
Technische Universität München
TUM School of Medicine and Health

Spatial metabolomics for therapy response prediction in
gastric and lung cancer patients

Jun Wang

Vollständiger Abdruck der von der TUM School of Medicine and
Health der Technischen Universität München zur Erlangung des
akademischen Grades einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Dieter Saur

Prüfer der
Dissertation:

1. Prof. Dr. Gil G. Westmeyer
2. Prof. Dr. Bernd Reif

Die Dissertation wurde am 14.11.2023 bei der Technischen
Universität München eingereicht und durch die TUM School of
Medicine and Health am 13.03.2024 angenommen.



Jun Wang

Spatial metabolomics for therapy response prediction in gastric and lung cancer

patients

Technische Universität München

TUM School of Medicine and Health



Abstract

Gastric cancer (GC) and lung squamous cell carcinoma (SCC) are
significant contributors to global cancer morbidity and mortality. Patient
therapy response differs markedly among current therapeutic regimens
within GC and SCC. To address this issue, the state-of-art studies focus
on developing molecular classification systems based on multiple
molecular levels, such as genomics, transcriptomics and proteomics,
which could be a valuable tool for aid in selecting specific treatment
approaches. However, molecular classifications based on metabolomics
is still lacking and its application for therapy response prediction
remains to be comprehensively investigated. This cumulative thesis has
the goal to investigate the tissue metabolome by spatial metabolomics
for therapy response prediction. Matrix-assisted laser desorption
ionization imaging mass spectrometry (MALDI-IMS) will be applied and
it will demonstrate how metabolites were measured directly from tissue
sections with cellular spatial resolution and how metabolites impacted
therapy response.

As a result, this thesis reveal tumor- and stroma-specific subtypes which
have distinct tissue metabolite patterns, prognostic value and
association with clinical features in GC and SCC. An independent GC
cohort confirms that the patient subtypes are associated with
trastuzumab therapy response. An independent SCC cohort confirms
that the patient subtypes are associated with chemotherapy response.

Overall, this thesis underlines the potential of MALDI mass spectrometry
imaging in precision medicine by including two publications. Clinical
relevant patient subtypes derived by tissue-based spatial metabolomics
are a valuable addition to existing molecular classification systems in
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GC and SCC. Metabolic differences of the subtypes and their
associations with clinical molecular features might support the
development of personalized therapy decision.
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Zusammenfassung

Magenkrebs (GC) und Plattenepithelkarzinom der Lunge (SCC) tragen
erheblich zur weltweiten Krebsmorbidität und -mortalität bei. Das
Therapieansprechen der Patienten bei der Behandlung von GC und SCC
variiert. Um dieses Problem zu adressieren, konzentrieren sich aktuelle
Studien auf die Entwicklung molekularer Klassifikationssysteme auf der
Grundlage mehrerer molekularer Ebenen, wie zum Beispiel Genomik,
Transkriptomik und Proteomik, die ein wertvolles Hilfsmittel zur
Unterstützung bei der Auswahl spezifischer Behandlungsansätze sein
können. Molekulare Klassifikationen auf der Grundlage von
Metabolomics und ihr Zusammenhang mit dem Therapieansprechen
müssen hingegen noch umfassend untersucht werden. Diese kumulative
Dissertation hat das Ziel, den Zusammenhang zwischen dem
Therapieansprechen und gewebebasierter Metabolomik.
Matrixunterstützte laser desorptions iolisations imaging
massenspektrometrie (MALDI-IMS) findet Anwendung und zeigt, wie
Metaboliten direkt aus Gewebeschnitten mit zellulärer räumlicher
Auflösung gemessen werden und wie diese Metaboliten das Ansprechen
auf die Therapie beeinflussen.

Demzufolge weisen die etablierten tumor- und stromaspezifischen
Subtypen unterschiedliche Gewebemetabolitenmuster, einen
prognostischen Wert und eine Assoziation mit klinischen molekularen
Merkmalen bei GC und SCC auf. Eine unabhängige GC Kohorte
bestätigen, dass die Patientensubtypen mit dem Ansprechen auf die
Trastuzumab-Therapie assoziiert sind. Eine unabhängige SCC Kohorte
bestätigen, dass die Patientensubtypen mit dem Ansprechen auf die
Chemotherapie assoziiert sind.
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Zusammenfassend zeigt diese Dissertation, das Potenzial der
MALDI-Massenspektrometrie-Bildgebung in der gewebenbasierten
Präzisionsmedizin anhand von zwei Veröffentlichungen auf. Klinisch
relevante Patientensubtypen, die durch gewebebasierte räumliche
Metabolomik abgeleitet werden, sind eine wertvolle Ergänzung zu
bestehenden molekularen Klassifikationssystemen in GC und SCC.
Metabolische Unterschiede der Subtypen und ihre Assoziation mit
klinischen molekularen Merkmalen könnten die Entwicklung einer
personalisierten Therapieentscheidung erweitern und unterstützen.
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Part I

