
An alternative approach to Automated Code Checking

– Application of Graph Neural Networks trained on

synthetic data for an accessibility check case study

Tanya Bloch1, André Borrmann2, Pieter Pauwels3

1 Faculty of Civil and Environmental Engineering, Technion Israel Institute of Technology,

Israel, bloch@technion.ac.il
2 Chair of Computational Modeling and Simulation, Technical University of Munich, Mu-

nich, Germany
3 Faculty of Built Environment, Eindhoven University of Technology, the Netherlands

Abstract. Automated Code Checking (ACC) can be defined as a classification task aim-

ing to classify building objects as compliant or not compliant to a code provision at hand.

While Machine Learning (ML) is a useful tool to perform such classification tasks, it presents

several drawbacks and limitations. Buildings are complex compositions of instances that are

related to each other by functional and topological relationships. This type of data can be

easily supported by property graphs that provide a flexible representation of attributes for

every instance as well as the relationships between the instances. This, together with the re-

cent developments in the field of graph-based learning led the authors to explore a novel

approach for ACC supported by Graph Neural Networks (GNN). This paper presents a new

workflow that implements GNNs for ACC to leverage the advantages of ML but alleviate the

limitations. We illustrate the suggested workflow by training a GNN model on a synthetic

data set and using the trained classifier to check compliance of a real BIM model to accessi-

bility requirements. The accuracy of the classifier on a test set is 86% and the accuracy of

obtained results during the accessibility check is 82%. This suggests that GNNs are applica-

ble to ACC and that classifiers trained on synthetic data can be used to classify building

design provided by the industry. While the results are encouraging, they also point to the

need for further research to establish the scope and boundary conditions of applying GNNs

to ACC.

Keywords: Automated Code Checking (ACC), Machine Learning (ML),

Graph Neural Networks (GNN), Building Information Modeling (BIM), ac-

cessibility.

2

1 Introduction

In current practice, Automated Code Checking (ACC) is performed by qualified

experts manually and it is a costly, cumbersome, error prone and time consuming

process [1]. As our digital design capabilities increase, our buildings become more

complex making it even more difficult to check their compliance to all codes, reg-

ulations and standards to ensure safety and usability of the designed building. Au-

tomating the process can be of great benefit for the construction industry in many

aspects. For example, as design review is one of the stages for construction permit

approval in many countries [2], automating that stage can lead directly to shortening

the time needed for construction permitting. Due to these potential benefits and the

ability to represent building information in a computer readable manner using

Building Information Modeling (BIM), the subject of ACC received much attention

in the scientific community for the past 50 years [3]. Although there has been much

progress in the field, even the most advanced commercial platforms for ACC (such

as Solibri for example [4]) fail to provide a comprehensive and fully automated tool

for code checking.

Majority of research into the subject focus on a rule based approach as described

in [1]. This consists of representing the regulations in a computer readable format

and enhancing computer readability of the BIM model to be checked, either manu-

ally or by automated processes such as semantic enrichment [5]. The design review

process is eventually a matching of concepts represented in the regulations to those

represented in the BIM model. This consists of mapping between the two and inter-

pretation of meaning and intent, which usually requires considerable amount of

manual work.

In this work, we propose to look at ACC in a different manner and define code

checking as a classification task, where the goal is to assign the building (or a build-

ing element) with a "pass" label if it satisfies all relevant design requirements and a

"fail" label if it violates one or more of the requirements. We therefore propose an

alternative workflow for ACC that relies on a novel Machine Learning (ML) ap-

proach applied directly to a graph representation of the building information. In this

paper we illustrate the proposed workflow on a simple test case of accessibility

check in single family homes. Through the test case, we are able to illustrate the

initial feasibility of applying novel ML techniques to ACC, but also to explore more

general issues such as the core differences between the existing approaches for

ACC, their advantages, limitations, use of synthetic data and direction for future

research.

