ICRA, 2022. [KGA+22]

4

1 Introduction

D Jonis Kiesbye, Kush Grover and Jan Křetı́nský. “Model Checking for Proving and
Improving Fault Tolerance of Satellites”.
AEROCONF, 2023. [KGK23]

All four publications included in the dissertation are written in English and have been
published in peer-reviewed proceedings of internationally recognized conferences.

Other Publications

In addition to the included publications, the author has co-authored the following pa-
pers while working on this thesis. These papers have been published in peer-reviewed
conference proceedings and, while they are not part of the thesis, they are mentioned
here for the sake of completeness.

• Maximilian Weininger, Kush Grover, Shruti Misra and Jan Křetı́nský. “Guaran-
teed Trade-Offs in Dynamic Information Flow Tracking Games”.
CDC, 2021. [WGM+21]

1.4 Outline of Thesis

Chapter 2 introduces the notations used, some basic definitions and some preliminary
concepts related to finite and uncountable MDP, Linear Temporal Logic, and motion
planning.

Chapter 3 describes our algorithm for verification of uncountable MDPs with the as-
sumptions required published in [GKM+22a]. Furthermore, Chapter 4 discusses our
methods to apply probabilistic verification of MDPs to the fields of robotics [KGA+22]
and aerospace [KGK23].

Lastly, motion planning problem for scLTL formulas in unknown environment is cov-
ered in Chapter 5, where the results from [GBT+21] are discussed.

5

2 Preliminaries

In this chapter, we start by setting up the notations, then we formally define Markov
Decision Process with an example succeeded by a couple of algorithms to solve reach-
ability for MDPs. Later on, we look at the syntax and semantics for LTL, and finally we
see motion planning algorithms for reachability and LTL formulas.

2.1 Notation

We use N, R, and R≥0 to denote the set of natural numbers, reals, and non-negative
reals respectively. For a set A, we use 2A to denote its power set, A∗ to denote the set
of all finite strings over A and Aω to denote the set of all infinite strings over A. For a
probability measure µ ∈ Π(A), supp(µ) denotes the set {a ∈ A | µ(a) > 0}.

Given two metric spaces A and B with metrics dA and dB, a function f : A → B
is called Lipschitz continuous if ∃K such that for every a1, a2 ∈ A, dB(f (a1), f (a2)) ≤
K · dA(a1, a2). The constant K here is called the Lipschitz constant.

For Chapter 3, we assume familiarity with some basic measure theory concepts like
measurable set or measurable function. For a measure space X with sigma-algebra ΣX,
Π(X) denotes the set of all probability measures on X.

2.2 Markov Decision Processes

Markov Decision Process (MDP)s [Put94] are widely used formalism to model systems
that have non-deterministic as well as probabilistic behaviors. They are defined using
a set of finite states the system can be in, and a finite set of actions, the system can take.
Upon taking an action from a state, the system goes to another state according to a
probability distribution over successor states. The reachability problem is defined w.r.t. a
set of desired states for which you either want to minimize or maximize the probability
of system reaching them.

2.2.1 Formal Definition

Definition 1. A Markov Decision Process is a tupleM = (S, Act, Av, ∆, s0), where

• S is a finite set of states,

• Act is a finite set of actions,

• Av : S→ 2Act assigns a set of available actions to every state,

6

2 Preliminaries

• ∆ : S × Act → Dist(S) is a probabilistic transition function that maps each state-
action pair to a distribution over successor states, and

• s0 is an initial states.

It is also possible to replace the initial state s0 with a set of initial states S0. They can be
proved equivalent by adding an auxiliary initial state s⊥ and add transitions from s⊥
to each s ∈ S0 with probability 1. We abuse the notation and use ∆(s, a, s′) to denote
∆(s, a)(s′).

Paths. An infinite path in an MDP is an infinite sequence ρ = s1a1s2a2 · · · ∈ (S× Act)ω

such that for every i ∈ N, ∆(si, ai, si+1) > 0. A finite path is a non-empty and finite
sequence ϱ = s1a1s2a2 . . . sn ∈ (S× Act)∗ × S such that for every i ∈N, ∆(si, ai, si+1) >
0. The set of all finite paths of an MDP starting in state s is denoted by FPathsM,s and
the set of all infinite paths is referred by PathsM.

End Components. An end component is a pair of sets of states and actions (S′, Act′)
where S′ ⊆ S, Act ⊆ ⋃

s∈S′ Av(s) such that
(i) supp(∆(s, a)) ⊆ S′ for all s ∈ S′ and a ∈ Act′,
(ii) for all s, s′ ∈ S′ there is a path s0a0s1 . . . sk where s0 = s, sk = s′, ai ∈ Act′.
Intuitively, the definitions says that once you enter a state from S′, it is not possible to go
out by playing actions from Act′, and it is possible to reach any state from any state in
the future. A Maximal End Component (MEC) is an end component (S′, Act′) for which
there does not exist another end component (S′′, Act′′) such that (S′, Act′) ⊊ (S′′, Act′′).

Strategies. A strategy (also called policy, scheduler, or controller) for an MDP M =
(S, Act, Av, ∆, s0) is a function π : FPathsM,s → Act which selects an action for a given
finite path (or history). We use ΠM to denote the set of all strategies for an MDP M.
A strategy is called memoryless if it only depends on the last state instead of the whole
path i.e. π : S → Act. A memoryless strategy for an MDP induces a Markov chain1

where the only action available in each state is defined by the strategy.

Example 1. Figure 2.1 shows example of an MDP with 4 states. A possible path in this MDP is
q0a(q1aq2b)ω. An example of an end component is ({q2}, {a}), which is not a MEC. Whereas,
({q1, q2}, {a, b}) is an example of a MEC. A memoryless strategy π could be given as π(q0) =
a, π(q1) = c, π(q2) = b, and π(q3) = a. Induced Markov chain under this strategy is shown
in Figure 2.2.

1A Markov Chain can be defined as an MDP which has only one action available in each state.

7

2 Preliminaries

q0 q1 q2

q3

a
a

b

0.5

0.5

c

0.5
0.5

a

a

Figure 2.1: Example of an MDP

q0 q1 q2

q3

a
b

0.5

0.5

c

0.5
0.5

a

Figure 2.2: Example of an induced Markov chain for the MDP shown in Figure 2.1

2.3 Verification of MDPs

There are several types of queries one can ask for an MDP using different logics such
as Probabilistic Linear Temporal Logic (pLTL) [BK08], Probabilistic Computation Tree
Logic (pCTL) [BK08], etc. However, one of the most fundamental questions is the reach-
ability problem, which inquires about reaching a set of goal states. In the context of
MDPs, it asks about the probabilities of reaching the goal, also defined as the value.

Reachability Problem. The reachability problem for an MDP is defined w.r.t. a target set
T ⊆ S as ”what is the maximum probability of reaching T from the initial state s0”?2 Along
with the value, sometimes it is also desired to compute the strategy which achieves this
value. We extend this definition to other states and define the value function, which
assigns each state, the probability of reaching the target set.

Formally, for a given target set T, we define the value function as

v(s) = max
π∈ΠM

Prπ
M(F T)

2It is also possible to define the dual problem, i.e. what is the minimum probability?, which can also be
solved in a similar way.

8

2 Preliminaries

Here, F T represents the event eventually reaching T. Finding a solution to this equation
can be reduced to solving the Bellman equation given by

v(s) = max
a∈Av(s)

∑
s′∈S

∆(s, a, s′) · v(s′)

This is a fix-point equation which already suggest techniques like fix-point iteration
to solve it. The iterative methods, however, don’t necessarily find the exact solution,
instead they find an approximation. Another method to solve the Bellman equation is
to use Linear programming [Put94]. A linear program can be formulated by encoding the
Bellman equation for each state, which can then be solved using methods such as the
simplex algorithm.

Complexity. The computational complexity of the LP-based approach is polynomial,
whereas for an iterative method like VI, it becomes exponential. However these are
worst case complexities and in practice, VI is often found to be more efficient and is
commonly preferred for most applications.

For the purpose of this thesis, we will only look at iterative methods, in particular, Value
Iteration (VI) and Bounded Real-time Dynamic Programming (BRTDP).

2.3.1 Value Iteration

Similar to a generic fix-point iteration method, a current approximation of the value
function is maintained and updated in each iteration until the value is deemed good
enough. The true value is reached in the limit, but the algorithm can be stopped at any
time making this algorithm anytime.

We start with the initial values v0(s) = 0 for all states s ∈ S \ T and v0(s) = 1 for all
states s ∈ T, which is a lower bound of the actual values. Now, fix-point iteration is
applied until the difference in the values of two consecutive iterations is smaller than a
given threshold ϵ. The pseudo-code is shown in Algorithm 1. In the ith iteration, new
values are computed by applying Bellman updates to all of the states given by

vi+1(s) = max
a∈Av(s)

∑
s′∈S

∆(s, a, s′) · vi(s′)

The algorithm stops when the difference between the values of the initial state in two
consecutive iterations is smaller than the given threshold i.e. |vi+1(s0) − vi(s0)| ≤ ϵ.
This stopping criterion does not ensure that the computed value is close to the actual
values, see [FKN+11, Section 4.2] for a detailed discussion.

Since we start with a correct lower bounds, it can be proved that the values we have
will always be a lower bound to the actual value [Put94, Proposition 6.3.2]. Therefore,
at whatever value the algorithm stops, it is a sound lower bound. This variant of VI is
called the synchronous VI because in each iteration, values of all the states get updated.
There is another variant called asynchronous VI [WB93; Put94] where in each iteration,

9

2 Preliminaries

Algorithm 1 Value Iteration

Input: MDPM = (S, Act, Av, ∆, s0), target set T ⊆ S, and precision ϵ > 0
1: for all s ∈ S do
2: v0(s)← 0
3: δ← ∞
4: i← 0
5: while δ > ϵ do
6: for all s ∈ S do
7: vi(s)← max

a∈Av(s)
∑

s′∈S
∆(s, a, s′) · vi−1(s′)

8: i← i + 1
9: δ← maxs∈S |vi(s)− vi−1(s)|

return vi(s0)

it samples a path starting from the initial state and ends when it reaches a target state
or reaches the maximum path length. Then the values of states on this path are up-
dated by backtracking from the last state until the initial state. This has the advantage
that the important states (with higher probability of reaching) are updated more often,
potentially reaching the correct value faster.

2.3.2 Bounded Real-time Dynamic Programming

In Value Iteration, only the lower bound is considered. However, if we assume the
existence of a set R ⊆ S, referred to as ”sink states”, from which reaching a goal state is
impossible, it becomes possible to establish an upper bound as well. In this approach,
you also start with a conservative upper bound and gradually reduce it until you reach
a satisfactory value.

If you keep both lower and upper bounds, it is called Bounded Value Iteration (BVI)
and the result is an interval where the true value lies. The convergence criterion now
is that the difference between lower and upper bound for the initial state is smaller
than a given threshold. However, to make the lower and upper bounds converging
to a value, we need the assumption that there are no end-components. If we don’t
have this assumption, there can be more than one solution to the Bellman equation and
the algorithm might not find the optimal solution see [BCC+14, Example 1] for more
details.

The asynchronous and the bounded versions combined gives the recipe for BRTDP
[MLG05]. In [BCC+14], Brázdil et. al. also figured out a way to relax the end-component
assumption. They sample paths to update values asynchronously and introduced a
way to figure out when a simulation is most likely stuck in an end-component. Here,
we only show the pseudo code of the BRTDP algorithm under the assumption that
there are no end-components (Algorithm 2).

10

2 Preliminaries

Algorithm 2 Bounded Real-time Dynamic Programming

Input: EC-free MDP M = (S, Act, Av, ∆, s0), target set T ⊆ S, sink set R ⊆ S, and a
threshold ϵ > 0

1: L(·, ·)← 0
2: U(·, ·)← 1
3: while U(s0)− L(s0) ≥ ϵ do
4: (s, a)← GETPAIR(())
5: if s ∈ T then L(s, ·)← 1
6: else if s ∈ R then U(s, ·)← 0
7: else
8: U(s, a)← ∑

s′∈S
∆(s, a, s′) ·U(s′)

9: L(s, a)← ∑
s′∈S

∆(s, a, s′) · L(s′)
return (L(s0), U(s0))

2.3.3 Representing Strategies Using Decision Trees

Strategies generated by model checkers such as PRISM [KNP11] and STORM [DJK+17]
are usually computed and exported as a lookup table. This lookup table has as many
rows as the number of states in the model, which for any reasonable model (that can
be solved by the model checkers), ranges from a few thousands to a few millions. This
problem can be solved by using Binary Decision Diagram (BDD) [Lee59] or Algebraic
Decision Diagram (ADD) [BFG+93] since they are way more succinct. However, they
also come at the cost of explainability as discussed in [AJJ+20; BCC+15].

To solve both of these problems, [AJJ+20] introduces the methodology and a tool
called dtControl to convert the lookup table strategy into a decision tree. These deci-
sion trees turn out to be extremely compact as shown by experiments in [AJJ+20] and
way more explainable because of the size and structure of the decision trees.

2.4 Linear Temporal Logic

Linear Temporal Logic (LTL) [Pnu77] is a commonly employed specification language
for analyzing a system’s temporal behaviors. It offers a straightforward and intuitive
means for humans to describe complex temporal behaviors while still being abstract
about the exact timings of the events.

Syntax. We define an extended syntax of LTL here, which includes the eventually and
globally operators. There are other operators that can be defined e.g. weak until but we
don’t need them here.

Definition 2. Extended syntax for LTL is defined as:

ϕ := ⊤ | α | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | X ϕ | ϕ1 U ϕ2 | F ϕ | G ϕ

11

2 Preliminaries

where ⊤ denotes true, α comes from a finite set of atomic propositions Σ, ¬,∨,∧ are the usual
Boolean operators, X is the next operator, U is the until operator, F is the eventually
operator, and finally G is the always operator.

Syntactically, F and G are defined using the until operator as F ϕ := ⊤ U ϕ and
G := ¬F ¬ϕ. LTL formulas are define over timed infinite words where each word is an
infinite sequence over valuations of atomic propositions w = w0w1 . . . such that each
wi ∈ 2Σ.

Semantics. Formally, a word w satisfies an LTL formula ϕ (denoted by w |= ϕ) as

• w |= α if α ∈ w0

• w |= ¬ϕ if w ̸|= ϕ

• w |= ϕ1 ∨ ϕ2 if w |= ϕ1 or w |= ϕ2

• w |= ϕ1 ∧ ϕ2 if w |= ϕ1 and w |= ϕ2

• w |= X ϕ if w1 |= ϕ

• w |= ϕ1 U ϕ2 if ∃ i ≥ 0 such that wi |= ϕ2 and wj |= ϕ1 ∀ 0 ≤ j < i.

• w |= F ϕ if ∃ i ≥ 0 such that wi |= ϕ

• w |= G ϕ if ∀ i ≥ 0 wi |= ϕ

LTL to Automata. It is possible to convert any LTL formula to an equivalent non-
deterministic automaton [BK08]. These automata can then be used for model checking
by negating the specification and taking product with the system that can help to find
a trace violating the specification. There are several variants of automaton one can use
like Büchi, Rabin [Far02], Müller [Mul63], etc. Authors in [SEJ+16] show that it is also
possible to convert any LTL formula to an equivalent Limit-Deterministic Büchi Automa-
ton (LDBA) which is easier to use for model checking purposes. In these automata, the
states are partitioned into two parts, deterministic and non-deterministic. As the name
suggests, every execution eventually reaches the deterministic part and never goes back
to the non-deterministic part. This also means that the accepting states are only in the
deterministic part which in turn entails that the loop part of an accepting word lies in
the deterministic part.

Syntactic Co-Safety. The syntactic co-safe fragment of LTL (scLTL) has the same syn-
tax as LTL barring the operator G . A safety specification is usually written as ”some-
thing bad never happens” which in LTL translates to G ¬bad. It is not possible to write
safety specifications in this fragment hence the name. It can also be noted that without
the G operator, specifications have to be satisfied within finite time horizon which also
means that they can be converted to a deterministic Büchi automaton.

12

2 Preliminaries

2.5 Motion Planning

Motion planning [Jau01] is a ubiquitous task in robotics which by and large can be de-
scribed as the problem of finding a path in a workspace or an environment. The most
fundamental motion planning problem is similar to the reachability problem we de-
scribed earlier in Section 2.3, where the robot wants to reach a target set starting from
an initial point.

Environment and Trajectories. Consider a robot moving in an environment X ⊂ Rn

starting from an initial point x0 ∈ X . Let O = {O1,O2, . . . ,Ok} be a set of obstacles in
the environment where eachOi ⊂ X . We use X f ree to denote the free space X \⋃k

i=1Oi.
A trajectory σ in the environment X is given by a continuous function σ : [0, 1]→ X . A
trajectory is called collision-free if σ(t) ∈ X f ree for all t ∈ [0, 1].

Problem Statement. Given X , x0 ∈ X ,O, and a target region T ⊆ X , find a collision-
free trajectory σ such that σ(0) = x0 and σ(1) ∈ T .

Solutions. There are many ways to approach this problem, e.g. applying graph search
algorithms like Dijkstra [Dij59] or A∗ [HNR68] to a discretization of the environment
or sampling-based techniques like Rapidly-exploring Random Trees (RRT) [LaV98] or
Rapidly-exploring Random Graphs (RRG) [KF11]. Since in [GBT+21], we use RRG, we
are going to look at it briefly.

2.5.1 Rapidly-Exploring Random Graphs

Algorithm 3 shows the pseudo code of the RRG algorithm adopted from [KF11]. It
starts by initializing the graph with the initial point (line 1). A loop is then run m times
and in each iteration of the loop a random point is sampled which is then used as the
direction to grow our graph into. The sampled point is stored in xrand and its closest
point xnearest in V is found (line 3,4). This point xnearest is then fed to the STEER function,
which tries to go towards xrand from xnearest upto the distance δ and returns the new
point xnew (line 5). If the steering from xnearest to xnew is collision-free, xnew is added to
V and the edge (xnearest, xnew) to E (line 6,7). Then, all neighbors of xnew in V within a
certain radius are determined and are joined to xnew whenever possible (line 8-11). The
neighborhood radius can be a constant or dependent on some heuristic e.g. current size
of V.

2.5.2 Unknown Environments

When a robot needs to navigate in an unknown environment, it becomes necessary to
explore the environment. One of the most common method for exploration is a frontier-
based approach [Yam97], where a discretized grid-map of the environment with each
cell storing whether it has been explored so far or not. The unexplored cells which

13

2 Preliminaries

Algorithm 3 Rapidly-exploring Random Graphs (RRG)

Input: Initial point x0, set of goal points T and step size δ
1: V ← x0, E← ∅
2: for i = 1, . . . , m do
3: xrand ←SAMPLE

4: xnearest ←NEAREST(V, xrand)
5: xnew ← STEER(xnearest, xrand, δ)
6: if COLLISIONFREE(xnearest, xnew) then
7: V ← V ∪ xnew, E← E ∪ (xnearest, xnew)
8: Xnear ←NEAR(V, xnew)
9: for xnear ∈ Xnear do

10: if COLLISIONFREE(xnear, xnew) then
11: E← E ∪ (xnear, xnew)

return (V, E)

have an explored neighbor are called frontier cells and a chain of frontier cells is called
a frontier. These algorithms then make the robot go towards these frontiers. If there
are multiple frontiers to explore, the algorithm picks a frontier based on some heuristic.
One class of commonly used heuristics is information gain which can be defined for a
frontier as

IG = size× f (d)

where, size is the size of the frontier, d is its distance from the current position, and
f : R≥0 → R is a monotonically decreasing function. The motivation behind inverse
dependence on f is that you should explore the near things first.

14

3 Uncountable Markov Decision Processes

This chapter focuses on our contribution concerning the verification of uncountable
MDP, as presented in [GKM+22a]. We begin by providing essential definitions to fa-
miliarize the reader with the model. Subsequently, we explore current state of the art
and later elucidate how our contribution helps.

Many of the definitions here closely resemble their finite counterparts, allowing us to
employ the same notations whenever feasible for the sake of simplicity and consistency.

Definition 3. An uncountable MDP is given by a tupleM = (S, Act, Av, ∆) where

• S is a compact set of states with topology TS and Borel σ-algebra B(TS),

• Act is a compact set of states with topology TAct and Borel σ-algebra B(TAct),

• Av : S → 2Act \ ∅ is a function which assigns a set of available actions to each states,
and

• ∆ : S× Act → Π(S) maps a state action pair to a probability measure over successor
states.

We can also associate an initial state s0 with an uncountable MDP, similar to the finite
case. Definitions of infinite and finite paths can be borrowed from the finite MDP case.
We also use FPathsM,s and PathsM to denote the set of finite paths starting in s and
the set of infinite paths respectively. The definition of a strategy too can be defined in
a similar manner π : FPathsM,s → Act and given a target set T, we can define the
reachability problem. We define the value function which can be adjusted to this setting
as

v(s) = sup
π∈ΠM

Prπ
M(⋄T)

The Bellman equation can be written for this value function as

v(s) = sup
a∈Av(s)

∫

s′∈S
∆(s, a, s′)v(s′)ds′

We denote the value of state s under action a as v(s, a) which is also called the Q-value

v(s, a) =
∫

s′∈S
∆(s, a, s′)v(s′)ds′

Given an uncountable MDPM and a function f : S → R, we define the successor
expectation as ∆(s, a)⟨ f ⟩ :=

∫
s′∈S ∆(s, a, s′) f (s′)ds′. We also assume the existence a

15

3 Uncountable Markov Decision Processes

sampling procedure GETPAIR which returns a state and an action. We use d× to denote
a metric on the space of state-action pairs which satisfies that (i) for two pairs (s, a) and
(s, a′), k · dAct(a, a′) ≤ d×((s, a), (s, a′)) ≤ K · dAct(a, a′) for some constants k, K ≥ 0,
and (ii) for two pairs (s, a) and (s′, a), k · dS(s, s′) ≤ d×((s, a), (s, a′)) ≤ L · dS(s, s′) for
some constants l, L ≥ 0. One example of such metric could be d×((s, a), (s′, a)) :=
dS(s, s′) + dAct(a, a′).

Given two probability measures µ and ν over a sigma-algebra ΣX, we define the total
variation distance between them as δTV(µ, ν) := 2 · supY∈ΣX

|µ(Y)− ν(Y)|.

3.1 State of the art

Undecidability. Finding solution for the general case of the reachability problem for
uncountable MDPs is undecidable. This can be proved by considering that ensuring
almost sure termination in probabilistic programs is a special case of the reachability
in uncountable MDP [FC19]. Even for non-stochastic linear hybrid systems, precise
reachability analysis remains an undecidable problem [HKP+98].

Finite Horizon/Discounted Properties. While literature exists on finite-horizon [LL05;
APL+08] and discounted properties [GHK04; HJS+20; Has12], our focus here is on
infinite-horizon properties.

Reinforcement Learning. Learning techniques such as reinforcement learning can
be used her but it only guarantees convergence to the true result over infinite time
[MMR08]. Our focus here is to provide stronger guarantees.

Discretization Methods. Alternatively, researchers have explored increasingly pre-
cise discretization methods [JJG+19; TMK+13], also giving convergence guarantees in
the limit. For safety-critical systems, just these convergence guarantees may not be
enough and a bound on the error might be desired.

Lipschitz Continuity. One potential approach to address undecidability while main-
taining robust guarantees involves imposing certain assumptions on the system. The
Lipschitz continuity assumption is such an example, which has been adopted in sev-
eral works. Even for finite horizon and discounted reward properties, it is necessary
to assume Lipschitz continuity of the transition function, along with knowledge of the
Lipschitz constant [AKL+10; SA11; Ber75; TMK+13].

Our work, however, takes a slightly weaker stance by assuming Lipschitz continu-
ity of the value functions, with knowledge of the constant. Notably, this assumption
is implied by the Lipschitz continuity of the transition function, see [GKM+22b, Ap-
pendix B.2.1]. There also exist literature such as [HJS+20; SJJ20] which assume Lipschitz
continuity but without knowledge of the constant. These works offer convergence in

16

3 Uncountable Markov Decision Processes

the limit or ”probably approximately correct” results but again, they do not provide a
bound on the error since it would require knowledge of the constant.

Guarantees. Many of the techniques mentioned above rely on discretization [GHK04;
SA11; Ber75; TMK+13; AKL+10]. However, they also necessitate some form of continu-
ity assumptions to establish an error bound [AAP+07]. Also, none of them are anytime
algorithms, that keeps on improving the result and can be stopped at anytime to get the
current value.

3.2 Contribution: Verification of Uncountable MDPs

Since we focus on robust guarantees, our main goal here is to identify a set of neces-
sary assumptions while trying to keep them as minimal and weak as possible. Under
these assumptions, it becomes possible to lift the iterative algorithms Value Iteration and
BRTDP from the finite case to this setting. Because of the general nature of our assump-
tions, these algorithms are more like templates that allow for a variety of heuristic in
contrast to e.g., a discretization based algorithm.

We begin with stating the assumptions required for the VI algorithm and then explain
the algorithm itself. Later, we do the same for the BRTDP algorithm.

3.2.1 Assumptions: Value Iteration

Recall that the central idea of asynchronous1 VI is to start with a lower bound for all
states, sample some states, and apply Bellman updates to these states to improve their
values.

Apart from the continuity assumptions as discussed in Section 3.1, we also need some
notions of computability and structural properties for the MDP. The computability as-
sumptions are required to be able to do any computation with the model and are im-
plicitly present in all of the previous works. For other assumptions, we briefly explain
what they intuitively mean and how restrictive they are. For a detailed discussion on
this, see [GKM+22a, Section 3.1].

Assumptions A1-A4 defined below correspond to each part of the uncountable MDP;
A1 for S × Act, A2 for Av, A3 for ∆, and A4 for T. Since in any iterative algorithm,
it is only possible to update values of finitely many states, therefore, we require Lips-
chitz continuity assumption C. It is used to extrapolate information from these sampled
points to the whole state and action spaces.

Assumption A1. S and Act are metric spaces with computable metrics dS and dAct
respectively, and d× is a compatible metric on the product S× Act.

1we only use asynchronous version here since synchronous VI requires updating values for an infinite
number of states which can become infeasible to work with

17

3 Uncountable Markov Decision Processes

Algorithm 4 Value Iteration for Uncountable MDPs

Input: ApproxLower query with threshold ζ, satisfying A1–A4, B.VI and C.
1: Sampled← ∅, t← 1
2: while APPROX≤(L(s0), PRECISION(t)) ≤ ζ do
3: (s, a)← GETPAIR

4: if s ∈ T then L̂(s, ·)← 1
5: else L̂(s, a)← APPROX≤(∆(s, a)⟨L⟩, PRECISION(t))
6: Sampled← Sampled ∪{(s, a)}, t← t + 1

return yes

Assumption A2. For each state s, and a computable Lipschitz continuous function
f : Av(s)→ [0, 1], the value maxa∈Av(s) f (a) can be under approximated to an arbitrary
precision. We use APPROX≤(max a ∈ Av(s) f (a), ϵ) to denote this under-approximation
with precision ϵ.

Assumption A3. For each state-action pair (s, a), and a Lipschitz continuous function
g : S→ [0, 1] which can be under approximated to an arbitrary precision, the successor
expectation ∆(s, a)⟨g⟩ can be under approximated to an arbitrary precision. We abuse
the notation and use APPROX≤(∆(s, a)⟨g⟩, ϵ) to denote this under-approximation with
ϵ precision.

Assumption A4. The target set of states T is decidable i.e. we are given a computable
predicate which can decide whether a state s ∈ T or not.

Assumption B.VI. Let S⋄ = {last(ϱ) | ϱ ∈ FPathsM,s} be the set of all reachable
states from s. For any ϵ > 0, s ∈ S⋄ and a ∈ Av(s), GETPAIR eventually returns a pair
(s′, a′) such that d×((s, a), (s′, a′)) < ϵ and δTV(∆(s, a), ∆(s′, a′)) < ϵ.

Assumption C. The value functions v(s) and v(s, a) are Lipschitz continuous with
constants CS and C× respectively.

Assumptions A1 can be satisfied quite easily since for practical purposes most do-
mains are metric spaces. Assumptions A2 and A3 can also be satisfied if you can sample
densely from Av(s) (e.g. random sampling) and can approximate ∆(s, a). Assumption
B.VI essentially ensures the fairness of the GETPAIR procedure w.r.t reachable states, i.e.
the GETPAIR provides a way to “exhaustively” generate all behaviours of the system
up to a precision ϵ.

3.2.2 Value Iteration for Uncountable MDPs

The pseudo-code for VI is quite similar to the finite VI we saw in 2.3.1, and is shown in
Algorithm 4. It begins with initializing the sampled points to empty set in line 1. Then,

18

3 Uncountable Markov Decision Processes

from line 2, the iterations start, with sampling a new state-action pair. If the sampled
state is one of the target states, it’s lower bound is set to 1 (line 4), else, it is updated
by computing the value according to the previous lower bounds (line 5). At the end of
loop, line 6 updates the sampled state-action pair using the new ones.

Theorem 1 states the correctness of the VI algorithm and for a detailed proof, we refer
the reader to [GKM+22b, Appendix E.1].

Theorem 1. Algorithm 4 is correct under Assumptions A1–A4, B.VI, and C, i.e. it outputs
yes iff V(s) > ζ.

3.2.3 Assumptions: Bounded Real-Time Dynamic Programming

Since in BRTDP, we have both lower and upper bounds, we need extra assumptions.
Assumptions A5 and A6 are the upper bound counterparts of A2 and A3 respectively.
Assumption B.BRTDP is slightly weaker than B.VI since it doesn’t consider all the
states that are reachable from the initial state. Assumption D is probably the strongest
one here but it is equivalent to the EC-free assumption which was also required for
finite BRTDP initially.

Assumption A5. For each state s, and a computable Lipschitz continuous function
f : Av(s) → [0, 1], the value maxa∈Av(s) f (a) can be over approximated to an arbitrary
precision. We use APPROX≥(max a ∈ Av(s) f (a), ϵ) to denote this over-approximation
with precision ϵ.

Assumption A6. For each state-action pair (s, a), and a Lipschitz continuous function
g : S → [0, 1] which can be over approximated to an arbitrary precision, the successor
expectation ∆(s, a)⟨g⟩ can be over approximated to an arbitrary precision. We again
abuse the notation and use APPROX≥(∆(s, a)⟨g⟩, ϵ) to denote this over-approximation
with ϵ precision.

Assumption B.BRTDP. Let S⋄F be the set of all states reachable by using actions which
are arbitrarily close to the optimal actions (see [GKM+22a] for a detailed explana-
tion). The procedure GETPAIR is fair w.r.t S⋄F i.e. for any ϵ > 0, s ∈ S⋄F , and a ∈
Act(s), GETPAIR a.s. eventually yields a pair (s′, a′) such that d×((s, a), (s′, a′)) < ϵ and
δTV(∆(s, a), ∆(s′, a′)) < ϵ.

Assumption D. Along with T, there also exists a decidable set R, called sink, such that
V(s) = 0 for all s ∈ R. Moreover, for any s ∈ S and strategy π we have Prπ

M,s[⋄(T ∪
R)] = 1.

Assumptions A5, A6 and B.BRTDP are again easy to satisfy as before. Assumption
D requires the system to eventually reach a target or sink state from every state making
it the strongest assumption here.

19

3 Uncountable Markov Decision Processes

Algorithm 5 BRTDP for Uncountable MDPs

Input: ApproxBounds query with precision ϵ, satisfying A1–A6, B.BRTDP, C and D.
1: Sampled← ∅, t← 1
2: while APPROX≥

(
U(s0), PRECISION(t)

)
- APPROX≥

(
U(s0), PRECISION(t)

)
≥ ϵ do

3: (s, a)← GETPAIR

4: if s ∈ T then L̂(s, ·)← 1
5: else if s ∈ R then Û(s, ·)← 0
6: else
7: Û(s, a)← APPROX≥(∆(s, a)⟨U⟩, PRECISION(t))
8: L̂(s, a)← APPROX≤(∆(s, a)⟨L⟩, PRECISION(t))
9: Sampled← Sampled ∪{(s, a)}, t← t + 1

return (L(s0), U(s0))

3.2.4 BRTDP for Uncountable MDPs

We are now ready to describe the pseudo-code, shown in Algorithm 5. It is again, quite
similar to the finite state setting. It starts with initializing the set of sampled points in
line 1. While the difference between current lower and upper bound is greater than a
given threshold, the loop in lines 2-9 is executed. A state-action pair is sampled using
the GETPAIR method (line 3). If the state is in either target or sink, the lower or upper
bound is updated accordingly (line 4, 5). Otherwise, lines 7 and 8 compute new lower
and upper bounds for the sampled state-action pair and store them. Once the lower and
upper bound for the given state are close enough, the loop is terminated and returns
the bounds. The correctness of Algorithm 5 is shown in Theorem 2 and for its detailed
proof, we suggest to look at [GKM+22b, Appendix E.2].

Theorem 2. Algorithm 5 is correct under Assumptions A1–A6, B.BRTDP, C and D, and
terminates with probability 1.

3.3 Outlook

We extended the infamous VI algorithm alongside the BRTDP algorithm to the un-
countable setting under a few assumptions. They can specially be helpful in situations
where strong guarantees are required. Their current state might be far from a phase
that can be applied in real-world scenarios but this is a step in the right direction.

We now discuss the possibilities of improving the algorithm, relaxing the EC-free
assumption, and extending to LTL properties.

Using Heuristics. To enhance performance while maintaining strong guarantees, some
heuristics and learning techniques can be effectively employed. One approach involves
adapting Lipschitz constants for different sections of the domain, as opposed to using a
universal constant. This optimizes computations on parts with low Lipschitz constants,
resulting in faster processing.

20

3 Uncountable Markov Decision Processes

Another strategy uses domain knowledge to sample points more frequently from im-
portant areas, reducing the overall number of required samples and thereby improving
performance. An alternative sampling method follows a path-sampling method, sim-
ilar to [BCC+14], which automatically ensures that more probable points are sampled
more frequently. Finally, one can employ the difference between the lower and upper
bounds as a heuristic and increase sampling in areas where this difference is substan-
tial.

However, it’s crucial to ensure that these heuristics adhere to the corresponding as-
sumption (B.VI or B.BRTDP), e.g., it can be achieved by sampling random points with
a certain probability p and using the heuristic for sampling with a probability of 1− p.

Extending to LTL. Extending this algorithm to handle Linear Temporal Logic (LTL)
formulas presents several challenges. Even for repeated reachability properties i.e. re-
peatedly reaching a set of states infinitely often, significant complications arise due to
the inability to identify end components. Furthermore, for safety specifications like
ensuring an agent remains within a safe region indefinitely (G safe region), relying
solely on sampling is not possible since, even for a single execution, it’s not feasible to
determine if the agent will exit the safe region after a finite amount of sampling. For a
more in-depth exploration of why relaxing assumption D and extending the algorithm
to LTL scenarios is a challenging task, we refer to [GKM+22b, Section 4.1.2, Appendix
C.3].