Preface



This dissertation is a cumulative publication-based doctoral thesis, which
was carried out between November 2019 and November 2023 under the
supervision of Prof. Axel Walch in the Reserach Unit Analytical Pathology
at the Helmholtz Center Munich (HMGU) and Prof. Gil Westmeyer in
the faculty of Chemistry at the Technical University of Munich (TUM).
It is based on two studies that has been separately published in the
international peer-reviewed scientific journals called Clinical Cancer
Research [1] and npj Precision Oncology [2]. The first part of this
dissertation primarily serves as an introduction to the motivation and
developments of related state-of-art research, followed by summaries of
each published article in Part IV, discussion in Part V and conclusion in
Part VI.
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Part II

Acronyms



MALDI Matrix Assisted Laser Desorption ionization

IMS Imaging Mass Spectrometry

GC Gastric Cancer

SCC Lung Squamous Cell Carcinoma

NSCLC Non-Small Cell Lung Cancer

LUAD Lung Adenocarcinoma

HER2 Human Epidermal Growth Factor Recepter 2

MIB1 E3 ubiquitin- protein ligase

DEFA–1 human alpha defensin 1

MSI Microsatellite Instability

PD–L1 Programmed Death–Ligand 1

PD–1 programmed cell death protein 1

EBV Epstein-Barr Virus

TP53 Tumor Protein p53

EMT Epithelial–Mesenchymal Transition

MSS Microsatellite Stability

MMR Mismatch Repair Protein

ACRG Asian Cancer Research Group

TCGA the Cancer Genome Altas

TMA Tissue Microarray

FF Fresh Frozen

FFPE Formalin-Fixed Paraffin-Embedded

IHC Immunohistochemistry

FISH Fluorescence In Situ Hybridization

t–SNE t–Distributed Stochastic Neighbor Embedding

sPLSDA Sparse Partial Least Squares Discriminant Analysis

HMDB Human Metabolome Database

KEGG Kyoto Encyclopedia of Genes and Genomes

SPACiAL Spatial Correlation Image Analysis
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TILs Tumor Infiltrating Lymphocytes

CD3 Cluster of Differentiation 3

CD8 Cluster of Differentiation 8

FOXP3 Forkhead Box P3

CPS Combined Positive Score

OS Overall Survival

DFS Disease Free Survival

DNA Deoxyribonucleic Acid

EGFR Epidermal Growth Factor Receptor

CDKN2A Cyclin Dependent Kinase Inhibitor 2A

NFE2L2 Nuclear Factor Erythroid-derived 2-like 2

KEAP1 Kelch-like ECH-associated Protein 1

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase Catalytic Subunit Alpha

ALK Anaplastic Lymphoma Kinase

ROS1 ROS proto-oncogene 1

PTEN Phosphatase and Tensin Homolog

MLL2 Mixed Lineage Leukemia 2

PI3K Phosphoinositide 3-kinases

CDK4/6 Cyclin-dependent Kinase 4/6

FGFR Fibroblast Growth Factor Receptor

MET MET Proto-oncogene, Receptor Tyrosine Kinase

NGS Next-Generation Sequencing

TNM Tumor Node Metastasis

UICC Union for International Cancer Control

dCDP Deoxycytidine Diphosphate

CDP Cytidine Diphosphate

UDP Uridine Diphosphate

NAC Neoadjuvant Chemotherapy
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Part III

Introduction
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1Gastric Cancer and
Lung Cancer

In this thesis, we select gastric cancer (GC) and lung squamous cell
carcinoma (SCC) patient cohorts as research targets, and the choice of
GC and SCC for spatial metabolomics investigation is driven by their
clinical significance, unique metabolic characteristics, existence of
inter-tumor heterogeneity, lack of effective biomarkers and treatments,
and the potential to uncover insights that could lead to improved
patient outcomes and therapeutic strategies. Firstly, GC and SCC are
significant contributors to global cancer morbidity and mortality. GC is
one of the leading causes of cancer-related deaths worldwide, and SCC
is a major subtype of lung cancer, which is the leading cause of
cancer-related deaths in many countries. Meanwhile, GC and SCC are
clinically well-studied malignancies with substantial patient populations,
making the findings from -omics studies more likely to have a
meaningful impact on clinical practice and patient care [3]. Apart from
their common characteristics, GC and SCC also show their unique
metabolic characteristics. The primary site of cancer plays a significant
role in determining its metabolic characteristics. GC arises from the cells
lining the stomach, while SCC originates in the lung tissue, which has
distinct physiological functions, such as oxygen exchange and
respiratory support. These tissues have inherently different metabolic
functions, leading to differences in their metabolic profiles [4, 5]. In
addition, both tumor types exhibit unique inter-tumor heterogeneity,
which can complicate treatment decisions and contribute to therapeutic
resistance [6, 7].