3

2 Background

Automated Code Checking is usually considered as a four-stage process that con-

sists of translating the code requirements to logical statements, preprocessing of the

BIM model, rule execution and report [1]. The need to translate codes written in

natural language to logical statements, and the need to preprocess the BIM model

to supplement all the semantically rich information required for checking, are the

main challenges that hinder the development of a fully automated ACC platform

that covers a wide range of requirements [1], [3], [6]. In this work, we suggest to

reevaluate the general approach to ACC. The underlying assumption of this work is

that application of novel Machine Learning techniques for design review can over-

come some of the existing challenges (such as compiling rules for performance

based regulations [7]), thus allowing a breakthrough in the field. Since ML relies

on learning from past experience, it does not require to translate the codes and reg-

ulations into computable rules. A ML model is trained using a set of labeled exam-

ples where the labels are provided by experts in the field. In the case of code check-

ing, these labels express the conformance of a proposed design to a specific code

clause [8]. Namely, the regulations are implicitly captured in the set of labeled ex-

amples used to train the ML model. Thus, implementing ML as the checking mech-

anism eliminates the need to engage in the challenging task of converting natural

language in to computable rules [9].

 Although the idea of using Machine Learning (ML) techniques as the checking

regime has been presented before [8], [10], the existing research is focused on very

simple test cases and presents several drawbacks of the process. One is the lack of

data for training, and the other is the difficulty in representing building information

in a structured tabular form. Therefore, in this work we present and illustrate a work-

flow in which a Graph Neural Network (GNN) is implemented as the checking

mechanism for automated code checking. Switching to a checking regime that is

based on learning instead of hard-coded rules will eliminate the need to process the

written documents. In addition, since graph structures are very suitable for repre-

senting building information in a complete and detailed form [11], [12], we expect

to be able to overcome some of the drawbacks of using "classic" ML tools for code

checking.

2.1 Application of Graph Neural Networks to building information

Buildings are complex structural systems composed of many elements that are re-

lated to each other by functional and topological relationships. Buildings, even of

the same type, are designed with diverse shapes, functions and other characteristics,

making it difficult to identify fixed data structures to represent them, as usually re-

quired by the classic ML applications. Graphs, on the other hand, due to their flex-

ibility are extremely useful for describing such complex systems by representing

building elements as nodes and the relationships as edges [13]. A Labeled Property

Graph (LPG) is able to represent both the geometry of the building elements,

through a set of values (features) assigned to each node in the graph, as well as the

4

spatial relationships amongst them, through the edges connecting the nodes [14].

With the development of graph based learning methods and recent advances in

graph data science [15], we are now able to better leverage the capabilities of ML

techniques by applying them directly to the graph structures representing the build-

ing information.

 Graph-based learning is useful for dealing with data that cannot be appropriately

structured in a tabular or hierarchical form [16]. Graph Neural Networks (GNN)

operate directly on the graph. The goal is to learn a d-dimensional vectorized repre-

sentation (node embedding) of every node in the graph, that represents the attribute

information assigned to each node and preserves the topological information de-

scribed in the graph [17]. To do so, every node defines a computational graph, which

consists of the node’s neighbors up until k hops away from the node (denoting the

number of layers). Each such neighborhood graph is used to propagate the infor-

mation from all neighboring nodes across all the graph layers to compute a node

embedding [18], a process called message passing. The node embeddings are gen-

erated based on the local neighborhoods while every node aggregates the infor-

mation from its neighbors using neural networks.

For example, every node in the input graph illustrated in Fig. 1 defines its own

neighborhood graph. Looking at the immediate neighbors of every node is equiva-

lent to a GNN with a single layer (k=1). To learn the node embedding of node A in

a single GNN layer for example, we transform the representations (messages) of all

immediate neighbors of node A and aggregate them. This is parametrized and sent

through a Neural Network to introduce non-linearity. The result is a d-dimensional

vector that encapsulates information about the attributes assigned to node A, as well

as information about its position in the graph.

Fig. 1. Message passing in a single GNN layer. (a) illustrates an example input graph (b)

is the computational graph defined by node A, and (c) is the message passing process com-

puting the embedding of node A in a single layer GNN.

5

 Many GNN architectures have been developed and demonstrated for various ap-

plications over the years [19]. The use of GNNs was recently proved useful for the

construction domain as well. For example, in the work of [20] a Graph Convolu-

tional Network (GCN) [21] model was applied for node classification to support

point cloud data processing. In the work of [22] a SAGE-E model (an enhancement

of the SAGE model [23]) was applied to classify room types in residential buildings

for semantic enrichment purposes. In this work we define the task of code compli-

ance checking as a classification task and aim to explore the applicability of GNNs

for that task. We implement the Graph Attention Network (GAT) model [24] in the

StellarGraph library [19] to perform the classification task. The main difference be-

tween GAT to other GNN models is that not all messages propagated from neigh-

boring nodes are considered equally important. The assumption is that information

from some nodes might be more significant for computing node embedding than

others. Hence, in GAT every message is normalized by an attention factor that is

learned for every neighbor separately.

