
HYPA: Hybrid Horizontal Pod Autoscaling with
Automated Model Updates

Kaan Aykurt∗, Răzvan-Mihai Ursu∗, Johannes Zerwas∗, Patrick Krämer∗,
Navidreza Asadi∗, Leon Wong† and Wolfgang Kellerer∗

∗Technical University of Munich, †Rakuten Mobile Inc.

Abstract—Due to changing demand patterns driven by tech-
nological advancements and the rise of new applications and
services, the provisioning of heterogeneous workloads is a cru-
cial component of the resource allocation problem. Traditional
resource allocation strategies such as reactive autoscaling or
prediction-based proactive solutions, fail to meet the desired
performance goals when the underlying demand arrival pattern
changes.

In this paper, we present HYPA, which combines reactive
and proactive components to autoscale pods in a Kubernetes
environment. In contrast to previous approaches of hybrid
autoscaling, HYPA automatically reacts to drifts in the request
arrival pattern. Specifically, it updates the model of its proactive
component when the prediction performance decreases. The
evaluation in a simulation on a variety of real-world traces,
spanning multiple days, demonstrates that HYPA improves upon
existing purely reactive and purely proactive horizontal pod
autoscalers.

Index Terms—Kubernetes, horizontal pod autoscaling, demand
forecasting

I. INTRODUCTION

In today’s rapidly evolving world of digitalization, the
provisioning of containerized workloads is a crucial aspect
of modern network management strategies. Examples of such
workloads are web applications and mobile networks which
become more modularized as white-box concepts like Open-
RAN are adopted [1]. Kubernetes (k8s) is one of the most
popular frameworks for managing and scaling containerized
applications and it is being adopted by many Telco Providers
where network functions are containerized. One of the key
features of k8s is that it offers to tackle the challenges of
scalability with its Horizontal Pod Autoscaler (HPA).

Traditional resource provisioning methods require expertise
and human intervention in the decision-making process to
allocate the required resources. This leads to a tedious and
error-prone process, where a wrong estimation in the capac-
ity requirements can lead to under or over-provisioning of
resources [2]. In addition to application performance issues
caused by under-provisioning, or waste of resources created
by over-provisioning, rapid fluctuations in demand patterns
render manual resource allocation methods infeasible and
impractical. To this end, the k8s HPA aims to autonomously
scale the number of running pods, i.e. autoscale, in response to
critical performance metrics such as CPU utilization, memory
utilization, or the Request Completion Time (RCT).

State-of-the-art autoscaling methods from the research com-
munity consider reactive, proactive, and hybrid autoscaling [3].

Reactive autoscalers take action when the performance met-
rics exceed a pre-defined threshold. Hence, their reaction is
delayed or even too late to keep the performance metrics
within the desired range. Avoiding this situation usually results
in over-provisioning resources to have some slack resources
(and lead time) to deploy additional resources when needed.
Moreover, frequently collecting critical performance metrics
from large-scale distributed systems introduces challenges to
system design.

With the advances in data-driven modeling and forecasting
methods, a proactive approach to HPA emerged [4]–[6]. The
HPA predicts the incoming demand for a certain time horizon
and scales out the resources accordingly. While this allows the
system to prepare for future load variations, the performance
of such an approach strictly depends on the quality of the
forecast [6], [7]. In addition, user and application behavior
is subject to (sudden) changes that may only be for a short
duration or more long term, e.g., when an update of the
application is deployed. In general, short-term effects appear
in the form of bursts. For instance, for an online food delivery
website, the incoming request numbers increase during lunch
or dinner times. On the other hand, long-term effects reflect
distributional shifts in the data where an increase or a decrease
in the mean occurs due to seasonal effects. An example of such
effects can be the increased number of requests for football-
related web pages during periods of the World Cup. These
changes reflect in the request arrival patterns as bursts or so-
called distributional shifts for more persistent changes, and
in turn may lead to wrong forecasts and ultimately, reduced
performance.

