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ABSTRACT

Decision making is among the hardest unsolved problems that Ma-
chine Learning has been applied to. We have methods for solving
complex decision making problems given enough budget for interact-
ing with the world and collecting data. But solving decision making
problems with few data and partial observations is generally beyond
our reach. World models are believed to be capable of tackling both
the problem of scarce data and that of partial observations by lever-
aging Bayesian state estimation and model-based planning.

Indeed, world models have been used to solve some of the hard-
est control problems found in the literature. Still, knowledge about
how these models work is incomplete. We first identify a ubiquitous
pain-point in model-based reinforcement learning, building on recent
work which has shown that learning state-space models from data
can fail under certain conditions. We propose a simple fix and show
that the resulting model works better than the standard found in the
literature.

Next, we show that world models can understand spatial environ-
ments, which is a highly diverse and challenging setting. Given the
right inductive biases, we can learn models of everyday places such as
office buildings or factory floors, which can then be used for decision
making through simple model-predictive control (MPC).

Finally, we identify a weakness of MPC itself and propose an im-
proved version. Our method, which we call filter-aware MPC is able
to reason about how the controls picked by the controller affect the
state estimate which is used for planning. By reasoning about this re-
lationship, filter-aware MPC is able to avoid state estimation failures
which plague regular MPC.
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ZUSAMMENFASSUNG

Das Treffen von Entscheidungen ist eines der schwierigsten ungeldsten
Probleme, auf die Maschinelles Lernen angewendet wird. Aktuelle

Verfahren sind in der Lage, komplexe Regelungsprobleme zu l6sen,

solange gentigend Daten vorhanden sind. Schwierigkeiten treten auf,

sobald diese Verfahren auf Probleme eingesetzt werden, wo ein Teil

der Information nicht beobachtet werden oder wenn nur wenig Daten

verfligbar sind. Weltmodelle (englisch World Models) versuchen, das

Problem der Datenmangel und das Problem der teilweisen Beobacht-

barkeit zu losen, indem sie Bayessche Inferenz und model-basiertes

Planen einsetzen.

In der Tat lassen sich einige der schwierigsten Regelungsprobleme
in der Literatur durch Weltmodelle 16sen. Wissen iiber diese Mod-
elle ist jedoch mangelhaft. In dieser Arbeit wird zundchst ein weit
verbreitetes Problem im modellbasierten Bestirkenden Lernen (en-
glisch Reinforcement Learning) identifiziert und eine einfache Losung
vorgeschlagen. Das resultierende Modell funktioniert besser als das
Standardverfahren aus der Literatur auf unseren Testproblemen.

AnsclieSend wird gezeigt, dass auch rdumliche Umgebungen wie
Wohnungen oder Fabrikhallen durch Weltmodelle simuliert werden
konnen, wenn die Architektur des Modells der Struktur der zugrunde
liegenden Daten angepasst wird. Das resultierende Weltmodell er-
moglicht das Einsetzen modellpradiktiver Regelung (englisch Model-
Predictive Control) auf Regelungsprobleme raumlicher Art.

Zuletzt wird ein Schwachpunkt modellpradiktiver Regelung iden-
tifiziert und eine Verbesserung vorgeschlagen. Unsere Methode zieht,
im Gegensatz zu normaler modellpradiktiver Regelung, die Auswirkun-
gen der Entscheidungen des Regelungsalgorithmus auf zukiinftige
Messungen mit ein. Dadurch kénnen sowohl Kosten minimiert wer-
den, als auch sicher getstellt werden, dass der Zustand des Reglers
und des Systems akkurat bestimmt werden kénnen.
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INTRODUCTION AND BACKGROUND






INTRODUCTION

This thesis deals with spatial reasoning. To explain what spatial reason-
ing means, we can use an example that has been honed in discussions
with colleagues and friends over the course of a couple of years.

Consider the problem of finding a common household object such
as a bottle of milk in a previously unseen house. The task clearly
requires exploration, because we are not yet familiar with the house.
It is, however, not blind exploration. We can rule out a room before
fully exploring it as soon as we realise it is a bathroom or a bedroom,
which are usually not where bottles of milk are stored. In fact, in a
first stage of the problem, we are probably not searching for the bottle
at all, but instead trying to find the kitchen, which is where we expect
most households to keep their food.

This example can be formalised as a Partially-Observable Markov
Decision Process (POMDP). POMDPs are one of the most diverse ob-
jects in the mathematical landscape of modern control and reinforce-
ment learning. In practice, this means that different types of POMDPs
are difficult for different reasons. Spatial reasoning contains a partic-
ularly interesting set of POMDPs, where an autonomous agent has
to actively and deliberately seek out information about the space it is
operating in, while also balancing its exploration with a specific task
it is trying to solve.

A long line of work has dealt with spatial reasoning tasks such as
exploration and navigation with the language of POMDPs (Thrun,
Burgard, and Fox, 2005). This approach naturally leads to treating
the environment and the agent’s state over time as random variables.
Based on our observations, we try to find the posterior distribution
over the agent’s state and the environment and use those distribu-
tions to inform planning. A limitation of this approach is that mod-
elling the dependency between agent states, the environment and ob-
servations becomes more difficult as we consider high-dimensional
observations such as images.

On the other hand, image-based observations are easily handled
by modern Simultaneous Localisation and Mapping (SLAM) systems
(Engel, Koltun, and Cremers, 2016; Mur-Artal, Montiel, and Tardés,
2015). These methods isolate the problem of estimating the environ-
ment and the agent’s location and orientation from downstream con-
trol and focus on the SLAM-backend as a single component that can
be improved independently of any control task. Indeed, a SLAM back-
end itself often contains many components that can be isolated from
the rest and improved upon independently.

Another line of work is summarised by the nascent umbrella term
world models (Ha and Schmidhuber, 2018), and the more established
paradigm of model-based control. These methods seek to build mod-
els, which capture the most relevant aspects of a system: the dynam-
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Figure 1: Overview of ORB-SLAM.

This figure is taken from (Mur-Artal, Montiel, and Tardds, 2015).

ics of the system state over time, the emission process which explains
how observations are generated and the cost function, which specifies
a task we wish to solve. With a model of the dynamics, emission and
cost, we can use a host of well-established algorithms for control and
state estimation. The model itself, which is typically called a world
model, can be learned from observations alone, by posing the task as
an approximate inference problem over the unobserved system state.

In contrast to more traditional methods where the variables of inter-
est are interpretable physical quantities such as occupancy, landmark
positions and agent’s location and orientation, world models often
work with an abstract internal representation of the problem. Owing
partly to these abstract representations and partly to the usage of neu-
ral networks, which have historically been difficult to analyse and are
often referred to as black-boxes, there are many unknowns regarding
world models. We start this thesis by examining one such unknown
in chapter 3. Next, in chapter 4 we chronicle the emergence of a series
of world models tailored to spatial environments, culminating in our
own work in chapter 5.

The tasks that we focus on for most of this thesis, namely locali-
sation, mapping and navigation are regarded as solved problems by
many (Cadena et al., 2016). We do not argue otherwise. Today, there
exist SLAM systems that are mature enough that it is possible to take
an off-the-shelf solution and apply it to a navigation task in a new
environment.

Our ambition is to tackle these problems with the perspective of
model-based control and within the framework of POMDPs. This
does not necessarily give rise to algorithms that outperform existing
solutions. However, viewing the pipeline of modelling, state estima-
tion and control as a whole allows us to create systems with new
capabilities, as we show in chapter 6, where we present a controller
that can avoid taking actions which make it difficult to estimate the
state of the agent.



INTRODUCTION

In contrast, controllers that rely on state estimation are often de-
signed such that the controller does not reason about state estimation
at all. This is typically out of practicality: reasoning about the impact
of control on state estimation is rarely feasible. We present a compu-
tationally tractable method that allows taking future state estimation
into account during planning. Our goal is to bridge the gap between
control and state estimation.

Similarly, we strive to bridge the gap between world models, tra-
ditional robotics and modern SLAM systems. We model the environ-
ment and agent states as random variables and model the depen-
dency between these and camera observations. While research on
world models is often demonstrated on simplified systems, we pri-
oritise real-time capability and applicability in the real world. At the
same time, we focus on the model and state estimator as components
of a controller and examine how the system works as a whole.






BACKGROUND

For the sake of achieving a common vocabulary, this chapter gives a
concise overview over the fundamental concepts that are used in the
main work. Later chapters then contain a discussion of the relevant
pieces of related work so as to keep the discussion between the state-
of-the-art and methods newly introduced by our work close to each
other.

Specifically, in chapter 3 we examine the literature of model-based
policy search in partially-observed environments. Chapter 4 then dis-
cusses the history of world models for spatial environments, where
we see various ways of specialising generic world models to tasks
like navigation, mapping and exploration. This chapter leads into our
own work on the topic. Finally, chapter 6 offers an overview of the
literature on belief planning and contrasts the method presented in
this thesis against existing methods.

21 ON NOTATION

Most of the math in this thesis involves vectors x € R¢ and sequences
of vectors x1.1 = (x1,...,x7). Often, these vectors are samples from
random variables x ~ X. For random variables, we use the same nota-
tion p(-) for probability density functions and probability mass func-
tions (when discrete random variables are involved) and write cumu-
lative distribution functions as:

plx < X).

Thus, p(x) for a vector x € R4, which is a sample from a random
variable x ~ X denotes the probability density function:

p(x) = (3/2x)p(X < x).

We write x ~ p(x) to signify that x is sampled according to the density
p(x). For conditional random variables, we use lower-caps letters:

zZ|x.

We often parametrise density functions as pg(x | C), where 0 are
learned parameters which map some set of conditions C = zy, ..., zN
to the parameters of a probability density function. The most com-
mon example is a neural network or Multi-Layer Perceptron (MLP)
which takes (z7,...,zN) as input and produces the mean and stan-
dard deviation of Gaussian distribution. In this case we write:

po(x|C) =N(x|[ [y, o] = MLP(C)),
= N(x | MLP(Q)).



BACKGROUND

Using p and o to denote the mean and standard deviation. We some-
times use the notions of function and probability interchangeably. As
an example, if we have an emission probability p(x | z), we use the
term emission function to mean a function (possibly parametrised by
weights 0) that takes z and produces the parameters of the density
p(x | z), which would be pn and o in the case of a Gaussian density.

22 MARKOV DECISION PROCESSES

We are interested in problems where the state of a system, denoted
by z; changes over time under the influence of a control input uy
according to stochastic dynamics. The state and control produce a
cost signal ¢, which defines a task that should be solved. This setup
can be summaries through the following:

Z1 ~P1 (Z1 )/
Zip1 ~P(Zes1 | Ze,uy),
Cy ~ ‘P(Ct |z, ),

uy = 7(z¢). (1)

Here, p1(z) denotes an initial state distribution and 7t is a policy func-
tion which maps the state to a control. This is a mathematical formal-
ism known as a Markov Decision Process (MDP) (Bellman, 1957). In
this thesis we are mainly interested in infinite-horizon MDPs. That is,
given a starting state z;, we receive an expectation over an infinite
sum of costs:
(o.¢]
2)=E|Y B eilzi =2|. 2)
t=1
Here,  is a discount factor with 0 < f < 1, which ensures that the
sum is finite, as long as |c¢|] < oo for all t. Note that 3 = 1 is al-
lowed for some classes of problems, an example of which are stochas-
tic shortest path problems, which are—among other things—one way of
formalising a navigation problem.
We call J™(z) the cost-to-go of z under the policy 7. The goal of
optimal control is to find a policy which minimises the cost-to-go of
the initial state under the initial state distribution:

" =argminE,, [J"(z1)].

If the states and controls belong to discrete sets Z and U, the opti-
mal policy can be found through a dynamic programming algorithm
called value iteration.

Value iteration starts from an arbitrarily initialised cost-to-go func-
tion J® and converges to the cost-to-go function of the optimal policy
J* by repeatedly applying the Bellman operator:

J¥ =minCy + BTJ* !, fork>1,
u

where we introduce the vector C, € R/?l and matrix T, € RI%I*IZ]
which are the vector of costs for executing the control u from each
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state and the transition probability matrix for the same. Note that
for discrete state and control spaces, the cost-to-go function is also a
vector J* € RI%I. As k — oo, the cost-to-go converges to the cost-to-
go of the optimal cost function, that is, limy ;o J& = J*. The optimal
policy can then be retrieved as:

= argmin Cy + BTy J*.
u

For continuous state and control spaces, the value iteration algo-
rithm is not applicable. A common choice here is to discretise the
state and control spaces and apply value iteration in the discretised
space (Bertsekas, 2005).

23 MODEL-PREDICTIVE CONTROL

The term Model-Predictive Control (MPC) is used to describe slightly
different algorithms in different fields. Other terms related to MPC
are limited-lookahead control, receding horizon control and rollout (Bert-
sekas, 2005). The central idea of all of these is to simplify the optimal
control problem by separating it into a short planning horizon and a
future term, represented by some terminal cost function j(-).

In this thesis, MPC is associated with any algorithm which solves
the following minimisation problem:

arg min Lmpc(ur.1-1,21),
up.T-1

T-—1
LmPC(uhT*]'Z” = IEP(ZZ:T|Z1/U1:T71) [BTil T(ZT) + Z Bti] Ct}-

t=1
(3)

Starting from the current system state z;. The terminal cost function,
j(z) is usually an approximation of the cost-to-go under an optimal
policy J*. The purpose of the terminal cost is to reduce the bias intro-
duced by limiting the optimisation to a horizon of T steps.

A key point in MPC is that the control sequence which minimises
eq. (3), uj.t_; is not used in its entirety. Only the first control is used,
after which we plan a new sequence, setting z; := z;.

A typical application of MPC to a continuous control problem might
discretise the state and control space to use value iteration and obtain
an approximate cost-to-go J(z). This can then be used as a terminal
cost in MPC. This strategy will form the basis of our approach to the
navigation task later on.

Many optimisation algorithms can be used to solve eq. (3). Here
we present two methods. Both approaches rely on approximating the
expectation via Monte Carlo sampling. For that, we take K sample
rollouts:

kK K
(Z31,¢T.7-1)k=1 ~PlzaT,c1:7 [ 21, u1.7—1),
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and approximate the objective as:

Lmpe(ur:t-1,21) = Limpe(wr.7-1,21)
K A T1
=> [BT i+ Y e )
k=1 t=1

If the transition and cost functions are differentiable, we can use gra-
dient descent to solve the minimisation problem:

upT 1 w1 — VLompe(urT—1,21).

The gradient descent rule is used either until convergence or for a
fixed number of iterations.

When the transition or cost function is non-differentiable, we have
to resort to gradient-free optimisation algorithms, the simplest of
which is random search. Here we take a set of candidate plans u} 1 _; {':1
and take the plan which minimises the objective:

* P 1
up.t_1 = argmllanPC(ulszVZ])‘

More complex methods for gradient-free optimisation usually involve
an iterative procedure where the set of candidates is gradually refined
(Hansen and Ostermeier, 1996; Mania, Guy, and Recht, 2018; Rubin-
stein, 1997; Williams et al., 2016).

2.4 PARTIALLY-OBSERVABLE MDPS

The main focus of this thesis are problems where the state cannot
be observed directly, but is revealed through partial observations xt,
which are produced by a stochastic emission process (Astrém, 1965).
Here, we extend and modify eq. (1) by including the observed vari-
ables x; and changing the structure of the policy 7

xt ~p(xt | Zt),

uy = 7(X7.¢). (5)

Note that the policy is now no longer looking at z, but at the his-
tory of observations xi.¢. In general, the optimal policy of a partially-
observable Markov decision process (POMDP) is a function of the
observation history Iy = x7.¢ or a sufficient statistic thereof. The inter-
action history can be summarised by the posterior distribution over
the system state given previous observations:

Plze [ x7:¢).

This distribution is often called the belief.

While we were easily able to characterise the optimal policy for
an MDP, doing so is much more challenging for POMDPs. Any al-
gorithm that computes the optimal policy or optimal cost-to-go for a
POMDP has to work with either the interaction history I or a suf-
ficient statistic of it, the belief being one example. The interaction
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history is an unwieldy object because its size changes over time. Suf-
ficient statistics like the belief do not exhibit this problem. In fact, we
can use the belief to reduce any POMDP to an MDP.

For doing so, we introduce the variable b, which induces a density
over the state space:

Pbt(Z) :'P(Zt | X1:¢).

The initial belief by corresponds to the initial state distribution pj(z).
The belief after receiving the first observation is then:

__vxlpi)
Jpxa [ 2)pi(z')dz
Given a current belief by, a control u; and a new observation x. 1,

the new belief follows from chaining the transition and emission func-
tions:

Po, (Z)

pbt+1 (Z) = p(z | bt/ Ui, Xt+41 )/

1
= ZP(XtH | z) prt(lt)P(Z | Zi,ui)dze g, (6)

with normalising constant:

L= JP(XH] | Z') prt(zt)p(z’ | z¢, uy)dzy 1 dz'.

We refer to eq. (6) as the belief update, and use the shorthand by =
b(by, ut, x¢ 1) to denote the transition into the new belief state.

Any POMDP can be reduced to an MDP where the state is the
belief state b; and the transition and cost functions are defined as:

p(bii1 by, ue) = J]I[bt+l = b(b¢, ug, X¢41)]

P(Xe41 [ Ze41)
P(Zt+1 |z, uy)

P (zt)dx¢1dzi1dzy,

plee [ by, ug) = Jp(ct | zt)pp, (zt)dzt. (7)

Thus, the cost function of this MDP integrates the cost function of
the original MDP over the belief, while the transition function does
so for both the transition and emission functions, as well as the belief
update function.

It slowly becomes clear why solving POMDPs is much harder than
solving MDPs. Even though the belief state representation is handier
than the interaction history, due to its finite length, it presents a new
problem. The belief is a continuous variable, even when the state and
control are discrete. We therefore cannot use a dynamic programming
approach naively even for fully discrete systems.*

It is indeed possible to use dynamic programming to solve some POMDPs by using
different representations of the belief space and we will give a deeper overview of
POMDP-solvers in chapter 6. Nevertheless it is true that solving POMDPs is much
more computationally demanding than solving MDPs.

11
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Moreover, suboptimal but efficient approaches like MPC, which
rely on simulating the system for some amount of steps are also of-
ten out of the question. That is because simulating the transition of
a POMDP is much more expensive than doing so for an MDP. Simu-
lating a POMDP requires repeatedly applying eq. (7), which requires
evaluating both the emission function and the state estimator. For
many systems, these are much more expensive to compute than the
transition itself, certainly whenever high-dimensional observations
are involved. In addition to the computational cost, including the
state estimator inside the optimisation objective may present further
limitations. For instance, many state estimators are not differentiable,
which would immediately rule out gradient-based optimisation.

25 MPC WITH STATE ESTIMATION

The challenging nature of POMDPs inspires many suboptimal strate-
gies. The simplest of these is to separate state estimation and control
completely. Here, the controller takes the current belief and picks con-
trols under the assumption that no further observations will be taken.

At this point we make a distinction between state estimates and
the true posterior distribution over the state. For the latter, we con-
tinue to use by. For the former, we introduce the variable h;, which
is the internal state of the state estimator. We refer to hy as a carry.
Similar to how by induces a probability over states, the carry is also
associated with a distribution over the state space, which we denote
q(z¢ | hy). Finally, the carry is also subject to an update function
hi 1 =h(hy,ue, xeq1).

To make the concept of carry more concrete, we can look at a couple
of examples for popular state estimators. Perhaps the most ubiquitous
of all state estimators is the Kalman filter, which maintains a Gaussian
state estimate. The carry of the Kalman filter is simply the mean and
covariance matrix of the current state estimate. The update function
h(h¢, u, x¢41) is then given by the Kalman update. Similarly, for a
particle filter, the carry would be the set of particles and their weights.
For a Recurrent Neural Network (RNN), the carry would be the RNN
state.

Model-predictive control with a state estimator boils down to ex-
tending eq. (4) with one more expectation, which goes over the state
estimate:

IEq (z1]hy) [Z’mpc(l” T—1,21 ):| .

In practice, this can similarly be approximated via Monte Carlo esti-
mation:

Eq(zih) [Z‘Jmpc(uhT—hZ])} ~ Z Lompe(ur.1,,21),

m=1

with Z},...,Z’lvl ~ q(Z1 |h])
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26 VARIATIONAL INFERENCE

A ubiquitous strategy in machine learning is to model prior terms
and likelihood terms parametrically:

z~po(z) x|z~pol(x|z).

We refer to such models as generative models. A generative model de-
scribes how a set of observed variables x are created from a set of
unobserved values z. Generative models are interesting to this thesis
for two reasons. First, they can be used as world models, which allow
us to simulate a dynamical system by learning an approximation of it
from sequences of observation. Second, they allow us to reason about
unobserved quantities of the system, denoted by z, which are relevant
for decision-making.

The two use cases bring forth two challenges. The first is that we
would like to learn 6, the parameters of the system. The standard
approach for doing so is Maximum Likelihood Estimation (MLE). Un-
fortunately, MLE is not straightforward in a model with unobserved
variables. Optimising the likelihood of the observed variables would
require us to marginalise over the unobserved ones:

The second challenge is that we need to estimate the posterior dis-
tribution p(z | x). Posterior distributions are easy to characterise using
Bayes’ theorem:

_ pixlzp@
P = T pE)ae

Here we find another marginalisation, that is, another integral.

Both the challenge of learning model parameters and that of obtain-
ing the posterior are only tractable for simple cases such as systems
where observations and latent states are jointly Gaussian-distributed
or discrete systems with a tractable size. For more powerful models,
for instance those which feature non-linear relationships between the
state and the observation, we resort to approximate Bayesian infer-
ence methods. Most notable to this thesis is variational inference.

Variational inference (Jordan et al., 1999) introduces a new concept,
that of the variational approximate posterior distribution, denoted
qe(z | x), with ¢ denoting learnable parameters. The approximate
posterior distribution has a tractable form such as a Gaussian distri-
bution parametrised by learned mean and standard deviation param-
eters. A more sophisticated model such as a Variational Auto-Encoder
(VAE) (Kingma and Welling, 2022) lets these mean and standard devi-
ation parameters be predicted by an inference network, which takes
the observation as input:

q¢(z | x) = N(z | MLP(x)).

13
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The approximate posterior allows us to simultaneously learn model
parameters and approximate the posterior z | x by way of a simple
trick:

logpo(x) = longe (x,z)dz

_ Po(x, z)
= longq)(zqu,(z | x)dz

PG(X/Z) _
> J <10g qq)(z|x)>q¢(z | x)dz = Lepo-
8)

The inequality follows from Jensen’s inequality. The final term is
called the Evidence Lower-Bound (ELBO), evidence being another name
for pe(x) or logpe(x). For our purposes, it is useful to rewrite the
ELBO as:

_ pe(X,Z) .
Lelbo = J <10gq¢(z|x)>q¢(z | x)dz =

Eq, (0 | logPo(x|z)| =KL [q4 (2| X) || po(z)] .

reconstruction prior

This form of the ELBO breaks down into a reconstruction term and a
prior term. For the reconstruction term, we maximise the likelihood
of observations under the approximate posterior. For the prior term,
we minimise the Kullback-Leibler (KL) divergence of the approximate
posterior from the prior.