2.2 The use of synthetic data for Machine Learning

Graph-based learning, as any supervised ML algorithm, is reliant on a large data set

of examples for training. In this case, the data set should consist of building design

information, structured in a form of an LPG, labeled as compliant or not compliant

to the specific code requirement at hand. Since such large data set is not available,

we explore the possibility of generating a synthetic data set to be used during the

training stage of the process.

 The use of synthetic data to allow application of machine learning techniques is

not a new idea and has been applied as early as 2004 to supplement survey data

from non-respondents [26]. Since then, synthetic data generation methods have

been developed for various domains, like the healthcare system [27]. The need for

synthetic data sets for the construction domain has also been recognized in previous

work. For example, [28] enhances a small existing data set with synthetic data to

train a computer vision based system for monitoring the movement of construction

workers on site. Based on the results of their work, the predictive model trained on

the enhanced data set performed better than the model trained on only real data.

Although the construction domain produces vast amount of data, this data is cur-

rently compartmentalized and not accessible, or accessible but not complete making

it unsuitable for ML applications for specific tasks. Furthermore, when dealing with

ACC, the majority of available design documents are of buildings that have already

received permit approval thus they are all code compliant and not sufficient to train

a supervised ML algorithm. We assume that the lack of data is often a barrier to

explore the potential of implementing ML for various purposes. To overcome this

barrier, the training stage of the suggested process relies only on a synthetically

generated data set. Fully synthetic data sets for training ML models are becoming

increasingly popular for dealing with lack of data, especially in domains where pri-

vacy and data protection issues are dominant [29]. As data sharing is a problem in

6

the AEC domain as well, we aim to investigate the capabilities of completely syn-

thetic data sets to serve as starting points for training ML models for the use of the

AEC industry. Similarly to the approach for generating synthetic data based on un-

processed "real" data [30], we rely on real floor plans of buildings that are publically

available as a baseline for the data generation procedure as described in section 4.

We then focus on examining the performance of a GNN model that has been trained

on a synthetic data set for classifying BIM models received from the industry as

compliant or not compliant to a specific code requirement.

3 Research aims and method

The main purpose of this research is to demonstrate the initial feasibility of applying

GNNs to ACC. We do that by illustrating the proposed workflow of ACC supported

by application of a Graph Attention Network (GAT) model on a small-scale prob-

lem from the world of design review. Within that, the presented test case will also

illustrate the applicability of ML models that have been trained on completely syn-

thetic data sets for predictive analytics tasks performed on real design received from

the industry. The overall suggested workflow for implementing GNNs trained on

synthetic data as the checking mechanism for ACC is illustrated in Fig. 2. The train-

ing stage in the proposed workflow is implemented using the synthetically gener-

ated data set, which produces a trained classifier to be used for prediction. A "pre-

diction" in this case is the result of code compliance checking of a new "real world"

design.

We demonstrate the process through a small scale test case of checking the com-

pliance of single family houses to several accessibility requirements based on the

International Building Code [31]. The requirements to be checked are the minimal

width of spaces, doors and ramps, the allowed slope of ramps and the general "abil-

ity to access". Since the chosen regulations address both geometric and topological

aspects of the design, the strength of implementing graph based learning instead of

"classic" ML approach can be explored.

7

Fig. 2. Suggested process for GNN based ACC

4 GNN for ACC – test case

To illustrate the suggested workflow, we choose a small but representative test case

of checking single family houses for some basic accessibility regulations. The

checked requirements are the minimum width of doors, corridors, ramps and ramp

slope, and the general ability to access each of the spaces. Although residential

houses are usually not required to be accessible, unless in some special situations,

this test case was chosen due to the simplicity on one hand and the ability to demon-

strate the influence of geometry and topology together on the other hand. In addi-

tion, since the data for training is synthetically generated, it is important that the

task is such that allows the use of a fully automated routine for labeling the entire

generated data set.