In order to respond to changing user behaviors and the
resulting deficiencies of proactive HPAs, hybrid HPAs were
introduced [3]. Existing designs of such systems feature a
combination of proactive and reactive approaches. Specifically,
they rely on scaling decisions from the proactive component
as long as the forecast quality is high and fall back to
the reactive component if needed. A specific example is
Chameleon [7]. Chameleon features two proactive components
that use different prediction models and comes with a sophis-
ticated mechanism to handle conflicting scheduling decisions.
It periodically evaluates the forecast quality and falls back
to a reactive approach when the forecast quality is below a
given threshold. While this approach works well for short-
period bursts, it lacks an integrated approach to update the
forecasting models in case of long-term distributional shifts

such as observed during the COVID19 pandemic [8].
In this paper, we propose HYPA, a hybrid HPA that auto-

matically reacts to distributional shifts in the demand patterns.
Similar to other systems, HYPA combines a proactive and a re-
active HPA component. In normal operation mode, it monitors
and checks the proactive component’s performance. In case
of performance degradation, HYPA enters into burst mode
and applies reactive autoscaling in addition to the proactive
scaling. If it continuously detects bursts for a longer time
period, HYPA considers the model of the proactive component
to be outdated and starts data collection for the update of
the model. We evaluate HYPA in simulations on traces from
production systems in a variety of settings, comparing it to
purely proactive and purely reactive HPAs. HYPA outperforms
the baselines in all these situations or performs at least as well
while putting more focus on our primary metric, the RCT.

II. RELATED WORK

The performance of an orchestration tool depends on its
ability to use the resources efficiently with respect to changes
in application characteristics, i.e., it should scale the resources
provisioned to their applications in a smart manner. Hence,
a considerable part of the literature focuses on designing
autoscalers. A survey by Qu [3] elaborates on various method-
ologies to scale the resources of web applications. Mainly, the
design of autoscalers is divided into three categories: reactive,
proactive, and hybrid autoscalers.

Reactive autoscalers update the autoscaling decision when
a pre-defined reaction threshold is reached. The default k8s
HPA implements this as a control loop that queries the
resource utilization and by comparing it with a pre-defined
target utilization value, it reactively scales pods. Although this
approach manages to scale after a certain threshold is reached,
it has no ability to anticipate changes in workload patterns in
the future. Hence, it can scale only after the control loop reacts
to an increase in resource utilization.

Proactive autoscalers predict the required resource con-
sumption in the future in order to scale by avoiding the need
for reactive autoscaling. Among this category, the authors
of [5] propose an LSTM based-model to scale based on the
predicted workload. The authors of [4] present AutoScale–
as a holistic approach that incorporates Load Balancing of
requests and reactive autoscaling and it scales servers ac-
cording to the current request arrival rate. Gandhi et al. [9]
present an Extended Kalman Filter based method to estimate
unobservable parameters in a three-tier web application, and
use those estimates for autoscaling decisions. Luong et al. [10]
proposes to combine a long-term and a short-term prediction to
scale the number of application instances. The authors of [11]
propose an algorithm to detect bursts and act proactively
upon the detection of bursts. However, these methods do
not include a reactive component. Therefore, in case of poor
prediction performance, the autoscaler’s performance degrades
significantly. To overcome this problem, state-of-the-art in
literature focuses on hybrid autoscalers.

Meta
LB RR

Node 1

Node NNetwork

Metrics
Server

ReactiveProactive

Request
Monitor

Fig. 1: Cluster setup for the Change Point Detection use-case.

Hybrid autoscalers combine reactive and proactive compo-
nents for autoscaling decisions. The authors of [12] propose a
hybrid controller, where the reactive component is responsible
for scale-out decisions and the proactive component accounts
for scale-in decisions. Overall, they show that their autoscaler
outperforms purely reactive-based autoscalers. Most recently,
Chameleon [7] and Chamulteon [13] frameworks combine
proactive scaling mechanisms with reactive fallback. In their
paper, the proactive components use two time series models to
predict the future request arrival rate. The reactive component
makes scaling decisions based on the current request arrival
rate and the estimated application resource consumption pro-
file. Further, the controller allows the integration of queuing
models into the decision-making process, enabling the con-
troller to use structural application knowledge. However, they
do not consider updating the model parameters during runtime,
i.e. they rely on a pre-trained model without considering
distributional shifts in request patterns.

