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ABSTRACT

The design intent and many meaningful semantics in Building Information Modeling (BIM)

models are often implicit, and some explicit semantics are lost during model exchanges. These

missing information can be artificially supplemented through a process called semantic enrich-

ment. However, previous research on semantic enrichment has primarily focused on specific tasks,

leading to a limited scope of predictions, and lacks comprehensive, seamless approaches. In this

study, we aim to infer BIM semantics from fundamental model data, pure object geometries, and

organize the predicted results into a graph-based Common Data Environment (CDE) to support

intelligent applications. Consequently, we propose a framework of generic semantic enrichment

which includes four fundamental tasks in the context of graphs and a process control mechanism

to execute a set of tools in a proper sequence. To validate its feasibility, we selected a real-world

apartment model and developed six tools to generate the graph-based CDE from its object geome-

tries. Additionally, applications were implemented on the graph-based CDE, such as 1) enriching
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a pure geometry model from SketchUp to a BIM model in Revit, and 2) easing interoperability

problems by reconstructing ArchiCAD models in Revit or downgrading Revit models to earlier

versions. The experiment’s success demonstrates the feasibility of constructing BIM graphs from

object geometries through semantic enrichment to enable intelligent applications. This study estab-

lishes a theoretical foundation for graph semantic enrichment and opens a door to further explore

intelligent applications on BIM graphs.

1 INTRODUCTION

The Architecture, Engineering, and Construction (AEC) industry is characterized by its frag-

mented nature, involving numerous stakeholders with specialized skills who work together through-

out the lifecycle of a project (Borrmann et al. 2018). BIM technologies assist participants to design,

store and deliver models virtually and digitally (Sacks et al. 2018). Each expert has specific re-

quirements and preferences for BIM authoring tools, and prefers to keep their own models rather

than work on an all-encompassing one. Therefore, intense collaborations and communication are

necessary throughout the lifecycle of BIM projects. Ideally, modeling data can be delivered across

disciplines and software vendors without information loss and maintain accessibility.

In reality, BIM vendors develop their proprietary schemas which are designed for data exchange

inside one company’s ecosystem and are usually confidential and inaccessible to others. This leads

to the interoperability problem across BIM platforms. One common solution to the issue is to map

modeling information from native schemas to an open schema, i.e. the Industry Foundation Classes

(IFC). However, part of the modeling information is lost during the compilation process (Pazlar

and Turk 2008) and mapping errors are common (Venugopal et al. 2015).

Semantic enrichment (SE) aims to interpret implicit building semantics and supplement them

back to models, so they can be reused for multiple purposes with minimal rework (Belsky et al.

2016; Bloch 2022). Previous studies focused primarily on methods that can be deployed in semantic

enrichment tasks, such as using expert systems, machine learning, and deep learning, to achieve

BIM object classification (Wu et al. 2022; Yu et al. 2022). These studies illustrated the feasibility

of using different techniques for SE, but they usually focus on a specific type of task rather than
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providing comprehensive required BIM semantics. Additionally, the enrichment process typically

terminates after executing the developed method, so that reuse of the enriched results is not tested.

In fact, exact object geometries which contain objects’ dimension and location information

could be regarded as the fundamental data for any BIM objects as long as the Level of Development

(LOD) is beyond 200. Basically, almost all BIM design tools consistently support export of solid

geometries into accessible and generic file formats (Sacks et al. 2018).

Additionally, researchers have suggested using a graph data structure to store building infor-

mation, as a graph is a flexible way to store any information and graphs have the advantageous

capability to represent relationships among BIM objects explicitly. The Linked Building Data

(LBD) community has contributed many efforts to standardize the terminologies and formats of

BIM graph representation by constructing open ontologies and leveraging techniques from the

semantic web domain (Pauwels et al. 2022). On this basis, BIM graphs could have uniform

terminologies and the graphs are accessible to others.

At the same time, researchers have recognized that certain types of BIM data, such as time-

series data and object geometries, are not well-suited for representation in a graph format (Pauwels

et al. 2022). Therefore, Ouyang et al. (2022) proposed a core-extension layer graph data structure

where BIM objects and relationships are represented in a core graph and other data are stored in

corresponding suitable formats in the extension layer but linked back to the core graph. This is

similar to the concept of CDE proposed by ISO 19650 (2018), although the original concept of

CDE was designed at the file-based level, and used to support coordination across disciplines to

facilitate collaboration. In this study, we adopt the concept of a common data environment, but

redefine it as the data container that can host the object-level graph and other types of data, naming

it ’graph-based CDE’.

Recognizing that object geometries are the foundational data in BIM models, we aim to enrich

BIM semantics step by step, starting from pure geometries and continuing until all potential

information is recovered or the requirements are met. Therefore, in this study, we investigate

1) the use of semantic enrichment to supplement information from pure object geometries and
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organize the results into a graph-based CDE, and 2) the utilization of the graph-based CDE to

enable intelligent applications.

To achieve these goals, we propose a framework of generic semantic enrichment in Section 4.

We then construct a series of SE tools in Section 5, and select a case study to generate its graph-

based CDE for implementing applications (Section 6). In Section 7, we discuss the strengths and

limitations of this study and the potential for extending it to across-domain coordination. Literature

review, research questions and objectives, and conclusions are presented in Sections 2, 3 and 8,

respectively.

2 BACKGROUND

2.1 Semantic enrichment of BIM

Modern BIM tools provide a three-dimensional environment to design models with geometry,

alphanumeric data, and semantics. However, these tools still struggle with interpreting information

that is not explicitly represented in the model (Bloch 2022). When BIM models of existing

facilities are created from point cloud capturing technologies the results are purely geometric

models (Mafipour et al. 2022). Insufficient semantics can impact data exchange quality and

hinder or prevent the use of a range of building analysis and performance simulation applications.

Therefore, semantic enrichment of BIM models has been presented to infer implicit semantics

automatically (Belsky et al. 2016), and facilitate their use in a target application or procedure

(Bloch 2022).

An early study developed a rule-based algorithm for classifying bridge components (Sacks

et al. 2017), demonstrating the feasibility of semantically enriching BIM models while opening the

door for the use of artificial intelligence (AI) techniques for BIM object classification. Rule-based

approaches, which consist of machine-readable rules that encapsulate expert knowledge, have the

advantage of being transparent to users, but they lack the scalability to extend to other scenarios.

Consequently, data-driven methods based on statistical theories have been applied in recent years.

For example, Koo et al. 2019; Koo et al. 2021 used a machine learning algorithm, Support Vector

Machine (SVM), and two 3D deep learning models, Multi-view Convolutional Neural Networks
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(MVCNN) and PointNet, to classify IFC objects. Researchers have also converted IFC objects into

points and compiled the points into graphs to launch Graph Neural Networks (GNN) for classifying

the types of objects (Collins et al. 2021). Another study compiled BIM apartment models into

graphs and applied GNN algorithms for room type classification, illustrating that GNN can leverage

relationship features in the graph to improve prediction capabilities (Wang et al. 2021; Wang et al.

2022b). The success of all these studies has broadened the toolbox for semantic enrichment.

In addition to object classification, Bloch and Sacks (2020) identified three other enrichment

tasks: creation, association, and calculation. A rule-based method, topology-based inter-domain

object correspondence (TIOC) algorithm, was introduced by Ouyang et al. (2022) to establish topo-

logical and correspondence relationships across BIM disciplinary graphs. This work demonstrated

the feasibility of accomplishing association tasks and expanding the scope of semantic enrichment

to multi-discipline contexts. Apart from that, there are few studies on developing tools to address

the generation and calculation tasks.

Furthermore, existing SE studies concentrate on developing different techniques for specific

tasks, and the enriched results are limited to a single type of building semantics, such as object

types. However, a BIM model contains more information than just object types, encompassing

object attributes, relationships, design intent, and more. Additionally, previous studies presented

inference results to users but rarely integrated them back into the BIM model, which prevents reuse

of the predictions in downstream procedures (Bloch 2022). There is thus also a need for a method

to represent both existing and generated semantics explicitly in a way that enables downstream

applications.