 While some construction regulations deal with simple geometric requirements

that are concerned with specific building elements (the size of a window, the slope

of a ramp etc.), others describe restrictions based on topologically complex depend-

encies between various building elements. Accessibility, or “the ability to access”

is a requirement that encapsulates both geometric and topological aspects. Namely,

for a room to be considered accessible, it is not sufficient that the room complies to

all the geometric requirements, as we must also provide the ability to access the

space meaning that all the spaces, doors, ramps that lead to that space must be ac-

cessible as well. The fact that we must look at the room in the context of the entire

building to decide whether it is accessible or not, aligns with graph based learning

8

models where we look at every node in the context of the graph to learn the class of

the node.

4.1 Train, validate and test – synthetic data

Following the suggested workflow, as illustrated in Fig. 2, a set of 1,000 graphs

representing single family houses were generated and labeled. As it is often believed

that synthetic data sets must be based on real data, we begin the data generation

process by collecting 10 floor plans of single family homes that are publically avail-

able on the web. The floor plans are manually translated to graph representations

and serve as a baseline for generating floor plan variations. Information represented

in the graphs includes only objects and attributes that are relevant to accessibility

checking, i.e. spaces and their size, doors and their width, ramps and the slope of

ramps, stairs. The Labeled Property Graphs therefore contain nodes that represent

building elements which are assigned with properties such as element type, size etc.

Edges between nodes represent navigable connections between the aforementioned

objects, linking a door and its adjacent spaces, for example. By implementing a

random number generator in a predefined restricted range for each of the properties,

we create floor plan variations based on the baseline. Each baseline floor plan is

modified 100 times which leads to 100 graphs that represent geometrically different

floor plans. The topologies on the other hand remain unchanged in each of the 10

baseline floor plans, in order to ensure that we maintain topological integrity and

generate graphs that represent feasible buildings. Applying the random number gen-

erators to each of the baseline floor plans we generate 1,000 graphs each represent-

ing one variation of a single-family house.

 In order to train a GNN model, we label each of the nodes in the graphs based

on their conformance to the chosen code provision. Labeling is performed in two

stages, where the first stage is a deterministic check of the geometric requirements

for each of the individual objects. For example, based on the code requirements the

slopes of ramps must be within the range of 5-8.3% [31]. The results of this first

stage are initial labels for each node of “pass” if the geometric requirements are met,

and “fail” otherwise. In the second stage, we search for all possible paths leading

from the entrance to the house to every space to check the “general ability to ac-

cess”. Namely, a space will be considered accessible only if there is a path leading

to it which consists of other geometrically accessible elements. Eventually, the la-

beling routine aims to classify each node in the graph to three classes:

a) Compliant and accessible – for elements that satisfy the geometric requirements

of the accessibility code and can be reached through a path that consists of other

compliant elements.

b) Compliant but not accessible – for elements that satisfy the geometric require-

ments of the accessibility code but cannot be reached through a path that consists of

other compliant elements.

c) Not compliant – for elements that do not satisfy the geometric requirements of

the accessibility code.

9

 Once the data set was generated and labeled, Graph Attention Network (GAT)

model was trained in a full batch mode using the generated 1,000 graphs containing

28,400 nodes and 27,900 edges. The final model for training contained four layers

and 5 attention heads implemented in each layer. The rectified linear function

(Relu) was used as the activation function for all hidden layers. Learning rate was

set to 0.01 and the dropout value to 0.1. Evaluating the performance of the model,

the data set was randomly split to data for training, data for validation and data for

testing. Performance of the model was evaluated using the F1 score calculated based

on the test set. The obtained F1 score was 0.86 which indicates the obtained classi-

fier performs well on unseen data. As the validation and testing data sets are portions

of the generated synthetic data set, to validate the results we must test the perfor-

mance of the obtained classifier on “real world” data. The focus of the rest of the

paper is the application of the trained classifier to check the compliance of design

documents obtained from the industry to the accessibility code requirements.

4.2 Check compliance – real design data

To evaluate the feasibility of the entire workflow (Fig. 2), the obtained trained

classifier must be applied to make predictions (classifications) based on design data

provided from the industry. The following section describes the application of the

trained classifier to check compliance of a BIM model that was obtained from a

local architectural firm is Israel. The floor plans of the house, overlaid with their

graph representation, are illustrated in Fig. 3. This design contains a main house

which has two levels, and it is connected to an independent rental unit, which is

very common in Israel. Note that this is a slightly different topology than in most of

the houses used in the training set. The entire training set was defined based on the

topologies of single-family houses mostly with a single level. While there is a mi-

nority of graphs representing houses with more than one level, there is no represen-

tation in the training data of houses connected to an independent unit that is also

accessible from the main house. ML models are designed to generalize to new en-

tities that are not present in the training data. Using this test case, we can begin to

explore the flexibility that graph based learning models provide in terms of being

able to generalize and provide classifications for buildings with various topologies.

