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Abstract— Training reinforcement learning (RL) agents for
motion planning in heavily constrained solution spaces may
require extensive exploration, leading to long training times. In
automated driving, RL agents have to learn multiple skills at
once, such as collision avoidance, traffic rule adherence, and
goal reaching. In this work, we decompose this complicated
learning task by applying curriculum learning for the first
time onto an RL agent based on graph neural networks.
The curriculum’s sequence of sub-tasks gradually increases
the difficulty of the longitudinal and lateral motion planning
problem for the agent. Each of our sub-tasks contains a set
of rewards, including novel rewards for temporal-logic-based
traffic rules for speed, safety distance, and braking. Unlike
prior work, the agent’s state is extended by map and traffic rule
information. Its performance is evaluated on prerecorded, real-
world traffic data instead of simulations. Our numerical results
show that the multi-stage curricula let the agent learn goal-
seeking highway driving faster than in baseline setups trained
from scratch. Including traffic rule information in both the
RL state and rewards stabilizes the training and improves the
agent’s final goal-reaching performance.

I. INTRODUCTION
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Motion planning algorithms for autonomous driving face
multiple constraints that restrict their solution space. These
include the need to find collision-free trajectories while
adhering to further traffic rules and optimizing driving per-
formance. One commonly researched method of data-driven
motion planning for autonomous vehicles is reinforcement
learning (RL) [1]. RL algorithms train agents to maximize
rewards obtained from interacting with an environment over
time [2], such as driving through traffic. If RL agents are
faced with a difficult task from the beginning of their
training, e.g., due to the many constraints in motion planning,
they may need a long time to converge [3], if at all.
Curriculum learning (CL) can be used to ease the learning
process of difficult tasks. CL schemes subdivide the training
process of machine learning algorithms into a sequence of
sub-tasks of increasing difficulty [4]. It has been shown
that CL simplifies and accelerates various machine learning
problems [3], including RL for autonomous driving [5]–[8].

As visualized in Fig. 1, RL relies on a state representation
of the environment that the agent processes to derive a
reward-optimal policy [2]. By using graphs as state represen-
tations for RL agents, arbitrary road topologies and numbers
of surrounding vehicles can be flexibly captured [9], [10].
Graph neural networks (GNNs) have successfully been used
to encode the graph-based traffic input into states for the RL
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Fig. 1: High-level overview of our graph neural network (GNN)-
based reinforcement learning problem to learn a curriculum of
driving tasks that incorporate traffic rules.

agent [9]–[11] (GNN-RL). GNNs are invariant to the order
and number of vehicles (nodes) in an environment and model
relational information between the vehicles explicitly in their
edges [9]. Hence, this vehicle-to-vehicle (V2V) relationship
does not have to be learned [9].

A. Related work

As our work combines GNN-RL with CL including traffic
rule evaluations, we summarize related works applied to
motion planning for autonomous driving in these three areas.

1) Graph Neural Network Reinforcement Learning: In au-
tonomous driving, several works have employed GNN-based
RL motion planners [9]–[23]. A relationally interpretable
GNN input representation is the V2V graph that connects
the road users around the agent [9], as shown in Fig. 1. The
effectiveness of V2V-GNN-based states for RL agents over
non-GNN ones has been shown for a simplified highway
lane change scenario in dense simulated traffic [9]. Here,
the V2V-GNN contains dynamic properties in the vehicle
nodes and V2V distances in the edges. It outputs an ego
node embedding to serve as the state of an RL agent that
controls the ego vehicle acceleration and steering angle.

Similar V2V-GNN performance advantages as in [9] are
reported for high-level lane changing or keeping commands
on simulated highway scenarios, except for low traffic den-
sities with few V2V interactions [11]. In line with this, prior
work has not yet evaluated the performance of V2V-GNNs
for very low traffic densities. Such traffic scenes without
any vehicle around the agent yield empty V2V graphs.
The largely map-unaware agents cannot orient within this
non-representative input as they lack explicit lane geometry
features in their states. Furthermore, prior work has only
evaluated GNN-RL agents in unrealistic simulation setups



where the simulated other vehicles change lanes coopera-
tively, if at all, and always brake when the agent cuts in.