2.2 Interoperability

The concept of BIM relies on the consistent use of a comprehensive building model as a

foundation for all data exchange operations, eliminating the need for manual data entry and reducing

the risk of errors (Borrmann et al. 2018). Interoperability, or the ability to exchange data between

applications (Sacks et al. 2018), is essential for improving collaborative workflows, and this is

recognized as a critical factor for successful design projects (Won et al. 2013).
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However, the AEC industry still faces interoperability challenges. First, BIM information is

complex in the sense that it encompasses object geometries and various semantics. The industry in-

volves diverse experts with different knowledge and experience, leading to multiple representations

of a building project and the management of heterogeneous models (ISO 19650 2018). In addition,

no one organization in the AEC industry has the economic clout or knowledge to define effective

interoperability for the whole industry (Sacks et al. 2018). Last, commercial software vendors often

create their own ecosystems using proprietary schemas, making it difficult to exchange information

across platforms and disciplines (Varoudis and Patlakas 2014).

BuildingSMART, an international organization, has dedicated years to developing the IFC as

an open, vendor-neutral data exchange format (BuildingSmart 2019). Due to its open schemas

and adoption by software, models can be compiled from proprietary schemas to IFC files and

shared with other participants (Borrmann et al. 2018). In this regard, the IFC approach offers a

practical solution for addressing interoperability issues, and has became the prevalent method today

(Rasmussen et al. 2021). However, it is challenging to define a holistic schema that meets the entire

industry’s requirements (Kim et al. 2012), and translation errors may occur when mapping models

from proprietary schemas to IFC (Venugopal et al. 2015).

Instead of manually sharing BIM files, researchers have explored uploading BIM models to a

central cloud repository (Hietanen 2002). An early BIM cloud platform, BIMserver from Beetz

et al. (2010), can store IFC data in the cloud, enabling functions like model checking, merging,

and versioning. There are also commercial platforms, such as BIM Collaborate from Autodesk

Inc. (2022), which provide a cloud repository for users to upload and access BIM models, but

these models are still stored in files. Compared to the conventional approach, cloud BIM platforms

distinguish themselves by using cloud servers to store model files instead of relying on local hard

drives. It remains a file-based approach for collaboration. There is also a trend towards exploring

object-level representations of BIM models to enable intelligent applications, like cross-domain

consistency maintenance and version control (Beetz et al. 2010; Pauwels et al. 2011; Törmä 2013;

Sacks et al. 2022; Esser et al. 2022). This approach explores the possibility of communicating data
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at the object level instead of the file level with the goal of enhancing interoperability.

Another approach to facilitate data exchange is to use an Application Programming Interface

(API) to retrieve required information from the target software. Examples include Revit’s Open

API and Bentley’s MDL. Many interfaces are designed for software within a single company’s

ecosystem or through business agreements between two or more companies (Sacks et al. 2018).

As such, interfaces relying on direct links can be considered as extensions of the software, while

interoperability issues persists when the exchange goes beyond a single vendor’s ecosystem.

3 RESEARCH GAPS, OBJECTIVES, QUESTIONS AND METHODOLOGY

Much of the research to date on semantic enrichment of BIM models focuses on the feasibility

and performance of AI tools for SE. Several gaps remain to be addressed. Existing SE studies

accomplished tasks for object classification and association, but tools for creating objects and

calculating attribute values are still lacking. There is a need to develop diverse SE tools to predict

the comprehensive semantics of BIM models. Additionally, while previous studies showed local

successes, a broad SE solution to solve the interoperability problem remains absent.

To address these gaps, this study explores use of fundamental BIM model data, i.e. pure

object geometries, as the starting point for developing a diverse set of SE tools to enrich building

semantics. The predicted results are then organized as a graph-based CDE to facilitate operation

of analysis and simulations on BIM graphs. Therefore, we aim to 1) construct a framework for

enriching semantics from object geometries; 2) develop a series of SE tools to accomplish all

SE tasks under the framework; 3) implement intelligent applications that leverage the enriched

semantics to address BIM challenges.

Consequently, we will answer these research questions: Is it feasible to construct a graph-

based CDE of BIM models from pure geometries using semantic enrichment? Can we construct

intelligent applications on the graph-based CDE for solving BIM problems?

This research follows the design science methodology (vom Brocke et al. 2020). We initially

identified problems from the industry as well as from the literature, and defined the objectives of

the study. Next, we created a framework of generic semantic enrichment. Then we developed
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experiments based on a case study to demonstrate the solution path for the identified problems.

Limitations and feedback from the experimental results help us improve the theory and the tools.

This process is repeated until the experiment results can provide answers to the predefined research

questions.

4 FRAMEWORK OF GENERIC SEMANTIC ENRICHMENT

Generic semantic enrichment aims to generate BIM graphs from object geometries to enable

advanced BIM applications. The framework of generic semantic enrichment comprises the funda-

mental enrichment tasks and the process control mechanism, as illustrated in Fig. 1. There are four

types of fundamental semantic enrichment tasks under the context of graphs (Section 4.1). Tools are

constructed to accomplish enrichment tasks, and executed in a sequence (Section 4.2). The enriched

semantic results are structured into a graph-based CDE with a core graph layer containing building

objects and relationships, and a separate extension layer storing geometries (Section 4.3). The

graph-based CDE can be used for various applications, such as enriching geometry design, easing

interoperability issues and linking multi-disciplinary graphs for maintaining model consistency.

4.1 Semantic enrichment tasks and tools

We have defined four fundamental SE tasks: object classification, attribute computation, rela-

tionship determination and object generation. These are derived from Bloch and Sacks (2020) but

tailored to fit the graph context (Fig. 1 (a)). Object classification utilizes methods to predict the

types of objects. Attribute computation aims to calculate object properties, such as dimensions.

Once computed, these attributes can be inserted back into object nodes.

Relationship determination involves calculating new associations among BIM objects, making

their relationships explicit. Relationships can describe the topological facts of two objects, such

as adjacency. Additionally, there are functional and constraint relationships between BIM objects

(Sacks et al. 2022). For instance, host could be a functional relationship between a door and a

wall, and a minimum distance constraint exists between a pipe (which belongs to the Mechanical,

Electrical, and Plumbing (MEP) domain) and an architectural wall where the pipe is installed on the

surface of the wall with a small gap. Explicitly representing functional and constraint relationships
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Fig. 1. Framework of generic semantic enrichment ((a) Semantic Enrichment Tasks, (b) Process
Control Mechanism).

has been shown to facilitate advanced applications, such as cross-domain change propagation (Wang

et al. 2022a).

Object generation is the task of creating nodes for new objects, often requiring also new

relationships to associate the new nodes with existing nodes. The newly generated nodes can be

physical or virtual BIM elements and can represent decomposition or aggregations of elements.

For instance, when entering a more detailed design, one architectural wall could be divided to

9 Wang, October 5, 2023



generate two finishing layers and a core layer. Conversely, two structural columns and a beam could

be aggregated to form a single structural frame object.

Tools are developed methods to accomplish tasks. For instance, numerous studies employ AI

methods, such as rule-based algorithms, machine learning, and deep learning, to create SE tools

for achieving BIM object classification tasks. Despite these tools being constructed using different

methods, they all aim to accomplish the same task of BIM object classification.

4.2 Process control mechanism

Process control is widely adopted in the manufacturing industry to monitor and adjust produc-

tion processes to achieve desired outputs and to optimize the overall performance of the system

(Stavropoulos et al. 2013; Chryssolouris et al. 1992). The process of enriching a BIM model is

similar to making a product in manufacturing, in which the inputs - object geometries - are fed to a

series of SE tools to generate an enriched graph-based CDE, considered as the outputs.

In the context of generic semantic enrichment, the process control mechanism executes a variety

of developed SE tools in a sequence to infer implicit semantics. The ’toolbox’ on the left-hand

side of Fig. 1 (b) contains tools intended for different tasks and scenarios. Certain tools use pure

geometry as input, while others may require the output from other tools as input. Therefore, the

sequence of tool execution is influenced by the nature of the available tools, the input requirements

for each tool, and any dependencies between tools. The enrichment process is programmed to

terminate when no additional information can be inferred, ensuring all possible data are generated.