By simultaneously optimising the model parameters 0 and the vari-
ational parameters ¢, we can address both previously mentioned
challenges. Here, an important fact is that the inequality in eq. (8)
is tight if and only if the approximate posterior distribution equals
the true posterior, in the sense that:

KL [qq,(z Ix) || po(z | x)] =0.
27 LEARNING POMDPS

A central goal of model-based Reinforcement Learning (RL) is to learn
an approximate model of a POMDP from a set of sequences of inter-
action data:

R R i N
D= (xjruir1,¢ )iz

Here, we replace each functional dependency by a parametric model
such as a neural network and learn the parameters, jointly referred
to as 0. One complicating factor are the unknown hidden states zj.7.
The predominant method here is to resort to variational inference,
assisted by an inference network q¢ (z1.1 | X7.7), which produces an
approximation to the posterior z.7 | x7.7.
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Using the inference network, we can optimise a lower-bound to the
likelihood of the data:

logpe(x1.1,¢1:7—1) = —Lelbo = Eqg (z1.7 | X1:T){

logpe(x1:1,€1:7 | Z1.7)+
logpe(z1.7)—

log q¢(z1.7 | XI:T)}- )

To further break down the ELBO, we need to look at the factorisation
of the distributions over time:

N
po(zi:1) =pol(z1) [ [ polze 2o 1,ui 1),
t=2

.
po(x1:r | z1.r) = [ [ po(xe | z0).
=1

The factorisation of the inference network is a modelling decision
which varies in the literature. Here, we present a method that closely
follows the work of Bayer et al. (2021), though there are many imple-
mentations of this framework (Becker-Ehmck et al., 2020; Hafner et al.,
2019; Karl et al.,, 2017). The inference network is partitioned into an
initial inference network q¢(z1 | x7.7) and a recurrent inference net-
work q¢(zt+1 | Z¢,ug, X¢41.7). The factorisation of the approximate
posterior is then:

T

qe(z1.7 [ x1.1) = q¢ (21 [ x7.7) H qe (ze | Ze—1, w1, Xe.T).
im2

With these factorisations, we can decompose the negative ELBO into
time-indexed terms:

Lealbo = ]Eq¢(Z1;T | X1:T)[
KL [q¢(z1 | x1:7) || po(z1)]

T
+ Z KL [Qq:(zt lze 1, ue1,xt) || po(zt [ Ze 1,0t )]
t=2
T
— ) logpolxt | zt)
t=1
T
- Zlogpe(ct | z¢)|. (10)
t=1

In the implementation of Bayer et al. (2021), the initial and recurrent
inference parts use an RNN extracting a sequence of features f;.7
from the observations. The features are defined as:

fr = RNN(x¢.1).

The approximate posterior over the initial step is then predicted by a
neural network, which produces the mean and standard deviation of
a Gaussian distribution given the feature for the first time step:

qo(z1 [ x1.1) =N(21 | [4z,, 07,1 = MLP (£1)).

15
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The prior over the first time step pg(z7) is a ReaNVP normalising
flow (Dinh, Sohl-Dickstein, and Bengio, 2017). The prior and approx-
imate posterior state recurrence both use neural networks to predict
the parameters of a Gaussian distribution:

Pe(zt+1 | Zt,llt) = N(Zt+1 | [uzt+]r()_zt+1] = MLPb(Zt/ Ut)),

q¢(zt+1 | Zt/utzxt+1:T) = N(ZtJr] | [HzH]/Gth] = MLPc(Zt/ut,ft+1 ))

Finally, the emission and cost distributions also use the same paradigm:

p@(xt | Zt) = N(Xt | [th/ O-Xt] = MLPd(Zt))
polee | ze) = N(ct | [pe,, 0] = MLPe(z¢)).

28 WORLD MODELS AND POLICY LEARNING

A learned model of a POMDP comprises the initial state distribution,
state transition, emission and cost:

z1 ~pe(z1) Zi 1 ~PolZit1 | Ze, uy)

Xt ~ ’Pe(Xt | Zt) Ct ~ Pe(Ct | Zt,ut)-

The model, which is typically called a world model can be used to
train a parametric policy 7 through model simulations. The possibil-
ities for doing so are as wide as those for model-free RL methods.
Here we will discuss gradient-based optimisation by differentiating
through the model, as this is the method most relevant to this thesis.
Notable implementations of this framework can be found in the work
of Hafner et al. (2020b) and Becker-Ehmck et al. (2020).

For a finite-horizon problem with a discounted cost, policy search
with model parameters 0 boils down to:

-
. i1
arg m%n IEZ]"PS(Zl ),ci~po(cilzy,m) [Z B’ Ci} : (11)

i=1

Where the controls are picked by a policy network looking at the
current state uy = 7(z¢). If the horizon T is short enough, we can
optimise eq. (11) through gradient descent by sampling rollouts from
the model with ancestral sampling. The expectation is then typically
approximated with a batch of initial states and a single Monte Carlo
sample over the future. The states z; are usually modelled as Gaus-
sians, allowing differentiation with the reparametrisation trick (Kingma
and Welling, 2022). Discrete states have also been used with straight-
through gradient estimation (Bengio, Léonard, and Courville, 2013;
Hafner et al., 2020a).

For the infinite-horizon discounted case, we can truncate the hori-
zon by introducing a critic ]y, with parameters 1:

T—1
argrr}-%n]EhNPe(Z]),CiNPe(Ci|Z1,7T) BT_1 ]lb(ZT) + Z Bl_]ci} - (12)
im1
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The critic should be an accurate approximation of the cost-to-go un-
der the policy 7
]lb(z) ~ Eci,ui~p9(ci\z1:z,n) |:Z Bi71C1] .
i=1

In practice this is done by training policy and critic networks jointly.
The policy network is trained by gradient descent on eq. (12), where
the rollout is calculated through ancestral sampling through the model
and by evaluating the policy on sampled states. The critic network is
trained through supervised learning on the Bellman error:

arg min By, _pq () [T (21) ~T(21)]3],
Jw

with:

T—1
J(21) = Beopyemnm | BT Tulzr) + Y B ei]. (13)
i=1

Model-based RL is a notoriously brittle process with no convergence
guarantees. As such, practical implementations contain many tricks.
We list the ones that are relevant for our work.

TEMPORAL DIFFERENCE OBJECTIVES The objectives in eq. (12)
and eq. (13) are replaced by a temporal difference objective (Sutton,
1988), which is a weighted sum of k-step objectives for k =1...T:

T K
PMz)=(1=2) D N (z1), Jilz) =) B e+ B y(zi).
k=1 t=1
This specific temporal difference objective is referred to as TD(A). The
goal is to balance accuracy and efficiency. Rolling out the model for
longer horizons allows for more complex behaviours, though at the
cost of lower accuracy. Under stochastic dynamics, even if the model
is perfect, the total cost of a 10-step simulation will be noisier than
that of a 3-step one. By averaging shorter-horizon estimates with
longer ones, TD(A) seeks to strike the best of both worlds.

INITIAL STATE DISTRIBUTION Instead of sampling from the prior
over the initial state pg(z1), it is common to maintain a replay buffer
of inferred states, that is, samples from q(ztN ), and use these as the
starting point of model rollouts. This has two benefits. The first is
that inferred states are generally more accurate than samples from
the learned prior, since the learned prior has to accommodate the
entire data distribution, and is therefore solving a harder optimisation
problem. At the same time, the learned prior is only approximating
the distribution over the first time step, whereas we would ideally
want the policy to gain experience from all time steps in an episode.
Doing by starting from the first step would only be possible if we
use long training rollouts, but that is both computationally expensive
and suffers from modelling errors building up over time. Thus, it is
more efficient to sample from inferred states over all time steps and
use relatively short training rollouts.

17
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TARGET NETWORKS  The training of the critic is self-supervised, as
the targets are computed by re-using the current critic. To stabilise
this procedure, it is common to maintain two copies of the critic. One
is updated continuously, while the other is only used for computing
targets and is either kept frozen for a set number of time steps, or
updated via a parameter-averaging scheme. Here, a common choice
is Polyak-averaging:

target target
Y =+ (1=,

where "8 are the parameters of the target critic and 1 those of the
critic that is updated continuously.

29 DISCUSSION ON MODEL-BASED POLICY LEARN-
ING FOR POMDPS

The approach outlined in section 2.8 is similar to the MPC and state
estimator combination from section 2.5. Both separate control and
state estimation. In the model-based RL strategy, we use an inference
network to estimate the state of a learned POMDP, which is fed to
a policy that is trained to be optimal on the learned POMDP. If we
assume that the learned POMDP is an exact replica of the original
POMDP from which the training data came, then we can safely say
that the policy cannot reason about state estimation or how future
observations might change its belief. On the other hand, in most sce-
narios this is unlikely to be the case.

In practice, learned POMDPs have abstract state spaces which dif-
fer from the original state space of the training data, since only the
observations and costs are enforced to match those of the original
system. In the end, the state space of a learned POMDP can learn
belief-state-like representations, which would allow the policy to ap-
proximate belief planning. Unfortunately, as is often the case with
neural networks, we cannot characterise the conditions where such
representations would be learned.

Though the community’s confidence grows as world models are
successfully applied to policy learning in harder settings, empirical
success in benchmark problems does not always produce knowledge
about when and why a method can be expected to work well. That
is to say, the evaluation of methodologies by benchmarks has to be
supplemented with another line of work where hypotheses are for-
mulated about how a method works, which can then be verified or
falsified experimentally.

There is a need for both more theoretical and empirical work dis-
secting model-based policy search. The next chapter addresses one
source of uncertainty regarding learning models of partially-observable
systems and using them to train policies. We start from a theoreti-
cal result, which suggests that inference networks are often designed
wrong in world models. We then design experiments to verify this in
the context of reinforcement learning.
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LESS SUBOPTIMAL LEARNING AND CONTROL IN
VARIATIONAL POMDPS

Model-based control has achieved enormous success over the recent
years. Using deep neural networks to parametrise sequential latent-
variable models that enable purely simulation-based policy search, re-
searchers have solved increasingly difficult control problems (Becker-
Ehmck et al., 2020; Hafner et al., 2019, 2020a, 2023; Wu et al., 2022).
Yet, in usual deep learning fashion, our ability to solve problems
using our models does not reflect our knowledge about how these
models work. This became clear when a paper by Bayer et al. (2021)
revealed that many of our deep variational state-space models are im-
plemented in a way that is subtly wrong. They introduced the concept
of the conditioning gap, where a neural network trying to approximate
a posterior distribution does not have access to all of variables that
the posterior distribution depends on.

In the first chapter of our main work, we will investigate the effect
of the conditioning gap on policy search with deep variational state-
space models. We will make use of simple systems to test a simple
hypothesis: that the conditioning gap can prevent learning a genera-
tive model that is faithful to the true system, which in turn prevents
successful policy search. To that end, we will rely on large hyper-
parameter searches over two families of models, where one family
conditions its inference network on all relevant parameters, while the
other is more aligned with the practicality-oriented design choices
that are common in the literature and ignores some of the relevant
variables. The results will reveal a systematic under-performance on
the side of the latter.

31 THE CONDITIONING GAP

The conditioning gap arises when an inference network is not con-
ditioned on all of the variables that the posterior distribution it is
trying to approximate depends on. Let x and z be two random vari-
ables, where we are interested in approximating the posterior p(z | x).
Using the same notation as Bayer et al. (2021), we partition the obser-
vation x into variables that are inputs to the inference network C and
variables that are not provided to it C, as in x = (C, C).

What Bayer et al. (2021) have shown is that as long as p(z | C) #
p(z | C,C), two statements are true:

¢ The optimal amortised variational posterior matches neither p(z |
C)nor p(z| C,C).

¢ The ELBO-optimal generative model p under the optimal amor-
tised variational posterior does not match the maximum-likelihood
model.
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How is this relevant for us? As observed by Bayer et al. (2021),
many implementations of deep variational state-space models parti-
tion the observations in this fashion when approximating the poste-
rior over the system state at some time step given a sequence of past,
present and future observations. Turning to a State-Space Model (SsM)
with states z.1, observations x7.1 and controls uj.T_1, we are typi-
cally interested in approximating the posterior z | x7.1, u;.T using a
neural network.

In section 2.7, we outlined an implementation of deep variational
state-space models where the approximate posterior is informed about
all past and future observations. This was done by letting an RNN
process the observations xj.7 in reverse order and creating feature
vectors fi.1 with:

fr = RNN(x¢.1).

The final approximate posterior was then the output of a neural net-
work which takes the previous state and control and the current fea-
ture vector:

q(z) =N(z | [, o] = MLP(z¢—1,u¢—1, £t)).

Interestingly, the work of Bayer et al. (2021) is rather atypical in this
respect. Most publications on the topic feature inference networks
that only use the observations up to the current time step, that is,
X1:t. As examples, we will look at two of the most prominent deep
variational state-space models, and how the approximate posterior is
conditioned in each.

DREAMER The Dreamer algorithm has undergone many iterations
in the past years (Hafner et al., 2019, 2020a,b, 2023). At its core, the ap-
proach closely follows the description of model learning and policy
search we provided in section 2.7 and section 2.8. The main differ-
ence is that the state z contains a deterministic part and a stochastic
part. The deterministic part, which we denote with h here, uses the
following update rule:

ht+] = GRU(ht/ Zg, ut)/

where GRU signifies that a Gated Recurrent Unit is used for the up-
date (Cho et al., 2014). The stochastic state, z; is given by:

p(zt) = N(z¢ | [w, o] = MLP(hy)).

The deterministic state naturally does not require an approximate
posterior distribution. The approximate posterior for the stochastic
state uses the current deterministic state and the current observation:

q(z¢) = N(z¢ | [, 0] = MLP(hy, x¢)).
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Figure 2: Graphical models of SLAC (top row), Dreamer (middle row) and
the approach used in this chapter (bottom row). For SLAC and
Dreamer, the left column shows the generative model with black
arrows and the inference model with light blue arrows. The right
column shows the missing edges in the inference model with red
arrows. We only show the inference model for the second time
step for clarity. For our method, we use different coloured arrows
to show different kinds of conditioning. filter-no-cost only uses
light blue arrows. filter-yes-cost uses dark blue arrows on top of
light blue ones. uses light green arrows on top
of all blue ones. smoother-yes-cost uses dark green arrows on top
of the others.
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STOCHASIC LATENT ACTOR CRITIC Stochastic Latent Actor-Critic
(SLAC) by Lee et al. (2019) differs from both Dreamer and the ap-
proach from section 2.8 in that it does not train a policy with model-
based simulations. Instead, the policy is trained using the soft actor-
critic approach by (Haarnoja et al., 2018), where the latent state in-
ferred by the inference network is used as a feature representation
for the critic network. Similarly to Dreamer, SLAC features two sets
of latent states, which we denote z! and z?. Unlike Dreamer, both sets
of variables are stochastic, and their evolution over time is modelled
as:

I
2

(0,1),

N(zi | MLP(z})),

N(z] | MLP(zZ,uy)),
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The approximate posterior is structured as:
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Note that aside from the omission of future observations, Lee et al.
(2019) also decide to re-use parts of the generative model in the ap-
proximate posterior. This decision could lead to suboptimal posterior
inference in itself, but does not fall under the conditioning gap, as it
is not a result of missing inputs to a learned component.

Why is it, that these implementations decide to omit the future
observations x¢41.7? The reason is linked to how these methods ap-
proach policy search in partially-observable problems. The learned
deep variational state-space model allows reducing the policy search
problem into one where the policy is trained using the system state z.
The policy then does not need to learn how to extract useful informa-
tion about the system state from the observations, as it already has
access to the system state.

The catch is that we now need to continuously estimate the state
from observations, as the policy needs it as an input. It is convenient
to simply re-use the inference network from the model-learning part
to estimate the state during deployment as well. Now it becomes
clear why most approaches only condition the inference network on
information that is available up to the current time step: the future is
unknown during deployment.

Aside from future observations, there is one more place where the
conditioning gap comes into play. That is the treatment of the cost sig-
nal. When learning a state-space model for control, we have a fourth
set of variables, the cost signal ¢7.7—1. The SSM needs to model these
as well, since we need them for policy search. All approaches we
are aware of treat the cost as another variable that appears in the re-
construction loss portion of the ELBO, but one that is not passed to



3.2 PROBING THE CONDITIONING GAP FOR POLICY SEARCH

the inference network, with the exception of the work by Zhao et al.
(2021), who are interested in a meta-RL use-case, where the cost sig-
nal is informative about which task the agent needs to solve. Thus,
they use the cost to condition the approximate posterior, in addition
to the current observation and previous state.

32 PROBING THE CONDITIONING GAP FOR POL-
ICY SEARCH

To investigate the effect of the conditioning gap on policy search, we
will adopt the standard model-based RL framework outlined in sec-
tion 2.7 and section 2.8 and compare two modelling questions:

¢ Conditioning the inference network on x7.¢ vs x7.T.

¢ Using the costs ¢j.7_71 as an input to the inference network or
not.

Both of these questions are only relevant in the model-learning stage.
The rest of the pipeline is identical in all cases. The first question is
resolved by the setup of the inference network. In either case, the
inference network consists of two parts. The first is an RNN, which
processes the stream of observations to produce a sequence of fea-
tures f1.1 = RNN(xj.7). The second is an MLP, which takes the pre-
vious state and control as well as the current feature to predict the
distribution parameters of the current state:

q(z¢) = N(z¢ | 1z, 0z,) = MLP(z¢_1,ue_1, ft)).

To condition the inference network on x7.¢, we let the RNN produc-
ing f1.1 process the observations xj.1 going forward in time. Thus the
feature map f; has only seen the observations x7.;. To let the inference
network see the full sequence, x;.7, we reverse the sequence of obser-
vations so that the RNN moves backward in time. In other words, the
feature map f¢ has access to the observations x;.1. Looking at earlier
observations is not necessary, as the random variable z¢ | z¢_1,X¢.7
is independent of x7.¢_1. Put differently, the previous state tells the
MLP everything it would need to know about past observations. To
give the inference network access to the cost, we simply concatenate
these to the observations before they are provided to the RNN.

Figure 2 shows the four types of conditioning we examine with
colour-coding. These are:

e filter-no-cost, which uses xj.¢,

e filter-yes-cost, which uses x1.t and ¢y,

. , which uses x¢.7,

¢ smoother-yes-cost, which uses x¢.1 and c¢.T.

We use an online learning procedure where we alternate between
steps of model-learning, policy search and environment interaction.
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Environment interactions produce new data, which is accumulated
over the course of training. Model-learning uses all previously col-
lected samples. The procedure is similar to the Simple algorithm by
Kaiser et al. (2020).

There are two differences between our setup and the one described
in section 2.8. First, we omit the critic network. Learning critics is
a difficult process in itself and complicates the already complicated
procedure of model-based RL even further. We pick simple systems
that can be solved without a critic in order to simplify the comparison
between methods. In mathematical terms, omitting the critic means
setting J,(z7) := 0 in eq. (12).

The second difference is related to what the policy expects as input.
Because future observations x¢ 1.7 are not available at deployment,
we cannot generally re-use the inference network for state estimation.
Therefore we learn a recurrent policy which processes the stream of
observations directly, instead of a policy that expects access to a state
estimate. This means the policy has to learn its own internal state
estimator, and that training the policy also involves generating ob-
servations from the learned emission model. In other words it is a
decision which introduces quite a bit of overhead, but we make it to
probe the conditioning gap on its own, regardless of the practicality
of training in this way. Note that it is not uncommon to structure
policies in this way, even where models are involved (Lee et al., 2019),
though it is not a common choice when training on model-generated
rollouts.

33 EXPERIMENTS

We experiment with simple settings where the problem of the condi-
tioning gap has different levels of relevance. Our first setup is Dark
Room, which features a 2D point-agent in a square room with four
walls. The agent can measure its distance to each wall up to a certain
maximum range. This means that the agent is blind in a square area
at the centre of the room. Confoundingly, its task is to stay within a
circle that is also placed at the centre of the room. This setup is vi-
sualised in fig. 3, where we also compare a policy that was learned
by full-conditioning with a policy with partial-conditioning. Only the
fully-conditioned model can be use to learn a policy that can solve
the task.

Our second test bed is the Mountain Hike task, which was intro-
duced by Igl et al. (2018). We use the medium noise setting. The third
and final task we consider is a version of the classic pendulum swing-
up problem where the mass of the pendulum is picked randomly
with uniform probability from [0.8,1.2] in each rollout. We refer to
this task as Meta Pendulum.

The simplicity of our environments allows us to do large-scale
hyper-parameter searches for each and compare methods based on
populations of hyper-parameters. We test 300 hyper-parameter con-
figurations for each method and task, where the only differences be-
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Figure 3: Two rollouts from dark room. Red dashed lines indicate the
maximum range of the distance sensor. Pink circle indicates the
goal zone. The star shows the initial location of the agent. The
smoother model is learned with full conditioning, while the filter-
based one uses partial conditioning with an inference network that
only looks at past and present observations, as done in most of
the literature. The fully conditioned model can be used to learn a
policy that manages to reach and remain in the circle, while the
partially conditioned model is not good enough to give rise to this
behaviour.

This figure has previously appeared in (Kayalibay et al., 2021).

tween the methods are given by the two questions from section 3.2.
For each task and method, we pick a number of top-performing
hyper-parameters and use these to compare different methods. "Top-
performing" means we identify a level of cost that we would define as
solving the task and pick all hyper-parameter configurations which
are equal to or better than this level. For a fair comparison, we pick
the same number of configurations for each method, which amounts
to picking the top 50 in Dark Room and Mountain Hike, and the top
70 in Meta Pendulum.

Another benefit of our simple task settings is that we are able to
learn near-optimal policies for each task using gradient descent on
the true system. We use these optimal policies to calculate the regret
of the policies that are obtained from model-based RL. The regret is
given by the difference between the total cost of a policy and the total
cost of the (near-)optimal one.

The results of our evaluation are shown in fig. 4 and fig. 5. The
former shows cumulative regret curves, while the latter shows cumu-
lative distribution functions of the total cost. The biggest difference
is in the Dark Room task, where there is a clear gap between fully-
conditioned and partially-conditioned methods. In other tasks, the
difference can be much more subtle, but fully-conditioned models
are never worse than partially-conditioned ones.
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Figure 4: Cumulative regret curves for top-performing hyper-parameters
of each method. From the top: Dark Room, Mountain Hike, Meta
Pendulum. Filter models only look at x7.¢, while smoothers look
at x7.7 also. "with cost" vs "without cost" indicates whether the
cost is used as an input to the inference network. "filter, without
cost" is the standard model that is used in most of the literature.
"smoother, with cost" is the only fully conditioned method.

This figure has previously appeared in (Kayalibay et al., 2021).
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Figure 5: Cumulative distribution functions for the total cost of top-

performing hyper-parameters of each method. From the top: Dark
Room, Mountain Hike, Meta Pendulum. Filter models only look
at x7.¢, while smoothers also look at x7.1. "with cost" vs "without
cost" indicates whether the cost is used as an input to the inference
network. "filter, without cost" is the standard model that is used in
most of the literature. "smoother, with cost" is the only fully condi-
tioned method.

This figure has previously appeared in (Kayalibay et al., 2021).
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34 DISCUSSION

Our findings suggest that model-based control in POMDPs is not
entirely well-understood. Many of the strongest methods in the liter-
ature contain a pitfall. On the other hand, this does not prevent them
from solving difficult tasks. In our own evaluation, we find that the ef-
fect of the conditioning gap can be quite negligible for some settings.
Looking at the range of tasks used to test state-of-the-art model-based
methods for POMDPs, we see that most of the benchmarks focus on
problems with weaker forms of partial observability. In these tasks it
is often possible to reach near-perfect state information by concate-
nating observations from a couple of adjacent time steps (Srinivas,
Laskin, and Abbeel, 2020).

By contrast, earlier literature on POMDPs features much more in-
teresting problems. As an example, consider the Heaven and Hell task
by Thrun (1999). In this problem, an 2D agent in a square room must
reach either the bottom right or the top left corner of the room, which
is decided randomly at the beginning of an episode. The agent does
not know which corner is the goal, and it can only observe this in-
formation while it is in the top right corner. Thus, to solve this task,
the agent first go to the top right corner, and then move to whichever
corner is revealed to be goal. Without any form of reward-shaping
to encourage the agent to inform itself about the goal zone, Heaven
and Hell is a difficult POMDP because it requires a complex form of
credit assignment, in which the agent must learn that observing the
location of the goal resolves its uncertainty about the cost function,
and allows a lower expected total future cost.

Consider solving Heaven and Hell with model-based RL, given ac-
cess to the true model. This is an easier version of the RL setup used
in this chapter, as we already know the true model and do not need to
learn a deep variational state-space model. If we try to learn a policy
that operates in state-space, as done in many works (Becker-Ehmck
et al., 2020; Hafner et al., 2020a), we will not be able to solve the prob-
lem. This is because the state space of Heaven and Hell contains the
information about where the goal is. Thus, the policy will expect to
know the location of the goal, which is normally unknown during
execution, until we move to the top right corner. On the other hand,
the policy has no reason to learn to do so, because it already has this
information during training.

