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Abstract— Autonomous vehicles benefit from correct maps
to participate in traffic safely, but often maps are not verified
before their usage. We address this problem by providing an
approach to verify and repair maps automatically based on a
formalization of map specifications in higher-order logic. Unlike
previous work, we provide a collection of map specifications.
We can verify and repair all possible map parts, from geometric
to semantic elements, e.g., adjacency relationships, lane types,
road boundaries, traffic signs, and intersections. Due to the
modular design of our approach, one can integrate additional
logics. We compare ontologies, answer set programming, and
satisfiability modulo theories with our higher-order logic verifi-
cation algorithm. Our evaluation shows that our approach can
efficiently verify and repair maps from several data sources
and of different map sizes. We provide our tool as part
of the CommonRoad Scenario Designer toolbox available at
commonroad.in.tum.de.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

Maps used for autonomous driving are usually created
from sensor data (e.g., vehicle cameras or satellite im-
ages), which can be noisy, imprecise, or incomplete. These
measurement errors are inevitably propagated in various
processing steps and create errors in the generated maps if
no verification and repairing methods are applied. Possible
errors are intersecting lane boundaries, incompatible lane
types, or wrong adjacency relationships. Even if the created
maps are error-free, processing the maps can introduce
errors, e.g., if the map is converted into another format
or a part of a large map is extracted. It is essential that
the overall map toolchain complies with quality standards
and produces the expected results. Since maps are usually
provided by external data sources, verifying maps based on
formal methods is often necessary. If a map verification finds
errors, it is desirable that these are repaired automatically.

Many autonomous vehicles rely on map data, e.g., to
obtain correct results from motion planning algorithms. For
example, if there is a small gap in the road network, a
planned motion could be valid, although it leaves the road.
Another example requiring correct maps is the evaluation of
traffic rule compliance [1], [2].

A. Related Work

Several map formats are used for autonomous driving in
research and industry. There exist map formats more suited
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for simulations like OpenDRIVE1 and for the application
in an automated vehicle like lanelet-based formats [3]–[5]
or NDS2. An overview of high-definition map elements,
formats, and applications for automated driving is provided
in [6]. Maps can be generated by vehicle sensors [7]–[9] or
aerial images [10], [11]. Open-source tools to create maps
manually and on a large scale are introduced in [12] and
[13], where the focus of the tools is the generation of test
scenarios for motion planning algorithms.

In map validation, the map obtained through sensors is
validated against a given map [14]–[16]. This is important
to detect whether an autonomous vehicle drives within its
operational design domain. In [17], the change of a map
over several years is evaluated, which shows the necessity of
map validation. The authors of [18] introduce terminology
and metrics for map deviations. In map verification, the map
is verified for consistency, i.e., whether the map fulfills a
specification. Note that map verification can also be applied
within a vehicle, e.g., if the map is provided during operation
by an external supplier and cannot be verified beforehand.

Subsequently, we focus on map verification. The au-
thors of [19] use answer set programming to model simple
topological road networks. Their approach can also repair
invalid road networks, e.g., wrongly placed speed limit signs.
OpenDRIVE maps are verified in [20], but the approach only
evaluates the existence of gaps between succeeding lanes
and successor/predecessor relationships. Ontologies are also
often used to model road networks [21]–[23]. Whereas in
[21] and [22], the focus is on reasoning about complete traffic
scenes, including other traffic participants, the focus in [23]
is on the verification and repairing of maps using ontolo-
gies. The approach in [23] consists of semantic enrichment,
violation detection, and violation handling but only covers
non-critical violations, e.g., attribute and topological errors.
The authors of [24] use description logic, which is often
combined with ontologies, to perform reasoning about road
networks.

In summary, there exist only a few approaches to verify
maps using logic, and those cover only a small set of avail-
able map elements. The used logics are mainly answer set
programming and ontologies requiring additional reasoning
tools.

