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Abstract. Automated Code Checking (ACC) can be defined as a classification task aim-

ing to classify building objects as compliant or not compliant to a code provision at hand. 

While Machine Learning (ML) is a useful tool to perform such classification tasks, it presents 

several drawbacks and limitations. Buildings are complex compositions of instances that are 

related to each other by functional and topological relationships. This type of data can be 

easily supported by property graphs that provide a flexible representation of attributes for 

every instance as well as the relationships between the instances. This, together with the re-

cent developments in the field of graph-based learning led the authors to explore a novel 

approach for ACC supported by Graph Neural Networks (GNN). This paper presents a new 

workflow that implements GNNs for ACC to leverage the advantages of ML but alleviate the 

limitations. We illustrate the suggested workflow by training a GNN model on a synthetic 

data set and using the trained classifier to check compliance of a real BIM model to accessi-

bility requirements. The accuracy of the classifier on a test set is 86% and the accuracy of 

obtained results during the accessibility check is 82%. This suggests that GNNs are applica-

ble to ACC and that classifiers trained on synthetic data can be used to classify building 

design provided by the industry. While the results are encouraging, they also point to the 

need for further research to establish the scope and boundary conditions of applying GNNs 

to ACC.  

Keywords: Automated Code Checking (ACC), Machine Learning (ML), 

Graph Neural Networks (GNN), Building Information Modeling (BIM), ac-

cessibility. 
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1 Introduction 

In current practice, Automated Code Checking (ACC) is performed by qualified 

experts manually and it is a costly, cumbersome, error prone and time consuming 

process [1]. As our digital design capabilities increase, our buildings become more 

complex making it even more difficult to check their compliance to all codes, reg-

ulations and standards to ensure safety and usability of the designed building. Au-

tomating the process can be of great benefit for the construction industry in many 

aspects. For example, as design review is one of the stages for construction permit 

approval in many countries [2], automating that stage can lead directly to shortening 

the time needed for construction permitting. Due to these potential benefits and the 

ability to represent building information in a computer readable manner using 

Building Information Modeling (BIM), the subject of ACC received much attention 

in the scientific community for the past 50 years [3]. Although there has been much 

progress in the field, even the most advanced commercial platforms for ACC (such 

as Solibri for example [4]) fail to provide a comprehensive and fully automated tool 

for code checking.  

Majority of research into the subject focus on a rule based approach as described 

in [1]. This consists of representing the regulations in a computer readable format 

and enhancing computer readability of the BIM model to be checked, either manu-

ally or by automated processes such as semantic enrichment [5]. The design review 

process is eventually a matching of concepts represented in the regulations to those 

represented in the BIM model. This consists of mapping between the two and inter-

pretation of meaning and intent, which usually requires considerable amount of 

manual work.  

In this work, we propose to look at ACC in a different manner and define code 

checking as a classification task, where the goal is to assign the building (or a build-

ing element) with a "pass" label if it satisfies all relevant design requirements and a 

"fail" label if it violates one or more of the requirements. We therefore propose an 

alternative workflow for ACC that relies on a novel Machine Learning (ML) ap-

proach applied directly to a graph representation of the building information. In this 

paper we illustrate the proposed workflow on a simple test case of accessibility 

check in single family homes. Through the test case, we are able to illustrate the 

initial feasibility of applying novel ML techniques to ACC, but also to explore more 

general issues such as the core differences between the existing approaches for 

ACC, their advantages, limitations, use of synthetic data and direction for future 

research.  
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2 Background 

Automated Code Checking is usually considered as a four-stage process that con-

sists of translating the code requirements to logical statements, preprocessing of the 

BIM model, rule execution and report [1]. The need to translate codes written in 

natural language to logical statements, and the need to preprocess the BIM model 

to supplement all the semantically rich information required for checking, are the 

main challenges that hinder the development of a fully automated ACC platform 

that covers a wide range of requirements [1], [3], [6]. In this work, we suggest to 

reevaluate the general approach to ACC. The underlying assumption of this work is 

that application of novel Machine Learning techniques for design review can over-

come some of the existing challenges (such as compiling rules for performance 

based regulations [7]), thus allowing a breakthrough in the field. Since ML relies 

on learning from past experience, it does not require to translate the codes and reg-

ulations into computable rules. A ML model is trained using a set of labeled exam-

ples where the labels are provided by experts in the field. In the case of code check-

ing, these labels express the conformance of a proposed design to a specific code 

clause [8]. Namely, the regulations are implicitly captured in the set of labeled ex-

amples used to train the ML model. Thus, implementing ML as the checking mech-

anism eliminates the need to engage in the challenging task of converting natural 

language in to computable rules [9].   