21

4 Applications of Markov Decision Process
Verification

Verification techniques are being used more and more across diverse fields, includ-
ing robotics [LWA+10; ZRF+19], security [BCM18], aerospace [FSP+16; HAS+14], and
more [CZ11; EAA10]. However, there are instances where employing these techniques
right out of the box can prove to be challenging. This may be attributed to factors like
the substantial size of the model, making it difficult to be handled by a model checker,
or the unique nature of the problem at hand, which doesn’t precisely align with the abil-
ities of a model checker. In such scenarios, there arises a need to tailor the verification
method to the specific requirements of the application.

We found two such challenges in the fields of robotics and aerospace. To address
these challenges, we used the existing verification methods combined with new ways
to improve their efficacy.

4.1 State of the art: Task Planning With Recovery

Our first application [KGA+22] is from robotics, where the objective is to devise a high-
level plan for a robot that satisfies some specific requirements, typically reachability. In
the context of robotics, this challenge is often referred to as task planning [GNT04].

In real-world scenarios, these plans are susceptible to errors, which can arise due to
factors such as environmental changes during execution, inaccurate data generated by
the sensors, or imprecise robot control. These errors can lead to the system reaching un-
desired states, rendering the computed plan ineffective. In such cases, most traditional
planners resort to computing a new plan. In addition to the challenge of replanning, it
is also possible that the system reaches a state from which it is not possible to reach the
goal state using any sequence of the defined actions. We call these states deadlock states.
This can happen if the engineer responsible for modeling the system did not anticipate
its possibility.

Task Planning Coupled With Motion Planning. Task planning is often combined
with motion planning, to generate a plan that can be executed by the robot. In the
research by Kaelbling et al. [KL11], they introduce a hierarchical planning approach that
addresses both task planning and motion planning as a unified problem. Here, graph
algorithms like A∗ handle the task planning aspect, while a separate layer manages the
motion planning.

22

4 Applications of Markov Decision Process Verification

model checker, dtControl

dtControl,
C-compiler

 current state

Bin-Picking
Process

 action

 current state

Decision
TreeStrategy model checker

ePMC, jani converter

PRISM Model,
Goal

Coverage
Analysis

 planner
PDDL Domain

 action

 current state

Plan

 planner
PDDL Domain

 action
Planmanually writes domain

Engineer

Decision Tree

Generated PDDL

Manual PDDL

updates model

Figure 4.1: Framework for the task planning solution with a feedback loop for improving the
model

Planning Domain. Traditionally, task planning has been solved by planners such as
STRIPS which employ Planning Domain Definition Language (PDDL) to define the
model. They solve the planning problem by employing different algorithms and find a
suitable plan. In [SFR+14] Srivastava et.al. suggests a framework where PDDL is used
to define the task planning problem, which can then be solved by any planner.

Encode as a Different Problem. Apart from PDDL, it is also possible to use ASP to
encode the task planning problem. For an in-depth comparison between PDDL and
ASP, see [JZK+19]. More approaches include encoding task planning as a Boolean sat-
isfiability problem [KS92; Rin12; HHP+13] or an SMT instance [NPM+14] which can
then be solved by respective solvers.

Model Checking. Model checking has also been used to solve task planning prob-
lems, which usually generates a controller satisfying the specification. One such ex-
ample is presented in [JK11] where the sensors could be erroneous and probabilistic
verification techniques are used to compute the probability of satisfying the goal under
a given plan.
None of the approaches describe above give a ”universal plan” which suggests an ac-
tion to play in all of the states. This also helps us in identifying the deadlock states
which can be used to improve the model by adding recovery actions to those states.

4.2 Contribution: Task Planning With Recovery

The overview of our approach is depicted in the bottom pipeline of Figure 4.1 (labeled
as Decision Tree), while the top pipeline (Manual PDDL) shows the traditional ap-
proach by writing PDDL domain manually and middle pipeline (Generated PDDL)
represents an intermediate approach.

In our approach, during the modeling phase, the engineer can receive information
about these bad states that don’t reach the target with a given probability threshold
using coverage analysis. They are provided in a systematic manner, where similar

23

4 Applications of Markov Decision Process Verification

Figure 4.2: Part of a decision tree representing the values

states are combined into one branch of a decision tree. The engineer can then pick a
branch, e.g. with most states, and add the appropriate action and repeat the process.
Once a model with no deadlock states is created, it can be sent to a model checker like
PRISM which returns the optimal strategy. This strategy can also be converted to a
decision-tree (discussed in Section 2.3.3) resulting in a succinct universal plan, making
it easy to understand, and fast to execute.

4.2.1 Our Approach

We show the details on our approach on a case-study in which we modeled a Franka-
Emika robotic arm using an MDP. It was placed in a warehouse and its task was to pick
an item from a box and place them on a sorter tray.

Model. We used 14 variables to represent the states of the MDP, resulting in more
than a million states. We defined the actions that the robotic arm can perform from a
given state. These actions had some preconditions to ensure that they are available in
the current state and can be taken safely. The transitions define how the state changes
after taking an action. However, as discussed before, the execution of these actions are
not perfect and the system can end up in an unexpected state. This behavior can be
modeled completely using MDPs if all the possible outcomes are known with their re-
spective probabilities of occurring. But, only so much of these unpredictable outcomes
can be incorporated during the modeling phase. Therefore, to obtain a universal plan,
we defined all possible states as initial. The target states are the ones for which the bin
picking cycle is finished.

Model Checking. We feed this MDP to a model checker like PRISM or STORM which
can solve the reachability problem using algorithms like VI. They can output the prob-

24

4 Applications of Markov Decision Process Verification

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of recovery actions

C
ov

er
ag

e
in

%

Autonomous
Semi-
autonomous

Figure 4.3: Percentage of initial states which can reach a target state. Actions 1–6 are au-
tonomous, meaning the robot can perform them on its own, and actions 7–10 are
semi-autonomous, requiring human intervention during execution.

ability of reaching the target (recall that it is called value) for each state or the strategy
as a lookup table depending on what is required.

Improving the Model. For coverage analysis, we get the values of all the states as a
lookup table that the model checker outputs. These lookup tables are converted to de-
cision trees using dtControl. Figure 4.2 shows an example of such a tree. These decision
trees can now help identify the deadlock states e.g., by looking at Figure 4.2, we can con-
clude that the set of states with conveyer=stopped and box=in arrival,info received

cannot reach the target states since their value is 0. Now, a recovery action can be added
to these state to improve their value. This process can be repeated multiple times until
there are no deadlock states.

Final Strategy. Once all the recovery actions have been added, the model checker is
sent to the model checker one more time and a strategy is extracted this time instead
of the values of the states. This strategy is also converted to a decision tree which can
then be used by the robotic arm.

4.2.2 Experimental Results

First, we show how coverage analysis looked for our model of the robotic arm. Fig-
ure 4.3 shows the percentage of states that reach a target with the current strategy and
how it evolves by adding more recovery actions. Since autonomous actions are pre-
ferred, they are added first. We ran the final controller generated by our method on
a real-world Franka-Emika arm working in a warehouse. Figure 4.4 show how many
recovery actions were needed during 134 bin-picking cycles.

25

4 Applications of Markov Decision Process Verification

0 1 2 3+
number of reattempts

0

25

50

75

100

nu
m

be
r o

f i
tem

s p
ick

ed number of items
average pick time

0

20

40

60

80

av
er

ag
e p

ick
 ti

m
e p

er
 it

em
 [s

]

Figure 4.4: Number of reattempts required by 134 bin-picking cycles

Second, we show how our strategy performed in the real world when the robot was
working in a warehouse. Figure 4.4 shows, it completed 134 cycles and a few of them
required reattempts. These reattempts were suggested by the recovery actions and all
134 of the bin-picking cycles were successful eventually.

Although, it is not evident from the experimental results but finding a recovery action
was not difficult because of the explainability of the controller. When a branch is picked,
finding which variables needs fixing becomes quite easy and a lot of states with the
same issue can be fixed simultaneously.

4.3 State of the art: Fault Isolation for Satellites

Space missions have little room for human intervention, therefore they are required to
be fault tolerant, usually handled by Fault Detection, Isolation and Recovery (FDIR)
concepts. Many methods have been developed under this framework such as Failure
Modes and Effects Analysis (FMEA) [Fak21] and Fault Tree Analysis (FTA) [MMG+20].
One way to improve the fault tolerance is by adding redundant parts for each compo-
nent but it is not economical since adding even a tiny weight on space missions results
in a much increased cost. Therefore, they are required to be as minimal as possible.
Here, we focus on making the systems 1-fault tolerant i.e. if one fault occurs, the satel-
lite can still work perfectly.

Failure Modes and Effects Analysis. In FMEA, engineers analyze consequences for
every fault possible in a bottom up fashion and changes the model as required. An
improvement to FMEA was introduced in [BBC+14] called FAME which introduces
timed fault propagation graphs. Here, when a fault occurs, it is propagated through
several modes which are monitored. This helps pin-pointing where the fault occurred
and figure out a way to handle it. Redundancy Verification Analysis (RVA) is another
technique to identify interactions and failure scenarios specific to redundant configu-
rations. RVA goes into more detail than a system-level FMEA, here signal levels are
tracked throughout the system and block diagrams are generated to express the toler-
ance of the design to single failures.

26

4 Applications of Markov Decision Process Verification

Figure 4.5: Example of an architecture graph

Fault Tree Analysis. On the other hand, FTA is a top down approach where the input
is a fault-tree which looks similar to an architecture graph that we use as the input.
In [MMG+20; MGN], a recovery strategy is synthesized to handle faults. But here, the
information about where the fault occurred is assumed to be known. We, however,
focus more on how to figure out where exactly does the fault occurred. Also, we can
also figure out if the system has enough redundancies to make it one fault tolerant.

Model Checking. A model checking based method is described in [CPC03], where
they also try to figure out a fault based on observables. The investigated models how-
ever use highly accurate continuous domain models in the background that are dis-
cretized by the Livingstone framework while we focus on the architecture of spacecraft
in the design phase where no

4.4 Contribution: Fault Isolation for Satellites

Architecture Graph. The input of our problem is a directed graph we call architecture
graph where the nodes are either basic components or assemblies which are functional
units that depend on smaller assemblies or components. The dependency relation be-
tween nodes is defined using directed edges. We call the assemblies which can be ob-
served as modes which can be used to isolate faults. Each equipment has a probability
of failing, which introduces stochasticity in the model. Each mode is also associated
with a cost which defines how expensive testing them is. Figure 4.5 shows an example
of a dependency graph for a satellite.

Problem Statement. To isolate a fault, some modes need to be observed with which
either the components used in this modes can be ruled out of suspicion or the the ones

27

4 Applications of Markov Decision Process Verification

not in this mode can be ruled out of suspicion. Although, all of the modes can be tested
in order to isolate the fault, we want to spend minimal effort in doing so, since resources
are extra valuable for space missions.

Modeling the System as an MDP. It is possible to convert this problem into a reach-
ability problem for MDPs, the states of which keep track of the suspicious components.
The actions are testing the modes with corresponding cost associated with them. The
transition probabilities depends on the probabilities of the suspicious equipments. Each
mode correspond to an initial state since a fault can be encountered in them but it is also
possible to make all components suspicious. The set of target states are where it is not
possible to rule out any more suspicious components by checking any mode. The fault
is isolated completely if there is only one suspicious component therefore the target.

4.4.1 Pruning the model using Monte Carlo Tree Search

Similar to the task planning application, we give this MDP to a model checker which
generates a strategy. This method works in theory but becomes intractable as the num-
ber of components increase. To solve this issue, we suggested using Monte Carlo Tree
Search (MCTS) to prune the model such that only the best actions are kept in every
state based on simulations. Solving the reachability problem for the smaller MDP can
now become feasible. After getting the strategy, as always, we use dtControlto convert
it into a decision tree for the same reasons as before.

Algorithm 6 outlines our MCTS pruning approach. We initiate the process by creat-
ing a new MDP containing only the initial state and initialize a set of explored states
as empty set (line 1, 2). A loop is started in line 3 which runs until line 8. Within the
loop, following the MCTS approach, an unexplored state is chosen from the current
MDP (line 4). The MDP is expanded from this node by adding all of its children from
the original MDP (line 5). A few paths are simulated from this selected state in the
original MDP which also accumulate the cost along these paths (line 6). They provide
an estimated expected cost for that state, and the PRUNE procedure retains only the top
k successors, where k can be an input parameter (line 7). Finally, the selected state in
current iteration is added to the set of explored states (line 8). This process repeats until
all states within the current MDP have been explored.

Algorithm 6 MCTS based pruning

1: M̂ ← s0
2: V ← ∅
3: while V ̸= Ŝ do
4: s← SELECT(Ŝ \V)
5: M̂ ← EXPAND(s)
6: SIMULATE(G, s)
7: PRUNE(M, s, a)
8: V ← V ∪ s

28

4 Applications of Markov Decision Process Verification

4.4.2 Implementation and Experiments

We’ve developed a user-friendly tool featuring a graphical user interface (GUI) to assist
engineers in the early satellite development phase. The primary input for this tool
includes an architecture graph in dot format, fault probabilities for each component,
and the cost associated with executing each mode. Beyond the fault isolation method
discussed previously, the tool offers additional functionalities that we describe next.

Weakness Report. An initial analysis of the architecture graph generates a weakness
report. This report highlights components that may not be entirely isolable, and also
shows the probabilities of each mode failing. Engineers can leverage this report to
enhance fault tolerance by introducing additional modes or redundancies.

Fault Isolation Strategy. In scenarios where the architecture is single fault-tolerant,
the tool can generate and export a fault isolation strategy as a decision tree. If the size
of the MDP generated becomes too large, MCTS pruning can be used. For that, a user
can specify how many children to retain for each node.

Recovery. The recovery part handles several tasks. By looking at the faulty compo-
nents, it evaluates which modes are currently available to use. It also selects which
modes to use for a given task. Additionally, it determines which components to use
while using a mode since there are several configurations to choose from.

4.5 Outlook

Throughout this chapter, we explored how task planning and fault isolation can take
advantage of probabilistic verification methods, in particular verification of MDPs. Ad-
ditionally, we saw how the result of these verification techniques can be used to im-
prove the system. Moreover, in scenarios where absolute optimality is not a strict re-
quirement, we leveraged learning algorithms like MCTS to achieve scalability within
the verification process, even if it came at a minor cost to optimality.

The practical application of these approaches on real-world scenarios serves as a
strong motivation to utilize them even more.

29

5 Motion Planning in Unknown
Environments

As we briefly mentioned in the previous chapter, task planning is the problem of finding
a high level plan. Motion planning, on the other hand, deals with finding low level plans
which incorporate the dynamics of the system and interact with the physical world
directly. In this chapter, we discuss the motion planning problem for scLTL objectives
in unknown environments and discuss our algorithm given in [GBT+21].

5.1 State of the art

Several studies have tackled the motion planning problem for temporal specifications,
including formulas from LTL [BKV10; AAB13; KZ19; VB13], and µ-calculus [KF09].

Syntactic Co-safe LTL. We show the workings of our algorithm for a simplified form
of LTL known as the ”syntactic co-safe fragment”. This scLTL fragment is frequently
used for motion planning problems [BKV10; AAB13] since they can express a wide
spectrum of high-level robotic missions but also belong to the class of formulas that are
monitorable [BLS07].

Abstraction. In most sampling-based methods, a common approach involves creat-
ing an abstraction of the environment. Additionally, the LTL specification is trans-
formed into an automaton that helps in keeping track of satisfying the specification
by constructing a product automaton with the abstraction. In the work by Bhatia et.
al. [BKV10], an environmental decomposition based on geometry serves as the abstrac-
tion. A high-level plan is derived from this abstraction, which then guides the low-level
planner. In contrast, [VB13] constructs the abstraction using the RRG algorithm and dy-
namically updates the product automaton as new edges are added in the RRG graph.

Multiple RRTs. Another approach, as described in [KZ19], addresses LTL specifica-
tions by constructing the RRT graph until an accepting state is reached in the automa-
ton. Then, a new RRT run begins from this accepting point until a cycle is discovered.
Continuing in this direction, a bias using the automaton is introduced in [KZ20]. A
similar bias is also proposed by Luo et. al. in [LKZ19].

30

5 Motion Planning in Unknown Environments

Environment

RRG graph Map

Semantic abstraction Move

Product

scLTL property

Automaton

Learn

Initial position

Bias

Bias Frontiers New Position
Map

Frontier

Figure 5.1: Overview of the SAG-RRG algorithm

Unknown Environments. It’s important to note that all these approaches assume
knowledge of the whole environment. With respect to unknown environments, only
the obstacles are unknown beforehand in [KMK+20]. Another paper closely related
to our contribution is [AAB13], where information about obstacles and labeling is not
known in advance. However, none of these papers tackle the problem where both,
obstacles and labels are unknown.

5.2 Contribution: SAG-RRG Algorithm

One naive way to approach this problem would be to explore the whole environment
first and then solve LTL motion planning in known environment setting. We, however,
want something smarter, where it is possible to also make progress towards satisfying
the temporal specification while exploring the environment.

Before we start describing our approach, we need labels, which describe regions of
interest in the environment. These labels will then be used in the LTL formula to de-
scribe the goal of the robot.

Labeling. Let Σ denote a set of labels (or atomic propositions). A labeling function
L : X → 2Σ maps each point in the environment to a set of atomic propositions that
hold there. This labeling helps in describing the LTL specification.

5.2.1 Overview of Our Approach

Overview of our approach is highlighted in Figure 5.1. We describe each part of the
Figure separately to explain it better.

Automaton. As in any other model-checking inspired approach, we start by convert-
ing the scLTL formula to an automaton.

31

5 Motion Planning in Unknown Environments

RRG Graph. We start a run of the RRG algorithm which is then used to build the
abstraction. Instead of adding one point in one iteration, we add a bunch of points to
the graph. For computing bias frontiers, see the paragraph Bias Frontier.

Abstraction. The abstraction represents the semantic relations present in the environ-
ment which means that the set of states is 2Σ It is built using the RRG graph as our
foundation. It involves adding transitions that correspond to the edges observed in the
environment. To illustrate, for each edge x1 → x2 that we incorporate into the graph,
we include a corresponding transition L(x1) → L(x2) in our abstraction. Addition-
ally, we add supplementary transitions that are similar to these original ones (see next
paragraph Learn). To categorize and specify these different types of transitions within
a transition system, we require Multi-Modal Transition System (MMTS). Here, the transi-
tions can be of different modalities. In our particular case, we only require two modal-
ities: must and may. All the transition described before are added as must transitions,
since they have been sampled from the environment so they must be present.

Learn. In the abstraction, some may transitions are added which are learned from the
ones seen in the environment. To elaborate, for each must transition of the form s1 → s2
in the abstraction, we define the set of domain of changes. This domain is defined as
follows:

DOC(s1 → s2) := L(s1)⊕ L(s2)

Now, to identify similar transitions to s1 → s2, we search for transitions that share an
identical domain of changes. This set of similar transitions is defined as:

{s3 → s4 | DOC(s3 → s4) = DOC(s1 → s2)}

Then all these these similar transitions are added into the abstraction as may transitions.

Map. Simultaneously, we build a map of the environment that tracks which parts of
the map have been explored. At the beginning, it updates the map by sensing area
surrounding the initial position. Later on, the map is updated as the robot moves in the
environment.

Map Frontiers. A frontier exploration algorithm (similar to Section 2.5.2) is imple-
mented using the map. Recall that information gain for a map frontier was defined
as

IGmap = size× f (d)

where d is the distance and size is the size of the frontier. The best frontier is sent to the
MOVE procedure whenever robot wants to move.

32

5 Motion Planning in Unknown Environments

Algorithm 7 SAG-RRG

Input: Initial point x0, a Büchi automaton A and step size δ
1: Initialize semantic abstraction
2: V ← x0; E← ∅
3: curr pos← x0; seen st← s(x0)
4: while ¬ACCEPTINGPATH do
5: UPDATEMAP(curr pos, rs)
6: bias← BIAS(seen st)
7: tsymb ← ∅; i← 0
8: while i <batch size do
9: xs, xnear ←SAMPLEANDEXTEND(χ f ree, V)

10: if COLLISIONFREE(xnear, xs) then
11: if (s(xnear), s(xs)) ∈ bias then
12: add xs to bias frontier
13: else
14: continue to next iteration with probability p
15: E← E ∪ (xnear, xs); V ← V ∪ xs
16: tsymb ← tsymb ∪ (s(xnear), s(xs))
17: seen st← seen st ∪s(xs)
18: i← i + 1
19: for x ∈ NEAR(xs) do
20: if COLLISIONFREE(x, xs) then
21: E← E ∪ (x, xs); V ← V ∪ x
22: tsymb ← tsymb ∪ (s(x), s(xs))
23: if (s(x), s(xs)) ∈ bias then
24: add xs to bias frontier
25: LEARN(tsymb)
26: curr pos← MOVE

return accepting path

Product. After an iteration of adding edges to the RRG graph and transitions to the
abstraction, the product automaton of the abstraction with the property is created. By
looking at the accepting runs in the product, new biases and bias frontiers are computed
as described next.

Bias. In the product automaton, we find accepting runs using any kind of transitions
(must or may). Note that even if there is no accepting path using the RRG roadmap
yet, there can be accepting paths in the abstraction using the may transitions. In these
accepting paths, the may transitions might be a good idea to start looking for something.
Also, the closer they are to an accepting state, the better they are. These sets of may
transitions are therefore returned as an ordered list based on how far they are from an

33

5 Motion Planning in Unknown Environments

accepting state. Which call this object bias, which will also help in figuring out the bias
frontiers.

Bias Frontiers. Whenever a transition is sampled from the bias list during the RRG
iterations, it is added to the set of bias frontiers. We define rank of a bias frontier as
index+ 1 where index is the index of that particular transition in list, e.g. first element
of bias, which corresponds to the closest transitions to an accepting state has rank 1. We
define it’s information gain as:

IGbias = g(r, d)

where d is the distance to the current location and g is some function such that both
g(r, ·) and g(·, d) are strictly decreasing functions. The best frontier is then sent to the
MOVE procedure with the information gain.

Move. After every few iterations of adding points to the RRG graph, the robot finds
a new position to go to which maximizes the information gain among all frontiers.

5.2.2 Algorithm

We explain the pseudo code of our algorithm here, as presented in [GBT+21]. Apart
from the main procedure, we have LEARN, BIAS, and MOVE procedures which deals
with the different aspects of the algorithm as described before.

SAG-RRG. The main procedure shown in Algorithm 7, starts by initializing the ab-
straction, the RRG graph (V, E), current position, and the set of visited states in the
abstraction (line 1-3). A loop (line 4-26) is started in which runs until an accepting path
is found. Inside the loop, the map used to store the information about the explored
area is updated with respect to the current position and the sensing radius rs (line 5).
In line 6, the bias function is called, which returns an ordered list of transitions which
should be treated as advice while sampling points for RRG. Another while loop starts
in line 8 for ”batch size” many iterations, where each iteration of this loop is similar to
an iteration of the RRG algorithm. It starts by finding a new point xs and the closest
point to it in the graph xnear(line 9). Now, if the line joining them is collision free and it’s
a transition that bias suggested, it is added to the set of bias frontiers (line 10-12). Else,
with probability 0 < p < 1, this point is discarded since it was not in the bias. Here p
depends on how much biasing is required. In the next lines (15-24), it follows the RRG
algorithm of adding that edge to the graph and looking in the neighbors to add more
edges. Here, simultaneously transitions corresponding to the new edges are added to
the set tsymb and if a transition from bias in encountered, it is added to the set of bias
frontiers

34

5 Motion Planning in Unknown Environments

Algorithm 8 Learn

1: function LEARN(tsymb)
2: ADDTOPRODUCT(tsymb, must)
3: tsim ←FINDSIMILAR(tsymb)
4: ADDTOPRODUCT(tsim, may)

Learn. The LEARN procedure as shown in Algorithm 8 first adds all new sampled
transitions to the product automaton as must transitions. Then it computes the set of
transitions similar to any transition in tsymb and adds them to the product automaton as
may transitions.

Algorithm 9 Bias

1: function BIAS(seen st)
2: bias[0]← transitions ending in accepting states acc st
3: reached[0]← acc st
4: reached[1]← PREIMG(acc st)
5: all reached← reached[0] ∪ reached[1]
6: i← 1
7: while PREIMG(reached[i]) ⊆ all reached do
8: useful pre← PREIMG(reached[i]) ∩ seen st
9: useful post← POSTIMG(useful pre)∩ reached[i]

10: bias[i]← (useful pre, useful post) reached[i + 1]← PREIMG(reached[i])
11: all reached← all reached ∪ reached[i + 1]
12: i← i + 1

return bias

Bias. The BIAS procedure (Algorithm 9) starts by adding the set of transitions that
end in an accepting state as the first element of bias.

Algorithm 10 Move

1: function MOVE

2: p1 ← FINDBESTMAPFRONTIER

3: p2 ← FINDBESTBIASFRONTIER

4: v BEST(p1, p2)
5: GOTOVERTEX(v) return v

Move. Algorithm 10 shows the MOVE procedure, which initially computes the infor-
mation gain of all map frontiers and bias frontiers and finds the best among them in
line 2, 3. Line 4 then finds the vertex v closest to the center of the best frontier. The
robot then finds the shortest path to this vertex using a graph search algorithm and

35

5 Motion Planning in Unknown Environments

Table 5.1: Mean and standard deviation of different values for 100 randomly generated envi-
ronments. Each approach ran 3 times for every environment.

Explore, then plan Simultaneous Simult. biased

Total length 79.1 (7.1) 62.9 (16.5) 32.3 (11.8)
Exploration length 57.8 (4.9) 44.4 (16.6) 31.3 (12.1)
Remaining plan l. 21.3 (5.1) 18.5 (3.4) 1.1 (1.8)
Total Time 9.6 (2.5) 8.3 (3.2) 9.1 (2.4)
RRG size 2313.8 (550.9) 1868.7 (498.2) 1901.4 (301.2)

moves there (line 5).

To show the correctness of our algorithm, we need to prove that it is sound and
complete.

Theorem 3 (Soundness). Algorithm 7 is sound, i.e. any trajectory returned by SAG-RRG
satisfies the given scLTL formula ϕ.

Proof. (Sketch) If an accepting path is found in the product automaton, it can be pro-
jected onto the abstraction. Finding a path in the RRG graph corresponding to this
abstract path can also be done. This results in a path which satisfies the given specifi-
cation.

Theorem 4 (Completeness). SAG-RRG is asymptotically complete.

Proof. (Sketch) It follows directly from the convergence and completeness properties of
the original RRG and the fact that biasing here is probabilistic therefore allowing it to
sample points from everywhere.

5.2.3 Experimental Results

Our experiments showed significant improvement over the naive approach of first ex-
ploring the whole map and then planning in known environment. Our environments
were like an office area, where there is a corridor in the middle and 3 rooms on each side
of the corridor. Inside each room, a table and a bin is generated randomly and the task
of the robot was to reach the bins in all of the rooms. Table 5.1 shows part of our results
from [GBT+21]. Here, we see total length, along with the length of path traversed until
an accepting path is found (exploration length), and remaining path length required
to satisfy the formula. For the first column, the robot explored the whole environment
first without actively trying to satisfy the specification. Second column shows the re-
sults when robot actively tries to satisfy the specification but does not use our learning
and bias. Third and the final column shows results for our algorithm. It is quite evident
from the table that in this setting our algorithm performs a lot better than the naive
approaches on these environments.

36

5 Motion Planning in Unknown Environments

5.3 Outlook

We gave a brand new algorithm for motion planning in an environment with no prior
knowledge of obstacles or labels. It learns and exploits similar semantic relations present
in the environment. We identify several directions this work can be extended to.

Linear Temporal Logic. First direction for expansion could be solving for the entirety
of LTL. The key challenge here is ensuring the robot’s movements align with the spec-
ified properties. For simple properties like safety it is easy to ensure that the robot
doesn’t go to unsafe regions, however, monitoring becomes more complex for intricate
properties. Techniques from [BLS11] could be useful here for monitoring LTL formulas.

Dynamic Environments. Currently, we only consider stationary obstacles, but in re-
ality, some obstacles move, such as humans and other robots. There have been signifi-
cant developments in this area e.g. [SLS+07; FPM+23], and it’s logical to integrate our
methods with these advancements.

On-the-fly Labeling. We also assume that the number of labels is known in advance.
However, in unknown environments, this information may be missing. Identifying ob-
jects and labels using image recognition is possible, but adding too many labels would
result in the state explosion problem. Therefore, it would be crucial to identify the
useful labels which can help in satisfying the specification. It’s worth noting that rely-
ing solely on the labels in the specification may not promote the learning of semantic
relationships.

37

Bibliography

[AAB13] A. I. Medina Ayala, S. B. Andersson, and C. Belta. “Temporal logic mo-
tion planning in unknown environments”. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2013, pp. 5279–5284. DOI: 10.
1109/IROS.2013.6697120 (cited on pages 30, 31).

[AAP+07] Alessandro Abate, Saurabh Amin, Maria Prandini, John Lygeros, and
Shankar Sastry. “Computational Approaches to Reachability Analysis of
Stochastic Hybrid Systems”. In: Hybrid Systems: Computation and Control.
Ed. by Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 4–17 (cited on page 17).

[AJJ+20] Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Křetı́nský,
Maximilian Weininger, and Majid Zamani. “DtControl: Decision Tree
Learning Algorithms for Controller Representation”. In: Proceedings of
the 23rd International Conference on Hybrid Systems: Computation and Con-
trol. HSCC ’20. Sydney, New South Wales, Australia: Association for
Computing Machinery, 2020. DOI: 10.1145/3365365.3382220 (cited on
page 11).

[AKL+10] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Pran-
dini. “Approximate Model Checking of Stochastic Hybrid Systems”. In:
European Journal of Control 16.6 (2010), pp. 624–641. DOI: https://doi.
org/10.3166/ejc.16.624-641 (cited on pages 16, 17).

[APL+08] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry.
“Probabilistic reachability and safety for controlled discrete time stochas-
tic hybrid systems”. In: Automatica 44.11 (2008), pp. 2724–2734. DOI:
https://doi.org/10.1016/j.automatica.2008.03.027 (cited on
page 16).

[BBC+14] Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Regis De Ferluc,
Marco Gario, Andrea Guiotto, and Yuri Yushtein. “An Integrated Process
for FDIR Design in Aerospace”. In: Model-Based Safety and Assessment.
Ed. by Frank Ortmeier and Antoine Rauzy. Cham: Springer International
Publishing, 2014, pp. 82–95 (cited on page 26).

[BCC+14] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelı́k, Vojtěch Forejt,
Jan Křetı́nský, Marta Kwiatkowska, David Parker, and Mateusz Ujma.
“Verification of Markov Decision Processes Using Learning Algorithms”.
In: Automated Technology for Verification and Analysis. Ed. by Franck Cassez

38

https://doi.org/10.1109/IROS.2013.6697120
https://doi.org/10.1109/IROS.2013.6697120
https://doi.org/10.1145/3365365.3382220
https://doi.org/https://doi.org/10.3166/ejc.16.624-641
https://doi.org/https://doi.org/10.3166/ejc.16.624-641
https://doi.org/https://doi.org/10.1016/j.automatica.2008.03.027

Bibliography

and Jean-François Raskin. Cham: Springer International Publishing,
2014, pp. 98–114 (cited on pages 10, 21).

[BCC+15] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelı́k, Andreas Fell-
ner, and Jan Křetı́nský. “Counterexample Explanation by Learning Small
Strategies in Markov Decision Processes”. In: Computer Aided Verification.
Ed. by Daniel Kroening and Corina S. Păsăreanu. Cham: Springer Inter-
national Publishing, 2015, pp. 158–177 (cited on page 11).

[BCM18] David Basin, Cas Cremers, and Catherine Meadows. “Model Check-
ing Security Protocols”. In: Handbook of Model Checking. Ed. by Ed-
mund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem. Cham: Springer International Publishing, 2018, pp. 727–762. DOI:
10.1007/978-3-319-10575-8_22 (cited on page 22).

[Ber75] D. Bertsekas. “Convergence of discretization procedures in dynamic
programming”. In: IEEE Transactions on Automatic Control 20.3 (1975),
pp. 415–419. DOI: 10.1109/TAC.1975.1100984 (cited on pages 16, 17).

[BFG+93] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi. “Algebraic decision diagrams and their applications”.
In: Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD). 1993, pp. 188–191. DOI: 10.1109/ICCAD.1993.580054 (cited on
page 11).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, 2008 (cited on pages 1, 8, 12).

[BKV10] Amit Bhatia, Lydia E. Kavraki, and Moshe Y. Vardi. “Sampling-based mo-
tion planning with temporal goals”. In: 2010 IEEE International Conference
on Robotics and Automation. 2010, pp. 2689–2696. DOI: 10.1109/ROBOT.
2010.5509503 (cited on page 30).

[BLS07] Andreas Bauer, Martin Leucker, and Christian Schallhart. “The Good,
the Bad, and the Ugly, But How Ugly Is Ugly?” In: Runtime Verification.
Ed. by Oleg Sokolsky and Serdar Taşıran. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 126–138 (cited on page 30).

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Runtime Ver-
ification for LTL and TLTL”. In: ACM Trans. Softw. Eng. Methodol. 20.4
(Sept. 2011). DOI: 10.1145/2000799.2000800 (cited on page 37).

[CKN+12] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani.
“Model Checking and the State Explosion Problem”. In: Tools for Practical
Software Verification: LASER, International Summer School 2011, Elba Island,
Italy, Revised Tutorial Lectures. Ed. by Bertrand Meyer and Martin Nordio.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–30. DOI: 10.
1007/978-3-642-35746-6_1 (cited on page 2).

39

https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1109/TAC.1975.1100984
https://doi.org/10.1109/ICCAD.1993.580054
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1

Bibliography

[Cou07] Rémi Coulom. “Efficient Selectivity and Backup Operators in Monte-
Carlo Tree Search”. In: Computers and Games. Ed. by H. Jaap van den
Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2007, pp. 72–83 (cited on page 2).

[CPC03] Alessandro Cimatti, Charles Pecheur, and Roberto Cavada. “Formal Ver-
ification of Diagnosability via Symbolic Model Checking”. In: Jan. 2003,
pp. 363–369 (cited on page 27).

[CZ11] Edmund M. Clarke and Paolo Zuliani. “Statistical Model Checking for
Cyber-Physical Systems”. In: Automated Technology for Verification and
Analysis. Ed. by Tevfik Bultan and Pao-Ann Hsiung. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 1–12 (cited on page 22).

[DH03] Daisy Dobrijevic and Elizabeth Howell. “Columbia Disaster: What hap-
pened and what NASA learned”. In: Space.com (Feb. 1, 2003) (cited on
page 1).

