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Abstract— Autonomous vehicles are subject to various con-
straints, such as following the rules of the road (ROTR),
adhering to schedules, or providing a comfortable driving
experience. However, realizing a driving behavior complying
with all constraints is challenging since it is not always possible
to satisfy them simultaneously, necessitating the formulation
of compromises. In this paper, we propose a solution to this
challenge by decomposing the specification of an autonomous
vehicle into a rulebook utilized by a novel optimization-based
minimum-violation motion planner. In particular, our planner
uses reachable sets to prevent collisions with other road users,
and it minimally violates the ROTR formalized in signal tempo-
ral logic (STL). Furthermore, a mixed-integer convex program
(MICP) realization of the planner is provided to demonstrate its
effectiveness, especially in dynamically changing environments.
We evaluate our approach using realistic ROTR on 1780
scenarios from the CommonRoad benchmark suite. Our results
show that our planner generates safe and feasible trajectories,
indicating its potential for real-world applications.
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I. INTRODUCTION

Autonomous vehicles face many constraints, including
preventing collisions with other traffic participants, adhering
to the rules of the road (ROTR), performing mission tasks,
such as stopping at scheduled bus stops, and ensuring high
driving comfort for passengers. Nevertheless, the simulta-
neous fulfillment of these constraints poses a significant
challenge, given their number and the fact that their sat-
isfaction is also affected by the behavior of other traffic
participants. When constraints contradict each other, this
is typically resolved by specifying their respective level of
importance [1]. Fig. 1 shows an example where ROTR must
be violated. In this paper, we explore a problem formulation,
where the contradiction of constraints is resolved by defining
a ranking.

A. Related Work

We review related works on the handling of contradicting
constraints, reachability analysis, and the formalization of
spatio-temporal constraints. Further related work beyond our
survey can be found in [2].

Handling of Contradicting Constraints: In motion plan-
ning problems, contradicting constraints are typically ex-
pressed as a collection of hard and (potentially weighted)
soft constraints [3]. To avoid infeasible motion planning
problems, one requires a significant effort in designing and
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Fig. 1: An example scenario for an inevitable constraint violation: By
deliberately crossing the red traffic light, the autonomous vehicle can prevent
blocking the emergency vehicle on duty.

tuning the constraints. Hierarchical approaches are often
proposed to circumvent these issues, where constraints are
prioritized (e.g., see [4]–[7]). Rulebooks [8], [9] gained
recent popularity in this regard, as they emphasize the
paradigm of ranking of principles over outcomes [10]. This
implies that the system behavior should be specified by
fundamental prioritized principles rather than based on the
suitability of specific maneuvers in particular scenarios.
Under certain prerequisites, rulebooks induce a lexicographic
order on a set of potential system trajectories. Lexicographic
preferences provide a clear and comprehensive approach for
handling contradicting constraints, ensuring that the most
important constraints are satisfied first [1], [11]. Rulebooks
can be effectively applied to planning tasks, as demonstrated
in [4], [12]. The approach of synthesizing motion plans
by violating lower-prioritized constraints to satisfy higher-
prioritized constraints is commonly referred to as minimum-
violation planning [13]–[15].

Reachability Analysis: A promising technique for en-
suring road safety and preventing collisions with road users
involves the usage of reachable sets, which can bind all phys-
ically feasible and collision-free trajectories of autonomous
vehicles [16]. When combined with set-based prediction,
reachable sets enable provable safe motion planning [17].
A trajectory planned inside a reachable set is guaranteed
to be collision-free (subject to certain assumptions, such as
reachset conformance [18]). Methods for planning trajecto-
ries in reachable sets include convex optimization [19] and
sampling-based techniques [20]. This work utilizes reachable
sets within a mixed-integer convex program (MICP) frame-
work.

Formalization of Spatio-Temporal Constraints: Tem-
poral logic is well suited for expressing ROTR due to
its spatio-temporal nature (e.g., stop at the stop line for
three seconds) [21]–[23]. Numerous motion planning algo-
rithms are capable of handling temporal logic constraints.
Automata-based methods are typically preferred for linear



temporal logic (LTL) constraints, while sampling-based or
optimization-based methods are more commonly used for
constraints formalized in STL [2]. Although sampling-based
motion planning approaches are available for STL (e.g.,
see [24], [25]), they are often limited to fragments of STL
and only exhibit asymptotic optimality. Optimization-based
methods, such as mixed-integer approaches [26]–[28] and
gradient-based approaches [29]–[31], are commonly used for
motion planning with STL constraints. Mixed-integer meth-
ods usually lack scalability, while gradient-based methods
often require smoothing the STL constraints, altering the
underlying problem. Most methods in the literature only use
simple STL formulas, revealing little about their real-world
applicability (e.g., see [27], [32]). Similarly, to the best of our
knowledge, STL is used barely in multi-objective problems
(e.g., in [33]), which we aim to address in this work.