    Although the idea of using Machine Learning (ML) techniques as the checking 

regime has been presented before [8], [10], the existing research is focused on very 

simple test cases and presents several drawbacks of the process. One is the lack of 

data for training, and the other is the difficulty in representing building information 

in a structured tabular form. Therefore, in this work we present and illustrate a work-

flow in which a Graph Neural Network (GNN) is implemented as the checking 

mechanism for automated code checking. Switching to a checking regime that is 

based on learning instead of hard-coded rules will eliminate the need to process the 

written documents. In addition, since graph structures are very suitable for repre-

senting building information in a complete and detailed form [11], [12], we expect 

to be able to overcome some of the drawbacks of using "classic" ML tools for code 

checking. 

     

2.1 Application of Graph Neural Networks to building information 

Buildings are complex structural systems composed of many elements that are re-

lated to each other by functional and topological relationships. Buildings, even of 

the same type, are designed with diverse shapes, functions and other characteristics, 

making it difficult to identify fixed data structures to represent them, as usually re-

quired by the classic ML applications. Graphs, on the other hand, due to their flex-

ibility are extremely useful for describing such complex systems by representing 

building elements as nodes and the relationships as edges [13]. A Labeled Property 

Graph (LPG) is able to represent both the geometry of the building elements, 

through a set of values (features) assigned to each node in the graph, as well as the 
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spatial relationships amongst them, through the edges connecting the nodes [14]. 

With the development of graph based learning methods and recent advances in 

graph data science [15], we are now able to better leverage the capabilities of ML 

techniques by applying them directly to the graph structures representing the build-

ing information.  

    Graph-based learning is useful for dealing with data that cannot be appropriately 

structured in a tabular or hierarchical form [16]. Graph Neural Networks (GNN) 

operate directly on the graph. The goal is to learn a d-dimensional vectorized repre-

sentation (node embedding) of every node in the graph, that represents the attribute 

information assigned to each node and preserves the topological information de-

scribed in the graph [17]. To do so, every node defines a computational graph, which 

consists of the node’s neighbors up until k hops away from the node (denoting the 

number of layers). Each such neighborhood graph is used to propagate the infor-

mation from all neighboring nodes across all the graph layers to compute a node 

embedding [18], a process called message passing. The node embeddings are gen-

erated based on the local neighborhoods while every node aggregates the infor-

mation from its neighbors using neural networks.  

For example, every node in the input graph illustrated in Fig. 1 defines its own 

neighborhood graph. Looking at the immediate neighbors of every node is equiva-

lent to a GNN with a single layer (k=1). To learn the node embedding of node A in 

a single GNN layer for example, we transform the representations (messages) of all 

immediate neighbors of node A and aggregate them. This is parametrized and sent 

through a Neural Network to introduce non-linearity. The result is a d-dimensional 

vector that encapsulates information about the attributes assigned to node A, as well 

as information about its position in the graph. 

 

 
Fig. 1. Message passing in a single GNN layer. (a) illustrates an example input graph (b) 

is the computational graph defined by node A, and (c) is the message passing process com-

puting the embedding of node A in a single layer GNN. 
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     Many GNN architectures have been developed and demonstrated for various ap-

plications over the years [19]. The use of GNNs was recently proved useful for the 

construction domain as well. For example, in the work of [20] a Graph Convolu-

tional Network (GCN) [21] model was applied for node classification to support 

point cloud data processing. In the work of  [22] a SAGE-E model (an enhancement 

of the SAGE model [23]) was applied to classify room types in residential buildings 

for semantic enrichment purposes. In this work we define the task of code compli-

ance checking as a classification task and aim to explore the applicability of GNNs 

for that task. We implement the Graph Attention Network (GAT) model [24]  in the 

StellarGraph library [19] to perform the classification task. The main difference be-

tween GAT to other GNN models is that not all messages propagated from neigh-

boring nodes are considered equally important. The assumption is that information 

from some nodes might be more significant for computing node embedding than 

others. Hence, in GAT every message is normalized by an attention factor that is 

learned for every neighbor separately.  