It could be argued that this is always the case with POMDPs, that
we are missing some information about the state, which a policy
trained in state space would assume to have. The difference between
Heaven and Hell and many other POMDPs is that reaching that in-
formation takes deliberate, long-term acting on the side of the policy.
Compare that to an image-based Mujoco task, where simply observ-
ing a couple of successive images already resolves the uncertainty.

We bring up Heaven and Hell because we find it much more in-
timately linked to the problems we are interested in in this thesis,
that is, problems about spatial reasoning. Doing anything in a spa-
tial environment requires a deliberate effort to learn the layout of the
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environment. At the same time, spatial reasoning features a twofold
state estimation problem, where the agent has to learn its environ-
ment while trying to estimate its own location and orientation in that
environment.

We believe the conditioning gap and its effect on policy learning
represent the tip of the iceberg of potential pitfalls for model-based
RL in a spatial setting. That is, until we try to bridge the gap with
strong priors. The next chapter will review a series of models for
spatial reasoning with increasing levels of inductive biases.
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The models we have seen so far take a task-agnostic approach to
control. Both the model used to describe the world and the policy
used to take actions are plain neural networks that make no assump-
tions about the setting we are working in. Indeed, the only inductive
biases in these models are the ones stemming from mathematical for-
malisms like POMDPs, dynamic programming and SSMs. The mod-
els themselves are close to a pure implementation of these mathemat-
ical structures, with neural networks to replace building blocks such
as transition and emission functions.

This pure approach follows from the design goal of generality. These
methods reach outstanding performance in a wide range of problems
without being tailored to any one setting. What this generality sacri-
fices is efficiency.

The generalist methods of the previous chapter require a long train-
ing phase where the behaviour of the agent is arbitrary. In physical
systems this means we need to carefully create a safe environment
where the agent can learn, and then manually intervene and reset.
The process can be time-consuming and risky, as the learning phase
can create dangerous situations. At the same time, successful meth-
ods for model-based RL on POMDPs typically require an enormous
amount of training data. In many tasks we do not have rich datasets
and environment interactions can take a long time. Such situations
limit the applicability of generalist models.

In this chapter we will turn towards models that eschew general-
ity in seeking efficiency. We will review a series of methods where
neural networks are delegated to smaller tasks and feed into classical
algorithms which incorporate inductive biases about geometry and
planning. Over the past years, these approaches have made steady
progress towards a harsh requirement, which lies at the heart of this
chapter. Namely that a mobile robot is placed in a previously unseen
environment, and has to reach a goal coordinate without any prelim-
inary training phase.

ON NOTATION. We apply the notation from the previous chapter
to spatial reasoning. As before, x denotes an observation, which, in
the spatial setting, is typically an RGB-D image or a list of depth
readings. The latent state z, which was previously treated abstractly,
now corresponds to the agent’s pose, comprised of a location and an
orientation. Control signals are denoted u as before.

In addition to these letters, we will sometimes use m, which we
refer to as a chart. The chart m captures local properties of an envi-
ronment, which are sufficient to explain the current observation x. For
an RGB-D image, we can imagine the chart as describing only what
is within view of the camera. The concept is defined loosely, but we

33



34

MODELS FOR SPATIAL REASONING

find it useful as it emerges in different forms in all of the works that
are discussed in this chapter.

Finally we will use M to denote the map, which captures all prop-
erties of the environment that are relevant for explaining the observa-
tions. Unlike x,u,z and m, which are associated with a time index t
(as in x¢), the map M may be a time-invariant variable, depending on
the setting.

41 GENERATIVE MODELS

An early contribution that is very much in spirit with the modern
works that will be discussed in this chapter is by Murphy (1999). Their
Bayesian grid maps work with discrete observations x € X, states z €
Z and controls u € U. The map M is dynamic (i.e. time-dependent)
and consists of a finite set of cells that correspond one-to-one to the
state space, which we reflect by associating each grid cell with a state
subscript: m, for each z € Z. Each grid cell contains an observation
variable m, = x. Given a map and a state, the emission model is
defined as:

0 L=
Pr(x | M, z) = Mz =X

1—0 otherwise

The prior distribution over the map is a product over the grid cells:
Pr(M) = [],c Pr(m;). The dynamics of the state and map over time
are modeled with simple transition functions. Inference over the map
and the agent state is done via a Rao-Blackwellized Particle Filter.

We omit a more thorough description of the work. The details pre-
sented above are interesting in how closely they resemble much later
works. In fact, the other works discussed in this chapter can be seen
as extensions of Murphy’s work to the continuous case.

4.1.1 GENERATIVE TEMPORAL MODELS WITH SPATIAL MEMORY

In Murphy’s work the map contents correspond one-to-one to the
state space. An extension to continuous spaces requires a new way
of associating parts of the map with parts of the state space. The
differentiable neural dictionary, first proposed by Pritzel et al. (2017)
and later applied by Fraccaro et al. (2018) to a spatial environment,
provides a simple method. The map is once again a collection of a
finite set of cells. Each cell comprises an agent state z and distribution
parameters for a chart m ~ N(m | p, ). The association between a
new state z’ and map content is done via nearest neighbours lookup:

p(m’|z') = > w(z, 2 )N(m' | g, 07). (14)
(z,142,02)EN(Z)

Here, N(z') is a set containing the k nearest neighbours of z’ in the
map and their respective charts and w(z,z’) € [0,1] is a mixing co-
efficient which inversely depends on the distance between z and z’.
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Fraccaro et al. have named their family of models Generative Tempo-
ral Models with Spatial Memory (GTM-SM), owing to the indexing of
map cells via spatial relationships.

GTM-SM uses a non-parametric map representation that grows
over time, which translates itself into a factorisation assumption where
each chart m; depends on all the charts before it m_:

pmy.g,z1.7,x1.7 | wi.t—1) = plz1)p(my)

T
HP(Zt | Z¢ 1, W1 )P(mt |z, X<t )
i=2

N
[ Ip(xilmy).
f

Note that the chart prior depends on all previous observations: p(m |
Z,X<¢). This is because the chart distribution parameters from eq. (14)
are predicted by an encoder network looking at the observations.
Charts are transformed into observations using a density network:

p(x | m) =N(x | u, o), with [u, o] = MLP(m).

The state dynamics p(z¢1 | z¢, u) are modeled with parametric mod-
els that contain some inductive biases about the problem. Fraccaro
et al. (2018) propose different transition functions, for the different
settings they work on. As an example, let’s consider their dynamics
model for a 2D planar robot navigation scenario:

P(zis1 | ze, ur) = N(z¢4q | f(z,ui), 07),
f(Zt, ut) = Z + R(Zt)Mut.

Here, the state comprises a scalar yaw orientation and xy-coordinates
z = (&, %,y) € R3. The control consists of a turning angle and a 2D
velocity vector u = (&, %,3) € R3. R(-) € R3*3 is defined as:

cos(x) —sin(a) 0
R(z = (o, %,y)) = |sin(a) cos(a) O],
0 0 1

and M € R3*3 is a learned parameter. These dynamics amount to a
unicycle model with a learned control transformation M.

As before with Bayesian grid maps, learning the map requires joint
inference over the agent states z;.1 and the charts m;.t given a stream
of observations and control commands (xj.7,u7.7—1). For that, Frac-
caro et al. (2018) use a variational family which factorises as:

q(z1.7,my.7 | xX1.7,01.7-1) = plz1)
.

-
HP(Zt | Z¢—1,u¢—1) H Q(mt | X¢).
i=2

i=1

Note that the variational approximate posterior over the states sim-
ply re-uses the transition model. The variational approximation over
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the charts q(m | x¢) relies on a recognition network in the style of
variational auto-encoders.
Under these assumptions, we obtain a conditional ELBO:

logp(ZT+1:T/mr+1;T |X1;T,u1:-|-,z1)
T
= > Eqmgx) [l0gp(xe [my)]

t=1+1

_]Ep(zt) [KL[q(mt | x¢)[[p(my | th,X<t)H,

where p(z) is the marginal distribution over z;, which marginalises
the dynamics noise. All expectations are approximated by ancestral
sampling. The chart prior p(m; | z<¢,X<¢) depends on all previous
states and observations and the current state, as it is defined as a
mixture over the charts of the k nearest neighbours:

p(my |Z<t,X<t) = Z w(z,z¢)q(my | x).
(Z,X)EN(Zt)

The strength of the prior in modelling the appearance of a scene
from a previously unvisited state depends on the accuracy of the
state estimates z1.7. This poses a challenge since these estimates en-
tirely depend on the transition dynamics p(z¢11 | z¢, ut), which con-
tain parameters that also need to be estimated, such as the matrix M
from the previously discussed unicycle dynamics. Fraccaro et al. mit-
igate this issue by using the true velocity of the agent z; 1 —z¢ as a
regression target during model training, allowing any parameters in
the transition to receive direct supervision.

It is useful to review the design choices in GTM-SM, which serve
to tune the method towards spatial reasoning:

¢ Spatially organised map.

¢ Transition models using common planar robot dynamics (i.e.
the unicycle model).

¢ Using supervised learning to anchor parameters in the transi-
tion model.

GTM-SM is already a large step away from the task-agnostic ap-
proaches in the previous chapter. Still, the method requires a separate
training phase, which does not fully align with our central design
tenet.

4.1.2 DEEP VARIATIONAL BAYES FILTERS WITH LATENT MAPS

GTM-SM defines a map over a continuous state space using an ex-
pandable, non-parametric memory. Deep Variational Bayes Filters with
Latent Maps (DVBF-LM) (Mirchev et al., 2018) remain closer to the
Bayesian Grid Maps of Murphy et al. and use bilinear interpolation
to continuously index the map between the individual grid cells.
Specifically, the map is a 3D tensor M € R™W*!*4 where the first
two dimensions correspond to the width and length of a rectangular
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Figure 6: The graphical models of DVBE-LM (left) and GTM-SM (right).

2D area, and the final dimension corresponds to a set of d features.
The map spans over a section of 2D space defined by the extremal x-
and y-coordinates Xmin, Ymin, Xmax, Umax- In other words we discretise
a certain coordinate range with a grid, and then associate each grid
location zi; with a feature vector my; € R4. In between the grid cells,
the chart for a state z is obtained by bilinear interpolation:

attention(z) = Z w(z, zij)my;.
1,jEN,(2)

Here, N,(z) is the set containing the grid indices for the four grid
cells surrounding the state z and w(z, zi;) returns the bilinear inter-
polation weight for a neighbour. The grid structure and interpolation
simply ignore the orientation component of the state.

The mapping from charts m to observations x differs depending
on the setting. When observations are depth readings, the emission
model is defined as:

g(z, m) = r()A( = MLPemit(m)/ Z)/

where the function r(%,z) takes a preliminary depth reading recon-
struction X and rotates it depending on the orientation component of
z. The goal is to reduce the workload of the neural network MLPep;.
The network only has to learn a mapping from charts m to depth
readings given an orientation of 0°. This reading is then rotated using
the actual orientation of the agent to match the correct agent-centric
coordinate frame. The rotation operation uses linear interpolation in
the angle space.

If the observations are images, the emission model is defined sim-
ilarly, with slight differences. First, the chart m is reshaped to match
the width and length components of an image: tfh € R™*™. The ro-
tation now happens before the network and also includes a cropping
operation which only selects the part of  that corresponds to the
current view. Each row of m is rotated and cropped independently,
where rotation relies on linear interpolation as before. We can imag-
ine this as carving out one view from a panoramic image.

As for the probabilistic treatment of the model, the prior distribu-
tion over the map is a standard Normal distribution N(o, oI). Given
a state z and a map M, the respective chart is distributed as a point
mass over the bilinear interpolation result: p(m | z, M) « Ilm =
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attention(z)]. Finally, the emission resulting from a chart and a state
is a Gaussian distribution with homoscedastic noise, i.e. p(x | z, m) =
N(x|g(z,m), og).

Similarly to GTM-SM, the transition model is a learned component,
in this case an MLP:

P(Zt+1 | ¢, ut) = N(zt+1 | MLPrans (z+, ut)/ UT)-

This causes the same danger as in GTM-SM, that joint estimation of
the map, states and transition parameters might fail. As a remedy, the
transition is learned offline before learning the map and estimating
the states.

Combining the map, the emission and the transition, the joint prob-
ability factorises as:

N
p(z2:7,x1:7, M| zi,urr 1) =p(M) [ [ plze | 21,0 1)
i=2
T

Hp(xt | z¢, MD).

i=1

Note that we assume the initial state z; is known, which in most cases
is the same as assuming we are only interested in motion relative
to the initial state. The charts mj.7 are omitted above as they are
determined by the map and the states.

We estimate the map and the states using variational approximate
distributions. The approximate posterior for the map is a Gaussian
distribution factorising over the map cells:

q(M) = HN(Mijk | ijk, Oijk)-

ijk
The states are estimated via a bootstrap particle filter:

qlze) = Y V¥Ilzy =z},
k

v

<k

k_ Vi
t = o
2 i Vi

\71; = vf_]p(xt | zf, M,y).

The factorisation of the full approximate posterior is then:

T

qlz2:1, M) = (M) ] [ q(z0).
i=2

We estimate the map and learn the emission network MLP¢pt by
optimising the ELBO with gradient descent:

T
L(M, MLPepit) = — ZIEq(ZZ;r,M) [logp(xt | z1.1, M))]

t=1

+KL[q(M)[[p(M)].
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Note that with the off-loading of the transition parameters to a pre-

training step, the only learned parameters in the model are the map

cells and the emission network, which are both learned by gradient

descent, while the states are estimated with particle filtering. These

decisions are crucial for meeting the design requirement that the al-

gorithm should be applicable in a previously unseen environment".
To review the most important design choices in DVBF-LM:

* Spatially organised map. The map covers an area of 2D space.

¢ Geometric priors in the emission. Orientations are handled with
an engineered solution.

e Transition model is learned beforehand.

* State- and map estimation relies on particle filtering and gradient-
based optimisation.

* The emission network and the map are the only learned param-
eters.

Together, these decisions allow DVBF-LM to do SLAM in a previ-
ously unseen environment. Still, DVBF-LM has one key short-coming:
its map structure is redundant. Consider DVBF-LM would model an
empty room with four walls. The map cells capture panorama-like
views from different locations. If the agent stands at one place and
does a 360°-rotation, it has seen everything there is to see. Yet, this
information is only recorded at the four grid cells surrounding the
current location. As soon as the agent moves away from these cells it
will have to re-record the same information again. Worse, the agent
cannot rely on the old cells for localising itself, as they are now out-
side the reach of its attention mechanism.

42 DETERMINISTIC MODELS

In the following we will review a series of deterministic models ori-
ented at navigation. These models explicitly have different goals from
our line of work, as they assume access to a set of training environ-
ments and try to maximise performance on another set of held-out
scenes. Still, it is interesting to inspect these models for the wide va-
riety of geometric priors and inductive biases they feature.

4.2.1 NEURAL MAP

Proposed by Parisotto and Salakhutdinov (2017), Neural Map (NM) is
a model for control in spatial environments. The method features a
2D feature grid M; € R"*'*4 which changes over time. Agent states
z, which are assumed to be measurable during operation, are associ-
ated with grid cells using a mapping function 1\ : R? = {0,..., W} x

The transition could be modelled in a way that depends on the map, e.g. to model
collisions. DVBF-LM uses an obstacle-agnostic transition model and instead relies
on the particle filter to accurately estimate the state.
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{0,...,1}. Only the location component of the state informs the map-
ping. We abbreviate the map cell at the current location as M, :=
M [p(z¢)]. As the agent moves around in the environment and col-
lects observations, the map is read from and written to using a mix
of neural components and engineered attention mechanisms. The
agent’s observation-planning-acting loop consists of a set of opera-
tions.

READ. The map is summarised in to a feature vector r; € R" using
a convolutional neural network CNN,¢,q(M4).

ATTENTION. An attention mechanism is applied to the map to pro-
duce a context vector ¢ € RY. Here, the state z; and feature vector
ry are converted into an embedding vector q; € R4, of which the
dot product is taken with every grid cell M? to produce attention
weights wij. These weights are normalised and used to produce a
convex combination of all of the map cells, which is the context vec-
tor c¢¢. In other terms:

V4
qt = Wembed [ t] ’
Iy

wij = (qe, MY),
- exp(wy)
wl) B an exp(wnm)'

~ ij
Ct = Z (,Uith).
Y

WRITE. The two vectors r; and ¢, along with the current state z;
and the map contents at the current location M[p(z,)] are passed to
a neural network, producing a write-vector wy € R¢:

Wi = MLPyrite(Z¢, I, Ct/Mzt)-

UPDATE. The map cell at the current location M, is overwritten
by the write vector:

M, =M [P(z)] < wy.

CONTROL. The three vectors r¢,cy and wy are passed to a neural
network, which outputs the next control uy = MLPact(ry, ¢, Wi).

Neural Map deviates from the previously discussed works in sev-
eral ways:

* Neural Map is not a generative model, as it does not aim to
model the emission or transition dynamics of the system.

e The state z is assumed to be measurable.

* The model is trained using reinforcement learning on a task
cost.
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These deviations are emblematic of the models that will be discussed
in this section. We present Neural Map and its successors to show
the work that has been happening to bridge the gap between the
generalist approaches from the previous chapter and the special case
of spatial reasoning. Looking at Neural Map from this lens, we find
that its main inductive bias is the spatial organisation of the map,
which is reminiscent of Murhpy’s Bayesian Grid Maps and DVBEF-
LM’s map component.

On the other hand, Neural Map heavily relies on learned compo-
nents to maintain the map and to decide how the current observation
should be associated with its model of the scene. Neural Map shares
a similar redundancy to DVBF-LM in that the current observation
only affects the map contents at the current location.

4.2.2 COGNITIVE MAPPING AND PLANNING FOR VISUAL NAVI-
GATION

Gupta et al. (2017) concurrently proposed a model that is similar to
Neural Map, which they refer to as Cognitive Mapping and Plan-
ning (CMP). The two approaches are similar in spirit, but implemented
slightly differently. Gupta et al. use convolutional neural network
CNNmap(xt) to predict an agent-frame 2D feature map m;. This fea-
ture map is combined with the previous one m{_; using a weighted
additive update. Feature maps from different time steps are aligned
in a common reference frame using the time difference of the agent
state, which is assumed to be measurable. There is no global map
M, but a series of agent-centric maps my.t, which inform the agent’s
decision-making in each time step.

Perhaps the most interesting feature of this work in our narrative
so far is the control algorithm. The policy is powered by a hierarchi-
cal variant of a Value Iteration Networks (VIN) (Tamar et al., 2016),
which approximate value iteration using convolutional neural net-
works. The local maps m; generated by the mapping component are
passed to a VIN, which outputs the next control u;. The mapping
component and the VIN are trained jointly using imitation learning.

4.2.3 ACTIVE NEURAL SLAM

Active Neural SLAM (ANS) by Chaplot et al. (2020) takes further steps
towards specialisation by replacing the abstract feature representa-
tions that have been used in all of the previous work by a more tradi-
tional occupancy map. Similarly to the work by Gupta et al., a neural
mapper outputs an agent-frame local map m; based on the current
observation. Unlike before, the agent’s displacement with respect to
the previous step is not assumed to be known. Instead, a rough esti-
mate Z; is available, which is refined by another neural network that
has access to the current observation x;, preliminary state estimate Z
and the most recent two agent-frame maps m_1.;. After the current
state estimate is refined by the neural net, it can be used to align the
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current local map towards a world-frame map m;_; from the previ-
ous time step to produce the new world-frame map m;. It is worth
noting that all map variables are now assumed to encode the occu-
pancy of the scene, i.e. i, m; € R™*! as opposed to the abstract
feature maps of earlier works>.

The policy is also more structured than before. Chaplot et al. make
use of a two-level controller, both implemented with neural networks.
The first network takes the current map and observation and outputs
a high-level landmark that the agent has to pass through to reach its
target. A classical planning algorithm (Sethian, 1996) is used to com-
pute the shortest path from the agent’s current state to the landmark.
Next, one point on the shortest path is selected as a local target and
passed to the second network, along with the current observation,
which produces a low-level control uy .

Both the mapping and the planning components are trained using
supervised learning. The former is trained towards occupancy maps
obtained using the ground-truth agent states and RGB-D observa-
tions from a set of simulated scenes. The latter makes use of optimal
plans found by planning with ground-truth agent states and scene
geometry from the same setup.

ANS contains perhaps the largest amount of inductive biases among
all of the works reviewed in this section. Indeed, we can interpret it as
an attempt to replace components of a traditional SLAM-based navi-
gation solution with neural networks and learning these on simulated
scenes.

43 DISCUSSION

The methods we have reviewed reveal a clear trend towards stronger
specialisation in models aimed at spatial reasoning. We see neural
networks being relegated to smaller tasks, and made to interface with
classical algorithms. Abstract feature representations being replaced
with concrete values such as occupancy. Supervised learning used to
anchor learned components. It is useful to inspect ideas that show up
repeatedly in this body of work.

SPATIALLY ORGANISED MEMORY. Each method has its own ver-
sion of a map. GTM-SM features a non-parametric memory which is
indexed using spatial information. DVBF-LM, NM, CMP and ANS
rely on grid maps which correspond to a region of space. Note that
these structures are unnecessary from a theoretical perspective, as the
information contained in these could be included into the state space.
The fact that they show up regardless is a sign that a more specialised
representation is helpful.

GEOMETRIC PRIORS. Almost all of the works we have looked at
contain some mechanism that explicitly relies on geometric assump-

The maps actually contain an additional channel which records whether the agent
has visited a location. We omit this part to keep the exposition simple.
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tions. DVBF-LM uses estimated agent orientations and field-of-view
information to rotate and crop the features stored in its memory. CMP
and ANS use agent states to align feature maps from different time
steps.

CLASSICAL PLANNING. DVBF-LM proposes to use A*-search for
control with its map representation. CMP relies on a neural approxi-
mation to value iteration. ANS uses a classical planning algorithm to
bridge the gap between a high-level and a low-level controller.

At the same time, there is some disparity between the assumptions
and ambitions behind these works. The generative models seek to
explain the transition and emission dynamics of the system, while
the deterministic ones are more interested in efficient methods for
extracting information from observations that is relevant for decision-
making. Several of the discussed works assume the agent states are
measurable, while others rely on approximate dynamics models.

The role of amortisations is another critical aspect. In general, the
deterministic models hinge on the presence of a set of realistic scene
scans to train neural components, and seek to maximise performance
on a set of held-out scenes. On the other hand DVBF-LM eschews al-
most all neural amortisations in favour of optimisation and classical
filtering. This is in contrast to the generalist approaches of the previ-
ous chapter, which seek to solve a specific instance of a problem, and
try to do so with as little training time as possible. In terms of a spa-
tial reasoning task such as navigation, solving a specific instance is of
limited interest. This would amounts to tuning model parameters for
one single environment.

Is it possible to transfer a navigation policy learned in one envi-
ronment to another? Currently the answer seems unclear, given the
amount of variability among spatial environments, sensors and robot
dynamics. One line of research (that of the deterministic agents),
seeks to train on simulators with large sets of real-world 3D scans. We
believe that the possibilities of inductive biases are not yet exhausted.
In the following, we will look at a family of emission models which
push this frontier further and then demonstrate its application to the
navigation task.
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NAVIGATION WITH SPATIAL WORLD MODELS

This chapter is partly based on the following publications:

Mirchev, Atanas, Baris Kayalibay, Patrick van der Smagt, and Justin
Bayer (2021). “Variational State-Space Models for Localisation and
Dense 3D Mapping in 6 DoF.” In: International Conference on Learn-
ing Representations. URL: https://openreview.net/forum?id=
XAS3uKeFWj.

Kayalibay, Baris, Atanas Mirchev, Patrick van der Smagt, and Justin
Bayer (2022). Tracking and Planning with Spatial World Models. por:
10 . 48550 /ARXIV.2201.10335. URL: https://arxiv.org/abs/
2201.10335.