To the best of our knowledge, the literature lacks a compre-
hensive and lightweight hybrid autoscaler that automatically
updates its proactive component in case of distributional shifts,
and falls back to reactive autoscaling when the prediction
performance of the proactive component decreases. To close
this gap, we present HYPA.

III. SCENARIO DESCRIPTION

Figure 1 shows the envisioned scenario. We consider a
deployment with 10s of pods and multiple stages of load
balancers as considered in prior work [14], [15]. A meta load
balancer distributes incoming requests across the second stage
of load balancers using round robin. In the second stage,
load balancers distribute the requests across the pods of the
service(s). They might use more advanced load balancing
techniques, e.g., based on the load of the pods. Two sets of
monitoring data are collected from the system. The first set
consists of platform metrics such as CPU utilization u(t),
memory utilization, disk I/O, and network utilization. The
Metrics Server component available in k8s collects these

01.2019 05.2019 09.2019 01.2020
Time

0

25

50

75

100
Re

qu
es

ts
 p

er
 S

ec
on

d
 (i

n
th

ou
sa

nd
s)

Fig. 2: Distributional Shift: The mean of the dataset faces
a shift in the indicated time period. Hence, a performant
proactive component needs to account for structural changes
in the request patterns.

metrics from all nodes in the cluster. The reactive autoscaler
component uses platform metrics for its scaling decisions. The
second set of monitoring data is request-level data such as
the number of arrived requests in a time interval nreq(t). A
dedicated request monitor collects this data from (a subset of)
the load balancers. The proactive component uses the request-
level data to evaluate the quality of its forecasting model and
to perform burst detection. We consider horizontal autoscaling,
vertical scaling is out-of-scope for this work.

A. Workload Characterisation

The existence of distributional shifts of demand patterns
has been observed in prior work, e.g., [8]. To provide another
example, we analyze the request arrivals of the BibSonomy
system [16]. We investigate the request arrivals to the cluster
in fixed time intervals tiar. Specifically, requests are binned
and counted with tiar = 1min. Our analysis shows that the
number of requests that arrive every tiar in the BibSonomy
traces form a seasonal time series. Hence, the time series
expresses regular and predictable changes that occur at specific
times, i.e., after removing seasonal effects, the time series is
stationary.

Moreover, our analysis also considers the time series of
request arrivals may express random bursts in demand. Given
the fact that the time series is stationary given the seasonality,
we define a burst as a finite period of time during which the
number of arrived requests is larger (or smaller) than an upper
(or lower) bound on the predicted request arrivals.

Figure 2 shows the number of requests per second in the
year 2019 for the BibSonomy dataset. The plot shows that
in the marked period, the mean shifts for a period of 1.5
months, and then returns to the old mean. This is an example
of possible abrupt changes in the request patterns. Motivated
by this, we propose a hybrid autoscaling scheme consisting
of a proactive and a reactive component, where the proactive
component continuously predicts the required number of pods
in the future and updates the model parameters in case of
a reduction in prediction quality and falls back to reactive
autoscaling in such cases.

IV. HYBRID AUTOSCALING WITH HYPA

HYPA combines the decisions of two autoscaling com-
ponents: proactive and reactive. The two components both
estimate the number of desired replicas in the cluster, rp(t)
for the proactive, and rr(t) for the reactive component. The
proactive component uses a model of the demand pattern to
forecast the request arrival rate in the next forecast period,
whereas the reactive component reacts to the utilization of
the pods. Both scale the number of replicas to reach a target
utilization ut on average. The currently configured number
of replicas is rc(t). The control loop estimates the number
of replicas in the next iteration as rc(t) = max(rr(t), rp(t)).
This policy prevents pre-mature scale-in decisions.