2) RL Curriculum Learning: CL in RL has been applied
to several autonomous driving tasks [5]–[8], [24]–[26]. All
works rely only on a few manually specified curriculum
stages with respective task and reward specifications for RL
agents, while GNN-RL is not yet employed. Several works
set the initial CL stage as an empty road without any vehicles
beyond the agent [5], [6], [8], [24].

In [24] and [8], a driving policy is trained in urban simu-
lations with multimodal features. RGB images and different
feature vectors related to vehicles and roads are processed
by specific network layers and concatenated into the agent’s
state vector [8]. After an empty initial CL stage, the number
of dynamic obstacles (vehicles, pedestrians) and spawning
locations for the agent/obstacles is increased over five stages,
while the weather-based image quality is degraded [8]. The
CL-trained agent performs comparably to a non-CL agent
w.r.t. collision rate (which remains high) and total episode
reward over tested scenarios [8].

In [5], CL is used to learn overtaking other vehicles
in a racing simulation. The agent first learns to drive on
empty tracks, before the second stage adds other vehicles
and an overtaking reward, and finally the third stage adds
increasing collision penalties [5]. While CL increases the
rewards significantly to human-level driving performance,
the work does not compare the collision rate against a
non-CL baseline. In [7], the overtaking task is approached
with CL for simulated highway driving. The state vector of
hand-crafted vehicular and road features is directly fed into
the agent [7]. Similar to [5], the agent is first tasked with
lane keeping among other vehicles, before the second stage
adds an overtaking reward [7]. The CL-based agent learns
overtaking with fewer collisions and faster than a non-CL
baseline, although a non-CL ablation study is shown to also
improve overtaking by only adding a lane keeping reward [7].

3) Traffic Rules: Teaching an RL agent to adhere to
traffic rules requires incorporating them during or after the
learning process. Following simple traffic rules, such as the
speed limit, can be easily achieved by masking violating
actions [27] or applying penalties to the reward signal [28],
although the latter is not provably safe. More complex
rules are formalized using temporal logic formulas [29].
The results of linear temporal logic specifications have been
integrated into RL agents as rewards for grid world scenarios
[30], as selectors of rule-compliant policies for lane changing
scenarios [31], [32], or as violation rewards [31]. However,
the degrees of traffic rule satisfaction or violation have not
yet been incorporated into the state or rewards of GNN-RL
agents nor into CL schemes for autonomous driving.

B. Contributions

This work uses a CL scheme to train a GNN-RL agent
in safe highway driving by incorporating lane-based spatial
information and traffic rules into a V2V-GNN. Our manually
specified curricula create sequences of increasingly difficult
highway driving tasks with appropriately shaped rewards.

These guide the RL agent towards desirable driving behavior,
including traffic rule adherence. Our contribution is four-fold:

• We extend V2V graph-based GNN-RL agents from
prior work with road geometry-related features and
rewards to make them applicable to low traffic densities;

• to further improve driving, we integrate for the first time
satisfaction degrees of temporal logic-based traffic rules
into the GNN-RL agent’s features and rewards;

• we specify two novel GNN-RL-based curricula with
and without traffic rules to learn highway driving on
progressively increasing traffic densities; and

• unlike prior work on simulations, we evaluate our GNN-
RL agent and curricula against baselines on prerecorded
real-world traffic requiring reactive driving styles.

To the best of our knowledge, we are the first to propose
a CL scheme for motion planning that integrates traffic rules
and map-awareness for GNN-RL agents. Our implementation
is based on CommonRoad-Geometric [33], which offers
customizable graph representations of traffic scenes, and is
available online at http://github.com/CommonRoad/crgeo-cl.

II. PRELIMINARIES

A. Graph Neural Networks (GNNs)

We use GNNs as feature extractors to output latent state
vectors for RL policies. GNNs transfer the notion of common
deep neural networks into the graph domain [34]. In this
work, we convert traffic information about a vehicle v into
directed graphs G = (V, E), where hv ∈ XV represents the
node features of each v and evw ∈ XE denotes the edge
features of the V2V relation between two vehicles v and w.
Multi-layer GNNs are able to share and aggregate feature
vectors (XV ,XE) in a local graph neighborhood using the
message passing paradigm defined by the learned differen-
tiable message functions Mk and node update functions Uk

[35]. During the message passing at each layer k ≤ K, fea-
tures hk

v of each node are updated to hk+1
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where N (v) represents the neighbors of v in graph G [35].
By running multiple message passing steps in several GNN
layers, information is distributed among increasingly large
parts of the graph [36]. The resulting graph can be converted
into a latent feature vector z to serve as the RL state.