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs”.
In: Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271. DOI: 10.1007/
BF01386390 (cited on page 13).

[DJK+17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. “A Storm is Coming: A Modern Probabilistic Model Checker”. In:
Computer Aided Verification. Ed. by Rupak Majumdar and Viktor Kunčak.
Cham: Springer International Publishing, 2017, pp. 592–600 (cited on
page 11).

[EAA10] Mohamed Elboukhari, Mostafa Azizi, and Abdelmalek Azizi. “Verifica-
tion of Quantum Cryptography Protocols by Model Checking”. In: Inter-
national Journal of Network Security & Its Applications 2 (Oct. 2010). DOI:
10.5121/ijnsa.2010.2404 (cited on page 22).

[Fak21] Hengameh Fakhravar. “Application of Failure Modes and Effects Anal-
ysis in the Engineering Design Process”. In: CoRR abs/2101.05444 (2021)
(cited on page 26).

[Far02] Berndt Farwer. “ω-Automata”. In: Automata Logics, and Infinite Games:
A Guide to Current Research. Ed. by Erich Grädel, Wolfgang Thomas,
and Thomas Wilke. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 3–21. DOI: 10.1007/3-540-36387-4_1 (cited on page 12).

[FC19] Hongfei Fu and Krishnendu Chatterjee. “Termination of Nondetermin-
istic Probabilistic Programs”. In: Verification, Model Checking, and Abstract
Interpretation. Ed. by Constantin Enea and Ruzica Piskac. Cham: Springer
International Publishing, 2019, pp. 468–490 (cited on page 16).

40

https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.5121/ijnsa.2010.2404
https://doi.org/10.1007/3-540-36387-4_1

Bibliography

[FKN+11] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker.
“Automated Verification Techniques for Probabilistic Systems”. In: For-
mal Methods for Eternal Networked Software Systems: 11th International
School on Formal Methods for the Design of Computer, Communication and
Software Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced
Lectures. Ed. by Marco Bernardo and Valérie Issarny. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 53–113. DOI: 10.1007/978-3-642-
21455-4_3 (cited on page 9).

[FPM+23] Mark Nicholas Finean, Luka Petrović, Wolfgang Merkt, Ivan Marković,
and Ioannis Havoutis. “Motion planning in dynamic environments using
context-aware human trajectory prediction”. In: Robotics and Autonomous
Systems 166 (2023), p. 104450. DOI: https://doi.org/10.1016/j.robot.
2023.104450 (cited on page 37).

[FSP+16] Orlando Ferrante, Eelco Scholte, Claudio Pinello, Alberto Ferrari, Leonardo
Mangeruca, Cong Liu, and Christos Sofronis. “A Methodology for In-
creasing the Efficiency and Coverage of Model Checking and its Appli-
cation to Aerospace Systems”. In: SAE International Journal of Aerospace 9
(Sept. 2016), pp. 140–150. DOI: 10.4271/2016-01-2053 (cited on page 22).

[GBT+21] Kush Grover, Fernando S Barbosa, Jana Tumova, and Jan Křetı́nský.
“Semantic Abstraction-Guided Motion Planning for scLTL Missions in
Unknown Environments”. In: Robotics: Science and Systems XVII, Vir-
tual Event, July 12-16, 2021. RSS Foundation-Robotics Science & Systems
Foundation. Virtual, July 2021. DOI: 10 . 15607 / RSS . 2021 . XVII . 090
(cited on pages 4, 5, 13, 30, 34, 36, 71).

[GHK04] Carlos Guestrin, Milos Hauskrecht, and Branislav Kveton. “Solving Fac-
tored MDPs with Continuous and Discrete Variables”. In: Proceedings of
the 20th Conference on Uncertainty in Artificial Intelligence. UAI ’04. Banff,
Canada: AUAI Press, 2004, pp. 235–242 (cited on pages 16, 17).

[GKM+22a] Kush Grover, Jan Křetı́nský, Tobias Meggendorfer, and Maximilian
Weininger. “Anytime Guarantees for Reachability in Uncountable Markov
Decision Processes”. In: 33rd International Conference on Concurrency The-
ory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland. Ed. by Bartek
Klin, Slawomir Lasota, and Anca Muscholl. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Sept. 2022, 11:1–11:20. DOI: 10.4230/LIPIcs.
CONCUR.2022.11 (cited on pages 3–5, 15, 17, 19, 49).

[GKM+22b] Kush Grover, Jan Křetı́nský, Tobias Meggendorfer, and Maximilian
Weininger. Anytime Guarantees for Reachability in Uncountable Markov
Decision Processes. 2022. DOI: 10.48550/arXiv.2008.04824 (cited on
pages 16, 19–21).

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: The-
ory and Practice. The Morgan Kaufmann Series in Artificial Intelligence.
Amsterdam: Morgan Kaufmann, 2004 (cited on page 22).

41

https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/https://doi.org/10.1016/j.robot.2023.104450
https://doi.org/https://doi.org/10.1016/j.robot.2023.104450
https://doi.org/10.4271/2016-01-2053
https://doi.org/10.15607/RSS.2021.XVII.090
https://doi.org/10.4230/LIPIcs.CONCUR.2022.11
https://doi.org/10.4230/LIPIcs.CONCUR.2022.11
https://doi.org/10.48550/arXiv.2008.04824

Bibliography

[HAS+14] Khaza Anuarul Hoque, Otmane Ait Mohamed, Yvon Savaria, and Claude
Thibeault. “Early Analysis of Soft Error Effects for Aerospace Appli-
cations Using Probabilistic Model Checking”. In: Formal Techniques for
Safety-Critical Systems. Ed. by Cyrille Artho and Peter Csaba Ölveczky.
Cham: Springer International Publishing, 2014, pp. 54–70 (cited on
page 22).

[Has12] Hado van Hasselt. “Reinforcement Learning in Continuous State and
Action Spaces”. In: Reinforcement Learning: State-of-the-Art. Ed. by Marco
Wiering and Martijn van Otterlo. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2012, pp. 207–251. DOI: 10.1007/978-3-642-27645-3_7 (cited
on page 16).

[Hen96] T.A. Henzinger. “The theory of hybrid automata”. In: Proceedings 11th
Annual IEEE Symposium on Logic in Computer Science. 1996, pp. 278–292.
DOI: 10.1109/LICS.1996.561342 (cited on page 1).

[HHP+13] Giray Havur, Kadir Haspalamutgil, Can Palaz, Esra Erdem, and Volkan
Patoglu. “A case study on the Tower of Hanoi challenge: Representa-
tion, reasoning and execution”. In: 2013 IEEE International Conference on
Robotics and Automation. 2013, pp. 4552–4559. DOI: 10.1109/ICRA.2013.
6631224 (cited on page 23).

[HJS+20] William B. Haskell, Rahul Jain, Hiteshi Sharma, and Pengqian Yu. “A
Universal Empirical Dynamic Programming Algorithm for Continu-
ous State MDPs”. In: IEEE Transactions on Automatic Control 65.1 (2020),
pp. 115–129. DOI: 10.1109/TAC.2019.2907414 (cited on page 16).

[HKP+98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
“What’s Decidable about Hybrid Automata?” In: Journal of Computer and
System Sciences 57.1 (1998), pp. 94–124. DOI: https://doi.org/10.1006/
jcss.1998.1581 (cited on page 16).

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths”. In: IEEE Transac-
tions on Systems Science and Cybernetics 4.2 (1968), pp. 100–107. DOI: 10.
1109/TSSC.1968.300136 (cited on page 13).

[Jau01] Luc Jaulin. “Path Planning Using Intervals and Graphs”. In: Reliable Com-
puting 7 (Feb. 2001), pp. 1–15. DOI: 10.1023/A:1011400431065 (cited on
pages 2, 13).

[JJG+19] Manfred Jaeger, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay,
Sean Sedwards, and Jakob Haahr Taankvist. “Teaching Stratego to Play
Ball: Optimal Synthesis for Continuous Space MDPs”. In: Automated
Technology for Verification and Analysis. Ed. by Yu-Fang Chen, Chih-Hong
Cheng, and Javier Esparza. Cham: Springer International Publishing,
2019, pp. 81–97 (cited on page 16).

42

https://doi.org/10.1007/978-3-642-27645-3_7
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/ICRA.2013.6631224
https://doi.org/10.1109/ICRA.2013.6631224
https://doi.org/10.1109/TAC.2019.2907414
https://doi.org/https://doi.org/10.1006/jcss.1998.1581
https://doi.org/https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1023/A:1011400431065

Bibliography

[JK11] Benjamin Johnson and Hadas Kress-Gazit. “Probabilistic Analysis of Cor-
rectness of High-Level Robot Behavior with Sensor Error”. In: Robotics:
Science and Systems. 2011 (cited on page 23).

[JZK+19] Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and Peter Stone. “Task
planning in robotics: an empirical comparison of PDDL- and ASP-based
systems”. In: Frontiers of Information Technology & Electronic Engineering 20
(Mar. 2019), pp. 363–373. DOI: 10.1631/FITEE.1800514 (cited on pages 2,
23).

[KF09] Sertac Karaman and Emilio Frazzoli. “Sampling-based motion planning
with deterministic µ-calculus specifications”. In: Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference. 2009, pp. 2222–2229. DOI: 10.1109/CDC.2009.
5400278 (cited on pages 2, 30).

[KF11] Sertac Karaman and Emilio Frazzoli. “Incremental Sampling-based Al-
gorithms for Optimal Motion Planning”. In: Robotics: Science and Systems
VI. The MIT Press, Aug. 2011. DOI: 10.7551/mitpress/9123.003.0038
(cited on pages 2, 13).

[KGA+22] Jonis Kiesbye, Kush Grover, Pranav Ashok, and Jan Křetı́nský. “Plan-
ning via model checking with decision-tree controllers”. In: 2022 Interna-
tional Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA,
USA, May 23-27, 2022. IEEE, May 2022, pp. 4347–4354. DOI: 10.1109/
ICRA46639.2022.9811980 (cited on pages 3–5, 22, 81).

[KGK23] Jonis Kiesbye, Kush Grover, and Jan Křetı́nský. “Model Checking for
Proving and Improving Fault Tolerance of Satellites”. In: 2023 IEEE
Aerospace Conference. 2023, pp. 1–9. DOI: 10 . 1109 / AERO55745 . 2023 .
10115801 (cited on pages 3, 5, 91).

[KL11] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Hierarchical task and
motion planning in the now”. In: 2011 IEEE International Conference on
Robotics and Automation. 2011, pp. 1470–1477. DOI: 10.1109/ICRA.2011.
5980391 (cited on page 22).

[KMK+20] Yiannis Kantaros, Matthew Malencia, Vijay Kumar, and George J. Pap-
pas. “Reactive Temporal Logic Planning for Multiple Robots in Unknown
Environments”. In: 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA). 2020, pp. 11479–11485. DOI: 10.1109/ICRA40945.2020.
9197570 (cited on page 31).

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification
of Probabilistic Real-time Systems”. In: Proc. 23rd International Conference
on Computer Aided Verification (CAV’11). Ed. by G. Gopalakrishnan and S.
Qadeer. Vol. 6806. LNCS. Springer, 2011, pp. 585–591 (cited on pages 2,
11).

43

https://doi.org/10.1631/FITEE.1800514
https://doi.org/10.1109/CDC.2009.5400278
https://doi.org/10.1109/CDC.2009.5400278
https://doi.org/10.7551/mitpress/9123.003.0038
https://doi.org/10.1109/ICRA46639.2022.9811980
https://doi.org/10.1109/ICRA46639.2022.9811980
https://doi.org/10.1109/AERO55745.2023.10115801
https://doi.org/10.1109/AERO55745.2023.10115801
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA40945.2020.9197570
https://doi.org/10.1109/ICRA40945.2020.9197570

Bibliography

[KS92] Henry Kautz and Bart Selman. “Planning as Satisfiability”. In: Proceedings
of the 10th European Conference on Artificial Intelligence. ECAI ’92. Vienna,
Austria: John Wiley & Sons, Inc., 1992, pp. 359–363 (cited on page 23).

[KZ19] Yiannis Kantaros and Michael M. Zavlanos. “Sampling-Based Opti-
mal Control Synthesis for Multirobot Systems Under Global Temporal
Tasks”. In: IEEE Transactions on Automatic Control 64.5 (2019), pp. 1916–
1931. DOI: 10.1109/TAC.2018.2853558 (cited on page 30).

[KZ20] Yiannis Kantaros and Michael M Zavlanos. “STyLuS*: A Temporal Logic
Optimal Control Synthesis Algorithm for Large-Scale Multi-Robot Sys-
tems”. In: The International Journal of Robotics Research 39.7 (2020), pp. 812–
836. DOI: 10.1177/0278364920913922 (cited on page 30).

[LaV98] Steven M. LaValle. “Rapidly-exploring random trees : a new tool for path
planning”. In: The annual research report (1998) (cited on pages 2, 13).

[Lee59] C. Y. Lee. “Representation of switching circuits by binary-decision pro-
grams”. In: The Bell System Technical Journal 38.4 (1959), pp. 985–999. DOI:
10.1002/j.1538-7305.1959.tb01585.x (cited on page 11).

[LKZ19] Xusheng Luo, Yiannis Kantaros, and Michael M. Zavlanos. “An Abstraction-
Free Method for Multirobot Temporal Logic Optimal Control Synthe-
sis”. In: IEEE Transactions on Robotics 37 (2019), pp. 1487–1507 (cited on
page 30).

[LL05] Lihong Li and Michael L. Littman. “Lazy Approximation for Solving
Continuous Finite-Horizon MDPs”. In: Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 3. AAAI’05. Pittsburgh, Penn-
sylvania: AAAI Press, 2005, pp. 1175–1180 (cited on page 16).

[LWA+10] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta. “Motion
planning and control from temporal logic specifications with proba-
bilistic satisfaction guarantees”. In: 2010 IEEE International Conference on
Robotics and Automation. 2010, pp. 3227–3232. DOI: 10.1109/ROBOT.2010.
5509686 (cited on page 22).

[Mal11] Tariq Malik. “Rocket Carrying New NASA Climate Satellite Likely
Crashed Into Pacific Ocean”. In: Space.com (Mar. 4, 2011) (cited on page 1).

[MGN] Sascha Müller, Andreas Gerndt, and Thomas Noll. “Synthesizing FDIR
Recovery Strategies from Non-Deterministic Dynamic Fault Trees”. In:
AIAA SPACE and Astronautics Forum and Exposition. DOI: 10.2514/6.
2017-5163 (cited on page 27).

[MLG05] H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon.
“Bounded Real-Time Dynamic Programming: RTDP with Monotone
Upper Bounds and Performance Guarantees”. In: Proceedings of the 22nd
International Conference on Machine Learning. ICML ’05. Bonn, Germany:
Association for Computing Machinery, 2005, pp. 569–576. DOI: 10.1145/
1102351.1102423 (cited on page 10).

44

https://doi.org/10.1109/TAC.2018.2853558
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1109/ROBOT.2010.5509686
https://doi.org/10.1109/ROBOT.2010.5509686
https://doi.org/10.2514/6.2017-5163
https://doi.org/10.2514/6.2017-5163
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1145/1102351.1102423

Bibliography

[MMG+20] Sascha Müller, Liana Mikaelyan, Andreas Gerndt, and Thomas Noll.
“Synthesizing and optimizing FDIR recovery strategies from fault trees”.
In: Science of Computer Programming 196 (2020), p. 102478. DOI: https:
//doi.org/10.1016/j.scico.2020.102478 (cited on pages 2, 26, 27).

[MMR08] Francisco S. Melo, Sean P. Meyn, and M. Isabel Ribeiro. “An Analysis
of Reinforcement Learning with Function Approximation”. In: Proceed-
ings of the 25th International Conference on Machine Learning. ICML ’08.
Helsinki, Finland: Association for Computing Machinery, 2008, pp. 664–
671. DOI: 10.1145/1390156.1390240 (cited on page 16).

[Mul63] David E. Muller. “Infinite sequences and finite machines”. In: Proceedings
of the Fourth Annual Symposium on Switching Circuit Theory and Logical De-
sign (swct 1963). 1963, pp. 3–16. DOI: 10.1109/SWCT.1963.8 (cited on
page 12).

[NPM+14] Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri, and
Lydia E. Kavraki. “SMT-based synthesis of integrated task and mo-
tion plans from plan outlines”. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA). 2014, pp. 655–662. DOI: 10.1109/ICRA.
2014.6906924 (cited on page 23).

[Pnu77] Amir Pnueli. “The temporal logic of programs”. In: 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977). 1977, pp. 46–57. DOI:
10.1109/SFCS.1977.32 (cited on pages 1, 11).

[Pri18] Rob Price. “A self-driving Uber car hit and killed a woman in the first
known autonomous-vehicle death”. In: Business Insider (Mar. 19, 2018)
(cited on page 1).

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. 1st. USA: John Wiley & Sons, Inc., 1994 (cited on pages 1, 6,
9).

[Rin12] Jussi Rintanen. “Engineering Efficient Planners with SAT”. In: Proceedings
of the 20th European Conference on Artificial Intelligence. ECAI’12. Montpel-
lier, France: IOS Press, 2012, pp. 684–689 (cited on page 23).

[SA11] Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. “Adaptive Grid-
ding for Abstraction and Verification of Stochastic Hybrid Systems”. In:
2011 Eighth International Conference on Quantitative Evaluation of SysTems.
2011, pp. 59–68. DOI: 10.1109/QEST.2011.16 (cited on pages 16, 17).

[SEJ+16] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetı́nský. “Limit-
Deterministic Büchi Automata for Linear Temporal Logic”. In: Computer
Aided Verification. Ed. by Swarat Chaudhuri and Azadeh Farzan. Cham:
Springer International Publishing, 2016, pp. 312–332 (cited on page 12).

45

https://doi.org/https://doi.org/10.1016/j.scico.2020.102478
https://doi.org/https://doi.org/10.1016/j.scico.2020.102478
https://doi.org/10.1145/1390156.1390240
https://doi.org/10.1109/SWCT.1963.8
https://doi.org/10.1109/ICRA.2014.6906924
https://doi.org/10.1109/ICRA.2014.6906924
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/QEST.2011.16

Bibliography

[SFR+14] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stu-
art Russell, and Pieter Abbeel. “Combined task and motion planning
through an extensible planner-independent interface layer”. In: 2014
IEEE International Conference on Robotics and Automation (ICRA). 2014,
pp. 639–646. DOI: 10.1109/ICRA.2014.6906922 (cited on page 23).

[SJJ20] Hiteshi Sharma, Mehdi Jafarnia-Jahromi, and Rahul Jain. “Approximate
Relative Value Learning for Average-reward Continuous State MDPs”.
In: Proceedings of The 35th Uncertainty in Artificial Intelligence Conference.
Ed. by Ryan P. Adams and Vibhav Gogate. Vol. 115. Proceedings of
Machine Learning Research. PMLR, July 2020, pp. 956–964 (cited on
page 16).

[SLS+07] Zvi Shiller, Frederic Large, Sepanta Sekhavat, and Christian Laugier.
“Motion Planning in Dynamic Environments”. In: Autonomous Naviga-
tion in Dynamic Environments. Ed. by Christian Laugier and Raja Chatila.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 107–119. DOI:
10.1007/978-3-540-73422-2_5 (cited on page 37).

[TMK+13] Ilya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro
Abate. “Quantitative Automata-Based Controller Synthesis for Non-
Autonomous Stochastic Hybrid Systems”. In: Proceedings of the 16th In-
ternational Conference on Hybrid Systems: Computation and Control. HSCC
’13. Philadelphia, Pennsylvania, USA: Association for Computing Ma-
chinery, 2013, pp. 293–302. DOI: 10.1145/2461328.2461373 (cited on
pages 16, 17).

[VB13] Cristian Ioan Vasile and Calin Belta. “Sampling-based temporal logic
path planning”. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2013, pp. 4817–4822. DOI: 10 . 1109 / IROS . 2013 .
6697051 (cited on pages 2, 30).

[WB93] Ronald J. Williams and Leemon C. Baird. “Analysis of Some Incremental
Variants of Policy Iteration: First Steps Toward Understanding Actor-Cr”.
In: 1993 (cited on page 9).

[WGM+21] Maximilian Weininger, Kush Grover, Shruti Misra, and Jan Křetı́nský.
“Guaranteed Trade-Offs in Dynamic Information Flow Tracking Games”.
In: 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX,
USA, December 14-17, 2021. IEEE, Dec. 2021, pp. 3786–3793. DOI: 10 .
1109/CDC45484.2021.9683447 (cited on page 5).

[Yam97] B. Yamauchi. “A frontier-based approach for autonomous exploration”.
In: Proceedings 1997 IEEE International Symposium on Computational Intel-
ligence in Robotics and Automation CIRA’97. ’Towards New Computational
Principles for Robotics and Automation’. 1997, pp. 146–151. DOI: 10.1109/
CIRA.1997.613851 (cited on page 13).

46

https://doi.org/10.1109/ICRA.2014.6906922
https://doi.org/10.1007/978-3-540-73422-2_5
https://doi.org/10.1145/2461328.2461373
https://doi.org/10.1109/IROS.2013.6697051
https://doi.org/10.1109/IROS.2013.6697051
https://doi.org/10.1109/CDC45484.2021.9683447
https://doi.org/10.1109/CDC45484.2021.9683447
https://doi.org/10.1109/CIRA.1997.613851
https://doi.org/10.1109/CIRA.1997.613851

Bibliography

[ZRF+19] Xingyu Zhao, Valentin Robu, David Flynn, Fateme Dinmohammadi,
Michael Fisher, and Matt Webster. “Probabilistic Model Checking of
Robots Deployed in Extreme Environments”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 33.01 (July 2019), pp. 8066–8074. DOI:
10.1609/aaai.v33i01.33018066 (cited on page 22).

47

https://doi.org/10.1609/aaai.v33i01.33018066

Part I

First Author Publications

48

A Anytime Guarantees for Reachability in
Uncountable Markov Decision Processes

This chapter has been published as a peer-reviewed conference paper.

© Kush Grover, Jan Křetı́nský, Tobias Meggendorfer, Maximilian Weininger.

Kush Grover, Jan Křetı́nský, Tobias Meggendorfer, and Maximilian Weininger.
“Anytime Guarantees for Reachability in Uncountable Markov Decision Pro-
cesses”. In: 33rd International Conference on Concurrency Theory, CONCUR
2022, September 12-16, 2022, Warsaw, Poland. Ed. by Bartek Klin, Slawomir
Lasota, and Anca Muscholl. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, Sept. 2022, 11:1–11:20. DOI: 10.4230/LIPIcs.CONCUR.2022.11

Summary. In this work, we introduce two anytime algorithms designed to solve the
reachability problem in MDPs with uncountable state and action spaces. The general
reachability problem is undecidable however by imposing certain assumptions, we can
extend existing iterative methods designed for finite MDPs to work here. Our primary
contribution in this paper is the identification of these necessary assumptions, striving
to keep them as minimal as possible, thus pushing the boundaries of systems that can
be reliably analyzed.

We present two algorithms in this regard, extensions of Value Iteration and Bounded
Real-time Dynamic Programming. The value iteration algorithm provides a lower bound
on the value, requiring fewer assumptions in comparison to previous approaches which
give guarantees. In contrast, the BRTDP algorithm provides both lower and upper
bounds but demands more assumptions due to the inclusion of the additional upper
bound. Importantly, both of these algorithms are anytime algorithms, continuously im-
proving their estimations and ultimately converging to the true value in the limit.

Contributions of thesis author. The author played an important role in the composi-
tion and revision of the manuscript. He actively participated in joint discussions and
contributed significantly to the creation of techniques presented in the paper. Notewor-
thy individual contributions include figuring out some of the assumptions required for
the algorithm, along with the help in proving the correctness of the algorithm.

License. This work is licensed under the Creative Commons Attribution 4.0 license
(CC-BY 4.0), which permits use, duplication, adaptation, distribution, and reproduc-
tion in any medium or format, as long as appropriate credit is given to the original

49

https://doi.org/10.4230/LIPIcs.CONCUR.2022.11
http://creativecommons.org/licenses/by/4.0/

A Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

author(s), a link is provided to the Creative Commons license, and any changes made
are indicated.

50

Anytime Guarantees for Reachability in
Uncountable Markov Decision Processes
Kush Grover !

Technische Universität München, Germany

Jan Křetínský !

Technische Universität München, Germany

Tobias Meggendorfer !Ï

Institute of Science and Technology Austria, Wien, Austria

Maximilian Weininger !

Technische Universität München, Germany

Abstract
We consider the problem of approximating the reachability probabilities in Markov decision processes
(MDP) with uncountable (continuous) state and action spaces. While there are algorithms that, for
special classes of such MDP, provide a sequence of approximations converging to the true value in
the limit, our aim is to obtain an algorithm with guarantees on the precision of the approximation.

As this problem is undecidable in general, assumptions on the MDP are necessary. Our main
contribution is to identify sufficient assumptions that are as weak as possible, thus approaching the
“boundary” of which systems can be correctly and reliably analyzed. To this end, we also argue why
each of our assumptions is necessary for algorithms based on processing finitely many observations.

We present two solution variants. The first one provides converging lower bounds under weaker
assumptions than typical ones from previous works concerned with guarantees. The second one
then utilizes stronger assumptions to additionally provide converging upper bounds. Altogether, we
obtain an anytime algorithm, i.e. yielding a sequence of approximants with known and iteratively
improving precision, converging to the true value in the limit. Besides, due to the generality of our
assumptions, our algorithms are very general templates, readily allowing for various heuristics from
literature in contrast to, e.g., a specific discretization algorithm. Our theoretical contribution thus
paves the way for future practical improvements without sacrificing correctness guarantees.

2012 ACM Subject Classification Mathematics of computing → Markov processes; Mathematics of
computing → Continuous mathematics; Computing methodologies → Continuous models

Keywords and phrases Uncountable system, Markov decision process, discrete-time Markov control
process, probabilistic verification, anytime guarantee

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.11

Related Version Full Version: https://arxiv.org/abs/2008.04824 [17]

Funding Kush Grover : The author has been supported by the DFG research training group GRK
2428 ConVeY.
Maximilian Weininger : The author has been partially supported by DFG projects 383882557
Statistical Unbounded Verification (SUV) and 427755713 Group-By Objectives in Probabilistic
Verification (GOPro).

1 Introduction

The standard formalism for modelling systems with both non-deterministic and probabilistic
behaviour are Markov decision processes (MDP) [43]. In the context of many applications such
as cyber-physical systems, states and actions are used to model real-valued phenomena like
position or throttle. Consequently, the state space and the action space may be uncountably

© Kush Grover, Jan Křetínský, Tobias Meggendorfer, and Maximilian Weininger;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

11:2 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

infinite. For example, the intervals [a, b]× [c, d] ⊆ R2 can model a safe area for a robot to
move in or a set of available control inputs such as acceleration and steering angle. This
gives rise to MDP with uncountable state- and action-spaces (sometimes called controlled
discrete-time Markov process [51, 52] or discrete-time Markov control process [11, 28]), with
applications ranging from modelling a Mars rover [10, 24], over water reservoir control [36]
and warehouse storage management [38], to energy control [51], and many more [41].

Although systems modelled by MDP are often safety-critical, the analysis of uncountable
systems is so complex that practical approaches for verification and controller synthesis are
usually based on “best effort” learning techniques, for example reinforcement learning. While
efficient in practice, these methods guarantee, even in the best case, convergence to the true
result only in the limit, e.g. [40], or for increasingly precise discretization, e.g. [51, 32]. In line
with the tradition of learning and to make the analysis more feasible, the typical objectives
considered for MDP are either finite-horizon [37, 3] or discounted properties [18, 53, 25],
together with restrictive assumptions. Note that when it comes to approximation, discounted
properties effectively are finite-horizon. In contrast, ensuring safety of a reactive system or a
certain probability to satisfy its mission goals requires an unbounded horizon and reduces
to optimizing the reachability probabilities. Moreover, the safety-critical context requires
reliable bounds on the probability, not an approximation with unknown precision.

In this paper, we provide the first provably correct anytime algorithm for (unbounded)
reachability in uncountable MDP. As an anytime algorithm, it can at every step of the
execution return correct lower and upper bounds on the true value. Moreover, these bounds
gradually converge to the true value, allowing approximation up to an arbitrary precision.
Since the problem is undecidable, the core of our contribution is identifying sufficient
conditions on the uncountable MDP to allow for approximation.

Our primary goal is to provide conditions as weak as possible, thereby pushing towards
the boundary of which systems can be analyzed provably correctly. To this end, we do not
rely on any particular representation of the system. Nonetheless, for classical scenarios, and,
in particular, for finite MDP, our conditions are mostly satisfied trivially.

Our secondary goal is to derive the respective algorithms as an extension of value iteration
(VI) [29, 43], while avoiding drawbacks of discretization-based approaches. VI is a de
facto standard method for numerical analysis of finite MDP, in particular with reachability
objectives, regarded as practically efficient and allowing for heuristics avoiding the exploration
of the complete state space, e.g. [9]. Interestingly, even for finite MDP, anytime VI algorithms
with precision guarantees are quite recent [9, 19, 4, 44, 22]. Previous to that, the most
used model checkers could return arbitrarily wrong results [19]. Providing VI with precision
guarantees for general uncountable MDP is thus worthwhile on its own. Finally, while
discretization is conceptually simple, we prefer to provide a solution that avoids the need
to introduce arbitrary boundaries through gridding the whole state space and, moreover,
instead utilizes information from one “cell” of the grid in other places, too.

To summarize, while algorithmic aspects form an important motivation, our primary
contribution is theoretical: an explicit and complete set of generic assumptions allowing for
guarantees, disregarding practical efficiency at this point. Consequently, while our approach
lays foundations for further, more tailored approaches, it is not to be seen as a competitor to
the existing practical, best-effort techniques, as these aim for a completely different goal.

Our Contribution. In this work, we provide the following:

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:3

Section 3: A set of assumptions that allow for computing converging lower bounds on
the reachability probability in MDP with uncountable state and action spaces. We
discuss in detail why they are weaker than usual, necessary, and applicable to typically
considered systems. With these assumptions, we extend the standard (convergent but
precision-ignorant) VI to this general setting.

Section 4: An additional set of assumptions that yield the first anytime algorithm, i.e.
with provable bounds on the precision/error of the result, converging to 0. We combine
the preceding algorithm with the technique of bounded real-time dynamic programming
(BRTDP) [39] and provide also converging upper bounds on the reachability probability.

Section 5: A discussion of theoretical extensions and practical applications.

Related work. For detailed theoretical treatment of reachability and related problems on
uncountable MDP, see e.g. [52, 11]. Reachability on uncountable MDP generalizes numerous
problems known to be undecidable. For example, we can encode the halting problem of
(probabilistic) Turing machines by encoding the tape content as real value. Similarly, almost-
sure termination of probabilistic programs (undecidable [33]) is a special case of reachability
on general uncountable MDP (see e.g. [16]). As precise reachability analysis is undecidable
even for non-stochastic linear hybrid systems [26], many works turn their attention to more
relaxed notions such as δ-reachability, e.g. [48], and/or employ many assumptions.

In order to obtain precision bounds, we assume that the value function, mapping states
to their reachability probability, is Lipschitz continuous (and that we know the Lipschitz
constant). This is slightly weaker than the classical approach of assuming Lipschitz continuity
of the transition function (and knowledge of the constant), e.g. [2, 49]. In particular, these
assumptions (i) imply our assumption (as we show in [17, App. B.2.1]) and (ii) are used even
in the simpler settings of finite-horizon and discounted reward scenarios [5, 2, 49, 51] or even
more restricted settings to obtain practical efficiency, e.g. [35]. In contrast to our approach,
they are not anytime algorithms and require treatment of the whole state space.

To provide context, we outline how continuity is used (explicitly or implicitly) in related
work and mention their respective results. Firstly, [25, 47] assume Lipschitz continuity, but
not explicit knowledge of the constant. In essence, these approaches solve the problem by
successively increasing internal parameters.The parameters then eventually cross a bound
implied by the Lipschitz constant, yielding an “eventual correctness”. In particular, they
provide “convergence in the limit” or “probably approximately correct” results, but no bounds
on the error or the convergence rate; these would depend on knowledge of the constant.

Secondly, [18, 40, 2, 49, 51] (and our work) assume Lipschitz continuity and knowledge
of the constant. Relying on the constant being provided externally, these works derive
guarantees. Previously, the guarantees given are weaker than our convergent anytime bounds:
Either convergence in the limit [40] or a bound on a discretization error, relativized to
sub-optimal strategies [18] or bounded horizon [2, 49, 51].

Several of the above mentioned works employ discretization [18, 2, 49, 51]. This method
is quite general, but obtaining any bounds on the error requires continuity assumptions [1].
Further, there are works that use other assumptions: [23, 24] use reinforcement learning
methods to tackle reachability and more general problems, without any continuity assumption.
However, they do not provide any guarantees. See [53] for a detailed exposition of similar
approaches. Assuming an abstraction is given, abstraction and bisimulation approaches,
e.g. [21, 20], provide guarantees, but only on the lower bounds. With significant assumptions
on the system’s structure, symbolic approaches [37, 54, 45, 14] may even obtain exact
solutions.

CONCUR 2022

11:4 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

2 Preliminaries

In this section, we recall basics of probabilistic systems and set up the notation. As usual, N
and R refer to the (positive) natural numbers and real numbers, respectively. For a set S, 1S

denotes its characteristic function, i.e. 1S(x) = 1 if x ∈ S and 0 otherwise. We write S⋆ and
Sω to refer to the set of finite and infinite sequences comprising elements of S, respectively.

We assume familiarity with basic notions of measure theory, e.g. measurable set or
measurable function, as well as probability theory, e.g. probability spaces and measures [8].
For a measure space X with sigma-algebra ΣX , Π(X) denotes the set of all probability
measures on X. For a measure µ ∈ Π(X), we write µ(Y) =

∫
1Y dµ to denote the mass of a

measurable set Y ∈ ΣX (also called event). For two probability measures µ and ν, the total
variation distance is defined as δT V (µ, ν) := 2 · supY ∈ΣX

|µ(Y)− ν(Y)|. Some event happens
almost surely (a.s.) w.r.t. some measure µ if it happens with probability 1. We write supp(µ)
to denote the support of the probability measure µ.
▶ Remark 1. It is surprisingly difficult to give a well-defined notion of support for measures
in general. Intuitively, supp(µ) describes the “smallest” set which µ assigns a value of 1.
However, this is not well-defined for general measures. We discuss these issues and a proper
definition in [17, App. E]. Throughout this work, similar subtle issues related to measure
theory arise. For the sake of readability, these are mostly delegated to footnotes or the
appendix of the full version [17], and readers may safely skip over these points.
We work with Markov decision processes (MDP) [43], a widely used model to capture both
non-determinism and probability. We consider uncountable state and action spaces.