B. Contributions

In this paper, we present a novel lexicographic motion
planner. In particular, our contributions are:

• decomposing the driving task into a rulebook and pre-
senting the first optimization-based minimum-violation
planner, which utilizes reachable sets and is subject to
prioritized STL formulas,

• introducing a MICP-based implementation of our
planner,

• showing how reachable sets and realistic STL formulas
can be encoded as constraints for the ego vehicle, i.e.,
the vehicle to be controlled, and

• evaluating our approach on 1780 scenarios from the
CommonRoad benchmark suite [34].

The remainder of this paper is structured as follows: Sec. II
introduces required definitions. In Sec. III, we formulate the
problem statement and present our solution concept. Sec. IV
shows our MICP realization. Finally, we present experiments
in Sec. V and conclude in Sec. VI.

II. PRELIMINARIES

In this section, we provide the required definitions and
briefly introduce STL.

A. Definitions

Let k ∈ N0 be a discrete time step corresponding to the
time tk = k∆t, where ∆t ∈ R+ is the time increment.
We refer to k0 and kf as the initial and final time step,
respectively, K := {k0, k1, . . . , kf} is the discrete time
domain, and nk := kf −k0. Further, let X ⊆ Rnx be the set
of admissible states, U ⊆ Rnu be the set of admissible inputs,
and Y ⊆ Rny be the set of admissible outputs. We utilize a
curvilinear coordinate system, aligned with a reference path
Γ : R → R2, mapping a Cartesian position coordinate to the
arc length s ∈ R and the orthogonal deviation d ∈ R [35].
Let Θ(s) return the orientation at Γ(s). Furthermore, let the
corridor Λ be the set of points that have a maximum lateral
distance of dcor ∈ R to Γ.

Let x ∈ X , u ∈ U , and y ∈ Y represent the state, input,
and output, respectively. The dynamics of the ego vehicle is
given by the discrete-time system:

xk+1 = f(xk, uk), (1)
yk = g(xk, uk). (2)

The solution of (1) for an input trajectory u(·) and an initial
state x0 ∈ X0 is expressed by the trajectory x(·), and we
denote the corresponding output trajectory by y(·).

Let o
(j)
k := (s, d, v, u, θ) ∈ O, j ∈ {1, . . . , no}, be the

longitudinal position, lateral position, velocity, acceleration
and orientation of the j-th obstacle in a scenario at time step
k, respectively, where O is the set of admissible obstacle
states, and no is the number of considered obstacles in a
scenario. The function Q(o

(j)
k ) ⊂ R2 provides the occupancy

of the obstacle at time step k. The occupancy of the ego
vehicle at time step k is denoted by E(xk) ⊂ R2.

Definition 1 (Projection Operator). The projection operator
proj□ : Ω → R maps a vector ω ∈ Ω to the elements
specified by □ .

Definition 2 (Longitudinal Position Intervals). We define
the longitudinal position interval Ie(xk) ⊂ R of the ego
vehicle and the longitudinal position interval Io(o(j)k ) ⊂ R
of obstacle j at time step k as:

Ie(xk) := projs(E(xk)), Io(o(j)k ) := projs(Q(o
(j)
k )).

The function rear(·) provides the minimum of a longitudinal
position interval.

Let Nk := {j ∈ {1, . . . , no} | Q(o
(j)
k ) ∩ Λ ̸= ∅} be the

indices of obstacles that occupy the corridor Λ at time step
k. We then define the set of forbidden states as:

Fk :=

xk ∈ Xk

∣∣∣∣
Ie(xk) ∩

⋃
j∈Nk

Io(o(j)k )

 ̸= ∅

 .

Definition 3 (Reachable Set [16]). Let the initial reachable
set be R0 ⊆ X0. Then, the reachable set Rk+1 that
can be reached from a previous reachable set Rk without
intersecting with Fk+1 is defined as:

Rk+1 = {xk+1 ∈ Xk+1 | ∃xk ∈ Rk,∃uk ∈ U :

xk+1 = f(xk, uk) ∧ xk+1 /∈ Fk+1}.