B. Reinforcement Learning (RL)

RL maximizes the expected reward of Markov Decision
Processes (MDPs) without knowledge of the environment by
learning from experience [2]. An MDP is defined by the tuple
(S,A, R, P, γ) where st ∈ S is the state at time t, at ∈ A is
the action, rt is the immediate reward at t based on a reward
function R : S ×A → R, P : S ×A → R returns transition
probabilities, and γ is the discount factor [2]. One way to
solve MDPs with RL is the actor-critic method, where two
different networks are implemented for learning the policy
π(st) and the state-value function V (st), respectively [2].

http://github.com/CommonRoad/crgeo-cl


Fig. 2: Structure of our GNN-RL-based CL approach. The curriculum selects tasks on real-world highway data and reward functions
rt per stage. From the data, a traffic graph is constructed whose node and edge features are processed by GNN layers. The ego node
embedding hK

ego is concatenated with the ego feature vector fego,LT and embedded into the latent state zt for the actor-critic RL agent.

C. Curriculum Learning (CL)
CL refers to a technique that accelerates an agent’s training

or enhances its performance by optimizing the sequence of
tasks during learning [3]. A task-level sequence curriculum
orders tasks ti = (Si,Ai,Ri,Pi,γi) as [t1, . . . , tN ], so the
RL agent is trained first on samples from a simple task t1
and last on the most difficult target task samples tN [3],
e.g., complex highway scenarios. The task difficulty is often
defined manually by human experts [3]. Each curriculum
specifies by stopping criteria whether a task ti is ended
after sufficient convergence or after a fixed episode count
ei, before ti+1 is started [3]. In this work, we use the latter
and refer to the tuple Si = (ti, ei) as a stage.

D. Traffic Rules
The satisfaction of traffic rules can be defined by the

robustness degree of signal temporal logic (STL) [37]. STL
is a logic for specifying properties of signals in continuous
time [37]. Out of the large number of traffic rules in
different legal systems, we formalize three German traffic
rules on highways according to [29]: The safety distance
of v to the preceding vehicle w considering vehicles that
cut in (G1), avoiding unnecessary braking of v, unless the
safety distance to preceding vehicle w is violated (G2), and
adhering to the maximum speed limit (G3). The robustness
degrees of these rules in STL are based on several pred-
icates (CutIn, InFrontOf, InSameLane, KeepsSafeDistPrec,
Precedes, RelBrakesAbruptly) covering all relevant prior
timesteps of a scenario [29], [38]. Some predicates, such
as InFrontOf, directly evaluate lane-based position relations
between vehicles, while others also factor in their current
relative speeds, such as KeepsSafeDistPrec [29]. We adopt
the scaling scheme from [38] that bounds the scalar robust-
ness degrees to [−1, 1], where a negative (positive) value
represents the degree of a fulfilled logical false (true) value.

III. APPROACH

Our goal is to train an RL agent in safely driving through
highway environments to reach given goal positions. To

that end, we process a V2V graph with a multi-layer GNN
and extend the ego node embedding with lane and traffic
rule information. The processed output serves as the latent
state zt of our agent that commands the steering angle and
acceleration. To simplify the training of our GNN-RL agent,
we set up task-level sequence curricula with task-specific
rewards, which also evaluate the influence of traffic rules on
driving performance.

A. Graph Neural Networks (GNNs)
Due to a lack of lane geometry features, V2V-GNNs from

prior work cannot be used as states for RL agents at low
traffic densities, as these models can only infer the drivable
area from a joint motion of many vehicles around the agent.
Since our CL approach is based on challenging real-world
highway traffic data, a lowered traffic density through sparse
vehicle sampling is key to building simpler initial tasks for
the agent. To make V2V-GNNs also applicable to low traffic
densities, we design an ego-centered feature vector fego,LT

with lane and road geometry information that is concatenated
to the ego node embedding hK

ego. The latter is extracted
from the GNN after V2V message passing as in [9]. Next,
a multi-layer perceptron (MLP) embeds [hK

