
School of Computation, Information and Technology -
Informatics

Technical University of Munich

Bachelor’s Thesis in Informatics

Uncertainty Quantification Workflows Using
the Shallow-Water Equations in ExaHyPE

Florian Wunderlich

School of Computation, Information and Technology -
Informatics

Technical University of Munich

Bachelor’s Thesis in Informatics

Uncertainty Quantification Workflows Using the
Shallow-Water Equations in ExaHyPE

Arbeitsabläufe zur Unsicherheitsquantifizierung unter
Verwendung der Flachwassergleichungen in ExaHyPE

Author: Florian Wunderlich

Supervisor: Prof. Dr. Michael Bader

Advisor: Mario Wille, M.Sc.

Date: 15.09.2023

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 15.09.2023 Florian Wunderlich

Acknowledgements

Many thanks to my advisor for providing me with this interesting opportunity for a Bachelor’s
thesis. I enjoyed our discussions on ExaHyPE 2 and past projects a lot, and wish to sincerely
express my gratitude for the valuable input.

iv

Abstract

Providing quantification measures for geohazardous events is of utmost importance not only for
saving lives, but also for sustainable urban or industrial development in potentially vulnerable
environments and many other fields in which geohazards play a role. This work implements an
uncertainty quantification (UQ) workflow within the ExaHyPE 2 engine for the shallow-water
equations (SWE). The SWE are a set of strictly hyperbolic partial differential equations, which
are most commonly used in tsunami modeling. Therefore, an SWE application has been developed
within ExaHyPE 2, and been verified for correctness. UQ has then been provided in the form of an
UM-Bridge model server, which allows for running an SWE simulation with a displaced origin of
the earthquake. The validity of this model server has also been verified. Additionally, an approach
to guided adaptive mesh refinement (guided AMR) using the adjoint SWE developed by Davis
and LeVeque has been implemented. The F-Wave solver mainly used in the SWE application is
found to approximate the solution of the SWE reasonably well. But tsunami events failed to be
solved correctly for reasons shown to be unrelated to the SWE application. The guided AMR has
also been found to work to a certain degree, but here as well, the error is shown to not lie with
the SWE application.

v

Contents

Acknowledgements iv

Abstract v

1. Introduction 1

2. Related Work 2
2.1. ExaHyPE 2 . 2
2.2. The Shallow-Water Equations . 3

3. Implementation of the Shallow-Water Equations in ExaHyPE 2 5

4. Adaptive Mesh Refinement 9
4.1. Surface-Flagging . 9
4.2. Guided Adaptive Mesh Refinement . 9

5. Uncertainty Quantification Workflow with UM-Bridge 15

6. Results 17
6.1. Radial Dam Break . 17
6.2. Radial Bathymetry Dam Break . 21
6.3. Radial Obstacle Dam Break . 25
6.4. Artificial Tsunami . 29
6.5. Adjoint Solver . 33
6.6. Artificial Tsunami with Adaptive Mesh Refinement 35
6.7. UM-Bridge Model Evaluation Using the Artificial Tsunami 41
6.8. Tōhoku Tsunami . 44

7. Conclusion and Outlook 50

Bibliography 55

A. Python Implementation 59

B. C++ Implementation 63

1. Introduction

Partial differential equations (PDEs) are at the core of modern scientific computing. They model
relativity, sound, and fluids amongst many other natural phenomena. Solving those equations
efficiently, meaning the results should be precise enough to be physically viable whilst keeping
computation time under some constraint, is thus of utmost importance for not only advancing
the related scientific fields, but also applying those results to real-world applications, which
can change the lives of countless people. One such system of equations is the system of the
shallow-water equations (SWE), which are used to model the flow of water for scenarios where
the water depth is much smaller than the width of the wave. These most notably arise over
the open ocean when undersea earthquakes displace hundreds of thousands of cubic meters of
seawater, such as the Great Chilean Earthquake in 1960, or the 2011 Great East Japan Earthquake
(Tōhoku earthquake). The resulting tsunami can devastate entire countries and have long-lasting
consequences, both domestically and internationally. The 2011 Tōhoku tsunami not only led to
the nuclear meltdown of three reactors at the Fukushima Daiichi Nuclear Power Plant, causing
one of the worst nuclear disasters in the history of nuclear power, but also killed over 15,000
people [1].

While the Tōhoku tsunami caused a nuclear meltdown, it is far from being the deadliest, even
when only looking at the young 21st century. The 2004 Sumatra earthquake and tsunami led to
over 200,000 victims, directly affecting multiple countries in the Indian Ocean [2]. Advancements
in understanding tsunami generation and spread can drastically improve early warning systems
and protective measures. As a consequence of the 2004 Sumatra event, the German state initiated
a cooperation with Indonesia to develop a tsunami early warning system (GITEWS) [3].

In 2018, the European Union has launched the Center of Excellence for Exascale in Solid Earth
(ChEESE) to develop codes capable of using cutting-edge exascale computer capabilities to aid in
understanding geohazardous events. And they also provide, among other things, probabilistic
hazard assessment, and urgent computing capabilities for faster than real-time simulations of
geophysical events. The first phase of ChEESE was concluded in 2022, and the second phase now
began in 2023 [4]. Part of both phases of ChEESE is the development of an Exascale Hyperbolic
PDE Engine (ExaHyPE, cf. [5]), which is being completely re-written for ChEESE-2P (ExaHyPE
2), as the first iteration was unable to improve its scalability during ChEESE-1P [4].

The object of this work is to establish an uncertainty quantification (UQ) workflow using the
SWE in ExaHyPE 2. To achieve this, an SWE application capable of reliably and correctly
solving the SWE will be implemented within the re-written ExaHyPE 2 engine. An application in
ExaHyPE 2 encompassing a suitable implementation of the PDE as well as AMR code. Coupling
to UQ codes will be provided by using the UQ and Model Bridge (UM-Bridge, cf. [6]) interface.
Chapter 2 deals with ExaHyPE 2 and the SWE. The implementation of the SWE in ExaHyPE
2 is then explained in Chapter 3. Chapter 4 explores different approaches to adaptive mesh
refinement (AMR). Chapter 5 addresses coupling with UQ codes using the UM-Bridge interface.
In Chapter 6, qualitative and quantitative assessments of the delivered implementations are made.
Chapter 7 provides a conclusion and an outlook on further work.

1

2. Related Work

2.1. ExaHyPE 2

ExaHyPE 2 (Exascale Hyperbolic PDE Engine) is an engine providing numerical methods for
solving strictly hyperbolic PDEs for extreme-scale simulations [5]. To achieve extreme-scale
capabilities, it utilizes both MPI and OpenMP [7] parallelization, as well as support for GPU
offloading [8, 9, 10]. The mesh construction and dynamic AMR are handled by the Peano
framework [11], which decomposes a given Cartesian grid into spacetrees based on the Peano
curve. Peano is closely coupled with ExaHyPE 2 to ensure that ExaHyPE 2 can scale as best as
possible for future exascale systems, such as the Frontier supercomputer at Oak Ridge National
Laboratory1.

Taken from [5], ExaHyPE 2 works on first-order hyperbolic PDEs:

∂

∂t
Q+∇ · F (Q,∇Q) +B(Q) · ∇Q = S(Q) +

nps∑
i=1

δi. (2.1)

This system of equations is then discretized in space and time. ExaHyPE 2 provides general
procedures for solving these equations at a given discrete time step on a discrete spatial mesh.
The user then only has to specify the flux function F (Q,∇Q), the source term S(Q), and any
non-conservative products B(Q) · ∇Q, as well as point sources δi. For any special treatment, a
user-defined solving procedure can also be supplied as an alternative. Of course, boundary and
initial conditions have to be supplied as well as. Eigenvalues have to be supplied for all methods
that use adaptive time stepping.

One of the simplest ways of solving these PDEs is via a finite volume (FV) scheme with volumes
Qn

i , where n is the discrete time step, and i the volume index in one dimension. The discrete
updates to the volumes can be applied by, for example, using a first-order Godunov scheme:

Qn+1
i = Qn

i −
∆t

∆x
(Fn

i+ 1
2

− Fn
i− 1

2

). (2.2)

The fluxes Fn
j+ 1

2

of the Riemann problem at the volume interfaces are then given by the chosen

solver. For example, a local Lax-Friedrichs (Rusanov) solver:

Fn
j+ 1

2

=
F (Qn

j) + F (Qn
j+1)

2
+

S(Qn
j) + S(Qn

j+1)

2
−max (|λmax

j |, |λmax
j+1 |)

Qn
j+1 −Qn

j

2
. (2.3)

The correct choice of solvers and schemes is vital for computation time and result. Higher-order
time integration schemes such as a Runge-Kutta scheme improve error bounds and thus time
integration accuracy. But they also take multiple evaluations of the SWE for different intermediate

1https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-

barrier, accessed August 1st, 2023

2

https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier

2. Related Work

results to calculate the (n+ 1)th time step. The choice of the solver on the other hand impacts
the spatial accuracy, as the different solvers take varying degrees of information into account to
calculate the interface fluxes. The given Rusanov solver only uses the interface-local maximum
wave speed, hence the name local Lax-Friedrichs. Other approximate solvers, such as a Roe solver,
also calculate using other wave speeds. Exact Riemann solvers even solve the Riemann problem
posed at the interfaces using, for example, the Newton-Raphson method to calculate the middle
state values Q∗.

Figure 2.1.: Riemann problem in x-t plane at the state interface, the states are divided by the
characteristic wave speeds. Figure modeled after [12].

In order to demonstrate the capabilities of the re-written ExaHyPE 2 engine, various applications
have been implemented, such as astrophysical applications of modified gravity [13]. But the
previous ExaHyPE iteration had many more applications, such as a whole plethora of UQ
applications [14, 15], or cloud simulation [16]. As the general idea behind the ExaHyPE project
has not changed with the iterations, the project aims to provide the same capabilities in the second
iteration of ExaHyPE, that it had in its first iteration. To that end, this work aims to establish
a new UQ workflow using the SWE within the re-written ExaHyPE 2 engine. Additionally, a
guided AMR technique will also be implemented, which was available in the previous ExaHyPE
iteration only for seismic simulations [17].

2.2. The Shallow-Water Equations

The SWE arise from a special case of depth-integrating the Navier-Stokes equations, wherein the
horizontal scale of the domain is much greater than its vertical scale. This is the case for a great
many bodies of water such as lakes, rivers, and oceans. In this work, the SWE are used to model
various artificial test scenarios, with possible real-world applications being the simulation of the
2011 Tōhoku tsunami or the 2010 Chile tsunami.

The SWE used in this work can be written as:

∂

∂t

 h
hu
hv

+
∂

∂x

 hu
hu2 + 1

2gh
2

huv

+
∂

∂y

 hv
huv

hv2 + 1
2gh

2

+

 0
ghbx
ghby

 =

0
0
0

 . (2.4)

Here, b(x, y) is the time-independent bathymetry measured in meters from a reference D, normally
set at sea level with negative values lying below sea level, and positive values lying above sea level.