▶ Definition 2. A (continuous-space, discrete-time) Markov decision process (MDP) is a
tuple M = (S, Act, Av, ∆), where S is a compact set of states (with topology TS and Borel σ-
algebra ΣS = B(TS)), Act is a compact set of actions (with topology TAct and Borel σ-algebra
ΣAct = B(TAct)), Av : S → ΣAct \ {∅} assigns to every state a non-empty, measurable, and
compact set of available actions, and ∆: S ×Act→ Π(S) is a transition function that for
each state s and (available) action a ∈ Av(s) yields a probability measure over successor
states (i.e. a Markov Kernel). An MDP is called finite if |S| <∞ and |Act| <∞.

See [43, Sec. 2.3] and [6, Chp. 9] for a more detailed discussion on the technical considerations
arising from uncountable state and action spaces. Note that we assume the set of available
actions to be non-empty. This means that the system can never get “stuck” in a degenerate
state without successors. Markov chains are a special case of MDP where |Av(s)| = 1 for all
s ∈ S, i.e. a completely probabilistic system without any non-determinism. Our presented
methods thus are directly applicable to Markov chains as well.

Given a measure µ ∈ Π(X) and a measurable function f : X → R mapping elements of a
set X to real numbers, we write µ⟨f⟩ :=

∫
f(x) dµ(x) to denote the integral of f with respect

to µ. For example, ∆(s, a)⟨f⟩ denotes the expected value Es′∼∆(s,a)f(s′) of f : S → R over
the successors of s under action a. Moreover, abusing notation, for some set of state S′ ⊆ S

and function Av′ : S′ → Act, we write S′ ×Av′ = {(s, a) | s ∈ S′, a ∈ Av′(s)} to denote the
set of state-action pairs with states from S′ under Av′.

An infinite path in an MDP is some infinite sequence ρ = s1a1s2a2 · · · ∈ (S × Av)ω,
such that for every i ∈ N we have si+1 ∈ supp(∆(si, ai)). A finite path (or history)
ϱ = s1a1s2a2 . . . sn ∈ (S ×Av)⋆ × S is a non-empty, finite prefix of an infinite path of length
|ϱ| = n, ending in state sn, denoted by last(ϱ). We use ρ(i) and ϱ(i) to refer to the i-th state
in an (in)finite path. We refer to the set of finite (infinite) paths of an MDP M by FPathsM
(PathsM). Analogously, we write FPathsM,s (PathsM,s) for all (in)finite paths starting in s.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:5

In order to obtain a probability measure, we first need to eliminate the non-determinism.
This is done by a so-called strategy (also called policy, controller, or scheduler). A strategy
on an MDP M = (S, Act, Av, ∆) is a function π : FPathsM → Π(Act), s.t. supp(π(ϱ)) ⊆
Av(last(ϱ)). The set of all strategies is denoted by ΠM. Intuitively, a strategy is a “recipe”
describing which step to take in the current state, given the evolution of the system so far.

Given an MDP M, a strategy π ∈ ΠM, and an initial state s0, we obtain a measure on
the set of infinite paths PathsM, which we denote as Prπ

M,s0 . See [43, Sec. 2] for further
details. Thus, given a measurable set A ⊆ PathsM, we can define its maximal probability
starting from state s0 under any strategy by Prsup

M,s0
[A] := supπ∈ΠMPrπ

M,s0 [A]. Depending on
the structure of A it may be the case that no optimal strategy exists and we have to resort
to the supremum instead of the maximum. This may already arise for finite MDP, see [12].

For an MDP M = (S, Act, Av, ∆) and a set of target states T ⊆ S, (unbounded)
reachability refers to the set ♢T = {ρ ∈ PathsM | ∃i ∈ N. ρ(i) ∈ T}, i.e. all paths which
eventually reach T . The set ♢T is measurable if T is measurable [51, Sec. 3.1], [52, Sec. 2].

Now, it is straightforward to define the maximal reachability problem of a given set of
states. Given an MDP M, target set T , and state s0, we are interested in computing the
maximal probability of eventually reaching T , starting in state s0. Formally, we want to
compute the value of the state s0, defined as V(s0) := Prsup

M,s0
[♢T] = supπ∈ΠMPrπ

M,s0 [♢T].
This state value function satisfies a straightforward fixed point equation, namely

V(s) = 1 if s ∈ T V(s) = supa∈Av(s)∆(s, a)⟨V⟩ otherwise. (1)

Moreover, V is the smallest fixed point of this equation [6, Prop. 9.8, 9.10], [52, Thm. 3].
In our approach, we also deal with values of state-action pairs (s, a) ∈ S × Av, where
V(s, a) := ∆(s, a)⟨V⟩. Intuitively, this represents the value achieved by choosing action a in
state s and then moving optimally. Clearly, we have that V(s) = supa∈Av(s) V(s, a). See [15,
Sec. 4] for a discussion of reachability on finite MDP and [52] for the general case.

In this work, we are interested in approximate solutions due to the following two reasons.
Firstly, obtaining precise solutions for MDP is difficult already under strict assumptions and
undecidable in our general setting.(1) We thus resort to approximation, allowing for much
lighter assumptions. Secondly, by considering approximation we are able to apply many
different optimization techniques, potentially leading to algorithms which are able to handle
real-world systems, which are out of reach for precise algorithms even for finite MDP [9].

We are interested in two types of approximations. Firstly, we consider approximating
the value function in the limit, without knowledge about how close we are to the true value.
This is captured by a semi-decision procedure for queries of the form Prsup

M,s[♢T] > ξ for a
threshold ξ ∈ [0, 1]. We call this problem ApproxLower. Secondly, we consider the variant
where we are given a precision requirement ε > 0 and obtain ε-optimal values (l, u), i.e.
values with V(s0) ∈ [l, u] and 0 ≤ u− l < ε. We refer to this variant as ApproxBounds.

3 Converging Lower Bounds

In this section, we present the first set of assumptions, enabling us to compute converging
lower bounds on the true value, solving the ApproxLower problem. In Section 3.1, we discuss
each assumption in detail and argue on an intuitive level why it is necessary by means of

(1)For example, one can encode the tape of a Turing machine into the binary representation of a real
number and reduce the halting problem to a reachability query.

CONCUR 2022

11:6 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

counterexamples. With the assumptions in place, in Section 3.2 we then present our first
algorithm, also introducing several ideas we employ again in the following section.

Our assumptions and algorithms are motivated by value iteration (VI) [29], which we
briefly outline. In a nutshell, VI boils down to repeatedly applying an iteration operator to a
value vector vn. For example, the canonical value iteration for reachability on finite MDP
starts with v0(s) = 1 for all s ∈ T and 0 otherwise and then iterates

vn+1(s) = maxa∈Act(s)
∑

s′∈S
∆(s, a, s′) · vn(s′) (2)

for all s /∈ T . The vector vn converges monotonically from below to the true value for all states.
We mention two important points. Firstly, the iteration can be applied “asynchronously”.
Instead of updating all states in every iteration, we can pick a single state and only update
its value. The values vn still converge to the correct value as long as all states are updated
infinitely often. Secondly, instead of storing a value per state, we can store a value for each
state-action pair and obtain the state value as the maximum of these values. Both points
are a technical detail for finite MDP, however they play an essential role in our uncountable
variant. See [17, App. A.1] for more details on VI for finite MDP.

In the uncountable variant of Equation (2), v is a function, Act(s) is potentially uncount-
able, and the sum is replaced by integration. As in this setting the problem is undecidable,
naturally we have to employ some assumptions. Our goal is to sufficiently imitate the essence
of Equation (2), obtaining convergence without being overly restrictive. In particular, we
want to (i) represent (an approximation of) vn using finite memory, (ii) safely approximate
the maximum and integration, and (iii) select appropriate points to update vn.

3.1 Assumptions
Before discussing each assumption in detail, we first put them into context. As we argue in
the following, most of our assumptions typically hold implicitly. Still, by stating even basic
computability assumptions in a form as weak as possible, we avoid “hidden” assumptions,
e.g. by assuming that the state space is a subset of Rd. Two of our assumptions are more
restrictive, namely Assumption C: Value Lipschitz Continuity (Section 3.1.3) and,
introduced later, Assumption D: Absorption (Section 4.1.2). However, they are also
often used in related works, as we detail in the respective sections. Moreover, in light of
previous results, the necessity of restrictive assumptions is to be expected: Computing
bounds is hard or even undecidable already for very restricted classes. Aside from the
discussion in the introduction, we additionally mention two further cases. In the setting
of probabilistic programs (which are a very special case of uncountable MDP), deciding
almost sure termination for a fixed initial state (which is a severely restricted subclass
of reachability on uncountable MDP without non-determinism) is an actively researched
topic with recent advances, see e.g. [30, 31], and shown to be Π0

2-complete [33], i.e. highly
undecidable. In [27] and the references therein, the authors present (un-)decidability results
for hybrid automata, which are a special case of uncountable MDP without any stochastic
dynamics (flow transitions can be modelled as actions indicating the delay). As such, it is to
be expected that the general class of models we consider has to be pruned very strictly in
order to hope for any decidability results.
▶ Remark 3. As already mentioned, we want to provide assumptions which are as general as
possible. Importantly, we avoid (unnecessarily) assuming any particular representation of the
system. Our motivation is to ultimately identify the boundary of what is necessary to derive
guarantees. While our assumptions are motivated by VI and built around Equation (2), we

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:7

note that being able to represent the state values and evaluate (some aspect of) the transition
dynamics intuitively are a necessity for any method dealing with such systems. We do not
claim that our framework of assumptions is the only way to approach the problem, instead
we provide arguments why it is a sensible way to do so.

3.1.1 A: Basic Assumptions (Asm. A1-A4)
We first present a set of basic computability assumptions (A1-A4). These are essential,
since for uncountable systems even the simplest computations are intractable without any
assumptions. More specifically, such systems cannot be given explicitly (due to their infinite
size), but instead have to be described symbolically by, e.g., differential equations. Thus, we
necessarily require some notion of computability and structural properties for each part of
this symbolic description. And indeed, each assumption essentially corresponds to one part
of the MDP description (Metric Space to S ×Act, Maximum Approximation to Av,
Transition Approximation to ∆, and Target Computability to T). They are weak and
hold on practically all commonly considered systems (see [17, App. B.1]). In particular, finite
MDP and discrete components are trivially subsumed by considering the discrete metric.
A1: Metric Space S and Act are metric spaces with (computable) metrics dS and dAct,

respectively, and d× is a compatible(2) metric on the space of state-action pairs S ×Av,
A2: Maximum Approximation For each state s and computable Lipschitz f : Av(s)→ [0, 1],

the value maxa∈Av(s) f(a) can be under-approximated to arbitrary precision.
A3: Transition Approximation For each state-action pair (s, a) and Lipschitz g : S → [0, 1]

which can be under-approximated to arbitrary precision, the successor expectation
∆(s, a)⟨g⟩ can be under-approximated to arbitrary precision.

A4: Target Computability The target set T is decidable, i.e. we are given a computable
predicate which, given a state s, decides whether s ∈ T .

We denote the approximations for A2 and A3 by Approx≤, i.e. given a pair (s, a) and func-
tions f , g as in the assumptions, we write (abusing notation) Approx≤(maxa∈Av(s) f(a), ε)
and Approx≤(∆(s, a)⟨g⟩, ε) for approximation of the respective values up to precision ε, i.e.
0 ≤ maxa∈Av(s) f(a)−Approx≤(maxa∈Av(s) f(a), ε) ≤ ε and analogous for ∆(s, a)⟨g⟩. Note
that A2 and A3 are satisfied if we can sample densely in Av(s) and approximate ∆(s, a).

3.1.2 B: Sampling (Asm. B.VI)
As there are uncountably many states, we are unable to explicitly update all of them at
once and instead update values asynchronously. Moreover, as there may also be uncountably
many actions, we instead store and update the values of state-action pairs. Together, we
need to pick state-action pairs to update. We delegate this choice to a selection mechanism
GetPair, an oracle for state-action pairs. We allow for GetPair to be “stateful”, i.e. the
sampled state-action pair may depend on previously returned pairs. This is required in,
for example, round-robin or simulation-based approaches. We only require a basic notion
of fairness in order to guarantee that we do not miss out on any information. Note the
additional identifier .VI (value iteration) on the assumption name; later on, a similar, but
weaker variant (B.BRTDP) is introduced.

(2)For two pairs (s, a) and (s, a′) we have that k · dAct(a, a′) ≤ d×((s, a), (s, a′)) ≤ K · dAct(a, a′) for some
constants k, K ≥ 0, analogous for dS , achieved by, e.g. d×((s, a), (s′, a′)) := dS(s, s′) + dAct(a, a′).

CONCUR 2022

11:8 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

B.VI: State-Action Sampling Let S♢ = {last(ϱ) | ϱ ∈ FPathsM,s} the set of all reachable
states. Then, for any ε > 0, s ∈ S♢, and a ∈ Av(s) we have that GetPair eventually
yields a pair (s′, a′) with d×((s, a), (s′, a′)) < ε and δT V (∆(s, a), ∆(s′, a′)) < ε a.s.(3)

Essentially, this means that GetPair provides a way to “exhaustively” generate all behaviours
of the system up to a precision of ε. This fairness assumption is easily satisfied under usual
conditions. For example, if S×Av is a bounded subset of Rd, we can randomly sample points
in that space or consider increasingly dense grids. Alternatively, if we can sample from the
set of actions and from the distributions of ∆, GetPair can be implemented by sampling
paths of random length, following random actions. Note that we can view the procedure as
a “template”: Instead of requiring a concrete method to acquire pairs to update, we leave
this open for generality; we discuss implications of this in Sections 5.1 and 5.3.

The requirement on total variation may seem unnecessary, especially given that we will
also assume continuity. However, otherwise we could, for example, miss out on solitary
actions which are the “witnesses” for a state’s value: suppose that Av(s) = [0, 1] and ∆(s, 0)
moves to the goal, while ∆(s, a) just loops back to s. Only selecting actions close to a = 0
w.r.t. the product metric is not sufficient to observe that we can move to the goal. Note that
this would not be necessary if we assumed continuity of the transition function – selecting
“nearby” actions then also yields “similar” behaviour.

3.1.3 C: Lipschitz Continuity
Finally, we present our already advertised continuity assumption. For simplicity, we give it
in its strict form and discuss relaxations later in Section 5.2. Intuitively, Lipschitz continuity
allows us to extrapolate the behaviour of the system from a single state to its surroundings.
C: Value Lipschitz Continuity The value functions V(s) and V(s, a) are Lipschitz continuous

with known constants CS and C×, i.e. for all s, s′ ∈ S and a ∈ Av(s), a′ ∈ Av(s′) we have

|V(s)− V(s′)| ≤ CS · dS(s, s′) |V(s, a)− V(s′, a′)| ≤ C× · d×((s, a), (s′, a′))

This requirement may seem quite restrictive at first glance. Indeed, it is the only one in this
section to not usually hold on “standard” systems. However, in order to obtain any kind of
(provably correct) bounds, some notion of continuity is elementary, since otherwise we cannot
safely extrapolate from finitely many observations to an uncountable set. The immediately
arising questions are (i) why Lipschitz continuity is necessary compared to, e.g., regular or
uniform continuity, and (ii) why knowledge of the Lipschitz constant is required. For the first
point, note that we want to be able to extrapolate from values assigned to a single state to
its immediate surroundings. While continuity means that the values in the surroundings do
not “jump”, it does not give us any way of bounding the rate of change, and this rate may
grow arbitrarily (for example, consider the continuous but not Lipschitz function sin(1

x) for
x > 0). So, also relating to the second point, without knowledge of the Lipschitz constant,
regular continuity and Lipschitz continuity are (mostly) equivalent from a computational
perspective: The function does not have discontinuities, but we cannot safely estimate the
rate of change in general. To illustrate this point further, we give an intuitive example.

(3)Technically, it is sufficient to satisfy this property on any subset of S♢ which only differs from it up
to measure 0. More precisely, we only require that this assumption holds for S♢ = supp(Prsup

M,s), i.e.
the set of all reachable paths with non-zero measure. We omit this rather technical notion and the
discussion it entails in order to avoid distracting from the central results of this work.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:9

0.25 0.5 0.75
0

0.5
1

S
V(

s)
Figure 1 The value function of Example 4, showing that knowledge of the constant is important.

▶ Example 4. We construct an MDP with a periodic, Lipschitz continuous value function,
as illustrated in Figure 1 and formally defined below. Intuitively, for a given period width w

(e.g. 0.25) and a periodic function f (e.g. a triangle function), a state s between 0 and w

moves to a target or sink with probability f(s). All larger states s ≥ w transition to s− w

with probability 1. The value function thus is periodic and Lipschitz continuous, see Figure 1
for a possible value function and [17, App. B.2.3] for a formal definition.

For a finite number of samples, we can choose f and w such that all samples achieve a
value of 1. Nevertheless, we cannot conclude anything about states we have not sampled yet:
Without knowledge of the constant, we cannot extrapolate from samples.

We note the underlying connection to the Nyquist-Shannon sampling theorem [46, Thm. 1].
Intuitively, the theorem states that, for a function that contains no frequencies higher than
W , it is completely determined by giving its ordinates at a series of points spaced 0.5 ·W
apart. If we know the Lipschitz constant, this gives us a way of bounding the “frequency”
of the value function, and thus allows us to determine it by sampling a finite number of
points. On the other hand, without the Lipschitz constant, we do not know the frequency
and cannot judge whether we are “undersampling”.

Since we do not assume any particular representation of the transition system, we cannot
derive such constants in general. Instead, these would need to be obtained by, e.g., domain
knowledge, or tailored algorithms. As in previous approaches [18, 40, 2, 49, 51], we thus
resort to assuming that we are given this constant, offloading this (highly non-trivial) step.
Recall that Lipschitz continuity of the transition function implies Lipschitz continuity of the
value function (see [17, App. B.2.1]), but can potentially be checked more easily.

3.2 Assumptions Applied: Value Iteration Algorithm
Before we present our new algorithm, we explain how our assumptions allow us to lift VI
to the uncountable domain. Contrary to the finite state setting, we are unable to store
precise values for each state explicitly, since there are uncountably many states. Hence, the
algorithm exploits the Lipschitz-continuity of the value function as follows. Assume that we
know that the value of a state s is bounded from below by a value l, i.e. V(s) ≥ l. Then, by
Lipschitz-continuity of V , we know that the value of a state s′ is bounded by l−dS(s, s′) ·CS .
More generally, if we are given a finite set of states Sampled with correct lower bounds
L̂ : Sampled→ [0, 1], we can safely extend these values to the whole state space by

L(s) := maxs′∈Sampled
(

L̂(s′)− CS · dS(s, s′)
)

.

Since V(s) ≥ L̂(s) for all s ∈ Sampled, we have V(s) ≥ L(s) for all s ∈ S, i.e. L(·) is a valid
lower bound. We thus obtain a lower bound for all of the uncountably many states, described
symbolically as a combination of finitely many samples. See Figure 2 for an illustration.

This is sufficient to deal with Markov chains, but for MDPs we additionally need to take
care of the (potentially uncountably many) actions. Recall that value iteration updates
state values with the maximum over available actions, vn+1(s) = maxa∈Av(s) ∆(s, a)⟨vn⟩.

CONCUR 2022

11:10 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

0.5 1 1.5
0

0.2
0.4

S

Figure 2 Example of the function extension on the set [0, 2] with a Lipschitz constant of CS = 1.
Dots represent stored values in L̂, while the solid line represents the extrapolated function L. Note
that it is possible to have L̂(s) < L(s), as seen in the graph.

Algorithm 1 The Value Iteration (VI) Algorithm for MDPs with general state- and action-spaces.

Input: ApproxLower query with threshold ξ, satisfying A1–A4, B.VI and C.
Output: yes, if V(s0) > ξ.

1: Sampled← ∅, t← 1 ▷ Initialize
2: while Approx≤(L(s0), Precision(t)) ≤ ξ do
3: (s, a)← GetPair ▷ Sample state-action pair
4: if s ∈ T then L̂(s, ·)← 1 ▷ Handle target states
5: else L̂(s, a)← Approx≤(∆(s, a)⟨L⟩, Precision(t)) ▷ Update L̂
6: Sampled← Sampled ∪ {(s, a)}, t← t + 1
7: return yes

This is straightforward to compute when there are only finitely many actions, but in the
uncountable case obtaining L(s) = supa∈Av(s) L(s, a) is much more involved. We apply the
idea of Lipschitz continuity again, storing values for a set Sampled of state-action pairs
instead of only states. We bound the value of every state-action pair by

L(s, a) := max(s′,a′)∈Sampled

(
L̂(s′, a′)− d×((s, a), (s′, a′)) · C×

)
(3)

Observe that L(s, a) is computable and Lipschitz-continuous as well, so by Maximum
Approximation we can approximate the bound of any state, i.e. L(s) = maxa∈Av(s) L(s, a),
based on such a finite set of values assigned to state-action pairs. (Recall that Av(s) is
compact and L(s, a) continuous, hence the maximum is attained.) Consequently, we can
also under-approximate ∆(s, a)⟨L⟩ by Transition Approximation. To avoid clutter, we
omit the following two special cases in the definition of L(s, a): Firstly, if Sampled = ∅, we
naturally set L(s, a) = 0. Secondly, if all pairs (s′, a′) are too far away for a sensible estimate,
i.e. if Equation (3) was yielding L(s, a) < 0, we also set L(s, a) to 0.

We present VI for MDPs with general state- and action-spaces in Algorithm 1. It
depends on Precision(t), a sequence of precisions converging to zero in the limit, e.g.
Precision(t) = 1

t . The algorithm executes the main loop until the current approximation of
the lower bound of the initial state L(s0) = maxa∈Av(s0) L(s0, a) exceeds the given threshold
ξ. Inside the loop, the algorithm updates state-action pairs yielded by GetPair. For target
states, the lower bound is set to 1. Otherwise, we set the bound of the selected pair to an
approximation of the expected value of L under the corresponding transition. Here is the
crucial difference to VI in the finite setting: Instead of using Equation (2), we have to use
Equation (3) and Approx≤, the approximations that exist by assumption, see Section 3.1.1.
Since Precision(t) converges to zero, the approximations eventually get arbitrarily fine.
The procedure Precision(t) may be adapted heuristically in order to speed up computation.
For example, it may be beneficial to only approximate up to 0.01 precision at first to quickly
get a rough overview. We show that Algorithm 1 is correct, i.e. the stored values (i) are
lower bounds and (ii) converge to the true values in [17, App. E.1]. Here, we only provide a
sketch, illustrating the main steps.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:11

▶ Theorem 5. Algorithm 1 is correct under Assumptions A1–A4, B.VI, and C, i.e. it
outputs yes iff V(s) > ξ.

Proof sketch. First, we show that Lt(s) ≤ Lt+1(s) ≤ V(s) by simple induction on the step.
Initially, we have L1(s) = 0, obviously satisfying the condition. The updates in Lines 4 and 5
both keep correctness, i.e. Lt+1(s) ≤ V(s), proving the claim.

Since Lt is monotone as argued above, its limit for t→∞ is well defined, denoted by L∞.
By State-Action Sampling, the set of accumulation points of st contains all reachable
states S♢. We then prove that L∞ satisfies the fixed point equation Equation (1). For this, we
use the second part of the assumption on GetPair, namely that for every (s, a) ∈ S♢ ×Av

we get a converging subsequence (stk
, atk

) where additionally ∆(stk
, atk

) converges to ∆(s, a)
in total variation. Intuitively, since infinitely many updates occur infinitely close to (s, a), its
limit lower bound L∞(s, a) agrees with the limit of the updates values limk→∞ ∆(stk

, atk
)⟨Ltk

⟩.
Since L∞ satisfies the fixed point equation and is less or equal to the value function V, we
get the result, since V is the smallest fixed point. ◀

4 Converging Upper Bounds

In this section, we present the second set of assumptions, allowing us to additionally
compute converging upper bounds. With both lower and upper bounds, we can quantify the
progress of the algorithm and, in particular, terminate the computation once the bounds
are sufficiently close. Therefore, instead of only providing a semi-decision procedure for
reachability, this algorithm is able to determine the maximal reachability probability up to a
given precision. Thus, we obtain the first algorithm able to handle such general systems with
guarantees on its result. We again present our assumptions together with a discussion of their
necessity (Section 4.1), and then introduce the subsequent algorithm and prove its correctness
(Section 4.2). As expected, obtaining this additional information also requires additional
assumptions. On the other hand, quite surprisingly, we can use the additional information of
upper bounds to actually speed up the computation, as discussed in Section 5.3.

As before, our approach is inspired by algorithms for finite MDP, in this case by Bounded
Real-Time Dynamic Programming (BRTDP) [39, 9]. BRTDP uses the same update equations
as VI, but iterates both lower and upper bounds. A major contribution of [9] was to solve
the long standing open problem of how to deal with end components. These parts of the
state space prevent convergence of the upper bounds by introducing additional fixpoints of
Equation (1). We direct the interested reader to [17, App. A.2] for further details on BRTDP
and insights on the issue of end components. In the uncountable setting, these issues arise as
well alongside several other, related problems, which we discuss in Section 4.1.2.

4.1 Assumptions

The basic assumptions A1–A4 as well as Lipschitz continuity (Assumption C) remain
unchanged. For Maximum Approximation (A2) and Transition Approximation (A3),
we additionally require that we are able to over-approximate the respective results. The re-
spective assumptions are denoted by A5 and A6, respectively, and both over-approximations
by Approx≥. Further, we only require a weakened variant of State-Action Sampling,
now called Assumption B.BRTDP instead of Assumption B.VI. Finally, there is the new
Assumption D called Absorption, addressing the aforementioned issue of end components.

CONCUR 2022

11:12 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

4.1.1 B: Weaker Sampling (Asm. B.BRTDP)
We again assume a GetPair oracle, but, perhaps surprisingly, with weaker assumptions.
Instead of requiring it to return “all” actions, we only require it to yield “optimal” actions,
respective to a given state-action value function. We first introduce some notation. Intuitively,
we want GetPair to yield actions which are optimal with respect to the upper bounds
computed by the algorithm. However, these upper bounds potentially change after each
update. Thus, assume that fn : S × Av → [0, 1] is an arbitrary sequence of computable,
Lipschitz continuous, (point-wise) monotone decreasing functions, assigning a value to each
state-action pair, and set F = (f1, f2, . . .). For each state s ∈ S, set

AvF (s) := {a ∈ Av(s) | ∀ε > 0. ∀N ∈ N. ∃n > N. maxa′∈Av(s)fn(s, a′)− fn(s, a) < ε},

i.e. actions that infinitely often achieve values arbitrarily close to the optimum of fn. Let
S♢

F = {last(ϱ) | ϱ ∈ FPathsM,s0 ∩ (S × AvF)∗ × S} be the set of all states reachable using
these optimal actions.(4) Essentially, we require that GetPair samples densely in S♢

F ×AvF .
B.BRTDP: State-Action Sampling For any ε > 0, F as above, s ∈ S♢

F , and a ∈ AvF (s) we
have that GetPair a.s. eventually yields a pair (s′, a′) with d×((s, a), (s′, a′)) < ε and
δT V (∆(s, a), ∆(s′, a′)) < ε.

While this new variant may seem much more involved, it is weaker than its previous variant,
since AvF (s) ⊆ Av(s) for each s ∈ S and thus also S♢

F ⊆ S♢. As such, it also allows for
more practical optimizations, which we briefly discuss in Section 5.3.

4.1.2 D: Absorption
We present our most specific assumption. While it is not needed for correctness, we require it
for convergence of the upper bounds to the value and thus for termination of the algorithm.
D: Absorption There exists a known and decidable set R (called sink) such that V(s) = 0

for all s ∈ R. Moreover, for any s ∈ S and strategy π we have Prπ
M,s[♢(T ∪R)] = 1.

Intuitively, the assumption requires that for all strategies, the system will eventually reach a
target or a goal state; in other words: It is not possible to avoid both target and sink infinitely
long. Variants of this assumption are used in numerous settings: On MDP, it is similar to the
contraction assumption, e.g. [6, Chp. 4]; in stochastic game theory (a two-player extension
of MDP) it is called stopping, e.g. [13]; and, using terms from the theory of the stochastic
shortest path problem, we require all strategies to be proper, see e.g. [7].

This assumption already is important in the finite setting: There, Absorption is equiva-
lent to the absence of end components, which introduce multiple solutions of Equation (1).
Then, a VI algorithm computing upper bounds can be “stuck” at a greater fixpoint than the
value and thus does not converge [9, 19]. Any procedure using value iteration thus either
needs to exclude such cases or detect and treat them. Aside from end components, which are
the only issue in the finite setting, uncountable systems may feature other complex behaviour,
such as Zeno-like approaching the target closer and closer without reaching it.

Unfortunately, even just detecting these problems already is difficult. For the mentioned,
restricted setting of probabilistic programs, almost sure termination is Π2

0-complete [33]. Yet,
universal termination with goal set T ∪R is exactly what we require for Absorption. So,
already on a restricted setting (together with a given guess for R), we cannot decide whether
the assumption holds, let alone treat the underlying problems. Thus, we decide to exclude
this issue and delegate treatment to specialized approaches.

(4)As in Section 3, we simplify the definition of S♢
F slightly in order to avoid technical details.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:13

Algorithm 2 The BRTDP algorithm for MDPs with general state- and action-spaces.

Input: ApproxBounds query with precision ε, satisfying A1–A6, B.BRTDP, C and D.
Output: ε-optimal values (l, u).

1: Sampled← ∅, t← 1 ▷ Initialize
2: while Approx≥

(
U(s0), Precision(t)

)
−Approx≤

(
L(s0), Precision(t)

)
≥ ε do

3: s, a← GetPair ▷ Sample stat-action pair
4: if s ∈ T then L̂(s, ·)← 1 ▷ Handle special cases
5: else if s ∈ R then Û(s, ·)← 0
6: else ▷ Update upper and lower bounds
7: Û(s, a)← Approx≥(∆(s, a)⟨U⟩, Precision(t))
8: L̂(s, a)← Approx≤(∆(s, a)⟨L⟩, Precision(t))
9: Sampled← Sampled ∪ {(s, a)}, t← t + 1

10: return (L(s0), U(s0))

In summary, while this assumption is indeed restrictive, it is the key point that allows us
to obtain convergent upper bounds and thus an anytime algorithm. As argued above, an
assumption of this kind seems to be necessary to obtain such an algorithm in this generality.

▶ Remark 6. These problems do not occur when considering finite horizon or discounted
properties, which are frequently used in practice. For details on treating finite horizon
objectives, see [17, App. C.1]. Discounted reachability with a factor of γ < 1 is equivalent to
normal reachability where at each step the system moves into a sink state with probability
(1− γ). Absorption is trivially satisfied and our methods are directly applicable.

4.2 Assumptions Applied: The Convergent Anytime Algorithm
With our assumptions in place, we are ready to present our adaptation of BRTDP to the
uncountable setting. Compared to VI, we now also store upper bounds, again using Lipschitz-
continuity to extrapolate the stored values. In particular, together with the definitions of
Equation (3) we additionally set

U(s, a) = min(s′,a′)∈Sampled

(
Û(s′, a′) + d×((s, a), (s′, a′)) · C×

)
.

We also set U(s, a) = 1 if either Sampled = ∅ or the above equation would yield U(s, a) > 1.
We present BRTDP in Algorithm 2. It is structurally similar to BRTDP in the finite

setting (see [17, App. A.2]). The major difference is given by the storage tables Û and L̂ used
to compute the current bounds U and L, again exploiting Lipschitz continuity. As before, the
central idea is to repeatedly update state-action pairs given GetPair. If GetPair yields
a state of the terminal sets T and R, we update the stored values directly. Otherwise, we
back-propagate the value of the selected pair by computing the expected value under this
transition. Moreover, we again require that Precision(t) converges to zero. Note that the
algorithm can easily be supplied with a-priori knowledge by initializing the upper and lower
bounds to non-trivial values. Moreover, in contrast to VI, this algorithm is an anytime
algorithm, i.e. it can at any time provide an approximate solution together with its precision.

Despite the algorithm being structurally similar to the finite variant of [9], the proof of
correctness unsurprisingly is more intricate due to the uncountable sets. We again provide
both a simplified proof sketch here and the full technical proof in [17, App. E.2].

CONCUR 2022

11:14 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

▶ Theorem 7. Algorithm 2 is correct under Assumptions A1–A6, B.BRTDP, C and D,
and terminates with probability 1.

Proof sketch. We again obtain monotonicity of the bounds, i.e. Lt(s, a) ≤ Lt+1(s, a) ≤
V(s, a) ≤ Ut+1(s, a) ≤ Ut(s, a) by induction on t, using completely analogous arguments.

By monotonicity, we also obtain well defined limits U∞ and L∞. Further, we define the
difference function Difft(s, a) = Ut(s, a)− Lt(s, a) together with its state based counterpart
Difft(s) and its limit Diff∞(s). We show that Diff∞(s0) = 0, proving convergence. To
this end, similar to the previous proof, we prove that Diff∞ satisfies a fixed point equation
on S♢

+ (see B.BRTDP), namely Diff∞(s) = ∆(s, a(s))⟨Diff∞⟩ where a(s) is a specially
chosen “optimal” action for each state satisfying Diff∞(s, a(s)) = Diff∞(s). Now, set
Diff∗ = maxs∈S♢

+
Diff∞(s) the maximal difference on S♢

+ and let S♢
∗ be the set of witnesses

obtaining Diff∗. Then, ∆(s, a(s), S♢
∗) = 1: If a part of the transition’s probability mass would

move to a region with smaller difference, an appropriate update of a pair close to (s, a(s))
would reduce its difference. Hence, the set of states S♢

∗ is a “stable” subset of the system
when following the actions a(s). By Absorption, we eventually have to reach either the
target T or the sink R starting from any state in S♢

∗ . Since Diff∞(s) = 0 for all (sampled)
states in T ∪R and Diff∞ satisfies the fixed point equation, we get that Diff∞(s) = 0 for all
states S♢

∗ and consequently Diff∞(s0) = 0. ◀

5 Discussion

5.1 Relation to Algorithms for Finite Systems and Discretization
Our algorithm directly generalizes the classical value iteration as well as BRTDP for finite
MDP by an appropriate choice of GetPair. In value iteration, it proceeds in round-robin
fashion, enumerating all state-action pairs. Note that the algorithm immediately uses the
results of previous updates, corresponding to the Gauß-Seidel variant of VI; to exactly obtain
synchronous value iteration, we would have to slightly modify the structure for saving the
values. In BRTDP, GetPair simulates paths through the MDP and we update only those
states encountered during the simulation.

Approaches based on discretization through, e.g., grids with increasing precision, es-
sentially reduce the uncountable state space to a finite one. This is also encompassed by
GetPair, e.g. by selecting the grid points in round robin or randomized fashion. However,
our algorithm has the following key advantages when compared to classical discretization.
Firstly, it avoids the need to grid the whole state space (typically into cells of regular sizes).
Secondly, in discretization, updating the value of one cell does not directly affect the value in
other cells; in contrast in our algorithm, knowledge about a state fluently propagates to other
areas (by using Equation (3)) without being hindered by (arbitrarily chosen) cell boundaries.