Additionally, one could program the process to terminate if and when some predefined set of data

requirements is satisfied. Both conditions are shown on the right-hand side of Fig. 1 (b). Note that

in cases where the tools cannot yield all the information required by target applications or users -

for example, where data is insufficient for inference, or where the confidence level of a prediction

falls below a preset threshold - the system must refer to the user to provide any missing information.

The mechanism should be evaluated for correctness, efficiency, and robustness. Efficiency can

be evaluated by the required computational resources of tools in general, and the total processing
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time of the process. Moreover, there is a risk of failing downstream tools if an upstream tool

generates incorrect outputs. In the worst case, erroneous input could impact all subsequent tools,

reducing the system’s overall robustness. Ensuring the accuracy of tools whose outputs are fed

to others is crucial. One potential path to improvement is to combine the results of several tools.

For example, rule-based, machine learning and deep learning methods are different tools designed

for the same object classification task, while the final results could be determined by assessing the

levels of confidence among the three predictions.

4.3 Interoperable graph-based CDE

The enriched output from each step is organized into a graph-based CDE following the data

structure designed by Ouyang et al. (2022). The data repository consists of a core layer and an

extension layer, where the core layer contains the BIM graph representing the building objects

and their relationships, and the extension layer stores geometries that are virtually linked to the

corresponding object nodes in the core layer. In the graph, nodes represent objects, edges represent

relationships, and object attributes are inserted into the object nodes. To ensure transparency and

readability, ontologies from the LBD community are adopted to standardize the names, and the

graph is compiled following Resource Description Framework (RDF) rules. Geometries in the

extension layer are also stored in an open format, ensuring interoperability of the entire CDE. The

graph format and structure of the CDE are designed to be generic and accessible rather than being

tailored to a specific purpose.

4.4 Why generic?

The term generic has multiple meanings in this pipeline. Firstly, it refers to the use of accessible

and interoperable data as the only input to the pipeline. We utilize exact geometries that are essential

in all 3D models and can be exported from design software without loss of information.

Secondly, it encompasses the four fundamental types of graph semantic enrichment tasks. These

tasks have been summarised from various situations of enriching BIM graphs and can guide users

in developing tools accordingly.

Thirdly, it relates to the transparent and open representation of output data. All semantics are
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organized into a graph-based CDE with a well-defined data structure. The terminology utilized in

the graph conforms to open ontologies and the compilation follows RDF rules, allowing receivers

to access and interpret the enriched data canonically.

Lastly, the enriched data has diverse potential applications. We do not limit the purposes or

provide guidelines to the use of the enriched data. Instead, the enriched data is a flexible and

versatile resource that researchers and developers can utilize in a variety of ways to cater to their

specific needs.

5 EXPERIMENTAL IMPLEMENTATION

To validate the feasibility of generic semantic enrichment, we have chosen the initial design of

an apartment as the scenario. This is a common situation in which architects often exchange models

with colleagues using various software and platforms. This scenario is not excessively complex

either, making it suitable for assessing the feasibility of the concept from an implementation

perspective. Specifically, we selected a real-world apartment project, Apartment 2 (Apt2) at LOD

200, to demonstrate the development of semantic enrichment tools and the enrichment process.

The Apt2 model is shown in Fig. 2.

We have developed five specific tools and combined them in a six-step process for enriching

the apartment as shown in Fig. 3. Each tool has different input and output and is constructed using

AI methods or geometry computation. The first tool, object classification, predicts object types

from the geometries in Experiment (Exp) 1. Another tool generates hosting/hosted and adjacent

relationships among objects using geometries in Exp 2. Two tools for object generation have been

developed: one for essential building topology objects and another for space objects (Exp 3). The

last tool computes object attributes based on geometries and object types (Exp 4).

For implementation, we primarily utilized Python programming language to develop rule-based

algorithms incorporated with scikit-learn (Pedregosa et al. 2011) for machine learning and Deep

Graph Library (DGL) (Wang 2019) for graph deep learning. To handle geometry computation, we

selected the Trimesh library (Dawson-Haggerty et al. 2019). For compiling and retrieving RDF

graphs, we utilized the RDFLib library (Boettiger 2018). Revit was selected as the design software,
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Fig. 2. Diagram of Apt2.

Fig. 3. Semantic enrichment tools and process for this experiment.

and we used Dynamo, a visual programming tool within Revit, to access and modify information

in the Revit database. Finally, we employed GraphDB to visualize graphs (Güting 1994). All

experiments were performed on a personal computer with an Intel 6-core i7 CPU (2.70 GHz) and

32.0 GB RAM.
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5.1 Enrichment process design

The enrichment process is detailed in Fig. 3. Object classification and relationship determina-

tion, two tools that only require geometry information, are executed at the early stage. Afterward,

building spatial structural objects such as the site, building, and levels are created using geometry

and physical object attributes. Additionally, space objects are formed and linked to the bounding

physical objects. The attribute computation tool is executed twice, first for establishing the attributes

of physical objects needed to generate the spatial objects, then for calculating the attributes of newly

formed space objects. The enrichment process stops when no more semantics can be inferred. It

is important to note that there can be numerous combinations of tools in creating the enrichment

sequence, and the presented one is an example. The sequence of the attribute computation and the

relationship determination tools could be switched, among other possible variations.

5.2 Exp 1: Object type classification

BIM object classification is not a novel challenge, and various methods have been explored

by researchers to address this problem. Wu et al. (2022) found that machine learning methods

that leverage geometry, location, and metadata features can obtain accurate performance, with

a precision of approximately 99% on five classes of objects that were tested. Regardless of

correctness, machine learning is often more computationally efficient than deep learning. Machine

learning also demonstrates better scalability than rule-based algorithms that rely on hand-crafted

rule sets. Based on these evaluations of correctness, efficiency and scalability, we decided to use

machine learning techniques for classifying apartment objects.

Apartment initial design generally comprises floors, walls, doors, and windows. We explored

existing open datasets and found that they did not satisfy our requirements in terms of scope, format,

and quality. IFCNetCore, a benchmark consisting of 7,930 objects from 20 classes (Emunds et al.

2022), does not include the window class in its open core version. ArchiShapesNet, another open

dataset, contains all four required objects types (Yu et al. 2022), but it is composed of 2D rendered

images instead of original 3D geometry files. Additionally, BIMGEOM (Collins et al. 2021)

includes the required objects, but quality issues emerged upon examination. For instance, some
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objects are incorrectly labeled as "windows", and some geometries are not watertight.

Therefore, we decided to construct our own dataset. BIM models of 32 apartment units were

collected from projects in Israel which included both architectural and MEP models. A Dynamo

program was executed to extract the geometry of each object from Revit’s database and save its

mesh as a Polygon File Format (PLY) file (Wang et al. 2023a). The dataset includes eight

classes of building elements distributed equally across architectural and MEP families. In total,

after removing duplicates, the dataset contains 3,024 instances, as illustrated in Fig. 4.

Fig. 4. Examples of BIM objects in the constructed dataset.

In this experiment, we extracted 19 features from the solid objects based on their dimensions,

location, and mesh characteristics for machine learning algorithms, as summarized in TABLE 1.

To extract mesh features, we considered the properties of vertices, edges, faces, and facets. For

location features, we normalized the centroid of each object to be the origin. Bold features in

TABLE 1 are used by the decision tree in TABLE 2.

Feature engineering is applied to each object geometry to generate object features and labels in
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TABLE 1. Designed features for machine learning algorithms.