The first paper introduced the world model which is applied in
the second to the task of navigation. The former is not a contribution
of this thesis, but foundational to our approach. We will review the
emission model and map representation of the paper, and omit de-
tails about the inference of agent states. The second paper is a joint
contribution by the first the author and Atanas Mirchev, proposing
a model-based control algorithm for navigation. The state estimation
algorithm was conceptualised and implemented by Atanas. We will
briefly review it for the sake of narrative cohesion. The author inte-
grated the world model into a controller, adapted the state estima-
tor to the specific case of a planar robot and designed and carried
out the experimental evaluation related to navigation. The paper also
contains experiments on state estimation accuracy, which were con-
ducted by Atanas. We review the key results from these briefly and
refer the interested reader to the original paper.

For the second section, we will briefly review the online SLAM
method introduced in:

Mirchev, Atanas, Baris Kayalibay, Ahmed Agha, Patrick van der Smagt,
Daniel Cremers, and Justin Bayer (2022). “PRISM: Probabilistic
Real-Time Inference in Spatial World Models.” In: 6th Annual Con-
ference on Robot Learning. URL: https://openreview.net/forum?
id=X_qYPtJLaXx8.

The remainder of the chapter will introduce a previously unpub-
lished control algorithm, which uses this SLAM method, and demon-
strate its performance in realistic simulated environments. We will
close the chapter with a brief demonstration on real hardware.
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5.1 SPATIAL WORLD MODELS

In the previous chapter we explored the efforts of the community in
incorporating inductive biases into deep learning models. The gen-
erative models we reviewed were mostly content with letting neu-
ral networks do a large part of the heavy-lifting. DVBF-LM featured
an early attempt at combining our knowledge about geometry and
physics into the process We will now review an emission model and
map representation proposed by Mirchev et al. (2021) where this idea
is taken further.

The core of the idea is to implement ray casting, which is an el-
ementary algorithm for rendering images, in a way that is differen-
tiable with respect to the pose of the camera and a set of parameters
which define the geometry and appearance of the environment. This
idea has simultaneously appeared in a variety of communities (Bi et
al., 2020; Lombardi et al., 2019; Mildenhall et al., 2020; Sitzmann et al.,
2020) and the resulting research is often collected under the portman-
teau term differentiable rendering. The exposition we provide here is
based on the approach of Mirchev et al. (2021).

The environment model uses two parametric functions fy : R® —
R and gnr : R — R3. These functions model the occupancy and
colour over 3D space. They can be implemented using a variety of ap-
proaches from voxel-grid interpolation to neural nets to kernel meth-
ods. The main concern for the underlying model is differentiability
with respect to its parameters and input. Using the functions fy¢ and
g, we can derive a renderer which processes images pixel by pixel.

Using the camera intrinsic matrix K, each pixel can be mapped to
a half-ray described by the function:

r(8) =u+dv, uveR?andscRs.

This ray intersects the geometry of the scene for the first time at the
point:

r* =r1(6%) =u+ 8", (15)
which satisfies the condition:
Vo € 10,8%) : fa(r(8)) < 0 and fy(r(8*)) > 0,

where fy¢ is the occupancy function and we define points x € R?
with fa¢(x) < 0 as unoccupied or free space. The main challenge of
differentiable rendering is to find the intersection point r* in a manner
that is differentiable with respect to both the map parameters M and
the ray parameters u and v, which result from the camera pose.

We discretise the ray by sampling a set of equidistant points:

{re | e = 1(0x) = r(kA) fork=1,2,...,K} with A > 0.

The parameter A controls the fineness of the discretisation. We find
the smallest k such that fy¢(rx) > 0. The intersection point must lie
on the line segment connecting ri_1 and ri. Here, we make use of
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an approximation and assume that the function fy is linear on this
line segment, which leads to an analytical solution for the intersection
point. This amounts to linearly interpolating between ry_7 and ry us-
ing the function values fy¢(rx) and fyg(rx—1) to define interpolation
weights:

r* =r(d%),
o = O(ék + (] — O()ék,],

_ e (1)
fave (1) — Fve(re—1)

For rendering and RGB-D image, the depth value directly corresponds
to 6*, while the colour is found by querying the colour model at the
intersection: gy¢(r*). This rendering algorithm is differentiable with
respect to M, u and v as long as the functions fy¢ and gy are dif-
ferentiable with respect to M and r, which is satisfied by all map
representations that are interesting to us. If the map M is a voxel
grid containing occupancy and colour information, then fy¢ and goy
can be implemented via trilinear interpolation, which is differentiable.
Likewise, if M is a neural network, then the output of the network is
differentiable with respect to both its inputs and its weights.

Our concept of the chart m applies somewhat obliquely to this
setup. The occupancy values along the ray fy¢(ryx) for each pixel and
the colour value at the intersection gy (r*) can be seen as a local chart,
as they are sufficient to explain the current camera observation. More
importantly, looking at these values as a chart reveals some of the
motivation behind this emission model and map representation.

A major problem with many of the models from the previous chap-
ter was that they record information locally and redundantly. DVBF-
LM uses a spatial grid of feature vectors that correspond to panoramic
observations (Mirchev et al., 2019). Neural Map likewise only updates
the portion of a grid map that corresponds to the agent’s current lo-
cation (Parisotto and Salakhutdinov, 2017). This is problematic since
it prevents the agent from extrapolating to areas of the environment
which have already been observed but which the agent has not phys-
ically stepped on. Of the other models, ANS trains a neural network
to produce local occupancy maps via supervised learning (Chaplot
et al.,, 2020) and CMP relies on the task cost to guide a neural net-
work towards producing useful abstract local maps. Both of these
approaches require extensive training and are arguably not able to
use the observation fully due to the fixed size of the local maps. We
can image a setting with a long corridor, where one observation is
enough to map the whole environment with a differentiable renderer,
where multiple local maps would be necessary to do the same. Fi-
nally, GTM-SM uses a non-parametric map and relies on a neural
network to extrapolate to new agent states based on a lookup of the
nearest neighbours. This requires the network to learn complex geo-
metric transformations, which might be challenging. Another issue is
that in an everyday environment, the nearest neighbours in terms of
Euclidean distance might lie on the other side of a wall.
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Differentiable rendering solves the issues of redundancy and ex-
trapolation by minimising the work that needs to be done by learned
components and relying on geometric inductive biases as much as
possible. Because the chart m contains the occupancy values for the
entire range of space that can be seen by the camera and the colour
values at the surface of the scene, the agent can model an observation
from any part of the environment that has been observed previously,
even from a view point that has previously not been visited. The one
exception to this are occlusions (i.e. we cannot model what is behind
a wall until we see it from another view-point).

5.1.1 COMPARISON TO OTHER DIFFERENTIABLE RENDERERS

The rendering algorithm we just reviewed is a cave painting of the
physical processes behind a camera’s interaction with the world. There
are other ways of writing a rendering algorithm that is differentiable.
Most notably, Neural Radiance Field (NeRF) (Mildenhall et al., 2020)
has become the go-to approach for differentiable rendering over re-
cent years. It is worth noting the differences between the two ap-
proaches. First, neural radiance fields also take the viewing direction
into account when modelling colour. The input to the colour model
g contains both the location of a point and the direction it is viewed
from. This allows modelling specular effects. Second, NeRFs do not
explicitly define an intersection point between the camera rays and
the scene. Instead, they integrate the output of the colour model along
the ray using a random sample, which allows modelling transparent
or semi-transparent objects.

It is clear even at first glance that NeRFs have a much more sophis-
ticated way of rendering. Why then, deviate from this approach? The
answer is in the application. While NeRFs target photo-realistic re-
construction, we are more interested in control, which, for the task of
navigation, requires estimating the state and the scene geometry. In
other words our scene representation is geared towards visual track-
ing and obstacle detection. The latter has no relation to visual details,
while the former often suffers from it. Indeed, in many computer vi-
sion tasks it is common to smooth images to remove the exact type of
high-frequency features that NeRF is trying to capture. We see sim-
ilar decisions made by others who have attempted visual tracking
with differentiable renderers, e.g. Sucar et al. (2021) omit the viewing
direction input to a NeRF.

NeRFs also handle depth differently to how we do. They assume
the observations are RGB only, without depth information. Integrat-
ing the colour over the ray might then be necessary for geometric
consistency, since the model does not have access to depth observa-
tions for grounding the scene. At the same time, the depth estimates
produced by a NeRF are usually not faithful to the true depth. For
our purposes, having accurate depth estimates is not optional, as we
need to detect the distance between the robot and obstacles in the
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scene. As a result, our renderer is designed around the assumption
that observations contain depth maps.

A final, subtle difference is the model used to represent M. NeRF,
as the name suggests, uses neural networks, while Mirchev et al.
(2021) use a voxel grid for the occupancy and a neural network for
the colour. In this work, we will use voxel grids for both occupancy
and colour. The reason for this is speed, as we will experimentally
verify in a later section. Our setting requires real-time state estima-
tion, which is easier to achieve with the speed offered by voxel grids
and trilinear interpolation, compared to evaluating a neural network
forward pass.

5.1.2 PROBABILISTIC RENDERING

So far we have given a deterministic view of the emission model and
map. In practice, we use probabilistic models that result from plac-
ing simple Gaussian or Laplace distributions on the map and the
emission result. Specifically, we split the map M into an occupancy
map and a colour map: M = (M®* ¢ RwxIxd gygeol ¢ Rwxixdx3)
The prior over the both components is a standard Normal distribu-
tion. For approximate inference, we rely on variational distributions
which factorise over the map cells and the RGB channels (for colour):

occ occ occ - socc
M H N ij k Hl] kO ij k)
ijk

col col col
q(M | | N )kl | Hijit 1)kl)
ijkl

The rendering result becomes stochastic by adding Laplace-distributed

emission noise:

p(x |z, M) HLaplace( depth | 6%, depth)

i

[T Laplace(x®" | gac(r*), o), (16)
i

where 1 is a pixel index, * and gy (r*) are as defined in eq. (15) and
dePth € Ry and O'rg € R3 are homoscedastic scale parameters.
If we have a dataset of images and camera poses D = {(z;, xl)}iN:]
we can learn the map parameters M°® and M®! by optimising the

evidence lower-bound:

arg 0?Eun Eqv) [ —logp(x |z, M)] +KLI[q(M)|[p(M)]
z,xeD

We use stochastic gradient descent to that end, where stochasticity
comes from the usual sources of dataset minibatching and Monte
Carlo approximation of the expectation over the likelihood. An addi-
tional idiosyncratic source of stochasticity comes from random pixel
subsampling. The full image likelihood from eq. (16) is typically too
computationally expensive to evaluate at every update step. To speed
up training, we select a random subset of pixels instead.
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Assuming we have a dataset with pose-labeled RGB-D images is
quite a deviation from our original goal of being able to navigate in
a fully new environment. For now, we will accept this limitation and
present an algorithm for tracking and planning with a map that has
been learned offline. In a later chapter, we will explore going beyond
this limitation and into the territory of online SLAM and control.

5.1.3 A NOTE ON TRANSITION DYNAMICS

A spatial world model is not the map representation alone. It also con-
tains the transition dynamics, p(z¢1 | z¢, u¢). In the previous chapter
we saw different ways of approaching the dynamics. GTM-SM used
a combination of engineered models and learned components. DVBF-
LM pretrained a neural network using supervised learning. We will
take an application-centric approach here. For most mobile robots,
the transition dynamics can be explained using simple models such
as the unicycle model or the bicycle model. What is missing is the
influence of factors such as friction, the internal workings of the mo-
tors and control delay. We will therefore model the state transition
using an appropriate engineered model, and rely on state estimation
to resolve the unknown part.

52 TRACKING WITH SPATIAL WORLD MODELS

Several works have approached state estimation or visual tracking
with differentiable renderers (Adamkiewicz et al., 2021; Mirchev et
al., 2021; Sucar et al., 2021; Wang et al., 2021; Yen-Chen et al., 2020).
The agent state z in this context is the 3D location and orientation of
the camera. The typical method is to make use of the differentiability
of the system and estimate the pose of the camera by optimising the
likelihood of the corresponding image under the current map using
gradient descent:

arg min —log p(x | z, M), (17)

where the likelihood term is typically approximated by subsampling
the pixels. In the specific case of spatial world models, the state z
also contains the location and angular velocity of the camera, and we
have access to a transition model p(z¢ | z¢—1,u¢—1) as a prior. We are
interested in approximating the posterior after observing the current
image x¢, which can be done using gradient descent on the ELBO,
with a brief extension of eq. (17) (Mirchev et al., 2021):

(zt)

arg gnin Eq(z) [logp(XJE | zt,M)} +

KL[Q(Zt)HP(Zt | Z¢—1, W1 )]

The variational distribution q(z) is a Gaussian distribution. Adamkiewicz

et al. (2021) use a similar objective, albeit for maximum a-posteriori
estimation.
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Whether we have access to a dynamics model or not, it is chal-
lenging to achieve real-time state estimation with this method, be-
cause differentiating through the renderer is computationally expen-
sive (Mirchev et al., 2021; Yen-Chen et al., 2020). The only methods we
are aware of, which support real-time visual tracking by differentiat-
ing through the renderer are by Sucar et al. (2021) and Adamkiewicz
et al. (2021). The former relies on maintaining a set of keyframes and
a hierarchical method for subsampling the image, while the latter
uses ORB-features to select interesting pixels when approximating
the likelihood.

Here, we will review an alternative approach which relies on ap-
proximating the likelihood with a proxy objective. The idea is that
if we have a camera pose z and render the corresponding image x
from our map, then we can use this image to approximate the map
M in the local vicinity of z. We can do this by defining a proxy emis-
sion model, which given a new pose z’, can render the corresponding
camera view by reprojecting points from x in to the frame of z’. Given
an observation x; with an unknown pose z7, we first pick an anchor
pose z; and render its view x, from the model. We then project points
from x7 into x; using the pose offset between the state estimate 2; and
the anchor pose z,. We calculate the reconstruction loss and optimise
with respect to 27. The benefit is that we only have to render from the
model once, as opposed to optimising through the renderer, where
rendering needs to take place in every gradient update. With this
approach, every gradient step solely depends on simple geometric
operations.

In more concrete terms, we introduce T7?(x) = Rz?x + t;2, which
transforms a point x € R3 from the frame of z; into the frame of z;.
Here, x is a 3D point obtained by using the depth map xd¢Pth and
the camera intrinsic matrix K. We also define 71,(x) as the projection
of the 3D point x into the image plane from the view z. Finally, we
introduce n, which is a surface normal map that is obtained using
the image gradient of x3P", Using these new constructs, the proxy
likelihood term is defined as:

—logp(x |z, M) Z Hng (T2 (x1))] *Xrgb[ﬂ(xi)]H]Jr

Z (% — T2 (xi), B4) | (18)

Here, x; is the 3D point obtained by projecting pixel i of the obser-
vation into the world frame. The point X; is the 3D point from the
anchor image, which corresponds to x; after projecting it into the
anchor frame. Finally, f1; is the surface normal corresponding to X;.
Another much more colloquial interpretation of this proxy objec-
tive is that we are relying on point-to-plane Iterative Closest Point
(IcP) with photometric constraints (Audras et al., 2011; Chen and
Medioni, 1992; Steinbriicker, Sturm, and Cremers, 2011) to align the
current observation to an anchor state. Note that the presence of the
map gives us a great deal of freedom in picking the anchor state. Be-
cause we have a model that can predict the RGB-D observation given
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a pose, we can pick the anchor pose freely. It would even be possi-
ble to pick multiple anchors and select the one with the lowest loss
after optimising eq. (18). In practice, we will simply use the previous
estimate as an anchor.

We use the transition model to initialise the guess over the current
state and then optimise eq. (18) and the transition prior jointly:

arg n;{n —log P(x¢ | z¢, M) —logp(z¢ | z¢—1, ). (19)

53 PLANNING WITH SPATIAL WORLD MODELS

In previous chapters we saw various strategies of controlling a mobile
robot. DVBF-LM assumes deterministic dynamics, which allows plan-
ning with A*-search and then executing the plan exactly. CMP relied
on value iteration networks as a parametric policy that includes some
inductive biases. ANS used a more structured two-layer controller
with learned components. The presence of parametric models in a
controller requires a training phase. Because the structure or appear-
ance of the environment is an input to the policy, the training phase
also needs to include a variety of environments to be able to gener-
alise to a new environment. We therefore omit learned components
from the policy and limit ourselves to classical planning techniques.

Formally, our goal is to reach a goal coordinate g € RR? starting
from an initial state z € R3, where the state includes a 2D location
and a yaw angle. In other words we are working with a planar robot.
For this section we will further assume that the robot can turn around
freely in-space and always moves forward along its heading direction.
These assumptions are fitting for a TurtleBot *, though they exclude
other systems like cars.

We will use a two-phase strategy. First, we run A*-search to plan
a trajectory of landmarks that reach the goal g. In this stage, we dis-
cretise the environment with a uniform grid and assume each cell is
connected to its eight neighbours, as long as these are not occupied
and maintain a minimal safety distance of Ay, to any occupied loca-
tion. Occupancy and the distance to the closest occupied location are
straightforward to query from our model by simulating a lidar scan
around the location.

Once a list of landmarks is found, a simple low-level controller
takes over, following the planned trajectory. At any point in time,
the low-level controller first find the closest landmark on the plan.
Any landmarks that precede the closest landmark are removed. Next,
the current heading angle is corrected to have the agent facing the
landmark. Since the robot has some limits in how much it can turn in
one time step, this process might take several time steps. The robot
does not make any forward movement until the difference between
the current heading angle and the direction leading directly to the
landmark is below a threshold Af,e.. Once the movement angle is
close enough to the direct line between the agent and the landmark,

1 https://www.turtlebot.com/
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Figure 7: Overview of the method.
This figure has previously appeared in (Kayalibay et al., 2022).

the agent takes a step forward to the landmark with the largest step
size available to it. As soon as the agent is closer to the landmark
than a threshold Aremove, the landmark is removed and a new one is
selected. The final landmark is the goal itself, where we use a more
strict threshold Agoal < Aremove tO decide if the agent has reached the
goal or not, at which time the navigation task is stopped.

An overview of the method is given in fig. 7. The learned model
provides information about obstacles, which is used by the high-level
controller. Both high- and low-level controllers rely on state estimates.
These result from the dynamics and emission models and the stream
of camera images.

54 EXPERIMENTS ON VIZDOOM

We use the ViZDoom simulator to develop a test environment (Wyd-
much, Kempka, and Jaskowski, 2018). While ViZDoom lacks visual
fidelity, it allows us to easily generate levels for a set of realistic floor
plans with obstacles. We convert six floor plans from the HouseExpo
dataset (Li et al., 2020) into ViZDoom levels. We use a separate level
for fine-tuning the algorithm. This level is not part of the House-
Expo dataset and was taken from a paper by Savinov, Dosovitskiy,
and Koltun (2018). The levels used for evaluation and fine-tuning are
shown in fig. 8.

To approximate a realistic scenario where the robot dynamics are
known up to stochastic factors, we add noise to the motion of the
robot. For a ground-based robot, simple Gaussian noise is not realis-
tic. A control command that should move the robot forward would
realistically not result in the robot moving backward. Likewise, if we
ask the robot to turn left, we can expect it to turn left by some amount
or stand still, but not to turn right. We therefore design a noise model
which executes an action with added noise, but in a way that does
not change the action’s direction. Specifically, if we decompose the
control into an angular velocity and a forward velocity as u = (s,v),
the noise model behaves as:

§=s +Clip(651_3/ As),es ~N(s |0, 05),
Vv =v+clip(ev,—v,Ay), ey ~N(s |0, 0y).
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Figure 8: Evaluation (left) and fine-tuning (right) levels. The right panel
demonstrates the noise model. The same plan is executed from
the same starting point multiple times without re-planning. The
final position of the robot is shown in red. Noisy dynamics lead to
vastly different outcomes.

This figure has previously appeared in (Kayalibay et al., 2022).

Here, As and A, are limits for the maximum allowed perturbation,
while o and o, control the level of noise. The noise model is demon-
strated in fig. 8 (right). Here, we take an initial state and a plan which
leads to the goal assuming deterministic dynamics. We then evalu-
ate this plan in open-loop fashion multiple times under stochastic
dynamics. The final location of the robot in each rollout is marked
red. We find that stochastic dynamics can lead to vastly different out-
comes, making state estimation a necessity.

5.4.1 TESTING STATE ESTIMATION SUCCESS

In our first experiment, we focus on the accuracy of our revised state
estimation objective®. Figure 9 shows empirical cumulative distribu-
tion functions (CDFs) of errors made by gradient-based optimisation
of the observation likelihood (referred to as emission in the figure)
vs our method (pred-to-obs in the figure). We find that for both loca-
tion (left) and orientation (middle) estimation the two methods are
virtually identical. On the other hand, if we inspect the runtimes, as
depicted in the right panel, the proposed proxy objective is over 4
times faster than tracking based on differentiation of the observation
likelihood.

At the same time, we see that the choice of a voxel-based emission
model is important for our method, as it allows fast rendering of a full
observation. NeRF, which relies on neural networks, is prohibitively
expensive here. It should be noted that there have been many recent
advances in speeding up NeRFs (Cao et al., 2022; Garbin et al., 2021;
Li et al., 2022; Lombardi et al., 2021; Reiser et al., 2021; Wang et al.,,
2022; Yu et al., 2021). It is possible for a revised version of NeRF to
leverage our state estimation approach.

For a more complete overview of this experiment, we refer the reader to (Kayalibay
et al.,, 2022) and would re-emphasise that both the state estimation algorithm and
the experiments on state estimation accuracy are contributions of Atanas Mirchev.
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Figure 9: Cumulative distribution functions (CDFs) of location (left) and
orientation (middle) errors for tracking with gradient-based opti-
misation of the observation likelihood (emission in the figure) vs
our proxy objective (pred-to-obs in the figure). The dashed line
shows half of the agent’s size. The two methods have almost iden-
tical behaviour, but using our proxy objective is over 4 times faster
as illustrated in the runtime breakdown (right). Using voxel-based
emission models allows tractable rendering times, which is essen-
tial for our method. The rendering times of NeRF are prohibitively
high.

This figure has previously appeared in (Kayalibay et al., 2022).

5.4.2 TESTING NAVIGATION SUCCESS

For checking navigation success, we follow the guidelines of Ander-
son et al. (2018). The agent is assumed to have a body length of 0.2m.
Following that scale, the evaluation levels from fig. 8 all fit inside
a 114 x 11.4m? area. We consider a navigation task as successful if
the agent’s location is within a radius of Ay, Of the goal and if the
agent’s state estimate is within a radius of Aes of the goal. The latter
is the agent’s internal condition for having reached the goal, which is
more stringent because we expect the state estimate to contain some
error.

We sample 200 random navigation tasks. For each task, we sample
a starting state and a goal. These should maintain a minimal distance
of Asafe to any obstacle and they also have to be at a distance of Agtart
from each other to disallow trivial tasks. We use Success Weighted by
Inverse Path Length (SPL) as our evaluation metric, which calculates a
soft success rate, where every successful attempt is weighted by how
much longer the agent’s route was compared to the shortest path. In
other terms, the SPL for a set of navigation tasks ty.p1 is:

shortest(T;)
SPL(t1:m) = ; S(Ti)m-
Here, 8(t4) is a binary variable indicating the success of the task and
shortest(t;) and length(t;) are the length of the shortest path for the
task and the length of the path that the agent took.

We use three different levels of noise for the evaluation. Denoting
the length of the agent’s body with Apqy, these are:

* low noise. 05 = 3° and oy, = 0.1Ap04y

* medium noise. 0 = 6° and 0y = 0.15Ap,qy
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noise ours nomap dynamics
high 0.46 0.37 0.33
medium 0.79 0.51 0.52
low 0.92 0.61 0.61

Figure 10: SPL scores obtained by our method vs tracking without a map vs
tracking with the dynamics model alone.

* high noise. 05 = 9° and 0y, = 0.3Ap0qy

Under these conditions, we compare our method to two alternatives.
The first is a variant of our method where we use the previous obser-
vation for tracking instead of rendering from the map (which we call
no map). The second only uses the dynamics model for tracking. We
call this variant dynamics. The results of the comparison can be found
in fig. 10.