Since obtaining the exact reachable sets is computationally
expensive, we use an over-approximation of Rk, here the
union of convex polytopes [16].

Definition 4 (Totally Ordered Rulebook (based on [8,
Def. 4])). Let a totally ordered rulebook be the tuple ⟨Φ, <⟩,
where Φ is a set of rules and < is a strict total order.

We denote the cardinality of Φ by nΦ. Given a set of
trajectories T , a totally ordered rulebook induces a lexico-
graphic order on T [8].



B. Signal Temporal Logic

STL is a formal language to specify spatio-temporal prop-
erties of dynamical systems over real-valued trajectories [36].
We define the STL syntax over output signals y(·) by the
following grammar [37, Sec. 2.1]:

φ := µ | ¬φ | φ1 ∧ φ2 | φ1UIφ2 | φ1SIφ2,

where µ is a predicate of the form µ := p(y, k) ≥ 0, with
p : Rny×nk × K → R. Furthermore, φ,φ1, and φ2 are
STL formulas, and ¬ and ∧ are negation and conjunction,
respectively. The until operator UI specifies that φ1 holds
until φ2, and the since operator SI specifies that φ1 holds
since φ2. The operators are defined over the time intervals
I ⊆ N0. We can derive further operators given the above
ones specifying that a property has to hold globally (GI ),
once (OI ), or eventually (FI ). We denote the satisfaction
of an STL formula φ by a trajectory y at time step k
with (y, k) |= φ. The robustness of a finite trajectory y
regarding an STL formula φ is denoted by ρφ(y, k) ∈ R.
Intuitively, robustness provides a quantitative assessment of
the degree of compliance or violation of a trajectory for a
given formula. The robustness ρφ(y, k) is positive iff y |= φ.
For the definition of further temporal operators, short-hand
notations, and the qualitative and quantitative semantics of
STL, we refer the reader to [37].

III. PROBLEM STATEMENT AND SOLUTION CONCEPT

We now present our problem statement and our proposed
solution concept.

A. Problem Statement

Fig. 2 shows one possible decomposition of the speci-
fication of an autonomous vehicle into a rulebook, where
collision avoidance has the highest priority, followed by the
ROTR, mission, and comfort specifications.

Collision avoidance

ROTR

Mission

Comfort

Fig. 2: A possible rulebook of the specification of an autonomous vehicle.
The arrows indicate higher prioritized specifications.

As defined in Def. 3, reachable sets contain all collision-
free configurations of the ego vehicle over time. Thus,
collision avoidance can be enforced by stating:

∀k ∈ K : xk ∈ Rk. (3)

When the satisfaction of this constraint is infeasible, we
assume that a fail-safe maneuver is triggered (e.g., computed
as in [17]).

Let the ROTR and the mission be the STL formulas
φi ∈ Φ, with i ∈ {1, . . . , nΦ}, where lower indices i indicate

a higher priority. Our objective is that rules are violated as
little as possible, which we formalize using the robustness:

ϱ(y, φ) := min(0, ρφ(y, 0)). (4)

By bounding the robustness by zero, only the rule violation
generates costs in the optimization problem.

The driving comfort is represented as a quadratic cost term
which, e.g., makes it possible to punish high acceleration
values:

q(y) :=
∑
k∈K

yTk Qyk, (5)

where Q is a weight matrix of appropriate size.
We now transform our rulebook into a lexicographic

optimization problem and gather the ROTR, the mission,
and the comfort requirements in the vector-valued objective
function h : Rny×nk → RnΦ+1:

h(y) := [ϱ(y, φ1), ϱ(y, φ2), . . . , ϱ(y, φnΦ),−q(y)].

We can now define our lexicographic optimization problem
as follows:

lexmax
x∈X ,u∈U

h(y) (ROTR, mission, comf.)

s.t. x0 ∈ X0, (initial state)
∀k ∈ K :

xk+1 = f(xk, uk), (dynamics)
yk = g(xk, uk), (output)
xk ∈ Rk, (coll. avoidance)

(6)

where the lexmax operator defines a lexicographic optimiza-
tion of h(y) (cf. [1, Sec. 5.1]).