No. Feature Category

1 Area

Dimension
2 Volume
3 Delta x of bounding box
4 Delta y of bounding box
5 Delta z of bounding box
6 Num of faces

Mesh

7 Max area of one face
8 Face ratio (max/min)
9 Num of adjacent faces
10 Num of facet (faces forms facets)
11 Num of unique edges
12 Length of unique edges
13 Num of vertices
14 X_max

Location

15 X_min
16 Y_max
17 Y_min
18 Z_max
19 Z_min

a tabular form. Data are randomly divided into training and validation sets, with 70% of the data for

training, 10% for validation, and the remaining 20% for testing. Eight machine learning algorithms

were employed, and their respective performance levels are summarized in TABLE 2. The results

show that the best-performing algorithms are the decision tree and random forest, achieving 99%

accuracy in the test set. We also employed the F1 score as a metric to evaluate the predictive

capability across classes. The results demonstrate that both the decision tree and the random forest

yield F1 scores of 0.99, which is close to the ideal 1. This reflects that both algorithms have a

balanced predictive ability on this dataset.

Moreover, we used the Apt2 data which were not involved in the training and testing process as

the blind data to further test the performance of the algorithms. Results show that the decision tree

and the random forest can predict all objects correctly in Apt2 with 100% accuracy.

In addition, we exported the decision tree features to gain insight into the algorithm’s function.

16 Wang, October 5, 2023



TABLE 2. Results of object type classification.

No. Machine learning algorithm Validation accuracy Test accuracy F1

1 Logistic regression 23.92% 24.02% 0.25
2 Support vector machine (SVM) 46.40% 46.85% 0.35
3 K-nearest neighbors (KNN) 94.13% 88.89% 0.89
4 Gaussian naive bayes 83.14% 81.78% 0.80
5 Perceptron 57.79% 58.56% 0.47
6 Linear support vector classification 70.71% 69.77% 0.60
7 Decision tree 100.00% 99.80% 0.99
8 Random forest 100.00% 99.90% 0.99

The features utilized by the decision tree are marked in bold in TABLE 1. It shows that 10 out

of the 19 features were adopted for the classification process. The nine unused features could be

utilized by the algorithms in cases where the classification scope needs to be expanded. This leaves

a margin that could maintain reasonable performance when meeting more difficult situations. In

summary, in this study, both the decision tree and the random forest algorithms proved capable of

classifying the required objects.

5.3 Exp 2: Relationship determination

Relationship classes analysis

In order to instantiate relationships among apartment objects, it is essential to identify the

potential relationship classes beforehand. Therefore, we conducted an analysis of object-object

relationships from four widely-used ontologies in the Linked Building Data (LBD) community:

ifcOWL, Building Topology Ontology (BOT), Building Product Ontology (BPO), and Brick.

ifcOWL provides a semantic web-compliant representation of the IFC schema (Pauwels and Terkaj

2016). BOT aims to represent the core topological concepts of a building (Rasmussen et al. 2020),

while BPO describes assembly structures and component interconnections (Wagner and Rüppel

2019). Lastly, Brick is designed to standardize the representation of asset information in buildings

(Balaji et al. 2016).

Fig. 5 presents a comparison between the different ontologies’ definitions of five semantic

relationships that we consider ubiquitous within a building model. In this study, Adjacency is
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TABLE 3. Relationship classes summarized from ontologies.

Relationship Explanation
Name in the ontology

ifcOWL (Pauwels and Terkaj) BOT (Rasmussen et al.) BPO (Wagner and Rüppel) Brike (Balaji et al.) Adopted in this study

Adjacency Objects physically touch each other ifcRelConnectsElement - isConnectTo - cbim: adjacentTo
ifcRelConnectsPathElements isConnectFrom

isConnectWith

Host An object functionally hosts another ifcRelVoidsElement hasSubElement* - - cbim:hosting
cbim:hostedby

Space contain Objects belong to a level or space ifcRelContainedInSpatialStructure containsElement - bot:containsElement

Aggregation An object is aggregated by components ifcRelAggregates hasSubElement* isPartOf hasPart Not involved
consistOf isPartOf

Space bouding Objects bound space ifcRelSpaceBoundary adjacentElement - - bot:adjacentElement

A hyphen, -, indicates that similar classes do not exist in the ontology
* bot:hasSubElement has two meanings, either one object hosting another one or the aggregation of component objects

39 Wang, May 3, 2023

Fig. 5. Relationship classes summarized from ontologies.

defined as a topological fact that signifies the physical touch of two objects, such as a wall that is

in contact with another wall. This relationship can be generated by analyzing the geometries of the

objects.

In addition to topology, there are also functional relationships that contain semantics, such as

host. As experts, we understand that a window should fit into a wall opening, in which case the

wall becomes the host member of the window. However, determining such a relationship using

topological rules alone is difficult, as the bounding box of a wall may not physically contain the entire

window if the window sill is wider than the thickness of the wall. Another functional relationship

is aggregation, which indicates that an object is composed of components. For instance, a facade

may aggregate four curtain wall sections.

There are also two types of relationships between physical and virtual objects: Space contain

and Space bounding. The former describes the relationship between a physical object and a level

or space object to which it belongs. The latter refers to the relationships between a space and its

bounding physical objects.

This study focuses on instantiating four types of relationships: Adjacency, Host, Space con-

tain, and Space bounding. As there are no existing ontology classes for representing physical

touch among objects without direction, we adopted CBIM:adjacentTo from Cloud-based BIM

(CBIM) ontology (Ouyang 2023). Similarly, existing classes such as ifcRelVoidsElement and

bot:hasSubElement do not directly convey the hosting functional relationship; therefore, we

adopted cbim:hosting and cbim:hostedby designed with directions (Ouyang 2023). Addition-
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ally, the belonging relationships between physical objects and spaces were represented using

bot:containsElement, and the relationship between bounding objects and spaces was expressed

using bot:adjacentElement. Although the scenario in this study did not include aggregation, rule-

based algorithms can be designed to handle such relationships.

Relationship instantiation is distributed in Exp 2 and Exp 3. We presented a rule-based method

to predict the Adjacency and Host relationships in Algorithm 1 (Section 5.3). Since objects such

as levels and spaces do not exist at the beginning, we generated objects along with relationships

linked with existing nodes in Exp 3 (Section 5.4).

Relationship instantiation

Algorithm 1 leverages the characteristics of bounding boxes and exact geometries to generate

Adjacency and Host relationships among physical building objects. Two functions are developed

to compute specific features inside the algorithm. The first function is TOPOLOGYXYZ, which

calculates the topological relationships of two objects when projected onto the X, Y, and Z axes

respectively. Its output is a list with three elements, such as [’ContainedIn’, ’ContainedIn’, ’Con-

tainedIn’], indicating that the projection of 𝑂𝑏 𝑗1 is inside the projection of 𝑂𝑏 𝑗2 in X, Y, and Z

axes. The CBIM ontology defines nine possible topological instances in each axis (refer to Fig.

9 of Sacks et al. (2022)). The second function, BBXOVERLAP, computes the ratio between the

overlapped volume of two objects’ bounding boxes over the volume of the smaller object’s bounding

box. This feature could be useful in determining Host relationships.

The front part of the algorithm is designed to filter out those object pairs that cannot exhibit

Adjacency or Host relationships. In theory, both adjacent and host relationships require objects to

be in touch with each other but not overlapping. Based on this idea, the algorithm first excludes

object pairs that are not in contact. To do this, it computes the clear space distances between the

bounding boxes of each pair of objects in the X, Y, and Z directions and sums the values. If the sum

𝑑𝑏𝑏𝑥 is greater than zero, the two objects cannot be in contact (see Lines 15 to 17 in Algorithm 1).