The graph representation of the house (both levels) is given in Fig. 4. It contains

all the rooms, doors and stairs represented as nodes, and the topological relation-

ships between them are represented as edges. The only topological relationships

represented in the graph are "access" relationships, meaning there is an edge be-

tween two nodes only if they represent elements with direct accessibility between

them. The goal of this stage is to classify each building element represented in the

graph as 'Not compliant', 'Compliant and accessible', 'Compliant but not accessible'.

It is important to note that residential buildings built for the private sector usually

do not have to be accessible. Hence, the ground truth contains elements of all three

possible labels.

10

 (a)

(b)

Fig. 3. Floor plan of the ground level of a house used as validation for accessibility

check (design by Arch. Odelya Bar-Yehuda). (a) the ground level including the main house

and the independent dwelling unit, (b) is the second storey of the main house.

The nodes in the graph are assigned with a list of features to describe the elements

which they represent, using the same data structure as for the training stage. Overall,

nine categorical features are assigned to each node as listed in Table 1. Features F1,

F2, F3 and F4 determine the function of the node (space, door, stairs or ramp). F5,

F6, F7 determine the minimal width of the component. For example, F5 will be

assigned with the value 1 if the minimal width is greater than 170 cm, and the value

0 otherwise. F8 determines whether a space is a functional room such as kitchen,

11

bathroom, bedroom, etc. or it is part of the circulation area within the house, such

as a corridor. F9 determines the slope of ramps, such as that it is assigned with the

value 1 if the slope is between 5-8.3%, and 0 otherwise. The list of features was

determined based on key values from the accessibility code that were mapped into

categories with numeric values. An example of a feature vector assigned to node 11

is illustrated in Fig. 4. The final graph representing this house contains total of 46

nodes and 46 edges.

Table 1. List of features assigned to each node in the graph

Feature 0 1

F1 If the element is a space For all other elements

F2 If the element is a door For all other elements

F3 If the element is a stair For all other elements

F4 If the element is a ramp For all other elements

F5
If the width of the element is

greater than 170 cm
Otherwise

F6
If the width of the element is

greater than 91.5 cm
Otherwise

F7
If the width of the element is

greater than 81.5 cm
Otherwise

F8
If the element is a space that is

part of the circulation path
For all other elements

F9

If the element is a ramp and its

slope is within the range of 5-

8.3%

Otherwise

Fig. 4. The graph representation of the house plans used for validation. Each node in the

graph is assigned with a vector of features (illustrated only for node 11).

12

5 Results

In this work we implement the inductive learning setting [32], meaning that during

the training only the training data is available (synthetic data) and we apply the

trained classifier on a dataset which the model has never encountered before (real

design documents). Overall, out of 46 entities in the graph that represents the real

test case, 8 entities were misclassified resulting in an accuracy of classification of

82%. Comparing these results to the performance metrics of the trained model, we

see a small deviation as the accuracy of the test set during training was 86%. Table

2 presents the misclassified nodes, their location in the floor plan, the predicted label

and the result of a manual compliance check (ground truth).

We can clearly see that most of the misclassified nodes in this case represent

entities in the rental unit portion of the floor plan and not the main house. We can

also see that most misclassified nodes are classified correctly in terms of geometry

but not in terms of topology. In other words, spaces or doors that are compliant to

the geometric requirements were indeed classified as such, but instead of being la-

beled “Compliant and accessible” they were classified “Compliant but not accessi-

ble”, suggesting there is a problem with the path leading to those elements but not

the elements themselves. We can also see that 100% of the mistakes are false neg-

atives, meaning that relying on these results would lead to a reevaluation of the floor

plan by the designers and not cause problems in later stages of the project.