B. Contributions
This paper presents an approach for verifying and repair-

ing maps based on formalized map specifications. Compared
to existing work, we provide the following contributions:

1https://www.asam.net/standards/detail/opendrive/
2https://nds-association.org
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1) map specifications formalized in higher-order logic
covering all map elements;

2) a modular map verification and repairing approach;
3) evaluation of different logics for the verification of

maps;
4) we verify and repair more than 600 publicly-available

maps; and
5) our framework is provided as an open-source tool

compatible with different map formats.
The remainder of this paper is structured as follows:

In Sec. II, we introduce the preliminaries and our overall
approach. Afterward, we formalize the road network in
Sec. III. Map verification and repairing are introduced in
Sec. IV and Sec. V. We evaluate our approach in Sec. VI
and conclude the paper in Sec. VII.

II. PRELIMINARIES AND OVERALL APPROACH

Subsequently, we introduce terminology, elements used
throughout the paper, and our overall approach.

A. Notation and Preliminaries

Let M, S, F , and E be the set of map elements, map
specifications, repairing functions, and map errors, respec-
tively. We combine specifications into groups g ∈ G, where
G is a priority queue of all groups. Each group g is described
by a tuple g := ⟨Sg,Fg⟩, where Sg ⊆ S and Fg ⊆ F are the
specifications and repairing functions of group g. The priority
queue G must be designed so that repairing does not influence
map elements of higher priority groups, e.g., repairing an
invalid polyline could influence adjacency relationships. We
describe an error e ∈ E by a tuple e := ⟨s,Me⟩, where
s ∈ S is the violated specification and Me ⊆ M are the
invalid map elements.

B. Overall Approach

To create a specification-compliant map from an invalid
map, we propose an iterative process consisting of map ver-
ification and repairing cycles. Our approach is summarized in
Alg. 1. The algorithm receives a map m and the specification
groups G as inputs. As long as the priority queue G is not
empty, the group with the highest priority is extracted and
the provided map is verified for the specifications associated
with the group (cf. lines 2 - 4). For each error, the repairing
procedure is executed with the relevant repairing functions
belonging to the specification group (cf. line 6). The repaired
map and the errors are provided to the user in the end so
that the user can solve the root cause of an error if required
(cf. line 10). We also support partitioning very large maps
into smaller ones for parallel verification and repairing of
partial maps. For simplicity, we neglect this in the presented
algorithm.

III. ROAD NETWORK

We base our road network specification on the Common-
Road map format. However, our approach and formalization
can be adapted to other map formats and several other

Algorithm 1 Verification and Repairing Process

Input: map m, specification groups G
Output: repaired map m, list of errors E

1: E ← ∅
2: while |G| > 0 do
3: ⟨Sg,Fg⟩ ← G .POP
4: E ′ ← VERIFY(m,Sg) ▷ Sec. IV
5: for each e ∈ E ′ do
6: m← REPAIR(e,m,Fg) ▷ Sec. V
7: end for
8: E ← E ∪ E ′
9: end while

10: return m, E

formats can be converted to our representation [13]. Subse-
quently, we introduce relevant elements of our road network.
Fig. 1 shows an intersection with different road network
elements. The road network elements are also summarized
in Tab. I. We use the notation □̂ for functions accessing the
variable □ of a road network element, e.g., the id of an
element l can be accessed via îd(l).

A. Geometric Elements

The fundamental elements within our map representation
are vertices. A vertex is a vector v = [x, y]T ∈ R2

representing a point in the Cartesian coordinate system. We
restrict our formalization to the two-dimensional space since
that is mainly used for motion planning of autonomous
vehicles. However, our approach can easily be extended
to the three-dimensional space. We use vertices to model
polylines, where a polyline is a finite sequence of vertices
(v0, ..., vi, ...), i ∈ N≥0, vi ∈ R2. The set of polylines is
denoted as P .