The goal of this step is to filter out impossible object pairs to speed up the process, thus efficiency is

a key factor. We use bounding boxes rather than mesh geometry, as bounding boxes contain fewer
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Algorithm 1 Adjacency and Host relationship generation
Input: Object geometry list: 𝐿𝑔𝑒𝑜;
Predefined geometry volume overlapping tolerance 𝜖𝑣𝑜𝑙 ;
Predefined geometry distance tolerance 𝜖𝑑𝑖𝑠;
Predefined bounding box overlapping tolerance 𝜖𝑏𝑏𝑥
Output: Object relationship list 𝐿𝑟𝑒𝑙

1: function TopologyXYZ(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2)
2: # Project objects into one axis, calculate the topology
3: for 𝑎𝑥𝑖𝑠 in [x, y, z] do
4: 𝑟𝑒𝑙 ← TopologyInAxis(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2, 𝑎𝑥𝑖𝑠) #𝑟𝑒𝑙 would be "Contain", "ContainedIn",

"ExactOverlap", etc.
5: 𝑅𝑒𝑙𝑥𝑦𝑧 append 𝑟𝑒𝑙

6: end for
7: return 𝑅𝑒𝑙𝑥𝑦𝑧
8: end function
9: function BBXOverlap(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2)

10: 𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← OverlapBBXVol(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2)
11: 𝑉𝑠 ← SmallerBBXVol(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2)
12: 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← 𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝 / 𝑉𝑠

13: return 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝

14: end function
15: for 𝑂𝑏 𝑗1 and 𝑂𝑏 𝑗2 in 𝐿𝑔𝑒𝑜, 𝑂𝑏 𝑗1! = 𝑂𝑏 𝑗2 do
16: 𝑑𝑏𝑏𝑥 ← | Δ𝑋 | + | Δ𝑌 | + | Δ𝑍 |
17: if 𝑑𝑏𝑏𝑥 == 0 then # Use bounding box to speed up
18: 𝑑𝑔𝑒𝑜 ← GeometryDistance(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2)
19: if 𝑑𝑔𝑒𝑜 ≤ 𝜖𝑑𝑖𝑠 then
20: 𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← GeometryOverlapVol(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2)
21: if 𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≤ 𝜖𝑣𝑜𝑙 then
22: 𝑅𝑒𝑙𝑥𝑦𝑧 ← TOPOLOGYXYZ(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2)
23: 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← BBXOVERLAP(𝑂𝑏 𝑗1, 𝑂𝑏 𝑗2)
24: if 𝑅𝑒𝑙𝑥𝑦𝑧 == [’Cn’*, ’Cn’, ’Cn’] then
25: 𝑟𝑒𝑠← [𝑂𝑏 𝑗1, "hosting", 𝑂𝑏 𝑗2]
26: else if 𝑅𝑒𝑙𝑥𝑦𝑧 == [’CdIn’*, ’CdIn’, ’CdIn’] then
27: 𝑟𝑒𝑠← [𝑂𝑏 𝑗1, "hosted", 𝑂𝑏 𝑗2]
28: else if 𝑅𝑒𝑙𝑥𝑦𝑧 == [’Cn’, ’Cn’, ’CdIn’] and 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≥ 𝜖𝑏𝑏𝑥 then
29: 𝑟𝑒𝑠← [𝑂𝑏 𝑗1, "hosting", 𝑂𝑏 𝑗2]
30: else if 𝑅𝑒𝑙𝑥𝑦𝑧 == [’CdIn’, ’CdIn’, ’Cn’] and 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≥ 𝜖𝑏𝑏𝑥 then
31: 𝑟𝑒𝑠← [𝑂𝑏 𝑗1, "hosted", 𝑂𝑏 𝑗2]
32: else
33: 𝑟𝑒𝑠← [𝑂𝑏 𝑗1, "adjacent", 𝑂𝑏 𝑗2]
34: end if
35: 𝐿𝑟𝑒𝑙 append 𝑟𝑒𝑠

36: end if
37: end if
38: end if
39: end for

* ’Cn’ is ’Contain’;’CdIn’ means ’ContainedIn’20 Wang, October 5, 2023



points for computation. Moreover, calculating the distance in one dimension, 𝑑 (𝑝, 𝑞) = |𝑝 − 𝑞 |, is

computationally faster than in three dimensions, 𝑑 (𝑝, 𝑞) =
√︁
(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + (𝑞3 − 𝑝3)2.

Only filtering for objects that may be in contact, the algorithm calculates the exact geometry distance

of the objects and proceeds if the exact geometry distance is close to zero (Lines 18 to 19). Next,

the algorithm calculates the overlapped volume of the object geometries and continues only if the

overlapped volume is close to zero, indicating that the objects are not overlapping (Lines 20 to 21).

By applying these checks, the algorithm filters out any irrelevant object pairs, leaving only those

that are touching but not overlapping.

The latter part of the algorithm assigns relationships by evaluating the two features, the bounding

box topological relationships and the overlapped volume ratio (𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝) (Lines 22 to 23). If all

three topological instances are "Contain" or "ContainedIn," "hosting" or "hosted" relationships are

directly assigned to the pair of objects (Lines 24 to 27). In situations where there are two "Contain"

or "ContainedIn" instances, the algorithm considers the 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 value to assign "hosting" or

"hosted" relationships (Lines 28 to 31). The bounding box overlapping tolerance 𝜖𝑏𝑏𝑥 is set to

0.7 after calculating pairs of hosting relationship objects. All remaining pairs are assigned the

"adjacency" relationship.

Results

We manually labeled the relationships between objects in the design model as the ground truth

data to evaluate the predicted relationships quantitatively. Specifically, we examined each object

in the apartment model and assigned possible relationships to object pairs, either Adjacency or

Host. Their IDs and the labeled relationship were recorded as the ground truth. The output from

Algorithm 1 is a list that contains pairs of object IDs and the predicted relationships.

Correctness criteria were adopted to evaluate the performance of the algorithm. Accuracy,

defined as the ratio of correct predictions to total predictions, provides a direct view of the model’s

ability. However, it does not consider the impact of different classes, necessitating the use of

Precision, Recall, and F1 scores for a more comprehensive evaluation. Precision measures a

model’s capacity to accurately identify relevant objects by calculating the ratio of true positives
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Fig. 6. Results of Algorithm 1 ((a) Results of algorithm development, (b) Results of test).

over all positives. In contrast, Recall is the ratio of true positives over all relevant instances. The

F1 score, integrating both Precision and Recall, is regarded as a comprehensive metric that reflects

the model’s predictive ability across varying classes.

The results of Algorithm 1 are presented in Fig. 6. It shows that all correctness criteria on Apt 2

reach a score of 1, indicating that all predicted relationships are correct and there are no missing or

extra predictions. Since Apt2 was used to fine-tune the algorithm throughout its development, the
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results may not reflect the actual performance of the algorithm. Therefore, we introduced another

model, Apt8, as blind data that were not involved in algorithm development, to test the algorithm.

The accuracy for Apt8 reaches 0.99, and its Precision, Recall and F1 scores are equal to or greater

than 0.97. The confusion metrics reveal one error, where an Adjacency instance is incorrectly

labeled as Host. In sum, the results from both Apt2 and Apt8 demonstrate that the algorithm has

the balanced ability to correctly predict both Adjacency and Host relationships between building

objects.

Moreover, we adopted the processing time as the criterion for evaluating efficiency, which

includes the time that the algorithm is executing but excludes the time spent reading and writing

data. The processing time in total is around 3.5 minutes for Apt2, which means that it takes 1.8

seconds on average to generate a relationship instance. Similarly, it took around 1.8 seconds to

generate one relationship on average in Apt8.

The algorithm has two primary advantages. First, it takes object geometries as the only input,

making it generic to various scenarios. Second, it has the ability to predict the Adjacency and

Host relationships correctly. However, researchers need to adjust three predefined tolerance values

manually to achieve better performance, and these are a limitation of the procedure.

5.4 Exp 3: Object generation

Exp 3.1: Level, building, site generation

Building spatial structure typically includes sites, buildings, levels (stories), and other objects

within those levels. While using a design editor, users are not obligated to create spatial structure

objects, as they are often well prepared by the software or included in the templates. However,

for generic semantic enrichment, the input is physical object geometries, making it necessary to

recover the essential building spatial structure.

In this study, we devised a set of rules for recovering spatial structure objects from levels to the

building and to the site. First, we merged floors with the same maximum value in the Z-axis (𝑍𝑚𝑎𝑥),

and recomputed their areas. Then, we grouped floors by their 𝑍𝑚𝑎𝑥 values with a height threshold

set at 1.5 meters. It indicates that whenever the distance of any floors’ 𝑍𝑚𝑎𝑥 values is larger than the
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threshold, the two floors were separated into different groups. Also, each group represents a level

containing the clustered floors. We created an equivalent number of level objects to the number of

groups. Furthermore, within each group, we assigned the 𝑍𝑚𝑎𝑥 value from the largest floor as the

elevation of that level. Physical and virtual objects on the level are connected to the level object

(Ying et al. 2019), through the ’bot:containsElement’ relationship.