Table 2. List of misclassified entities as result from using the classifier trained on syn-

thetic data

Room/Door Location Node

number

Predicted label True label

Door Main house 27
Compliant but not

accessible

Compliant and ac-

cessible

Door

Main house

– second

floor

46 Not compliant
Compliant but not

accessible

Room –

Security

room

Rental unit 13
Compliant but not

accessible

Compliant and ac-

cessible

Room -

Foyer
Rental unit 15

Compliant but not

accessible

Compliant and ac-

cessible

Room –

Living

room

Rental unit 17
Compliant but not

accessible

Compliant and ac-

cessible

13

Door- exit

door
Rental unit 39

Compliant but not

accessible

Compliant and ac-

cessible

Door Rental unit 36
Compliant but not

accessible

Compliant and ac-

cessible

Door Rental unit 38
Compliant but not

accessible

Compliant and ac-

cessible

The misclassified elements are marked in Fig 5 a and b below. Although we can

assume that the major cause for the misclassification is the fact that this type of

topology is not well represented in the training set, the results obtained with GNN

are unexplainable, just like results of the classic ML approach.

a) Ground level

b) Second level

Fig. 5 Floor plans of the checked building with marked misclassifications

14

6 Discussion

Automated Code Checking has been a subject of interest for many researchers over

the years. Moving to BIM technology, we were able to make significant progress in

the field, and lead to the development of advanced and sophisticated platforms with

the ability to automatically check the compliance of a given design to several regu-

latory documents or user requirements. Despite the sophistication of the existing

tools and workflows, an automated platform that provides a checking routine for a

wide range of regulations in a completely automated manner remains a distant goal.

 As the majority of work on the subject is focused on further development of the

ACC following the well-established rule-based approach, we are constantly making

progress but do not reach major breakthroughs. The broad applicability of ML tech-

niques led to various breakthroughs in many different domains. The potential of

using ML and leveraging data in the construction domain has been long recognized

as well. However, the idea of applying ML techniques for ACC has not been suffi-

ciently examined. We cannot expect for ML based ACC to reach the same accuracy

as rule-based checking since results obtained with ML are probabilistic. However,

while the rule-based approach provides very reliable results, it is limited in scope

and requires much manual processing for rule compilation and for building infor-

mation extraction.

 There are some major differences between the rule-based approaches for ACC to

the ML based approach for ACC. One of them is that the rule-based approach re-

quires to process the regulations and the building design to bring them to a common

environment as depicted in the left side of Fig. 6. Still, usually that representation

of the regulatory documents and the design concepts do not overlap sufficiently,

which causes difficulties in development of ACC platforms that cover a wide range

of regulations. As described in [5], checking of a given design requires the user to

“correct” the model to match the requirements of the checking routine in a process

commonly called ‘normalization’.

Fig. 6. Two approaches for ACC: on the left-hand side representation of the regulations

and the design as separate ontologies. On the right-hand side representation of design and

regulation using the same data structure

15

 In the ML based approach, we still look for a common data representation, in

the case of GNN it is LPG, but the regulations are encapsulated within that repre-

sentation by the labels assigned to the nodes during the training (right side of Fig

6). In other words, there are no two separate ontologies or vocabularies, instead

both the design and the regulations are represented on the same graph which can be

a great benefit of the approach.

On the other hand, representing the regulations and the design on a single data

structure can also be a drawback. Regulations are often revised and changed, alt-

hough the changes are not usually drastic, they have to be integrated correctly with

the training process. This means that changes in the regulations will require re train-

ing, and possibly relabeling of the training set to obtain new classifiers. The com-

plexity of a process for relabeling and retraining has not been evaluated yet. Simi-

larly, the ability to group regulations into a single classifier is also an issue that

needs to be investigated. In the presented work, several geometric requirements for

doors, spaces and ramps were checked simultaneously in addition to the “general

ability to access”. This suggests that not every code clause will require develop-

ments of its own trained classifier. A wider analysis of the regulations is needed to

identify the clauses that can benefit from the GNN approach and to develop strate-

gies for grouping code requirements that can be dealt with by the same classifier.

One of the barriers for implementing classic ML techniques or graph-based

learning techniques is that both require large data sets for training. Although the

construction industry produces vast amounts of data in all stages of construction

projects, most of this data is not public. In addition, data that is available is not

always complete, represented in a compatible format and labeled. Although the idea

of generating synthetic data for training of ML models is not a new concept, this

work illustrates that it can be useful for ACC. Furthermore, this work demonstrates

that a graph-based learning model that was trained solely on synthetic data is appli-

cable for checking the compliance of design documents obtained from the industry

to check several accessibility requirements.

This work is focused on validating the suggested process of a GNN based ACC.