 

2.2 The use of synthetic data for Machine Learning 

Graph-based learning, as any supervised ML algorithm, is reliant on a large data set 

of examples for training. In this case, the data set should consist of building design 

information, structured in a form of an LPG, labeled as compliant or not compliant 

to the specific code requirement at hand. Since such large data set is not available, 

we explore the possibility of generating a synthetic data set to be used during the 

training stage of the process.    

     The use of synthetic data to allow application of machine learning techniques is 

not a new idea and has been applied as early as 2004 to supplement survey data 

from non-respondents [26]. Since then, synthetic data generation methods have 

been developed for various domains, like the healthcare system [27]. The need for 

synthetic data sets for the construction domain has also been recognized in previous 

work. For example, [28] enhances a small existing data set with synthetic data to 

train a computer vision based system for monitoring the movement of construction 

workers on site. Based on the results of their work, the predictive model trained on 

the enhanced data set performed better than the model trained on only real data.  

Although the construction domain produces vast amount of data, this data is cur-

rently compartmentalized and not accessible, or accessible but not complete making 

it unsuitable for ML applications for specific tasks. Furthermore, when dealing with 

ACC, the majority of available design documents are of buildings that have already 

received permit approval thus they are all code compliant and not sufficient to train 

a supervised ML algorithm. We assume that the lack of data is often a barrier to 

explore the potential of implementing ML for various purposes. To overcome this 

barrier, the training stage of the suggested process relies only on a synthetically 

generated data set. Fully synthetic data sets for training ML models are becoming 

increasingly popular for dealing with lack of data, especially in domains where pri-

vacy and data protection issues are dominant [29]. As data sharing is a problem in 
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the AEC domain as well, we aim to investigate the capabilities of completely syn-

thetic data sets to serve as starting points for training ML models for the use of the 

AEC industry. Similarly to the approach for generating synthetic data based on un-

processed "real" data [30], we rely on real floor plans of buildings that are publically 

available as a baseline for the data generation procedure as described in section 4. 

We then focus on examining the performance of a GNN model that has been trained 

on a synthetic data set for classifying BIM models received from the industry as 

compliant or not compliant to a specific code requirement. 

3 Research aims and method 

The main purpose of this research is to demonstrate the initial feasibility of applying 

GNNs to ACC. We do that by illustrating the proposed workflow of ACC supported 

by application of a Graph Attention Network (GAT) model on a small-scale prob-

lem from the world of design review. Within that, the presented test case will also 

illustrate the applicability of ML models that have been trained on completely syn-

thetic data sets for predictive analytics tasks performed on real design received from 

the industry. The overall suggested workflow for implementing GNNs trained on 

synthetic data as the checking mechanism for ACC is illustrated in Fig. 2. The train-

ing stage in the proposed workflow is implemented using the synthetically gener-

ated data set, which produces a trained classifier to be used for prediction. A "pre-

diction" in this case is the result of code compliance checking of a new "real world" 

design. 

We demonstrate the process through a small scale test case of checking the com-

pliance of single family houses to several accessibility requirements based on the 

International Building Code [31]. The requirements to be checked are the minimal 

width of spaces, doors and ramps, the allowed slope of ramps and the general "abil-

ity to access". Since the chosen regulations address both geometric and topological 

aspects of the design, the strength of implementing graph based learning instead of 

"classic" ML approach can be explored. 
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Fig. 2. Suggested process for GNN based ACC 

4 GNN for ACC – test case 

To illustrate the suggested workflow, we choose a small but representative test case 

of checking single family houses for some basic accessibility regulations. The 

checked requirements are the minimum width of doors, corridors, ramps and ramp 

slope, and the general ability to access each of the spaces. Although residential 

houses are usually not required to be accessible, unless in some special situations, 

this test case was chosen due to the simplicity on one hand and the ability to demon-

strate the influence of geometry and topology together on the other hand. In addi-

tion, since the data for training is synthetically generated, it is important that the 

task is such that allows the use of a fully automated routine for labeling the entire 

generated data set. 