B. Solution Concept

We propose Alg. 1 to solve problem (6). It is based on the
preemptive solution procedure for lexicographic optimization
problems (cf. [38]), where several optimization problems are
solved successively. We utilize this procedure to obtain inter-
mediate solutions for problem (6), providing the advantage
of an anytime-like behavior of the algorithm, as will be
discussed in the next section. Additionally, Alg. 1 performs
a reachability analysis and considers the robustness of STL
formulas.

The inputs to Alg. 1 are the initial state x0, the rulebook
⟨Φ, <⟩, the quadratic cost function q, and the intermediate
solution trigger ε. We start by performing a reachability
analysis based on the initial state x0 over the planning time
horizon K (see line 1), returning the reachable sets R for
all time steps. If the reachable sets vanish (see line 3),
i.e., the reachable set Rkf

of the final time step is empty,
then we return ∅ and trigger a fail-safe maneuver (e.g., as
in [17]). Afterward, a solver is instantiated, and the hard
constraints originating from the reachable set are added (see
lines 5 and 6). Subsequently, we loop over the nΦ formulas
of our rulebook and solve one optimization problem per
loop (see lines 7 to 16). The objective is to maximize the
robustness of the current formula φi, while the optimal
robustness values ρ̂φi−1 of previous loops constrain their



satisfaction, respectively a violation. Note that we directly
maximize the robustness (see line 8) instead of (4) and
bound the robustness by zero in the constraint of the higher
prioritized rules (see line 10). The benefit is that after each
loop, we can output an intermediate solution of the problem
which maximizes the satisfaction of the current formula and
minimally violates the more important formulas (see line 14).
Hence, this anytime-like behavior allows guaranteeing to
satisfy (or minimally violate) the unimportant formulas,
while the satisfaction of the more important formulas is
assured. We see this to be especially beneficial when the
runtime is limited or the planning must be terminated for
some reason. This differentiates our approach from other
hierarchical methods (e.g., [4]). The external condition to
return an intermediate solution is denoted by ε. As a last
step, we minimize the quadratic cost function q (see lines 17
to 19). The output of Alg. 1 is the lexicographically optimal
output trajectory ŷq .

Algorithm 1 LEXICOGRAPHIC STL PLANNER

Input: Initial state x0, rulebook ⟨Φ, <⟩, quadratic cost function q,
intermediate solution trigger ε

Output: Optimal solution ŷq , intermediate solution ŷφi , or ∅
1: R← PERFORMREACHABILITYANALYSIS(x0,K)
2: if Rkf = ∅ then
3: return ∅ ▷ trigger fail-safe maneuver
4: end if
5: sol← SOLVER( )
6: sol.ADDHARDCONSTR(R)
7: for i ∈ {1, . . . , nΦ} do
8: sol.SETMAXIMIZATIONOBJECTIVE(ρφi(y, 0))
9: if i > 1 then

10: sol.ADDHARDCONSTR(ρφi−1 ≥ min(0, ρ̂φi−1))
11: end if
12: ⟨ŷφi , ρ̂φi⟩ ← sol.SOLVE( )
13: if ε is satisfied then
14: return ŷφi

15: end if
16: end for
17: sol.SETMAXIMIZATIONOBJECTIVE(−q(y))
18: sol.ADDHARDCONSTR(ρφnΦ ≥ min(0, ρ̂φnΦ ))
19: ⟨ŷq, q̂⟩ ← sol.SOLVE( )
20: return ŷq

IV. MICP REALIZATION

Alg. 1 applies to arbitrary motion planning applications.
In this section, we provide a possible realization of Alg. 1
for longitudinal motion planning using a MICP formulation.
We choose this formulation since it allows us to find a global
optimum [26] if it exists and to solve problem (6) without
adaptions to the STL semantics, e.g., as it would be required
for gradient-based formulations (e.g., see [32]). Also, we
use the mixed-integer encoding for STL formulas of [39]
to consider them as constraints in our optimization problem.

A. System
For our MICP realization of Alg. 1, we use the following

discrete-time linear system:

xk+1 =

(
1 ∆t
0 1

)
xk +

(
1
2∆t2

∆t

)
uk, (7)

where x = (s, v)T describes the position s of the ego vehicle
along Γ as well as its velocity v, u is the acceleration, and
y = (s, v, u)T is the system output. We assume that the
ego vehicle exactly follows the reference path Γ and never
leaves the corridor Λ. To also consider lateral motion, we
use the method from [40] and constrain the velocity based
on the curvature of the reference and the maximum lateral
acceleration of the ego vehicle.