ego, fego,LT ] to
obtain the latent state zt for the RL agent, as shown in
Fig. 2. The features used in fego,LT are specified along with
corresponding scaling functions applied for normalizing the
feature domain and hk

v in Tab. I.
The combination of a traditional fixed-size feature vector

combined with a V2V-GNN embedding enables the agent to
directly extract navigation cues from fego,LT at low traffic
densities while also integrating V2V interactions from hK

ego

at higher traffic densities. We opt for this simple V2V-based
architecture since the drivable space on highways can be
modeled as a homogeneous 2D surface on which vehicles
can change lanes freely. As the agent can directly infer
its feasible actions from V2V interactions and/or fego,LT ,
more complex representations are not needed for learning
safe highway driving, such as heterogeneous vehicle-to-lane-
graph-based GNNs [10]. To speed up the learning process



TABLE I: Scaled node, edge, and vector features of our V2V-GNN.
”xy” denotes 2D features, unlike the other scalar features. L features
used both in the V2VL and V2VLT GNNs. T features used only in
the V2VLT GNN. * features taken from [9].

Feature Feature name Scaling function

General vehicle node features hk
v

fp,xy∗ PosEgoFrame fp,x/y / 50
fv,xy∗ Velocity ( fv,x/y − 15 ) / 20

Vehicle-to-vehicle edge features ekvw

frp,xy∗ RelativePosEgo frp,x/y / 50

Additional ego vehicle feature vector fego,LT

fv,xy Velocity ( fv,x/y − 15 ) / 20
fa,xy Acceleration fa,x/y / 20
fy YawRate min(max(fy ,−1), 1)
fh,L HeadingError min(max(fh,L,−π/4), π/4)
flb,L DistToLeftLaneBoundary flb,L / 2
frb,L DistToRightLaneBoundary frb,L / 2
flrb,L DistToLeftRoadBoundary ( flrb,L + flb,L ) / 12
frrb,L DistToRightRoadBoundary ( frrb,L + frb,L ) / 12
fla,L DistToGoalLateral log(|fla,L|+ 1) fla,L / |fla,L|
flo,L DistToGoalLongitudinal log(|flo,L|+ 1) flo,L / |flo,L|
fg1,T G1Robustness fg1,LT

fg2,T G2Robustness fg2,LT

fg3,T G3Robustness fg3,LT

of safe highway driving, we integrate for the first time
robustness values fg1-3,T of the three traffic rules G1-G3
into fego,LT for the GNN-RL agent. This creates a V2VLT

GNN instead of the only lane feature-extended V2VL GNN.
Based on [29] and [38], we compute fg1-3,T ∈ [−1, 1] for
the ego vehicle in relation to surrounding vehicles at each
time step t of a scenario. Unlike the prior work on a-priori-
known vehicle trajectories, our rule robustness calculation
needs to update at each t to reflect the dynamic actions of
the agent. Due to the computational complexity of robustness
calculations, we restrict them to the most relevant agent-to-
vehicle-relations and do not consider pairs of other vehicles.

B. Reinforcement Learning (RL)

Key to learning safe highway driving with RL is the
aggregated reward function R of carefully weighted rewards
ri. We apply the ri defined in Tab. II and explain their
contribution to aspects of safe driving subsequently. For fur-
ther details, we refer to our online available implementation.
Rewards denoted by † act as termination criteria, providing
a single penalty when triggered and terminating the episode.

As a core safety aspect, the rewards for Collision, TimeTo-
Collision, safety-distance-based G1Robustness, and braking-
based G2Robustness incentivize collision avoidance. While
Collision only penalizes the actual collision, TimeToCollision
helps the agent learn to anticipate collisions, i.e., to pre-
dict when its trajectory intersects with others. The time-to-
collision metric tTC represents the time after which two ve-
hicles would collide if they keep moving on their current path
and with their current velocity [39]. As a proxy to the time-
to-collision penalty −e−min(tTC,t)/2, we also explore the
scaled inverse distance of the agent to the closest surrounding

TABLE II: Reward components ri weighted by wi and summed up
over the episode to the agent’s total reward r. L rewards used both
in the V2VL and V2VLT GNNs. T rewards used only in the V2VLT

GNN. * reward types taken from [9]. † termination criteria.