B. Lanelet and Area

The sets L, AR, Y , and LM denote
the set of lanelets, areas, lanelet types (e.g.,
urban, interstate, rural, access ramp), and line markings
(e.g., dashed, solid), where L,AR ⊂ M. A lanelet is a
small drivable road segment defined by two polylines [3]
and is specified by the elements introduced in Tab. I. If a
element is not present, it is set to ∅.

To model drivable spaces which cannot be represented by
lanelets, we use areas [5, Sec. IV.A], whose elements are
introduced in Tab. I. Fig. 1 shows an area that is specified
by four boundaries and fills the gap between several lanelets.

C. Traffic Sign, Traffic Light, and Stop Line

The sets T S , T SE , T ST , T L, T LD, T LC, U , and
SL denote the set of traffic signs, traffic sign elements,
traffic sign types (e.g., MAX SPEED or U TURN), traffic
lights, traffic light directions, traffic light colors, Unicode
characters, and stop lines, where T S, T L,SL ⊂ M. The
elements of traffic signs, traffic lights, and stop lines are
listed in Tab. I. A single traffic sign can be composed of
several elements and their associated values, e.g., a speed
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Fig. 1: A three-way intersection showing different CommonRoad elements.
Only a single incoming/outgoing group is highlighted. For simplicity, the
other two incoming/outgoing groups are not visualized. The crossing lanelets
form a crossing group referencing the visualized incoming/outgoing group.
Lanelet 1⃝ has a dashed thin line marking, references a traffic light, has
a stop line, and its left adjacent lanelet has the opposite driving direction.
The yellow lanelets reference a traffic sign.

limit and a stop sign. The traffic light cycle specification,
i.e., the switching times, is not part of a traffic light since it
is runtime-specific.

D. Intersection

An intersection consists of incoming, outgoing, and cross-
ing groups, where the different elements are defined in
Tab. I. The set of intersections, incoming groups, outgoing
groups, and crossing groups are denoted as I, IG, OG, and
CG, where I, IG,OG, CG ⊂ M. The different intersection
elements are also shown in Fig. 1.

E. Map Specifications

The map specifications are formalized using higher-order
logic (HOL). We use the logical operators ∨, ¬, as well
as the quantifiers ∀ and ∃. The implication a =⇒ b and
the and-operator a ∧ b are syntactic sugar and can be
rewritten as ¬a ∨ b and ¬(¬a ∨ ¬b), where a and b are
Boolean propositions or predicates. The cardinality of a set
is denoted as | · |. Due to space limitations, we only present
a subset of our formalized specifications. A complete list
can be found in our CommonRoad format definition un-
der commonroad.in.tum.de. For more fine-grained repairing
feedback, to repair the correct elements, we intentionally
separate specifications that could be combined (cf. Sec. III-
E.2 and Sec. III-E.3).

1) Unique IDs (UI): All road elements must have a
unique ID:

¬∃k1, k2 ∈M : k1 ̸= k2 ∧ îd(k1) = îd(k2). (1)

2) Successor Reference (SR): If a lanelet references a
successor lanelet, the ID of the lanelet must correspond to

TABLE I: Description of map elements.

Elements Description

Lanelet
id ∈ N≥0 ID of lanelet
lb, rb ∈ P polylines for left and right boundaries of lanelet
adjl, adjr ∈ N≥0 ID of left and right adjacent lanelet
dirl, dirr ∈ B Booelan value indicating whether left and right

adjacent lanelets have same driving direction
lml, lmr ∈ LM line marking type of left and right boundary
suc, pre ⊂ N≥0 IDs of successor and predecessor lanelets
ts, tl ⊂ N≥0 IDs of referenced traffic signs and lights
ty ⊂ Y lanelet types
sl ∈ N≥0 ID of stop line
ar ⊂ N≥0 IDs of adjacent areas

Stop Line
id ∈ N≥0 ID of stop line
p1 ∈ R2 start point of stop line
p2 ∈ R2 end point of stop line
lm ∈ LM line marking type of stop line