Note that we made the assumption that there is only one building on the site, which allowed us

to generate a building object and a site object directly. All levels were then linked to the building,

and the building was connected to the site with the ’bot:containsElement’ relationship.

Exp 3.2: Space generation and classification

Spaces play a crucial role in building semantics used for simulation, quantity take-off, and so

on (Ying and Lee 2021). Typically, users manually create and label spaces. Certain software,

like Revit, provides a function to automatically separate a space; however, it still requires users to

label or input the space type manually. Previous studies explored space type prediction by using

rule-based and deep learning techniques (Bloch and Sacks 2018; Wang et al. 2022b), with the

prerequisite that spaces had been created.

We designed a two-step process to 1) create the missing space objects and 2) classify the space

types as shown in Fig. 7. A rule-based algorithm is constructed to leverage floors and walls to

generate space objects. A GNN model follows to predict the space types. Space nodes are generated

in the enriched graph, and space geometries are created and stored as PLY files. The predicted

space types are inserted into the space nodes as attributes.

In Algorithm 2, we developed a space generation method by leveraging the fact that internal

rooms within a building should be closed by walls and floors. First, we identify walls within the

same level. The walls are then joined and projected onto the XY plane, forming a 2D contour map

of all walls within the storey. Following that, the algorithm identifies every closed polygon within

the contour map by searching for sets of connected paths forming closed loops that indicate the

footprints of room spaces. Walls that enclose the footprints are recorded as the bounding objects

to the spaces. Next, we generate a temporary space geometry by extruding the footprint polygons
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Fig. 7. Pipeline of space object generation and space type classification.

Algorithm 2 Space generation
Input: Object geometry list: 𝐿𝑔𝑒𝑜 ;
Object types and attribute table: 𝐷;
Predefined geometry distance tolerance: 𝜖𝑑
Output: Space object geometry list: 𝐿𝑠𝑝𝑎𝑐𝑒;
Object relationship list 𝐿𝑟𝑒𝑙

1: for walls on the same level do:
2: 𝐺𝑤𝑎𝑙𝑙𝑠 ← Concatenate(𝐿𝑜𝑏 𝑗 , walls) # The union of walls at the same level
3: 𝑃𝑤𝑎𝑙𝑙 ← Project(𝐺𝑤𝑎𝑙𝑙𝑠, XY) # Project into the XY plane
4: 𝐿𝑐𝑙𝑜𝑠𝑒 ← PolygonsClosed(𝑃𝑤𝑎𝑙𝑙) # Find closed polygons and save in a list
5: for 𝑝𝑐𝑙𝑜𝑠𝑒 in 𝐿𝑐𝑙𝑜𝑠𝑒 do
6: 𝐿𝑏𝑜𝑢𝑛𝑑𝑤𝑎𝑙𝑙 ← ConsistObject( 𝑝𝑐𝑙𝑜𝑠𝑒) # Return walls that consist the closed polygon
7: ℎ𝑡𝑒𝑚𝑝 ← 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐻𝑒𝑖𝑔ℎ𝑡 (𝐿𝑏𝑜𝑢𝑛𝑑𝑤𝑎𝑙𝑙)
8: 𝐺 𝑡𝑒𝑚𝑝 ←CreateSpaceFromPolygon(𝑝𝑐𝑙𝑜𝑠𝑒, ℎ𝑡𝑒𝑚𝑝) # Create a temporary space by using

an estimated height for finding out bounding floors
9: for 𝐺 𝑓 𝑙𝑜𝑜𝑟 in 𝐿𝑔𝑒𝑜 do

10: 𝑑 ← GeometryDistance(𝐺 𝑡𝑒𝑚𝑝, 𝐺 𝑓 𝑙𝑜𝑜𝑟)
11: if 𝑑 < 𝜖𝑑𝑖𝑠 then # Find bounding floors
12: 𝐿𝑏𝑜𝑢𝑛𝑑𝑓 𝑙𝑜𝑜𝑟 append 𝑓 𝑙𝑜𝑜𝑟

13: end if
14: end for
15: 𝐿𝑏𝑜𝑢𝑑 ← 𝐿𝑏𝑜𝑢𝑛𝑑𝑤𝑎𝑙𝑙 + 𝐿𝑏𝑜𝑢𝑛𝑑𝑓 𝑙𝑜𝑜𝑟

16: 𝐺𝑠𝑝𝑎𝑐𝑒 ← CreateSpaceFromBoundGeometry( 𝐿𝑏𝑜𝑢𝑑) # Concatenate bounding walls
and floors to form a closed internal space as the space object

17: 𝐿𝑠𝑝𝑎𝑐𝑒 append 𝐺𝑠𝑝𝑎𝑐𝑒

18: 𝐿𝑟𝑒𝑙 append SpaceRel(𝐺𝑠𝑝𝑎𝑐𝑒, 𝐿𝑏𝑜𝑢𝑑)
19: end for
20: end for
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in the Z direction of increasing elevation with a height that most walls share. This temporary

geometry is used to identify the space bounding floors by calculating the geometry distance to

find the nearest lower and upper floor objects. After identifying the bounding walls and floors, we

combine all bounding objects to create an internal room as the generated space. We also save its

exact geometry and register the relationships between each space and all its neighboring objects.

In the second step, we predict the types of spaces generated by a GNN-based room type

classification method (Wang et al. 2022b). To accomplish this, we extract all space nodes from the

enriched graph to form a property graph for GNN. Each node in the property graph represents an

unclassified space object, while the edges in the graph represent the various relationships between

the spaces. We apply feature engineering to compute the characteristics from relationships, which

are then turned into node and edge feature metrics. Next, we feed the property graph into a

customized GNN model, SAGE-E (Wang et al. 2022b), for node type classification. The predicted

results are space types such as kitchens, bedrooms, balconies, toilets and so on. These labels are

inserted into the graph as space node attributes.

The results indicate that all desired space objects in an apartment unit were successfully created

in step 1, and the GNN algorithm managed to classify five out of seven spaces correctly in

step 2. It is worth noting that three relationships are required in the GNN model to compute

features during the process of property graph generation: wall connection, door connection, and

virtual wall connection. While wall and door connections can be determined automatically by

examining existing objects, virtual wall connections still require human labeling, making this step

semi-automated in this study.

5.5 Exp 4: Attribute computation

We identified three main categories of object attributes: location-related, dimension-related,

and semantic-related. The Location attributes of an object describe its position information,

such as its height offset from a specific level. The buildingSMART Data Dictionary (bSDD) for

defining BIM objects and their attributes rarely includes location-related attributes for common

physical building objects (buildingSMART 2022). The IFCtoLBD converter also abandons all
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location-related attributes during compilation (Bonduel et al. 2018). This is because that location-

related attributes can be evaluated from exact geometry and are not frequently used. Thus, we

recommend retrieving object geometries and computing location-related attributes when specific

location information is needed.

The dimension attributes describe the size and shape of an object. In this study, we developed

a tool to compute dimension-related attributes, including height, area, volume, width, thickness,

perimeter, length, slope, and width. All of the listed attributes can be measured from the exact

geometry and assigned with object types.

Semantic attributes relate to the object’s function or purpose. The object type from Exp 1 is

a kind of semantic attribute. In additional, hosting and adjacent attributes from Exp 2, and space

bounding from Exp 3 are also semantic attributes but they are represented as relationships in the

graph rather than node attributes.

5.6 Enrichment results

The output of each enrichment tool was organized into a graph-based CDE, and the enriched

graph is presented in Fig. 8, where nodes represent building objects named after their types and

unique IDs, and edges represent the relationships with directions. Attributes, including computed

features and geometry file paths, were attached to corresponding nodes but were hidden in the

GraphDB visualization for better readability.