Reward Name Value ri Trigger

Vehicle-pose-based components

rreGo ∗ † ReachedGoal 4 is at goal()
rcoll ∗ † Collision −4 is colliding()
rroad† Offroad −4 is offroad()
rroute,L Offroute −1 is offroute()
roffLC,L OffLaneCenter max(−ot,−0.05) −
rhdErr,L HeadingError − (·)2 −

Vehicle-dynamics-based components

raccel∗ Acceleration − (·)2 −
rsAngl∗ SteeringAngle −∥·∥1 −
rvelo∗ Velocity −

∥∥∥ṗv∥2 − 50
∥∥
1

∥ṗv∥2 > 50
rstand StillStanding −0.01 ∥ṗv∥2 < 2

rttc,a TimeToCollision −e−min(tTC,t)/2 −
rttc,b TTC-Closeness −max(ct, 0)/0.08 min(∥∆pvw∥2)<4
rtrajP,L TrajectoryProgr min(∆sLv , 0.2) ∆sLv > 0
rlnCh,L LaneChange −2 Lv,t ̸= Lv,t−1

Traffic-rule-based components

rg1,T G1Robustness fg1,T −
rg2,T G2Robustness fg2,T −
rg3,T G3Robustness fg3,T −

vehicle ct = 1/min(∥∆pvw∥2)−0.92, which is similar to
distance potential functions [18]. The scaling in ct ensures
to only consider ∥∆pvw∥2<4m in the reward, which avoids
penalizing the agent for passing by other vehicles on the left
or right lane, as it could discourage it from moving forward
in dense traffic. The rewards of traffic rules G1 and G2 are
calculated based on the respective GNN features available
to the agent as direct feedback about rule satisfaction. The
agent is rewarded with up to +1 for fulfilling rules with
different degrees (fg1-3,LT >0) and penalized with up to −1
for violating them (fg1-3,LT <0).

The safety aspect of driving close to the lane center is
covered by the rewards for Offroute, Offroad, HeadingError,
and OffLaneCenter. Offroute returns a penalty per timestep
if the agent is not on the direct route from the start to the
goal lane. Offroad returns a termination penalty for leaving
the road. HeadingError penalizes the agent’s deviation from
the orientation of the traversed lanelet and OffLaneCen-
ter the weighted offset from the closest lane centerline
ot=woffLC,t ∥flb,L−frb,L∥1. The latter also incentivizes
the agent to avoid unnecessary lane changes, which is further
reinforced by the LaneChange penalty given for each change
from the ego lane Lv . Safely adhering to speed limits is
fostered by penalizing exceeding a prespecified Velocity of
50m/s, StillStanding (defined with a safety margin as below
2m/s), and violating the traffic rule-based G3Robustness
value using the official speed limit of the traversed map
segment. Similar to [9], the agent’s normalized control
commands are squared in Acceleration and SteeringAngle
to penalize shaky RL control outputs, as observed by others
[18], [19]. This behavior is strengthened by G2Robustness



penalizing unnecessary braking maneuvers.
Lastly, the generally preferred goal-seeking behavior is

introduced by the rewards of ReachedGoal, StillStanding,
and TrajectoryProgr. The latter encourages forward motion
through rewards per timestep based on the traveled distance
∆sLv [33]. It is similar to the goal distance reward of [9],
but also gives rewards when the agent has missed the goal
laterally and continues driving along the highway. As in [9],
we apply the rewards to an actor-critic RL agent based on
PPO [40].

C. Curriculum Learning (CL)
Our task-level sequence curriculum aims to make the

agent learn multiple driving skills. These are required for
the driving tasks of increasing difficulty with correspondingly
weighted, stage-specific rewards, optionally including traffic
rules. Since our training data contains fixed prerecorded
trajectories, the task difficulty can mainly be adjusted by
manually reducing the vehicle density through undersam-
pling, which acts as an upper bound of how many vehicles
are kept depending on traffic.

Furthermore, the RL driving difficulty in real-world data
can be controlled by selecting the start and goal positions.
Unlike in works with uniformly simulated traffic over all
lanes, such as [9], real-world German highway traffic exhibits
different vehicle distributions of cars and trucks over the
lanes, which causes density and velocity gradients from the
left to the right lane [41]. As a result, our lateral choice
of varying start and goal lanes not only forces the agent to
change lanes, but also to deal with a specified degree of
density and velocity-based driving difficulties. Lastly, longer
start-to-goal distances can complicate the driving task.