3

2. Related Work

h(x, y, t) is the total positive water depth measured in meters, and g is the earth’s gravitational
acceleration, which is set to 9.81m/s2. The two velocities u(x, y, t) and v(x, y, t) are the velocities
in m/s in the x- and y-dimensions respectively. Multiplied with h(x, y, t), they form the momenta
in the x- and y-dimensions hu(x, y, t) and hv(x, y, t). The variables bx and by stand for the partial
derivative of b(x, y) in the given annotated dimension.

Following E. Toro [18], for the vector containing the conserved variables

Q =

 h
hu
hv

 , (2.5)

the following two flux functions can be immediately derived:

F (Q) =

 hu
hu2 + 1

2gh
2

huv

 , G(Q) =

 hv
huv

hv2 + 1
2gh

2

 . (2.6)

To account for the bottom topography in the form of the bathymetry, the source term is given as

S(Q) =

 0
ghbx
ghby

 . (2.7)

The eigenvalues in the x- and y-dimensions are given by:

λx1 = u, λx2,3 = u±
√
gh, (2.8)

λy1 = v, λy2,3 = v ±
√
gh. (2.9)

A detailed derivation of the SWE and their properties based on the laws of conversation of mass
and momentum can also be found in [18]. A proof that the one-dimensional SWE are a set of
strictly hyperbolic equations can be done in the following way:

1. Write the one-dimensional SWE in their primitive variable form:

∂

∂t

(
h
u

)
+

∂

∂x

(
hu

1
2u

2 + gh

)
︸ ︷︷ ︸

=:f

(2.10)

2. Formulate the Jacobian matrix Jf :

Jf (
(
h u

)T
) =

(
u h
g u

)
(2.11)

3. The eigenvalues of Jf are found in Equation 2.8 as λx2,3 .

4. The system of a Jacobian J ∈ Rn × Rn is considered strictly hyperbolic if ∀α ∈ R : αJ has
n distinct real eigenvalues. For α = 1, the eigenvalues are λx2,3 . With h > 0, g = 9.81, it
holds that they are both distinct and real. For α ̸= 1, the eigenvalues scale with α. As
α ∈ R, they always remain real. ■

A proof for the two-dimensional SWE can be found in [19]. It has to be noted that the SWE are
only strictly hyperbolic as long as no wetting and drying is involved, as also noted in [19].

4

3. Implementation of the Shallow-Water
Equations in ExaHyPE 2

First, the source term S(Q) is not actually modeled as a source term in ExaHyPE 2. As S(Q)
requires bx and by, it is better modeled as a non-conservative product B(Q) · ∇Q. The different
components of the SWE are modeled as follows:

Algorithm 1: Flux Function

Input: q: state vector with elements h, hu, hv, b
n ∈ {x, y}: normal direction

Output: F : array containing flux in normal direction

1 Function flux(q,n):
2 if n = x then

3 F ←
(
hu h(huh)2 + 1

2gh
2 huhv

h

)T
4 else

5 F ←
(
hv hv hu

h h(hvh)2 + 1
2gh

2
)T

6 return F

Algorithm 2: Non-Conservative Product

Input: q: state vector with elements h, hu, hv, b
∇q: gradient vector with elements hgrad, hugrad, hvgrad, bgrad
n ∈ {x, y}: normal direction

Output: NCP : array containing non-conservative product in normal direction

1 Function ncp(q, ∇q, n):
2 if n = x then

3 NCP ←
(
0.0 ghbgrad 0.0

)T
4 else

5 NCP ←
(
0.0 0.0 ghbgrad

)T
6 return NCP

5

3. Implementation of the Shallow-Water Equations in ExaHyPE 2

Algorithm 3: Eigenvalues

Input: q: state vector with elements h, hu, hv, b
n ∈ {x, y}: normal direction

Output: Eigenvalues: array containing eigenvalues in normal direction

1 Function eigenvalues(q,n):
2 if n = x then

3 u← hu
h

4 Eigenvalues←
(
u u+

√
gh u−

√
gh

)T
5 else

6 v ← hv
h

7 Eigenvalues←
(
v v +

√
gh v −

√
gh

)T
8 return Eigenvalues

Another problem immediately arising from the SWE is the question on how to model wet-dry
interfaces. As there is no water on dry land, the flux, the non-conservative product, and eigenvalues
equate to 0. This is problematic for the Rusanov solver of Equation 2.3, as it still creates a
flux onto dry land. As established before, the SWE lose their strictly hyperbolic properties
when wetting and drying is involved. Thus, the physicality of this flux can not be guaranteed.
Additionally, as the Lax-Friedrichs and Rusanov solvers are generally not well-balanced [20], they
can create fluxes over a flat surface with varying water depth. Thus, an adaptation is required.
For this purpose, the previously available feature of providing user-defined (FV) Riemann solvers
has been re-introduced to ExaHyPE 2.
The FV solver interface of ExaHyPE 2 in general takes definitions for the flux, eigenvalues,

source terms, non-conservative product, boundary conditions, and initial conditions as parameters.
In the SWE application, the initial and boundary conditions are usually provided by the respective
scenario. The application by default also uses a provided implementation of the flux function,
the non-conservative product, and the eigenvalues (cf. Algorithms 1, 2, and 3). The user-defined
FV Riemann solver implements the same interface as the predefined FV Rusanov solver, with
the difference being that no implementations for the non-conservative product or the source
term are given. As the user has direct control over the solution of the Riemann problem at a
given cell interface, source terms and non-conservative products can directly be implemented.
However, a flux function and a definition of the eigenvalues can still be provided so that they can
be pre-computed. A time step computation of both, the user-defined solver, and the predefined
Rusanov solver, is depicted as a UML activity diagram in Figure 3.1. An activity diagram of the
whole SWE application can be found in Figure 3.2.

With control over the interface fluxes, a simple fix for dealing with wet-dry interfaces is
introducing wall boundary conditions at these interfaces. The resulting fluxes are then used
within an F-Wave solver [21], which provides the necessary well-balancedness. This solver was
chosen as it is widely used in the “Clawpack” open source software package [22]. More elaborate
solutions, such as exact Riemann solvers, should also be possible. An approximate wetting and
drying solver from the previous iteration of ExaHyPE [23, 24] has been tried with the user-defined
interface. However, it was found to not work as intended when confronted with wet-dry interfaces
and real-world tsunami events. Therefore, it was discarded in favor of the aforementioned F-Wave
solver.

6

3. Implementation of the Shallow-Water Equations in ExaHyPE 2

copy input
into output

compute eigenvalues

compute flux functions

compute Riemann solution
and maximum eigenvalue

update output with
eigenvalue damping

compute
maximum eigenvalues

update output
with fluxes

compute
non-conservative

product

update output
with non-conservative

product

update output
with Riemann solution

and eigenvalue damping

reduce maximum
eigenvalue

update
time step width

[user-defined solver] [predefined solver]

[user-defined solver] [predefined solver]

Figure 3.1.: UML activity diagram of an FV time step calculation.

7

3. Implementation of the Shallow-Water Equations in ExaHyPE 2

parse arguments

create scenario

inject topology reader
 into application

inject adjoint solver
into application

inject adjoint solution reader
into application

insert probes
into domain

generate code

create predefined
solver

create user-defined
solver

[tsunami scenario]

[use guided adaptive mesh refinement]

[run adjoint problem]

[solution provided]

[no guided adaptive mesh refinement]

[other scenario]

[use probes]
[no probes]

[use predefined solver]

[use user-defined solver]

Figure 3.2.: UML activity diagram of the main SWE application.

8

4. Adaptive Mesh Refinement

To utilize the AMR capabilities of Peano as best as possible, two different refinement strategies
have been taken into consideration for refining the volumes in a given simulation of the SWE.

4.1. Surface-Flagging

The first and most general strategy is the so-called “surface-flagging”, wherein the free surface
η(x, y, t) = h(x, y, t) + b(x, y) is the sole criterion for refinement (cf. Algorithm 4). Together with
a given tolerance, every volume in the simulation, whose free surface η is equal or larger than the
tolerance, is to be refined. If the volume’s free surface is below the tolerance, the volume is to be
coarsened.

Algorithm 4: Surface-Flagging

Input: q: state vector with elements h, hu, hv, b
Output: refinement command
Data: refinement tolerance

1 Function refinement criterion(q):
2 if h > 0 and abs(h+ b) ≥ refinement tolerance then
3 return refine
4 else
5 return coarsen

4.2. Guided Adaptive Mesh Refinement

The second strategy taken into consideration is guiding AMR in such a way, that only waves
reaching a particular area of interest (AoI) are refined. In their paper [25], Davis and LeVeque
showed that accuracy can be increased, and computational time can be decreased when using
guided AMR for the SWE1. This guiding mechanism is realized by first solving the adjoint problem
of the SWE over a given bathymetry. The simulation begins at a final time tf , and solves the
adjoint problem backwards in time. Then, the forward problem is solved on the same bathymetry,
refining the mesh based on the inner product of the adjoint solution and the forward problem at
certain timestamps (cf. Algorithms 5, 8).

1A more general approach can be found in [26]

9

4. Adaptive Mesh Refinement

Algorithm 5: Adjoint-Flagging

Input: t: time
x, y: volume center coordinates
q: state vector with elements h, hu, hv, b

Output: refinement command
Data: refinement tolerance

1 Function refinement criterion(t, x, y, q):
2 if h > 0 and max inner product(t, x, y, q) ≥ refinement tolerance then
3 return refine
4 else
5 return coarsen

The adjoint problem for the SWE is given in its primitive variable form as:

∂

∂t

η̃
µ̃
γ̃

+
∂

∂x

 µ̃
gh̄η̃
0

+
∂

∂y

 γ̃
0

gh̄η̃

 =

0
0
0

 . (4.1)

Here, η̃ is the linearized free surface, µ̃ and γ̃ the linearized wave speeds in the x- and y-dimension.
The given variables are linearized about a sea at rest scenario with η̄ = h̄(x, y, 0) + b(x, y) = 0m
and velocities ū, v̄ = 0m/s. The equations are solved in their conserved-variable form by a
one-dimensional solver. Algorithm 6 is translated from the FORTRAN code provided in [25].