    While some construction regulations deal with simple geometric requirements 

that are concerned with specific building elements (the size of a window, the slope 

of a ramp etc.), others describe restrictions based on topologically complex depend-

encies between various building elements. Accessibility, or “the ability to access” 

is a requirement that encapsulates both geometric and topological aspects. Namely, 

for a room to be considered accessible, it is not sufficient that the room complies to 

all the geometric requirements, as we must also provide the ability to access the 

space meaning that all the spaces, doors, ramps that lead to that space must be ac-

cessible as well. The fact that we must look at the room in the context of the entire 

building to decide whether it is accessible or not, aligns with graph based learning 
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models where we look at every node in the context of the graph to learn the class of 

the node. 

 

4.1 Train, validate and test – synthetic data 

 

Following the suggested workflow, as illustrated in Fig. 2, a set of 1,000 graphs 

representing single family houses were generated and labeled. As it is often believed 

that synthetic data sets must be based on real data, we begin the data generation 

process by collecting 10 floor plans of single family homes that are publically avail-

able on the web. The floor plans are manually translated to graph representations 

and serve as a baseline for generating floor plan variations. Information represented 

in the graphs includes only objects and attributes that are relevant to accessibility 

checking, i.e. spaces and their size, doors and their width, ramps and the slope of 

ramps, stairs. The Labeled Property Graphs therefore contain nodes that represent 

building elements which are assigned with properties such as element type, size etc. 

Edges between nodes represent navigable connections between the aforementioned 

objects, linking a door and its adjacent spaces, for example. By implementing a 

random number generator in a predefined restricted range for each of the properties, 

we create floor plan variations based on the baseline. Each baseline floor plan is 

modified 100 times which leads to 100 graphs that represent geometrically different 

floor plans. The topologies on the other hand remain unchanged in each of the 10 

baseline floor plans, in order to ensure that we maintain topological integrity and 

generate graphs that represent feasible buildings. Applying the random number gen-

erators to each of the baseline floor plans we generate 1,000 graphs each represent-

ing one variation of a single-family house.  

     In order to train a GNN model, we label each of the nodes in the graphs based 

on their conformance to the chosen code provision. Labeling is performed in two 

stages, where the first stage is a deterministic check of the geometric requirements 

for each of the individual objects. For example, based on the code requirements the 

slopes of ramps must be within the range of 5-8.3% [31]. The results of this first 

stage are initial labels for each node of “pass” if the geometric requirements are met, 

and “fail” otherwise. In the second stage, we search for all possible paths leading 

from the entrance to the house to every space to check the “general ability to ac-

cess”. Namely, a space will be considered accessible only if there is a path leading 

to it which consists of other geometrically accessible elements. Eventually, the la-

beling routine aims to classify each node in the graph to three classes: 

a) Compliant and accessible – for elements that satisfy the geometric requirements 

of the accessibility code and can be reached through a path that consists of other 

compliant elements.  

b) Compliant but not accessible – for elements that satisfy the geometric require-

ments of the accessibility code but cannot be reached through a path that consists of 

other compliant elements. 

c) Not compliant – for elements that do not satisfy the geometric requirements of 

the accessibility code. 
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 Once the data set was generated and labeled, Graph Attention Network (GAT) 

model was trained in a full batch mode using the generated 1,000 graphs containing 

28,400 nodes and 27,900 edges. The final model for training contained four layers 

and 5 attention heads implemented in each layer. The rectified linear function 

(Relu) was used as the activation function for all hidden layers. Learning rate was 

set to 0.01 and the dropout value to 0.1.  Evaluating the performance of the model, 

the data set was randomly split to data for training, data for validation and data for 

testing. Performance of the model was evaluated using the F1 score calculated based 

on the test set. The obtained F1 score was 0.86 which indicates the obtained classi-

fier performs well on unseen data. As the validation and testing data sets are portions 

of the generated synthetic data set, to validate the results we must test the perfor-

mance of the obtained classifier on “real world” data. The focus of the rest of the 

paper is the application of the trained classifier to check the compliance of design 

documents obtained from the industry to the accessibility code requirements. 