The enriched graph provides a representation of the building’s spatial structure, from the site

to the objects contained in each storey, as illustrated in Part 1 of Fig. 8. It also explicitly shows

the inferred relationships between building objects. For example, Part 2 depicts the bidirectional

adjacentTo relationships among two walls and the directed hosting/hosted relationships between

a door and a wall. Furthermore, space objects are connected to their bounding walls and floors

with the adjacentElement relationship, and linked to their corresponding external geometry files as

displayed in Part 3. Part 4 depicts the attributes attached to an arbitrary wall node, which include

dimension-related properties as well as a retrievable file directory from which users can access its

exact geometry conveniently.
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Fig. 8. Enriched graph of Apt2. (1. Building spatial structure: site, building, story. 2. Generated
adjacentTo and hosting/hosted relationships. 3. A generated Space node and relationships linked
to its bounding objects. 4. Part of the attributes of a wall and its geometry file address. For
readability, some relationships are hidden.)

5.7 Evaluation and comparison

This study initially evaluates the number of nodes and edges within a graph (TABLE 3).

Additionally, we provide a more detailed content comparison for the selected graphs, specifically

focusing on the presence of certain types of data (Fig. 9).

Three Apt2 graphs were obtained for comparison. The first graph was generated by the generic

semantic enrichment approach presented in this study. The second graph was constructed using
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the CBIM-Revit parser, which retrieves all accessible information from the Revit database using

Dynamo APIs and organizes it into an LBD graph CDE (Wang et al. 2023a). It keeps all accessible

raw information from the Revit environment directly, which can partially showcase the data richness

in the design software. The third graph was created by the IFCtoLBD parser after exporting the

Apt2 model from Revit as an IFC file.

We first compared the data quantity to understand the richness of data in each graph as listed in

TABLE 3. The first three criteria evaluate RDF graph features using the number of triples, nodes,

and edges. The results show that the enriched graph has higher values for the three criteria than the

other two graphs. Since many of the object attributes are ignored during the compilation process,

the IFCtoLBD graph contains fewer attributes. Additionally, the exported data from Revit contain

little edge-related information.

The last three criteria are related to property graphs which are computed by converting the

RDF graphs into property graphs. A dense graph in mathematics means the number of edges is

close to the maximal edge numbers, in which case each node is linked to all other nodes. At the

opposite extreme, a graph with few edges has a density close to zero and is referred to as a sparse

graph. Here, the graph density of the enriched graph is three times higher than the other two,

indicating that the nodes in the enriched graph are more tightly connected. The enriched graph

also demonstrates a higher value regarding the average node degree, indicating that the nodes it

contains possess more links on average compared to nodes from the other two graphs.

TABLE 3. Data quantity comparison among BIM graphs.

Criterion Enriched graph Revit-Dynamo graph IFCtoLBD graph Note

Num of triples 1369 1173 536 The IFCtoLBD graph has fewer attributes
Num of nodes 51 44 45 The IFCtoLBD graph has one more Building node than the Revit-Dynamo graph
Num of edges 417 52 101 Original Revit exported data contain few relationships
Graph density 0.1631 0.05759 0.0556 Value 0 represents a graph without edges and 1 a complete graph
Average node degree 8.1569 2.4186 2.4444
Avg. node attributes 21 25 11 The Revit-Dynamo graph contains full attributes, most of which are location related.

With regards to object attributes, most are omitted by the IFCtoLBD graph which excludes area,

host ID and so on. Most of the listed attributes exist in the exported IFC file while they are lost

during the conversion to the IFCtoLBD graph. This might be due to the incomplete development
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TABLE 5. Data content comparison among BIM graphs.

Enriched graph Revit-Dynamo graph IFCtoLBD graph

1. Object

Physical

Wall 22 22 22
Floor 8 8 8
Door 6 6 6
Window 5 5 5

Virtual

Site 1 1 1
Building 1 × 1
Level 2 2 2
Space 6 △ △

2. Relationship

Essential

Type 92 × 46
BOT:hasbuilding 1 × 1
BOT:hasStory 2 × 2
BOT:containsElement 41 41* 41

Semantic

CBIM:adjacentTo 208 × ×
CBIM:hosting 11 11* 11**
CBIM:hostedby 11 11* 11**
BOT:adjacentElement 51 × ×

3. Attribute

Dimension

Area ✓ ✓ ×
Volume ✓ ✓ ×
Height ✓ ✓ ✓
Width ✓ ✓ ✓
Perimeter ✓ ✓ ×
Thickness ✓ ✓ ×
Slope ✓ ✓ ×
Length ✓ ✓ ×

Other

Category ✓ ✓ ✓
Type ✓ ✓ ✓
Host ID ✓ ✓ ×
Structural usage × ✓ ×
Room bounding*** ✓ × ×
Base is attached ✓ ✓ ×
Top is attached ✓ ✓ ×

4. Object geometry Link to geometry files Link to geometry files None

* In Revit graphs, "hosting/hosted" and "containsElement" relationships are referred by attributes.
** IFCtoLBD graphs use "bot:hasSubElement" instead of "cbim:hosting/hosted".
*** Room bounding here refers to the objects that bound a space.
Legend: Values are the number of this data. ✓ means the existence of this data. × stands for the lack of this data.
△ means this information does not exist by default, but it presents in the graph if users manually generate it in BIM editors.
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Fig. 9. Data content comparison among BIM graphs.

of the converter (the authors planned to explain the attribute mapping process in a future study

– Bonduel et al. (2018)). Lastly, object geometries are preserved in both the enriched and Revit

graphs where their file paths are stored as object attributes. However, the geometry information is

omitted deliberately during the compilation process of the IFCtoLBD graph to reduce graph sizes

(Pauwels and Roxin 2017; Bonduel et al. 2018).
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From the data content perspective, the enriched graph stands out for having the most listed data

types, encompassing both physical and virtual objects, relationships, and attributes. The Revit-

Dynamo graph contains rich attributes but lacks meaningful object relationships. The IFCtoLBD

graph, while it preserves the complete building spatial structure objects, falls short in terms of

preserving attributes and geometries. Furthermore, both the Revit and IFCtoLBD graphs lack

semantics, like the space nodes, and the adjacent/bounding relationships, as these data are inferred

by specific enrichment tools rather than generated by design software.

6 VALIDATION EXAMPLES

This study explores two applications using semantic enrichment. The first is generating BIM

models from pure geometry models (Section 6.1), and the second addresses interoperability issues

across BIM platforms and software (Section 6.2). These two examples focus on a single discipline,

architectural design. Sharing and coordinating models across disciplines involves tackling not

only semantic and interoperability issues but also coordination challenges, which are discussed in

Section 7.2.

6.1 Example 1: Enriching pure geometry to BIM models

In the initial design phase, architects often complete the conceptual design in 3D geometry de-

sign software like SketchUp. These software tools provide a flexible environment for creative work

but typically contain only geometry information. As the project progresses, participants require

more design semantics instead of just pure geometries. Consequently, in practice, participants must

manually reconstruct a BIM model based on the pure geometries in a BIM modeling software. This

process can be time-consuming and cumbersome.

We propose a SE approach to reconstruct a BIM model using geometries exported from 3D

design software, as illustrated in Fig. 10. In theory, this approach is applicable to any geometry

design software, as long as it supports the export of object geometries, and to any BIM software

that provides APIs for creating BIM objects. For demonstration purposes, we used SketchUp 2023

for geometry design and Revit 2022 as the BIM software.
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Fig. 10. Process of enriching pure geometry into BIM models.
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An apartment model was designed in SketchUp 2023. Using the default export function, every

solid object was exported as a geometry file. These object geometries were then fed into the SE

process. We adopted all developed SE tools to enrich possible building information and organized

the results into a graph-based CDE, as shown in the right green box of Fig. 10. The database

consisted of two parts: a graph layer for representing building objects, relationships, and attributes,

and an extension layer for storing geometries independently.