At both the undersampling and start-goal position choice,
the curriculum has to ensure that V2V message passing and
the ego-centered feature vector can provide useful learning
signals to the RL agent. For instance, sufficiently many
vehicles should be kept so that the V2V graph does not
collapse, and the episode count ei should be manually limited
to a value that enforces the agent to learn the task of a stage
sufficiently, but not to overfit. For the final evaluation, the
CL-based RL agent with traffic rules T and without them C
is to be compared against a corresponding non-CL baseline
B on the target task tN . During training, however, a reward-
based performance evaluation is difficult, as the reward
function changes per stage. Inspired by the CommonRoad
cost function [42], we therefore set up a stage-independent
performance evaluation function pt. It judges the overall
quality of the current driving skills throughout all stages by
a constant set of rewards hidden to the RL agent.

IV. EXPERIMENTS

We evaluate our GNN-RL-based motion planner on real-
world highway traffic data through two different curricula
and investigate the effect of including traffic rule information.

A. Setup
1) Data: We train and evaluate our approach on the highD

dataset of highway driving recorded in Germany [43]. The

TABLE III: Major hyperparameters of the V2VL GNN-RL setup

Ego vehicle start state (ls, vs) middle lane, 30m/s
V2V graph construction 3-nearest neighbor ∀∥∆pvw∥2<50

GNN message passing layers (K) 3
Aggregation, activation functions max(·), tanh(·)
Feature dimensions (|hk>0

v |, |zt|) 80, 80
GNN ego node-feature embedder MLP (|h3

ego| + |fego,LT |, |zt|)

RL Actor-critic networks (π, V ) Each MLP (256, 128, 64)
Rollout steps, batch size 256, 32
Discount factor (γ) 0.99

dataset contains two-lane or three-lane, unidirectional main
carriageways. 19366 scenarios are extracted at a 90%/10%
train/test split, where all initial and goal poses correspond
to real-world trajectories of cars and trucks. Different from
many GNN-RL works [9], [11], [14], [17], [23], the highD
traffic is replayed open-loop in sequences of 150 steps
(∆t=0.04 s). Unlike in closed-loop simulations, surrounding
vehicles perform neither emergency braking for the agent
cutting in nor cooperative lane change maneuvers. The agent
has thus to learn to make space for other vehicles to avoid
collisions.

2) GNN-RL: The traffic graph extraction and GNN pro-
cessing are orchestrated by CommonRoad-Geometric [33].
For computational speedup, we construct the graph with the
three nearest neighbors of the ego vehicle for the GNN and
traffic rule calculation. For training our GNN-RL agent, we
use the PPO implementation of SB3 [44] with the Adam
optimizer at a learning rate of 10−5 with a weight decay of
10−3. Details are provided in Tab. III, and for the curricula
and the reward functions subsequently.

3) Curriculum design: We manually design two curricula
C1 and C2 without traffic rules (V2VL GNN) and two
traffic-rule-enhanced curricula T1 and T2 (V2VLT GNN),
as specified by the carefully tuned task parameters and
weights shown in Tab. IV. All follow the principle of having
intermediate tasks deemed relevant for the final task, which
help the agent transfer knowledge to the final task.

To this end, stage 1 of C1 starts with a simplified setting
illustrated in Fig. 2 by t1, where start and goal lanes are
corresponding (middle lane), the distance to the goal is low
(compared to final distance), all vehicles but one are filtered
out from the scenario, and the components LaneChange and
Offroute have zero weight. This allows the agent to focus
on the basic skills of goal-seeking and learning to drive
within the highway bounds. This behavior is further trained
in stage 2 with a slightly more difficult setting by loading up
to 10 vehicles into the scenario (distributed over the 150 time
steps), which requires the agent to obtain collision avoidance
skills. Stage 3 introduces the task of lane keeping and further
hardens the setting by including up to 20 vehicles. Also,
the goal distance is increased to the final value. Lastly, the
final stage adds the task of smooth lane center driving in a
scenario with up to 30 vehicles, which is close to the total
number of vehicles typically contained in highD scenarios.
Additionally, the final task of seeking the goal placed on a



TABLE IV: Parametrization of our curricula with reward notation from Tab. II and a short summary of the driving task sequence to be
learned. Reward weights not listed default to 1. [mid, rnd] for the goal lane lg abbreviate [middle, random], a and b in wttc

denote the time-to-collision and closeness metric, respectively, and (wg1/g3, wg2) only apply to the V2VLT curricula T1 and T2.