B. STL Formulas

We use the general driving rules φG1, φG2, φG3 and φG4
from [22]. These rules, originally proposed for monitoring
purposes, are adapted to suit our motion planning problem
and are evaluated for all obstacles and speed limits in a
scenario. Additionally, we add a custom mission rule φM1.

The STL formulas are shown in Tab. I. They express the
following: φG1 ensures a safe distance to preceding vehicles
and to restore it after kc ∈ N0 time steps in case of a cut-in
maneuver of other vehicles; φG2 punishes unnecessary break-
ing without reason; φG3 ensures maximum speed limits; φG4
enforces not to impede the traffic flow (which is equivalent
to moving faster than a required speed); and φM1 ensures
reaching the goal area in the time interval Ig.

TABLE I: The used STL rules.

Rule Definition

φG1
G(in same lane ∧ in front of ∧ ¬O[0,kc](φcut in ∧O[1,1](¬φcut in))

=⇒ keeps safe distance prec)
φcut in := ¬single lane ∧ ((is left ∧ ¬orientation is positive)∨

(¬is left ∧ orientation is positive)) ∧ in same lane

φG2 G (is braking =⇒ ¬φreason 1 ∧ ¬φreason 2)

φreason 1 :=brakes abruptly ∧ (¬in same lane ∨ ¬in front of)
φreason 2 :=(in same lane ∧ in front of ∧ keeps safe distance prec∧

brakes abruptly relative)

φG3 G (is after limit start ∧ is before limit end) =⇒ is below speed limit)

φG4 G
(
¬φslow leading vehicle =⇒ φpreserves flow

)
φslow leading vehicle :=in same lane ∧ in front of ∧ is slow

φpreserves flow :=(is after limit start ∧ is before limit end)
=⇒ is above required speed

φM1 FIg (is after goal start ∧ is before goal end)

C. Predicates

All predicates in Tab. I (except keeps safe distance prec)
can be stated in the following linear form:

p(y, k) :=
1

ν

(
α(k)T yk − β(k)

)
, (8)

where α : K → Rny , β : K → R, and ν ∈ R is a predicate-
specific scaling factor. This linear form allows one to encode
the predicates with the approach presented in [39].

The definitions of α(k) and β(k) follow from [22] and
are presented in Tab. II. Since we only consider longitu-
dinal motion along the reference path Γ, some predicates
become independent of the ego state, realized by α(k) =
0 := (0, 0, 0). Further, ei is a zero vector, where the i-
th entry is one. The functions β1(·) and β2(·) are derived



from [41, (1)] and [41, (2)], respectively. A speed limit σ
along the reference path Γ is defined by a minimum position
sσ , a maximum position sσ , and a maximum velocity vσ . We
denote the goal region of the scenario (e.g., a lanelet) by γ,
and sγ and sγ are the minimum and maximum position of
γ projected onto the reference path Γ, respectively. For the
definition of vmax 2(·), please see [22, Sec. IV.B]. Further,
uabr and ∆vfl are adjustable parameters, and the length of
the ego vehicle is denoted by ℓ ∈ R+.

TABLE II: Parameters of the used predicates.

Predicate α(k) β(k)

in same lane 0 −β1(o
(j)
k )

in front of −e1 ℓ/2− rear(Io(o(j)k ))

single lane 0 −β2(o
(j)
k )

is left 0 projd(o
(j)
k )

orientation is positive 0 projθ(o
(j)
k )−Θ(projs(o

(j)
k ))

is braking −e3 0
brakes abruptly −e3 −uabr

brakes abruptly relative −e3 − proju(o
(j)
k )− uabr

is after limit start e1 sσ
is before limit end −e1 −sσ
is above required speed e2 vσ −∆fl
is below speed limit −e2 −vσ

is slow 0 projv(o
(j)
k ) + ∆vfl − vmax 2(o

(j)
k )

is after goal start e1 sγ
is before goal end −e1 −sγ

The predicate keeps safe distance prec is the only non-
linear predicate since it depends quadratically on the ego
velocity. It is defined as [22, Sec. IV.C]:

p(y, k) :=
1

ν

(
rear(Io(o(j)k ))− (projs(yk) + ℓ/2)

−∆safe(projv(yk))
)
,

(9)

where ∆safe(·) is the required safe distance to a preceding
obstacle [42, (4.7)]. We approximate (9) with nh hyperplanes
h := aTh yk−bh = 0, where ah ∈ Rny and bh ∈ R. Therefore,
we utilize the piecewise-linear approximation of the safe
distance from [42, (4.12)]. The resulting approximation of (9)
is under-approximative and, thus, assures safety.