Each component of the autoscaler operates in its own
synchronization period tr (reactive) and tp (proactive). During
normal operation, we assume that tr > tp, i.e., the proactive
component operates more often than the reactive component.
The reason for this lies in the cost to obtain necessary
monitoring data from the cluster nodes. Obtaining all platform
metrics from a large number of nodes is much more costly than
collecting request data from a small number of load balancers.
One goal is the reduction of this overhead by relying on
the predictive model in the proactive component. Moreover,
a dominant proactive component allows one to follow the
demand pattern more closely and increase resource efficiency.
The difference tr − tp is such, that the reactive component
has enough time to react to demand peaks, i.e., bursts. The
difference must be chosen with respect to the provisioning time
of new replicas, the monitoring frequency of request arrivals,
and an expectation of the speed with which bursts occur, i.e.,
how fast demand increases during bursts.

A. HPA Components

The following describes the scaling logic of the two HPA
components of HYPA more in detail.

1) Reactive: The reactive component builds on the default
HPA available in k8s. It uses the CPU utilization of the
application pods to determine the number of needed replicas.
Specifically, it calculates the average utilization over all pods
and compares it against the given target value ut:

rr(t) =

⌈
rc(t− 1) · u(t)

ut

⌉
. (1)

2) Proactive: The proactive component uses data-driven
models to forecast the expected number of requests in each
category for the next time slot. Based on the estimated number
of requests and a model of the work that each request causes,
the so-called application profile [17], the proactive component
estimates the number of replicas in the system:

rp(t) =

⌈
rc(t− 1) · E[u(t+ 1)])

ut

⌉
. (2)

Here, E[u(t + 1)] uses the forecast request arrivals and the
application profile to estimate the expected utilization of the
cluster in the next time slot.

Burst

Mode

 outside bound

 outside bound

for more than 3 hours

 in the last 6 hours

condition to end

data collection*

 within bound

 within

bound

 outside

bound

not enough

data

Panic

Mode

Normal

Mode

Fig. 3: Hybrid HPA State Machine. HYPA consists of 3 states.
Depending on different conditions specified in the figure, the
states, and hence the operation mode of the HPA changes.

The proactive component works on a minute granularity
(to account for the reaction times of the k8s cluster, e.g.,
for pod scheduling and application initialization). Specifically,
the proactive component predicts the request arrival rate per
second averaged over one-minute time windows. Designing
the forecasting model for the resulting time series is an
engineering task on its own. We found that for the used trace
from the BibSonomy production system, a rather simple model
consisting of a fixed offset and a seasonal component suffices.
Moreover, we identified a strong diurnal and weekly pattern.
Therefore, the seasonal component s(x) is given by a look-up
table with a single value for every minute of a week (10 080
values in total). As a result, we obtain

a(t+ 1) = b+ s(mow(t+ 1)), (3)

where mow(.) returns the minute of the week for the given
timestamp t (in minutes). We obtain these values by averaging
each time slot over multiple weeks. Besides the mean value,
the model also provides the standard deviation std(.) as a
measure of prediction confidence.

B. Operation Modes

Figure 3 overviews the state machine of HYPA and the
different operation modes. When it detects deviations of the
forecast from the observed values, HYPA first enters the so-
called “Burst mode”. If it is frequently in the Burst mode,
HYPA transitions to the Panic mode. Here, it collects new
data and updates the model. The modes and the transition
conditions are described in more detail in the following.

C. Burst Detection & Burst Mode

The autoscaler detects a burst at a time slot based on
the predicted number of requests ñreq(t) (a(t) · 60 s), and
the actual observed number of requests in that time slot
nreq(t). Currently, the burst detection focuses on positive
bursts, i.e., time intervals in which the actual demand exceeds

the predicted demand, since such bursts have an impact on
the RCT. Specifically, HYPA detects a burst if nreq(t)

60s ̸∈
[a(t)− std(t), a(t) + std(t)].