10

4. Adaptive Mesh Refinement

Algorithm 6: 1D Adjoint Solver

Input: ql, qr: 1D left and right state vectors with elements h, hu, b
Output: left and right going waves and maximum wave speed

1 Function compute net updates(ql, qr):

2 ĥl ← −bl, ĥr ← −br
// linearized wave speeds

3 cl ← sqrt(9.81 · ĥl), cr ← sqrt(9.81 · ĥr)
// f-wave splitting

4 δ ←
(
−hur · c2r + hul · c2l (hl + bl)− (hr + br)

)T
5 β ←

(
1 cr
−1 cl

)
· δ

6 if cr + cl ̸= 0 then
7 β ← 1

cl+cr
· β

// left going wave

8 A−∆Q←
(
cl 0
1 0

)
· β

// right going wave

9 A+∆Q←
(
0 −cr
0 1

)
· β

// maximum wave speed

10 λmax ← max(abs(cr), abs(cl))
11 return A−∆Q, A+∆Q, and λmax

The solver is deployed in a simple first-order dimensional splitting scheme (cf. Algorithm 7)
[18, 27] on a static mesh:

Q∗
i,j = Qn

i,j −
∆tx
∆x

(A−∆Qn
i+ 1

2
,j
+A+∆Qn

i− 1
2
,j
), (4.2)

Qn+1
i,j = Q∗

i,j −
∆t

∆y
(B−∆Q∗

i,j+ 1
2

+B+∆Q∗
i,j− 1

2

). (4.3)

Here, ∆tx is the maximum time step width resulting from the flux in the x-dimension. ∆t is then
max (∆tx,∆ty).

11

4. Adaptive Mesh Refinement

Algorithm 7: Dimensional-Splitting

Input: Q: 2D array of state vectors q
Output: maximum time step width
Data: sizex, sizey: number of volumes without boundary in x- and y-dimension

A−∆Q, A+∆Q, B−∆Q, B+∆Q: 2D arrays of update vectors
∆x, ∆y: volume sizes, which are assumed to be identical

1 Function compute numerical fluxes(Q):
// x-sweep

2 λmax
x ← 0

3 for i← 1 to sizex + 1 do
4 for j ← 0 to sizey + 1 do
5 A−∆Qi−1,j , A

+∆Qi−1,j , λ
max
edge ← compute net updates(Qi−1,j, Qi,j)

6 λmax
x ← max(λmax

x , λmax
edge)

7 ∆t← 0.4 ·∆x/λmax
x

8 for i← 1 to sizex do
9 for j ← 0 to sizey do

10 Qi,j ← Qi,j − ∆t
∆x(A

+∆Qi−1,j +A−∆Qi,j)

// y-sweep

11 λmax
y ← 0

12 for j ← 1 to sizey + 1 do
13 for i ← 1 to sizey + 1 do
14 B−∆Qi,j−1, B

+∆Qi,j−1, λ
max
edge ← compute net updates(Qi,j−1, Qi,j)

15 λmax
y ← max(λmax

edge, λ
max
y)

16 λmax ← max(λmax
x , λmax

y)

17 ∆t← 0.4 ·∆x/λmax

18 for j ← 1 to sizey do
19 for i← 1 to sizex do

20 Qi,j ← Qi,j − ∆t
∆x(B

+∆Qi,j−1 +B−∆Qi,j)

21 return ∆tmax

According to equation 12.23 found in [28], the CFL condition in Algorithm 7 is set to

∆t

∆x
λmax <

1

2
. (4.4)

The initial conditions of the adjoint problem are:

η̃(x, y, 0) =

{
1.0m (x, y) ∈ AoI and h̄(x, y, 0) > 0.0m

0.0m otherwise
, (4.5)

µ̃ = γ̃ = 0.0m/s. (4.6)

It is then solved over the same bathymetry as the forward problem. The initial perturbation
thereby does not stem from a displacement of the ocean floor, but rather from the AoI. More

12

4. Adaptive Mesh Refinement

specifically, only the already wet volumes within the AoI, as the adjoint solver is not capable of
inundation. Thus, only the waves, which reach the AoI over water, will be refined in the forward
problem.
Once the adjoint problem has been solved for the final time tf , one commences with solving

the forward problem. The mesh of the forward problem can be refined based on the maximum
inner product

max
t̄∈{tn,tn+1}

qTadjoint(x̄, ȳ, tf − t̄)qforward(x, y, t), (4.7)

where tn, tn+1 are the timestamps of the adjoint solution, which frame the current time step t.
x̄ and ȳ are coordinates of a volume of the adjoint solution. They are interpolated from the
coordinates of the volume to be refined. The interpolation function of a coordinate z is given as

p1(z, zmax, z
min
adjoint, z

max
adjoint) =

zmax
adjoint − zmin

adjoint

zmax
· z + zmin

adjoint. (4.8)

This function is defined for z ∈ [0, zmax], zmax ∈ {xmax, ymax}. The adjoint solution is limited
in dimension z by zmin

adjoint, z
max
adjoint. Additional to the spatial AoI, a temporal AoI can also be

specified with ts. This leads to the maximum inner product to be calculated as

max
tn≤t̄≤tn+i

qTadjoint(x̄, ȳ, tf − t̄)qforward(x, y, t), (4.9)

where tn+i is the smallest timestamp of the adjoint greater than t+(tf − ts). The adjoint solution
is accessed in a time-reversed manner, as the adjoint problem is not actually solved backwards in
time. It is rather solved forwards in time, and the solution is accessed backwards. Algorithm 8 has
also been largely translated from the FORTRAN code provided in [25]. The exact algorithm used
in ExaHyPE 2 is slightly altered, however. It does not compute the previous timestamp’s inner
product again, as it already has been compared to the maximum value. The previous inner product
is therefore only necessary for the first index i, for which holds timestampsi−1 ≤ t < timestampsi.
This index can be precomputed, as it is only dependent on t and not on the volume. And since the
first adjoint timestamp is always at t = 0.0s, this index i will always be larger than 0. Therefore,
the variables tprevious and inner productmax can be initialized with tprevious ← timestampsi−1,
and inner productmax ← calculate inner product(i− 1, x, y, q).

13

4. Adaptive Mesh Refinement

Algorithm 8: Calculation of Maximum Inner Product

Input: t: time
x, y: volume center coordinates
q: state vector with elements h, hu, hv, b

Output: inner productmax

Data: timestamps: 1D array of the timestamps of the adjoint solution
Qadjoint: 3D array holding the time-dependent adjoint solution
ts, tf : temporal area of interest

1 Function max inner product(t, x, y, q):
2 tprevious ← 0
3 inner productmax ← 0
4 for i← 0 to |timestamps| − 1 do
5 if tprevious ≤ t+ (tf − ts) and t < timestampsi then
6 if i = 0 then
7 inner productmax ← calculate inner product(i, x, y, q)
8 else
9 inner productmax ← max(calculate inner product(i, x, y, q),

calculate inner product(i− 1, x, y, q), inner productmax)

10 tprevious ← timestampsi

11 return inner productmax

12 Function calculate inner product(i, x, y, q):
13 if h = 0 then
14 return 0

15 p← interpolate values(i, x, y)
16 if hp = 0 then
17 return 0

18 return (h+ b) · (hp + bp) + hu · hup + hv · hvp
19 Function interpolate values(i, x, y):
20 xa, ya ← interpolate coordinates x and y onto Qadjoint indices

// access Qadjoint in time-reversed manner

21 return Qadjoint
|timestamps|−i−1,ya,xa

In their paper [25], LeVeque and Davis demonstrated for the hypothetical earthquake scenario
AASZe04 of [29] the capabilities of their guided AMR approach. They found it to be slightly
slower compared to a surface-flagging approach, which only refines the first wave hitting Crescent
City, the AoI in this scenario. But when compared to a surface-flagging algorithm, which also
refines the secondary wave until Crescent City, the guided AMR is found to be vastly faster. This
work aims to replicate similar results using Peano’s AMR capabilities as best as possible together
with the guided AMR strategy.

14

5. Uncertainty Quantification Workflow with
UM-Bridge

UM-Bridge (UQ and Model Bridge) is a software package designed to enable coupling of UQ
codes with model codes [6]. Experiments conducted in the realm of UQ for the SWE usually are
focused on tsunami simulations. There, the most common application is quantifying the tsunami
source location [15] or inundation of specific areas [30]. Other parameters, whose uncertainty can
be quantified, are for example the manning friction coefficient [31]. But UQ can also be used in
the search for promising tidal stream energy systems [32]. As these simulations are computational
intensive, they are best run on high performance systems.
UM-Bridge is specifically targeted for high performance computing environments [33], and

has been in use with the previous iteration of ExaHyPE [14, 15]. Based on HTTP, it utilizes a
client-server pattern. The client has to be provided for the UQ code. The server on the other
hand has to be provided for the model code. The client then simply connects to the model server,
requests a model evaluation for a specific input vector θ, and performs its operations on the
returned output vector. A UML sequence diagram of this can be found in Figure 5.1.

The UM-Bridge model server developed as part of this work implements a very straight forward
implementation of the forward model used to create the UQ for tsunami in [15]. The Python
version of UM-Bridge requires the user to specify the input and output vector sizes, a __call__()

method that evaluates the model, and, in this case, the supports_evaluate() method to return
True. As the forward model is set up in the same fashion as the one used by Seelinger et al. in [15],
the input vector is expected to contain two elements, the x and y coordinate of the displacement’s
center. The output on the other hand is variable in size, being double the number of probes to be
inserted into the domain, as each probe returns a maximum water height and the corresponding
time of the measurement. The server could also easily be adjusted to return other parameters.

When a model evaluation is requested by the client and an appropriate config dictionary sup-
plied, the SWE application is compiled using the options provided in config. The displacement’s
origin does not have to be stated in config, but rather be passed as the input vector θ, which
is automatically added to the compile options. After a successful compile, the application is
automatically run. If guided AMR is used and no precomputed solution file supplied, then a
simulation of the adjoint problem will be run first, before running the forward problem’s simulation.
The server then returns the maximum water height and the corresponding time measurement for
each probe as a vector. This behavior could be changed to accommodate for quantities of interest
different from the maximum water height.

15

5. Uncertainty Quantification Workflow with UM-Bridge

:UM-Bridge Client :UM-Bridge Server

:SWE Application

query input size

connect to server

accept connection

send input size

query output size with config

send computed output size

request model evaluation on
theta and config

compile SWE application with
arguments theta and config

solve problem

problem solved

read probe output
and compute
output vector

send output vector

serve UM-Bridge
model

send true

query whether model supports
evaluation

Figure 5.1.: UQ workflow using UM-Bridge.

16

6. Results

To validate the SWE implemented in ExaHyPE 2, a number of artificial scenarios are used. By
default, ExaHyPE 2 supports a Rusanov FV solver, which is taken to deliver correct approximate
results, to which the F-Wave solver is compared to. Real world applications are tested using
the 2011 Tōhoku tsunami. In general, scenarios are run on a [0, 10]m× [0, 10]m domain with a
configured volume size of 0.1m using a time step relaxation (TSR) factor of 0.4 and no AMR.
For quantitative comparisons, the values are plotted along a line from (5, 0)m to (5, 10)m. For
scenarios involving wet-dry interfaces, boundary conditions are applied to those volumes where
h(x, y, t) ≤ 10−2m1.