Fig. 3 visualizes the linearization of (9) with two hyper-
planes. The hyperplanes h are encoded in our optimization
problem using the standard big-M constraints from [39].

p(y, k)

h2

v
vmax

0
h1

Fig. 3: The function p(y, k) of the predicate keeps safe distance prec and
two linear approximations h1 and h2, visualized for projs(yk) = 0.

D. Encoding of Reachable Sets

For each convex polytope P(l)
k ⊂ R2 at time step k,

with l ∈ N0, we define a corresponding binary variable

zk,l ∈ {0, 1}, and state:

zk,l =

{
1, if xk ∈ P(l)

k ,

0, otherwise.
(10)

The set membership xk ∈ P(l)
k can be encoded using linear

functions (cf. [16]). Let us introduce the number of polytopes
at time step k as nk

p . We can then encode the collision
avoidance constraint (3) in a MICP problem by:

∀k ∈ K : 1 ≤
∑

l∈{1,...,nk
p}

zk,l, (11)

because xk must be in at least one polytope P(l)
k per time

step.

V. NUMERICAL EXPERIMENTS

We implemented the presented MICP realization in Python
based on [28], and the reachability analysis is performed with
the CommonRoad-Reach toolbox [43]. We use Gurobi1 as
the solver for the MICP problems. The experiments are exe-
cuted on an Intel CoreTM i5-10310U CPU. Our code can be
accessed at gitlab.lrz.de/tum-cps/mvp. For all experiments,
the STL rules have the order φG1 > φG2 > φG3 > φG4 >
φM1, and the planning time increment is ∆t = 0.2 s.

Let us first present scenario I2, where the violation of rules
is inevitable. Fig. 4 shows the initial configuration of this sce-
nario and the intermediate trajectories resulting from Alg. 1,
line 14. All trajectories remain in the reachable sets (see the
blue polytopes in (b)). With each intermediate solution, we
converge more to the lexicographic optimal solution. The first
two intermediate solutions minimize the violation for rule
φG1 and rule φG2, and the minimum violation of these rules
is assured for all subsequent intermediate solutions (indicated
by the blue background in (c)). For rule φG3 and rule φG4, no
violation is necessary, and the robustness for the subsequent
solutions can vary (indicated by the yellow background in
(c)). For rule φM1, a violation is again inevitable, and the
final solution ŷq is a smooth trajectory (resulting from the
quadratic cost function), that minimally violates the rules.

Next, we evaluate our algorithm based on 1780 Common-
Road scenarios. We compare our lexicographic formulation
(lex) with three alternative formulations:

• Single hard constraint planner (shc):
maxx∈X ,u∈U (−q(y)) , s.t. ρφΦ(y, 0) ≥ 0;

• Single soft constraint planner (ssc):
maxx∈X ,u∈U (−q(y) + wsϱ(y, φΦ));

• Multi soft constraint planner (msc):
maxx∈X ,u∈U (−q(y) +

∑
i∈{1,...,nΦ} wiϱ(y, φi));

where φΦ :=
∧nΦ

i=1 φi is the conjunction of all formulas
Φ in the rulebook and ws, wi ∈ R are weights. We tuned
these weights based on the scenario I using a grid search
to gain a close approximation of the solution from the
lex planner. Further, we define the metric m to compare

1https://www.gurobi.com
2CommonRoad ID: DEU Guetersloh-6 1 T-1

https://gitlab.lrz.de/tum-cps/mvp
https://www.gurobi.com
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ŷφ4 ŷφ5 ŷq

Sol. ρφG1 ρφG2 ρφG3 ρφG4 ρφM1 q

ŷφ1 -0.04 -0.94 0.07 0.67 -10.20 54.18
ŷφ2 -0.04 -0.89 0.07 0.67 -9.67 53.21
ŷφ3 -0.04 -0.89 0.07 0.63 -9.46 75.82
ŷφ4 -0.04 -0.89 0.07 0.87 -9.70 41.03
ŷφ5 -0.04 -0.89 0.07 0.38 -9.11 19.25
ŷq -0.04 -0.89 0.07 0.38 -9.11 6.03