Sj emax ds,g lg nveh wcoll wroute woffLC whdErr waccel/sAngl wvelo wttc wtrajP wlanCh wg1/g3 wg2

Curriculum 1 (C1/T1): at increasing traffic: basic goal-seeking → collision avoidance → lane keeping → smooth lane center driving/lane changing

1 3000 70m mid ≤1 1 0 0 0.2 0 0.002 0.1a 0.3 0 0.02 0
2 7000 70m mid ≤10 1 0 0 0.2 0 0.002 0.1a 0.3 0 0.02 0
3 11000 100m mid ≤20 1 0.1 0 0.2 0 0.002 0.05a 0.3 1 0.02 0
4 107 100m rnd ≤30 1 0.1 0.01 0.2 0.005 0.002 0.05a 0.3 1 0.02 0.02

Curriculum 2 (C2/T2): at dense traffic: basic goal-seeking & collision avoidance → lane keeping → smooth lane center driving → lane changing

1 5000 70m mid ≤∞ 1 0 0 0.2 0 0.002 0.2b 0.3 0 0.02 0
2 9000 70m mid ≤∞ 0.5 0.1 0 0.2 0 0.002 0.1b 0.3 1 0.02 0
3 13000 100m mid ≤∞ 0.5 0.1 0.01 0.2 0.005 0.002 0.1b 0.3 1 0.02 0
4 107 100m rnd ≤∞ 0.5 0.1 0.01 0.2 0.005 0.002 0.1b 0.3 0.25 0.02 0.02

random lane is introduced, which enforces lane changes in
some cases, as illustrated in Fig. 2 by tN .
C2 pursues a similar strategy of C1 but does not modify

the number of vehicles in the scenario. This follows the
intuition that guaranteeing a dense V2V graph from the start
of training lets the agent learn to avoid collisions in complex
traffic from the early stages on. Additionally, unlike C1, the
tasks of smooth lane center driving and random goal-seeking
are distributed into two stages to ease the learning process.

For T1 and T2, all three traffic rule-based rewards are
activated. Due to their immediate relevance to basic driving
skills, such as collision avoidance and adhering to speed
limits, we activate the safety distance (G1) and speed limit
rewards (G3) from the first stage. In contrast, the reward
for unnecessary breaking (G2) encourages smooth driving
behavior, similar to the acceleration penalty. Therefore, we
only activate it in the final stages concerned with smooth
lane center driving and lane changing.

To evaluate the effectiveness of all curricula, the baselines
B1 and B2 are trained from scratch with the target task setup
of the final stage 4. Additionally, the performance function
pt is activated for C1, resembling the reward function of the
final stage of C1 with the rewards rreGo and rcoll excluded,
as they are analyzed separately in Fig. 3b and Fig. 4. Thus,
pt evaluates smooth and lane-compliant driving behavior.

B. Evaluation

1) CL vs. baseline: We compare C1/C2 with B1/B2 on
the metrics shown in Fig. 3 and Fig. 4, which visualize the
learning progress of the corresponding agents. In Fig. 3a,
C2 exhibits a jumpstart over B2 in mean rewards during
initial training, reaching rt> 0 about 6000 episodes earlier.
As shown in Fig. 3b, this is attributed to the agent learning
the subtasks of goal reaching and navigating in the road
bounds faster. It indicates that the easier task of stage 1 in C2
accelerates the learning process. However, a sharp drop in the
ReachedGoal ratio in stage 4 (random goal lane) over stage 3
(goal in same lane as start) suggests that the data distributions
to be learned for fixed and random goal seeking are too
different, causing the C2 agent to have a slightly higher
collision rate than B2 and similar mean rewards, as seen

in Fig. 3 and Fig. 4. Presumably, the agent has converged to
the same-lane tasks of the stages 1-3, and has not adapted
to the multi-lane task of stage 4.

Results from C1 show a similar pattern, where the initial
jumpstart advantage over B1 is significantly more evident.
This suggests that the reduced traffic density due to C1
eased and accelerated the initial learning task. At the end,
C1 achieves a collision rate on par with that of B1. The
development of pt in Fig. 3a indicates that driving aspects
other than goal seeking and collision avoidance are already
learned early until mid-stage 2, from where pt stagnates.