6.1. Radial Dam Break

The radial dam break scenario is ideal to test the flux implementation for its correctness. In
this scenario, the non-conservative product equates to zero, and all initial flux stems from the
hydrostatic pressure 1

2gh
2. The initial conditions are given for (x, y) ∈ [0, N]m× [0, N]m as:

h(x, y, 0) =

{
1.1m if

√
(N2 − x)2 + (N2 − y)2 ≤ N

10

1.0m otherwise
, (6.1)

hu(x, y, 0) = hv(x, y, 0) = 0.0m2/s, (6.2)

b(x, y) = 0.0m. (6.3)

Figure 6.1.: Initial water height of radial dam break scenario. Red = 1.1m, blue = 1.0m.

1A detailed artifact description can be found under https://doi.org/10.5281/zenodo.8305725.

17

https://doi.org/10.5281/zenodo.8305725

6. Results

Rusanov F-Wave
t
=

0.
1s

t
=

0.
3s

t
=

1.
5s

Figure 6.2.: Qualitative comparison of h in the radial dam break scenario between Rusanov and
F-Wave solver. Colors range from red = 1.1m to blue = 1.0m.

18

6. Results

W
a
te
r
H
ei
gh

t
|λ

y
|

t=0.1s t=0.3s

F
ig
u
re

6
.3
.:
Q
u
a
n
ti
ta
ti
v
e
co
m
p
a
ri
so
n
o
f
h
a
n
d
|λ

y
|i
n
th
e
ra
d
ia
l
d
a
m

b
re
a
k
sc
en

a
ri
o
b
et
w
ee
n
R
u
sa
n
ov

a
n
d
F
-W

av
e
so
lv
er
.
T
h
e

q
u
an

ti
ti
es

a
re

p
lo
tt
ed

ov
er

th
e
si
m
u
la
te
d
ti
m
e
fo
r
t
∈
[0
.1
,2
0]
s
(c
on

ti
n
u
ed

on
th
e
n
ex
t
p
ag

e)
.

19

6. Results

W
a
te
r
H
ei
gh

t
|λ

y
|

t=1.5s t=20s

20

6. Results

When looking at the qualitative comparison between the F-Wave solver and the Rusanov solver
in Figure 6.2, the results look similar. The quantitative comparison in Figure 6.3 also supports
this finding. However, the F-Wave solver and Rusanov solver disagree over the limit for the water
height. The F-Wave solver almost reaches the expected limit of h = 1.0m whilst maintaining
a noticeable dip where the initial conditions were set to h = 1.1m. This dip is consequentially
present within the wave speeds, as the wave speeds reduce to

√
gh. As the F-Wave solver is just a

more elaborate approximate Riemann solver, some artifacts are to be expected. The Rusanov
solver on the other hand reaches a constant limit, albeit that this limit is lower than the expected
limit, and also lower than the limit of the F-Wave solver. This is also reflected in the wave speeds,
as the Rusanov solver’s |λy| reaches a constant limit less than the expected

√
gh ≈ 3.132m/s. It

can be concluded that both the F-Wave solver and the Rusanov solver deliver reasonable results in
terms of flux and eigenvalues. However, the F-Wave solver delivers quantitatively and qualitatively
better results than the Rusanov solver.

6.2. Radial Bathymetry Dam Break

After verifying that the flux and eigenvalue functions works correctly, the non-conservative product
can be verified next. For this, a new radial dam break scenario is devised:

h(x, y, 0) = 1.0m, (6.4)

hu(x, y, 0) = hv(x, y, 0) = 0.0m2/s, (6.5)

b(x, y) =

{
−0.9m if

√
(N2 − x)2 + (N2 − y)2 ≤ N

10

−1.0m otherwise
. (6.6)

Once again, (x, y) ∈ [0, N]× [0, N] in meters. As the flux function results in the same values over
the whole domain, this scenario’s initial flux is only derived from the non-conservative product
ghbx, ghby. Since the difference in the free surface η is the same as in the prior radial dam break
scenario (cf. Figures 6.4, 6.1), the scenario is also expected to behave similarly.

Figure 6.4.: Initial free surface η of the radial bathymetry dam break scenario. Red corresponds
to 0.1m whilst blue corresponds to 0.0m.

21

6. Results

Rusanov F-Wave
t
=

0.
1s

t
=

0.
3s

t
=

1.
5s

Figure 6.5.: Qualitative comparison of η in the radial bathymetry dam break scenario between
Rusanov and F-Wave solver. Colors range from red = 0.1m to blue = 0.0m.

22

6. Results

W
a
te
r
H
ei
gh

t
|λ

y
|

t=0.1s t=0.3s

F
ig
u
re

6
.6
.:
Q
u
a
n
ti
ta
ti
v
e
co
m
p
a
ri
so
n
o
f
η
a
n
d
|λ

y
|i
n
th
e
ra
d
ia
l
b
a
th
y
m
et
ry

d
a
m

b
re
a
k
sc
en

a
ri
o
b
et
w
ee
n
R
u
sa
n
ov

a
n
d
F
-W

av
e

so
lv
er
.
T
h
e
q
u
a
n
ti
ti
es

a
re

p
lo
tt
ed

ov
er

th
e
si
m
u
la
te
d
ti
m
e
fo
r
t
∈
[0
.1
,2
0]
s
(c
on

ti
n
u
ed

on
th
e
n
ex
t
p
ag

e)
.

23

6. Results

W
a
te
r
H
ei
gh

t
|λ

y
|

t=1.5s t=20s

24

6. Results

As can be seen in Figure 6.5, the F-Wave solver produces a highly similar solution to the radial
dam break scenario. The Rusanov solver on the other hand shows a noticeable artifact at the
discontinuity between b = −1.0m and b = −0.9m. This artifact persists for the whole duration of
the simulation. The quantitative comparison shows that for the F-Wave solver, the free surface η
behaves as the water height in Figure 6.3 did. The wave speeds |λy| also show good agreement
with the wave speeds in Figure 6.3. However, they are shifted downwards for the area where
b = −0.9m. This is because η equals 0.0m for h = 0.9m. Thus, the wave speeds in this area
reduce to

√
gh ≈ 2.971m/s, instead of 3.132m/s. The Rusanov solver shows similar results as the

F-Wave solver except for the artifacts at the bathymetry discontinuity. The Rusanov solver once
again undershoots the expected limit for η, as it did for h in the radial dam break scenario. It
can be concluded that the non-conservative product works as expected. Also, the F-Wave solver
produces qualitatively superior results over bathymetry discontinuities when compared to the
Rusanov solver.

6.3. Radial Obstacle Dam Break

A radial dam break with a dry ring around it, which reflects water. The initial conditions are:

r =

√
(
N

2
− x)2 + (

N

2
− y)2, (6.7)

h(x, y, 0) =


1.1m if r ≤ N

10

0.0m if 2N
10 ≤ r ≤ 3N

10

1.0m otherwise

, (6.8)

hu(x, y, 0) = hv(x, y, 0) = 0.0m2/s, (6.9)

b(x, y) =

{
2.0m if 2N

10 ≤ r ≤ 3N
10

−1.0m otherwise
, (6.10)

as given in Figure 6.7. As before, x, y are given in meters on a square domain [0, N]× [0, N].

Figure 6.7.: Initial free surface η of the radial obstacle dam break. The logarithmic color scale
ranges from blue = 2.0 · 10−4m to red = 2.0m.

25

6. Results

Rusanov F-Wave
t
=

0.
3s

t
=

1.
0s

t
=

4.
6s

Figure 6.8.: Qualitative comparison of η in the radial obstacle dam break scenario between Rusanov
and F-Wave solver. The logarithmic color scale ranges from blue = 2.0 · 10−4m to
red = 2.0m.

26

6. Results
W
at
er

H
ei
gh

t
|λ

y
|

t=0.3s t=1.0s

F
ig
u
re

6.
9.
:
Q
u
an

ti
ta
ti
ve

co
m
p
ar
is
on

of
η
an

d
|λ

y
|o

n
a
lo
ga
ri
th
m
ic

sc
al
e
in

th
e
ra
d
ia
l
ob

st
ac
le

d
am

b
re
ak

sc
en
ar
io

b
et
w
ee
n
R
u
sa
n
ov

a
n
d
F
-W

av
e
so
lv
er
.
T
h
e
q
u
an

ti
ti
es

ar
e
p
lo
tt
ed

ov
er

th
e
si
m
u
la
te
d
ti
m
e
fo
r
t
∈
[0
.3
,4
0]
s
(c
o
n
ti
n
u
ed

on
th
e
n
ex
t
p
ag

e)
.

27

6. Results

W
at
er

H
ei
gh

t
|λ

y
|

t=4.6s t=40s

28

6. Results

Both solvers are found to properly handle the wet-dry interface on both the qualitative
comparison in Figure 6.8, and on the quantitative comparison in Figure 6.9. However, there are
some differences. Mainly, the F-Wave solver maintaining the momentum for longer than the
Rusanov solver. This can be seen for t = 4.6s for example. But both solvers converge on to the
same solution, where the water inside the ring is evenly distributed. As this scenario was designed
around the wet-dry interface, it can be concluded that both solvers effectively implement the
reflective boundary conditions at the wet-dry boundary.

6.4. Artificial Tsunami

This artificial test scenario deals with more complex bathymetry. The initial flux in this scenario
is given by an artificial displacement, thus mimicking a real seismogenic tsunami event. The
initial conditions (cf. Figure 6.10) are:

h(x, y, 0) = 100m, (6.11)

hu(x, y, 0) = hv(x, y, 0) = 0.0m2/s, (6.12)

d(x, y) = 5m · sin ((x

500m
+ 1)π) · (−(y

500m
)2 + 1), (6.13)

b(x, y) =

{
−100m + d(x, y) if |x| ≤ 500m and |y| ≤ 500m

−100m otherwise
. (6.14)

(6.15)

For this scenario, (x, y) ∈ [−5000, 5000]m× [−5000, 5000]m. The scenario is run on a configured
volume size of 100m. The problem is solved over a domain [0, 10000]m × [0, 10000]m and all
coordinates then shifted down by −5000m. This is done to avoid having to use an offset for the
domain.

Figure 6.10.: Initial free surface η of the artificial tsunami scenario. Colors range from white =
4.9m to black = −4.9m. Blue corresponds to 0.0m.

29

6. Results

Rusanov F-Wave
t
=

8
0s

t
=

14
5s

t
=

2
05

s

Figure 6.11.: Qualitative comparison of η in the artificial tsunami scenario between Rusanov and
F-Wave solver using a logarithmic color scale from red = 4.9m to blue = 4.9 · 10−4m.