Following this, a Reconstructor was used to rebuild BIM objects in Revit 2022 using the

enriched semantics. The Reconstructor, developed with Dynamo and Python, retrieves the required

object information from the graph-based CDE and inputs it into Dynamo functions for generating

objects (Wang et al. 2023b). For example, creating a window using Dynamo requires the hosted

object, the location, and the window type. The Reconstructor searches for the needed information

from the CDE to satisfy the function for generating a new window object inside Revit 2022. During

this reconstruction process, all types of generated semantics, including object types, relationships,

and attributes, are utilized.

Compared to the original design, the BIM model in Revit 2022 contains not only geometries

but also object semantics. Furthermore, the reconstructed model includes additional virtual objects

generated by SE tools.

6.2 Example 2: Facilitating interoperability

Designers often encounter situations where they are unable to access models from different

software applications. Even within the same vendor environment, there can be a chance that an

earlier version of the software cannot read models created by a newer version of the same tool. A

novel approach proposed in this study is to utilize the generated semantics and software APIs to

address interoperability issues, as illustrated in Fig. 11.

The proposed approach consists of three steps. First, object geometries are exported from one

BIM software. Next, semantic enrichment tools are executed sequentially to enrich the models,

which are organized as a graph-based CDE. Third, a Reconstructor program runs to query essential

information from the graph-based CDE and reconstruct models in another BIM software.
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Fig. 11. A novel approach for facilitating interoperability issues by semantic enrichment.

To test this approach, we selected an apartment unit from an example project released by

Graphisoft (2023). It is a typical two-bedroom apartment designed using ArchiCAD 26 software.

Object geometries were exported from ArchiCAD 26 and fed into the constructed SE tools. The Dy-

namo Reconstructor used the necessary information to rebuild a model in Revit 2023, as illustrated

in Fig. 11.

Similarly, we tested the approach for downgrading Revit models to earlier versions. An archi-

tectural apartment model was designed using Revit 2023, and its object geometries were exported

as PLY files. Through the enrichment process, a model was reconstructed in an earlier-version,
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Revit 2022.

TABLE 4. Object quantity comparison between the original model in Revit 2023 and the recon-
structed model in Revit 2022.

Object type
Object quantity

Revit 2023 Revit 2022

Site 1 1
Building 1 1
Story 2 2
Door 8 8
Slab 3 3
Wall 19 19
Window 10 10
Space 0 8

To evaluate the results, we exported the object quantities from the two Revit models and

compared them in TABLE 4. The table shows that the reconstructed model in Revit 2022 has the

same number for each object type, except that it has eight additional space objects. Furthermore,

each object pair in the two Revit models was compared manually, examining their locations,

dimensions, and object types. Our findings revealed that the reconstructed model aligns accurately

with the original design. It is important to note that our approach generates new objects in another

software instead of merely duplicating information. As a result, the unique or global IDs from the

two models do not match.

Compared to the file-based approach, the SE approach for interoperability offers more compre-

hensive semantics. For example, 3D space geometries, which are difficult to generate using existing

BIM software, can be automatically constructed by SE tools, facilitating downstream simulations.

Furthermore, the SE approach shifts data storage from a file-based level to an object-based level,

enabling more advanced applications such as version control (Esser et al. 2022).

7 DISCUSSION
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7.1 Strengths and weaknesses

This study exhibits several strengths in the proposed concept, tools, and applications. First,

the framework defines four graph semantic enrichment tasks and a process control mechanism for

operating the tools developed for those tasks in a flexible flow sequence.

The second strength lies in the five practical tools that were developed. They achieve the goals

of classifying apartment objects, determining host and adjacent relationships, generating implicit

objects and computing object attributes with efficient and accurate performance.

Third, the application on the generated graph-based CDE showcases an innovative approach to

enrich designs modeled with geometry alone, and ease the interoperability problem. The approach

does not rely on vendor proprietary schemas and it requires only object geometries, which can be

exported from design software with accessible formats.

However, this study also faces certain limitations with respect to its tools and application

scenarios. First, the developed rule-based algorithms incorporate several threshold values that need

to be tuned by users to optimize performance. Second, the implemented tools have been designed

specifically for apartment scenarios. This requires efforts from the community and commercial

companies to develop practical tools for wider use case scenarios.

Moreover, this experiment is designed for LOD 200 models. When moving to a higher LOD

model, the situation could be more complex and it requires further research. There should be a

more detailed representation of BIM objects. For instance, layers within walls should be defined

when rising from LOD 200 to LOD 300. This might require the introduction of wall layer nodes

in the graph that aggregate into a wall node. Furthermore, specific attributes need to be inferred,

such as the material and the thermal transmittance. This poses another feasibility problem, i.e.,

whether we can use object geometries alone to infer semantic attributes like materials. To the best

of our knowledge, it is possible to adopt machine learning to predict materials, as there are potential

patterns (e.g., beam cross-section shapes) that can be used as features for learning.
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7.2 Across-domain coordination

The exchange of models across disciplines presents a more complex challenge than a typical

interoperability problem. Due to the federated nature of the industry, each discipline holds its

own specific model and does not take on design models from other disciplines directly. Engineers,

for example, prefer to reconstruct structural models based on architectural designs. Successful

collaboration across domains should deliver data accurately and interoperably and coordinate

objects that represent different meanings based on disciplines. While the successful application of

generic semantic enrichment can address the first requirement of data accuracy and transparency,

there is still a need for a coordination method.

The Cloud-based BIM (CBIM) concept aims to link multidisciplinary BIM graphs with spatial,

functional, and constraint relationships and implement intelligent applications on the linked CBIM

meta graph to enhance across-domain design coordination (Sacks et al. 2022). One successful

application of the CBIM concept is enabling change propagation across architectural and structural

models. This involves placing designs in one architectural software and one structural editor

independently and connecting them to a cloud server. Whenever a model is modified, the cloud

server can analyze the change and propagate either geometry reference or correction commands to

the affected discipline to assist across-domain design coordination (Wang et al. 2022a). Generally,

CBIM provides an object-level solution to enhance collaboration across disciplines.

One possible direction to solve the across-disciplinary coordination problem is to combine the

synergy of generic semantic enrichment and the CBIM concept. Generic semantic enrichment

offers an interoperable, accurate, and rich graph-based data repository that uses only object geome-

tries regardless of disciplines and software schemas. CBIM can then be implemented to instantiate

relationships to link these domain-specific graphs together, forming a linked meta graph. Coordi-

nation applications can be placed on top of the linked graphs to achieve information exchange and

change propagation. Together, they construct a smooth and close collaboration future.

8 CONCLUSIONS

This study explores inferring BIM semantics from object geometries and compiling the enriched
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data to BIM graphs for simulations and analyses. The main findings and contributions are as follows:

Accomplished four SE tasks by developing tools and datasets. We developed five tools

to achieve four types of SE tasks. For relationship determination, we proposed a novel geometry

computation algorithm to instantiate host and adjacency relationships. For object generation, we

devised two rule-based methods to generate spatial structure objects and space objects. In terms of

object classification, we constructed a dataset and eight machine learning algorithms for common

apartment object classification. Finally, we developed a method for attribute computation.

A framework of generic semantic enrichment. We defined four basic types of semantic

enrichment tasks within the BIM graph context and proposed the process control mechanism for

executing a set tools in a proper sequence.

Intelligent applications using generic semantic enrichment and graph representation of

BIM. The first application involves enriching pure object geometries from SketchUp into a BIM

model in Revit. The second application addresses the interoperability problem by bridging different

BIM platforms and software, such as reconstructing ArchiCAD models in Revit.

Moreover, we evaluated BIM graphs from the perspectives of data feasibility and quantity

to measure the data richness of BIM graphs. We also discussed the synergy of generic seman-

tic enrichment and the CBIM concept for enabling a wider range of across-domain intelligent

applications.

In response to the presented research questions, we have demonstrated the feasibility of recon-

structing a graph-based CDE from pure object geometries to enable intelligent applications, in the

context of residential apartments at LOD 200. Extending to other scenarios may involve a similar

process and requires further testing and validation. Moreover, this study establishes the theory basis

for graph semantic enrichment, and provides another direction for solving BIM problems at the

object level. We believe that this study can inspire readers to develop diverse semantic enrichment

tools and deploy more smart applications on the BIM graph.
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