Demonstration of the process for accessibility checking in a residential building

leads to very encouraging results, but also reveals numerous directions for needed

research. The GAT model developed in this case, and the routine for data generation

and labeling are goal driven. This means that it might be difficult to generalize the

created data set to be used for other purposes. In this case, we only represent the

building elements relevant to the specific code requirement we want to check, but

we assume it is possible to use more detailed graph representations of buildings to

be able to check a larger set of regulations. This will of course influence the labeling

method as well since we aim at providing labels that indicate what the design issue

is instead of simple ‘compliant’ or ‘not compliant’. We can also assume that varia-

tions in the GNN model architecture, the data representation and the attributes as-

signed to every node will significantly influence the performance of the model. Alt-

hough a rule-based approach can reach 100% accuracy in checking the same re-

quirements, we cannot expect the same performance from a ML based approach.

However, the obtained results demonstrate that GNNs can be applied to problems

16

from the code checking domain, and they have the potential to provide a possible

solution for regulations that cannot be checked deterministically. For example,

vaguely written regulations or performance-based regulations that are difficult to

represent as rigid rules. In conclusion, this work illustrates that GNNs are applicable

for ACC, and that determining their scope and boundary conditions is a valid and

important direction for future research.

7 Conclusions

This paper demonstrates a suggested workflow for implementing GNNs for ACC

while relying on a synthetic data set for training and making prediction on BIM

models received from the industry. The workflow is illustrated through a small-

scale problem of checking compliance to accessibility requirements. The accuracy

of the trained model applied to a test set achieved 86%, suggesting the classifier

performs well on unseen data. Using the trained model to classify building elements

presented in a BIM model received from the industry achieved accuracy of 82%.

This work has two main contributions, one is the feasibility check for using

GNNs to automate compliance checking of code requirements that incapsulate both

geometric aspects and topological aspects of the design. The other is a demonstra-

tion that in fact, synthetic data sets can be useful for training models that will later

be used for classification of real design information.

The possible potential of using ML (whether classic ML algorithms or graph-

based algorithms) has been long recognized. However, one of the main drawbacks

is usually the unavailable data set for training. The construction industry produces

large amounts of data in every construction project, but it is unfortunately not al-

ways available for researchers. Relying on synthetic data, we are able to illustrate

the potential use and benefit of data driven approaches for ACC.

References

[1] C. Eastman, J. Lee, Y. Jeong, and J. Lee, “Automatic rule-based checking of

building designs,” Automation in construction, vol. 18, no. 8, pp. 1011–1033,

2009, doi: https://doi.org/10.1016/j.autcon.2009.07.002.

[2] J. Fauth and L. Soibelman, “Conceptual Framework for Building Permit Pro-

cess Modeling: Lessons Learned from a Comparison between Germany and

the United States regarding the As-Is Building Permit Processes,” Buildings,

vol. 12, no. 5, p. 638, May 2022, doi: 10.3390/buildings12050638.

[3] R. Amor and J. Dimyadi, “The promise of automated compliance checking,”

Developments in the Built Environment, vol. 5, p. 100039, Mar. 2021, doi:

10.1016/j.dibe.2020.100039.

[4] Solibri, “Solibri Model Checker (SMC),” Mar. 13, 2017.

https://www.solibri.com/ (accessed Mar. 13, 2017).

17

[5] T. Bloch and R. Sacks, “Clustering Information Types for Semantic Enrich-

ment of Building Information Models to Support Automated Code Compli-

ance Checking,” Journal of Computing in Civil Engineering, vol. 34, no. 6,

p. 04020040, 2020.

[6] J. Dimyadi and R. Amor, “Automated Building Code Compliance Checking–

Where is it at,” Proceedings of CIB WBC, pp. 172–185, 2013.

[7] S. Malsane, J. Matthews, S. Lockley, P. E. D. Love, and D. Greenwood, “De-

velopment of an object model for automated compliance checking,” Automa-

tion in Construction, vol. 49, pp. 51–58, Jan. 2015, doi:

10.1016/j.autcon.2014.10.004.

[8] T. Bloch, M. Katz, and R. Sacks, “Machine learning approach for automated

code compliance checking,” presented at the 17th International Conference

on Computing in Civil and Building Engineering, Tampere, 7/6 2018.

[9] R. Zhang and N. El-Gohary, “Hierarchical Representation and Deep Learn-

ing–Based Method for Automatically Transforming Textual Building Codes

into Semantic Computable Requirements,” J. Comput. Civ. Eng., vol. 36, no.