30

6. Results

W
at
er

H
ei
gh

t
|λ

y
|

t=80s t=145s

F
ig
u
re

6.
12

.:
Q
u
a
n
ti
ta
ti
v
e
co
m
p
a
ri
so
n
o
f
η
a
n
d
|λ

x
|i
n
th
e
a
rt
ifi
ci
a
l
ts
u
n
a
m
i
sc
en

a
ri
o
b
et
w
ee
n
R
u
sa
n
ov

a
n
d
F
-W

av
e
so
lv
er
.
T
h
e

va
lu
es

a
re

p
lo
tt
ed

a
lo
n
g
a
li
n
e
th
ro
u
g
h
th
e
d
o
m
a
in

fr
o
m

(0
,5
0
0
0
)m

to
(1
0
0
0
0
,5
0
0
0
)m

.
T
h
e
b
lu
e
li
n
e
is

th
e
F
-W

av
e

so
lv
er
’s

so
lu
ti
on

,
w
h
il
e
th
e
re
d
li
n
e
is

th
e
R
u
sa
n
ov

so
lv
er
’s

so
lu
ti
on

.
T
h
e
q
u
an

ti
ti
es

ar
e
p
lo
tt
ed

ov
er

th
e
si
m
u
la
te
d
ti
m
e

fo
r
t
∈
[8
0,
6
0
0]
s
(c
o
n
ti
n
u
ed

o
n
th
e
n
ex
t
p
ag

e)
.

31

6. Results

W
at
er

H
ei
gh

t
|λ

y
|

t=205s t=600s

32

6. Results

Figure 6.11 shows a similarly pronounced disagreement between the Rusanov and F-Wave
solvers over bathymetry discontinuities as the radial bathymetry dam break scenario showed.
However, both the Rusanov solver and the F-Wave solver produce artifacts. The F-Wave solver’s
artifacts are less pronounced than the Rusanov solver’s, but they still cause a slight dip in η when
looking at the limit in Figure 6.12. This has also been noted for the radial dam break scenario.
The wave speeds of the F-Wave solver reach a limit close to

√
9.81m/s2 · 100m ≈ 31.32m/s

throughout the domain, excluding the displaced area. For x < 0, the Rusanov solver produced
reasonably similar |λy| to the F-Wave solver. However, the Rusanov solver fails to achieve point
symmetric wave speeds over the displacement. As the displacement along the line plot reduces to
5m · sin ((x

500m + 1)π), point symmetry is to be expected. The F-Wave solver is found to produce
better approximate solutions over more complex bathymetry than the Rusanov solver.

6.5. Adjoint Solver

The solver for the adjoint problem has first been translated from the FORTRAN code in [25] to
Python code. The correctness of this translation has then been verified by plotting the graphs for
the one-dimensional continental shelf example.

Figure 6.13.: Adjoint solution contours for the one-dimensional continental shelf problem. The
problem has been solved until t = 4200s and shifted in time for [3800, 4200]s.

33

6. Results

Figure 6.14.: Adjoint solution for the one-dimensional continental shelf problem for t ∈ [0, 4200]s.
The dashed line is the discontinuity in the bathymetry. The x-axis is given in
kilometers from shore.

The Figures 6.13 and 6.14 show good agreement with the figures given in [25]. The solver used

34

6. Results

in ExaHyPE 2 is written in C++ for performance reasons, but virtually a line-by-line equivalent
of the solver written in Python. The same is also true for the dimensional splitting scheme (cf.
Algorithm 7), which is used in its one-dimensional form in the Python code.

6.6. Artificial Tsunami with Adaptive Mesh Refinement

Using the artificial tsunami scenario from Section 6.4, the two AMR algorithms from Section 4 can
be verified. The two algorithms are tested with a refinement tolerance of 10−3m (guided AMR, cf.
Algorithms 5, 8) and 10−2m (surface-flagging, cf. Algorithm 4). The configured maximum volume
size for both AMR approaches is 1000m (cf. Figure 6.15). The adjoint simulation is run on a grid
with a maximum volume size of 100m and without AMR. A circular AoI at (−4900, 0)m with a
radius of 100m was chosen. The inner product of the guided AMR is calculated for a time range
size of 430s. The two tests are run with 4 levels of AMR using the F-Wave solver.

Figure 6.15.: Initial conditions for AMR with the artificial tsunami scenario.

35

6. Results

(a) Surface-Flagging at t = 46s.

(b) Surface-Flagging at t = 50s.

36

6. Results

(c) Surface-Flagging at t = 52s.

(d) Surface-Flagging at t = 85.5s.

37

6. Results

(e) Surface-Flagging at t = 515s. Colors represent distinct value categories.

Figure 6.16.: Artificial tsunami using the surface-flagging approach. If not stated otherwise, the
figures depict the water height h in the artificial tsunami scenario on a linear color
scale ranging from red = 100.016m to blue = 100m.

Figure 6.16 depicts that the AMR does refine volumes. However, we can hardly make any
statements about which volume is refined. At this point, we assume a flawed AMR in ExaHyPE 2.
In general, all volumes are refined by two levels at first, as can be seen for t = 46s. It seemingly
does not matter, whether the wave has actually reached these volumes or not. For t = 50s, more
refinement can be seen in volumes that have not seen a change in η. For t = 52s, the refinement
has reached the finest level, now somewhat matching the wave front on the left side of the domain,
but still greatly overrefining the right side of the domain. During the simulation, the wave front
moves faster than the AMR, for example at t = 85.5s. This is due to Peano needing at least 3
sweeps over the grid to realize refinement for FV solvers. Thus, the wave outpaces the refinement.
For greater t, the AMR does not converge towards any coherent structure. As can be seen for
t = 515s, the AMR keeps strips of different values refined, while coarsening neighboring cells with
the same values.

38

6. Results

(a) Guided AMR at t = 32s.

(b) Guided AMR at t = 46s.

39

6. Results

(c) Guided AMR at t = 50s.

(d) Guided AMR at t = 52.7s.

40

6. Results

(e) Guided AMR at t = 327s.

Figure 6.17.: Artificial tsunami using the guided AMR approach. The figures depict the water
height h in the artificial tsunami scenario on a linear color scale ranging from
red = 100.016m to blue = 100m.

The guided AMR in Figure 6.17 looks similar to the surface-flagging approach of Figure 6.16.
The only noticeable difference arising is that the wave front in the guided AMR does not outpace
the refinement. For t = 327s, the guided AMR has not reached a state resembling any expected
AMR outcome. As the surface-flagging also failed to achieve this after even more time, no further
conclusions can be made about the guided AMR approach implemented in ExaHyPE 2. But with
the results from Section 6.5, there is good reason to believe that the implementation works as
intended, provided that the AMR also would be working correctly.

6.7. UM-Bridge Model Evaluation Using the Artificial Tsunami

The UM-Bridge model server provided as part of this work, which has been discussed in Chapter
5, is tested and verified by requesting different evaluations of the artificial tsunami scenario.

41

6. Results

Figure 6.18.: Displacement of the artificial tsunami scenario, with the origin moved from (0, 0)m
to (2500, 2500)m.

1.2 11.2 21.2 31.2 41.2 51.2 61.2 71.2 81.2 91.2 101.2 111.2 121.2 131.2 141.2 151.2 161.2 171.2 181.2 191.2 201.2
t

0.06

0.04

0.02

0.00

0.02

0.04

0.06

+1e2
h

Figure 6.19.: Water height of the artificial tsunami with origin moved to (2500, 2500)m for t ∈
[0, 202]s. Values taken from probe at (5000, 5000)m, y-axis showing the difference to
100m.

For the scenario depicted in Figure 6.18, the server reported a maximum water height of
100.0681m for t = 92.00676s for a probe in the center of the domain at (5000, 5000)m. This
measurement can be confirmed when comparing with Figure 6.19.

42

6. Results

Figure 6.20.: Displacement of the artificial tsunami scenario, with the origin moved from (0, 0)m
to (−2500,−2500)m.

1.2 11.2 21.2 31.2 41.2 51.2 61.2 71.2 81.2 91.2 101.2 111.2 121.2 131.2 141.2 151.2 161.2 171.2 181.2 191.2 201.2
t

0.06

0.04

0.02

0.00

0.02

0.04

0.06

+1e2
h

Figure 6.21.: Water height of the artificial tsunami with origin moved to (−2500,−2500)m for
t ∈ [0, 202]s. Values taken from probe at (5000, 5000)m, y-axis showing the difference
to 100m.

When moving the displacement to (−2500,−2500)m (cf. Figure 6.20), the model server reports
a maximum water height for the probe at (5000, 5000)m of 100.0648m for t = 123.1139s. This
measurement is in agreement with the complete data recorded by the probe (cf. Figure 6.21). It
can thus be concluded that the displacement can be correctly moved within the domain and that
the model server functions as expected.

43

6. Results

6.8. Tōhoku Tsunami

To test the F-Wave solver in a real world application, the 2011 Tōhoku tsunami was chosen. The
solver is tested on a grid of size (7 · 106, 4 · 106)m and a configured volume size of 104m. No AMR
was used. The initial conditions resulting from the earthquake can be seen in Figure 6.22.

Figure 6.22.: Initial conditions of the Tōhoku tsunami. Displaying the free surface η on a
logarithmic scale.

When approximating the wave speed for the deepest bathymetry of −9843.52m and a flat
surface, a maximum wave speed of

√
gh ≈ 310.75m/s is reached. As tsunami reach an estimated

maximum speed of 800km/h = 222.2m/s, the waves within the simulation should reach the shore
faster than in reality. Taking the city of Sōma in Fukushima Prefecture as an example, the real
tsunami reached it within 9min coming from its origin about 134km away2. However, in the
simulation, Sōma is only reached after about 36min (cf. Figure 6.23). This does neither match
the fastest approximation using 310.75m/s, which would imply a travel time of 429s, nor the real
time of about 9min. Instead, the results lead to an average wave speed of only 62.04m/s for the
wave front moving towards the shore.

2https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/runup-more-info/19241, accessed August 22nd,
2023

44

https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/runup-more-info/19241

6. Results

Figure 6.23.: Tōhoku tsunami approaching Sōma at t = 2160s with a TSR factor of 0.4.

The simulation qualitatively looks promising until artifacts start forming from around t = 2940s,
as can be seen in Figure 6.25. These artifacts move in space and time when changing the TSR
factor (cf. Figures 6.24, 6.26). When the factor is raised to 0.5, the artifacts appear much earlier
and develop much more violently, as can be seen in when comparing Figures 6.25 and 6.26. For
a TSR factor of 0.3, no artifacts can be observed for a maximum simulation time of 36000s.
However, it can not be ruled out that artifacts appear later on in the simulation. In general, the
simulation does not match the actual event, regardless of the chosen TSR factor.

TSR Factor 0.3 0.4 0.5 0.6 0.7 0.8 0.9

artifacts start
appearing at

? > 36000s 3000s 186s 83s 65s 56s 42s

Figure 6.24.: Influence of varying TSR factors on artifacts of the Tōhoku tsunami.

45

6. Results

(a) Artifacts for t = 3000s with a TSR factor of 0.4.

(b) Artifacts for t = 4200s with a TSR factor of 0.4.

Figure 6.25.: Artifacts of the Tōhoku tsunami south-east of Chiba Prefecture with a TSR factor
of 0.4. The figure shows the free surface η on a logarithmic scale.

46

6. Results

(a) Artifacts for t = 186s with a TSR factor of 0.5.