55 EXTENDING NAVIGATION WITH SPATIAL WORLD
MODELS

The control algorithm we have proposed has two conceptual issues.
The first is that the map needs to be learned offline. The second is its
opaque two-stage controller.

To address the first issue, we will make use of recent work by
Mirchev et al. (2022), where some ideas from earlier work (Kayal-
ibay et al., 2022; Mirchev et al., 2021) were combined and extended
to arrive at a real-time SLAM solution. The main challenge behind
online map learning and tracking is that learning the map via gradi-
ent descent is time-consuming. The only method capable of SLAM
with a differentiable renderer is by Sucar et al. (2021), which relies on
careful sampling of pixels for both tracking and mapping, as well as a
mechanism for maintaining a set of keyframes. The keyframes serve
a similar purpose as experience replay in a continual learning setting
(Rolnick et al., 2018).

Mirchev et al. (2022) approach the issue from a perspective of on-
line Bayesian inference and derive closed-form updates for the map,
which boil down to traditional Signed Distance Function (SDF) up-
dates (Curless and Levoy, 1996) and borrow ideas from approximate
inference on occupancy grids (Grisetti, Stachniss, and Burgard, 2005).
At the same time, they extend the tracking approach from section 5.2
into a fully-probabilistic filter. We will provide a pragmatic overview
of this method.

5.5.1 OVERVIEW OF THE FILTER

We use the PRISM algorithm proposed by Mirchev et al. (2022) for
real-time inference of the agent state and the map. The PRISM algo-
rithm extends the tracking algorithm from section 5.2 in two ways.



5.5 EXTENDING NAVIGATION WITH SPATIAL WORLD MODELS

First, the posterior distribution over the agent pose is approximated
using Laplace approximation of the proxy objective from eq. (18). In
other words, PRISM provides a full approximate posterior distribu-
tion, while the approach from section 5.2 only provides a maximum
a-posteriori estimate. PRISM also provides an approximate posterior
distribution over the agent’s velocity by linearising the transition func-
tion. Second, and more importantly, PRISM introduces closed-form
updates for the map given a pose estimate and its respective observa-
tion. These allow for real-time inference of the map variable, which
is crucial for real-time navigation in an unknown environment.

To explain how PRISM works in brief terms, let us revisit sec-
tion 5.2, where we introduced eq. (19), which is an optimisation prob-
lem that provides a maximum a-posteriori estimate over the current
agent location and 6-DoF orientation. From this point on PRISM, does
the following steps:

¢ The maximum a-posterior estimate, which we denote z* is ex-
panded into a filtering posterior q(z) = N(z | z*,Z}) through
Laplace approximation using the optimisation objective from
eq. (19).

¢ In addition to the location and orientation, a 6-DoF agent ve-
locity is estimated by linearising the transition distribution and
solving for the mean and covariance of the velocity for the cur-
rent time step using the previous pose and velocity distribution
and the current pose distribution, based on a joint Gaussian as-
sumption, which results from linearising the transition.

The current pose distribution is used to update the map. Here, in-
stead of using gradient descent, PRISM uses closed-form updates that
are similar to SDF updates (Curless and Levoy, 1996). More specifi-
cally, the map updates serve to approximate the posterior over the
map given all previous observations q¢(M) ~ p(M | x7.¢), which is
approximated through a recursive Bayesian update:

qt(M) = p(x¢ [ ze, M)qe—1 (M),

where q¢_1(M) is the distribution over the map from the previous
time step. The observation likelihood term is further approximated
through a proxy likelihood:

q¢(M) = q(M | z¢, x¢)qe—1 (M).

The proxy likelihood is a given by a Gaussian density over the map,
such that the product with the previous map results in a new Gaus-
sian density, whose mean and covariance can be found in closed form,
which turns out to be identical to an SDF update. A more detailed dis-
cussion can be found in the original paper by Mirchev et al. (2022).

5.5.2 NAVIGATION WITH MODEL-PREDICTIVE CONTROL

The approach reviewed in section 5.3 is quite common in map-based
navigation. A high-level planner produces a trajectory and a low-level
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controller follows it. The two components have fundamentally dif-
ferent jobs and can be seen as black boxes which expect a certain
input and promise a certain output. When reviewing the methods
presented in this chapter, a common trend is that we seek to replace
hierarchical algorithms consisting of isolated components with uni-
fied methods that optimise a common objective.

Note that the two-stage approach is difficult to modify or extend,
because it is unclear at which stage we would need to intervene to
change the system’s behaviour. For instance, we might want to in-
troduce constraints into the system which relate to both the agent’s
orientation and location. It is not possible to add these in the A*-
planner since it only uses location information. On the other hand,
only including the constraints inside the low-level controller might
not be enough, since the planner trajectory might require violating
constraints, which will require some mechanism for detecting that a
plan cannot be executed without violating constraints and re-planning
accordingly.

Fortunately, there is a family of controllers which rely on solving a
single objective and can handle constraints. In this subsection we will
derive a model-predictive control algorithm for navigation. The main
idea is that we can distill the trajectory planning done by A*-search
into a terminal cost function J(z) and then rely on optimisation to
traverse the resulting cost surface.

Our approach boils down to a constrained MPC objective of the
form:

T—1
arg min IEP(ZZ:lelzuhTfl) BT_]T(ZT) + Z Bt_]ct}’

uy:T-1
t=1

s.t. hj(z¢) < 0. (20)

Here, {h; (zt)}jf\i ; are state-constraints and the expectation marginalises
transition stochasticity. Note that the constraints are defined on ran-
dom variables since the future state is stochastic.

5.5.2.1 Finding the Terminal Cost

The most interesting part of eq. (20) is the terminal cost J(z). There are
a variety of approaches for learning or engineering terminal cost func-
tions. A popular method is to train a neural network, often called a
critic, which approximates the cost-to-go. Since we are interested real-
time control we will instead rely on dynamic programming. Finding
the cost-to-go of a stochastic shortest paths problem in continuous
space via dynamic programming is not possible. We will take a work-
around by approximating the true problem with a proxy system, a
method that is known as aggregation (Bertsekas, 2005).

Formally, we define aggregated state and control spaces Z and U.
The aggregated state space Z is related to the original state space
of yaw angles and xy-coordinates R® via the aggregation and dis-
aggregation probabilities. We can take uniform discretisation as an
example. Here, we take a subspace of R3 which correspond to our
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working space and discretise it along each dimension with uniform
grids. The probability of a true state z being aggregated into an ag-
gregate state 2 is then 1 if z falls into the bin corresponding to 2 and
zero otherwise. The probability of an aggregate state Z corresponding
to a true state z is similarly 1 if z is the centre of the subspace or bin
given by z and zero otherwise. This type of aggregation is known as
hard aggregation due to the binary aggregation and disaggregation
probabilities. We will introduce two functions A and D to denote the
process of aggregation and disaggregation. A(z) returns the aggre-
gate state Z which contains z, while D(z) returns the centre of the bin
corresponding to Z.

In simple systems, we can get away with cruder approximations.
We will consider both problems that can be explained by a unicycle
model, which allows rotating in place, and those involving a bicycle
model, where turning in place is not possible. For the former, we will
use a simpler aggregation scheme which only discretises the location
component of the state, while completely ignoring the orientation.
For the latter, we will discretise all state components to capture mo-
tion constraints more accurately.

The transition and cost functions in aggregate space can be defined
in different ways, depending on the type of aggregation used. In
any case, the transition probabilities depend on which parts of the
state space are free or occupied. We extract this information from
the map M, which is explained in the next section. The cost func-
tion of stochastic shortest path problem is a sparse indicator function,
which is zero only when within a certain radius of the target and
c > 0 elsewhere. We will generally use the same for the aggregate
space, though any additional cost terms can be included. These might
be motivated by favouring risk-avoidant behaviour like maximising
the distance to obstacles, that goes beyond simply avoiding collisions,
which is typically expressed as a constraint.

Given an aggregate problem, we find the cost-to-go over aggregate
space using dynamic programming. While this procedure requires
more computation than A*-search, it is highly parallelisable. In our
implementation we will enable real-time control by a parallelised
GPU implementation of value iteration. The cost-to-go over the ag-
gregate problem is either a 2D or a 3D grid of scalar values. We read
from this grid using bilinear or trilinear interpolation to define a con-
tinuous terminal cost J(z).

5.5.2.2 Constraints and Obstacle Avoidance

The constraints in eq. (20) serve the purpose of obstacle avoidance.
Given a state z, we define the constraint as a function of the distance
to the closest obstacle, and a safety threshold tolconst:

h(Z) = Aconst — S(Z)/

where §(z) is the distance to the closest obstacle. We can efficiently ob-
tain this quantity for a grid of locations using dynamic programming.
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Figure 11: (Top left) Top-down view of an environment. (Top right) Esti-
mated occupancy based on a partial exploration. Unseen loca-
tions have an occupancy probability > 0 (shown in grey). (Bot-
tom left) Obstacle constraints. (Bottom right) Cost-to-go resulting
from aggregation.

During planning, we read from the grid using bilinear interpolation,
analogously to how we read from the cost-to-go grid.

Because the future state Z; is a random variable due to the transi-
tion noise, the constraints need to handle stochasticity. We implement
this in different ways depending on the optimisation algorithm used
to solve eq. (20). We give more details on this in section 5.5.2.4.

5.5.2.3 Modelling the Transition

We model the transition dynamics using engineered models, since
there are well-understood models for the systems we work on. These
are the unicycle model and the kinematic bicycle model. In our sim-
ulated experiments, we use the same noise model as in section 5.4.
In our experiments on real hardware, there are a series of factors
that the bicycle model is agnostic to. Thus, the planning phase will
contain some amount of error in either case. We rely on the iterative
re-planning mechanism of MPC to account for these errors and on
the state estimator to keep track of the agent state.

5.5.2.4 Practical Model-Predictive Control

Many optimisation algorithms can be used to solve eq. (20). For dif-
ferentiable systems such as ours, gradient-based optimisation is par-
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ticularly attractive, since it can handle constraints via the augmented
Lagrangian method. At the same time, relying on gradient-based op-
timisation alone can be inefficient when aiming for real-time control.
We take a pragmatic approach and base our planner around a con-
strained version of random search. The benefit of random search is
that it can be parallelised, which is extremely efficient on modern
GPUs.

For constrained random search, we first sample a set of candidate
plans € = {u} ; ;}< ;. For each candidate plan, we take a Monte
Carlo estimate of the expectation in eq. (20):

K T—1
Lmpelulir_q,z1) = Y [BT71(25) + Y gtk
k=1 t=1

That is, for the same plan, we take K samples from the noisy transition
dynamics and average over their total cost.
For the constraints, we take a pessimistic estimate:

h(zl) = max h(z%).

ey

Under this definition, the set of valid candidates are:
Cvalia = Ul 1 |R(z}) <Owitht=2,...,Tandi=1,...,C}.

The best valid plan is then:

* : I
uj.r_;=arg min  Lppe(urt-1,27).
uy.7-1€Cualid

Meanwhile, the safest plan is:

-
ustfe | —arg min Zﬁ(zt).
upT1€C o

Finally, the constrained random search planner returns:

u?;T71 if C‘Bvalid 7& (D

uﬁ’fﬁ?_] otherwise.

CRS(uj.r_7,21) =

In other words, whenever a safe plan is found, we take the one with
the minimum total cost. When no safe plans are available, we take
the plan with the minimum constraints violation.

On robots with simple dynamics such as a unicycle model, we find
random search alone to be sufficient for control. For more complex
dynamics, we further refine the random search result with gradient-
based optimisation, which can be done fast since the initial plan is
already a good starting point.

As an illustration of constrained random search, we show results
from a toy system in fig. 12. Here, the agent starts in the top left
corner and has to navigate to the bottom right corner. The cost is the
Euclidean distance to the goal. The agent’s movement is perturbed by
zero-centred Gaussian noise, and it has to avoid a three-by-three grid
of circular obstacles.
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Figure 12: Multiple rollouts from a model-predictive controller using con-
strained random search. The agent must navigate from the top
left corner to the bottom right, while avoiding a field of obstacles.
Controls are 2D velocities, subject to zero-centred Gaussian noise.
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Figure 13: Overview of the small evaluation environments.

56 EXPERIMENTS ON PROCTHOR

In our previous experiment setup, we relied on ViZDoom, because
it allowed us to easily construct a set of realistically-proportioned
environments based on floor plans from an open source dataset. This
time, we will use the recently published ProcTHOR simulator (Deitke
et al., 2022). ProcTHOR features a much higher visual fidelity than
ViZDoom, while providing a set of algorithmically-generated living
spaces in varying sizes.

We take 10 small-scale and 10 normal-scale environments to test
our approach. These are shown in fig. 13 and fig. 14. In each envi-
ronment, we sample 10 random navigation tasks. Each task consists
of a start state and a goal coordinate. The two are picked to be at a
Euclidean distance of at least 1Tm for small environments and at least
4m in normal ones, to make sure the two settings consider navigation
tasks of differing complexity. As before, a task is only successful if the
agent is within a radius of A;each = 0.4m of the goal and has decided
that it has reached the goal. The agent does so only if the distance be-
tween its state estimate and the goal is less than Aest = 0.3m, where
the stricter threshold is intended to avoid false positives.

Within each task, the agent only receives the goal coordinate and
its initial state. Afterwards, it must rely on its state estimator to track
itself and learns the map simultaneously. As before in the ViZDoom
setup, we use a noisy version of the unicycle model inside the simu-
lator, while the agent uses the noiseless version for state estimation
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Figure 14: Overview of the normal-sized evaluation environments.

and planning. This time, we fix the noise scales at 2.86° and 0.02m.
Note that the problem is much harder this time since the map is not
known in advance.

5.6.1 QUALITATIVE RESULTS

We provide a bird’s-eye-view of one navigation task in fig. 15. The
middle panel shows the planning stage for one time step by zooming
into the corresponding part of the scene. Black contours separate re-
gions violating the safety constraint from free space. Starting from its
state estimate, the agent uses its transition model to try out a number
of control sequences in parallel. Plans violating constraints (shown in
orange) are discarded, and the best one among the rest (shown in red)
is picked. Only the first three steps of the plan are executed before re-
verting to planning again. The right panel shows the state estimate of
the agent versus the true state.

5.6.2 QUANTITATIVE RESULTS

We now turn to a quantitative evaluation of the navigation perfor-
mance. The navigation success rate of our method in each set of en-
vironments is shown in fig. 17. Our method achieves success rates of
89% and 77% in small and normal-sized environments.
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Figure 15: Bird’s-eye-view of a rollout. Left, the entire trajectory with
the goal shown as a pink star. Middle, one step of planning
stage. Valid plans are shown in blue, invalid ones in orange.
The selected plan in red. The borders between safe spaces and
constraint-violating areas are shown as black contours. Right, the
agent’s estimates for its x- and y-coordinates and its yaw angle
plotted against the true values.
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Figure 16: (Truncated) cumulative distribution functions for angle errors,
location errors and the minimum distance to any obstacle. For the
angle and location errors, we only show up to 9o% probability to
remove outliers and make the plots more legible.

scale success rate loc error  angle error violation rate

small 0.8944 £0.0097 0.16 £0.0lm 12.1£0.8°  0.003 +0.002
normal 0.7336 £0.0236 0.31£0.03m 15.8+1.5° 0.043+0.008

Figure 17: Metrics in each environment class.
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Figure 18: QCar experimental arena.

Aside from the success rate, we also examine the angle and location
estimation errors, as well as the constraint violation rate. Figure 17
contains the average angle and location error and the fraction of time
where the agent violated the constraints (that is, the agent’s minimum
distance to any obstacle was less than 1.7 times its radius). We find
that in small environments, the absolute location error is less than
the agent’s radius (which is 0.2 m), while in normal environments it
is slightly above. The average angle accuracy is similar in both classes.
In small environments, the constraint violation rate is less than 1%,
while in normal ones it increases to 3%.

To get a better understanding of these numbers, we report empir-
ical cumulative distribution functions of the state estimation errors
and the agent’s distance to the closest obstacle in fig. 16, taken over
both small and normal environments. For angle and location errors,
we cut the plot at the 9o% probability line, which lies at 10 degrees
and 0.4 m respectively. For the distance to the closes obstacle, we find
that the agent is farther away than any obstacle by two times its own
body radius with more than 96% probability.

57 EXPERIMENTS ON REAL HARDWARE

As a final test setting, we experiment with using the method on real
hardware. For that, we use a Quanser QCar 3, which is a small robot
car. The QCar is equipped with an Intel D435 depth camera and an
NVIDIA Jetson TX2 for computing. Though a LIDAR sensor and an
IMU are also available, we do not use these in our experiments.

We build a small arena for experimentation, shown in fig. 18. The
arena contains several objects which serve as obstacles. A set of Op-
tiTrack 4 cameras are mounted on the arena. These track markers
placed on the QCar, allowing us access to the location and orienta-
tion of the car. Figure 19 shows one of the OptiTrack cameras, along
with the QCar.

We learn a model of the arena using the RGB-D camera and poses
found by the OptiTrack. Afterwards, this model is used for planning
in a model-predictive control setup, where the transition dynamics
are modelled using the kinematic bicycle model. The kinematic bi-
cycle model works with forward velocities (that is, velocity in the

3 https://www.quanser.com/products/qcar/
4 https://optitrack.com/cameras/flex-13/
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5.7 EXPERIMENTS ON REAL HARDWARE

Figure 19: (Left) Optitrack camera. (Right) QCar. Markers placed on the
QCar allow tracking the car’s location and orientation through
the OptiTrack system.

Figure 20: (Left) Isometric view of the arena. (Right) Cost-to-go function
overlayed on an emission.

direction of the current heading). To translate the throttle control of
the car into a velocity, we manually found a throttle-to-velocity trans-
lation coefficient by looking at a data set of transitions.

Because the car’s dynamics are more complex than in the Proc-
THOR setup, we change the planner in two ways. First, the cost-to-go
function also considers the orientation of the agent, and not just the
location. Thus, the cost-to-go function is three-dimensional. Second,
we refine the result of the constrained random search algorithm with
gradient-based optimisation.

We examine how well the learned model lends itself to navigation
based on a set of 100 randomly sampled targets. The robot navigates
to each target one after the other. A human operator aborts the navi-
gation trial if the target is not reached within 30 seconds, and a new
target is sampled. In addition to navigation success, we also log each
time the robot makes contact with any of the obstacles.

We find that the method is able to navigate the agent to all 100
targets, while the QCar collides against an obstacle on 6 occasions.
Figure 21 shows a histogram of the speed of the QCar, which is 30
cm/s in average.
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Figure 21: (Top) Histogram of the QCar’s speed. (Bottom) Sample naviga-
tion tasks.
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State estimation errors are the largest vulnerability of the controllers
we saw in the previous chapter. When we rely on algorithms that
contain a lot of domain knowledge, we are able to solve complex
problems like mapping and motion planning with relative ease. The
catch is that our solutions require accurate estimates for quantities
like the agent’s orientation and location, and the configuration of the
obstacles in the scene. In anything but the simplest settings, it will
arguably be impossible to promise perfectly accurate estimates of all
system variable all of the time. In other words, when developing nav-
igation algorithms, we have to accept a base failure rate that results
from the SLAM-backend alone. The idea is that even if our planning
is optimal and we are able to guarantee constraint-avoidance, all bets
are off when the state estimate degenerates beyond a certain degree.
Beyond some level, the only way of improving the system’s perfor-
mance is to build better state estimation algorithms.

On the other hand, not all state estimation errors are unavoidable.
Each state estimator comes with its own set of pitfalls. Feature-based
tracking or tracking with photometric errors are sensitive to what
the camera sees. These approaches might fail if the agent spends too
much time looking at visually uninteresting objects such as blank
walls.

Usually, the controller does not reason about how its actions influ-
ence the state estimator. We see this in the model-predictive controller
used in the previous chapter. From the perspective of the planning al-
gorithm, its estimate of the system state is only a replacement for the
true system state at the beginning of the planning horizon. Neither
future observations nor future state estimates exist within the plan-
ning objective. This can lead to a controller check-mating itself by
planning a sequence of actions that are optimal in the cost-sense, but
dangerous for state estimation.

6.1 TAXONOMY OF POMDP-SOLVERS

Before we dive into the specific topic of reasoning about the relation-
ship between a controller that operates in state-space and its state
estimator, let us briefly review the myriad approaches available for
solving POMDPs, which is the more general task at hand. POMDPs
can be used to describe widely different settings and as such, meth-
ods developed to solve what can be described as a POMDP also differ
widely in their assumptions, strengths and drawbacks. Here, we will
go through the most prominent ones.

STATE-BASED CONTROL WITH A STATE ESTIMATOR By state-based
control we refer to any control law that can be described as a func-
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tion of the current state, z;. As the current state is not available in a
POMDP, we often use a state estimator to infer it. The controller is
then provided with either a deterministic state estimate (such as the
deterministic prediction of an RNN or the output of a deterministic
SLAM algorithm) or a stochastic state estimate. Where a stochastic
state estimate is concerned, we might either use the mode of a distri-
bution or take a sampling-based approach to reconcile the uncertainty.
A common example for this strategy was given in section 2.5, where
the limited-lookahead objective of MPC can be integrated over multi-
ple samples from the current state estimate. It is also possible to use a
parametric policy that was trained with full state observability, where
at execution we provide, for instance, the mean of a Gaussian state
estimate.

This family of approaches completely ignores the relationship be-
tween the state estimator and the controller. It can be well-suited to
tasks where it is possible to estimate the state based on a few subse-
quent observations (for instance image-based Mujoco environments).
It is unlikely to succeed in tasks where the controller has to actively
obtain some information that it needs to solve a task. One example is
a searching task where the agent is asked to find an object in a new
environment.

The assumptions of this approach depend on the implementation.
Where MPC is used, we assume that (a model of) the transition and
cost functions are known. Specific state estimators might make addi-
tional assumptions. For instance, in particle filtering, we assume that
(a model of) the emission function is known.

STATE-BASED CONTROL WITH A STATE ESTIMATOR IN AN AB-
STRACT STATE SPACE By abstract state space, we refer to a state
representation that is learned by a neural network. This is typically
the case when a deep variational state-space model is used to learn
an approximation of a POMDP based on interaction data which does
not contain the true system state, as decribed in section 2.7. At first
glance, this category is similar to the previous. However, as discussed
in section 2.9, the fact that an abstract state space is learned makes the
difference. The controller only has the limitations of state-based con-
trol in the learned POMDP, not necessarily in the true POMDP, which
we are actually interested in controlling.

As a thought experiment, let us imagine a scenario where by the
grace of stochastic gradient descent optimisation, a deep variational
state space model learns a state representation which exactly corre-
sponds to the true belief state. That is, the latent state of the learned
POMDP corresponds one-to-one to the true posterior density over
the state of the true POMDP. In this situation, state-based control in
the learned POMDP clearly corresponds to belief-based control in
the true POMDP and is therefore optimal. Unfortunately, we have no
way of characterising when and why such representations could be
learned, making it difficult to characterise the strengths and weak-
nesses of this method in the context of belief planning.
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Notable methods in this category are due to Hafner et al. (2019,
2020a,b, 2023) and Becker-Ehmck et al. (2020). Other successful meth-
ods do not use a model for policy search, but do learn an abstract
state space which is fed to the policy (Han, Doya, and Tani, 2020; Igl
et al., 2018; Lee et al., 2019).

As for assumptions, these method assumes access to interaction
data from the environment, but does not require the transition, emis-
sion and cost functions to be known, or for approximate models to
be available.

BELIEF PLANNING USING THE TRUE POoMDP  Here, we collect ap-
proaches which assume that the POMDP that should be solved is
fully-specified. That is, we have access to the true transition, cost and
emission functions. Based on these, we try to solve the POMDP with
belief planning. These approaches have a long history and can be
subdivided into exact and approximate approaches.

Exact belief planning refers to finding the optimal policy for the
POMDRP. This is only possible for some POMDPs. Astrém (1965) was
the first to give a mathematical treatment of POMDPs. Exact solu-
tions for POMDPs rely on the fact that the optimal cost-to-go function
is piecewise-linear and convex over the belief space (Sondik, 1971).
These approaches can be described by policy trees. A policy tree con-
tains sequences of controls and the different observations that they
might lead to.