Area
id ∈ N≥0 ID of area
b ⊂ P polylines representing boundary
adj ⊂ N≥0 IDs of adjacent lanelets and areas
lm ⊂ LM line marking types
ty ⊂ Y types of area

Traffic Sign
id ∈ N≥0 ID of traffic sign
pos ∈ R2 position of traffic sign
el ⊂ T SE traffic sign elements belonging to traffic sign
Traffic Sign Element
st ∈ T ST traffic sign type
val ∈ (Z \ 0)× U value of traffic sign, e.g., concrete speed limit

Traffic Light
id ∈ N≥0 ID of traffic light
pos ∈ R2 position of traffic light
lm ∈ LM line marking type
dir ∈ T LD traffic light direction
col ⊂ T LC traffic light colors

Intersection
id ∈ N≥0 ID of intersection
incg ⊂ IG incoming groups of intersection
outg ⊂ OG outgoing groups of intersection
cros ⊂ CG crossings of intersection
Incoming Group
id ∈ N≥0 ID of incoming group
incl ⊂ N≥0 IDs of incoming lanelets
rg ⊂ N≥0 IDs of right outgoing lanelets
lg ⊂ N≥0 IDs of left outgoing lanelets
sg ⊂ N≥0 IDs of straight outgoing lanelets
outg ∈ N≥0 ID of outgoing group belonging to incoming group
Outgoing Group
id ∈ N≥0 ID of outgoing group
outgs ⊂ N≥0 IDs of lanelets belonging to outgoing group
Crossing Group
id ∈ N≥0 ID of crossing
cros ⊂ N≥0 IDs of lanelets belonging to crossing
incg ∈ N≥0 ID of crossed incoming group
outg ∈ N≥0 ID of crossed outgoing group

another existing lanelet:

∀l1 ∈ L : ∀lid2 ∈ ŝuc(l1) :

∃l2 ∈ L : l1 ̸= l2 ∧ îd(l2) = lid2 .
(2)

3) Successor Connection (SC): If two lanelets have a suc-
cessor/predecessor relationship, their initial and final vertices

https://commonroad.in.tum.de


(a) Parallel adjacency. (b) Merging adjacency. (c) Forking adjacency.

Fig. 2: Different adjacencies considered for the map specification and repairing.

must be equal:

∀l1, l2 ∈ L : îd(l2) ∈ ŝuc(l1) =⇒ lfin(l1) = lini(l2), (3)

where the functions lini(l) and lfin(l) return the initial and
final vertices of a lanelet l ∈ L. The equality of vertices is
determined by an element-wise comparison.

4) Potential Successor (PS): If the final vertices of a
lanelet and the initial vertices of another lanelet are equal,
they must have a successor relationship:

∀l1, l2 ∈ L : lfin(l1) = lini(l2) =⇒ îd(l2) ∈ ŝuc(l1). (4)

Specifications SC and PS are separated to provide detailed
errors for repairing, e.g., if specification SC is violated,
vertices must be repaired, whereas if specification PS is
violated, lanelet references must be repaired.

5) Adjacent Left Reference (ALR): If a lanelet has a left
adjacent reference, the ID of the lanelet must correspond to
another existing lanelet:

∀l1 ∈ L : âdjl(l1) ̸= ∅
=⇒ ∃l2 ∈ L : l1 ̸= l2 ∧ îd(l2) = âdjl(l1).

(5)

6) Adjacency to Left Parallel Lanelet in Same Driving Di-
rection (ALPS): Adjacent lanelets must share the adjacency
over their complete length. For more precise repairing, we
distinguish between parallel, merging, and forking adjacency
(cf. Fig. 2). Left parallel adjacent lanelets must share the
same boundary:

∀l1, l2 ∈ L :
(
l1 ̸= l2 ∧ âdjl(l1) = îd(l2) ∧ d̂irl(l1)

∧ adj type(l1, l2, parallel)
)

=⇒ l̂b(l1) = r̂b(l2),
(6)

where adj type(l1, l2, type) evaluates whether the two
lanelets l1 and l2 fulfill the requirements for the adjacency
defined by type ∈ {parallel,merge, fork}. The equality of
two polylines is determined by the element-wise comparison
of the vertices.