5, p. 04022022, Sep. 2022, doi: 10.1061/(ASCE)CP.1943-5487.0001014.

[10] R. Sacks, T. Bloch, M. Katz, and R. Yosef, “Automating Design Review with

Artificial Intelligence and BIM: State of the Art and Research Framework,”

in Computing in Civil Engineering 2019, Atlanta, Georgia, Jun. 2019, pp.

353–360. doi: 10.1061/9780784482421.045.

[11] V. J. L. Gan, “BIM-based graph data model for automatic generative design

of modular buildings,” Automation in Construction, vol. 134, p. 104062, Feb.

2022, doi: 10.1016/j.autcon.2021.104062.

[12] A. Ismail, A. Nahar, and R. Scherer, “Application of graph databases and

graph theory concepts for advanced analysing of BIM models based on IFC

standard,” Proceedings of EGICE, 2017.

[13] J. Zhou et al., “Graph neural networks: A review of methods and applica-

tions,” arXiv preprint arXiv:1812.08434, 2018.

[14] R. Angles, “The Property Graph Database Model.,” in AMW, 2018.

[15] W. Cao, Z. Yan, Z. He, and Z. He, “A Comprehensive Survey on Geometric

Deep Learning,” IEEE Access, pp. 1–1, 2020, doi:

10.1109/ACCESS.2020.2975067.

[16] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Ge-

ometric deep learning: going beyond euclidean data,” IEEE Signal Pro-

cessing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[17] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation Learning on

Graphs: Methods and Applications,” CoRR, vol. abs/1709.05584, 2017,

[Online]. Available: http://arxiv.org/abs/1709.05584

[18] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehen-

sive survey on graph neural networks,” IEEE transactions on neural networks

and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[19] J. Zhou et al., “Graph neural networks: A review of methods and applica-

tions,” AI Open, vol. 1, pp. 57–81, 2020, doi: 10.1016/j.aiopen.2021.01.001.

18

[20] F. Collins, “Encoding of geometric shapes from Building Information Mod-

eling (BIM) using graph neural networks,” 2020.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph con-

volutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[22] Z. Wang, R. Sacks, and T. Yeung, “Exploring graph neural networks for se-

mantic enrichment: Room type classification,” Automation in Construction,

vol. 134, p. 104039, Feb. 2022, doi: 10.1016/j.autcon.2021.104039.

[23] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning

on large graphs,” Advances in neural information processing systems, vol.

30, 2017.

[24] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,

“Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[25] C. Data61, “StellarGraph Machine Learning Library,” GitHub Repository.

GitHub, 2018. [Online]. Available: https://github.com/stellargraph/stellar-

graph

[26] D. B. Rubin, Multiple imputation for nonresponse in surveys, vol. 81. John

Wiley & Sons, 2004.

[27] J. Dahmen and D. Cook, “SynSys: A Synthetic Data Generation System for

Healthcare Applications,” Sensors, vol. 19, no. 5, p. 1181, Mar. 2019, doi:

10.3390/s19051181.

[28] M. Neuhausen, P. Herbers, and M. König, “Using Synthetic Data to Improve

and Evaluate the Tracking Performance of Construction Workers on Site,”

Applied Sciences, vol. 10, no. 14, p. 4948, Jul. 2020, doi:

10.3390/app10144948.

[29] F. K. Dankar and M. Ibrahim, “Fake It Till You Make It: Guidelines for Ef-

fective Synthetic Data Generation,” Applied Sciences, vol. 11, no. 5, p. 2158,

Feb. 2021, doi: 10.3390/app11052158.

[30] N. Patki, R. Wedge, and K. Veeramachaneni, “The Synthetic Data Vault,” in

2016 IEEE International Conference on Data Science and Advanced Analyt-

ics (DSAA), Montreal, QC, Canada, Oct. 2016, pp. 399–410. doi:

10.1109/DSAA.2016.49.

[31] International Code Council and American National Standards Institute, Eds.,

Accessible and usable buildings and facilities: ICC A117.1-2009: American

National Standard. Washington, DC: International Code Council, 2010.

[32] G. Ciano, A. Rossi, M. Bianchini, and F. Scarselli, “On Inductive–Transduc-

tive Learning With Graph Neural Networks,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 44, no. 2, pp. 758–769, Feb. 2022, doi:

10.1109/TPAMI.2021.3054304.