The cost-to-go of a policy tree is often referred to as an «-vector
(Kaelbling, Littman, and Cassandra, 1998). The literature on policy
trees, a-vectors and efficient algorithms for exact POMDP solutions
has a long history (Cassandra, Littman, and Zhang, 1998; Kaelbling,
Littman, and Cassandra, 1998; Littman, 1996; Zhang and Zhang, 2001).
We will not discuss this literature in detail, because it is somewhat
isolated from the use-case we are interested in by how restrictive
POMDPs are. As an example, note that exact POMDP solvers are
typically limited problems with on the order of ten states (Roy, 2003).

Approximate optimal control (that is, sub-optimal control) is possi-
ble with different methods. These typically either restrict the number
of a-vectors (Parr and Russell, 1995) or the number of beliefs that are
considered (Pineau, Gordon, and Thrun, 2003). Beyond the challenge
of computing a value function over beliefs, representing beliefs them-
selves is often challenging. Thus, one direction of research presents
methods of approximate belief representations, typically through par-
ticles (Thrun, 1999). Combinations of particle filters and Monte Carlo
tree search have also been investigated (Silver and Veness, 2010). This
line of work has even been extended to continuous problems (Sun-
berg, Ho, and Kochenderfer, 2017; Sunberg and Kochenderfer, 2017).

Methods in this category generally assume access to the true tran-
sition, cost and emission functions or accurate models thereof. Many
of the methods in this category are also tied to a specific type of
state estimation algorithm, most notably particle filters. While recent
iterations have been shown to solve continuous problems they are
typically limited in the dimensionality of the observation space. As
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an example a typical benchmark problem in this field might feature a
robot with a LIDAR sensor (Garg, Hsu, and Lee, 2019; Wu et al., 2021),
compared to a model-based RL method where most benchmarks fo-
cus on image-based observations.

LEARNING RECURRENT PARAMETRIC POLICIES By recurrent para-
metric policy, we mean any parametric model where the output is a
function of the entire interaction history. This is typically a recurrent
neural network. We focus on the type of policy used rather than the
learning algorithm, as the former is more important for our purposes.
This family of approaches can include an RNN policy that is trained
via a policy gradient algorithm, or one that is trained on a world
model on observations generated by the model. The main point is
that the policy has to internalise state estimation.

Examples for works in this category are the approach of Ni, Ey-
senbach, and Salakhutdinov (2022), which uses model-free RL. Meth-
ods such as Stochastic Latent Actor-Critic (SLAC) (Lee et al., 2019),
Deep Variational Reinforcement Learning (DVRL) (Igl et al., 2018) and
Variational Recurrent Model (VRM) (Han, Doya, and Tani, 2020) are
hybrid model-free model-based approaches which train recurrent net-
works.

This family can theoretically do optimal control, as the policy is
a function of the interaction history. On the other hand, the success
is highly dependent on many factors such as the sparseness of the
cost, the ease at which new data can be collected or the length of
memory necessary. These approaches generally assume that we can
collect copious environment interaction data, similar to world model-
based reinforcement learning, but potentially more intensive as the
task of policy search also includes learning a state estimator.

TASK- OR STATE-ESTIMATOR-SPECIFIC SOLUTIONS Inmany cases
a specific instance of a POMDP is interesting enough to justify a task-
specific solution. Navigation is one example, where the entire field of
SLAM can be seen as a task-specific POMDP solver. Many approaches
try to model the relationship between a controller and its state esti-
mator in the context of navigation.

Coastal navigation (Roy et al.,, 1999; Roy and Thrun, 1999) is an
approach aimed at improving state estimation in map-based nav-
igation. In the domain of Kalman filtering, belief roadmaps are an-
other navigation-oriented approach, which has been deployed with
an Extended Kalman Filter (EKF) (Prentice and Roy, 2009) and an
Unscented Kalman Filter (UKF) (He, Prentice, and Roy, 2008) and in
conjunction with constrained optimisation Zheng et al. (2021).

Aside from these, there is a great deal of research on the subject of
state-estimation-aware control with Kalman filters. A number of these
works use the tractable properties of Gaussian distributions to derive
value learning algorithms (Berg, Patil, and Alterovitz, 2021; Platt et al.,
2010; Todorov, 2005). Others use the easily quantifiable uncertainty of
Gaussian beliefs to derive constraints or auxiliary objectives (Bohm,
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2008; Hovd and Bitmead, 2005; Rafieisakhaei, Chakravorty, and Ku-
mar, 2017; Rahman and Waslander, 2020).

The main drawback of these methods is their attachment to a spe-
cific state estimation algorithm (Kalman filtering) and a specific task
(navigation). On the other hand, focusing on specific problems allows
them to be applicable more challenging and realistic scenarios (for in-
stance, real hardware) compared to the other approaches.

6.2 CONTROL AND STATE ESTIMATION

Among the many approaches listed in section 6.1, the first one is the
most relevant to us. Specifically, we are interested in the case where
MPC is combined with a state estimator. The chief drawback of this
family of controllers is that the control law does not reason about
its influence on the state estimator. Nonetheless, such a controller
might be preferable over the other approaches depending on the task.
For navigation, as an example, a model-predictive controller powered
by a SLAM-backend is a general solution that can be used in any
environment. Learning a parametric policy, on the other hand, would
require collecting lots of data from many environments. If we could
combine the generality of MPC and state estimation with a means for
reasoning about beliefs, we could arrive at the best of both worlds.

Before describing our approach, we will first describe the relation-
ship between a model-predictive controller and its state estimator
mathematically. For a sound mathematical formulation of the prob-
lem, we must extend the state space of the task by any variables that
factor into the state estimation algorithm. For these variables, we had
introduced the concept of the carry in section 2.5, denoted by h.

When we approach a partially-observable system with a specific
state estimator, an optimal controller has to think about how state
estimation will behave in the future depending on the controls. For-
mally, we can define a new POMDP where the state is expanded by
the carry: z" = [h,z]. Given a system state z¢, a state estimator carry
h; and a control uy, the dynamics of the new POMDP combine tran-
sition, emission and state estimation:

(hiy1,z¢11] NP(Z:__._] | ZEL = [hy, z¢], uy),
Zip1 ~P(Zeg1 | ze,ue),
Xe41 ~ P(Xeq1 | Zeg1),

hip1 =qlhepr [ X1, he, uy).

We use the notation h(h’ | x,h, u) to denote the state estimation step,
where the carry is updated based on new data, analogous to sec-
tion 2.5. Our exposition here is just a slightly different version of
the classic Belief MDP formalism from section 2.4. The point where
we diverge is that we do not assume the state estimation step is a
Bayesian posterior update or that the belief is expressed as a density
over the state space. This was true of the state estimator from sec-
tion 5.4, and generally of any map-based navigation system which re-
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lies on a SLAM-backend as a black box that provides estimates about
the environment and the agent state.

More importantly, the carry h; is not necessarily a sufficient statis-
tic of the interaction history Iy = x7,u7,x2,u2,...x¢. It is merely the
internal state of an imperfect state estimator. Our goal, likewise, is not
to solve belief planning, but to gain intuition about how a controller
that is aware of its own state estimator would look. The emission
function of the new POMDYP, is a concatenation of the original obser-
vations and the state estimate:

[x¢, hel ~ P(Xt;ht | Zf = [Zt;ht])~

Naturally, an optimal controller would consider either the entire inter-
action history I; or a sufficient statistic thereof. In our case, however,
we are interested in policies that only work with the carry hy. Specif-
ically, we are interested in the best policy that can be derived while
using only the carry. We can start by writing down the expected total
cost-to-go, assuming an infinite horizon:

Jhy,z) =E[ Y B e,
t=1
zy ~P(zt [ Ze—1,ue 1),
xt ~p(xt | zt),
hy = q(h¢ [ x¢, he q,ue1),
uy = 7i(hy),

¢t ~plee [ ze,uy),

for t > 1 and u; = m(hy). Note that the policy is penalised based on
z. but only sees h;. Decision-making now requires reasoning about
the dynamics of our knowledge about the system as much as it does
about the evolution of the system itself.

To make this more concrete, let us consider an absurd example.
We have a navigation task where we estimate the agent state using
an RNN which receives the agent’s camera feed. On one wall in the
environment there is a poster which contains an adversarial attack
on the RNN, which causes it to completely misestimate the agent’s
location. Feeding this faulty estimate into a planner causes the agent
to collide with a wall and breaks it. In this setup, the cost-to-go J(h, z)
of the RNN state in front of the adversarial poster would capture
this hiccup. Thus, any planner that has access to the cost-to-go could
detect the problem and avoid looking at the poster.

6.3 BELIEF PLANNING AND MPC

If we implement the policy 7 with vanilla MPC, this is the same as
optimising;:

T—1
Eq(z ) []Ep(zz;ﬂz],unm) BT zr) + ) BHCtHI (21)
t=1
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as introduced previously in section 2.5. It is easy to see that this op-
timisation objective does not reason about future observations—they
never appear in the objective. To gain more intuition, let us consider
a POMDP where using a certain control allows us to observe the true
state of the system in the next time step. MPC would never select this
control (except by chance under some stochastic optimisation algo-
rithm), because it does not influence the objective.
We can extend eq. (21) using the state-carry terminal cost:

T—1
IECI(Zl [hy) [IEP(ZZ:lelruI:T—1) BT_1 T(ZT’hT) + Z Bt_] Ct”' (22)
t=1

Note that zt is still not the true state but derived from the initial state
estimate using the transition model. Computing the future carry ht
requires computing all previous observations and carries x1.1—1, hy.7_1.
Our goal here is to see what the platonic ideal for a state estimation-
aware controller would be. In practice, eq. (22) is infeasible for mul-
tiple reasons. First, the state-carry value is not straight-forward to
compute. Second, computing future observations and carries during
planning inflates the cost of planning.

At this point, we return to our original goal of mitigating tracking
failures. Belief planning is the gold standard in acting under partial-
observability because it finds an optimal trade-off between reducing
the task cost and managing information. That includes computing all
the myriad ways in which information influences future costs. Solv-
ing a task might require gathering information. There might be cases
in which not having a piece of information is fine, because the optimal
action in any possible case is the same. In short, belief planning has
to consider every possible interaction between a controller’s expected
future cost, and the information available to the controller.

By comparison, preventing state estimation errors is a far smaller
ambition. Another way of describing our goal is information preser-
vation. Depending on the type of state estimator, we can imagine a
measure of the accuracy of state estimate and placing a threshold on
it. We would like to behave in such a way that prevents the accuracy
of the estimate from falling below a certain level. This is potentially
much simpler, because we are not reasoning about the complete belief
dynamics into the future, but only about the accuracy of the belief.

6.4 OVERVIEW OF THIS CHAPTER

In the remainder of this chapter, we will provide a mathematical treat-
ment of the expected future accuracy of a state estimator under a
controller, which we call trackability. We will then present filter-aware
MPC, which transforms the MPC objective into a constrained opti-
misation problem by placing a constraint on trackability. Thus filter-
aware MPC tries to minimise expected future cost, while guarantee-
ing a minimum level of state estimation accuracy.

We will show that trackability itself is the cost-to-go of the con-
troller under a different POMDP, where the cost is the instantaneous
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state estimation accuracy for each time step. Taking this view will
allow us to learn trackability via standard function approximation
techniques for value learning, given a data set of environment inter-
actions. Finally, we will work around the issue of computing future
beliefs during planning by resorting to an approximation.

We will demonstrate filter-aware MPC on a set of control tasks with
different levels of difficulty. Each control task requires the controller
to avoid certain conditions which lead to poor state estimation ac-
curacy. Under these conditions, we will show that filter-aware MPC
improves regular MPC, while performing either on part with or better
than baselines capable of reasoning about future observations.

In addition to an experimental evaluation, we will also provide
a discussion of the limitations of filter-aware MPC and draw com-
parisons to other belief planning approaches, as well as examine the
added complexity over regular MPC.

6.5 FILTER-AWARE MPC

We aim to improve MPC by letting it distinguish between actions not
just in terms of how much they reduce the cost, but also how they
influence the belief. We want to find out the future accuracy of the
state estimate under different plans and put a constraint on that value
such that we only pick plans that guarantee a certain level of accuracy.

We have an urgent need to formalise the meaning of state estima-
tion accuracy. First, we introduce €(z¢, h¢), which is the instantaneous
error of the state estimator. It is a function of the current state esti-
mator carry h; and the true system state z;. The implementation of
€(z¢, h¢) will depend on the specific state estimator. Typically this is
a straightforward choice. If the state estimator returns a probability
density function over the state space, then the error can be the nega-
tive log-likelihood —log q(z¢ | hy). A Kalman filter, for instance, falls
under this category, since its state estimate is a Gaussian distribution.
For state estimators that return a point-estimate, we can take the sum
of squares.

We can take the expected total of this instantaneous error, starting
from a specific state z and carry h:

Jr(z,h) = E| ) B 'e(zi,hi) | z1 =2,hy =h], (23)
=1

where the expectation is over both the transition and the emission
noise and the controls are picked by some policy 7. Future tracking
errors are discounted by 3 € (0,1).

We define J*"(z,h) as the trackability of z under the policy 7 and
the carry h. Using this notion of expected state estimation accuracy,
we can extend eq. (27) with a constraint on the trackability:

min By g n | M),

Ug:t+K—1

s.t. Pr(]err(Zt+t,ht+i) < 6) >A for i=1,2,...,K. (23)
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Here, 6 is a threshold which defines how much tracker error we are
willing to tolerate and A is a minimum probability of satisfying this
condition that we wish to guarantee. The sudden appearance of the
chance constraint (Farina, Giulioni, and Scattolini, 2016) in eq. (24)
might be surprising. We formulate the constraint in terms of a prob-
ability because under stochastic dynamics, the future state z{; is
random variable, and therefore its trackability is a random variable
as well.

We refer to eq. (24) as filter-aware model-predictive control. Filter-
aware MPC minimises the expected total cost while avoiding any
plans that do cannot guarantee accurate state estimation with high
probability. There is, however, a slight problem with eq. (24): evaluat-
ing the constraint requires computing the future state estimator carry
h¢, . This places the computational cost at a similar point to regular
belief planning. That is, we are spending the same amount of compu-
tation as belief planning, but are not even reaping the benefits of that
effort fully.

Luckily, we can use a sensible approximation to reduce the effort
drastically. In eq. (24), we can replace J*"(z¢,h¢) with J*"(z¢, hj ).
That is, instead of checking the trackability with a sample of the fu-
ture carry, we simply check how well state estimation can be done
starting from z. if the state estimate at that time is perfectly accu-
rate. One way of looking at this is that we ignore state estimation
errors that have happened in the past, and only reason about ones
that will happen in future time steps t’ > t. An important benefit of
using J*"(z¢, h;, ) is that we can drop the conditioning on h;, entirely,
since h;, is uniquely identified by z. In the remainder, we drop the
conditioning on h; and set |*"(z) := ]*"(z, h} ) for brevity.

The benefit of formulating trackability as a function of the state
alone becomes clear when we consider that we will use a multi-layer
perceptron (MLP) to model J*"(z). Since eq. (23) readily has the form
of a cost-to-go, we can learn an MLP that approximates J*"*(z) using
standard techniques for approximate dynamic programming. Specif-
ically, we use TD(A) (Sutton, 1988) to learn an MLP ¢ that approxi-
mates trackability.

6.5.1 LEARNING TRACKABILITY

Using the state estimator, we collect interaction data with a regular
MPC policy. Here, we record the instantaneous system state z{, and
state estimation error ey = €(z¢, ht) into a dataset of the form: D =
. . N
Zyr e i
Given D, training the neural network via TD(A) corresponds to:

mmZ — 7o (Z5 A, )2, (25)
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where ]e”(z] ; A, ¢) is the A-return of z] defined as:

]Crr(z1/)\ (1) Z)\k 1 crr llcb)l

k=1

(2L, Zﬁt ey + B d(zf, ).

6.5.2 A PRACTICAL IMPLEMENTATION OF FILTER-AWARE MPC

Once the trackability net ¢ has been learned, any optimisation algo-
rithm that can handle constraints can be used to optimise eq. (24) by
replacing J*"(z¢.i, hii) = ¢(zri). We use the same optimisation
algorithm that was presented in section 5.5.2.4. While this does not
guarantee that the trackability constraints will be satisfied all the time,
we believe that being overly conservative with these constraints is un-
necessary. That is because sporadic dangerous actions are unlikely to
result in immediate tracking failure. At the same time, in section 5.6
we have observed the simple constraint-handling of random search
to perform well enough for obstacle avoidance and therefore see it as
a good fit for this task as well.

6.6 EXPERIMENTS
6.6.1 TOY SCENARIO

We start with a toy experiment that demonstrates our ideas in a sim-
ple setting.

We visualise this problem in fig. 22. We have a 2D agent that tries
to reach the green box on the western side of the room. The cost is
the distance to the goal zone and the agent can observe its location
with some additive Gaussian noise that is significantly higher inside
a circle in the center (marked by the grey circle in fig. 22 left column).
The agent can control its velocity subject to additive noise.

First, we simplify the problem such that the observation noise is
constant with a scale of 0.03 over the state space. The simplified prob-
lem can be solved by a model-predictive controller using a bootstrap
particle filter for state estimation. The success rate comes out at 93%,
shown in the bottom right panel of fig. 22. Transferring the same con-
troller to the harder problem, where the grey circle has an observation
noise of 1.0, wee see that the success rate drops to 39%. That is be-
cause vanilla MPC greedily minimises the cost by taking the shortest
path, which directly leads into the grey circle, where state estimation
promptly fails. At that point, the controller cannot recover, because
its state estimates are not informative enough for planning.

To apply filter-aware MPC on this system, we first create a dataset
of 500 rollouts with 30 time steps with the vanilla MPC policy. We
then use this dataset to learn the trackability network, the output
of which is shown in the top right panel of fig. 22. We can see that
the learned trackability function can clearly separate safe and unsafe



6.6 EXPERIMENTS 79

Trackability

x ‘
. / ( \ A .
Success rate: 0.39 vs 0.93

easy vanilla filter-aware rnn

o ©
[®)} oo

<
~

success rate

<o
o

filter-aware 0.0

Figure 22: Toy scenario of a 2D particle aiming for the green region on the
left starting from the right. The grey circle is a "dark zone" with
higher observation noise. First row, left: A random walk. First
row, right: Learned trackability. Second row, left: Filter-aware vs
vanilla MPC. Second row, right: Success rates of vanilla MPC on
an easy system with no grey zone, vanilla MPC, filter-aware MPC
and an RNN policy.

This figure has previously appeared in (Kayalibay et al., 2023).
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areas. Placing constraints on the network’s predictions, we see that
the agent can avoid the grey circle in favour of a slightly longer but
safer route, shown in the bottom left panel of fig. 22.

For this experiment, we consider an RNN baseline, as shown in the
bottom right panel of fig. 22. We use a differentiable implementation
of the system dynamics, emission and cost to train the RNN by gradi-
ent descent to minimise the total cost over 50 time steps. Note that the
RNN can implement belief planning, since it sees the entire interac-
tion history, though this is dependent on the optimisation procedure
converging to the right solution. Filter-aware MPC outperforms both
regular MPC and the RNN and performs as well as regular MPC did
on the easier version of the problem with no grey circle.

6.6.2 NAVIGATION IN VIZDOOM

We now turn to a visual navigation problem, which uses the ViZ-
Doom simulator (Wydmuch, Kempka, and Jaskowski, 2018). Here,
we use the same state estimator that was used in section 5.4, with the
exception that the learned emission model is replaced by the actual
simulator, since our focus here is to learn a trackability critic and use
it for control.

The ViZDoom environment has two rooms that are connected by
two corridors. The agent is placed in a random location in one room
and must go to a random location in the other room. It can see the
world with an RGB-D camera and moves by picking a turning angle
and a speed which is applied along its facing direction. These controls
are perturbed by noise, making the dynamics stochastic. We show a
sample RGB image in fig. 23 top right.

To introduce a danger against state estimation, we turn off obser-
vations in the left corridor. That is done by setting the RGB-D ob-
servation to zero. Thus, the agent can only track its state using the
transition model once it enters the left corridor. The top left panel of
fig. 23 shows how navigation with vanilla MPC fares under these con-
ditions. Selecting either corridor with equal frequency, vanilla MPC
ends up reaching the target only 48% of the time.

Once again, we learn the trackability function, which is shown in
the bottom left panel of fig. 23. Since the trackability function clearly
identifies the left corridor as a danger zone, filter-aware MPC is able
to avoid that region of the state space entirely, increasing the success
rate to 64% . As a theoretical upper bound of performance, we check
the success rate of vanilla MPC when both corridors are safe, which
lies at 69%.

663 ORBITING IN A REALISTIC ENVIRONMENT

The experiments so far take place in environments where there is
a specific danger to state estimation that is somewhat artificially in-
serted into the setup. Our goal here was to verify that trackability can
clearly delineate safe and unsafe areas. Having a visually-identifiable
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Figure 23: ViZDoom Setup. The agent starts in one room and must reach
the other. First row, left: Vanilla MPC picks the left corridor where
observations are corrupted. First row, right: Sample observation.
Second row, left: Learned trackability function and filter-aware
rollouts. Second row, right: Vanilla MPC on an easy problem
where both corridors are safe vs vanilla MPC on the more dif-
ficult problem vs filter-aware MPC on the more difficult problem,
where the left corridor corrupts observations.
This figure has previously appeared in (Kayalibay et al., 2023).
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Figure 24: Orbit task. Left: Top-down view. The agent must follow the green
landmarks. Blue is the average vanilla MPC trajectory, purple the
filter-aware one, grey the ORB baseline. Right: Box plots for state
estimation errors.

This figure has previously appeared in (Kayalibay et al., 2023).
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Figure 25: Orbit task. Top: The naive strategy looks directly at the reflec-
tive surface, causing tracking failure. Bottom: Filter-aware MPC
avoids looking at the reflective surface.

This figure has previously appeared in (Kayalibay et al., 2023).

region of state space that is more dangerous than the rest is helpful for
that. For a more realistic setup, we turn to the AI2-THOR simulator
(Kolve et al., 2017) which features models of realistic living spaces.
Real-life environments naturally feature many situations that pose
a difficulty for a state estimator working with images, most promi-
nently featureless walls, glass and reflective objects. Our goal now
is to check whether trackability is still helpful in a setting where the
conditions that lead to poor state estimation accuracy are more subtle
than a clearly defined danger zone. For that, we consider the task of
following a fixed trajectory in a room.

A top-down view of the room is show in fig. 24, where the green
markers show landmarks that the agent tries to follow. The agent’s
observations are once again RGB-D images and we use the same state
estimation algorithm as in the ViZDoom experiments. The movement
dynamics of the agent are similar to the ViZDoom setup as well, with
one exception. The agent can now also control the facing angle of its
camera, independently of its motion. The camera’s viewing angle is
not subject to any cost and is made to face the movement angle of the
agent when we use the vanilla MPC policy. Note that vanilla MPC
itself would not have any preference for moving the camera, since
it does not enter into the dynamics of the body or the cost function.
We face the camera in the movement direction because it is a sensible
default strategy.



6.6 EXPERIMENTS

The eastern wall of the room features reflective surfaces, which
hamper the state estimator’s ability to keep track of the agent’s state.
Ideally, the trackability function should then be able to tell use that
we should not point the camera towards these. We once again learn
the trackability from rollouts collected by an MPC policy. Using the
learned network in filter-aware MPC, we see that the agent is able to
avoid looking at the reflective surfaces. This behaviour is compared
to the default strategy in fig. 25. Here, the agent starts out looking at
the table at the centre of the room. As it tries to navigate around the
table, the default viewing angle is to face the reflective surface. Filter-
aware MPC successfully avoids doing so, instead looking at the table
which contains many interesting features that aid in state estimation.