7) Left Merging Adjacency (LMA): If a lanelet references
a left merging adjacent lanelet, a) the final vertices of both
lanelets must be equal, b) the left initial vertex of the lanelet
and the right initial vertex of the merging lanelet must be
equal, and c) the right boundary of the merging lanelet must
be contained by the lanelet:

∀l1, l2 ∈ L :
(
âdjl(l1) = îd(l2)

∧ adj type(l1, l2,merge)
)

=⇒
(
lfin(l1) = lfin(l2)

∧ llini(l1) = lrini(l2) ∧ contains(l1, r̂b(l2))
)
,

(7)

where contains(l, p) checks whether the polyline p ∈ P
is completely contained by the lanelet l ∈ L, and llini(l)
and lrini(l) return the left and right initial vertex of lanelet
l. Forking adjacency can be defined analogously.

8) Area Adjacency (AA): An area must have at least one
adjacent lanelet or area:

∀a ∈ AR : |âdj(a)| ≥ 1

∧ ∀k ∈ âdj(a) : ∃e ∈ (L ∪ AR) : îd(e) = k.
(8)

9) Polylines Intersection (PI): The left and right boundary
of lanelets must not intersect:

∀l ∈ L : ¬polyline intersection(l̂b(l), r̂b(l)), (9)

where polyline intersection(lb, rb) evaluates whether the
two polylines lb, rb ∈ P intersect.

10) Exclusive Lanelet Types (ELT): Certain lanelet types
are exclusive, e.g., a lanelet must not be of type urban and
rural:

∀l ∈ L : ¬(urban ∈ t̂y(l) ∧ rural ∈ t̂y(l)). (10)

11) Distance between Lanelet and Traffic Sign (DLTS):
A traffic sign must be referenced by at least one lanelet.
The distance between the lanelet and the traffic sign must be
smaller than dts, where dts ∈ R≥0 is a threshold specifying
the maximum distance:

∀s ∈ T S : ∃l ∈ L : îd(s) ∈ t̂s(l)

∧ ∃p ∈ (l̂b(l) ∪ r̂b(l)) : ∥p̂os(s)− p∥2 < dts.
(11)

12) Incoming and Outgoing Adjacency (IOA): A lanelet
part of an outgoing group must not be adjacent to a lanelet
part of an incoming group:

∀ii ∈ I : ∀iinc ∈ încg(ii) :

∀iout ∈ ôutg(ii) : ∀lid1 ∈ încl(iinc) :

∀lid2 ∈ adj lanelets(lid1 ,L) : lid2 /∈ ôutgs(iout),

(12)

where adj lanelets(lid,L) [1, Sec. IV.A] returns recursively
the IDs of all adjacent lanelets of the lanelet with ID lid ∈
N≥0 until a lanelet has no adjacent lanelet.

13) Number of Incoming Groups (NIG): An intersection
must consist of at least two incoming groups or one incoming
group and a crossing:

∀ii ∈ I :
(
|încg(ii)| > 0 ∧ ∃iinc ∈ încg(ii) :

∃c ∈ ĉros(ii) : încg(c) = îd(iinc)
)
∨ |încg(ii)| > 1.

(13)



14) Left Outgoing Orientation (LOO): The orientation be-
tween a left outgoing lanelet and the corresponding incoming
lanelets must be in ]α1, α2[:

∀ii ∈ I : ∀iinc ∈ încg(ii) : ∀lid ∈ l̂g(iinc) : ∀l ∈ L :

îd(l) = lid =⇒ α1 < angle(încl(iinc), l,L) < α2,
(14)

where α1 and α2 define the allowed orientation interval and
angle(il, l,L) computes the angle between incoming lanelets
il ⊂ N≥0 and a lanelet l ∈ L. We assume that the final
vertices of incoming lanelets belonging to an incoming group
are connected and the end of the incoming lanelets have a
similar orientation.