During a burst, rr(t) > rp(t) and the estimate of the reactive
component is chosen. Once the burst is over, rr(t) ≤ rp(t),
and the excessive number of replicas is scaled-in. Moreover,
when the autoscaler detects a burst, the cluster changes the
configuration of the reactive component. HYPA enters the so-
called “Burst mode”. Specifically, the synchronization period
tr is reduced to burst synchronization period t′r. Finally, the
collection of the platform metrics and reactive components
is triggered. In the case of a burst, the reactive component
alone is responsible for choosing the adequate number of
replicas, i.e., rc(t + 1) = rr(t) due to the definition of
bursts. Thus, the cluster actively changes the configuration of
the reactive component. Since obtaining fresh measurements
and the provisioning of new instances takes time, a scale-out
threshold must be set such that the reactive component reacts
when the cluster is not yet over-utilized.

D. Change points detection & Panic Mode

Next to expected unpredictable bursts, the cluster further
monitors the accuracy of the forecasting model, specifically,
the cluster performs a change point analysis. At a change point,
the predictions of the forecasting model deviate significantly
from the actually measured values. The difference to a burst
is that for a burst, the predictions are off for a finite (short)
duration. After some time, the burst is over and the model is
accurate again. In case of a change point, the predictions of
the models are inaccurate for at least icp prediction intervals
within an observed time window wcp:

t−1∑
j=t−wcp

1

(
nreq(j)

60s
̸∈ [a(j)− std(j), a(j) + std(j)]

)
≥ icp.

(4)
1(.) is an indicator function that = 1 if the condition evaluates
to true.

For example, the total demand level could decrease and the
forecast would always be too high, resulting in increased costs
due to over-provisioning. Similarly, the estimates could be too
low, resulting in Service-Level Agreement (SLA) violations
since the reactive component does not have enough time to
scale-out.

If the cluster detects a change point, the system enters
“Panic mode” and starts data collection in order to update
the model of the demand. This approach reduces the overhead
of constant data collection. Moreover, for the whole duration
of the data collection, the HPA operation of the burst mode
is enforced. For data collection, HYPA records the observed
arrival rates and fits the updated model when a sufficient
number of samples was collected.

In principle, the duration of the panic mode is a trade-off
between model accuracy and the time until the new model
is available. It depends on the details of the used model
and the observed data. It can either be fixed or determined

 19.06
18:00

 20.06
00:00

 20.06
06:00

 20.06
12:00

 20.06
18:00

 21.06
00:00

 21.06
06:00

0

10

20

30

Ar
ri

va
l r

at
e

[1
/s

]
Measured Estimated

Fig. 4: Measured and estimated arrival rate over time. Traces are taken from simulation data with 24-hour data collection
period and 70% utilization threshold. Background shades indicate burst modes. After spending 3 hours in the burst mode, the
period marked with red indicates the panic mode. After data collection ends, the estimates are updated.

dynamically, e.g., based on the performance or convergence
criteria of the model.

In this paper, we explore the fixed approaches where data
collection (and Panic mode) stop after a given time duration.

When the new model is available, HYPA leaves the Panic
mode and resumes normal operation. The parameters of the
reactive component are reverted to their normal values and the
proactive component dominates the scaling of the replicas.

V. EVALUATION

In this section, we evaluate HYPA and compare it against a
range of baselines. All presented results are obtained from the
discrete event-based simulator presented in [17]. It combines
data-driven models as well as white-box re-implementations
of k8s’ components.

A. Settings

1) Simulated Cluster: The cluster contains a single node
with 64 CPU cores. Each pod occupies one CPU core and
the simulator assumes resource limits per pod with isolated
CPUs so that there is no interference between the pods on
the CPU. Thus, a maximum of 64 pods can be allocated.1

Requests arrive at a load balancer that distributes them across
the available pods according to a round-robin policy. Request
processing on the pods happens in a first-in-first-out manner
for a given duration. The simulator resembles the metric
collection pipeline from k8s and the collected data is available
to all considered HPAs.

2) Metrics: HYPA trades off different objectives which
serve as metrics for the comparison:

• Request completion time (RCT): RCT is defined as the
time difference between the completion and the arrival
time of the request in the system. Operators are usually
interested in the 99th (or higher) percentiles of the RCT.