5.2 Extensions
We outline possible extensions and augmentations of our approach to showcase its versatility.

Discontinuities. Our Lipschitz assumption C actually is slightly stronger than required.
We first give an example of a system exhibiting discontinuities and then describe how our
approach can be modified to deal with it. More details are in [17, App. C.2].

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:15

▶ Example 8. Consider a robot navigating a terrain with cliffs, where falling down a cliff
immediately makes it impossible to reach the target. There, states which are barely on the
edge may still reach the goal with significant probability, while a small step to the side results
in falling down the cliff and zero probability of reaching the goal.

To solve this example, one could model the cliff as a steep but continuous slope, which would
make our approach still possible. Unfortunately, this might not be very practical, since the
Lipschitz constant then is quite large.

However, if we know of discontinuities, e.g. the location of cliffs in the terrain the robot
navigates, both our algorithms can be extended as follows: Instead of requiring V to be
continuous on the whole domain, we may assume that we are given a (finite, decidable)
partitioning of the state set S into several sets Si. We allow the value function to be
discontinuous along the boundaries of Si (the cliffs), as long as it remains Lipschitz-continuous
inside each Si. We only need to slightly modify the assumption on GetPair by requiring
that for any state-action pair (s, a) with s ∈ Si we eventually get a nearby, similarly behaving
state-action pair (s′, a′) of the same region, i.e. s′ ∈ Si. While computing the bounds of a
particular state-action pair, e.g. U(s, a), we first determine which partition Si the state s

belongs to and then only consider the stored values of states inside the region Si.

Linear Temporal Logic. In [9], the authors extend BRTDP to LTL queries [42]. Several
difficulties arise in the uncountable setting. For example, in order to prove liveness conditions,
we need to solve the repeated reachability problem, i.e. whether a particular set of states is
reached infinitely often. This is difficult even for restricted classes of uncountable systems,
and impossible in the general case. In particular, [9] relies on analysing end components,
which we already identified as an unresolved problem. We provide further insight in [17,
App. C.3]. Nevertheless, there is a straightforward extension of our approach to the subclass
of reach-avoid problems [50] (or constrained reachability [52]), see [17, App. C.4].

5.3 Implementation and Heuristics
For completeness, we implemented a prototype of our BRTDP algorithm to demonstrate
its effectiveness. See [17, App. D] for details and an evaluation on both a one- and two-
dimensional navigation model. Our implementation is barely optimized, with no delegation
to high-performance libraries. Yet, these non-trivial models are solved in reasonable time.
However, since we aim for assumptions that are as general as possible, one cannot expect
our generic approach perform on par with highly optimized tools. Our prototype serves as
a proof-of-concept and does not aim to be competitive with specialized approaches. We
highlight again that the goal of our paper is not to be practically efficient in a particular,
restricted setting, but rather to provide general assumptions and theoretical algorithms
applicable to all kinds of uncountable systems.

Aside from several possible optimizations concerning the concrete implementation, we
suggest two more general directions for heuristics:

Adaptive Lipschitz constants. As an example, suppose that a robot is navigating mostly
flat land close to its home, but more hilly terrain further away. The flat land has a smaller
Lipschitz constant than the hilly terrain, and thus here we can infer tighter bounds. More
generally, given a partitioning of the state space and local Lipschitz constants for every
subset, we use this local knowledge when computing L̂ and Û instead of using the global
Lipschitz constant, which is the maximum of all local ones. See [17, App. C.2] for details.

CONCUR 2022

11:16 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

GetPair-heuristics. In Section 3.1.2, we mentioned two simple implementations of GetPair.
Firstly, we can discretize both state and action space, yielding each state-action pair in the
discretization for a finite number of iterations, choosing a finer discretization constant, and
repeating the process until convergence. Assuming that we can sample all state-action pairs
in the discretization, this method eventually samples arbitrarily close to any state-action pair
in S ×Av and thus trivially satisfies the sampling assumption. This intuitively corresponds
to executing interval iteration [19] on the (increasingly refined) discretized systems. Note
that this approach completely disregards the reachability probability of certain states and
invests the same computational effort for all of them. In particular, it invests the same
amount of computational effort into regions which are only reached with probability 10−100

as in regions around the initial state s0.
Thus, a second approach is to sample a path through the system at random, following

random actions. This approach updates states roughly proportional to the probability of
being reached, which already in the finite setting yields dramatic speed-ups [34].

However, we can also use further information provided by the algorithm, namely the
upper bounds. As mentioned in [9], following “promising” actions with a large upper bound
proves to be beneficial, since actions with small upper bound likely are suboptimal. To extend
this idea to the general domain, we need to apply a bit of care. In particular, it might be
difficult to select exactly from the optimal set of actions, since already arg maxa∈Av(s) U(s, a)
might be very difficult to compute. Yet, it is sufficient to choose some constant ξ > 0 and
over-approximate the set of ξ-optimal actions in a given state, randomly selecting from this
set. This over-approximation can easily be performed by, for example, randomly sampling
the set of available actions Av(s) until we encounter an action close to the optimum (which
can approximate due to our assumptions). By generating paths only using these actions,
we combine the previous idea of focussing on “important” states (in terms of reachability)
with an additional focus on “promising” states (in terms of upper bounds). This way, the
algorithm learns from its experiences, using it as a guidance for future explorations.

More generally, we can easily apply more sophisticated learning approaches by interleaving
it with one of the above methods. For example, by following the learning approach with
probability ν and a “safe” method with probability 1− ν we still obtain a safe heuristic, since
the assumption only requires limit behaviour. As such, we can combine our approach with
existing, learning based algorithm by following their suggested heuristic and interleave it with
some sampling runs guided by the above ideas. In other words, this means that the learning
algorithm can focus on finding a reasonable solution quickly, which is then subsequently
verified by our approach, potentially improving the solution in areas where the learner is
performing suboptimally. On top, the (guaranteed) bounds identified by our algorithm can
be used as feedback to the learning algorithm, creating a positive feedback loop, where both
components improve each other’s behaviour and performance.

6 Conclusion

In this work, we have presented the first anytime algorithm to tackle the reachability
problem for MDP with uncountable state- and action-spaces, giving both correctness and
termination guarantees under general assumptions. The experimental evaluation of our
prototype implementation shows both promising results and room for improvements.

On the theoretical side, we conjecture that Assumption D: Absorption can be
weakened if we complement it with an automatic procedure that finds and treats problematic
parts of the state space of a certain kind, similar to the collapsing approach on finite MDP

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:17

[19, 9]. Note that as the general problem is undecidable, some form of Absorption will
remain necessary. On the practical side, we aim for a more sophisticated tool, applying our
theoretical foundation to the full range of MDP, including discrete discontinuities. Moreover,
we want to combine the tool with existing ways of identifying the Lipschitz constant.

References
1 Alessandro Abate, Saurabh Amin, Maria Prandini, John Lygeros, and Shankar Sas-

try. Computational approaches to reachability analysis of stochastic hybrid systems. In
HSCC, volume 4416 of Lecture Notes in Computer Science, pages 4–17. Springer, 2007.
doi:10.1007/978-3-540-71493-4_4.

2 Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini. Approximate
model checking of stochastic hybrid systems. Eur. J. Control, 16(6):624–641, 2010. doi:
10.3166/ejc.16.624-641.

3 Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic reachability
and safety for controlled discrete time stochastic hybrid systems. Automatica, 44(11):2724–2734,
2008. doi:10.1016/j.automatica.2008.03.027.

4 Christel Baier, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wunderlich.
Ensuring the reliability of your model checker: Interval iteration for Markov decision processes.
In CAV (1), volume 10426 of Lecture Notes in Computer Science, pages 160–180. Springer,
2017.

5 Dimitri Bertsekas. Convergence of discretization procedures in dynamic programming. IEEE
Transactions on Automatic Control, 20(3):415–419, 1975.

6 Dimitri P Bertsekas and Steven Shreve. Stochastic optimal control: the discrete-time case,
1978.

7 Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path problems.
Math. Oper. Res., 16(3):580–595, 1991. doi:10.1287/moor.16.3.580.

8 Patrick Billingsley. Probability and Measure, volume 939. John Wiley & Sons, 2012.
9 Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský,

Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision
processes using learning algorithms. In ATVA, volume 8837 of Lecture Notes in Computer
Science, pages 98–114. Springer, 2014. doi:10.1007/978-3-319-11936-6_8.

10 John L. Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan, David E. Smith,
and Richard Washington. Planning under continuous time and resource uncertainty: A
challenge for AI. CoRR, abs/1301.0559, 2013. arXiv:1301.0559.

11 Debasish Chatterjee, Eugenio Cinquemani, and John Lygeros. Maximizing the probability
of attaining a target prior to extinction. Nonlinear Analysis: Hybrid Systems, 5(2):367–381,
2011.

12 Krishnendu Chatterjee, Zuzana Kretínská, and Jan Kretínský. Unifying two views on multiple
mean-payoff objectives in Markov decision processes. Logical Methods in Computer Science,
13(2), 2017. doi:10.23638/LMCS-13(2:15)2017.

13 Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
doi:10.1016/0890-5401(92)90048-K.

14 Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, and Richard Washington. Dynamic
programming for structured continuous Markov decision problems. In UAI, pages 154–161.
AUAI Press, 2004. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&
smnu=2&article_id=1102&proceeding_id=20.

15 Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Automated
verification techniques for probabilistic systems. In SFM, volume 6659 of Lecture Notes in
Computer Science, pages 53–113. Springer, 2011. doi:10.1007/978-3-642-21455-4_3.

CONCUR 2022

11:18 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

16 Hongfei Fu and Krishnendu Chatterjee. Termination of nondeterministic probabilistic programs.
In VMCAI, volume 11388 of Lecture Notes in Computer Science, pages 468–490. Springer,
2019. doi:10.1007/978-3-030-11245-5_22.

17 Kush Grover, Jan Kretínský, Tobias Meggendorfer, and Maximilian Weininger. Anytime
guarantees for reachability in uncountable markov decision processes. CoRR, abs/2008.04824,
2020. arXiv:2008.04824.

18 Carlos Guestrin, Milos Hauskrecht, and Branislav Kveton. Solving factored MDPs
with continuous and discrete variables. In UAI, pages 235–242. AUAI Press,
2004. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&
article_id=1113&proceeding_id=20.

19 Serge Haddad and Benjamin Monmege. Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci., 735:111–131, 2018. doi:10.1016/j.tcs.2016.12.003.

20 Sofie Haesaert, Sadegh Soudjani, and Alessandro Abate. Temporal logic control of general
Markov decision processes by approximate policy refinement. In ADHS, volume 51(16) of
IFAC-PapersOnLine, pages 73–78. Elsevier, 2018. doi:10.1016/j.ifacol.2018.08.013.

21 Sofie Haesaert, Sadegh Esmaeil Zadeh Soudjani, and Alessandro Abate. Verification of general
Markov decision processes by approximate similarity relations and policy refinement. SIAM J.
Control and Optimization, 55(4):2333–2367, 2017. doi:10.1137/16M1079397.

22 Arnd Hartmanns and Benjamin Lucien Kaminski. Optimistic value iteration. In CAV (2),
volume 12225 of Lecture Notes in Computer Science, pages 488–511. Springer, 2020.

23 Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained
neural fitted q-iteration. In AAMAS, pages 2012–2014. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2019. URL: http://dl.acm.org/citation.cfm?
id=3331994.

24 Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Certified reinforcement
learning with logic guidance. CoRR, abs/1902.00778, 2019. arXiv:1902.00778.

25 William B. Haskell, Rahul Jain, Hiteshi Sharma, and Pengqian Yu. A universal empirical
dynamic programming algorithm for continuous state MDPs. IEEE Trans. Automat. Contr.,
65(1):115–129, 2020. doi:10.1109/TAC.2019.2907414.

26 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? In STOC, pages 373–382. ACM, 1995.

27 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable about
hybrid automata? J. Comput. Syst. Sci., 57(1):94–124, 1998. doi:10.1006/jcss.1998.1581.

28 Onésimo Hernández-Lerma and Jean B Lasserre. Discrete-time Markov control processes:
basic optimality criteria, volume 30. Springer Science & Business Media, 2012.

29 Ronald A Howard. Dynamic programming and Markov processes. John Wiley, 1960.
30 Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. New approaches for almost-sure

termination of probabilistic programs. In Program. Lang. and Sys., volume 11275 of Lecture
Notes in Computer Science, pages 181–201. Springer, 2018. doi:10.1007/978-3-030-02768-1_
11.

31 Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady.
Modular verification for almost-sure termination of probabilistic programs. Proc. ACM
Program. Lang., 3(OOPSLA):129:1–129:29, 2019. doi:10.1145/3360555.

32 Manfred Jaeger, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay, Sean Sedwards, and
Jakob Haahr Taankvist. Teaching stratego to play ball: Optimal synthesis for continuous
space MDPs. In ATVA, volume 11781 of Lecture Notes in Computer Science, pages 81–97.
Springer, 2019. doi:10.1007/978-3-030-31784-3_5.

33 Benjamin Lucien Kaminski and Joost-Pieter Katoen. On the hardness of almost-sure termina-
tion. In MFCS, volume 9234 of Lecture Notes in Computer Science, pages 307–318. Springer,
2015. doi:10.1007/978-3-662-48057-1_24.

34 Jan Kretínský and Tobias Meggendorfer. Of cores: A partial-exploration framework for Markov
decision processes. In CONCUR, volume 140 of LIPIcs, pages 5:1–5:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.5.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:19

35 Ratan Lal and Pavithra Prabhakar. Bounded verification of reachability of probabilistic
hybrid systems. In QEST, volume 11024 of Lecture Notes in Computer Science, pages 240–256.
Springer, 2018. doi:10.1007/978-3-319-99154-2_15.

36 Bernard F Lamond and Abdeslem Boukhtouta. Water reservoir applications of Markov decision
processes. In Handbook of Markov decision processes, pages 537–558. Springer, 2002.

37 Lihong Li and Michael L. Littman. Lazy approximation for solving continuous finite-horizon
MDPs. In AAAI, pages 1175–1180. AAAI Press / The MIT Press, 2005. URL: http:
//www.aaai.org/Library/AAAI/2005/aaai05-186.php.

38 Masoud Mahootchi. Storage system management using reinforcement learning techniques and
nonlinear models. PhD thesis, University of Waterloo, 2009.

39 H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In ICML,
volume 119 of ACM International Conference Proceeding Series, pages 569–576. ACM, 2005.
doi:10.1145/1102351.1102423.

40 Francisco S. Melo, Sean P. Meyn, and M. Isabel Ribeiro. An analysis of reinforcement
learning with function approximation. In ICML, volume 307 of ACM International Conference
Proceeding Series, pages 664–671. ACM, 2008. doi:10.1145/1390156.1390240.

41 Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary problems. Springer,
2006.

42 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

43 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.

44 Tim Quatmann and Joost-Pieter Katoen. Sound value iteration. In CAV (1), volume 10981
of Lecture Notes in Computer Science, pages 643–661. Springer, 2018.

45 Scott Sanner, Karina Valdivia Delgado, and Leliane Nunes de Barros. Symbolic dynamic
programming for discrete and continuous state MDPs. In UAI, pages 643–652. AUAI
Press, 2011. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=
2&article_id=2223&proceeding_id=27.

46 Claude Elwood Shannon. Communication in the presence of noise. Proceedings of the IRE,
37(1):10–21, 1949.

47 Hiteshi Sharma, Mehdi Jafarnia-Jahromi, and Rahul Jain. Approximate relative value learning
for average-reward continuous state MDPs. In UAI, page 341. AUAI Press, 2019. URL:
http://auai.org/uai2019/proceedings/papers/341.pdf.

48 Fedor Shmarov and Paolo Zuliani. Probreach: verified probabilistic delta-reachability for
stochastic hybrid systems. In HSCC, pages 134–139. ACM, 2015.

49 Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. Adaptive gridding for abstraction and
verification of stochastic hybrid systems. In QEST, pages 59–68. IEEE Computer Society,
2011. doi:10.1109/QEST.2011.16.

50 Sean Summers and John Lygeros. Verification of discrete time stochastic hybrid systems: A
stochastic reach-avoid decision problem. Automatica, 46(12):1951–1961, 2010. doi:10.1016/j.
automatica.2010.08.006.

51 Ilya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro Abate. Quantitative
automata-based controller synthesis for non-autonomous stochastic hybrid systems. In HSCC,
pages 293–302. ACM, 2013. doi:10.1145/2461328.2461373.

52 Ilya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro Abate. Quantitative
model-checking of controlled discrete-time Markov processes. Inf. Comput., 253:1–35, 2017.
doi:10.1016/j.ic.2016.11.006.

53 Hado van Hasselt. Reinforcement learning in continuous state and action spaces. In Rein-
forcement Learning, volume 12 of Adaptation, Learning, and Optimization, pages 207–251.
Springer, 2012. doi:10.1007/978-3-642-27645-3_7.

CONCUR 2022

11:20 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

54 Luis Gustavo Rocha Vianna, Scott Sanner, and Leliane Nunes de Barros. Continuous real time
dynamic programming for discrete and continuous state MDPs. In 2014 Brazilian Conference
on Intelligent Systems, BRACIS 2014, Sao Paulo, Brazil, October 18-22, 2014, pages 134–139.
IEEE Computer Society, 2014. doi:10.1109/BRACIS.2014.34.

B Semantic Abstraction-Guided Motion
Planning for scLTL Missions in Unknown
Environments

This chapter has been published as a peer-reviewed conference paper.

© Kush Grover, Fernando S. Barbosa, Jana Tumova and Jan Křetı́nský.

Kush Grover, Fernando S Barbosa, Jana Tumova, and Jan Křetı́nský. “Se-
mantic Abstraction-Guided Motion Planning for scLTL Missions in Unknown
Environments”. In: Robotics: Science and Systems XVII, Virtual Event, July 12-
16, 2021. RSS Foundation-Robotics Science & Systems Foundation. Virtual,
July 2021. DOI: 10.15607/RSS.2021.XVII.090

Summary. This paper deals with motion planning in unknown environments for tem-
poral specifications. Unknown environment means that the robot could only perceive
obstacle and labeling within a certain radius around it. We gave an algorithm which
learns the semantic relations present in the environment to figure out similar transitions
it should look for, in the future, to satisfy the formula as soon as possible. Additionally,
to maintain record of explored and unexplored area we employed a frontier-based ap-
proach which also suggests directions with most unexplored area to guide the robot’s
movements. We combined the two biases and incorporated them in an RRG style algo-
rithm.

Contributions of thesis author. The author played a pivotal role in the composition
and revision of the manuscript. He actively participated in joint discussions and was a
major contributor to the development of the results presented in the paper. Noteworthy
individual contributions include designing of the algorithm along with its complete
implementation. The experiments presented were also done by the him.

License. This work is licensed under the Creative Commons Attribution 4.0 Interna-
tional License (CC-BY 4.0), which permits use, duplication, adaptation, distribution,
and reproduction in any medium or format, as long as appropriate credit is given to
the original author(s), a link is provided to the Creative Commons license, and any
changes made are indicated.

71

https://doi.org/10.15607/RSS.2021.XVII.090
http://creativecommons.org/licenses/by/4.0/

Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Semantic Abstraction-Guided Motion Planning
for scLTL Missions in Unknown Environments

Kush Grover∗, Fernando S. Barbosa†, Jana Tumova† and Jan Křetı́nský∗
∗Technical University of Munich, Germany. Emails: {kush.grover, jan.kretinsky}@tum.de
†KTH Royal Institute of Technology, Stockholm, Sweden. Emails: {fdsb, tumova}@kth.se

Abstract—Complex mission specifications can be often specified
through temporal logics, such as Linear Temporal Logic and its
syntactically co-safe fragment, scLTL. Finding trajectories that
satisfy such specifications becomes hard if the robot is to fulfil
the mission in an initially unknown environment, where neither
locations of regions or objects of interest in the environment
nor the obstacle space are known a priori. We propose an al-
gorithm that, while exploring the environment, learns important
semantic dependencies in the form of a semantic abstraction,
and uses it to bias the growth of an Rapidly-exploring random
graph towards faster mission completion. Our approach leads
to finding trajectories that are much shorter than those found
by the sequential approach, which first explores and then plans.
Simulations comparing our solution to the sequential approach,
carried out in 100 randomized office-like environments, show
more than 50% reduction in the trajectory length.

I. INTRODUCTION

Motion planning with Linear Temporal Logic (LTL) mission
specifications aims for consideration of richer objectives than
the traditional A-to-B motion planning. Examples of such
objectives include periodic surveillance, request-response, or
sequencing. Successful approaches to the problem range
from using various cell decomposition techniques, to creat-
ing roadmaps abstracting the environment and to sampling-
based motion planning. Motion planning with LTL missions
is, however, much more challenging in a priori unknown
environments: efficient treatment of LTL specifications may
require exploiting semantic and spatio-temporal dependencies
between features of the environment, which are typically
unknown beforehand. As an example, consider that we would
like a robot to check all waste bins in all offices in an office
environment. When finding the first bin, the robot may realize
it was next to a desk. While looking for the bin in the next
office, it is most natural that the robot starts exploring again
next to the desk. At the same time, due to the potential
complexity of the environment, it is not desirable to stick
fully to all of the observed semantic and spatio-temporal
correlations as not all of them are relevant for the specification
satisfaction.

In this paper, we focus on sampling-based motion planning
with missions specified with the syntactically co-safe fragment
of LTL (scLTL), and with the robot deployed in a priori
unknown environments. The key idea of our approach is,
on the conceptual level, to make the sampling guided by a
semantic abstraction of the system and by the specification.
The overview of our algorithm is depicted in Fig. 1. We ex-

System

RRG graph

Semantic abstraction

Product

scLTL property

Automaton Learn
Bias

Figure 1. Scheme of our model-checking-inspired approach with novel
elements drawn thickly.

tend the Rapidly-exploring Random Graphs (RRG) algorithm
with learning and biasing; we iteratively learn a semantic
abstraction of the system from the gradually growing RRG
graph and compose it with an automaton representation of the
specification into a so-called product. The product is used to
bias sampling in RRG, i.e. to exploit the semantic and spatio-
temporal dependencies of features in the environment as well
as their relation to satisfying the desired specification.

Compared to the naive two-step approach, which first ex-
plores the environment and then plans a trajectory that satisfies
the mission, our approach (i) performs both tasks at once and,
moreover, (ii) allows mutual exchange of information between
the two tasks. We show that these two improvements shorten
the length of the executed path significantly. We achieve this
while maintaining similar computation time, which will, in
reality, be negligible as the robot can execute the algorithm in
real-time while navigating in the environment. Our contribu-
tion can be summarized as follows:
• We propose a method to learn a semantic abstraction of

the system, suitable for planning with scLTL missions.
• We exploit the learned semantic abstraction and, together

with consideration of the specification, we bias the growth
of the RRG graph towards promising regions (in terms of
making progress towards the specification satisfaction).

• We experimentally show that the loop between sampling
and learning leads to better planning in terms of shorter
trajectories when compared to the naive two-step ap-
proach. The results indicate more than 50% savings.

 ���

The paper is organized as follows. Sec. I-A introduces
relevant related work, and Sec. II describes preliminary tools
needed for the remainder of the paper. The problem is formally
defined in Sec. III, which is followed by the proposed solution
and analysis in Sec. IV. Lastly, a case study is presented in
Sec. V, with conclusions and future work in Sec. VI.

A. Related Work

One of the first works to propose the use of a sampling-
based motion planning algorithm to find a trajectory that
satisfies a temporal logic specification is [9]. In that work,
the authors propose the Rapidly-exploring Random Graph
(RRG) as an alternative to the Rapidly-exploring Random Tree
(RRT) to finding cyclic trajectories that satisfy a deterministic
µ-calculus specification. Another approach is presented in
[4], but this time for the syntactically co-safe fragment of
Linear Temporal Logic (scLTL). Following these, Vasile and
Belta [17] propose improvements to [9], more specifically for
dealing with full LTL and for improving scalability. None
of these works, however, deals with partially-known environ-
ments, nor do they attempt to speed up the search by learning
characteristics of the environment.

More recently, Kantaros and Zavlanos [6] described an
approach for multi-robot systems under global temporal tasks.
Instead of using an RRG, the authors propose a two-step
approach using RRT?. The first step constructs a tree until
an accepting state of the automaton capturing the evolution
of the LTL formula is reached. The second step then grows
another tree rooted at this accepting state, and attempts to find
a cyclic (infinite) path that satisfies the LTL specification. The
same authors then introduce in [7] sampling bias guided by
the automaton capturing the LTL, something that [13] also
proposes in a similar fashion. Lastly, besides proposing a
heuristic to guide the search, [16] integrates feedback control
laws to guarantee feasibility of plans by robots with complex,
possibly non-holonomic, dynamics. Although these works
propose ways of improving the time taken to find a plan, they
all rely on having details of the environment a priori.

To the best of our knowledge, the two papers that are
mostly related to ours are [8] and [1]. The former proposes
a reactive sampling-based algorithm for path planning in
unknown environments under scLTL specifications. However,
differently from what we propose, only the obstacle space is
initially unknown to [8], i.e. the locations of the regions of
interest, therefore the labeling function, are known a priori. On
the other hand, Ayala et al. [1] considers completely unknown
environments, including the labeling function. However, the
authors propose an approach over a discretized partitioning of
the environment, performing frontier exploration [18] until a
path that satisfies the scLTL specification is found. We merge
benefits of both approaches by proposing a sampling-based
approach on completely unknown environments; furthermore,
we propose a way of learning relations between labels, to-
gether with exploiting them for guiding the path search.

When it comes to robotic deployment in unknown en-
vironments, a crucial initial step might be to efficiently

create a map in an exploratory manner. A seminal work
on exploration is by Yamauchi [18], in which the author
proposes the method coined frontier exploration. Since then,
several other approaches have been proposed. Among them
is the Receding Horizon Next-Best-View Planner [5] and the
Autonomous Exploration Planner [15], both building upon
RRT?. These works, however, do not focus on capturing
various dependencies and relations in the environment. In
contrast, in a probabilistic approach proposed by Aydemir
et al. [2], a robot uses common-sense knowledge about the
relation between objects and semantic room categories. Here,
the focus is however on search for objects and not satisfaction
of complex LTL goals.

II. PRELIMINARIES

Let R denote the set of real numbers and Rn the n-
dimensional Euclidean space. We use Σ for the finite set of
atomic propositions. For a set X , 2X denotes its power set.
A word over an alphabet Y is a sequence of elements of Y .
The exclusive-or operation is denoted by ⊕, and the disjoint
union of sets by].

Consider a robot deployed in an environment X ⊂ Rn
and let x0 ∈ X be its initial state. Let {O1,O2, . . .Ok} be
the set of obstacles such that Oi ⊂ X for all i ∈ [1, k],
and Xfree = X \ ⋃k

i=1Oi denotes the obstacle-free space. A
trajectory in the environment X is defined by a continuous
function σ : [0, 1] → X . A trajectory is collision-free if
σ(t) ∈ Xfree, ∀t ∈ [0, 1]. Regions of the environment X are
labelled with atomic propositions Σ according to a labelling
function L : X → 2Σ, which maps each state in the state-space
to a set of atomic propositions that hold true there.

A map of the environment X is a partitioning into a finite
number of cells of equal size with a predefined precision,
which can be labeled as free, meaning that the cell lies in
Xfree, occupied, if any point within the cell lies inside the
obstacle space (corresponding to an over-approximation of
the obstacle set), or unmapped, that highlights the cell has
not been seen by the robot so far. Every cell is initialised as
unmapped, and is updated whenever it lies in the line-of-sight
of the robot. A cell is called a frontier cell if it is marked
as free and has a neighbouring cell marked as unmapped. A
map frontier is a connected group of frontier cells, and its size
is its cardinality. This is a common approach among the 3D-
exploration community, so we refer to papers such as [18, 5]
for more details.

A. RRG

The Rapidly-exploring Random Graph [10] is an anytime1

sampling-based motion planning algorithm that builds a con-
nected roadmap. It incrementally builds a graph G = (V,E)
such that v ∈ Xfree, ∀v ∈ V , and an edge e ∈ E connects two
nodes va, vb ∈ V if there exists a collision-free trajectory σvbva
between them, with σvbva(0) = va and σvbva(1) = vb. A path

1An anytime algorithm returns a valid solution even if it is interrupted
before termination; moreover, the longer it runs, the more its solution is
improved.

 ���

over G is a sequence of nodes p = v0, v1, v2, . . . such that
vi ∈ V and (vi, vi+1) ∈ E, for all i ≥ 0.

B. Syntactically co-safe LTL and DFA

Definition 1 ((Syntactically co-safe) Linear Temporal Logic
[14, 11]). A formula of LTL is given by the syntax:

ϕ := a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ | ϕ1Uϕ2 | Gϕ

where, a ∈ Σ is an atomic proposition, ¬,∧,∨ are the Boolean
operators ‘negation’, ‘conjunction’, and ‘disjunction’, respec-
tively. X, U, G denote the LTL operators ‘next’, ‘until’, and
‘globally’ respectively. The syntactically co-safe fragment of
LTL (scLTL) is given by the same syntax, but prohibiting the
operator G.

The semantics of LTL formulas is defined on words over 2Σ.
The Boolean operators have usual semantics. Intuitively, Xϕ
means that ϕ is true in the next time step and ϕ1Uϕ2 asserts
that ϕ1 will be true until ϕ2 becomes true. F is known as the
‘finally’ or ‘eventually’ operator whose semantics asserts that
the property ϕ becomes true at some point in the future. As
such, it can be defined in terms of U as F ϕ ≡ true U ϕ
G is known as the ‘globally’ or ‘always’ operator with the
semantics that ϕ is always satisfied. Since the robot moves in
continuous time and X operator is usually defined for discrete
time steps, we consider for simplicity properties without X.
However, our approach is applicable for the whole of LTL.

Let L(ϕ) denote the set of words that satisfies the LTL
formula ϕ.

Definition 2 (Deterministic Finite Automaton). A determinis-
tic finite automaton (DFA) is a tuple (2Σ, Q, q0, δ, F) where
2Σ is the alphabet, Q is a finite set of states, q0 is an initial
state, δ : Q× 2Σ → Q is a transition function and F ⊆ Q is
the set of accepting states.

A run over a word w1, . . . , wn is a sequence of states
q0, q1, . . . , qn such that qi = δ(qi−1, wi) for all i. A word
is accepted by the automaton if the run over the word end
in F . We define the language accepted by an DFA A as
L(A) = {w ∈ (2Σ)ω | w is accepted by A}. It is a standard
result that for every scLTL formula ϕ, there exists a DFA A
such that L(ϕ) = L(A) and it is effectively constructible.
Consequently, DFA can be used as a precise representation
of an scLTL property. (Our approach can be extended in a
straightforward way to so-called Büchi automata, which can
express the whole of LTL.)

Definition 3 (State-labelled transition system). A (state-
labelled) transition system (TS) is a tuple (S, s0,∆, L) where
S is a finite set of states, s0 is an initial state, ∆ : S → 2S is a
transition relation, and L : S → 2Σ is the labelling function.

A transition system (representing the real system or its
abstraction) can be combined with an automaton (representing
the property) into a product, see Fig. 1. Runs of the product are
thus runs of the transition system monitored by the automaton.
The automaton always reads the atomic propositions true in

the current state and, on the whole, determines whether the run
satisfies the property or not. This standard construction is often
used in model checking [3] and we use it to improve RRG by
mutual exchange of information between the two parts.

Definition 4 (Product). Given a TS T = (S, s0,∆, L) and
DFA A = (2Σ, Q, q0, δ, F), the product T × A is the tuple
(S ×Q, ŝ0, ∆̂, F̂) where
• ŝ0 = (s0, δ(q0, s0)),
• ∆̂((s, q)) = {(s′, δ(q, s′)) | s′ ∈ ∆(s)},
• F̂ = {(s, q) | q ∈ F} .

III. PROBLEM FORMULATION

Consider a robot deployed in an a priori unknown en-
vironment. We assume that the set of atomic propositions
Σ (semantic labels, such as living room or wastebin) is
known beforehand, but not where they hold. In other words,
the L function, as well as the obstacle-space, are unknown.
Furthermore, we also assume that the robot is equipped with
adequate sensors and perception modules that can identify
labels and obstacles within a sensing radius rs around its
current position.

Problem 1. Given an initial state x0 ∈ X in an a priori
unknown environment X , and an scLTL specification Φ over
the set of atomic propositions Σ, find a collision-free trajectory
σ in Xfree which satisfies Φ.

Since neither obstacles nor the labeling function are known
a priori, one cannot use traditional offline approaches de-
scribed in Sec. I-A to solve Problem 1. The solution must be an
online algorithm that learns the obstacle space and the labeling
function as it moves in the environment. A straightforward
way to solve this problem would be to explore the whole
environment and assign labels to features in the environment
first, and then use planning approaches. We propose to inte-
grate exploration and planning. As a result, the robot attempts
to make progress towards satisfying the specification while
exploring, resulting in a possibly shorter travelled distance.

IV. SOLUTION

Our solution to Problem 1 is an algorithm that learns
interesting semantic dependencies and relations in the form
of a semantic abstraction and utilizes this knowledge to bias
the growth of a motion graph towards faster satisfaction of the
desired LTL specification.

A. Semantic abstraction-guided RRG

The overall Semantic abstraction-guided RRG (SAG-RRG)
procedure is overviewed in Alg. 1. Similarly to RRG, the
procedure builds a graph G = (V,E) whose vertices v ∈ V
lay within the obstacle-free space Xfree, and edges e ∈ E
connect two vertices if a collision-free trajectory exists. An
iteration of the algorithm starts by updating the map of the
environment with information of what is within the sensing
radius rs of the robot (line 5). After that, it computes the
guidance according to the Bias function (line 6), which is
described in more detail in Alg. 3 and Sec. IV-C. Then, each

 ���

iteration of the internal while loop (lines 8-24) attempts to add
one new vertex to G, in a similar way to the RRG algorithm. It
samples a point from the known-space of the environment and
finds its closest neighbour in the current graph (line 9). If the
path connecting these two points is collision-free, the sample
is considered for being added to the graph. If the symbolic
counterpart of the sampled transition is in bias, the sampled
point is stored as a “bias frontier”; otherwise it rejects this
sample with some probability p (lines 11-14). This probability
depends on how much you want to bias the sampling. The
algorithm then follows the usual RRG procedure: it adds the
new vertex and edge to the graph (line 15) and attempts to
connect such vertex to its closest neighbours (lines 19-24),
with slight modifications for checking for bias frontiers, and
for keeping track of the symbolic transitions tsymb (lines 16
and 22) and states seen seen st (line 17). After sampling a
batch, it updates the semantic abstraction through the Learn
procedure (line 25), which is detailed in Alg. 2 and in Sec.
IV-B. The algorithm then calls the Move procedure (Alg. 4
and Sec. IV-D), which finds the best frontier to move to, and
moves the robot to the point in G closest to it. Finally, the
procedure checks if a plan that satisfies the LTL formula has
been found.