IV. MAP VERIFICATION

Our approach can work with several logics (cf. Sec. VI-
B). However, the map verification must be able to provide
detailed feedback about errors and a direct consideration
of our HOL specifications is preferable. Therefore, a HOL
inference algorithm is most suitable. The HOL verification
algorithm must support lazy definitions of sets and finite
domains (some inference tools assume only infinite domains
requiring a workaround). To support all of the mentioned re-
quirements, we use a custom HOL formula evaluator, which
we introduce informally. It is based on an extended version
of propositionalization, a standard approach in first-order
logic inference. However, instead of directly instantiating all
possible value combinations of the variables, we iteratively
instantiate the variables. In general, the evaluation consists of
two main steps, which are similar to the runtime verification
monitor Hydra [25], but instead of temporal operators, we
consider quantifiers over finite domains.

The first step is to execute the subformulas recursively
in the expression tree of the HOL formula from the root
node of the expression tree to the bottom. For example,
in the exemplary expression tree in Fig. 3, the universal
quantifier would first call the upper and-operator to collect
its evaluation result. Afterward, this and-operator would
call its two child nodes, and those would call their child
nodes. Quantifiers instantiate the variables of the domain
and iteratively execute the child nodes by providing the
instantiated variables, e.g., the universal quantifier in Fig. 3
would iterate over all possible combinations of lanelets for
x and y and execute the subformula.

The second step is to evaluate the operator of each
node. The logical operators ∧, ∨, and ¬ collect the re-
sults of the sub-elements and perform the corresponding
logical operation. Analogously, the comparison operators,
e.g., <, >, and =, perform the corresponding operation.
We support constants and Boolean predicates (e.g., is a(),
is b(), is c(), is d() in Fig. 3), where the latter have either
constants, functions, or variables from quantified domains
as parameters. The existential quantifier iterates over all
variables and checks whether the subformula is satisfied
once. The universal quantifier behaves similarly, except that
all subformulas must be satisfied. The quantifiers evaluate all
possible value combinations to find all existing specification
violations and store relevant variable instantiations, e.g., all

∀x, y ∈ L

∧

∧ ∨

is a(x) is b(y) is c(x) is d(y)

Fig. 3: Expression tree of the exemplary formula ∀x, y ∈ L : (is a(x) ∧
is b(y)) ∧ (is c(x) ∨ is d(y)).

(a) Intersecting polylines.

(b) Repaired polylines.

Fig. 4: Exemplary invalid and repaired boundary polylines of a lanelet.

that lead to a violation of a universal quantifier. Based on
the specification and the stored variable instantiations, the
verification algorithm creates error elements used as input
for the repairing functions.

V. MAP REPAIRING

For each specification, we define a corresponding repairing
function. Subsequently, we informally present selected re-
pairing functions for map specifications from Sec. III, where
the remaining repairing functions are described in Tab. II:

• UI: The elements with a duplicated ID are iteratively
assigned a new ID corresponding to the successor of
the maximum ID of all elements.

• PI: The conflicting vertices are extracted and switched
between the polylines. Therefore, the overall shape of
the lanelet stays similar. Fig. 4 shows intersecting and
repaired lanelet boundaries.

• SC: The function replaces the initial and final vertices
of the two lanelets with vertices created based on the
arithmetic mean of the corresponding initial and final
vertices.

• ALPS: The vertices of the polylines are replaced by
vertices created based on the arithmetic mean of the



TABLE II: Description of repairing functions.