• Total pod seconds: This metric directly relates to the
cost of the deployment and is often used for billing in
managed k8s environments2. We consider the integral of

1Note that due to the strict isolation between pods, no significant change
in the observed results is expected when evaluating in a multi-node cluster or
increased number of CPU cores per pod.

2For instance, https://cloud.google.com/kubernetes-engine/pricing.

the number of CPUs allocated for pods over time. Since
in our case, each pod requests exactly one CPU, we refer
to it as the “total pod seconds”.

3) Algorithms: We compare three variants of HPAs. The
candidates are described in the following:

• HYPA (H) combines proactive and reactive component.
The proactive component runs every tp = 60s. The
reactive one runs every tr = 180s and every t′r = 15s
in Burst mode. The target utilization is the same in both
modes. We select these values to ensure the best RCT
in a variety of scenarios, and we use a fixed (F) data
collection duration of 24 hours.

• Proactive (P) uses only the proactive component as de-
scribed in Section IV-A2. It synchronizes every tp = 60s.

• Reactive (R) uses only the reactive component following
Equation 1. We vary the synchronization period tr among
60s, 180s.

4) Application and request pattern: We compare the algo-
rithms on request arrivals from four continuous time periods
from the Bibsonomy trace. The request arrivals follow the
trace, i.e., use the provided timestamps. The inputs are shown
in Figure 5. The duration of the periods varies between
48 and 120h and each of the selected periods has distinct
characteristics such as high bursts or distributional shifts/drifts.

The evaluation considers a single request type with a fixed
processing time. As the average arrival rate of the BibSonomy
trace is low (≈ 4−8 requests per second), we use a processing
time of 500ms to induce a substantial load on the system.

B. Temporal analysis of HYPA

Figure 4 shows the measured (dark blue line) and estimated
(dark green line) arrival rate over a time over a period of
2 days for illustrating the behavior of HYPA with respect
to changes in the demand patterns. The estimator’s certainty
bounds are shown with the green shaded area. Burst periods
are also indicated with the shades in the background, and the
period highlighted by the red bar at the top illustrates the
Panic mode. HYPA continuously checks the performance of
the proactive component by checking if the estimated nreq(t)
is within the pre-defined bounds (green shaded area). At the

0 24 48 72
Time [h]

4

6

8

R
eq

/s

(a) Period 1

0 24 48 72
Time [h]

10

20

30

R
eq

/s

(b) Period 2

0 16 32 48
Time [h]

5

10

15

20

R
eq

/s

(c) Period 3

0 40 80 120
Time [h]

10

20

R
eq

/s

(d) Period 4

Fig. 5: Request arrival rate over time for the four considered input traces. All traces contain some deviation from a regular
periodic (diurnal) pattern, e.g., a burst or a (temporary) shift of the mean value.

R-60s
R-180s

P-60s
H-F-24h

ut = 0.5
ut = 0.6

ut = 0.7
ut = 0.8

1.0 1.2 1.4 1.6
Total Pod Seconds [106]

101

102

103

99
%

-il
e

R
C

T
[s

]

(a) Period 1

1.0 1.5 2.0
Total Pod Seconds [106]

102

103

104

99
%

-il
e

R
C

T
[s

]

(b) Period 2

1.2 1.4 1.6 1.8
Total Pod Seconds [106]

102

104

99
%

-il
e

R
C

T
[s

]

(c) Period 3

2 3
Total Pod Seconds [106]

102

104

99
%

-il
e

R
C

T
[s

]

(d) Period 4

Fig. 6: Pareto-plot of the two performance metrics. Colors and line styles indicate the algorithm configurations. R stands for
the reactive, P stands for proactive, H stands for hybrid HPA, and F-24h indicates a fixed data collection duration of 24
hours, whereas the time periods indicate the time intervals between consecutive synchronization periods in the legend. The
markers show the desired average pod utilization. For two of the shown traces, HYPA outperforms the purely reactive and
proactive solutions. For the other two traces, HYPA performs similarly as a purely reactive solution but trades off the two
metrics differently (the line is shifted).

beginning of the plot, it can be seen that HYPA enters Burst
mode. However, as the bursts are not persistent, it falls back
to the normal operation mode.