Remark 1. In Alg. 1 an edge e ∈ E is defined in a way to
ensure the labels along it change only once. Formally, given an
edge e = (va, vb) ∈ E, there exists a state x ∈ σvbva such that
i) L(x′) = L(va), ∀x′ ∈ σxva , and ii) L(x′′) = L(vb), ∀x′′ ∈
σvbx+ε, where x+ ε represents a state in the neighbourhood of
x.

B. Learn

This section describes in detail the proposed approach to
learning the semantic abstraction of the environment. Intu-
itively, we try to find transitions that are similar to the sampled
ones and add them as special, potential transitions in the
abstraction. Next part describes how we can accommodate
these special transitions in the abstraction.

1) Semantic Abstraction: To formalize the semantic ab-
straction, we propose extending the state-labelled TS to a
“multi-modal” transition system, our extension of modal tran-
sition systems [12]:

Definition 5 (Multi-Modal Transition System). A tuple
(S, s0,∆, L,M,M) is called a multi-modal transition system
(MM-TS), where (S, s0,∆, L) is a state-labelled transition
system (Def. 3), M is a finite ordered set of modes, and
M : ∆→M is a modal marking.

A semantic abstraction of an RRG graph is an MM-TS,
where a discrete state s ∈ S represents a set of points x ∈ X
with the same labeling. With a slight abuse of notation, we
use x ∈ s to say that L(x) = L(s) and s(x) to denote s ∈ S,
such that x ∈ s.

Intuitively, M assigns to each transition in the abstraction
a “degree” of confidence that a corresponding transitions is
present in the corresponding concrete points. We use two

Algorithm 1: SAG-RRG
Input: X , x0,Φ
Output: A collision free trajectory in X which satisfies Φ

1 Initialize semantic abstraction
2 V ← x0; E ← ∅
3 curr pos← x0; seen st← s(x0)
4 while ¬AcceptingPath() do
5 UpdateMap(curr pos, rs)
6 bias← Bias(seen st)
7 tsymb ← ∅; i← 0
8 while i < batch size do
9 [xs, xnear]← SampleAndExtend(Xfree, V)

10 if CollisionFree(xnear, xs) then
11 if (s(xnear), s(xs)) ∈ bias then
12 add xs to bias frontiers

13 else
14 continue to next iteration with prob p

15 E ← E ∪ (xnear, xs); V ← V ∪ xs

16 tsymb ← tsymb ∪ (s(xnear), s(xs))
17 seen st← seen st ∪ s(xs)
18 i← i + 1

19 for x ∈ Near(xs) do
20 if CollisionFree(x, xs) then
21 E ← E ∪ (x, xs); V ← V ∪ x
22 tsymb ← tsymb ∪ (s(x), s(xs))
23 if (s(x), s(xs)) ∈ bias then
24 add xs to bias frontiers

25 Learn(tsymb)
26 curr pos← Move()

27 return accepting path

modes2 in our MM-TS: must and may. The former is used
for transitions that are known to exist based on samples taken
from the environment while the graph is constructed; the latter
is an extrapolation to which transitions might exist based on
the must transitions. When a new edge (x, xnew) is added to
the SAG-RRG graph G, a transition (s(x), s(xnew)) is added
to the MM-TS as a must transition, and similar transitions (see
Def. 7) are added as may transitions. Let us now formalize
when we deem two transitions of a MM-TS similar.

Definition 6 (Domain of Change). The domain of change for
a transition (s, s′) ∈ ∆ is DoC (s, s′) = L(s)⊕ L(s′).

The domain of change is essentially the set of all atomic
propositions which changed their valuation during the cor-
responding transition in the MM-TS. For example, given a
transition (s, s′) where L(s) = {a, b} and L(s′) = {b, c}, its
DoC (s, s′) is {a, c}.
Definition 7 (Similar Transitions). Two transitions
(s, s′), (s̄, s̄′) ∈ ∆ are similar if and only if
DoC (s, s′) = DoC (s̄, s̄′), and ∀a ∈ DoC (s, s′),
a ∈ L(s) ⇐⇒ a ∈ L(s̄) and a ∈ L(s′) ⇐⇒ a ∈ L(s̄′).

2Although we choose to use two modes in this paper for the sake of
simplicity of the exposition, the approach presented throughout the paper
is generic enough to use any number of modes. Besides must and may, one
could also use may not and must not, for instance.

 ���

Algorithm 2: Learn
1 Function Learn(tsymb):
2 AddToProduct(tsymb, must)
3 tsim ← FindSimilar(tsymb)
4 AddToProduct(tsim, may)

Intuitively, similar transitions behave the same on their
domain of changes. For example, a transition (s, s′), where
L(s) = {a, b} and L(s′) = {b, c}, is similar to (s̄, s̄′) where
L(s̄) = {a, d} and L(s̄′) = {d, c}. The idea is that after
experiencing the transition (s, s′) which leaves b untouched,
we may hypothesize b is irrelevant and that the same behaviour
is present also in the situation when b does not hold and when
some other irrelevant proposition, e.g. d, holds. However, b still
may be a precondition for the transition, hence we introduce
the new transition (s̄, s̄′) only with a low “confidence”.

The formal definition of similarity allows us to clearly
identify when transitions in the MM-TS, i.e. the semantic
abstraction of an RRG graph, should be marked as may.

2) Multi-modal product: The semantic abstraction captures
existing and possible dependencies and relationships between
labels in the environment regardless of the desired speci-
fication. We extend the definition of product (Def. 4) to
incorporate the knowledge of the specification and thus enable
biasing of SAG-RRG sampling to achieve faster specification
satisfaction. In short, a multi-modal product (MM-P) is a
product as in Def. 4 but with a MM-TS instead of a TS.

Definition 8 (Multi-modal Product). Given a MM-TS
(S, s0,∆, L,M,M) and a DFA A = (2Σ, Q, q0, δ, F), their
product (MM-P) is a tuple (S×Q, ŝ0, ∆̂, F̂ ,M,M̂), where the
first four components are defined as in Def. 4 and the remain-
ing two are the modes M and a model marking M̂ : ∆̂→ M̂,
such that M̂((s, q), (s′, q′)) =M(s, s′).

Similarly to the multi-modal transition system, the product
can be constructed iteratively, along with the construction of
the SAG-RRG graph.

3) Learn procedure: The procedure Learn is summarized
in Alg. 2. Given a set of transitions tsymb, this procedure
adds them to the MM-TS as must transitions, since we know
that these transitions are already there. After that, for each
t ∈ tsymb, it computes the transitions similar to t and add
them as may transitions in the MM-TS.

C. Bias

The bias procedure computes which transitions would more
quickly bring the system to an accepting state of the LDBA.
It returns a hierarchical list of transitions according to how
far they are from an accepting state in MM-P; the closer a
transition is to an accepting state, the better. These transitions
can then be used to bias the construction of the motion graph
for faster convergence.

The procedure, described in Alg. 3, starts by initializing
the variables bias and reached, which store transitions and

Algorithm 3: Bias
1 Function Bias(seen st):
2 bias[0]← transitions ending in accepting states acc st
3 reached[0]← acc st
4 reached[1]← PreImg(acc st)
5 all reached← reached[0] ∪ reached[1]
6 i← 1
7 while PreImg(reached[i])* all reached do
8 useful pre← PreImg(reached[i])∩ seen st
9 useful post← PostImg(useful pre)∩ reached[i]

10 bias[i]← (useful pre, useful post)
11 reached[i + 1]← PreImg(reached[i])
12 all reached← all reached ∪ reached[i + 1]
13 i← i + 1

14 return bias

Algorithm 4: Move
1 Function Move:
2 p1 ← FindBestMapFrontier()
3 p2 ← FindBestBiasFrontier()
4 return Best(p1, p2)

states, respectively. The first element of bias is the set of
all transitions ending in accepting states of the MM-P (line
2). As for reached, it keeps track of all backwards-reachable
states from the accepting states; hence its first element is
the set of accepting states (line 3), and the second element
is the pre-image of the accepting states (line 4). Then, until
all the backward-reachable sets have been considered, bias
is constructed iteratively based of the set of sampled states
seen st (lines 7-13). In the end, ith element of bias will be
the set of states that can reach an accepting state after exactly
i steps in the MM-P.

Learn and Bias functions work in unison and help each other
improve. The more may transitions are learned, the better is
the bias received. The better the bias, the more new transitions
are learned and the faster it converges.

D. Move procedure

The idea behind the Move procedure, described in Alg. 4, is
to decide where to move next: should we go towards a place
that will provide more information about the map, or should
we move according to the advice that has been given by Bias?
In order to compare both options, we employ the concept of
information gain (IG). Given a map frontier, its information
gain is defined as IGmap = size × f(d), where size is the
size of the frontier and f(d) is a strictly decreasing function
(for d > 0) of the distance from the robot to the center of the
frontier.

In a similar fashion, we define the information gain of a bias
frontier. Note that bias frontiers were introduced in Alg. 1
(lines 12 and 24) as a means to keep track of the vertices
in V that correspond to advices given by Alg. 3. Since bias
is a list of transitions, we can associate a rank r with each
transition from bias equal to index + 1, where index is the

 ���

index of the sampled transition. We define IG of these frontiers
as IGbias = g(r, d), where g is some function such that both
g(r, ·) and g(·, d) are strictly decreasing, where d is again the
distance from the robot to the frontier.

The intuition behind the IG of the map frontiers is to have a
larger value the larger the frontier is, but penalise it according
to its distance to the robot, so as to motivate exploration of
smaller frontiers that are nearby. Similarly, with the IG of the
bias frontiers, we want to motivate movement towards low-
rank frontiers, since these are closer to satisfying the formula.

E. Analysis

Theorem 1. The algorithm is sound, i.e. any trajectory
returned by SAG-RRG satisfies the given scLTL formula Φ.

Proof: (Sketch) The proposed algorithm iteratively con-
structs a product MM-P (Def. 4) between a semantic ab-
straction of the RRG graph and the automaton A, which
accepts exactly the language of the specification Φ. Paths in
the product that visit accepting states project directly onto
accepting runs of the automaton and runs of MM-TS, which in
turn project directly onto paths in the RRG graph G and further
onto trajectories of the robot in the workspace. Altogether,
these trajectories necessarily satisfy Φ.

Theorem 2. SAG-RRG is asymptotically complete.

Proof: (Sketch) Follows directly from the convergence
and completeness properties of the original RRG [10] and the
fact that the biasing we introduced allows to eventually sample
the whole space. Regardless of the scenario, including the one
with no regularity in the environment that can be learned and
exploited for guiding the search, the worse-case scenario will
see the proposed approach perform an exhaustive search of
the environment.

V. IMPLEMENTATION AND EXPERIMENTS

The proposed approach was implemented in Java and run
on a consumer grade hardware (2.60GHz Intel i7-9750H CPU,
32 GB RAM). Binary Decision Diagrams (BDDs), which are
very efficient for manipulating sets of Boolean variables, are
used for storing and manipulating the product automaton, the
labels of each node in the RRG, and the bias. We encode
the RRG as an undirected graph whose nodes also store the
labels that hold true at that state. JavaBDD and JGraphT
are the libraries used for encoding the BDDs and the graph,
respectively. We use the Java Spatial Index RTree library for
spatial indexing and faster querying of nearest neighbours.
We also use owl library for converting an LTL formula
to an equivalent automaton and parse that automaton file
using jhoafparser. The implementation currently takes
three files as input describing environment, labelling and the
property. There is also a command line interface with which
you can configure the settings like using the bias or changing
some parameters.

An example of the office-like environment used for the case
study is presented in Fig. 2. In order to draw statistically-
meaningful results, 100 different instantiations of the environ-

b

b

b

b

b

b

t

t

t

t

t

t

Figure 2. Example of an office-like environment used in the case study. Black
solid lines represent walls. There are six rooms, each labeled with one atomic
proposition ri, for i ∈ [1, 6], and a hallway labeled h. Each room contains
a table (red) and a bin (green), labeled t and b, respectively. The labels of
tables and bins hold true within the corresponding dashed and shaded areas
surrounding it. The initial position of the robot is marked with a black dot on
the left side of the hallway.

ment were randomly generated, in which the footprint (i.e.
walls and doors) of the office space remains unchanged, but
desks and wastebins are randomly positioned within the rooms
(without blocking the door).

The scLTL specification is inspired by a realistic scenario,
common in every office environment: reach a wastebin in the
office rooms. We translate such a specification to the following
scLTL formula:

ϕ = F(r1 ∧ b) ∧ F(r2 ∧ b) ∧ . . . F(r6 ∧ b) (1)

Note that such a specification does not impose any ordering
of events.

For information gain, we use the following functions in our
simulations

IGmap(m, p) =
sizem
dm,p

(2)

IGbias(xs, p) =
a

rbxs
dxs,p

(3)

where sizem is the size of frontier m, dm,p and dxs,p are
the length of the shortest path between p and m and xs,
respectively, a, b > 0 are user-defined parameters, and rxs

is the rank of xs. Adjusting a, b is intuitive: i) suppose m
and xs are equidistant from p; ii) fix rxs

to 1 and choose a to
reflect how a bias frontier compares to a map frontier; iii) now
suppose xs,1, xs,2 equidistant from p, such that rxs,1

= 1
and rxs,2 = 2; iv) choose b as to reflect how the importance
of bias frontier decays with its rank (e.g. linearly, quadratic).
For our case study, we chose a = 100 and b = 2.

The results are presented in Table I for 100 randomly-
generated environments. The solution presented in this paper
can be seen as an approach that performs exploration of
the environment and planning to satisfy the scLTL mission
concurrently, without or with bias in building the RRG tree
(‘Simultaneous’ and ‘Simult. biased’ columns in Table I).
We compare this integrated solution to the trivial sequential

 ���

Table I
MEAN AND STANDARD DEVIATION OF THE TOTAL TRAJECTORY LENGTH TO SATISFY THE SCLTL MISSION (1), ALONG WITH TOTAL RUNTIME AND RRG

SIZE. THE RESULTS WERE DRAWN FROM SIMULATING EACH APPROACH 3 TIMES IN EACH OF THE 100 RANDOMLY-GENERATED ENVIRONMENTS.

See-through Desks Opaque Desks

Explore, then plan Simultaneous Simult. biased Explore, then plan Simultaneous Simult. biased

Total length 77.3 (7.5) 56.6 (8.0) 29.4 (5.0) 79.1 (7.1) 62.9 (16.5) 32.3 (11.8)
Exploration length 57.1 (3.2) 37.5 (7.1) 28.0 (4.9) 57.8 (4.9) 44.4 (16.6) 31.3 (12.1)
Remaining plan l. 20.2 (7.0) 19.1 (3.6) 1.3 (1.8) 21.3 (5.1) 18.5 (3.4) 1.1 (1.8)
Total Time 7.8 (2.0) 6.4 (2.3) 7.3 (1.9) 9.6 (2.5) 8.3 (3.2) 9.1 (2.4)
RRG size 1931.2 (460.9) 1938.6 (559.5) 1793.6 (312.1) 2313.8 (550.9) 1868.7 (498.2) 1901.4 (301.2)

(a) (b) (c)

(d) (e) (f)

Figure 3. Snapshots of the robot navigating the office environment in the attempt to satisfy the scLTL mission (1) with two different approaches. The yellow
semi-circle in (a) corresponds to the robot’s sensing radius. The top-row figures (a-c) display the trajectory (green) when using the approach proposed by us
(SAG-RRG), where exploration and planning are done together; the bottom-row figures (d-f) show the case where the robot first explores the environment,
and only then it plans a path that satisfies the mission. The RRG graph at the time of the snapshot is shown in blue, and the path that leads to satisfaction
of the mission is in red (c,f).

approach (‘Explore, then plan’ column in Table I), which
consists of first exploring the whole environment, and then
planning a trajectory that satisfies the mission. Lastly, in a
more technical variant regarding the sensing capabilities of
the robot, we analyse two cases, one where the robot can “see
through” the desks (e.g., a flying robot), and another where
they are considered to be Opaque. A few snapshots of the
robot trajectory are shown in Fig. 3. Each approach is run
three times in each of the 100 environments, totalling 1800
runs of the experiment.

The rows in Table I display the length (‘Total length’) of
the trajectory traversed by the robot, from its initial state
(common to all cases) until mission satisfaction, as well as
the total computation time (‘Total time’) and number of nodes
in the RRG graph (‘RRG size’). Additionally, we also display
the ‘Exploration length’ which, for the sequential approach,
represents the length of the trajectory traversed only during
the exploration phase, while for our approach it represents the
length traversed until the system realises that a trajectory that
satisfies the mission already exists. ‘Remaining plan l.’ is the

length of the remaining trajectory that needs to be followed in
order to satisfy the desired specification at the moment when
exploration phase ends in the ‘Explore, then plan’ case, or the
moment when the trajectory is found in the ‘Simultaneous’
and Simult. biased’ cases. In Table I we see that having “see-
through” desks makes the performance (both total length and
time) slightly better in all the cases, which is to be expected as
there are not as many occlusions in the map as with “opaque”
desks. We also see that exploration and planning together
performs better in general and including the bias makes it
more than 2.5 times better than the naive approach in terms
of the path length.

In the ‘Explore, then plan’ case, the robot’s visits to
wastebins during the exploration do not count towards the
mission satisfaction, in contrast to the ‘simultaneous unbiased’
case. This is one of the reasons the latter performs better, as
expected. The ‘simultaneous biased’ version performs a lot
better because it was able to visit a lot of wastebins (with the
help of biasing) already during the exploration.

 ���

VI. CONCLUSIONS AND FUTURE WORK

We presented an online sampling-based algorithm capable
of finding a trajectory in an a priori unknown environment that
satisfies an scLTL specification. We enrich the RRG algorithm
with functions that attempt to learn possible relations between
labels of the environment and use such relations for biasing
the search for a satisfying trajectory. The resulting paths
are significantly shorter than in straightforward sequential
exploration followed by planning in a known space.

A few topics to be considered for future work include
extending the approach to consider probabilistic relationships
in the semantic abstraction of the system, as well as the
extension to multi-agent systems.

ACKNOWLEDGMENT

This work has been supported in part by the German
Research Foundation (DFG) project 427755713 (KR 4890/3-
1) Group-By Objectives in Probabilistic Verification (GOPro),
the research training group GRK 2428 Continuous Verifica-
tion of Cyber-Physical Systems (ConVeY), the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by Knut and Alice Wallenberg Foundation and the Swedish
Research Council (VR). Fernando Barbosa and Jana Tumova
are affiliated with the Division of Robotics, Perception and
Learning and also Digital Futures.

REFERENCES

[1] AI Medina Ayala, Sean B Andersson, and Calin Belta.
Temporal logic motion planning in unknown environ-
ments. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5279–5284. IEEE,
2013.

[2] Alper Aydemir, Andrzej Pronobis, Moritz Göbelbecker,
and Patric Jensfelt. Active visual object search in
unknown environments using uncertain semantics. IEEE
Transactions on Robotics, 29(4):986–1002, 2013.

[3] Christel Baier and Joost-Pieter Katoen. Principles of
Model Checking, volume 26202649. 01 2008. ISBN
978-0-262-02649-9.

[4] Amit Bhatia, Lydia E Kavraki, and Moshe Y Vardi.
Sampling-based motion planning with temporal goals.
In 2010 IEEE International Conference on Robotics and
Automation, pages 2689–2696. IEEE, 2010.

[5] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen
Oleynikova, and Roland Siegwart. Receding horizon
”next-best-view” planner for 3D exploration. In 2016
IEEE international conference on robotics and automa-
tion (ICRA), pages 1462–1468. IEEE, 2016.

[6] Yiannis Kantaros and Michael M Zavlanos. Sampling-
based optimal control synthesis for multirobot systems
under global temporal tasks. IEEE Transactions on
Automatic Control, 64(5):1916–1931, 2018.

[7] Yiannis Kantaros and Michael M Zavlanos. STyLuS*:
A Temporal Logic Optimal Control Synthesis Algorithm
for Large-Scale Multi-Robot Systems. The International
Journal of Robotics Research, 39(7):812–836, 2020.

[8] Yiannis Kantaros, Matthew Malencia, Vijay Kumar, and
George J Pappas. Reactive Temporal Logic Planning
for Multiple Robots in Unknown Environments. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 11479–11485. IEEE, 2020.

[9] Sertac Karaman and Emilio Frazzoli. Sampling-based
motion planning with deterministic µ-calculus specifica-
tions. In Proceedings of the 48h IEEE Conference on
Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, pages 2222–2229. IEEE,
2009.

[10] Sertac Karaman and Emilio Frazzoli. Sampling-based al-
gorithms for optimal motion planning. The International
Journal of Robotics Research, 30(7):846–894, 2011.

[11] Orna Kupferman and Moshe Y. Vardi. Model Checking
of Safety Properties. In CAV, volume 1633 of Lecture
Notes in Computer Science, pages 172–183. Springer,
1999.

[12] Kim Guldstrand Larsen and Bent Thomsen. A Modal
Process Logic. In LICS, pages 203–210. IEEE Computer
Society, 1988.

[13] Xusheng Luo, Yiannis Kantaros, and Michael M Za-
vlanos. An Abstraction-Free Method for Multi-Robot
Temporal Logic Optimal Control Synthesis. arXiv
preprint arXiv:1909.00526, 2019.

[14] Amir Pnueli. The Temporal Logic of Programs. In Pro-
ceedings of the 18th Annual Symposium on Foundations
of Computer Science, SFCS ’77, page 4657, USA, 1977.
IEEE Computer Society.

[15] Magnus Selin, Mattias Tiger, Daniel Duberg, Fredrik
Heintz, and Patric Jensfelt. Efficient autonomous explo-
ration planning of large-scale 3-D environments. IEEE
Robotics and Automation Letters, 4(2):1699–1706, 2019.

[16] Pouria Tajvar, Fernando S Barbosa, and Jana Tumova.
Safe Motion Planning for an Uncertain Non-Holonomic
System with Temporal Logic Specification. In 2020 IEEE
16th International Conference on Automation Science
and Engineering (CASE), pages 349–354. IEEE, 2020.

[17] Cristian Ioan Vasile and Calin Belta. Sampling-based
temporal logic path planning. In 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pages 4817–4822. IEEE, 2013.

[18] Brian Yamauchi. A frontier-based approach for au-
tonomous exploration. In Proceedings 1997 IEEE In-
ternational Symposium on Computational Intelligence in
Robotics and Automation CIRA’97.’Towards New Com-
putational Principles for Robotics and Automation’,
pages 146–151. IEEE, 1997.

 ���

Part II

Non-first Author Publications

80

C Planning via Model Checking With
Decision-tree Controllers

This chapter has been published as a peer-reviewed conference paper.

© Jonis Kiesbye, Kush Grover, Pranav Ashok and Jan Křetı́nský.

Jonis Kiesbye, Kush Grover, Pranav Ashok, and Jan Křetı́nský. “Planning
via model checking with decision-tree controllers”. In: 2022 International
Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA, USA, May
23-27, 2022. IEEE, May 2022, pp. 4347–4354. DOI: 10.1109/ICRA46639.

2022.9811980

Summary. In the domain of robotics, task planning is the problem of finding a plan for
a robot satisfying some given specification. In this paper, we converted it to a reach-
ability problem for MDPs. The task at hand was for a Franka Emika robotic arm to
efficiently retrieve objects from a container and place them onto a conveyor belt. Dur-
ing runtime, this bin-picking task can be susceptible to various faults such as environ-
mental changes, inaccurate perception, or imprecise robot control. These faults require
some kind of recovery action to be taken by the robot. We used the PRISM model
checker to derive a controller that acts as a universal plan in contrast to other planners
which gives a sequence of actions to execute. This universal controller usually is quite
large making it an undesirable choice. We solved the problem by employing dtCon-
trol to transform it into a decision tree. The decision tree controller was significantly
compact, more explainable, and orders of magnitude faster compared to the replan-
ning approach. In addition to enhancing the controller, we generated another decision
tree that pinpointed states with less likelihood of reaching the target state. This in-
sight allowed for the incorporation of additional recovery actions, thereby enhancing
the model’s effectiveness.

Contributions of thesis author. The author played a significant role in the develop-
ment of the theoretical ideas presented in the paper and made valuable contributions
to the manuscript. In addition, he actively participated in discussions and provided
feedback during the revision process.

License. ©2022 IEEE. Reprinted, with permission, from Jonis Kiesbye, Kush Grover,
Pranav Ashok and Jan Křetı́nský. “Planning via model checking with decision-tree

81

https://doi.org/10.1109/ICRA46639.2022.9811980
https://doi.org/10.1109/ICRA46639.2022.9811980

C Planning via Model Checking With Decision-tree Controllers

controllers”. IEEE, Conference Proceedings: 2022 International Conference on Robotics
and Automation (ICRA), May/2022.

82

Planning via model checking with decision-tree controllers

Jonis Kiesbye Kush Grover Pranav Ashok Jan Křetínský

Abstract— Planning problems can be solved not only by
planners, but also by model checkers. While the former yield
a plan that requires replanning as soon as any fault occurs,
the latter provide a “universal” plan (a.k.a. strategy, policy, or
controller) able to make decisions under all circumstances. One
of the prohibitive aspects of the latter approach is stemming
from this very advantage: since it is defined for all possible
states of the system, it is typically so large that it does not fit into
small memories of embedded devices. As another consequence
of the size, its execution may be slow. In this paper, we provide
a solution to this issue by linking the model checkers with
decision-tree learners, resulting in decision-tree representations
of the synthesized strategies. Not only are they dramatically
smaller, but also more explainable and orders-of-magnitude
faster to execute than plans with replanning. In addition, we
describe a method for model validation and debugging via the
model checker and the decision-tree learner in the loop. We
illustrate the approach on our case study of a robotic arm for
picking items in a real industrial setting.

I. INTRODUCTION

The branch of planning called task planning [1] has been
very extensively studied for decades. On the one hand, there
is a tradition of planners, starting with STRIPS [2], and
modeling languages such as Planning Domain Definition
Language (PDDL) [3]. Planners produce a sequence of
actions to be executed, the plan. However, in real-world
scenarios, the environment may change during execution,
perception may be inaccurate, and robot control may be
imprecise. Consequently, whenever a discrepancy occurs, the
plan cannot be used and replanning takes place, producing a
new plan during runtime. On the other hand, the development
in computer-aided verification has brought an alternative
solution to planning via model checking [4]. This alternative
became available also to continuous [5], temporal [6], or
probabilistic [7] settings. There, the problems are typically
modeled in some guarded command language, e.g. the
PRISM language [8] in the probabilistic case. In contrast
to planners, model checkers can in some settings produce
a strategy (or controller or policy), a “universal” plan com-
puted for all possible states of the system. Consequently, it
can be followed and executed without any recomputation
as everything is already precomputed. Although it avoids
the replanning issue, it may still appear wasteful both in
terms of size (storing all decisions for all possible states)
and execution time (querying large lookup tables). This
paper eliminates these drawbacks, provides a more efficient
solution than planners and, in addition, utilizes the approach

Jonis Kiesbye, Kush Grover and Jan Křetínský are with the Technical
University of Munich, Germany.

Pranav Ashok was with the Technical University of Munich, Germany.
He is now with the Fraunhofer IKS, Germany.

further, yielding a procedure to validate and improve the
model.

We demonstrate our approach in a case study of a bin-
picking robot with failure recovery in a real industrial setting.
First, we model the problem in the PRISM language. This
allows us to use the probabilistic model checker PRISM [8]
to obtain the strategy. Second, we transform the strategy into
a decision tree [9]. To this end, we use dtControl [10], a tool
applied in formal verification for explaining controllers and
counterexamples.

The produced strategy has several advantages over plans.
Firstly, the decision-tree representation of the strategy is
small. Secondly, due to its direct correspondence to if-else C-
code, it is orders of magnitude faster to execute than plans
with occasional replanning. Thirdly, the small size of the
new representation also improves the explainability of the
behavior [11], [12], [10].

On top of the advantages of our strategy representation,
the model-checking approach offers additional, less expected
benefits. Note that applying the model checker yields an
answer to the planning problem for all states. For instance, in
our probabilistic setting, besides the optimal actions to take,
it yields the probability to finish a pick-cycle successfully for
every state. A zero in any state then indicates the absence
of failure recovery in that state. Hence we query the model
checker to also return all states with zero probability, thereby
obtaining a list of situations where failure recovery is not
available yet. We show how to present this list also as an
explainable summary, again in the form of a decision tree.
Consequently, engaging the model checker in the loop helps
us to debug the model and identify the fault states where
recovery actions are missing.

Our contribution can thus be summarized as follows:
• novel benefits of the model checking approach to task

planning, obtained by employing decision trees, in
particular: easier modeling, low memory requirements,
faster execution;

• a way to debug and improve the model;
• their demonstration on an industrial case study.

II. RELATED WORK

Hierarchical planning is a well-studied problem in robotics
[13]. Here, high-level tasks are planned by one layer and
the low-level motion primitives are planned by another layer
[14].

For task planning problems in robotics, researchers have
used hierarchical task networks [15], PDDL planners [16],
[17], Answer Set Programming [18], Boolean satisfiability
[19], [20], [21], and SMT satisfiability [22].

2022 IEEE International Conference on Robotics and Automation (ICRA)
May 23-27, 2022. Philadelphia, PA, USA

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 4347

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
78

-1
-7

28
1-

96
81

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
46

63
9.

20
22

.9
81

19
80

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:21:27 UTC from IEEE Xplore. Restrictions apply.

In [23], [24], [25] temporal logics are used to perform task
planning that is feasible also according to the dynamics. See
[26] for a comprehensive survey of such approaches.

The use of model checkers in planning has also been
well studied. Traditionally, model-checking-based planners
operated in the non-deterministic domain [27], [28], [29],
[30], but richer modeling formalisms such as timed automata
[31] and probabilistic systems such as Markov Decision
Processes (MDP) have also been explored [7]. In the context
of robotics, model checkers have often been used to verify
the high-level plans for applications such as robot swarms
[32], [33], unmanned aerial vehicles [34] or autonomous
surface vehicles [35] among others [36], [37]. [38] surveys
work where formal methods have been used in the context
of robotics.

For fast execution, strategy representation can be based on
binary decision diagrams (BDD) [39] or algebraic decision
diagrams (ADD) [40] as they are much more succinct than
explicit state-action tables. However, they also come with
many disadvantages as discussed in [10], [11]. To tackle this
problem, the formal methods community has made use of
decision trees to represent controllers and counterexamples
arising out of model checking MDPs, stochastic games and
Linear Temporal Logic (LTL) synthesis [11], [41], [12], [42].
Decision trees have also been used to represent hybrid sys-
tem controllers explainably and succinctly [10], and learned
policies from reinforcement learning [43].

For MDPs, [44], [45] use out-of-the-box strategies given
by the model checkers, which can be huge lookup tables and,
therefore, very slow to execute. In our paper, we convert them
to decision trees, making them very compact and efficient
while avoiding problems associated with BDDs and ADDs.
We validate our approach on a real industrial case study.

Property-driven modeling in robotics has been explored in
[46]. It repeatedly alternates between modeling and model
checking in order to better validate the models. However, it
treats only stochastic processes (specifically, Markov chains)
and not controller synthesis.

Bin-picking is a common use case as it mirrors many
of today’s robotic challenges [47]. Progressing towards soft
objects of unknown geometry requires better grasp pose
estimation [48], incorporating haptic feedback [47], and
providing corrective actions to deal with unsuccessful grasps
[49].

III. PRELIMINARIES

a) Markov Decision Processes (MDP) [50]: are a
widely used model for systems with non-deterministic and
probabilistic behavior. Intuitively, the process is always in
one of finitely many states S, in which some of the actions
A are available. Choosing one determines a probability
distribution on the next state to which the process moves.

Definition 1. An MDP is a tuple M = (S,Act, Av,E, s0)
where, S is a finite set of states, Act is a finite set of actions,
Av : S → 2Act\ϕ maps each state to the set of actions
available there, E : S × Act → Dist(S) is a probabilistic

transition function that assigns each state action pair to a
distribution over the successor states, and s0 is the initial
state.

A strategy for an MDP is intuitively a way to resolve these
choices. Formally, it is a function σ : S → A which picks
an available action in every state.

An MDP combined with a strategy yields a Markov chain
(MC), a fully stochastic process. Each state of the MC can be
associated with a value equal to the probability of reaching
a given target state from here. An optimal strategy for MDP
M and a target set of states B is the one that maximizes the
probability of reaching B from each state. This maximum
probability of reaching the target set from a state s is also
called the optimal value of s.

b) Model checking [51]: is the process of verifying
whether a system satisfies a given specification. Various
model checkers exist for non-deterministic, timed, proba-
bilistic, and hybrid models (e.g., [8], [52], [53]). As a by-
product of the verification task, model checkers often give
additional useful outputs. If a specification is not satisfiable,
a counterexample may be produced. If the specification is
satisfiable, a strategy may be returned. For MDPs, the most
common publicly available tools are PRISM [8] and STORM
[54], which can compute the optimal strategy and values for
any given MDP.

c) Decision trees (DT) [9]: are a popular data struc-
ture commonly used in machine learning in the context of
classification and regression, known for its interpretability.
The tree is commonly visualized as a top-down binary tree
with each node containing a Boolean predicate over a set of
input variables and every tree edge corresponding to either
true or false. The leaf nodes of the binary tree contain the
decisions. Intuitively, given a set of input variable valuations,
a decision can be found by evaluating the predicate in each
node and following the respective edge down the tree.

A natural generalization of binary predicates are multi-
comparison predicates [55]. In this setting, the decision node
just contains one of the input variables which can take values
in a finite domain and has children corresponding to every
value in the finite domain.

IV. PROBLEM DESCRIPTION

We develop our approach on a concrete case study of
a robotic arm. While the approach is independent of the case
study, the concrete setting allows for an easier explanation
and demonstration of its advantages.

In the context of the Supervised Autonomous Interaction
in uNknown Territories (SAINT) project, a Franka Emika
robot arm, shown in Fig. 1, shall pick clothes from a box
and place them on a sorter tray in a warehouse. If all picks
have been completed, the robot shall request a new box,
detect it, receive orders for that box from the facility, and
start picking again. The robot can be instructed using high-
level actions, which make use of motion primitives provided
by a motion planner module [56], e.g., moving the robot,
grasping items, placing them on a tray, and measuring the

4348

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:21:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Franka Emika robot in the logistics facility

weight in the gripper. The high-level controller just knows
the values given in Table I and forwards them to the motion
planner, similar to [21]. A vision module provides services
for detecting the box and the items therein [57]. A facility
module forwards information to and from the warehouse
control system. The robot system uses the Robot Operating
System (ROS) for inter-process communication. Since the
aforementioned software modules are not relevant for the
task planner itself, we will not look at them in detail.