Spec. Description

SR Removes the corresponding successor/predecessor reference.
PS Sets the corresponding lanelets as predecessor/successor.
ALR Removes the corresponding adjacency reference.
ELT Removes wrong lanelet types.
DLTL Places traffic sign close to lanelet.
IOA Makes predecessor lanelet to outgoing or cuts lanelets.
NIG Infers missing incoming group.
LOO Changes outgoing type of lanelet.

vertices of the polylines.
• LMA: The final vertices of the merging lanelet are fit to

the other lanelet, and the vertices of the right boundary
of the merging lanelet are moved so that the polyline is
contained by the other lanelet (cf. Fig. 2b).

• AA: The function searches for lanelets or areas in the
proximity of the relevant area and checks whether those
are adjacent. If there exists an adjacent area or lanelet,
the corresponding adjacency is set. The area is deleted
if no adjacent lanelet or area can be found.

VI. EVALUATION

We evaluate the specification-compliance of publicly-
available CommonRoad maps. Additionally, we evaluate the
computational performance of our approach and compare
it to other logical modeling methods used in the literature.
The code and maps used for the evaluation can be found at
https://gitlab.lrz.de/tum-cps/commonroad-map-verification.

A. Verification of CommonRoad Maps

We use 671 publicly available CommonRoad maps based
on version 2020a for the evaluation. The evaluation was
executed on an Intel Xeon Platinum 8362 2.8GHz processor
using a single thread for each map. The parameters dts, α1,
and α2 are set to 10m, 225◦, and 315◦, respectively. We
have evaluated more than 50 specifications. The map with the
most errors per number of road elements was USA US101-9.
Fig. 5 and Fig. 6 show different CommonRoad maps, each
with several error types. Only 47 of 671 CommonRoad
maps satisfied our formalized map specifications. The errors
which occurred the most were the parallel adjacency error
(ALPS), traffic sign distance error (DLTS), and the successor
connection error (SC). Our algorithm could repair all invalid
maps. The computation times and other statistical data of
the evaluation of the three maps are listed in Tab. III.
Additionally, Tab. III summarizes the computation times
and statistics for the different data sources of the available
CommonRoad maps.

B. Comparison with Other Approaches

We consider three logical approaches for our comparison:
Answer Set Programming (ASP), Ontologies/Description
Logic (DL), and Satisfiability Modulo Theories (SMT). ASP
and Ontologies/DL are used for verifying maps in [19], [24].
Moreover, SMT is used to repair trajectories considering

Invalid lanelet
Inaccurate connection
Inaccurate border
Invalid traffic sign

Fig. 5: Invalid CommonRoad map DEU Guetersloh-20.

logical constraints [26]. We can only provide a short and
informal introduction to the different approaches. However,
a concrete implementation can be found in our code.

1) Ontologies/Description Logic: Ontologies structure in-
formation in a hierarchical and taxonomic way. We use a
language based on the Web Ontology Language (OWL), i.e.,
OWL-DL, which can represent a subset of first-order logic
and assumes an open world so that the correct truth value
cannot be drawn from incomplete knowledge. Description
logic is a formalism for knowledge representation and forms
the logical basis of several ontologies.

2) Answer Set Programming: ASP [27] is a declarative
logic programming language using the concept of negation
as failure and the related closed-world assumption. The
problem and the domain knowledge are represented by a
logic program consisting of a set of rules. In ASP, a rule is
syntactically similar to Horn clauses and describes a logical
consequence drawn under a condition.

3) Satisfiability Modulo Theories: Satisfiability Modulo
Theories [28] determines the satisfiability of a logical first-
order formula given a logical theory, e.g., linear arithmetic,
arrays, and bit-vectors, and searches additionally for a suit-
able truth assignment. A theory T is a set of variable-free
formulas and extends their expressiveness with operations
that are not only based on Boolean logic, e.g., arithmetic
summation or concatenation of strings. Each theory has a
corresponding T -solver that evaluates the operations along
with Boolean logic.