When HYPA observes a frequent occurrence of bursts
within a 6-hour window, HYPA recognizes that the bursts are
persistent, enters into Panic mode, and starts data collection.
This is also outlined by the area designated with red color.
For this example, data collection continues for 24 hours, and
at the end of the period, the model is updated. After the
model update, the estimations capture the distributional shift
in the demand patterns. Overall, this illustrates how the HYPA
behaves with respect to changes in request patterns.

C. Comparison of HPAs

We start by analyzing the two metrics for the different time
periods on an aggregated level. Figure 6 shows Pareto plots
of the two metrics and several values of ut (different markers)
and all the algorithms. By varying the utilization threshold ut,
we aim to find the best configuration per algorithm. For both
metrics, smaller values are preferred, i.e., markers and curves
closer to the lower left corner represent better performance.

For Period 1 (Figure 6a), there are clear performance
differences between classes of the algorithms. P-60s performs

worst, followed by R-60s and all variants of HYPA, which
overlap in this figure. Reducing ut results in a lower 99%-
ile of the RCT but increases the total pod seconds. This is
intuitive since scale-out happens earlier. In principle, R-60s
can achieve similar RCTs like HYPA by using a lower ut

(e.g., the markers for R-60s(ut = 0.7) and H-F-24h(ut = 0.8)
are at ≈ 30s). However, this comes at the cost of increased
total pod seconds (≈ 10%). This behavior continues similarly
for lower ut.

The observations for Period 2 (Figure 6b) are similar but
the performance gap between R-60s and HYPA is smaller,
i.e. the two variants behave almost the same. HYPA has a
slightly smaller RCT but higher total pod seconds. Only for
ut = 0.5, R-60s is slightly better than HYPA. Considering
the input pattern (Figure 5b), the arrival rate is almost constant
except for two bursts towards the end of the trace. Here, HYPA
enters the burst mode (but not panic mode) and essentially
behaves like the reactive HPA.

More differences are visible for Periods 3 and 4 (Figure 6c
and 6d). For Period 3, we again observe that HYPA out-
performs the pure variants. Here, there are the largest gains
for HYPA. Lastly, for Period 4, the results are closer again.
However, closer inspection reveals, that HYPA explores a

different trade-off of RCT and total pod seconds compared
to R-60s. The minimal achieved 99%-ile RCT is lower than
for R-60s, however at significantly higher total pod seconds.

In conclusion, HYPA performs similarly or better than
pure reactive or proactive solutions on a variety of input
patterns. In particular, in the presence of mean shifts in the
arrival pattern, we observe that HYPA can adjust the trade-off
between RCT and deployment cost to outperform the vanilla
HPA approaches.

VI. CONCLUSION

Efficient autoscaling is an important aspect of cluster op-
eration. Proactive approaches that forecast the demand have
shown benefits over purely reactive approaches that operate
on system utilization. However, the former fall short in case
of changes or shifts in the underlying demand patterns or
distributions. Hybrid solutions have emerged to improve upon
this. In this paper, we presented HYPA, a hybrid HPA that
falls back to a reactive approach when the error between
the predicted and the measured request arrivals increases.
Moreover, if the mismatch persists for a longer time period,
HYPA automatically updates its model to utilize again the
proactive approach. Our evaluation demonstrates that HYPA
outperforms previous approaches that are purely reactive or
proactive.

This paper presents only an initial assessment of HYPA.
Improving demand forecasting models and evaluations of
HYPA in a physical testbed environment are possible avenues
for future work.