Although our GNN is based on the model of [9], a direct
performance comparison is not feasible, as the task setups
are too different. In the two-lane simulation of [9], the
agent always performs a merge from the right into the left
lane in dense traffic. The other vehicles are simulated as
highly reactive to avoid collisions when the agent cuts in,
whereas in our real-world data the prerecorded trajectories
of other vehicles do not react to the RL agent at all. In
our setup, the task of collision avoidance lies fully with the
agent that additionally has to deal with lane-dependent speed
distributions, constituting a task of higher difficulty. This
results in higher final collision rates of B1/B2 and C1/C2
than those reported in [9]. We reimplemented the GNN-RL
agent of [9] and evaluated it on our task of B2. Despite
having a specific goal distance reward [9], the agent was
unable to learn basic goal-reaching behavior, indicating the
benefits of our hybrid model architecture. In contrast, Fig. 5
shows an exemplary lane changing scenario at high traffic
density that our agent managed to navigate successfully. In
general, the agent learns to correctly and quickly change to
the left or right lane depending on the randomly specified
goal. Since the agent executes left lane changes into the fast
lane with the same speeds as right lane changes into the slow
lane, the different per-lane speed distributions of our highD
data have not yet fully materialized.

2) Traffic rule-enhanced CL: Enhancing the curricula C1
and C2 by traffic rules improves the goal-reaching capabili-
ties and rewards in the final stage, observed for both T1 and
T2. It also reduces reward fluctuations at stage changes. E.g.,
in Fig. 3, the start of stage 2 of T1 does not cause a sharp



(a) Mean accumulated rewards per episode. Both C1/C2 show accelerations in learning over B1/B2, while the traffic rule-enhanced T1/T2
further exhibit more stable rewards at stage switches and some performance gains on the final task.

(b) Termination ratios of success (goal reached) and lane geometry-related failure (driven offroad) per episode.

Fig. 3: Numerical evaluation of our two CL setups with the V2VL curricula C1/C2, the V2VLT curricula T1/T2, and baselines B1/B2.

Fig. 4: Ratio of episodes of runs 1 and 2 that ended with Collision,
computed for the last 25% of each stage for C1/C2 and T1/T2 and
of last 25% for B1/B2.

drop in ReachedGoal ratio present for C1. T2 manages to
improve over C2 by keeping the Offroad ratio low in the final
stage. However, the collision avoidance deteriorates slightly
for T2, while staying comparable for T1 and C1.

In T1/T2, we only calculate the traffic rule robustness
between the agent and other vehicles fg1-3,T in fego,LT and
omit pairs of other vehicles to reduce the computational load.
As an extension, we compared this simplified setup with a
V2VLT GNN with fg1-3,T in hk

v and the predicates in ekvw
for all vehicles. The results showed that the computational
simplification did not significantly affect the agent’s perfor-
mance and traffic rule violation effects over multiple other
vehicles are hence less relevant to our planning problem.

V. CONCLUSION

In this work, we have introduced a novel CL scheme for
motion planning in autonomous driving that incorporates
traffic rule and map information into a GNN-RL agent.

Extending V2V graph-based GNN-RL agents for highway
driving from previous works with features and rewards
related to the road geometry enables the agents to also
navigate at low traffic densities. This allows for setting up
task curricula for highway driving that progressively increase
the traffic density along with making the agent’s longitu-
dinal and lateral driving route more complex. By starting
with simpler tasks before attempting more complex ones,
our curriculum-based agents can learn basic driving skills
such as goal-reaching behavior faster than non-curriculum
baselines trained from scratch on the most complex target
task. Different from several previous simulation-based works,
our curriculum-based agents are evaluated on prerecorded
real-world traffic from multi-lane highways. To increase the
safety of the learned driving behavior, we incorporate for the
first time three temporal logic-based traffic rules about safety
distance, unnecessary braking, and speed limits as features
and rewards into the agent. Introducing traffic-rule features
and rewards in the traffic-rule-enhanced curricula has shown
to stabilize performance at stage switches and to ultimately
improve final driving performance.
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Fig. 5: Example of the agent’s learned motion planning capabilities to reach the goal (green circle) by a lane change into the slower lane.
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