 

4.2 Check compliance – real design data 

To evaluate the feasibility of the entire workflow (Fig. 2), the obtained trained 

classifier must be applied to make predictions (classifications) based on design data 

provided from the industry. The following section describes the application of the 

trained classifier to check compliance of a BIM model that was obtained from a 

local architectural firm is Israel. The floor plans of the house, overlaid with their 

graph representation, are illustrated in Fig. 3. This design contains a main house 

which has two levels, and it is connected to an independent rental unit, which is 

very common in Israel. Note that this is a slightly different topology than in most of 

the houses used in the training set. The entire training set was defined based on the 

topologies of single-family houses mostly with a single level. While there is a mi-

nority of graphs representing houses with more than one level, there is no represen-

tation in the training data of houses connected to an independent unit that is also 

accessible from the main house. ML models are designed to generalize to new en-

tities that are not present in the training data. Using this test case, we can begin to 

explore the flexibility that graph based learning models provide in terms of being 

able to generalize and provide classifications for buildings with various topologies.  

The graph representation of the house (both levels) is given in Fig. 4. It contains 

all the rooms, doors and stairs represented as nodes, and the topological relation-

ships between them are represented as edges. The only topological relationships 

represented in the graph are "access" relationships, meaning there is an edge be-

tween two nodes only if they represent elements with direct accessibility between 

them. The goal of this stage is to classify each building element represented in the 

graph as 'Not compliant', 'Compliant and accessible', 'Compliant but not accessible'. 

It is important to note that residential buildings built for the private sector usually 

do not have to be accessible. Hence, the ground truth contains elements of all three 

possible labels.  
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                                                                   (a) 

 
(b) 

Fig. 3. Floor plan of the ground level of a house used as validation for accessibility 

check (design by Arch. Odelya Bar-Yehuda). (a) the ground level including the main house 

and the independent dwelling unit, (b) is the second storey of the main house. 

 

 

 

 

The nodes in the graph are assigned with a list of features to describe the elements 

which they represent, using the same data structure as for the training stage. Overall, 

nine categorical features are assigned to each node as listed in Table 1. Features F1, 

F2, F3 and F4 determine the function of the node (space, door, stairs or ramp). F5, 

F6, F7 determine the minimal width of the component. For example, F5 will be 

assigned with the value 1 if the minimal width is greater than 170 cm, and the value 

0 otherwise. F8 determines whether a space is a functional room such as kitchen, 
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bathroom, bedroom, etc. or it is part of the circulation area within the house, such 

as a corridor. F9 determines the slope of ramps, such as that it is assigned with the 

value 1 if the slope is between 5-8.3%, and 0 otherwise. The list of features was 

determined based on key values from the accessibility code that were mapped into 

categories with numeric values. An example of a feature vector assigned to node 11 

is illustrated in Fig. 4. The final graph representing this house contains total of 46 

nodes and 46 edges. 

 

Table 1. List of features assigned to each node in the graph 

Feature 0  1 

F1 If the element is a space For all other elements 

F2 If the element is a door For all other elements 

F3 If the element is a stair For all other elements 

F4 If the element is a ramp For all other elements 

F5 
If the width of the element is 

greater than 170 cm 
Otherwise 

F6 
If the width of the element is 

greater than 91.5 cm 
Otherwise 

F7 
If the width of the element is 

greater than 81.5 cm 
Otherwise 

F8 
If the element is a space that is 

part of the circulation path 
For all other elements 

F9 

If the element is a ramp and its 

slope is within the range of 5-

8.3% 

Otherwise 

 

 

 

 
Fig. 4. The graph representation of the house plans used for validation. Each node in the 

graph is assigned with a vector of features (illustrated only for node 11). 
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5 Results 

In this work we implement the inductive learning setting [32], meaning that during 

the training only the training data is available (synthetic data) and we apply the 

trained classifier on a dataset which the model has never encountered before (real 

design documents). Overall, out of 46 entities in the graph that represents the real 

test case, 8 entities were misclassified resulting in an accuracy of classification of 

82%. Comparing these results to the performance metrics of the trained model, we 

see a small deviation as the accuracy of the test set during training was 86%. Table 

2 presents the misclassified nodes, their location in the floor plan, the predicted label 

and the result of a manual compliance check (ground truth). 