The challenge here is to implement a controller that can
use the high-level actions to satisfy certain requirements, e.g.,
ensure that a pick-cycle is completed irrespective of failures
in executing certain motion primitives. A human operator
can provide assistance via semi-autonomous actions where
the robot requests, e.g., marking the outline of the object if
the autonomous object detection should repeatedly fail. The
controller needs to solve faults autonomously whenever pos-
sible and find the next action without considerably increasing
the cycle time for a pick.

In the following, we will focus on how the task planning
is realized through the model checking paradigm. We will
improve the model of the system, show how to synthesize
a controller and evaluate it in the real warehouse. The
problem formulation and our solution can be generalized
in a straightforward way to task planning for finite-state
abstractions of systems with logical (e.g. linear temporal
logic) or reward-based specifications.

V. OUR APPROACH AND ITS ADVANTAGES

We present a paradigm for automatic controller synthesis
that systematically helps the engineer to (i) model the robot
as an MDP, (ii) analyze fault scenarios and coverage of
recovery actions using a model checker in the loop, and
(iii) automatically synthesize a controller in the form of a
decision tree that can then be executed on the robot.

A. Case Study

The state of the bin-picking robot and its environment
is described by a set of 14 finite variables (some of them
shown in Table I) with over a million reachable states,
disallowing for manual design and analysis. The actions have

TABLE I
SOME STATE VARIABLES AND THEIR VALUES FOR THE BIN-PICKING

PROCESS

variable type values and (index)
item object unknown(0), detected(1), grasped(2),

probably_grasped(3), lost(4), placed(5),
stuck_in_gripper(6)

box object unknown(0), in_arrival(1), arrived(2),
detected(3), info_received(4),
decommissioned(5), none_present(6)

obstacle object unknown(0), obstacle_present(1)
gripper device unknown(0), free(1), occupied(2)
robot device unknown(0), find_box_pose(1),

inspect_box_pose(2), post_grasp_pose(3),
pre_place_pose(4), place_pose(5),
check_empty_pose(6), home_pose(7),
find_obstacle_pose(8)

graspability property unknown(0), unlikely(1), very_unlikely(2),
unfeasible(3)

preconditions that ensure that the action can take place safely
and successfully. The goal of the robot is to place an item on
the moving sorter successfully. Based on its initial state, it
will first need to register a new box, detect the item, check its
bar code, and grasp the item. There are certain considerations
to be taken into account while modeling in order to let the
model checker handle as many fault scenarios as possible. In
the real world, faults can occur that take the system to states
that the modeler did not expect, and are hence not reachable
following the transitions in the model. Accounting for this,
we err on the side of caution and mark every physically
feasible state in the model as an initial state. Hence, the
strategy synthesized by the model checker can handle even
those states that are not reachable from the real initial state
of the robot, which makes the strategy fault-tolerant.

B. Planning with PDDL

Before we describe our model-checking approach, we
explain how this problem is usually solved. This is shown
in Fig. 2 in green: a PDDL domain is hand-crafted and
during runtime, the planner finds a plan from the current state
of the process. However, writing a PDDL domain is time-
consuming and failure-prone compared to writing a PRISM
model (see section V-C). Therefore, if one wants to use
PRISM language just for writing the model and use PDDL
planners for the real-time control of the process, there is the
option for exporting the model to PDDL. ePMC (formerly
known as IscasMC) [58] can convert PRISM models to JANI
format and the converter published in [7] transforms JANI to
Probabilistic PDDL. The blue pipeline in Fig. 2 shows this
modified approach.

Listing 1. Our PRISM model for the bin-picking problem
1 mdp

2 module task_planner.
.
.

22 [move_to_find_box_pose] obstacle =0 & gripper =1 & robot=7

& movability =0 -> (robot ’=1);.
.
.

96 endmodule.
.
.

102 init item >=0 & barcode >=0.
.
.

108 endinit

4349

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:21:27 UTC from IEEE Xplore. Restrictions apply.

model checker, dtControl

dtControl,
C-compiler

 current state

Bin-Picking
Process

 action

 current state

Decision
TreeStrategy model checker

ePMC, jani converter

PRISM Model,
Goal

Coverage
Analysis

 planner
PDDL Domain

 action

 current state

Plan

 planner
PDDL Domain

 action
Planmanually writes domain

Engineer

Decision Tree

Generated PDDL

Manual PDDL

updates model

Fig. 2. Architecture of the Modeling and Control Framework

Listing 2. PDDL action generated by converting the PRISM model to
PDDL format, equivalent to Line 22 of Listing 1

(: action move_to_find_box_pose

:parameters ()

:precondition (and

(value movability n0) (value robot n7)

(value obstacle n0) (value gripper n1))

:effect (and

(not (value robot n7)) (value robot n1))

)

C. Modeling and Model Checking with PRISM

We use PRISM for creating and analyzing an MDP
representing the robotic bin-picking process. The PRISM
language is based on guarded commands, similar to PDDL,
with preconditions and effects on the left and right of the
“→” symbol, respectively, for each action. An excerpt of the
model is shown in Listing 1. Line 22 of Listing 1 illustrates
how actions are written in the PRISM language.

While PDDL would also allow us to write an equivalent
description as shown for the action move_to_find_box_pose,
which moves the robotic arm to a pose from which the whole
box is visible, in Listing 2, PRISM’s more convenient syntax
and its simulation capabilities made it more suitable for our
application. Finally, Lines 102-108 describe the set of initial
states.

The goal of the robot is to arrive in a state where
item=placed and gripper=free, indicating a successful place.
PRISM will compute a strategy that maximizes the proba-
bility of reaching the goal. The goal here is a reachability
query but PRISM also has the capability to find strategies
for arbitrary LTL specifications [8]. The strategy is exported
as a lookup table that gives the appropriate action for every
reachable state.

D. Improving the Model

After modeling the nominal actions in PRISM, it is
obvious that they will not suffice to resolve the faulty
states contained in the set of initial states. In a trivial
approach towards fault tolerance, one could add an action
"technician_fixes_the_problem" with no precondition that
directly takes the model from any state to the goal state.
But since there are quite a few autonomous options for fault
recovery, we should exploit those first. In this section, we

item

graspability

gripper

unfeasible

1.00.0

occupied
{unknown,

free}

{unknown, grasped,
probably_grasped,
lost_in_workspace,
stuck_in_gripper,

placed}

1.0

detected

1.0

{unknown,
unlikely,

very_unlikely}

Fig. 3. Decision trees show the variable combinations that decide whether
the initial states are solvable or not.

design a procedure to find problematic states and refine the
model based on those. This procedure stems from a novel
combination of a model checker and a decision-tree learner.

We call states that have a path to a target state under
the current optimal strategy solvable, implying that there
are recovery actions available if it is a fault state. Adding
recovery actions does not guarantee that all fault scenarios
become solvable and without model checking, the designer
can never be sure whether all faults will be handled. We
use model checking to find the solvable and unsolvable
states and display them in a tree view as shown in Fig.
3. From the tree, the designer can easily find problematic
combinations of variables and implement recovery actions to
handle those. The purple loop in Fig. 2 shows our proposed
iterative workflow of the model checker analyzing the model
and the engineer updating it.

We illustrate the process with an example. Consider the
decision tree in Fig. 3, encoding the probabilities to reach
the target as returned by the model checker. This concrete
tree captures that almost all initial states are solvable,
indicated by 1.0; only the combination of item=detected,
graspability=unfeasible and either gripper=unknown or
gripper=free is unsolvable, indicated by 0.0. By conceiving
an action to recover from this situation, e.g. asking the human
operator to mark a grasp point, the model can achieve perfect
fault tolerance and the tree will simplify to 1.0.

The approach can also be used to increase the “recover-
ability” of certain fault situations. If the decision tree has

4350

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:21:27 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of recovery actions

C
ov

er
ag

e
in

%

Autonomous
Semi-
autonomous

Fig. 4. Percentage of solvable initial states as new recovery actions are
added through our Coverage analysis cycle. Actions 1–6 are autonomous,
meaning the robot can perform them on its own, and actions 7–10 are semi-
autonomous, requiring human intervention during execution.

nodes with non-zero numbers and the designer wants the
success probability of all states to be greater than some
threshold, they can look at the nodes below that threshold and
add some actions which increase the probability of success.
This also provides a way for the designer to prioritize states
where to add recovery actions next, e.g., states with the
lowest probabilities to succeed.

In most situations, the designer needs to add many re-
covery actions to increase the coverage of the model, i.e.
the percentage of initial states that have a path to the target
under the current strategy. Left of the red line in Fig. 4 shows
the coverage improving from 7.4 % to 40.8 % when adding 6
autonomous recovery actions to the model of our bin-picking
robot.

To bring the coverage to 100 %, we design semi-
autonomous actions that ask a human operator for crucial
data like the bar code of the item or the position of the box.
These semi-autonomous actions are implemented so that the
robot gathers the required camera pictures automatically and
stays in a safe configuration until the operator answers the
request. The operator can work from a remote location and
tend to multiple robots. The area to the right of the red line
in Fig. 4 shows the coverage when subsequently adding 4
semi-autonomous actions.

E. Representing the Controller as Decision Trees

Once we get the automatically synthesized policy from
PRISM (or alternatively, other model checkers such as
STORM), we use dtControl [10] to transform the strategy
into a decision tree as shown by the red path in Fig 2. An
excerpt of such a decision tree is given in Figure 5. It is
easier to interpret and more compact than the lookup table.

dtControl exports the policy as a JSON file, as C-code,
and as a DOT-file, which the user can visualize. The C-code
generated by dtControl can be compiled into a shared library
and called by the computer controlling the process. This way,
we obtain controllers with small size, fast execution, and
explainability at once.

With some changes to the source code, PRISM can be
made to export the BDD which can also be translated into

robot

obstacle

move_to_find_obstacle_pose

obstacle_present

find_box_pose

detect_box

home_pose

move_to_find_box_pose

unknown

{unknown,
inspect_box_pose,
post_grasp_pose,
pre_place_pose,

place_pose,
check_empty_pose,
find_obstacle_pose}

Fig. 5. An excerpt of the decision tree representing the PRISM strategy.

highly performant C-code. However, in BDDs, the state vari-
ables are bit-blasted, i.e. split into multiple binary variables.
This makes it extremely difficult for the layperson to decipher
the behavior. The DT representation on the other hand, as
can be seen in Fig. 5, is very easy to interpret.

VI. EXPERIMENTAL RESULTS

A. Coverage Analysis

Both the model checker PRISM and dtControl were run on
an Intel Xeon E5-2630 CPU with 192 GB of RAM, utilizing
a single core. With the bin-picking model having 1,357,376
reachable states, deriving the share of solvable initial states
took 8.7 seconds at maximum. Converting PRISM’s results
into a decision tree using dtControl for further analysis took
8 minutes and 50 seconds. The maximum memory utilization
was 1.5 GB. Performing the coverage analysis with a smaller
and a larger model revealed that the time for the analysis
scales proportionally with the number of states as can be
seen in Table II.

B. Controller Synthesis

As shown in Fig. 2, one can control the process/system
by running a planner on a manually written PDDL domain,
or one generated from the PRISM model, or by synthesizing
a decision tree from the PRISM generated strategy.

When following the decision-tree approach for the bin-
picking model with 1,357,376 reachable states, PRISM took
6 seconds for model checking and exporting the strategy as
shown in Table II. Deriving the decision tree with dtControl
using the attribute-value grouping parameter (--use-preset
avg) took 2 minutes and 35 seconds and yielded a tree with
213 inner nodes. dtControl outputs the tree as C-code as well.
Compiling the C-code into a shared library that we can call
from a ROS node takes 0.098 seconds. The library is only
24.4 kB in size and takes little resources to run.

Generating an equivalent PDDL domain with our PRISM
model as input takes 10.0 seconds. The PDDL domain is used
by the planner Metric-FF during the operation of the robot.

C. Real-World Evaluation

A robot-control PC, equipped with a six-core Intel i7-
8700K CPU and 32 GB RAM runs the motion planner,
the vision module, and the library executing the decision
tree. Every action is implemented as a Python function in
a SMACH state description [59] that verifies the guard and

4351

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:21:27 UTC from IEEE Xplore. Restrictions apply.

TABLE II
COMPUTATION TIMES FOR PERFORMING A COVERAGE ANALYSIS AND FOR GENERATING A CONTROLLER DEPENDING ON THE SIZE OF THE MODEL

no. of reachable states coverage analysis controller synthesis PDDL conversionmodel checking decision tree model checking decision tree compilation
30,726 1.1 s 16.3 s 1.1 s 7.3 s 0.094 s 8.3 s

1,357,376 8.7 s 530.5 s 6.1 s 155.0 s 0.098 s 10.0 s
13,421,120 129.3 s 7356.2 s 34.8 s 2669.4 s 0.182 s 10.3 s

PDDL Manual PDDL Generated Decision Tree

10-6

10-4

10-2

100

av
er

ag
e e

xe
cu

tio
n

tim
e [

s]

Fig. 6. Average time taken (with 3σ confidence intervals) for computing
the next action to perform by different approaches shown in Fig. 2. Note
the logarithmic scale.

calls the motion planner and vision module. A state observer
updates the state variables.

With the robot taking about 30 seconds per cycle, it is
desirable to keep the time spent for planning the action to
be executed next down to about 1 % of the cycle time, i.e.
0.3 seconds. Fig. 6 shows the mean time that the decision tree
and the PDDL planner took for returning the next action or
a new plan. Executing the Metric-FF planner with a hand-
written domain file from [60] took 2.9 seconds on average,
thus significantly increasing the cycle time of the robot.
Using the generated PDDL domain with the same planner
yields a considerable improvement with an average execution
time of 0.094 seconds, thereby not significantly impeding the
cycle time anymore.

In contrast, finding the next action takes only about
11 microseconds on average when using the decision tree.
Assuming that the plans are 9 actions in length on average,
the performance improvement of the decision tree compared
to PDDL is in the range of three orders of magnitude.

To evaluate the robustness of the controller in real-world
conditions, a series of trial runs were executed over two days
in the warehouse. We observed the pick and place maneuvers
of 134 items leading to 58 faults (e.g. the camera could not
find the item in the box, the robot grasped two items instead
of one, etc.). The controller found an autonomous solution
for almost all faults, usually consisting of an appropriate
recovery action and a reattempt of the failed action. After
failing five times on one item, the controller switches from
the autonomous to the semi-autonomous strategy and will
then ask a human operator for additional input.

Fig. 7 shows how many items were picked and how many
reattempts they needed. One can see that the cycle time is
less than 30 seconds for items that are successfully placed
on the first try and the average time rises with the recovery
actions and reattempts executed in the reattempts.

0 1 2 3+
number of reattempts

0

25

50

75

100

nu
m

be
r o

f i
tem

s p
ick

ed number of items
average pick time

0

20

40

60

80

av
er

ag
e p

ick
 ti

m
e p

er
 it

em
 [s

]

Fig. 7. Distribution of 134 picks over the number of reattempts needed,
along with the average pick times.

VII. CONCLUSION AND FUTURE WORK

We have improved task planning via model checking by
employing decision trees as a compact and interpretable
representation for the outputs of model checkers. As a
consequence, strategies become easier to obtain and to run
than plans, decreasing the execution time and therefore
computational resources required by orders of magnitude,
making decision trees a very viable option for controlling
extremely resource-constrained systems. We validated our
approach with an industrial case study.

Since the tool dtControl is applicable also to strategies for
hybrid systems [10], one can lift this approach to robotic
problems that require modeling over continuous domains.
Additionally, since model checkers, including PRISM, often
support rich specifications such as temporal logic formulae
or multi-dimensional rewards and costs, our workflow would
work the same even for such extensions. Further case studies
could thus confirm the practical advantages also in this wider
range of settings.

ACKNOWLEDGEMENT

The authors would like to thank the other project partners
in the SAINT project, namely the Chair of Applied Mechan-
ics at TUM, Franka Emika GmbH, and FIEGE Logistics
for their contributions to the project’s success. The SAINT
project was funded by the Bayerische Forschungsstiftung
(AZ-1318-17). The work was partially supported also by
DFG projects 383882557 Statistical Unbounded Verification
(SUV), 427755713 Group-By Objectives in Probabilistic
Verification (GOPro) and research training group GRK 2428
Continuous Verification of CYber-Physical Systems (Con-
VeY), and by the Bavarian Ministry for Economic Affairs,
Regional Development and Energy as part of a project
to support the thematic development of the Institute for
Cognitive Systems.

4352

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:21:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning - theory
and practice. Elsevier, 2004.

[2] R. Fikes and N. J. Nilsson, “STRIPS: A new approach to the
application of theorem proving to problem solving,” Artif. Intell.,
vol. 2, no. 3/4, pp. 189–208, 1971.

[3] D. V. McDermott, “The 1998 AI planning systems competition,” AI
Mag., vol. 21, no. 2, pp. 35–55, 2000.

[4] A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso, “Planning
via model checking: A decision procedure for AR,” in ECP, ser.
Lecture Notes in Computer Science, vol. 1348. Springer, 1997, pp.
130–142.

[5] S. Bogomolov, D. Magazzeni, A. Podelski, and M. Wehrle, “Planning
as model checking in hybrid domains,” in AAAI. AAAI Press, 2014,
pp. 2228–2234.

[6] A. Heinz, M. Wehrle, S. Bogomolov, D. Magazzeni, M. Greitschus,
and A. Podelski, “Temporal planning as refinement-based model
checking,” in ICAPS. AAAI Press, 2019, pp. 195–199.

[7] M. Klauck, M. Steinmetz, J. Hoffmann, and H. Hermanns, “Bridging
the gap between probabilistic model checking and probabilistic plan-
ning: Survey, compilations, and empirical comparison,” J. Artif. Intell.
Res., vol. 68, pp. 247–310, 2020.

[8] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifi-
cation of probabilistic real-time systems,” in CAV, ser. Lecture Notes
in Computer Science, vol. 6806. Springer, 2011, pp. 585–591.

[9] T. M. Mitchell, Machine learning, International Edition, ser. McGraw-
Hill Series in Computer Science. McGraw-Hill, 1997.

[10] P. Ashok, M. Jackermeier, P. Jagtap, J. Kretínský, M. Weininger, and
M. Zamani, “dtcontrol: decision tree learning algorithms for controller
representation,” in HSCC. ACM, 2020, pp. 17:1–17:7.

[11] T. Brázdil, K. Chatterjee, M. Chmelik, A. Fellner, and J. Kretínský,
“Counterexample explanation by learning small strategies in markov
decision processes,” in CAV (1), ser. Lecture Notes in Computer
Science, vol. 9206. Springer, 2015, pp. 158–177.

[12] P. Ashok, J. Kretínský, K. G. Larsen, A. L. Coënt, J. H. Taankvist,
and M. Weininger, “SOS: safe, optimal and small strategies for hybrid
markov decision processes,” in QEST, ser. Lecture Notes in Computer
Science, vol. 11785. Springer, 2019, pp. 147–164.

[13] E. Frazzoli, M. A. Dahleh, and E. Feron, A Hybrid Control Archi-
tecture for Aggressive Maneuvering of Autonomous Aerial Vehicles.
Boston, MA: Springer US, 2000, pp. 325–343.

[14] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Transactions
on Robotics, vol. 21, no. 6, pp. 1077–1091, 2005.

[15] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in 2011 IEEE International Conference on
Robotics and Automation, 2011, pp. 1470–1477.

[16] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), 2014, pp. 639–646.

[17] Y.-q. Jiang, S.-q. Zhang, P. Khandelwal, and P. Stone, “Task planning
in robotics: an empirical comparison of pddl- and asp-based systems,”
Frontiers of Information Technology Electronic Engineering, vol. 20,
pp. 363–373, 03 2019.

[18] E. Erdem, V. Patoglu, and P. Schüller, “A systematic analysis of
levels of integration between high-level task planning and low-level
feasibility checks,” AI Communications, vol. 29, no. 2, pp. 319–349,
2016.

[19] H. Kautz and B. Selman, “Planning as satisfiability.” 01 1992, pp.
359–363.

[20] J. Rintanen, “Engineering efficient planners with sat,” Frontiers in
Artificial Intelligence and Applications, vol. 242, pp. 684–689, 01
2012.

[21] G. Havur, K. Haspalamutgil, C. Palaz, E. Erdem, and V. Patoglu, “A
case study on the tower of hanoi challenge: Representation, reasoning
and execution,” in 2013 IEEE International Conference on Robotics
and Automation, 2013, pp. 4552–4559.

[22] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki,
“Smt-based synthesis of integrated task and motion plans from plan
outlines,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 655–662.

[23] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in ICRA. IEEE, 2005, pp. 2020–
2025.

[24] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. J. Pappas, “Symbolic planning and control of robot motion [grand
challenges of robotics],” IEEE Robotics Autom. Mag., vol. 14, no. 1,
pp. 61–70, 2007.

[25] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Trans. Robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[26] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: Progress and challenges,” AI Commun., vol. 29, no. 1,
pp. 151–162, 2016.

[27] F. Kabanza, M. Barbeau, and R. St.-Denis, “Planning control rules for
reactive agents,” Artif. Intell., vol. 95, no. 1, pp. 67–11, 1997.

[28] R. M. Jensen and M. M. Veloso, “Obdd-based universal planning
for synchronized agents in non-deterministic domains,” J. Artif. Intell.
Res., vol. 13, pp. 189–226, 2000.

[29] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, “Weak, strong, and
strong cyclic planning via symbolic model checking,” Artif. Intell., vol.
147, no. 1-2, pp. 35–84, 2003.

[30] Y. Li, J. S. Dong, J. Sun, Y. Liu, and J. Sun, “Model checking approach
to automated planning,” Formal Methods Syst. Des., vol. 44, no. 2, pp.
176–202, 2014.

[31] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
planning: a timed automata approach,” in ICRA. IEEE, 2004, pp.
4417–4422.

[32] S. Konur, C. Dixon, and M. Fisher, “Analysing robot swarm behaviour
via probabilistic model checking,” Robotics Auton. Syst., vol. 60, no. 2,
pp. 199–213, 2012.

[33] M. Massink, M. Brambilla, D. Latella, M. Dorigo, and M. Birattari,
“On the use of bio-pepa for modelling and analysing collective
behaviours in swarm robotics,” Swarm Intell., vol. 7, no. 2-3, pp. 201–
228, 2013.

[34] R. Hoffmann, M. L. Ireland, A. Miller, G. Norman, and S. M. Veres,
“Autonomous agent behaviour modelled in PRISM - A case study,” in
SPIN, ser. Lecture Notes in Computer Science, vol. 9641. Springer,
2016, pp. 104–110.

[35] P. Izzo, H. Qu, and S. M. Veres, “A stochastically verifiable au-
tonomous control architecture with reasoning,” in CDC. IEEE, 2016,
pp. 4985–4991.

[36] B. Johnson and H. Kress-Gazit, “Analyzing and revising high-level
robot behaviors under actuator error,” in IROS. IEEE, 2013, pp.
741–748.

[37] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking
and runtime verification for safe robotics,” in RV, ser. Lecture Notes
in Computer Science, vol. 10548. Springer, 2017, pp. 172–189.

[38] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
“Formal specification and verification of autonomous robotic systems:
A survey,” ACM Comput. Surv., vol. 52, no. 5, pp. 100:1–100:41, 2019.

[39] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[40] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, “Algebraic decision diagrams and their
applications,” Formal Methods in System Design, vol. 10, no. 2/3, pp.
171–206, 1997.

[41] P. Ashok, T. Brázdil, K. Chatterjee, J. Křetínský, C. H. Lampert,
and V. Toman, “Strategy representation by decision trees with linear
classifiers,” in QEST (1). Springer, 2019, pp. 109–128.

[42] T. Brázdil, K. Chatterjee, J. Kretínský, and V. Toman, “Strategy
representation by decision trees in reactive synthesis,” in TACAS (1),
ser. Lecture Notes in Computer Science, vol. 10805. Springer, 2018,
pp. 385–407.

[43] L. D. Pyeatt and A. E. Howe, “Decision tree function approximation
in reinforcement learning,” Computer Science Department, Colorado
State University, Tech. Rep., 1998.

[44] B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic planning
for markov decision processes with co-safe LTL specifications,” in
IROS. IEEE, 2014, pp. 1511–1516.

[45] ——, “Multi-objective policy generation for mobile robots under
probabilistic time-bounded guarantees,” in ICAPS. AAAI Press, 2017,
pp. 504–512.

[46] M. Brambilla, A. Brutschy, M. Dorigo, and M. Birattari, “Property-
driven design for robot swarms: A design method based on prescriptive
modeling and model checking,” ACM Trans. Auton. Adapt. Syst.,
vol. 9, no. 4, pp. 17:1–17:28, 2015.

4353

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:21:27 UTC from IEEE Xplore. Restrictions apply.

[47] S. Fuchs, S. Haddadin, M. Keller, S. Parusel, A. Kolb, and M. Suppa,
“Cooperative bin-picking with Time-of-Flight camera and impedance
controlled DLR lightweight robot III,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct. 2010, pp. 4862–
4867, iSSN: 2153-0866, 2153-0858, 2153-0858.

[48] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A
survey on learning-based robotic grasping,” Current Robotics
Reports, vol. 1, pp. 239–249, Dec. 2020. [Online]. Available:
https://doi.org/10.1007/s43154-020-00021-6

[49] R. Matsumura, Y. Domae, W. Wan, and K. Harada, “Learning based
robotic bin-picking for potentially tangled objects,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 7990–7997.

[50] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming, 1st ed. USA: John Wiley & Sons, Inc.,
1994.

[51] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds.,
Handbook of Model Checking. Springer, 2018.

[52] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV:
A new symbolic model checker,” Int. J. Softw. Tools Technol. Transf.,
vol. 2, no. 4, pp. 410–425, 2000.

[53] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson,
W. Yi, and M. Hendriks, “UPPAAL 4.0,” in QEST. IEEE Computer
Society, 2006, pp. 125–126.

[54] C. Dehnert, S. Junges, J. Katoen, and M. Volk, “A storm is coming: A
modern probabilistic model checker,” in CAV (2), ser. Lecture Notes
in Computer Science, vol. 10427. Springer, 2017, pp. 592–600.

[55] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[56] J. Wittmann, J. Jankowski, D. Wahrmann, and D. J. Rixen, “Hierarchi-
cal motion planning framework for manipulators in human-centered
dynamic environments,” in 2020 29th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN). IEEE,
2020.

[57] J. Wittmann, J. Kiesbye, D. J. Rixen, and U. Walter, “Supervised au-
tonomous interaction in unknown territories - a concept for industrial
applications in the near future,” in 52nd International Symposium on
Robotics, 2020.

[58] E. M. Hahn, Y. Li, S. Schewe, A. Turrini, and L. Zhang, “Iscasmc:
A web-based probabilistic model checker,” in FM 2014: Formal
Methods: 19th International Symposium, Singapore, May 12-16, 2014.
Proceedings. Springer International Publishing, 2014, pp. 312–317.

[59] J. Bohren and S. Cousins, “The SMACH High-Level Executive,” IEEE
Robotics Automation Magazine, vol. 17, no. 4, pp. 18–20, Dec. 2010.

[60] M. M. Khawaja, “Design and implementation of the autonomous task
planner for a bin-picking robot,” Master’s thesis, Technical University
of Munich, 2020.

4354

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:21:27 UTC from IEEE Xplore. Restrictions apply.

D Model Checking for Proving and
Improving Fault Tolerance of Satellites

This chapter has been published as a peer-reviewed conference paper.

© Jonis Kiesbye, Kush Grover and Jan Křetı́nský.

Jonis Kiesbye, Kush Grover, and Jan Křetı́nský. “Model Checking for Prov-
ing and Improving Fault Tolerance of Satellites”. In: 2023 IEEE Aerospace
Conference. 2023, pp. 1–9. DOI: 10.1109/AERO55745.2023.10115801

Summary. Fault tolerance is a critical requirement for various systems, particularly
in the context of space systems like satellites. Handling this is achieved through Fault
Detection, Isolation and Recovery (FDIR) concepts. Fault isolation is a crucial compo-
nent of FDIR, and in this paper, we reduced it to the reachability problem for MDPs
which can then be solved by a probabilistic model checker to find an optimal strategy.
However, the state space can grow exponentially with the number of variables, leading
to a state-space explosion issue. To address this, we employ a method based on Monte
Carlo Tree Search (MCTS) to trim the state space, retaining only significant decisions
and states. This results in a much smaller MDP, for which we can quickly find an op-
timal policy. Ultimately, this policy is converted into a decision tree using dtControl as
before.

In addition to fault isolation, we generate analysis reports that provide information
about components that are not entirely isolable. This information can be used to im-
prove the architecture during the development phase of a satellite. We built a compre-
hensive tool for these tasks, complete with a user-friendly GUI.

Contributions of thesis author. The author played a significant role in the devel-
opment of the results presented in the paper and made valuable contributions to the
manuscript. Noteworthy individual contributions are giving an algorithm by adapting
Monte Carlo Tree Search to prune the model. Additionally, the author implemented the
fault isolation part of the whole framework.

License. ©2023 IEEE. Reprinted, with permission, from Jonis Kiesbye, Kush Grover
and Jan Křetı́nský. “Model Checking for Proving and Improving Fault Tolerance of
Satellites”. IEEE, Conference Proceedings: 2023 IEEE Aerospace Conference, March/2023.

91

https://doi.org/10.1109/AERO55745.2023.10115801

Model Checking for Proving and Improving Fault
Tolerance of Satellites

Jonis Kiesbye
Chair of Astronautics

Technical University of Munich
85748 Garching, Germany

j.kiesbye@tum.de

Kush Grover
Chair for Theoretical Computer Science

Technical University of Munich
85748 Garching, Germany

kush.grover@tum.de
Jan Křetı́nský

Chair for Theoretical Computer Science
Technical University of Munich

85748 Garching, Germany
jan.kretinsky@tum.de

Abstract—Developing the Fault Detection, Isolation & Recov-
ery (FDIR) policy often happens late in the design phase of a
spacecraft and might reveal significant gaps in the redundancy
concept. We propose a process for continuously analyzing and
improving the architecture of a spacecraft throughout the design
phase to ensure successful fault isolation and recovery. The
systems engineer provides a graph of the system’s architecture
containing the functional modes, the hardware components, and
their dependency on each other as an input and gets back a
weakness report listing the gaps in the redundancy concept.
Overlaying the sub-graphs for every fault scenario allows us to
reason about the feasibility of fault isolation and recovery. The
graph is automatically converted to a Markov Decision Process
for use with a model checker to generate a control policy for the
FDIR process. The model is optimized by pruning inefficient
branches with Monte Carlo Tree Search. We export this policy
as a decision tree that ensures explainability, fast execution, and
low memory requirements during runtime. We also generate
C-code for fault isolation and reconfiguration that can be in-
tegrated in the FDIR software. The tool was used on system
architectures created in the Modular ADCS project which is
part of ESA’s GSTP program. In this context, it helped to yield
an effective redundancy concept with minimum overhead and
dramatically reduce the programming effort for FDIR routines.
Since we use model checking for the analysis, the designer gains
formal verification of the robustness towards faults.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. RELATED WORK . 2
3. PRELIMINARIES . 2
4. METHODS . 3
5. APPLICATION . 5
6. RESULTS . 7
7. CONCLUSIONS . 7
ACKNOWLEDGMENTS . 7
REFERENCES . 7
BIOGRAPHY . 9

1. INTRODUCTION
In order to ensure reliability and performance of space sys-
tems, fault tolerance is not only desirable but necessary. Con-
sequently, the methodology of Fault Detection, Isolation and
Recovery (FDIR) has been integrated into the development

978-1-6654-9032-0/23/$31.00 ©2023 IEEE

process. Its purpose is twofold. Firstly, already during design
time, it can give feedback on where more redundancy is
needed to ensure better robustness against faults or where
monitors are required to ensure faults can be diagnosed when
they occur. Second, after the system is deployed, FDIR is
running in the background, detecting possible faults, identi-
fying faulty components, and deciding which redundancy to
use to recover from the fault.

Due to the complexity of the systems, designing FDIR is
a challenging task. As a result, several (semi-)automated
approaches have been designed to analyse a model of the
system and identify a policy (a.k.a. strategy) to follow, when
a fault occurs. This involves choosing which actions should
the system perform and to which modes to switch so that
monitoring which behaviours are correct and which are faulty
leads to identification of the faulty component. Notice that
executing all possible functionalities would be wasteful if a
subset is sufficient to isolate the fault. However, this paper
goes even further: Also notice that choosing a minimal such
subset (one we cannot reduce further) can still be extremely
wasteful. Indeed, firstly, there may be more such subsets and
the cost to execute them can be different (different actions/-
modes consume different energy, time etc.). Secondly, the
process of trying out is sequential and one can learn from the
results so far which of the faults are still logically possible
or even which are more probable. Depending on the current
estimates, one can choose how to diagnose onwards so that
the expected cost of the diagnosis is minimized.

Altogether, this paper tackles the problem of computing a
policy (intuitively, a reactive recipe rather than a static plan,
which gives a single sequence of actions) minimizing the
expected cost of diagnosis. Our main idea is the follow-
ing. Our approach reduces the problem to finding a policy
in a Markov Decision Process (MDP) [1], which models
the process of diagnosis. Since the MDP captures all the
possible sequences of actions for any underlying fault, it
is so huge that standard analysis techniques, such as those
used in verification and reliable analysis of MDP [1], do
not scale enough to solve the problem. Consequently, we
apply the idea of Monte Carlo Tree Search (MCTS) ([2],
[3], [4]), which has proved successful for very large systems,
yielding near-optimal solutions. The essence is then partial
exploration of the MDP (tree-search) guided by estimates
of the expected costs from different situations; the latter is
obtained by simulations (roll-outs).

1

20
23

 IE
EE

 A
er

os
pa

ce
 C

on
fe

re
nc

e
|

97
8-

1-
66

54
-9

03
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AE

RO
55

74
5.

20
23

.1
01

15
80

1

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

Our contribution can be summarized as follows:

• We consider the problem of designing the cheapest diag-
nosis policy and reduce the problem to one in the domain of
analysis of Markov decision processes.
• We design an algorithm based on Monte Carlo Tree Search
to provide the policy as well as a procedure to check whether
all faults are diagnosable and estimating the cost to do so.
• We implement a tool with graphical user interface allowing
to model dependencies of components, the cost of their
execution and the a-priori probabilities of faults, needed for
calculating the policy with the cheapest expected cost. The
policy is then exported as a decision tree, which is small and
fast to execute, and can be integrated in the FDIR software.
• We demonstrate the efficacy of our approach on a case
study of two satellite Attitude Determination and Control
Systems (ADCS) that were studied in the Modular ADCS
project in early 2022.