4) Comparison: Tab. IV summarizes the computational
performance of the four approaches. Since we have not
formalized all specifications in all logics, we consider only
12 specifications for the comparison. Although our approach
is implemented in Python, while the other approaches are
mainly implemented in C and C++, our approach is faster

https://gitlab.lrz.de/tum-cps/commonroad-map-verification


TABLE III: Evaluation of CommonRoad maps using 54 specifications.

Map Maps Invalid Maps Lanelets [km] |L| |T S ∪ T L| |I| |E| HOL [s] Repairing [s]

DEU Guetersloh-20 1 1 0.731 16 4 1 10 0.918 0.005
DEU BadEssen-3 1 1 4.358 130 25 11 9 5.508 0.004
DEU Lohmar-70 1 1 1.908 45 10 3 16 2.655 0.043

SUMO maps 203 175 274.080 8144 2767 640 1902 238.978 3.502
NGSIM maps 35 35 44.274 823 567 15 544 102.963 4.323
Scenario-Factory maps 320 315 705.015 19872 4292 1798 2426 529.846 1.061
Interactive maps 81 81 664.792 2089 2911 212 3991 831.989 19.470
Hand-Crafted maps 32 18 54.104 504 158 1 262 56.615 1.275
All maps accumulated 671 624 1742.265 31432 10695 2666 9125 1760.391 29.631

Invalid lanelet
Inaccurate border
Invalid traffic sign

(a) Invalid CommonRoad map DEU Lohmar-70.

Invalid lanelet
Inaccurate border

(b) Invalid CommonRoad map DEU BadEssen-3.

Fig. 6: Map errors of two CommonRoad maps consisting of several intersections.

than ASP, DL, and SMT.
Additionally, the other approaches have drawbacks in

modeling our HOL formalization. The syntax of DL is
similar to a subset of HOL. Unfortunately, variables are not
offered in description logic, so that complex dependencies
of elements in the road network cannot be represented.
Therefore, description logic must be combined with logic
programming, which makes the approach undecidable and
negatively affects maintainability [29]. In ASP, decidability
is ensured because of its closed-world assumption. However,
the missing availability of operators limits ASP’s readability
and maintainability. The formulas in SMT must be carefully
constructed due to the infinite boundness of the domains.

Additionally, decidability is not guaranteed for SMT when
evaluating the formulas for some combinations of operators,
e.g., using a universal quantification without restricting the
domains by subformulas.

VII. CONCLUSIONS

We presented the first approach for map verification and
repairing that formalizes map specifications in higher-order
logic, repairs elements from all map levels, provides a
collection of map specifications, and is open-source. The
overall algorithm can consider different types of logical
reasoners. However, our custom reasoner is the most suit-
able considering computational performance and modeling



TABLE IV: Computational performance of all logical modeling approaches
using 12 specifications.

Map ASP [s] DL [s] HOL [s] SMT [s]

DEU Guetersloh-20 0.305 4.975 0.044 0.818
DEU BadEssen-3 5.646 118.055 0.500 21.406
DEU Lohmar-70 1.176 29.828 0.160 2.513

SUMO maps 152.936 2803.879 19.278 107.322
NGSIM maps 53.530 775.883 4.446 27.249
Scenario-Factory maps 673.023 10400.837 47.799 357.987
Interactive maps 1485.815 35372.567 33.823 622.131
Hand-Crafted maps 75.896 821.103 3.042 36.931
All maps accumulated 2441.200 50174.269 108.388 1151.620

efforts. The detected map inaccuracies show that many errors
are still present in operational maps. This emphasizes the
need for a formal map verification and repairing approach
like ours. Our tool is part of the open-source CommonRoad
Scenario Designer. Through the different interfaces to other
map formats, our framework can also be used as a general
map verification tool. Future work includes improvements
of the computational performance to apply the tool in our
research vehicle, e.g., for verifying maps generated on-the-fly
based on sensor information. Additionally, we will regularly
extend and update our specifications and repairing functions
based on findings and user feedback.
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