We can clearly see that most of the misclassified nodes in this case represent 

entities in the rental unit portion of the floor plan and not the main house. We can 

also see that most misclassified nodes are classified correctly in terms of geometry 

but not in terms of topology. In other words, spaces or doors that are compliant to 

the geometric requirements were indeed classified as such, but instead of being la-

beled “Compliant and accessible” they were classified “Compliant but not accessi-

ble”, suggesting there is a problem with the path leading to those elements but not 

the elements themselves. We can also see that 100% of the mistakes are false neg-

atives, meaning that relying on these results would lead to a reevaluation of the floor 

plan by the designers and not cause problems in later stages of the project.  

 

  

 

Table 2. List of misclassified entities as result from using the classifier trained on syn-

thetic data 

Room/Door Location  Node 

number 

Predicted   label True label 

Door Main house 27 
Compliant but not 

accessible 

Compliant and ac-

cessible 

Door 

Main house 

–   second 

floor 

46 Not compliant 
Compliant but not 

accessible 

Room –      

Security 

room 

Rental unit 13 
Compliant but not 

accessible 

Compliant and ac-

cessible 

Room - 

Foyer 
Rental unit 15 

Compliant but not 

accessible 

Compliant and ac-

cessible 

Room –     

Living 

room 

Rental unit 17 
Compliant but not 

accessible 

Compliant and ac-

cessible 
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Door- exit 

door 
Rental unit 39 

Compliant but not 

accessible 

Compliant and ac-

cessible 

Door Rental unit 36 
Compliant but not 

accessible 

Compliant and ac-

cessible 

Door Rental unit 38 
Compliant but not 

accessible 

Compliant and ac-

cessible 

 

The misclassified elements are marked in Fig 5 a and b below. Although we can 

assume that the major cause for the misclassification is the fact that this type of 

topology is not well represented in the training set, the results obtained with GNN 

are unexplainable, just like results of the classic ML approach.  

 
a) Ground level 

 
 

b) Second level 

Fig. 5 Floor plans of the checked building with marked misclassifications 
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6 Discussion 

Automated Code Checking has been a subject of interest for many researchers over 

the years. Moving to BIM technology, we were able to make significant progress in 

the field, and lead to the development of advanced and sophisticated platforms with 

the ability to automatically check the compliance of a given design to several regu-

latory documents or user requirements. Despite the sophistication of the existing 

tools and workflows, an automated platform that provides a checking routine for a 

wide range of regulations in a completely automated manner remains a distant goal. 

    As the majority of work on the subject is focused on further development of the 

ACC following the well-established rule-based approach, we are constantly making 

progress but do not reach major breakthroughs. The broad applicability of ML tech-

niques led to various breakthroughs in many different domains. The potential of 

using ML and leveraging data in the construction domain has been long recognized 

as well. However, the idea of applying ML techniques for ACC has not been suffi-

ciently examined. We cannot expect for ML based ACC to reach the same accuracy 

as rule-based checking since results obtained with ML are probabilistic. However, 

while the rule-based approach provides very reliable results, it is limited in scope 

and requires much manual processing for rule compilation and for building infor-

mation extraction.   

    There are some major differences between the rule-based approaches for ACC to 

the ML based approach for ACC. One of them is that the rule-based approach re-

quires to process the regulations and the building design to bring them to a common 

environment as depicted in the left side of Fig. 6. Still, usually that representation 

of the regulatory documents and the design concepts do not overlap sufficiently, 

which causes difficulties in development of ACC platforms that cover a wide range 

of regulations. As described in [5], checking of a given design requires the user to 

“correct” the model to match the requirements of the checking routine in a process 

commonly called ‘normalization’. 