(b) Artifacts for t = 407s with a TSR factor of 0.5.

47

6. Results

(c) Artifacts for t = 640s with a TSR factor of 0.5.

(d) Artifacts for t = 822s with a TSR factor of 0.5.

48

6. Results

(e) Artifacts for t = 2162s with a TSR factor of 0.5.

Figure 6.26.: Artifacts of the Tōhoku tsunami for a TSR factor of 0.5. The figure shows the free
surface η on a logarithmic scale.

As the wave speeds in previous scenarios were found to match the expected speeds, this bug is
also expected to have its root course outside the SWE application. This bug can also occur in
artificial test scenarios like the artificial tsunami scenario when choosing higher TSR factors than
0.4, independent of the chosen solver, which most notably also includes ExaHyPE 2’s Rusanov
solver.

49

7. Conclusion and Outlook

This work set out to provide an UQ workflow within the re-written ExaHyPE 2 engine using the
SWE. An SWE application has been implemented in ExaHyPE 2. We verified the implementation
using multiple different artificial scenarios, which test individual characteristics of the SWE and
their implementation. As the predefined Rusanov solver within ExaHyPE 2 is not sufficient
for real world applications, user-defined solvers have been re-introduced to ExaHyPE 2. The
user-defined F-Wave solver implementation has been verified together with the SWE application.
Additionally, the guided AMR approach of Davis and LeVeque has also been implemented in the
SWE application. The algorithms have been verified outside ExaHyPE 2. Within ExaHyPE 2,
it was shown that the AMR of ExaHyPE 2 is still erroneous. ExaHyPE 2 tends to overrefine
most of the domain in the tested scenario. Additionally, no meaningful coarsening of volumes
could be observed. This was also confirmed for the much simpler surface-flagging, proving that
the fault does not lie with the SWE application. Finally, based on the SWE application, an
UM-Bridge model server has been implemented. Using an artificial test scenario, its functionality
has been confirmed. As UQ for the SWE typically includes tsunami simulations, such capabilities
were tested as well. It was shown that while matching expected limits for various quantities in
the artificial test scenarios, real world applications such as the Tōhoku tsunami could not be
simulated. In our experiments, we observed the formation of artifacts, which move in time and
space depending on the relaxation factor used for the CFL condition. This points toward a more
general problem within the ExaHyPE 2 engine, which is most definitely deserving of further
attention. Future work should therefore be focused on resolving the issues around the AMR and
tsunami simulation. Based on these improvements, real UQ can be conducted using ExaHyPE
2 and the guided AMR. As the Runge-Kutta Discontinuous Galerkin (RKDG) and Arbitrary
Derivative Discontinuous Galerkin (ADER-DG) solvers are implemented in ExaHyPE 2, these
schemes could be put together with the guided AMR approach and be coupled with an UQ code
for even larger, high-resolution UQ.

50

List of Figures

2.1. Riemann problem in x-t plane at the state interface, the states are divided by the
characteristic wave speeds. Figure modeled after [12]. 3

3.1. UML activity diagram of an FV time step calculation. 7
3.2. UML activity diagram of the main SWE application. 8

5.1. UQ workflow using UM-Bridge. 16

6.1. Initial water height of radial dam break scenario. Red = 1.1m, blue = 1.0m. . . . 17
6.2. Qualitative comparison of h in the radial dam break scenario between Rusanov

and F-Wave solver. Colors range from red = 1.1m to blue = 1.0m. 18
6.3. Quantitative comparison of h and |λy| in the radial dam break scenario between

Rusanov and F-Wave solver. The quantities are plotted over the simulated time
for t ∈ [0.1, 20]s (continued on the next page). 19

6.4. Initial free surface η of the radial bathymetry dam break scenario. Red corresponds
to 0.1m whilst blue corresponds to 0.0m. 21

6.5. Qualitative comparison of η in the radial bathymetry dam break scenario between
Rusanov and F-Wave solver. Colors range from red = 0.1m to blue = 0.0m. . . . 22

6.6. Quantitative comparison of η and |λy| in the radial bathymetry dam break scenario
between Rusanov and F-Wave solver. The quantities are plotted over the simulated
time for t ∈ [0.1, 20]s (continued on the next page). 23

6.7. Initial free surface η of the radial obstacle dam break. The logarithmic color scale
ranges from blue = 2.0 · 10−4m to red = 2.0m. 25

6.8. Qualitative comparison of η in the radial obstacle dam break scenario between
Rusanov and F-Wave solver. The logarithmic color scale ranges from blue =
2.0 · 10−4m to red = 2.0m. 26

6.9. Quantitative comparison of η and |λy| on a logarithmic scale in the radial obstacle
dam break scenario between Rusanov and F-Wave solver. The quantities are plotted
over the simulated time for t ∈ [0.3, 40]s (continued on the next page). 27

6.10. Initial free surface η of the artificial tsunami scenario. Colors range from white =
4.9m to black = −4.9m. Blue corresponds to 0.0m. 29

6.11. Qualitative comparison of η in the artificial tsunami scenario between Rusanov and
F-Wave solver using a logarithmic color scale from red = 4.9m to blue = 4.9 · 10−4m. 30

6.12. Quantitative comparison of η and |λx| in the artificial tsunami scenario between
Rusanov and F-Wave solver. The values are plotted along a line through the
domain from (0, 5000)m to (10000, 5000)m. The blue line is the F-Wave solver’s
solution, while the red line is the Rusanov solver’s solution. The quantities are
plotted over the simulated time for t ∈ [80, 600]s (continued on the next page). . 31

51

List of Figures

6.13. Adjoint solution contours for the one-dimensional continental shelf problem. The
problem has been solved until t = 4200s and shifted in time for [3800, 4200]s. . . 33

6.14. Adjoint solution for the one-dimensional continental shelf problem for t ∈ [0, 4200]s.
The dashed line is the discontinuity in the bathymetry. The x-axis is given in
kilometers from shore. 34

6.15. Initial conditions for AMR with the artificial tsunami scenario. 35
6.16. Artificial tsunami using the surface-flagging approach. If not stated otherwise, the

figures depict the water height h in the artificial tsunami scenario on a linear color
scale ranging from red = 100.016m to blue = 100m. 38

6.17. Artificial tsunami using the guided AMR approach. The figures depict the water
height h in the artificial tsunami scenario on a linear color scale ranging from
red = 100.016m to blue = 100m. 41

6.18. Displacement of the artificial tsunami scenario, with the origin moved from (0, 0)m
to (2500, 2500)m. 42

6.19. Water height of the artificial tsunami with origin moved to (2500, 2500)m for
t ∈ [0, 202]s. Values taken from probe at (5000, 5000)m, y-axis showing the
difference to 100m. 42

6.20. Displacement of the artificial tsunami scenario, with the origin moved from (0, 0)m
to (−2500,−2500)m. 43

6.21. Water height of the artificial tsunami with origin moved to (−2500,−2500)m
for t ∈ [0, 202]s. Values taken from probe at (5000, 5000)m, y-axis showing the
difference to 100m. 43

6.22. Initial conditions of the Tōhoku tsunami. Displaying the free surface η on a
logarithmic scale. 44

6.23. Tōhoku tsunami approaching Sōma at t = 2160s with a TSR factor of 0.4. 45
6.24. Influence of varying TSR factors on artifacts of the Tōhoku tsunami. 45
6.25. Artifacts of the Tōhoku tsunami south-east of Chiba Prefecture with a TSR factor

of 0.4. The figure shows the free surface η on a logarithmic scale. 46
6.26. Artifacts of the Tōhoku tsunami for a TSR factor of 0.5. The figure shows the free

surface η on a logarithmic scale. 49

A.1. UML class diagram of Template_Scenario’s inheritance hierarchy. 60

52

List of Algorithms

1. Flux Function . 5
2. Non-Conservative Product . 5
3. Eigenvalues . 6

4. Surface-Flagging . 9
5. Adjoint-Flagging . 10
6. 1D Adjoint Solver . 11
7. Dimensional-Splitting . 12
8. Calculation of Maximum Inner Product . 14

53

Code Listings

A.1. Flux and eigenvalues in class PDE. 60
A.2. Outflow and reflective boundary conditions in class PDE. 61
A.3. Non-conservative product in class Template_Scenario. 62

54

Bibliography

[1] Shuji Seto and Fumihiko Imamura. Classification of tsunami deaths by modifying ICD-10
categories in the 2011 Tohoku earthquake tsunami - A case study in Miyagi prefecture.
International Journal of Disaster Risk Reduction, 50:101743, 2020.

[2] Thorne Lay, Hiroo Kanamori, Charles J Ammon, Meredith Nettles, Steven N Ward, Richard C
Aster, Susan L Beck, Susan L Bilek, Michael R Brudzinski, Rhett Butler, et al. The great
Sumatra-Andaman earthquake of 26 december 2004. science, 308(5725):1127–1133, 2005.

[3] Alexander Rudloff, Jörn Lauterjung, Ute Münch, and S Tinti. Preface” The GITEWS Project
(German-Indonesian Tsunami Early Warning System)”. Natural Hazards and Earth System
Sciences, 9(4):1381–1382, 2009.

[4] Arnau Folch, Claudia Abril, Michael Afanasiev, Giorgio Amati, Michael Bader, Rosa M.
Badia, Hafize B. Bayraktar, Sara Barsotti, Roberto Basili, Fabrizio Bernardi, Christian
Boehm, Beatriz Brizuela, Federico Brogi, Eduardo Cabrera, Emanuele Casarotti, Manuel J.
Castro, Matteo Cerminara, Antonella Cirella, Alexey Cheptsov, Javier Conejero, Antonio
Costa, Marc de la Asunción, Josep de la Puente, Marco Djuric, Ravil Dorozhinskii, Gabriela
Espinosa, Tomaso Esposti-Ongaro, Joan Farnós, Nathalie Favretto-Cristini, Andreas Ficht-
ner, Alexandre Fournier, Alice-Agnes Gabriel, Jean-Matthieu Gallard, Steven J. Gibbons,
Sylfest Glimsdal, José Manuel González-Vida, Jose Gracia, Rose Gregorio, Natalia Gutier-
rez, Benedikt Halldorsson, Okba Hamitou, Guillaume Houzeaux, Stephan Jaure, Mouloud
Kessar, Lukas Krenz, Lion Krischer, Soline Laforet, Piero Lanucara, Bo Li, Maria Concetta
Lorenzino, Stefano Lorito, Finn Løvholt, Giovanni Macedonio, Jorge Maćıas, Guillermo
Maŕın, Beatriz Mart́ınez Montesinos, Leonardo Mingari, Geneviève Moguilny, Vadim Montel-
lier, Marisol Monterrubio-Velasco, Georges Emmanuel Moulard, Masaru Nagaso, Massimo
Nazaria, Christoph Niethammer, Federica Pardini, Marta Pienkowska, Luca Pizzimenti,
Natalia Poiata, Leonhard Rannabauer, Otilio Rojas, Juan Esteban Rodriguez, Fabrizio
Romano, Oleksandr Rudyy, Vittorio Ruggiero, Philipp Samfass, Carlos Sánchez-Linares,
Sabrina Sanchez, Laura Sandri, Antonio Scala, Nathanael Schaeffer, Joseph Schuchart, Jacopo
Selva, Amadine Sergeant, Angela Stallone, Matteo Taroni, Solvi Thrastarson, Manuel Titos,
Nadia Tonelllo, Roberto Tonini, Thomas Ulrich, Jean-Pierre Vilotte, Malte Vöge, Manuela
Volpe, Sara Aniko Wirp, and Uwe Wössner. The EU Center of Excellence for Exascale in
Solid Earth (ChEESE): Implementation, results, and roadmap for the second phase. Future
Generation Computer Systems, 146:47–61, 2023.