(a)

(b)

(c)

Fig. 4: (a) Initial configuration of scenario I. (b) Intermediate solutions
and reachable sets from Alg. 1. (c) Robustness and cost values for the
intermediate solutions.

the solution ylex of our lexicographic formulation with the
solutions of the alternative formulations, denoted by y△,
with △ ∈ {shc, ssc,msc}:

m(ylex,y△) :=
∑

i∈{1,...,nΦ}

m̃, with

m̃ :=

{
1, if ρφi(y△, 0) < ρφi(ylex, 0) < 0,

0, otherwise.

The metric m describes the number of rules for which there
is a larger violation than lexicographically necessary.

Tab. III shows the results of the evaluations on the scenar-
ios. The optimization problems contain each around 19300
optimization variables and 21900 constraints.

TABLE III: Evaluation results on 1780 CommonRoad scenarios.

Planner Converged
scenarios

Scenarios with
m > 0

m Avg. solver
time in sec.avg. max

shc 99 0 - - 0.02
ssc 1780 1526 0.87 3 0.04
msc 1780 832 0.48 2 0.05
lex 1780 0 0 0 0.33

Tab. III indicates that the hard constraint planner shc does
not converge in many cases, while the other planners always
provide a solution, indicating the necessity to violate rules.
Although we conscientiously tuned the weights of the ssc
and msc planners for scenario I, these planners provide many
non-minimum-violation trajectories, as indicated by the m-
values. This shows the drawback of weighted cost functions

since a cumbersome scenario-dependent weight tuning is
required. Fig. 5 visualizes this issue for two example scenar-
ios. We can observe from the m-values of the ssc and msc
planner that the more weights we can tune, the closer we can
approximate the solution of the lex planner. However, a direct
consequence is the increased effort in weight tuning, which
is not required by our lexicographic approach. Finally, the
calculation time for the lex planner is higher than the others
since it solves six consecutive optimization problems, while
the other planners only solve one optimization problem. We
do not consider this to be a drawback since Alg. 1 provides a
minimum-violation intermediate solution in case the runtime
is limited and believe that this is more beneficial than either
not providing a solution at all or providing a solution with
incorrect preferences.
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(b) Scenario III4.

Fig. 5: Two example scenarios, where the ssc and msc planner violate
the rules more than necessary. The initial configuration, the resulting
trajectories, and the respective robustness values are shown for the lex, ssc,
and msc planner, respectively. The robustness values are scaled to the range
[−1, 1] per rule for better visualization.

VI. CONCLUSIONS

In this paper, we present the benefits of decomposing
the specification of an autonomous vehicle as a rulebook to
handle contradicting constraints effectively. We demonstrate
how this problem can be transformed into a lexicographic
optimization problem and propose a novel optimization-
based minimum-violation planner based on a preemptive
lexicographic optimization procedure. Unlike existing work,
our planer assures collision avoidance using reachable sets
and minimally violates the ROTR, formalized in STL.
Furthermore, we present a MICP-based realization of our
algorithm considering realistic ROTR. The experimental re-
sults demonstrate that our lexicographic method outperforms
classical methods of constraint prioritization. Future work

3CommonRoad ID: DEU Flensburg-98 1 T-1
4CommonRoad ID: PRI Barceloneta-2 1 T-1



involves investigating non-preemptive lexicographic problem
formulations and incorporating more ROTR in the planning.
Finally, we want to embed our approach into a safe motion
planning framework.
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[20] G. Würsching and M. Althoff, “Sampling-based optimal trajectory
generation for autonomous vehicles using reachable sets,” in Proc.
of the IEEE Int. Conf. on Intell. Transp. Sys., 2021, pp. 828–835.

[21] K. Esterle, L. Gressenbuch, and A. Knoll, “Modeling and testing
multi-agent traffic rules within interactive behavior planning,” in IROS
Workshop on Perception, Learning, and Control for Autonomous Agile
Vehicles, 2020.

[22] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intell. Vehicles Symposium, 2020, pp. 752–759.

[23] S. Maierhofer, P. Moosbrugger, and M. Althoff, “Formalization of
intersection traffic rules in temporal logic,” in Proc. of the IEEE Intell.
Vehicles Symposium, 2022, pp. 1135–1144.
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