Our main baseline for this experiment is a model-predictive con-
troller which uses ORB features (Rublee et al., 2011) as a proxy for
expected state estimation accuracy. More specifically, we train a neu-
ral network to predict the number of ORB features that in a given
camera pose. This number is then used as a constraint for control,
similar to how filter-aware MPC constrains trackability. This baseline
was inspired by methods that are geared towards visual navigation
(Falanga et al., 2018; Rahman and Waslander, 2020). Generally, the
amount of ORB features correlates with how informative an image is
in terms of state estimation. If the camera is pointed towards a blank
wall, the number of features will be very low. If we instead point the
camera towards the centre of the room, the resulting image will con-
tain more features. We additionally compare against regular MPC as
before.

In fig. 24 we draw a comparison between the three methods in
terms of state estimation errors based on a set of 100 rollouts of
length 200. Both the ORB baseline and filter-aware MPC improve
significantly over the vanilla strategy, with the filter-aware controller
performing the best in terms of state estimation. We show average
rollouts for each method in fig. 24. Both the ORB baseline and filter-
aware MPC complete the course, with filter-aware having a slight
edge.

664 PLANAR TWO-LINK ARM WITH OCCLUDED REGIONS

Most of our experiments focus on navigation-like tasks in settings
that approximate spatial environments to varying degrees. For our
final experiments, we seek to illustrate the fact that filter-aware MPC
is not tied to navigation problems or spatial environments. To do
that, we use a two-link robot arm that tries to reach random targets,
based on the Brax (Freeman et al., 2021) implementation of the classic
reacher environment.

The reacher agent’s observations are joint angles and velocities and
the offset from the tip of its arm to the target. If any part of the arm
moves into the left half of the work space, the agent’s observations
are set to zero. We add noise to the controls of the agent and use a
particle filter for state estimation. As before, we learn a trackability
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Figure 26: Reacher task. Left: Box plots. “easy” is vanilla MPC used on an
easier problem. Middle: Top-down view. The circle shows a ra-
dius of 0.05 around the target. Observations are missing beyond
the dashed line. The colour indicates trackability. Right: A filter-
aware (green) vs a vanilla rollout (orange) in configuration space.
The ellipse shows a radius of 0.05 around the target. Vanilla MPC
enters the danger zone and loses track of itself.

This figure has previously appeared in (Kayalibay et al., 2023).

network, which is shown in fig. 26, both in the work space and in
the space of joint angles. We find that the network is able to separate
the left half of the work space. Using this information, a filter-aware
controller is able to avoid the areas that lead to poor state estimation
accuracy, while vanilla MPC enters into the dangerous part of the
state space and thereafter loses track.

We compare filter-aware MPC, vanilla MPC and an RNN policy in
tig. 26. The RNN policy follows the implementation of Ni, Eysenbach,
and Salakhutdinov (2021). Both the RNN policy and filter-aware MPC
improve over vanilla MPC, though the RNN has an edge here. We
also present the performance of vanilla MPC in an easy setup where
observations are available everywhere. Note that the RNN policy per-
forms better than vanilla MPC even when vanilla MPC is used on the
easy problem. This suggests that the performance gap between filter-
aware MPC and the RNN might be due to the difference between
MPC and amortised policy learning. In other words, MPC itself ap-
pears to be at a general disadvantage compared to an RNN policy in
this problem.

6.7 DISCUSSION
6.7.1 COMPARISON TO OTHER POMDP METHODS

In the following, we will compare filter-aware MPC to each of the
method families discussed in section 6.1.

STATE-BASED CONTROL WITH A STATE ESTIMATOR  Filter-aware
MPC builds on top of this family of methods by extending it with a
trackability constraint, which strives to guarantee a minimum of state
estimation accuracy. Unlike regular MPC and related approaches, filter-
aware MPC is able to reason about the influence of the controller’s in-
fluence on the state estimator, giving it an edge in applications where
state estimation failures are critical and can be avoided by picking the
correct controls.
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As for assumptions, filter-aware MPC makes the same assumptions
as regular MPC, that (a model of) the transition and cost functions are
known. Additionally, filter-aware MPC requires a dataset of environ-
ment interactions to learn the trackability function from. In terms of
computational complexity, filter-aware MPC is minimally more ex-
pensive than regular MPC, as it needs to evaluate the trackability
function in each planning step.

STATE-BASED CONTROL WITH A STATE ESTIMATOR IN AN AB-
STRACT STATE SPACE  While model-based RL in abstract state-space
can theoretically recover belief-planning-like behaviours, there is no
guarantee that this will happen. As such, neither method performs
belief planning. At the same time, model-based RL has been applied
to complex problems which are out of the scope of filter-aware MPC
(Hafner et al., 2023).

On the other hand, many other problems are more easily solved by
model-predictive control with engineered models and state estima-
tors. SLAM-based navigation is one example. It is unclear if model-
based RL can solve such problems, due to the high complexity of
real-life environments. In these cases, filter-aware MPC is still appli-
cable.

As for assumptions, both methods rely on learning from environ-
ment interactions. One critical difference that the model-based ap-
proaches are aimed at online learning, while filter-aware MPC is more
suited to learning from a static dataset.

BELIEF PLANNING USING THE TRUE PoMDP Filter-aware MPC
does not do belief planning. Instead, it tries to maintain the accuracy
of the state estimate. The implicit assumption here is that a minimum
level of accuracy is necessary to solve the task. At the same time,
filter-aware MPC learns trackability as a function of the state only,
and not as a function of the state and the state estimator carry. While
this allows efficient planning, it further limits the applicability of the
approach to problems where state estimation failures are caused by
local features in a region of the state space.

As a counter example, take a simplified version of the Heaven and
Hell system by Thrun (1999). In this system an agent in a 2D room
must go to either the upper left or bottom right corner. At the be-
ginning of a rollout, one of the corners is selected as the target, and
the opposite becomes a danger zone with high cost. The agent can
only observe which corner is heaven and which is hell when it is in
the upper right corner. In all other locations, it can only observe its
own location. This problem cannot be solved by filter-aware MPC,
because we explicitly avoid modelling transitions in belief space and
learn trackability as a function of the system state only (and not as
a function of the system state and the carry). According to trackabil-
ity, the only safe region would be the upper right corner, where the
agent can observe the location of heaven and hell. That means the
agent would be able to solve the first part of the problem (finding out
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where the target is), but it would be unable to leave the upper right
corner and actually go to the target because of the constraints.

At the same time, filter-aware MPC has some advantages over be-
lief planning. First, belief planning approaches that are applicable to
continuous domains are typically limited to particle filtering, while
filter-aware MPC does not make any assumptions about which state-
estimator is used. Second, filter-aware MPC does not assume the
emission function is known. We only assume that a dataset of in-
teractions is available. Finally, filter-aware MPC is applicable to much
higher-dimensional observation spaces than belief planning, image-
based tasks being one example.

LEARNING RECURRENT PARAMETRIC POLICIES  Both approaches
learn from environment interactions. Recurrent parametric policies
try to solve an optimisation problem that might be harder than that
of filter-aware MPC, as they need to learn both decision-making and
state-estimation. Filter-aware MPC learns neither. Instead, we learn
the expected future state estimation accuracy.

Control with recurrent parametric policies is theoretically more
widely applicable, but similarly to model-based RL this applicability
is curbed by the ease of data collection in many tasks.

TASK- OR STATE-ESTIMATOR-SPECIFIC SOLUTIONS Filter-aware
MPC is closely linked to approaches like coastal navigation. The main
difference is that we assume the presence of a dataset to learn the
trackability function. At the same time, filter-aware MPC is slightly
more general than the approaches in this category. It does not make
any assumptions about which state estimator is being used and also
is not limited to any particular task. However, as mentioned earlier,
we are limited to problems where state estimation errors arise from
features that are particular to regions of state space, such as the pres-
ence of a reflective surface at one part of the environment.

6.7.2 LIMITATIONS

In the following we will discuss several critical points and limitations
of our approach.

LEARNING TRACKABILITY CONSTRAINTS. While our experiments
show filter-aware MPC outperforming regular MPC in each case, in
practice this requires taking care with the trackability function and
the constraints. Since filter-aware MPC solves a constrained optimisa-
tion problem, we need to ensure that the constraints are not too strict.
Otherwise planning will fail. In practice this means that the constraint
thresholds have to be picked carefully. Our experiments feature envi-
ronments where the state space is low-dimensional, such that the con-
straints can be easily visualised, which allows picking constraints by
visual inspection. In higher-dimensional problems thresholds might
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method operations
state planning J+h*m*(D+C)
filter-aware planning J+h*m*(D+C+T)
belief planning J+h*m*(D+C+E+F)

Table 1: Operations involved in planning. The letters denote evaluations of
D - the dynamics model, ] - the terminal cost, C - the stage cost,
T - the trackability network, E - the emission model, F - the state
estimator. The planning horizon is denoted by h, and the number
of MC samples used to estimate expectations is denoted by m.
A similar table has previously appeared in (Kayalibay et al., 2023)

need to be picked by hyper-parameter searching, which is more cum-
bersome.

At the same time, learning the trackability function can be chal-
lenging. In our expreiments we relied on environment interactions. It
would be much more practical to learn trackability based on model
simulations, similar to how we learn policies and value functions in
model-based RL. The challenge here is that this requires being able
to model emissions to an accurate enough degree that the interaction
between the state estimator and the observations it receives behaves
the same as in the real world. If we take the example of the orbiting
task, this requires modelling the reflective surface well enough that
it throws off the state estimator in the same way as the real reflec-
tive surface does. While we have seen enormous leaps in the visual
fidelity of differentiable renderers (Miiller et al., 2022), it is unclear if
it is possible to use these for learning trackability.

COMPUTATIONAL COST. We break down the steps involved in
state planning (that is, regular MPC), belief planning and filter-aware
planning in table 1. The cheapest of the three is state planning, where
we only query the dynamics model and the cost function, in addi-
tion to the terminal cost for the last step. In belief planning, every
time step also includes at least one evaluation of the emission model
and at least one evaluation of the state estimate. Filter-aware MPC
does not evaluate the emission and the state estimator, but instead
evaluates a trackability critic.

What does this imply in practice? This depends very much on the
use case. In a low-dimensional system with simple dynamics that can
be summarised in a few lines of code or math, we can expect the dy-
namics model and the cost function to be very cheap. This is true of
systems like the pendulum or our toy task. Here, filter-aware MPC
might be significantly slower than vanilla MPC, as evaluating a neu-
ral network is much more costly than computing the next state of a
pendulum. On the other hand, if the dynamics and cost are modelled
with neural networks or when more complicated physics simulators
are involved, we can expect the additional cost of evaluating a neural
network to be minimal.
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method toy aizthor reacher

vanilla 192Hz 28Hz 46Hz
filter-aware 119 Hz 16Hz 45Hz

Table 2: Runtimes in each environment.
A similar table has previously appeared in (Kayalibay et al., 2023)

To provide more intuition, we report runtimes for our vanilla and
filter-aware MPC in table 2.* We find that filter-aware MPC runs be-
tween 1.02 and 1.75 times slower than vanilla MPC. In the toy task,
filter-aware MPC almost doubles the runtime because every other
computation in the pipeline is quite simple. In the reacher, physics
simulation takes up most of the time for planning, and neural net-
work evaluations are less important.

6.8 OUTLOOK

We have presented filter-aware MPC, which allows a model-predictive
controller to avoid certain state estimation errors. Filter-aware MPC
is mostly relevant for POMDPs where the main challenge lies in pre-
serving accurate estimates of physical quantities that are important
for control. In these systems, we can work around the expense of
planning in belief space while still being able to account for the ac-
tions of the agent on its ability to estimate its state. The catch is that
our method is not suitable to more complex POMDPs which require
seeking out new information.

The most interesting avenue of future work is to learn trackability
from model simulations. This requires approximating the emission
function to a high degree of fidelity. Whether this is possible in a
visual navigation task remains to be seen.

1 The ViZDoom environment is excluded because both approaches run at 3 Hz in this
task. That is caused by an inefficient implementation of collision-checking inside the
simulator, which we had to use in lieu of the simulator’s own collision handling in
order to enable continuous actions.
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This thesis has dealt with the approach of using world models to
solve partially-observable Markov decision processes. We showed that
learning purely neural network-based world models from interaction
data is prone to a previously unexplored pitfall, the so-called condi-
tioning gap, which prevents learning a model good enough for policy
search. Though the conditioning gap is easy to fix, it is an indication
that we do not yet entirely understand what makes our methods or,
or what makes them fail.

Facing the intricacies of neural networks and with the goal of scal-
ing up world models to realistic everyday spatial environments, we
turned to inductive biases. We presented an evolution of models for
space where neural networks appear as building blocks held together
by domain knowledge about 3D geometry. This sequence of works
culminated in our own work which presents a spatial world model
capable of capturing real-world scenes and performing probabilistic
inference about the environment and the agent state. Such spatial
world models allow approaching tasks like navigation with simple
model-predictive control.

At the same time, we acknowledge the fact that model-predictive
control is an inadequate approach to solving POMDPs, due to its in-
ability to reason about future observations and state estimation. To
tackle this problem, we presented filter-aware MPC, which uses a
constrained MPC objective to maintain a minimum degree of state
estimation accuracy. Filter-aware MPC provides a balance between
full belief planning, which is optimal but often infeasible, and blindly
optimising the task cost given the current state estimate. Crucially,
filter-aware MPC makes use of real environment interactions to learn
a function of expected state estimation accuracy, which we call track-
ability. Can we leverage world models to learn trackability?

As world models for spatial reasoning improve, we might be able to
capture the appearance of a spatial environment with enough fidelity
that it becomes possible to detect at which points a state estimator
will fail, when used in that environment. However as yet, this remains
to be shown.

Today, model-based reinforcement learning and control is more am-
bitious than ever. Within the space of a couple of years, the field has
gone from struggling to solve simple image-based robotics tasks to at-
tempting complex reasoning tasks in large-scale environments which
resemble the variety of the real world. In this landscape, our work
focuses on two points.

The first is an emphasis on partial-observability and its implica-
tions. The textbook definition of a partially-observable system can
mean many things, and unfortunately we find that the majority of
established POMDP benchmarks have focused on simple systems

91



92

CONCLUSION

which do not require actively seeking out information. As we move
to POMDPs with more strict partial-observability, we find that new
issues emerge. Defects in our modelling which were previously per-
missible, the conditioning gap being one example, no longer remain
viable.

The conditioning gap likely only scratches the surface of the un-
knowns of model-based control and policy learning in POMDPs. Are
world models capable of learning state spaces which accurately cap-
ture the posterior distribution over the agent’s state? As we try to
scale up these methodologies to harder POMDPs, it will be necessary
to tackle this question.

The second thread of our work has been inductive biases. The gen-
eralist approach of learning unstructured models from data is viable
as long as we are able to pay the high price of collecting copious in-
teraction data. As we move beyond into the realm of data scarcity, we
need inductive biases to introduce valuable structure into our models.
That structure allows us to apply our methods in a new environment
without any environment-specific training stage. At the same time,
it is that structure that allows leveraging efficient methods like dy-
namic programming and model-predictive control and formulating
constraints to ensure safety.

While we applied this approach to the basic task of navigation, it
is possible to use similar ideas for more complex tasks, where nav-
igation emerges as a sub-task. Similar to how we model properties
like occupancy and colour over space, we can also model other quan-
tities, such as semantics, affordances (Qi et al., 2020) or the density of
interesting visual features. Modelling the environment as a random
variable also enables us to reason about the posterior distribution
over unknown parts of the environment given the already explored
part, which allows a Bayesian approach to searching in novel environ-
ments.
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LESS SUBOPTIMAL LEARNING AND CONTROL IN
VARIATIONAL POMDPS

A1 HYPER-PARAMETER SEARCH SPACE

hyper-parameter value
model

hidden units {32,64,96}
number of layers {1,2}

activation

emission type
emission activation
RNN units
observation scale
cost scale

learning rate

initial flows

uses initial KL
batch size

time steps

policy

RNN units

batch size

training rollout length
learning rate
hidden units
number of layers
number of configurations
Dark Room
Mountain Hike
Meta Pendulum

{softsign, relu, elu}
{learned, extracting}
{softsign, relu, elu}
{8,16,32,64}
{0.01,0.02}
{0.5,0.75,1.0}
{0.0003,0.001,0.003}
{3,5,8}
{True, False}
128
16

{8,16,32,64}
{32,64,128}
{15,30,40}
{0.0001,0.0003}
(8,16,32,64}
{1,2}

2400
1200
300

Figure 27: Hyper-parameters search spaces used in our experiments.

Figure 27 lists the hyper-parameters and search spaces used in our
experiments. We will briefly explain what each of these mean in the
context of the learning algorithm explained in section 2.7.

¢ hidden units. Refers to the number of hidden units used in all
MLPs in the model.

* number of layers. Refers to the number of layers used in all
MLPs in the model.

e activation. Refers to the activation function used in all MLPs in
the model, with the exception of the emission.

* emission type. We use two types of emission functions. In both,
the standard deviation of the Gaussian likelihood is a hyper-
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parameter, and the emission function produces the mean of the
Gaussian. learned refers to a simple MLP mapping from states to
observations. extracting refers to a model which copies a num-
ber of state units into the observation. In this model part of the
state learns to subsume the observation. In mathematical terms,
if dyx and d, are the size of an observation and a number of ad-
ditional state dimensions, then the state space has dy + d, many
dimensions: z € R9x*da and the extracting emission function
selects the first d dimensions of the state as the mean of the
Gaussian likelihood over the observation.

emission activation. Refers to the activation function used in
emission MLP, if present.

RNN units. The number of recurrent units used in the feature
extracting RNN.

observation scale. The standard deviation of the Gaussian like-
lihood over the observation.

cost scale. The standard deviation of the Gaussian likelihood
over the cost.

learning rate. Step size of the Adam optimiser.

initial flows. The number of RealNVP transformations used for
the initial state distribution.

uses initial KL. Whether we optimise the KL divergence be-
tween the prior over the initial state and its approximate poste-
rior or not. This is the first KL term in eq. (10). We have found
this term to be unstable during optimisation and thus explore
the option of ignoring it.

batch size. Batch size during model learning.

time steps. The sequence length of traning data.

Similarly, for the policy:

RNN units. Refers to the number of recurrent units used in
policy.

batch size. Number of rollouts used to approximate the expec-
tation in eq. (11).

training rollout length. The length of a training rollout.

learning rate. Step size of the Adam optimiser.

hidden units. Refers to the number of hidden units used in all
MLPs in the policy. We use one MLP to embed the observa-
tion and another to map from the policy’s recurrent state to the
space of controls.

number of layers. Refers to the number of layers used in all
MLPs in the policy.



A.2 HYPER-PARAMETERS OF SIMPLE

A2 HYPER-PARAMETERS OF SIMPLE

We use a procedure similar to the Simple algorithm (Kaiser et al.,
2020). For each environment we use rollouts of length 50 for collect-
ing data, with the exception of Mountain Hike, where we use 75 steps.
We perturb controls selected by the policy with zero-centred Gaussian
noise with a standard deviation of 0.025. We kick-start the learning
process with 25 rollouts collected through a random policy and after-
wards add 5 new rollouts in each iteration, up to a total of 100 iter-
ations. Each iteration contains a model-learning phase and a policy
learning phase. In the model-learning phase the model parameters
are updated for 2500 iterations and in the policy learning phase the
policy parameters are updated for 50000.
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NAVIGATION WITH SPATIAL WORLD MODELS

B.1 EXPERIMENTS IN VIZDOOM
B.1.1 MODEL DETAILS

We rely on voxel grids to model occupancy and color. In the ViZDoom
experiments, each grid has spatial dimensions of 200 x 200 x 20. The
color grid has three feature dimensions that correspond to RGB val-
ues.

For ViZDoom we found approximate values for the camera parame-
ters by projecting depth observations and aligning the resulting point
cloud with the known level geometry. Thus, the focal length of the
camera is 150, and the principal offsets in x and y are 160 and 120 re-
spectively. The height and width of a camera image are 320 and 240.
The camera is mounted on the body of the player at a quaternion ori-
entation of [0.5,—0.5,0.5,—0.5]". Finally, When casting rays for each
pixel, we consider a maximum depth of 20 and discretise the interval
[0, 20] with 200 points.

In ViZDoom we map each environment using a set of 5000 pose-
labeled RGB-D images. The locations and orientations of these are
sampled uniformly from within the free-space of the scene. For ViZ-
Doom, we optimise the occupancy and color models for 10000 steps
using the Adam optimiser with a learning rate of 0.05.

In either setup, we use a batch size of 25 and subsample images by
picking 200 pixels. The scale parameters of the Laplace distribution
over color and occupancy o7 and o, are modeled by setting o7 =
02/5. With o initialised to 2.4 and thereafter learned using the Adam
optimiser with a learning rate of 0.01.

B.1.2 MOTION PLANNING AND LOW-LEVEL CONTROL DETAILS

We start A*-search from the starting location sampled for the respec-
tive task and explore the free space of the world model by stepping
along the eight cardinal directions. The step size used here is 80% of
the agent’s own body length. We disallow stepping into any location
that is closer to any obstacle than a safety distance of 1.2 times the
agent’s body length. The search is stopped as soon as we reach a po-
sition that is closer to the goal location than 80% of the agent’s body.
Both the occupancy grid we use for checking if a location is naviga-
ble and the set of obstacles we use to maintain the safety distance are
based on a horizontal slice of the occupancy voxel grid.

The low-level controller first selects the closest waypoint from the
trajectory planned by A* as a local target. Given the agent’s inferred
2D location 1, we first define the desired movement vector as v =
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L —t, where t is the local target. We then check the difference between
the angle of this vector and the agent’s current heading o. If that
difference is below a threshold of 5°, we allow the agent to take a
step forward, respecting a maximum velocity constraint of 80% of
the agent’s body length. If the difference is higher than said threshold,
the agent stays in-place and rotates to match o with the angle v, while
obeying a maximum angular velocity constraint. As soon as the agent
is closer than a certain distance to the local target, we remove it from
the set of waypoints and pick a new local target. Finally, if the agent
can reach the target by moving in a straight line according to the
occupancy model, we define the target as our only landmark, and do
no further A*-based planning.

B.1.3 STATE ESTIMATION DETAILS

The agent’s starting position is known. Thereafter, for each control
executed in the simulator, we use the imperfect dynamics model to
predict the next state of the agent. Then, we optimise eq. (19) using
this predicted next state, the new camera image received from the
simulator and the RGB-D image emitted from the model using the
last inferred state. We use the Adam optimiser for 100 steps with a
learning rate of 0.02. At every optimization step, we compute the loss
for 1000 randomly selected pixels from the new image observation
x¢. We sample a different set of pixels in each of the 100 optimisation
steps, but keep these 100 x 1000 pixel indices fixed for all invocations
of the state estimator. Note that the subsampling happens only in
the observed image, the predicted previous-step image X;_1 needs to
remain whole, as we need its gradient information. We use bilinear
interpolation of X;_; to make the photometric term in eq. (18) dif-
ferentiable w.r.t. the camera pose. We use the numeric gradients of
X¢_1 to compute the normals necessary for the second point-to-plane
term in eq. (18). For the sake of robustness, we threshold the absolute
values of the geometric and photometric errors in eq. (18). For a pixel
with index i, the photometric error term was defined in eq. (18) as:

|| %8P [7e(T22 (x))] — "8 [re(x )] |-

We ignore this term for any pixel where it exceeds a value of 1.0.
Likewise, the geometric term is:

(| (% — T22(x3), i)

7

and it too is ignored for any pixel where it is higher than 5.0.

B.1.4 NAVIGATION

We sample 200 navigation tasks from each environment. Here, we
only allow tasks where the start and target are farther apart than
three times the agent’s body length. Likewise, we do not allow start
and target locations that are closer to any obstacle than 1.2 times the
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agent’s body. For this part, we access the actual scene geometry of the

simulator in ViZDoom to define obstacles.

In ViZDoom, we implement continuous control via the teleporta-
tion and rotation commands. These do not check for collisions, so we
check these manually by calculating distances to the obstacles, which
we extract from the simulator in the form of a set of line segments.
As soon as a collision occurs, we prohibit further movement.