[5] Anne Reinarz, Dominic E. Charrier, Michael Bader, Luke Bovard, Michael Dumbser, Kenneth
Duru, Francesco Fambri, Alice-Agnes Gabriel, Jean-Matthieu Gallard, Sven Köppel, Lukas
Krenz, Leonhard Rannabauer, Luciano Rezzolla, Philipp Samfass, Maurizio Tavelli, and
Tobias Weinzierl. ExaHyPE: An engine for parallel dynamically adaptive simulations of wave
problems. Computer Physics Communications, 254:107251, 2020.

55

Bibliography

[6] Linus Seelinger, Vivian Cheng-Seelinger, Andrew Davis, Matthew Parno, and Anne Reinarz.
UM-Bridge: Uncertainty quantification and modeling bridge. Journal of Open Source Software,
8(83):4748, 2023.

[7] Holger Schulz, Gonzalo Brito Gadeschi, Oleksandr Rudyy, and Tobias Weinzierl. Task
Inefficiency Patterns for a Wave Equation Solver. In OpenMP: Enabling Massive Node-Level
Parallelism, pages 111–124. Springer International Publishing, 2021.

[8] Mario Wille, Tobias Weinzierl, Gonzalo Brito Gadeschi, and Michael Bader. Efficient GPU
Offloading with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive
Meshes. In Abhinav Bhatele, Jeff Hammond, Marc Baboulin, and Carola Kruse, editors,
High Performance Computing, pages 65–85, Cham, 2023. Springer Nature Switzerland.

[9] Chung Ming Loi and Tobias Weinzierl. SYCL compute kernels for ExaHyPE, 2023.

[10] Uzmar Gomez, Gonzalo Brito Gadeschi, and Tobias Weinzierl. GPU Offloading in ExaHyPE
Through C++ Standard Algorithms, 2023.

[11] Tobias Weinzierl. The Peano Software—Parallel, Automaton-Based, Dynamically Adaptive
Grid Traversals. ACM Trans. Math. Softw., 45(2), 2019.

[12] J.G. Zhou, D.M. Causon, C.G. Mingham, and D.M. Ingram. The Surface Gradient Method
for the Treatment of Source Terms in the Shallow-Water Equations. Journal of Computational
Physics, 168(1):1–25, 2001.

[13] Han Zhang, Tobias Weinzierl, Holger Schulz, and Baojiu Li. Spherical accretion of collisional
gas in modified gravity I: self-similar solutions and a new cosmological hydrodynamical code.
Monthly Notices of the Royal Astronomical Society, 515(2):2464–2482, 2022.

[14] Zihua Niu, Alice-Agnes Gabriel, Linus Seelinger, and Heiner Igel. Modeling and Quantifying
Parameter Uncertainty of Co-seismic Non-classical Nonlinearity in Rocks, 2023.

[15] Linus Seelinger, Anne Reinarz, Leonhard Rannabauer, Michael Bader, Peter Bastian, and
Robert Scheichl. High Performance Uncertainty Quantification with Parallelized Multilevel
Markov Chain Monte Carlo. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA, 2021.
Association for Computing Machinery.

[16] Lukas Krenz. Cloud Simulation with the ExaHyPE-Engine. Master’s thesis, Technische
Universität München, 2019.

[17] Sven Hingst. Adjoint-Guided Mesh Refinement for Earthquake Simulations. Bachelor’s thesis,
Technische Universität München, 2022.

[18] Eleuterio Toro. Shock-Capturing Methods for Free-Surface Shallow Flows. 2001.

[19] D Ambrosi. Approximation of shallow water equations by Roe’s Riemann solver. International
journal for numerical methods in fluids, 20(2):157–168, 1995.

[20] Manuel Jesús Castro Dı́az, Alberto Pardo, Carlos Parés Madroñal, and Eleuterio F. Toro.
On some fast well-balanced first order solvers for nonconservative systems. Math. Comput.,
79:1427–1472, 2009.

56

Bibliography

[21] Derek S. Bale, Randall J. LeVeque, Sorin Mitran, and James A. Rossmanith. A Wave
Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux
Functions. SIAM Journal on Scientific Computing, 24(3):955–978, 2003.

[22] Kyle T Mandli, Aron J Ahmadia, Marsha Berger, Donna Calhoun, David L George, Yiannis
Hadjimichael, David I Ketcheson, Grady I Lemoine, and Randall J LeVeque. Clawpack:
building an open source ecosystem for solving hyperbolic PDEs. PeerJ Computer Science,
2:e68, 2016.

[23] Leonhard Rannabauer, Stefan Haas, Dominic Etienne Charrier, Tobias Weinzierl, and Michael
Bader. Simulation of tsunamis with the exascale hyperbolic PDE engine ExaHyPE. In
Environmental Informatics: Techniques and Trends. Adjunct Proceedings of the 32nd edition
of the EnviroInfo., 2018.

[24] Michael Dumbser and Dinshaw S. Balsara. A New Efficient Formulation of the HLLEM
Riemann Solver for General Conservative and Non-Conservative Hyperbolic Systems. J.
Comput. Phys., 304:275–319, 2016.

[25] Brisa N. Davis and Randall J. LeVeque. Adjoint Methods for Guiding Adaptive Mesh
Refinement in Tsunami Modeling. Global Tsunami Science: Past and Future, Volume I,
pages 4055–4074, 2017.

[26] Brisa N. Davis and Randall J. LeVeque. Analysis and Performance Evaluation of Adjoint-
Guided Adaptive Mesh Refinement for Linear Hyperbolic PDEs Using Clawpack. ACM
Trans. Math. Softw., 46(3), 2020.

[27] D. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. A wave-propagation method
for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci.
Comput., 24:955–978, 2002.

[28] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in
Applied Mathematics. Cambridge University Press, 2002.

[29] Frank I. Gonzalez, Randall J. LeVeque, Loyce M. Adams, Chris Goldfinger, George R. Priest,
and Kelin Wang. Probabilistic Tsunami Hazard Assessment (PTHA) for Crescent City, CA.
Technical report, 2014.

[30] K. Goda, T. Yasuda, N. Mori, A. Muhammad, R. De Risi, and F. De Luca. Uncer-
tainty quantification of tsunami inundation in Kuroshio, Kochi Prefecture, Japan, using the
Nankai–Tonankai megathrust rupture scenarios. Natural Hazards and Earth System Sciences,
20(11):3039–3056, 2020.

[31] Ihab Sraj, Kyle T. Mandli, Omar M. Knio, Clint N. Dawson, and Ibrahim Hoteit. Uncertainty
quantification and inference of Manning’s friction coefficients using DART buoy data during
the Tōhoku tsunami. Ocean Modelling, 83:82–97, 2014.

[32] Monika Johanna Kreitmair. The Effect of Uncertainty on Tidal Stream Energy Resource
Estimates. Springer Nature, 2020.

57

Bibliography

[33] Linus Seelinger, Anne Reinarz, Jean Benezech, Mikkel Bue Lykkegaard, Lorenzo Tamellini,
and Robert Scheichl. Lowering the Entry Bar to HPC-Scale Uncertainty Quantification,
2023.

58

A. Python Implementation

The SWE implementation itself is defined by a main script - swe.py - that deals with different
configuration options and partially also with the parsing of input files.

The script accepts arguments for:

• The type of solver to be used. Currently, ExaHyPE 2’s working solvers are a provided
FV Rusanov solver and user-defined FV solvers, but arguments for the Runge-Kutta
Discontinuous Galerkin solver are also already provided.

• Various configurable parameters of the simulation, such as the end time, patch size, maximum
cell size, and the interval at which output is to be saved to files, for both the simulation as
a whole and possible probes within the domain.

• AMR: refinement levels and refinement tolerance.

• The scenario to be simulated. For non-standardized scenarios, the dimensions of the domain
can be specified as well.

• A plethora of netCDF related arguments, such as file paths and keys. There are also two
arguments related to the maximum cell size when using netCDF and AMR. When switched
on, swe.py will either attempt to import the netCDF4 package to read in the resolution of
the input data and adjust the maximum cell size to fit the finest input resolution, or a data
resolution according to which to set the maximum cell size can be supplied.

• Various options related to guided AMR. These include providing a pre-computed solution,
or setting a spatial and temporal area of interest, as well as different other aspects of the
adjoint problem’s simulation. One notable option is to only solve the adjoint problem and
run no follow-up simulation in ExaHyPE 2.

• Two options related to UQ, which move the origin of the earthquake to given coordinates,
or add probes to the domain.

The solver is a part of the whole Peano project generated in swe.py. The code, which describes
how the solver is supposed to solve the SWE, is detailed in various classes with clear delegation
of functionality to different classes (cf. Figure A.1)1.

1Again, a detailed artifact description can be found under https://doi.org/10.5281/zenodo.8305725.

59

https://doi.org/10.5281/zenodo.8305725

A. Python Implementation

«Interface»
Scenario

+ implementation_of_flux(self)
+ implementation_of_boundary_conditions(self)
+ implementation_of_initial_conditions(self)
+ implementation_of_sources(self)
+ implementation_of_ncp(self)
+ implementation_of_refinement_criterion(self)

PDE
+ definition_of_flux(self)
+ definition_of_eigenvalues(self)
+ outflow_boundary_conditions(self)
+ reflective_boundary_conditions(self)

Template_Scenario
+ amr_tol: float
+ definition_of_ncp(self)
+ implementation_of_refinement_criterion(self)
+ implementation_of_sources(self)

FirstOrderConservativePDEFormulation
+ F: symarray
+ ncp: symarray
+ eigenvalues: symarray
+ sources: symarray
+ implementation_of_flux(self)
+ implementation_of_ncp(self)
+ implementation_of_eigenvalues(self)
+ implementation_of_sources(self)
+ ...

PDE
+ Q: symarray
+ delta_Q: symarray
+ initial_values: symarray
+ boundary_values: symarray
+ x: symarray
+ grad(self, Q)
+ implementation_of_boundary_conditions(self, invoke_evalf_before_output)
+ implementation_of_initial_conditions(self, invoke_evalf_before_output)
+ ...

exahype2::symhype

swe

scenarios

Figure A.1.: UML class diagram of Template_Scenario’s inheritance hierarchy.