2. RELATED WORK
The high reliability requirements of spacecraft necessitate
a systematic approach towards reducing the probability of
experiencing significant errors. Since in-orbit maintenance
is prohibitively cost-intensive, the FDIR methods of the
spacecraft shall keep it available in case of correctable faults.
Common systematic approaches in the aerospace industry are
Failure Modes and Effects Analysis (FMEA) [5] and Fault
Tree Analysis (FTA).

FMEA utilizes knowledge of the mission engineers which
conceive all possible fault modes and analyze their conse-
quences in a bottom-up manner. As part of the 1996 Mars
Global Surveyor mission, an alternative to FMEA, called
Redundancy Verification Analysis [6], used a block diagram
based approach to save analysis time in systems that have a
redundant counterpart anyway. On the other hand, FTA is
a top-down approach. Fault trees have been used in [7] and
[8] to describe the architecture of a system in a similar but
more extensive way than we do. They synthesize a recovery
strategy that tries to optimize spare management, however,
they assume knowledge of the basic events which include
components where a fault has occurred. The goal of our
approach is to figure out where exactly the fault occurred
based on observables. [9] describes a model checking based
technique to diagnose where a fault did occur based on moni-
toring a partially observable system at runtime. Their concept
of coupled reachability is the same that we use for assessing
fault isolability. The investigated models however use highly
accurate continuous domain models in the background that
are discretized by the Livingstone framework while we focus
on the architecture of spacecraft in the design phase where no
accurate simulation or prototype is available yet.

Approaches for analyzing the spacecraft and validating their
FDIR methods use different kind of models. The FAME
process [10] improves on FMEA by using Timed Fault Prop-
agation Graphs. Here when a fault occurs, it propagates in
the system, triggering several monitored nodes that can de-
termine the source of the fault. The TASTE [11] middleware
enables model-based software engineering for aerospace sys-
tems and can verify the behavior with the IF model checker.
The engineers can specify the architecture of their system in
the Architecture Analysis & Design Language. The more
recent framework ERGO [12] targeting space robots builds
on top of TASTE and brings an FDIR design and verification
tool that utilizes the BIP tool set. Instead of manually defining

the models that the individual frameworks need, it would
be beneficial to utilize the system models from the systems
engineering domain. [13] lays the foundation of translating
the system architecture and behavior that is modeled in
SysML for use in model checkers. This translator is used for
code generation [14] and for a Model Checker as a Service
[15] approach where the properties are verified by either the
UPPAAL [16] or the Theta model checker.

Our approach focuses on early stages of spacecraft develop-
ment where the architecture of the system has not been fixed
yet and defining a detailed model would constrain the devel-
opment too much. Several frameworks support the software
engineering process by generating glue code or the whole
software altogether. While state of the art approaches use
model checking for verifying the properties of the systems,
we use the model checker also for generating executable
policies covering fault isolation and reconfiguration.

3. PRELIMINARIES
For a set S, we use Sc to denote its complement and D(S)
denotes the set of probability distributions over S.

Markov decision process—[1] A Markov Decision Process
(MDP) is a widely used formalism to describe systems with
probabilistic and non-deterministic behavior. Formally, it is
defined as a 5-tuple (S, S0, A,∆, c) where S is a finite set of
states, S0 ⊆ S is a set of initial states, A is a finite set of
actions, ∆ : S ×A −→ D(S) is the transition function which
describes how the system behaves upon choosing an action
in a state, and c : S × A × S → R is the cost function
assigning a cost to each transition. An MDP can also be
annotated with a subset of target states, which describes a set
of desired states the system should eventually reach. A policy
is a way of resolving non-determinism in the system by fixing
an action to play from each state. An optimal policy is the one
that optimizes some objective. In this paper, we will focus on
optimal policies minimizing the expected total cost to reach a
target set of states. This can model, for instance, the energy
used until the diagnosis is finished.

Model checking—Model checking is a technique to verify
whether a system satisfies a given specification. There are
model checkers to verify non-deterministic, stochastic, timed
or hybrid systems [17] [18] [16]. For MDPs, there are
probabilistic model checkers like PRISM [17] and STORM
[19] which can find an optimal policy for a given MDP and a
reachability objective.

Decision tree—Decision trees are commonly used data struc-
tures for classification and regression in machine learning.
They are well known for their interpretability because of
their top-down binary tree like structure where each node
contains a boolean predicate over input variables and every
edge corresponds to either true or false. The leaf nodes
contain the decisions and given a valuations of the input
variables, a decision can be found by evaluating the predicate
and taking corresponding edges down the tree.

The policies that model checkers output are stored in huge
lookup tables whereas decision trees can store the same
policies in a compact manner. dtControl [20] is a tool which
can convert the lookup tables generated by model checkers
into decision trees which are easier to understand and faster
to execute.

2

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

Figure 1. A satellite’s architecture expressed as a graph

4. METHODS
We assume that our system has nC components, their set de-
noted by C, and nM modes, their set denoted by M . Because
of spare components, there can be several configurations for
each mode, we denote them by Bm1 , Bm2 , · · · ⊆ C for a
mode m. A cost function C : M → N maps each mode to a
number defining the cost to perform a check on it2. A fault-
probability function P : C → [0, 1] maps each component to
an a-priori probability of it failing. The whole system is then
described by the tuple (G,P,C), where G is the architecture
graph and P and C the functions above.

Spacecraft architecture representation

Similar to [21] and [7] but neglecting the temporal aspect, we
represent the components, assemblies, and functional modes
of the spacecraft as a directed graph. The modes describe
high-level behavior of the vehicle, e.g. observing a star,
desaturating the reaction wheels, keeping the satellite pointed
at the ground station, etc. Modes form the roots of the graph.
Edges run from the modes to the required components, which
are the leaves of the graph. In between, the user can place
intermediate nodes that we call assemblies.

We assume that it is easy to observe if the modes perform
successfully or not. But every observation comes at a cost
because the satellite will need time and energy to initialize
the mode and evaluate whether it performs according to the
expected behavior. We also assume that only the components
(leaf nodes) contain the faults and thus cause the modes that
depend on them to fail.

Note that this is not really a restriction because if an assembly
contains a fault (apart from its sub-components), we can
always add an auxiliary child node to represent that the
assembly can be faulty by itself. Every component has a
configurable fault probability. The exemplary graph in Figure
1 shows three modes in orange on the top level, six assemblies
in green and six components in blue. All of camera, filter,
storage, com, and adcs depend on the electrical power system
(eps), which makes them an assembly by the definition laid
out previously.

Every node depends on all its children. Looking at satellites,
they usually have redundant assemblies. We include these
two types:

2The cost can define how costly it is to perform a test on a mode by encoding
the time it takes to run or by the amount of energy used.

S

S \Bmi

S \Bc
mi

mi

p1

p1+p2

p2

p1+p2

Figure 2. Transitions of the MDP

• OR: one of n children needs to work nominally.
• ≥ : a specified amount of identical children needs to work
nominally

Figure 6 shows the architecture of an ADCS (Attitude Deter-
mination & Control System). The star tracker and gyroscope
are OR assemblies, the thrusters form a ≥ assembly.

Isolating faults

Whenever a fault in one of the components occurs, it will
cause all modes depending on it to fail. Building on this
premise, we can cycle through multiple modes and thus
derive which component is faulty. Given the case that a
component still responds to commands but produces skewed
data, our method can still isolate the faulty component.

When a mode fails, we label all components that the mode
depends on as suspects. Next, we will execute a different
mode that depends on a subset of the suspects. If that mode
succeeds, we can remove the components the mode depended
on from the set of suspects. If the mode fails, we can remove
the components that were not required for the mode. By
repeating this process, we reach the minimal set of suspects
which cannot be reduced anymore. If the minimal set has
only one component, the fault has been isolated completely.

Knowing the architecture of a system, we can derive whether
all faults can be isolated. For every component to be isolable,
there must exist a superposition of modes that depends on all
other components except this one. Formally,

Definition 1. For a given set of suspects S, a component c ∈
S is isolable if there exists mode configurations x1, x2 . . .
which contain c and y1, y2 . . . which does not contain c such
that (S

⋂
j Byj) \

⋃
i Bxi = c.

We transform the architecture graph G into an MDP M
where we keep track of the suspicious components. States
of M are sets of suspects and the initial states are sets of
components corresponding to different configurations of each
mode. Therefore for every mode x, we mark all config-
urations Bmi

as initial states. The set of actions are also
all mode configurations and executing an action means to
test whether that configuration works or not. The transitions
encode changes in the set of suspects according to whether
the mode works accurately or not as shown in Figure 2. Here
p1 = 1 − ∏

c∈S\Bmi
(1 − P (c)) which is the probability

that a component in S \ Bmi
fails and similarily p2 =

1−∏
c∈S\Bc

mi

(1− P (c)).

For example, for the architecture graph shown in Figure 1, the
states of the MDP would be vectors of length 6 since there are
6 components (we are using vectors to represent sets here).

3

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

PRISM

Weakness
Report

Architecture
Graph

MDP dtControlPolicy for
isolating faults

Build Fault Isolation

Decision tree
C-code

Build Fault Recovery

PRISM
MDP

Available modes
C-code

Reconfigure
C-code

Decision tree
C-code

dtControlPolicy for
switching mode

Figure 3. Artifacts generated for fault isolation and
recovery

An initial state corresponding to a fault that occured while ex-
ecuting the ground station tracking mode (GS), would be S =
(0, 0, 0, 1, 1, 1) expressing that the components 4 (com self),
5 (adcs self), and 6 (eps) are suspicious. Since actions are
synonymous with modes, an action corresponding to DESAT
would require the components BDESAT = (0, 0, 0, 0, 1, 1).
As shown in Figure 2, on executing DESAT from S, you
either go to S \ BDESAT = (0, 0, 0, 1, 0, 0) if DESAT
is working or you go to S \ Bc

DESAT = (0, 0, 0, 0, 1, 1)
otherwise.

Target states are the sets of suspects which cannot be reduced
further by testing any mode configuration.

Since we need to feed this MDP to a model checker, the size
of the input is dependent on number of transitions. As the
size increases, parsing the input can become a problem for
the model checkers. To tackle this problem, we suggest a
simulation-based pruning of the MDP, inspired by the MCTS
algorithms.

Pruning based on Monte Carlo Tree Search

We build a smaller MDP iteratively by pruning the useless
parts on the fly. Pseudocode for this is shown in Algorithm
1 which can be broken down into four simple steps. It starts
with only initial states as the set of states and line 5 picks
a new state to expand (step 1), for this we can randomly
select a state that has never been picked before. In line 6,
it expands the selected state by adding all of its successors
to the MDP (step 2). Line 7 corresponds to doing simulations
starting from all of these newly added states to get an estimate
of expected cost required to isolate the fault from that state
(step 3). In line 8, all actions except the best ones are pruned
(step 4). The best actions are based on the expected cost
we get from simulations. Number of actions to keep (a)
for each state is a parameter of the procedure and is fixed
beforehand. This procedure terminates when all the states
have been expanded and it does so in finite time because the
number of states are bounded by a finite number.

We can now perform our analysis on this smaller MDP and
figure out the best policy to isolate the fault. One way to
get a policy is to pick the best action based on the expected
cost that we got from the simulations. It is also possible to
find the optimal policy for the smaller MDP. As described in
section 3, PRISM is one such tool that can be used for this and
dtControl can convert the lookup table into a decision tree to
generate an efficient executable.

Algorithm 1 Monte-Carlo Pruning
1: Input: G,S0, a
2: M← S0
3: V ← ∅
4: while V ̸= S do
5: s← Select(S \ V)
6: M← Expand(s)
7: Simulate(G, s)
8: Prune(M, s, a)
9: V ← V ∪ s
10: end while
11: Output:M

Recovering from faults

If the redundant assemblies in the system allow for a mode
to not depend on the faulty component, we can reconfigure
to keep the mode available. If all modes remain available for
every single component fault, the system is fault-tolerant.

Definition 2. An architecture graph is called fault-tolerant if
for all mode configurations Bmi

, for every c ∈ Bmi
, there

exists a mode configuration Bmj of the same mode such that
c /∈ Bmj

.

Generating code—The recovery executable reads the desired
mode and the equipment state, a vector of Booleans describ-
ing whether each component is available or faulty. Based
on the architecture described in the graph, the equipment
state is translated to a list of available modes. The available
modes, the desired mode, and optionally the dynamical state
of the satellite, e.g. the angular rate or the battery level, are
interpreted by a policy that decides which mode to execute. A
PRISM model that is automatically generated and adaptable
by the user defines this policy. The tool dtControl converts the
policy to a compact decision tree. Based on the selected mode
and the equipment state, we eventually decide what equip-
ment is used and how to configure the redundant assemblies.

As shown in Figure 3, determining the available modes and
reconfiguring the system is handled by C-code functions that
are directly generated by the graph analysis tool. The mode
switching is implemented in a C-code version of the decision
tree generated by dtControl.

Iterative improvement

The architecture graph can be easily derived from the archi-
tecture model used for a Model-Based Systems Engineering
(MBSE) process. The engineer can feed the current state of
the satellite model to the algorithms described before and
will get an analysis of the fault isolability and tolerance
pointing out possible weaknesses. Based on this feedback,
the engineer can improve the satellite’s architecture and feed
an updated graph to the tool for validating it.

Instead of solely relying on the expertise of the systems engi-
neers for designing a fault-tolerant satellite and implementing
the FDIR algorithms late in the development cycle, our tool
enables a systematic approach that supports the engineer from
phase B on. Figure 5 shows the iterative design cycle where
the engineer derives a graph from the system architecture and
improves the system architecture using the hints and metrics
from the weakness report.

4

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

Figure 4. The graphical interface integrates all algorithms of our tool

Designer

System
architecture

Analysis tool

Weakness
report

Graph

Improve Extract
dependencies

Figure 5. The engineer supplies the architecture graph to
our tool and updates it aided by the weakness report

Graphical user interface

The algorithms for graph analysis and code generation can be
called from a graphical user interface (GUI)3. The application
is built with Python 3 and GTK and interfaces with the
PRISM model checker and dtControl so it can run on any
Linux PC. Notable third-party libraries include xdot and
NetworkX. The engineer can execute the steps mentioned
earlier in the GUI and gets visual and textual feedback on the
model’s performance. Figure 4 shows the GUI after loading
and analyzing a graph. It visualizes the loaded graph, allows
for editing the mode costs and component fault probabilities,
displays the weakness report, and shows the log messages of
the underlying algorithms.

3The source code of the GUI and the underlaying algorithms is available
online at https://github.com/JonisK/build and improve fdir

5. APPLICATION
In this section, we will use the GUI for analyzing a simplified
space tug and generating code for it. In addition to the
original and improved space tug, we also modeled the ADCS
of an Earth observation satellite relying on magnetorquers
and reaction wheels for actuation. This additional system was
included for characterizing our tool’s performance on a larger
graph. Both spacecraft architectures stem from the Modular
ADCS project carried out as part of the ESA General Support
Technology Programme (GSTP) program.

Modeled spacecraft

An exemplary space tug shall deploy payloads to different
orbits after separating from the launch vehicle. We focus on
the thruster-based ADCS of the space tug.

Figure 6 shows the modes and components that can be derived
from e.g. the block definition diagram that is available in
early phases of the development cycle already.

The system was designed with single-fault tolerance in mind
so it uses a set of eight thrusters of which at least 7 need to
operate for 3-axis reaction control [22]. The gyroscope and
star tracker are added in redundant pairs. Only one of each
needs to stay available for nominal attitude determination per-
formance. An orbit propagator feeds the reference models of
the Kalman filter with the spacecraft’s position and velocity.
The orbit propagator needs to know the current time and the
orbital parameters. A GPS sensor can provide both time and,
through an estimation algorithm, the orbit parameters. If the
GPS becomes unavailable, the time can be read from an on-
board real-time clock.

The satellite has a detumbling mode (DETUMB) for reducing
the angular rate. A THOMSON spin mode points one
face of the satellite towards Earth, the SUN tracking mode

5

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Architecture of the space tug’s ADCS

Figure 7. Improved architecture including a redundant
assembly for determining orbit parameters

maximizes the power input on the solar panels, the DEPLOY
mode maneuvers to the desired attitude for separation from
a payload, and orbit control (OC) keeps the attitude stable
while the apogee motor fires. The modes THOMSON, SUN,
DEPLOY, and OC all depend on the same components so
they are equivalent with regards to the isolation process
which is based on overlaying different modes to confirm
whether a component has a detrimental effect on the ADCS
performance. Since there are multiple redundant assemblies
that do not need all children to be available, every mode can
be split up into a multitude of configurations that cover all
feasible permutations of redundant configurations.

Analyzing this architecture with the algorithms laid out in
section 4, reveals that all components except for one are
isolable and only one mode stays available in case of a single
fault. The weakness report shown in Figure 8 shows the gaps
and gives the fault probability of every mode.

From the information regarding the isolability, the engineer
can easily deduce that the GPS is a single point of error. By
adding a second GPS and forming a redundant assembly with
the original GPS receiver, one can achieve perfect isolability
and single-fault tolerance. Alternatively, the engineer might
look for a cheaper backup to the redundant GPS and use
orbital parameters determined by ground radar and uploaded
as two-line element (TLE) for feeding the orbit propagator.

Figure 7 shows the added TLE node. When analyzing the
architecture including the TLE, the weakness report in Figure
9 does not show any gaps anymore. The compound fault
probabilities of every mode have also improved relative to
the original architecture. The only exception is the DETUMB
mode which is not dependent on the orbit propagator.

After successfully resolving the gap, the engineer has the
option extend the analytical effort by including underlying
components, e.g. the EPS fuses or data buses, in the model
and verify that the ADCS remains fault tolerant. Once the

The graph space tug v6.dot shows the following weaknesses:
• Component gps is not isolable
• Mode INITIALIZE is not single-fault tolerant
• Mode THOMSON is not single-fault tolerant
• Mode DEPLOY is not single-fault tolerant
• Mode OC is not single-fault tolerant
• Mode SLEW is not single-fault tolerant
• Mode GS is not single-fault tolerant
• Mode SUN is not single-fault tolerant
Assuming the component fault probabilities defined in
space tug v6 fault probabilities.txt, the modes have these fault probabilities:
• The fault probability for mode SLEW is 2.72 %
• The fault probability for mode GS is 2.72 %
• The fault probability for mode THOMSON is 2.23 %
• The fault probability for mode DEPLOY is 2.23 %
• The fault probability for mode OC is 2.23 %
• The fault probability for mode SUN is 2.23 %
• The fault probability for mode DETUMB is 1.74 %
• The fault probability for mode INITIALIZE is 0.500 %

Figure 8. Weakness report for the space tug graph

The graph space tug v7.dot shows no weaknesses.
Assuming the component fault probabilities defined in
‘space tug v7 fault probabilities.txt’, the modes have these fault
probabilities:
• The fault probability for mode SLEW is 1.74 %
• The fault probability for mode GS is 1.74 %
• The fault probability for mode OC is 1.74 %
• The fault probability for mode THOMSON is 1.74 %
• The fault probability for mode DEPLOY is 1.74 %
• The fault probability for mode SUN is 1.74 %
• The fault probability for mode DETUMB is 1.74 %
• The fault probability for mode INITIALIZE is 0.000750 %

Figure 9. Weakness report for the improved space tug graph

architecture has evolved, the verification and improvement
cycle can be repeated.

Code generation

For fault isolation, the MCTS policy is compressed by dt-
Control into a decision tree. Reading the branches of the
decision tree from top to bottom, each node asks whether
a specific component is still suspicious or has been verified
as available already. The leaf nodes contain a command on
what mode to execute next. The number after the mode
name gives an identifier for the configuration of the redundant
assemblies. After determining whether the commanded mode
was successful, one can update the component state vector.
As soon as all components are marked available except for
one, the faulty component has been found and the recovery
can start.

The fault recovery code evaluates the availability of modes,
decides which mode to execute and which components to
activate. The decision on the appropriate mode is made by
evaluating a policy generated with the PRISM model checker.
The PRISM model for choosing the mode is auto-generated
by our tool with a basic policy in mind that whenever the
desired mode is available, it will get selected. If a mode is
unavailable, a fallback mode, e.g. safe mode, detumbling, or
off, is activated and the system waits for ground commands
on how to proceed. Environmental states can be considered
in the mode selection, e.g. if the angular rate passes a critical
threshold, DETUMB mode is selected no matter what the
desired mode is. To give an example, the decision tree for
the mode switcher of the Modular ADCS project is shown in
Figure 10.

The PRISM language allows to define more state variables
and can move via intermediate steps to the goal condition,
similar to a high-level task planner. We could for example
require the model to first select SLEW mode before initiating

6

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

the GS tracking mode. Going further, we could describe a
protective cover for an observation instrument with the states
open and closed, prompting the spacecraft to open the cover
before starting an observation and closing it afterwards. The
use of PRISM-generated policies for task planning is laid
out in [23]. Once the user has modified the auto-generated
PRISM model to suit their mission, the policy is generated
and translated to a decision tree with dtControl. PRISM
evaluates the decision-making logic for all conceivable initial
states and reports whether the model covers all of them.

6. RESULTS
We show our results on two case studies, space tug and
earth observation. We used two versions of the space tug
benchmark, the original version (Figure 6) and the improved
version (Figure 7). First part of Table 3 shows the size of
these benchmarks.

While analyzing an architecture regarding fault isolation and
recovery and generating the weakness report from that data
takes less than 10 seconds as shown in Table 1, the process
of generating code is slows down with increasing model
complexity. Having more nodes in the graph and keeping
more actions while pruning leads to high execution times for
model checking and decision tree generation.

The size of the MDPs generated for fault isolation is shown
in Table 2. The number of transitions in the original MDPs
being rather high shows the need of pruning. We show size
of pruned MDPs for two values of a (actions to keep).

Table 3 shows the expected costs to isolate a fault using
policies generated by three approaches4. First approach is
a naive one, that randomly picks a mode which can reduce
the set of suspects. The second one picks the best action
according to the simulations done during pruning of the
model, this corresponds to pruning all the action from each
state except the best one. The third policy is the optimal one
for the pruned MDP that we get from PRISM. Compared
to policies obtained in standard ways where the costs and
probabilities are not reflected, we can save more than a half
of the expected cost already by using our MCTS policy. This
can be further improved by using the PRISM policy at the
expense of higher computational time to compute (offline) the
policy. Observe the trade-off between the expected cost and
the time as the value of a is increased. Note that the table does
not list the expected cost for the original whole MDP using
PRISM because the MDP was too big to parse by PRISM,
which returned an out-of-memory error.

Figure 10 shows the control policy of the mode switcher for
the improved space tug. One can observe how the envi-
ronmental variables influence the selected mode. Whenever
the selected mode is unavailable, the fall-back option off
activates which will wait for input from ground. The set
of initial states is 248,832, of which 100 % are covered
by the mode switcher, guaranteeing that the fault recovery
executable will never get stuck during satellite operations.

7. CONCLUSIONS
Our tool detects deficiencies in a spacecraft’s architecture
from the early design stages on and supports the engineer in

4The expected costs are calculated statistically, so there can be slight
differences in the values while reproducing these results.

generate
weakness

report

generate
fault isolation generate

fault
recoverya = 2 a = 10

space tug 3.46 s 24.33 s 33.08 s 15.14 s
space tug
improved 5.54 s 65.70 s 104.20 s 17.38 s

earth
observation 4.97 s 164.78 s 295.12 s 113.48 s

Table 1. Execution time of the analysis and code generation
steps

space tug space tug
improved

earth
observation

original st. 9,215 18,431 7,775
tr. 454,834 1,325,232 687,974

a = 2 st. 453 635 874
tr. 1,410 2020 2,784

a = 10 st. 962 1,150 1,954
tr. 11,452 13,026 14,644

Table 2. Number of states and transitions in the original vs
pruned MDPs

improving its isolability and fault tolerance, thereby reducing
the risk of late design changes. Its model-based approach that
relies on the engineer for translating the architecture makes it
less powerful than model-driven software engineering frame-
works like TASTE. On the other hand this very characteristic
allows our tool to be easily integrated in dynamic and iterative
design approaches which are often found in the CubeSat and
SmallSat sector. We show how the utilization of a model
checker allows us not only to verify the specifications of a
system but also synthesize controllers and generate C-code
that has low computational requirements for execution.

In the future, we intend to automatically translate architec-
tures from SysML to enable integrating our tool with MBSE
frameworks and thereby reduce the time an engineer needs
to receive feedback on the fault handling abilities of their
spacecraft. Further on, we will extend both the analysis
algorithms and the isolation executable to handle the com-
bination of two or three faults in the system. While small
satellites rarely require multiple fault tolerance, determining
fault combinations will typically hint at unmodeled common
causes, e.g. a failing data bus, and thereby indicate whether
the current architecture model is sufficient for isolating the
faulty component or not.

ACKNOWLEDGMENTS
This work has been supported by the DFG research training
group GRK 2428 Continuous Verification of Cyber-Physical
Systems (ConVeY).

REFERENCES
[1] Baier, C. & Katoen, J. Principles of Model Checking.

(2008,1)

7

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

Size Isolating Faults
Benchmark nc

mode
configs

Naive MCTS PRISM a = 2 PRISM a = 10

cost cost time cost time cost time

space tug 14 98 783.8 245.7 136.0 s 244.9 123.8 s 243.6 163.1 s
space tug
improved 15 178 865.2 246.2 532.0 s 246.5 389.2 s 245.0 433.6 s

earth
observation 22 410 2308.3 1136.7 1475.0 s 1126.1 1528.6 s 1114.5 1780.7 s

Table 3. Size of inputs, expected cost of isolating a fault and time taken to find fault isolation policy

rotational_velocity

battery_level

low

battery_level

high

go_off

critical

desired_mode

sufficient

SUN

low

go_off

critical

DEPLOY

DEPLOY

DETUMB

DETUMB

GS

GS

INITIALIZE

INITIALIZE

OC

OC

SLEW

SLEW

SUN

SUN

THOMSON

THOMSON

go_off

off

go_off

not_available

go_DEPLOY

available

go_off

not_available

go_DETUMB

available

go_off

not_available

go_GS

available

go_off

not_available

go_INITIALIZE

available

go_off

not_available

go_OC

available

go_off

not_available

go_SLEW

available

go_off

not_available

go_SUN

available

go_off

not_available

go_THOMSON

available

go_off

not_available

go_SUN

available

DETUMB

sufficient

go_off

{low,
critical}

go_off

not_available

go_DETUMB

available

Figure 10. Decision tree of the mode switching logic

[2] Abramson, B. & Korf, R. A Model of Two-Player Evalu-
ation Functions. (1987,1)

[3] Kocsis, L. & Szepesvári, C. Bandit Based Monte-Carlo
Planning. Machine Learning: ECML 2006. pp. 282-293
(2006)

[4] Coulom, R. Efficient Selectivity and Backup Operators
in Monte-Carlo Tree Search. Computers And Games. pp.
72-83 (2007)

[5] Dhillon, B. Failure modes and effects analysis —
Bibliography. Microelectronics Reliability. 32 (1992),
https://doi.org/10.1016/0026-2714(92)90630-4

[6] Sincell, J., Perez, R., Noone, P. & Oberhettinger, D.
Redundancy verification analysis-an alternative to FMEA
for low cost missions. Annual Reliability And Main-
tainability Symposium. 1998 Proceedings. International
Symposium On Product Quality And Integrity. pp. 54-60
(1998)

[7] Müller, S., Gerndt, A. & Noll, T. Synthesizing FDIR
Recovery Strategies from Non-Deterministic Dynamic
Fault Trees. AIAA SPACE And Astronautics Forum And
Exposition., https://arc.aiaa.org/doi/abs/10.2514/6.2017-
5163

[8] Müller, S., Mikaelyan, L., Gerndt, A. &
Noll, T. Synthesizing and optimizing FDIR
recovery strategies from fault trees. Science Of
Computer Programming. 196 pp. 102478 (2020),
https://doi.org/10.1016/j.scico.2020.102478

[9] Cimatti, A., Pecheur, C. & Cavada, R. Formal Verifi-
cation of Diagnosability via Symbolic Model Checking.
Proceedings Of The 18th International Joint Conference
On Artificial Intelligence. pp. 363-369 (2003)

[10] Bittner, B., Bozzano, M., Cimatti, A., De Ferluc, R.,
Gario, M., Guiotto, A. & Yushtein, Y. An Integrated
Process for FDIR Design in Aerospace. Model-Based

Safety And Assessment. pp. 82-95 (2014)

[11] Perrotin, A., Conquet, E., Dissaux, P., Tsiodras, T. &
Hugues, J. The TASTE Toolset: turning human designed
heterogeneous systems into computer built homogeneous
software. ERTS2 2010, Embedded Real Time Software &
Systems. (2010)

[12] Ocón, J., Colmenero, F., Estremera, J., Buckley, K.,
Alonso, M., Heredia, E., Garcia, J., Coles, A., Coles, A.,
Munoz, M. & Others The ERGO framework and its use
in planetary/orbital scenarios. Proceedings Of The 69th
International Astronautical Congress (IAC). (2018)

[13] Wagner, D., Bennett, M., Karban, R., Rouquette, N.,
Jenkins, S. & Ingham, M. An ontology for State Anal-
ysis: Formalizing the mapping to SysML. 2012 IEEE
Aerospace Conference. pp. 1-16 (2012)

[14] Godart, P., Gross, J., Mukherjee, R. & Ubellacker,
W. Generating real-time robotics control software from
sysml. 2017 IEEE Aerospace Conference. pp. 1-11
(2017)

[15] Horváth, B., Graics, B., Hajdu, Á., Micskei, Z., Molnár,
V., Ráth, I., Andolfato, L., Gomes, I. & Karban, R.
Model checking as a service: towards pragmatic hidden
formal methods. Proceedings Of The 23rd ACM/IEEE
International Conference On Model Driven Engineering
Languages And Systems: Companion Proceedings. pp.
1-5 (2020)

[16] Behrmann, G., David, A., Larsen, K., Håkansson, J.,
Pettersson, P., Yi, W. & Hendriks, M. Uppaal 4.0. Third
International Conference On The Quantitative Evalua-
tion Of Systems, QEST 2006. pp. 125-126 (2006,1)

[17] Kwiatkowska, M., Norman, G. & Parker, D. PRISM
4.0: Verification of Probabilistic Real-time Systems.
Proc. 23rd International Conference On Computer Aided
Verification (CAV’11). 6806 pp. 585-591 (2011)

8

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

[18] Cimatti, A., Clarke, E., Giunchiglia, F. & Roveri, M.
NuSMV: A New Symbolic Model Verifier. Computer
Aided Verification. pp. 495-499 (1999)

[19] Hensel, C., Junges, S., Katoen, J., Quatmann, T. & Volk,
M. The probabilistic model checker Storm. International
Journal On Software Tools For Technology Transfer. 24
pp. 1-22 (2022,8)

[20] Ashok, P., Jackermeier, M., Kretinsky, J., Weinhuber,
C., Weininger, M. & Yadav, M. dtControl 2.0: Explain-
able Strategy Representation via Decision Tree Learning
Steered by Experts. Tools And Algorithms For The Con-
struction And Analysis Of Systems - 27th International
Conference, TACAS 2021, Held As Part Of The European
Joint Conferences On Theory And Practice Of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27
- April 1, 2021, Proceedings, Part II. 12652 pp. 326-345
(2021), https://doi.org/10.1007/978-3-030-72013-1 17

[21] Abdelwahed, S., Karsai, G. & Biswas, G. System
diagnosis using hybrid failure propagation graphs. The
15th International Workshop On Principles Of Diagno-
sis. (2004)

[22] Pasand, M., Hassani, A. & Ghorbani, M. A study of
spacecraft reaction thruster configurations for attitude
control system. IEEE Aerospace And Electronic Systems
Magazine. 32, 22-39 (2017)

[23] Kiesbye, J., Grover, K., Ashok, P. & Křetı́nský, J.
Planning via model checking with decision-tree con-
trollers. 2022 International Conference On Robotics And
Automation (ICRA). pp. 4347-4354 (2022)

BIOGRAPHY[

Jonis Kiesbye received his Master’s de-
gree at Technical University of Munich
(TUM) and participated on the student-
driven CubeSat mission MOVE-II that
launched on Dec 3rd 2018. Working as
a research assistant at TUM’s Chair of
Astronautics in the domains task plan-
ning, robotics, and simulative verifica-
tion since 2018.

Kush Grover completed his Masters
in Computer Science at Chennai Math-
ematical Institute before joining as a
PhD student at Technical University of
Munich under supervision of Prof. Jan
Křetı́nský. His area of research includes
controller synthesis and verification of
stochastic system.

Jan Křetı́nský is a professor for For-
mal Methods for Software Reliability at
the Technical University of Munich. He
works in the area of verification, con-
troller synthesis, automata theory, and
their intersections with machine learn-
ing.

9

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 07,2023 at 10:27:46 UTC from IEEE Xplore. Restrictions apply.

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Summary of Contributions
	1.3 Publication Summary
	1.4 Outline of Thesis

	2 Preliminaries
	2.1 Notation
	2.2 Markov Decision Processes
	2.2.1 Formal Definition

	2.3 Verification of MDPs
	2.3.1 Value Iteration
	2.3.2 Bounded Real-time Dynamic Programming
	2.3.3 Representing Strategies Using Decision Trees

	2.4 Linear Temporal Logic
	2.5 Motion Planning
	2.5.1 Rapidly-Exploring Random Graphs
	2.5.2 Unknown Environments

	3 Uncountable Markov Decision Processes
	3.1 State of the art
	3.2 Contribution: Verification of Uncountable MDPs
	3.2.1 Assumptions: Value Iteration
	3.2.2 Value Iteration for Uncountable MDPs
	3.2.3 Assumptions: Bounded Real-Time Dynamic Programming
	3.2.4 BRTDP for Uncountable MDPs

	3.3 Outlook

	4 Applications of Markov Decision Process Verification
	4.1 State of the art: Task Planning With Recovery
	4.2 Contribution: Task Planning With Recovery
	4.2.1 Our Approach
	4.2.2 Experimental Results

	4.3 State of the art: Fault Isolation for Satellites
	4.4 Contribution: Fault Isolation for Satellites
	4.4.1 Pruning the model using Monte Carlo Tree Search
	4.4.2 Implementation and Experiments

	4.5 Outlook

	5 Motion Planning in Unknown Environments
	5.1 State of the art
	5.2 Contribution: SAG-RRG Algorithm
	5.2.1 Overview of Our Approach
	5.2.2 Algorithm
	5.2.3 Experimental Results

	5.3 Outlook

	Bibliography
	I First Author Publications
	A Anytime Guarantees for Reachability in Uncountable Markov Decision Processes
	B Semantic Abstraction-Guided Motion Planning for scLTL Missions in Unknown Environments

	II Non-first Author Publications
	C Planning via Model Checking With Decision-tree Controllers
	D Model Checking for Proving and Improving Fault Tolerance of Satellites