 

 
Fig. 6. Two approaches for ACC: on the left-hand side representation of the regulations 

and the design as separate ontologies. On the right-hand side representation of design and 

regulation using the same data structure 
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 In the ML based approach, we still look for a common data representation, in 

the case of GNN it is LPG, but the regulations are encapsulated within that repre-

sentation by the labels assigned to the nodes during the training (right side of Fig 

6).  In other words, there are no two separate ontologies or vocabularies, instead 

both the design and the regulations are represented on the same graph which can be 

a great benefit of the approach. 

On the other hand, representing the regulations and the design on a single data 

structure can also be a drawback. Regulations are often revised and changed, alt-

hough the changes are not usually drastic, they have to be integrated correctly with 

the training process. This means that changes in the regulations will require re train-

ing, and possibly relabeling of the training set to obtain new classifiers. The com-

plexity of a process for relabeling and retraining has not been evaluated yet. Simi-

larly, the ability to group regulations into a single classifier is also an issue that 

needs to be investigated. In the presented work, several geometric requirements for 

doors, spaces and ramps were checked simultaneously in addition to the “general 

ability to access”. This suggests that not every code clause will require develop-

ments of its own trained classifier. A wider analysis of the regulations is needed to 

identify the clauses that can benefit from the GNN approach and to develop strate-

gies for grouping code requirements that can be dealt with by the same classifier.  

One of the barriers for implementing classic ML techniques or graph-based 

learning techniques is that both require large data sets for training. Although the 

construction industry produces vast amounts of data in all stages of construction 

projects, most of this data is not public. In addition, data that is available is not 

always complete, represented in a compatible format and labeled. Although the idea 

of generating synthetic data for training of ML models is not a new concept, this 

work illustrates that it can be useful for ACC. Furthermore, this work demonstrates 

that a graph-based learning model that was trained solely on synthetic data is appli-

cable for checking the compliance of design documents obtained from the industry 

to check several accessibility requirements. 

This work is focused on validating the suggested process of a GNN based ACC. 

Demonstration of the process for accessibility checking in a residential building 

leads to very encouraging results, but also reveals numerous directions for needed 

research. The GAT model developed in this case, and the routine for data generation 

and labeling are goal driven. This means that it might be difficult to generalize the 

created data set to be used for other purposes. In this case, we only represent the 

building elements relevant to the specific code requirement we want to check, but 

we assume it is possible to use more detailed graph representations of buildings to 

be able to check a larger set of regulations. This will of course influence the labeling 

method as well since we aim at providing labels that indicate what the design issue 

is instead of simple ‘compliant’ or ‘not compliant’. We can also assume that varia-

tions in the GNN model architecture, the data representation and the attributes as-

signed to every node will significantly influence the performance of the model. Alt-

hough a rule-based approach can reach 100% accuracy in checking the same re-

quirements, we cannot expect the same performance from a ML based approach. 

However, the obtained results demonstrate that GNNs can be applied to problems 
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from the code checking domain, and they have the potential to provide a possible 

solution for regulations that cannot be checked deterministically. For example, 

vaguely written regulations or performance-based regulations that are difficult to 

represent as rigid rules. In conclusion, this work illustrates that GNNs are applicable 

for ACC, and that determining their scope and boundary conditions is a valid and 

important direction for future research.    

7 Conclusions 

This paper demonstrates a suggested workflow for implementing GNNs for ACC 

while relying on a synthetic data set for training and making prediction on BIM 

models received from the industry. The workflow is illustrated through a small- 

scale problem of checking compliance to accessibility requirements. The accuracy 

of the trained model applied to a test set achieved 86%, suggesting the classifier 

performs well on unseen data. Using the trained model to classify building elements 

presented in a BIM model received from the industry achieved accuracy of 82%.  

This work has two main contributions, one is the feasibility check for using 

GNNs to automate compliance checking of code requirements that incapsulate both 

geometric aspects and topological aspects of the design. The other is a demonstra-

tion that in fact, synthetic data sets can be useful for training models that will later 

be used for classification of real design information.  

The possible potential of using ML (whether classic ML algorithms or graph-

based algorithms) has been long recognized. However, one of the main drawbacks 

is usually the unavailable data set for training. The construction industry produces 

large amounts of data in every construction project, but it is unfortunately not al-

ways available for researchers. Relying on synthetic data, we are able to illustrate 

the potential use and benefit of data driven approaches for ACC. 
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