The interface Scenario defines the possible overridable methods of each scenario, thus explicitly
stating the customization options of the shallow-water application usable when defining a scenario.
The class PDE in the swe module of the SWE application contains the definitions of both the flux
and the eigenvalues (cf. Code Listing A.1).

60

A. Python Implementation

1 def definiton_of_flux(self):

2 # Flux [unknowns , dimensions]

3 self.F[0, 0] = self.hu

4 self.F[1, 0] = self.hu * self.u + (self.g * self.h **2)/2

5 self.F[2, 0] = self.h * self.u * self.v

6

7 self.F[0, 1] = self.hv

8 self.F[1, 1] = self.h * self.u * self.v

9 self.F[2, 1] = self.hv * self.v + (self.g * self.h **2)/2

10

11 def definition_of_eigenvalues(self):

12 # Eigenvalues [unknowns , dimensions]

13 self.eigenvalues[0, 0] = self.u

14 self.eigenvalues[0, 1] = self.v

15

16 self.eigenvalues[1, 0] = self.u + sympy.sqrt(self.g * self.h)

17 self.eigenvalues[1, 1] = self.v + sympy.sqrt(self.g * self.h)

18

19 self.eigenvalues[2, 0] = self.u - sympy.sqrt(self.g * self.h)

20 self.eigenvalues[2, 1] = self.v - sympy.sqrt(self.g * self.h)

Code Listing A.1: Flux and eigenvalues in class PDE.

These definitions closely follow the definition of the SWE as they are given in Section 2.2 and
demonstrate quite well exactly how easy setting up ExaHyPE 2 is.
For convenience purposes, PDE also provides outflow and reflective boundary conditions (cf.

Code Listing A.2), as PDE is extended by Template_Scenario, which is itself extended by every
scenario provided in the SWE application.

1 def outflow_boundary_conditions(self):

2 # outflow boundary conditions

3 self.boundary_values[0] = self.h

4 self.boundary_values[1] = self.hu

5 self.boundary_values[2] = self.hv

6 self.boundary_values[3] = self.b

7

8 def reflective_boundary_conditions(self):

9 # reflective boundary conditions

10 self.boundary_values[0] = self.h

11 self.boundary_values[1] = -self.hu

12 self.boundary_values[2] = -self.hv

13 self.boundary_values[3] = self.b

Code Listing A.2: Outflow and reflective boundary conditions in class PDE.

As each scenario should extend both PDE and Scenario, most implementations remain the same
for the different scenarios. That is why Template_Scenario bundles together various calls to and
definitions of methods, so that subsequent scenarios only have to define the initial values if they do
not have special requirements. Template_Scenario uses outflow boundary conditions provided
in PDE by default and sets implementation_of_sources() to return None_Implementation,
as Template_Scenario provides an implementation of the source terms given in Section 2.2 via
a non-conservative product. In the case that the user wishes to change this behavior, both
implementation_of_sources() and implementation_of_ncp() can be simply overridden. This
might be done in order to include more sophisticated source terms, such as a friction term.

61

A. Python Implementation

The implementation of the source term via the non-conservative product is given in Code
Listing A.3.

1 def definition_of_ncp(self):

2 grad_b = self.grad(self.b)

3

4 # NCP [unknowns , dimensions]

5 self.ncp[0, 0] = 0.0

6 self.ncp[1, 0] = self.g * self.h * grad_b

7 self.ncp[2, 0] = 0.0

8

9 self.ncp[0, 1] = 0.0

10 self.ncp[1, 1] = 0.0

11 self.ncp[2, 1] = self.g * self.h * grad_b

Code Listing A.3: Non-conservative product in class Template_Scenario.

With grad_b being equivalent to bx or by in the source term for x- and y-dimension respectively.
implementation_of_refinement_criterion() is one important exception to code generation,

as this is most practically defined in C++ directly. Template_Scenario also provides a default
implementation for this method in the form of the in Section 4.1 already discussed surface-flagging
approach. All given implemented scenarios extend only Template_Scenario as it extends both
PDE and Scenario and provides useful default implementations that only have to be changed by
a few scenarios.

62

B. C++ Implementation

The SWE applications consists of mainly three C++ classes, that are injected into the solver under
various circumstances, as seen in Figure 3.2. These classes are:

• TopologyParser: Configurable input file parser for different use-cases. This class does most
of the work for the Tsunami scenario.

• SWEAdjoint: Solves the adjoint problem using the one-dimensional solver detailed in Algo-
rithm 6 and the two-dimensional scheme in Algorithm 7. It uses a configured TopologyParser
to read in the bathymetry.

• AdjointParser: Reads in the solution file of an adjoint problem. Further, it provides the
maximum inner product for guided AMR as detailed in Algorithm 8.

Both SWEAdjoint and AdjointParser are more explained in detail in Section 4.2. This section
will only focus on TopologyParser and some supporting code.

Topology Parser The TopologyParser class offers two constructors. One is used only by the
adjoint problem in the SWEAdjoint class. This constructor takes only a file path for the bathymetry
file and three optional keys for the x- and y-dimensions and the bathymetry in the netCDF input
file. The second constructor offered takes both a bathymetry and a displacement input file, as
well as optional keys for both files. It also takes optional coordinates, which point to a new origin
of the displacement within the bathymetry.
When instantiated, the TopologyParser object immediately reads in the files provided using

the parse_bathymetry_file() and parse_displacement_file() functions. In the event of an
error occurring during file I/O, the TopologyParser returns from its constructor and prints an
error message on the standard output. The information required by the TopologyParser consists
only of the x-coordinates, y-coordinates, and the values of the variable stored within the file, which
are indexed by the x- and y-coordinates. Next to storing the x-y-indexed values, it stores the
extreme values of the coordinates of both bathymetry and, if applicable, displacement file. The
displacement file’s absolute extreme values have to be strictly less or equal to the bathymetry’s
absolute extreme values, so that the displacement is entirely contained within the bathymetry.
Otherwise, a correct functioning of TopologyParser can not be guaranteed.
The functions sample_bathymetry(x,y) and sample_displacement(x,y) use two interpola-

tion functions to map the simulation domain to the target netCDF values. The first interpolation
maps the simulation domain to the coordinate space of the respective netCDF file. The behavior
of this function is described by

p1(z, zmax, z
min
bath, z

max
bath) =

zmax
bath − zmin

bath

zmax
· z + zmin

bath, (B.1)

where z is a coordinate in the x- or y-dimension within the simulation domain, zmax the maximum
value of z, as the minimum value for z is assumed to be 0, and zmin

bath and zmax
bath the minimum and

63

B. C++ Implementation

maximum coordinates in the dimension of z within the bathymetry file. p1 is applied to both x and
y, and the resulting coordinates can then be compared to various criteria. In TopologyParser,
the coordinates are only checked for validity. Coordinates are considered valid if they are within
their respective extreme values. If they are not valid, either a bathymetry of 20 or a displacement
of 0 is returned. If the coordinates are valid, then a second interpolation maps the netCDF
coordinates onto the underlying one-dimensional array. The second interpolation function is given
by:

pz(z, z
min
cdf , zmax

cdf , dimz
cdf) =

⌊
dimz

cdf − 1

zmax
cdf − zmin

cdf

· z +
zmin
cdf · dimz

cdf

zmin
cdf − zmax

cdf

⌋
, (B.2)

p2(x̄, ȳ, x
min
cdf , ymin

cdf , xmax
cdf , ymax

cdf , dimx
cdf , dim

y
cdf) = pz(ȳ, y

min
cdf , ymax

cdf , dimy
cdf) · dim

x
cdf (B.3)

+ pz(x̄, x
min
cdf , xmax

cdf , dimx
cdf). (B.4)

The function pz is used to individually interpolate coordinates onto array indices. The new variables
introduced for p2 are dimx

cdf and dimy
cdf , the array length of the corresponding dimension. The

subscript cdf indicate that both bathymetry or displacement limits can be used here, depending
on what function the interpolation is called in. The interpolated netCDF coordinates from p1 are
inserted into p2 as x̄ and ȳ.

If the displacement is to be moved for UQ, then the netCDF coordinates resulting from p1 are
transformed as z̄trans = z̄ − zorigin − 0.5(zmax

displ + zmin
displ), with the displ subscript denoting that

these values belong to the displacement file’s coordinate system. The transformed coordinates are
then checked for validity and used in p2.

NetCDF Reader and Helper The TopologyParser class uses the functions provided within the
parser::NetCDFReader and parser::NetCDFHelper namespaces extensively. The functions in
parser::NetCDFReader provide convenient wrappers for the standard netCDF library functions,
such as opening/closing netCDF files, retrieving global attributes of various types, and reading
variable values into 1D, 2D, or 3D arrays.

The functions in parser:NetCDFHelper implement the p1 and p2 interpolation functions as
transformIndexSimulationToCDFRange() and transformIndexCDFRangeToArray().

NetCDF Writer This class is a wrapper for netCDF library functions as well. Realized as a
class, the NetCDFWriter saves the netCDF IDs of the variables it has to write, as well as the
dimensions of the variables. It is only used in the SWEAdjoint class, as Peano does not support
netCDF output yet, but the solution to the adjoint problem is easiest to read in the netCDF
format.

In its constructor, NetCDFWriter takes an output file path, the bathymetry file path, the sizes
of the x- and y-dimensions, a pointer to the bathymetry array read in by TopologyParser earlier,
the coordinates of the area of interest, and the start and end time for the guided AMR. Most of
these parameters are simply written into the resulting netCDF file as attributes, so that later
users can reconstruct the parameters used to run the simulation. The only parameter written to
the file as a variable is the bathymetry array, as it is time-independent and thus only needs to be
written once before the simulation starts.

The time-dependent variables are written using the writeTimeStep() function. As SWEAdjoint
has all the simulation data in one-dimensional, column wise arrays, writeTimeStep() simply

64

B. C++ Implementation

iterates through the columns and writes them to the output file. Concerning the time variable, it
writes the parameterized t value at the current checkpoint position, which is also parameterized.

65

	Acknowledgements
	Abstract
	Introduction
	Related Work
	ExaHyPE 2
	The Shallow-Water Equations

	Implementation of the Shallow-Water Equations in ExaHyPE 2
	Adaptive Mesh Refinement
	Surface-Flagging
	Guided Adaptive Mesh Refinement

	Uncertainty Quantification Workflow with UM-Bridge
	Results
	Radial Dam Break
	Radial Bathymetry Dam Break
	Radial Obstacle Dam Break
	Artificial Tsunami
	Adjoint Solver
	Artificial Tsunami with Adaptive Mesh Refinement
	UM-Bridge Model Evaluation Using the Artificial Tsunami
	Tōhoku Tsunami

	Conclusion and Outlook
	Bibliography
	Python Implementation
	C++ Implementation