REFERENCES

[1] O-RAN Alliance, “O-RAN: Towards an Open and Smart RAN,”
O-RAN Alliance, Alfter, Germany, Tech. Rep., October 2018. [Online].
Available: https://www.o-ran.org/resources

[2] S. Singh and I. Chana, “Cloud resource provisioning: survey, status
and future research directions,” Knowledge and Information Systems,
vol. 49, no. 3, pp. 1005–1069, Feb. 2016. [Online]. Available:
https://doi.org/10.1007/s10115-016-0922-3

[3] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds: A taxonomy and survey,” ACM Comput. Surv., vol. 51, no. 4,
jul 2018. [Online]. Available: https://doi.org/10.1145/3148149

[4] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,
“Autoscale: Dynamic, robust capacity management for multi-tier data
centers,” ACM Transactions on Computer Systems (TOCS), vol. 30,
no. 4, pp. 1–26, 2012.

[5] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine learning-
based auto-scaling for containerized applications,” Neural Computing
and Applications, vol. 32, no. 13, pp. 9745–9760, Jul. 2020. [Online].
Available: https://doi.org/10.1007/s00521-019-04507-z

[6] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Transactions
on Network and Service Management, vol. 18, no. 1, pp. 958–972, 2021.

[7] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev,
“Chameleon: A hybrid, proactive auto-scaling mechanism on a level-
playing field,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 4, pp. 800–813, 2018.

[8] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel,
D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The lockdown effect: Implications
of the covid-19 pandemic on internet traffic,” in Proceedings of the
ACM Internet Measurement Conference, ser. IMC ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1–18. [Online].
Available: https://doi.org/10.1145/3419394.3423658

[9] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang,
“Adaptive, Model-driven Autoscaling for Cloud Applications,” in
11th International Conference on Autonomic Computing (ICAC 14).
Philadelphia, PA: USENIX Association, Jun. 2014, pp. 57–64. [Online].
Available: https://www.usenix.org/conference/icac14/technical-sessions/
presentation/gandhi

[10] D.-H. LUONG, H.-T. THIEU, A. OUTTAGARTS, and Y. GHAMRI-
DOUDANE, “Predictive autoscaling orchestration for cloud-native tele-
com microservices,” in 2018 IEEE 5G World Forum (5GWF), 2018, pp.
153–158.

[11] M. Abdullah, W. Iqbal, J. L. Berral, J. Polo, and D. Carrera,
“Burst-Aware Predictive Autoscaling for Containerized Microservices,”
IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1448–1460, 2022.
[Online]. Available: https://doi.org/10.1109/TSC.2020.2995937

[12] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid
elasticity controller for cloud infrastructures,” in 2012 IEEE Network
Operations and Management Symposium, NOMS 2012, Maui, HI,
USA, April 16-20, 2012, F. D. Turck, L. P. Gaspary, and
D. Medhi, Eds. IEEE, 2012, pp. 204–212. [Online]. Available:
https://doi.org/10.1109/NOMS.2012.6211900

[13] A. Bauer, V. Lesch, L. Versluis, A. Ilyushkin, N. Herbst, and S. Kounev,
“Chamulteon: Coordinated auto-scaling of micro-services,” in 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2019, pp. 2015–2025.

[14] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in Pro-
ceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation, ser. NSDI’16. USA: USENIX Association, 2016,
p. 523–535.

[15] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. M. Jr., P. Papadimitratos,
and M. Chiesa, “A High-Speed Load-Balancer design with guaranteed
Per-Connection-Consistency,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). Santa Clara,
CA: USENIX Association, Feb. 2020, pp. 667–683. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/barbette

[16] D. Benz, A. Hotho, R. Jäschke, B. Krause, F. Mitzlaff, C. Schmitz,
and G. Stumme, “The social bookmark and publication management
system BibSonomy,” The VLDB Journal, vol. 19, no. 6, pp. 849–875,
Dec. 2010. [Online]. Available: http://www.kde.cs.uni-kassel.de/pub/
pdf/benz2010social.pdf

[17] J. Zerwas, P. Krämer, R.-M. Ursu, N. Asadi, P. Rodgers, L. Wong, and
W. Kellerer, “Kapetánios: Automated kubernetes adaptation through a
digital twin,” in 2022 13th International Conference on Network of the
Future (NoF), 2022, pp. 1–3.