B2 EXPERIMENTS IN PROCTHOR

B.2.1

PRISM HYPER-PARAMETERS

hyper-parameter

value

map inference

grid size

color priority

initial emission scale
occupancy update scale
color update scale

map update period

anchor update period

color map init. mean

color map init. stddev
occupancy map init. mean
occupancy map init. stddev
state inference

optimisation steps
subsample size

location learning rate
orientation learning rate
photometric residual threshold
geometric residual threshold
color scale

geometric scale

location initial stddev
orientation initial stddev
velocity initial stddev
orientation velocity init.stddev
velocity stddev

orientation velocity stddev
location integration stddev

orientation integration stddev

200 x 200 x 200

5.0
2.4
0.1
0.5
5

0.5
50.0
—0.001
50.0

1000
200
0.001
0.00036
0.18
0.45
0.1
0.02
0.33
0.16
0.01
0.0066
0.01
0.01
0.016
0.0066

Figure 28: Hyper-parameters of the PRISM algorithm.

B.2.2 CONTROL HYPER-PARAMETERS AND SYSTEM CONFIGURA-

TION
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hyper-parameter value
MPC

replan interval 3
planning horizon 10
candidate plans 100
parallal rollouts 1
discount 1.0
TD(A) - A 1.0
system parameters

max turn 10°
max speed 20cm
agent radius 20cm

steering noise scale ~ 2.86°

throttle noise scale 2mm

Figure 29: Control hyper-parameters and system configuration.

B.2.3 RANDOM SAMPLING OF PLANS

We define an efficient sampling distribution for picking random plans.
We sample a random turning command and repeat it for a random
number of time steps within the planning horizon. At the same time,
we sample a random time index where the agent starts moving for-
ward and then move forward by a random amount. Since the turning
and forward motion command can overlap, this results in movement
that can start with an arc, afterwards transitioning into straight lines.
In precise terms, our proposal distribution is defined as:

U(s | —Trurn, Tturn)
Tturn ~uft,..., T
UV [ 0, Tenrottle)
Lthrottle ~U({1, - TH

s t< Tturn
St =

0 otherwise

v t> ithrottle
Vit =

0 otherwise
Uy = |:St Vt} .

Note that we do not allow moving backwards, as the agent could then
bump into obstacles it has not seen yet. The maximum steering angle
and maximum speed Tiurm and Tirottle are specified in fig. 30 (as "max
turn" and "max speed").

B.2.4 MODIFICATIONS TO THE PRISM ALGORITHM

A slight modification to the PRISM algorithm was necessary to enable
online map and state estimation during control. PRISM applies map
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updates at fixed intervals. Similarly, the anchor image used to esti-
mate the agent state is updated at fixed intervals. We also use fixed
intervals but additionally trigger an immediate map and anchor im-
age update whenever the agent’s model does not contain enough in-
formation about the current camera pose. The definition of "enough
information" is tied to the fraction of pixels in the current anchor im-
age that have non-zero colour. Because the colour map is initialised at
zero, a zero-colour prediction implies that the ray for the respective
pixel has landed in an area of the map that has not been learned yet.
As soon as more than 10% of the image has zero colour, we trigger
an immediate update of both the map and the anchor image.

B3 EXPERIMENTS ON REAL HARDWARE

B.3.1 CONTROL HYPER-PARAMETERS

hyper-parameter value
MPC

replan interval 1
planning horizon 25
candidate plans 500
parallal rollouts 1
discount 1.0
gradient updates 500
control learning rate 0.1

Lagrange multiplied learning rate ~ 0.001
dynamic programming
location grid size 100

angle grid size 18

Figure 30: Control hyper-parameters .

B.3.2 RANDOM SAMPLING OF PLANS

We generate random plans for the bicycle model using a stochastic al-
gorithm, which composes a plan out of left-turning arcs, right-turning
arcs and straight lines. Every plan produced contains three chunks:
one left-arc, one right-arc and one straight line, in a random order.
The duration of each of these three chunks is random, with the con-
dition that the total length of the plan is fixed to the length of the
planning horizon used in MPC. The magnitude of the steering and
throttle controls are sampled randomly for each plan and kept fix for
the duration of the plan.

Only the sign of the steer and throttle varies from chunk to chunk,
where a left-arc has negative steering, a right arc positive and a straight
line has a sign of zero. The sign of the throttle control for each chunk
is sampled randomly per chunk. That means the car can start moving
in reverse gear at the beginning of a plan, then switch to forward gear
and then return to reverse gear and so on.
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import random

def proposal(horizon, max_steer, max_throttle):
steer_signs = [-1, 1, 0] # left, right, straight
steer = random.uniform(-max_steer, max_steer)
throttle = random.uniform(-max_throttle, max_throttle)
steers = []
throttles = []
time_left = horizon
for chunk in range(3):
steer_sign = random.choice(steer_signs)
steer_signs.remove(steer_sign)
throttle_sign = random.choice([-1, 1])
duration = random.randint(1l, time_left - (2 - chunk))
time_left -= duration
steers += [steer x steer_sign] * duration
throttles += [throttle * throttle_sign] * duration

effective_horizon = random.randint(1l, horizon)
steers = [
s if 1 < effective_horizon else 0.0
for i, s in enumerate(steers)
]
throttles = [
t if i < effective_horizon else 0.0
for i, t in enumerate(throttles)

]
return steers, throttles

Figure 31: Simplified python pseudo-code for the random plan sampler
used in the QCar experiments. The actual implementation in our
code base uses vectorised code and samples multiple plans in
parallel.

Finally, we sample an effective chunk length, which allows sampling
plans that are shorter than the planning horizon by setting all throt-
tle controls to zero after a random time index, which is the effective
length of the plan. The reason we set controls to zero instead of pro-
ducing a shorter plan is to enable plans to be evaluated in parallel,
which requires fixed-size memory chunks. Having a variable plan
length is useful because some situations require a much shorter plan
length than others. For instance, when the car is surrounded by obsta-
cles, random plans beyond a certain length are more likely to collide
with an obstacle. On the other hand, when the car is in a large free
area, longer plans explore the state space better. Varying the plan
length offers the best of both worlds.

We provide a Python-based pseudo-code implementation of the
random plan sampler in fig. 31.
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c1 TRACKABILITY LEARNING

We use TD(A) to learn a trackability network. Different papers have
translated the TD(A)-update rule into different neural network up-
date schemes. The one we used in this paper combines gradient de-
scent with the parameter-averaging method used by Fujimoto, Hoof,
and Meger (2018).

The objective that we minimise is:

N
L(d) =) (blzh) =T (217 ¢)?,

i

with:
. T_1 .
Jor (A, ) = (1T=A) ) AR (2] ),
k=1
. k . .
Wz o) =) B el + B 0 (ziy ).
t=1

Here, we introduced ¢’, which is a different copy of ¢ that is only
used to create targets for £(¢). The learning rule mixes gradient up-
dates on £(¢) with parameter-averaging updates for ¢’:

b+ b+ aVL(D)
¢ —nxd +(1—n)* . (26)

The parameter-averaging factor n € (0, 1) controls the speed at which
the targets of ¢ will change. We wrote a standard gradient descent
update in eq. (26) for simplicity. In practice we use the Adam opti-
miser (Kingma and Ba, 2017).

cz2 MPC AND TERMINAL COSTS

We use terminal costs for two of our experiments: the toy scenario
and ViZDoom. These problems have sparse costs, which makes it
necessary to use a terminal cost, which is then also the driving factor
when planning. This is because the cost signal has the same value for
every plan that is not close to the target. The standard MPC objective
with a terminal cost is:

t+K

IEZt|X];t,u];t,] Z Bk_tc(ztl ut) + BK+t+] T(ZK) . (27)
k=t
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In practice we have found that we get better performance by using the
A-return as our objective. This is given by the following equations:

T—1
PM(ziA) = (1-0) ) AT (),
k=1

k
PCzi) =Y B b+ B (zh 1)
t=1

This is a weighted average over MPC objectives with different plan-
ning horizons. We believe it worked better than the regular MPC ob-
jective due to the sparseness of the cost and the stochastic dynam-
ics. When the cost is sparse, the terminal cost is the only factor that
guides planning, until the agent is close enough to the target to reach
it within the planning horizon. This is an issue under stochastic dy-
namics because the transition error will build up towards the end of
the planning horizon. The end of the planning horizon will have the
highest prediction error, though it will also be the only place where
we check the terminal cost.

We can reduce the noise by shortening the planning horizon, but
that in turn can hurt the performance if the terminal cost is not a per-
fect approximation of the true future total cost. This is the case in the
ViZDoom environment, where the terminal cost is just the geodesic
distance from a location to the target, assuming the agent can move
in any direction that is not blocked by a wall. The geodesic distance
doesn’t take into account that the agent can only move along its facing
direction and can only change that direction by a limited amount in
each time step. In some places the agent needs time to turn and face a
better direction. A longer planning horizon is necessary to make sure
the agent has enough time to reorient itself and then also move for
long enough to reach a lower terminal cost.

The A-return is a middle-ground between a long planning horizon
that has noisier planning and a low horizon that allows less complex
maneuvers. This only applies to the two environments with sparse
costs however, and in the rest of the environments we used the regular
MPC objective without terminal costs.

c3 EXPERIMENT DETAILS
C.3.1 TOY SETUP

PROBLEM SETTING. The system state is the 2D location of the
point. The observations are the state with additive Gaussian noise.
The controls are 2D velocities, with a speed limit of 0.05. The cost is
o when the point is inside the goal area, 1 otherwise. Walls block the
agent’s movement. Each control is perturbed by additive Gaussian
noise with a scale of 0.03 before being used. The observation noise is
0.03 outside of the dark zone and 1.0 inside. The dark zone is centered
at (0.5,0.5) and has a radius of 0.3. The environment is contained in
the square area [0, 112.



C3 EXPERIMENT DETAILS

DYNAMICS EQUATIONS. Letz € R? be a state, x € R? and obser-
vation and u € R? a control with [ul|2 < 0.05. The system dynamics
are:

Uy = ug +wy with w ~ N(0,0.03),

Zy + U no collision
Zi41 = ’
z¢ — 0.0Ta /(]| ||2 +0.0001)  collision
Xt = Z¢ + Vi with v ~ N(0, ow),

0.5
0.03 ||z¢ — 2 >0.3
Ow = 0.5 :

1.0 otherwise

Here, "collision" means the line segment that starts at z; and ends at
z¢ + 0y intersects one of the obstacles. In this case we take a small
step in the opposite direction by normalising i to have unit length
and scaling it up to 0.01. The additive constant 0.0001 is to avoid a
division by zero.

STATE ESTIMATOR. We use a bootstrap particle filter. The proposal
distribution is a Gaussian. Its mean is given by the transition func-
tion’s prediction and its scale is the same as the transition noise: 0.03.
We use 512 particles for estimating the initial state and 128 particles
after that.

TERMINAL cOST. The sparse cost requires using a terminal cost.
We use the geodesic distance to the target area as a terminal cost. For
filter-aware MPC, we re-calculate geodesic distances by respecting
the constraint. If a location violates the constraints, we don’t allow
the shortest path to lead through that location. This is the same as
treating the constrained areas as obstacles while calculating shortest
distances.

RANDOM SEARCH HYPER-PARAMETERS. The proposal distribu-
tion samples a random control from a uniform distribution for the
first time step and repeats it for the rest of the horizon. We take 100
candidates with a horizon of 10. For each plan we estimate the ex-
pected future total cost with 50 Monte Carlo samples. We execute the
first control only, before re-estimating the state and re-planning. The
MPC objective is the A-return with A = 1.0 and 3 = 1.0.

TRACKABILITY DATA. We collect rollout for trackability learning
by using MPC on the true system. Here, the planning horizon is set
to 5. We take 500 rollouts with 30 steps. The initial location is sampled
uniformly over the space.

TRACKABILITY LEARNING. We estimate trackability with TD(A),
setting A = 0.95 and B = 0.8. We divide the training rollouts into
chunks of length 5. The tracking error is defined as the weighted sum
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of the squared error of each particle, weighted by its particle weight.
The parameter-averaging factor (see appendix C.1) is set to 0.995 and
we use 5000 gradient updates. The learning rate is set to 0.001. We
use use 128 hidden units and two hidden layers with relu activations.
The batch size is 512.

COMPARATIVE sTUDY. We compare filter-aware MPC and regular
MPC using 100 rollout of length 50. The easy setting uses an emission
noise of 0.03 everywhere, omitting the dark zone. For filter-aware
MPC, the constraint threshold & is set to 0.6.

RNN BASELINE. The RNN baseline is trained by gradient descent
to minimise the total cost in a horizon of length 50. The initial state
is sampled uniformly to give the agent access to experience from
all over the environment. The cost is modified to be the length of
the shortest path to the goal, i.e. the geodesic distance to the goal.
We found this to be crucial for solving the task with a parametric
policy. We precompute geodesic distances to the goal using a uniform
grid and index the grid by discretising the current location of the
agent. We define a custom gradient for this operation using finite
differencing.

C.3.2 VIZDOOM

PROBLEM SETTING. The system state is the 2D location and 1D
yaw of the agent. The observations are RGB-D images. The controls
are the turning angle and forward velocity, with a maximum angle
of 6° and a maximum speed of 0.015. The cost is 0 when the agent
is within a radius of 0.1 of the goal, 1 otherwise. The controls are
perturbed by clipped Gaussian noise. The clipping ensures that noise
does not flip the direction of the control. If the agent tries to turn left
by 2°, the noise is clipped to be in [—2,00), such that noise cannot
cause it to turn right instead of left. Likewise, if the agent tries to
move forward with a speed of 0.01, the speed noise is clipped to be
in [—0.01, co] such that it cannot move backward instead of forward.
When the agent enters the left corridor, every pixel in the RGB-D
observation is set to zero. The environment is contained in the square
area [0, 1]2.

DYNAMICS EQUATIONS. Let o € [0,360°] be an orientation and
1 € R? a location. The system state is a concatenation of these: z =
[o, UT. Let & € [-6°,6°] be a turning angle and s € [-0.015,0.015] a
forward speed. The control is a concatenation of these: u = [«&, sIT.

The dynamics are then:

o1 = o +sign(é ) max(0, | &t | +ef) with e ~N(0,2°),

COS( X
Lot = 1 + (otes1)

' ] max(0, sy + €}) with € ~ N(0,0.0035).
sin(otg41)
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The way in which noise is injected into the dynamics was previously
used by Kayalibay et al. (2022). Note that these dynamics are further
subject to collision handling with the environment. Here, we only
allow moving from l; to 1y if the line segment connecting these
points does not intersect any wall. If it does intersect a wall, we only
allow moving up to the intersection point. The observations x are
RGB-D images created by the ViZDoom simulator.

STATE ESTIMATOR. We use colored point-to-plane ICP (Audras et
al., 2011; Chen and Medioni, 1992; Steinbriicker, Sturm, and Cremers,
2011) for state estimation.

TERMINAL CcOST. The sparse cost requires using a terminal cost.
We use the geodesic distance to the goal as a terminal cost. For filter-
aware MPC, we re-calculate geodesic distances by respecting the con-
straint. If a location violates the constraints, we don’t allow the short-
est path to lead through that location. This is the same as treating the
constrained areas as obstacles while calculating shortest distances.

RANDOM SEARCH HYPER-PARAMETERS. The proposal distribu-
tion samples a random direction between left and right and turns in
that direction for a random number of time steps using the maximum
turning angle. We also sample a random time index to start moving
forward in and then move forward with the maximum speed for a
random number of time steps. We take 200 candidates with a hori-
zon of 20. For each plan we estimate the expected future total cost
with a single Monte Carlo sample. We execute the three controls of
each plan, before re-planning. The MPC objective is the A-return with
A=1.0and B =1.0.

TRACKABILITY DATA. We collect rollout for trackability learning
by using MPC on the true system. We take 9oo rollouts with 200
steps.

TRACKABILITY LEARNING. We estimate trackability with TD(A),
setting A = 0.95 and 3 = 0.95. We divide the training rollouts into
chunks of length 5. We only accept a chunk into the training set if the
tracking error at the second time step (i.e. after using the first control)
is less than 0.99. The tracking error is defined as the squared distance
between the agent’s true and inferred locations. The network’s input
is the agent’s location only (i.e. we disregard the orientation com-
ponent). The parameter-averaging factor (see appendix C.1) is set to
0.995 and we use 10000 gradient updates. The learning rate is set to
0.00071. We use use 128 hidden units and two hidden layers with relu
activations. The batch size is 512.

COMPARATIVE sTUDY. We compare filter-aware MPC and regular
MPC using go rollout of length 200. The easy setting uses the normal,
uncorrupted RGB-D image in both corridors. For filter-aware MPC,
the constraint threshold 6 is set to 3.5.
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C.3.3 AI2-THOR

PROBLEM SETTING. The state is the 2D location, 1D robot fac-
ing angle (yaw), and 1D camera angle relative to that. The obser-
vations are RGB-D images. Controls are 2D velocity, robot turning
angle, camera turning angle. The maximum speed is 0.04 and the
maximum turning angles are 10°. The cost is designed to make the
agent follow a loop, which is specified by a list of landmarks. Given
the agent’s location 1, at time t, we find the closest landmark pl
and the next landmark from the list pZ. We define a local target
i =pl +0.55% (p? —p}). The final cost is then:

clzy, ue, ze 1) =i — Levr |l
2 1
+ 10 (Vi 1, Pip1 — Peg1)

+ 10 % (P%Jrl —P1+1/P§+1 —Pi)

where V¢ is the velocity component of the control u¢yq and (-, -)
is the scalar product. The robot is initialised at (0.0, -2.5) facing the
southern wall. We use the scene "FloorPlanio" from the set of Al2-
THOR environments. We add zero-centered Gaussian noise with a
scale of 0.02 to the velocity controls.

DYNAMICS EQUATIONS. Let o, € [0,360°] be orientations and
1 € R? be a location. The state concatenates these: z = [, P, 1]T. Let
&, € [~10°,10°] be turning angles and v € IR? a velocity vector with
V]2 < 0.04. The control concatenates these: u = [&, 1, v]T. Then, the
dynamics are:

X1 = Xt + &y,

Vi1 =P+,
1t+] . lt + Vi + Wt with Wi ~ N(O, 002)

The observations x are RGB-D images produced by the Al2-THOR
simulator. For that we teleport the camera to the 3D location [l, 091"
and yaw angle o + ¢, where 0.9 is the constant elevation of the
camera. Note that these dynamics are subject to collision handling
done by AI2-THOR.

STATE ESTIMATOR. We use the same state estimator as in the ViZ-
Doom experiments. We assume that the initial state of the system is
known.

TERMINAL COST. Since the cost is not sparse, no terminal cost was
necessary in this environment.

RANDOM SEARCH HYPER-PARAMETERS. We use a combination
of two optimisers for filter-aware MPC. The first plans the controls for
moving the robot: the velocity and turning angle. The second takes
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the movement controls as given and only plans the camera angle.
Only the second controller looks at the constraints. The first planner
is implemented the same way as in the ViZDoom experiments. The
second planner’s proposal distribution first picks a random camera
angle within the set of angles that can be reached in the planning
horizon. Then it finds the individual turning angles at every time
step that are required to reach that camera angle and maintain it.
Both planners use the same hyper-parameters: 5000 candidate plans,
a horizon of 5, 1 Monte Carlo sample per plan and a replanning in-
terval of 3 time steps. For regular MPC we only use the first planner
and set the relative camera angle to zero, so that the camera is always
facing the direction of movement.

TRACKABILITY DATA. We collect training data by using regular
MPC on the true system, taking 4500 rollouts of length 30. For this
procedure we place the agent at a random location and facing angle.

TRACKABILITY LEARNING. We estimate trackability with TD(A),
setting A = 0.95 and 3 = 0.95. We do not further divide the training
rollouts into subsequences, and use the original rollouts themselves.
We only accept a rollout into the training set if the tracking error at the
second time step (i.e. after using the first control) is less than 0.99. The
tracking error is defined as the squared distance between the agent’s
true and inferred locations. The network’s input is the agent’s true
location and absolute camera angle (i.e. robot facing angle plus the
relative camera angle) converted to cosine-sine representation. The
parameter-averaging factor (see appendix C.1) is set to 0.995 and we
use 10000 gradient updates. The learning rate is set to 0.001. We use
use 128 hidden units and two hidden layers with relu activations. The
batch size is 512.

COMPARATIVE STUDY. We compare filter-aware and regular MPC
with 200 rollouts of length 100. The constraint threshold o is set to
-10.0, making sure the constraint is always active. This is an appro-
priate choice here because we can optimise for safe trackability by
turning the camera alone which can be done without impeding the
movement of the robot.

ORB BASELINE. The ORB baseline trains a neural network to pre-
dict the number of ORB features that will be visible under a given
camera pose. Here, we use the same rollouts that were used to train
the trackability critic. For each image, we detect ORB features with
OpenCV (Bradski, 2000) and compute their number. We record the
camera’s yaw and 2D location in a dataset, along with the number
of features that were detected. We train a neural network to map the
camera pose to the feature count. The feature count is normalised by
a division by 500, the maximum number of features that is allowed
in the feature detection phase. The rest of the algorithm is identical
to filter-aware MPC, with the trackability critic replaced by the ORB
network.
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C.3.4 REACHER

PROBLEM SETTING. The state is the 52-dimensional physics state
used by Brax (referred to as QP in the Brax documentation). The ob-
servations are joint angles and the vector from the tip of the arm to
the target. The controls are joint actuation signals for each joint. The
cost is the absolute distance between the tip of the arm and the target.
Whenever this distance drops below 0.05, the agent gets a bonus cost
of —100 for one time step. If the distance rises above 0.05 again, this
bonus is canceled out by a one-time penalty of 100. The initial state
of the arm is as defined by the Brax implementation of the reacher.
The target sampling is modified to make sure that targets are never in
the dark zone, where observations are corrupted. We inject noise into
the dynamics by perturbing the controls with zero-centered Gaussian
noise with a scale of 0.1. Whenever the x-coordinate of any point on
the arm is less than —0.02 (detected by checking 20 equally-spaced
points on the arm), the observations are replaced by zero.

STATE ESTIMATOR. We use a bootstrap particle filter with Gaus-
sian distributions placed on the transition and emission functions.
The transition scale is 0.005 and the emission scale is 0.001. We as-
sume the initial state is known, and use 100 particles for all future
time steps. Though the state-space if 52-dimensional, many of the
components are static and need to have specific values for accurate
physics simulation. We set these static components to their ground-
truth values and keep them fixed.

TERMINAL COST. Since the cost is not sparse, no terminal cost was
necessary.

RANDOM SEARCH HYPER-PARAMETERS. The proposal distribu-
tion samples a random control for each joint and then applies that
control for a random duration and from a random start. Some move-
ments require both joints to be actuated at the same time, either with
the same signal or with different signals (e.g. one joint turns left while
the other turns right). To make sure we get enough samples where
this is the case, we use same random time interval for both links in
one third of the candidates and use both the same random interval
and the same random control signal in another third. The remaining
third samples different random intervals and controls for each joint.
We use 300 candidates and a planning horizon of 22. We take 5 MC-
samples per plan and use the first 3 controls of every plan before
replanning.

TRACKABILITY DATA. The training data is generated by using reg-
ular MPC on the true system. We sample 5000 rollouts of length 50.
The initial arm position is random and uniform across the state space
(including the dark zone) to ensure a good coverage.
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TRACKABILITY LEARNING. We estimate trackability with TD(A),
setting A = 0.95 and 3 = 0.95. We do not further divide the training
rollouts into subsequences, and use the original rollouts themselves.
The tracking error is defined as the weighted sum of the squared
error of each particle, weighted by its particle weight, as in the toy
experiment. The network’s input is the true joint angles converted
to cosine-sine representation. The parameter-averaging factor (see ap-
pendix C.1) is set to 0.995 and we use 20000 gradient updates. The
learning rate is set to 0.00001. We use use 128 hidden units and two
hidden layers with relu activations. The batch size is 512.

COMPARATIVE STUDY. We compare filter-aware MPC and regular
MPC with 100 rollouts of length 200. The constraint threshold ¢ is set
to 9.0 for filter-aware MPC.

RNN BASELINE. The RNN baseline follows the design of Ni, Ey-
senbach, and Salakhutdinov (2021). We use the same model that was
used in their “standard POMDP” experiments.
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