The following chapters will first introduce the reader to the primary
research background of GC and SCC biology and current therapeutic
regimens. Next, a general picture of the current knowledge of the
emerging molecular classification of GC and SCC and how the established
subtypes benefit personalized therapy will be described. Finally, the
spatial metabolomics by MALDI-IMS and clustering analysis method
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applied in this thesis will be introduced. At the end of this part, I will
conclude the aims of this dissertation based on the aforementioned. We
assume that spatial metabolomics can stratify patients into metabolic
subtypes, guiding the development of strategies to select subtypes for
overcoming treatment resistance and improve patient responses.

1.1 Epidemiology

Gastric cancer (GC) develops from the lining of the stomach and is
currently a leading cause of cancer-related deaths with the fourth highest
mortality rate (7.7%) and fifth-most common diagnosed cancer (5.6%)
worldwide (Fig. 1.1), which has 1,089,103 new cases in 2020 and an
estimated 768,793 mortalities [3]. High-incidence areas are observed in
East Asia, Eastern Europe, South America, Western Asia and Southern
Europe. At the same time, low-incidence rates are observed in Middle
Africa, Southern Africa, Western Africa, Eastern Africa, and Northern
Africa [3].

Lung cancer is currently a leading cause of cancer-related deaths with
the first highest mortality rate (18.0%) and second-most common
diagnosed cancer (11.4%) worldwide (Figure 1.1) due to delayed
diagnoses and few treatment interventions [3]. Lung cancer had
2,206,771 new cases in 2020 and an estimated 1,796,144 mortalities
[3]. During the COVID pandemic, the diagnosis and treatment of lung
cancer have been hampered; nevertheless, this has not been reflected in
the 2022 predictions for incidence and death owing to the typical delays
in gathering, calculating, and reporting the data [3]. Only 21.7% of all
patients with lung cancer, including those with both non–small cell lung
cancer (NSCLC) and small cell lung cancer, are still alive five years or
more after diagnosis [8]. Adenocarcinoma and squamous cell
carcinoma (SCC) are the most frequent histologic subtypes, accounting
for 50% and 30% of NSCLC cases, respectively. Although the incidence
of SCC is decreasing as a consequence of changes in tobacco
consumption habits, SCC is still a major health issue.
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Fig. 1.1. Gastric cancer and lung cancer incidence and mortality in 2020.
Request with permission from [3]. Copyright 2021, Sung, H., Ferlay, J., Siegel,
R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. Global cancer
statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3),
pp.209-249.
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1.2 Clinical Therapy

1.2.1 Clinical therapy of gastric cancer

Gastric cancer (GC) is often diagnosed at an advanced stage [9]. The
current algorithm for the treatment of GC is shown in Figure 1.2. Most
patients with advanced GC are best treated with multimodality therapy,
however, still results in a poor prognosis of 5-year survival in 6% of
patients [10]. In addition, once GC is diagnosed as unresectable,
metastatic, or recurrent disease, therapies are more limited and
palliative, with the cure being extremely rare [10]. As a result, patients
often do not receive systemic therapy despite the guideline
recommendations in advanced GC.

Human epidermal growth factor recepter 2 (HER2) is a member of the
HER family [11]. Trastuzumab is a humanized monoclonal antibody
that targets the HER2 receptor, which inhibits downstream signal
activation, and induces antibody-dependent cellular toxicity. It
represents the first treatment option for approximately 20% of advanced
GC patients with HER2 overexpression or amplification [11, 12]. The
HER2 immunohistochemistry (IHC) scoring system categorizes HER2
protein expression into four levels, which ranges from Score 0 to Score
3+ [13]. An IHC score of 3+ is considered positive for HER2
overexpression. However, an IHC score of 2+ is considered equivocal.
In these cases, additional Fluorescence In Situ Hybridization (FISH)
testing is recommended to confirm HER2 gene amplification [13].
Trastuzumab showed benefit in patients with HER2-positive tumours
enrolled in the pivotal phase 3 trial Trastuzumab for Gastric Cancer
(ToGA) [14]. In this trial, trastuzumab plus chemotherapy improved
median overall survival (OS) compared with chemotherapy alone (16.0
vs 11.8 months), particularly in a posthoc analysis of patients who had
HER2 IHC scores of 3+ or FISH positivity and an IHC score of 2+,
which was therefore defined as the standard of care in the first-line
treatment in advanced HER2-positive gastric adenocarcinoma [14].
However, only a subgroup benefits from the addition of trastuzumab to
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Fig. 1.2. Current algorithm for the treatment of gastric and gastro-
oesophageal junction cancer [9]. Reproduced with permission from Springer
Nature. Copyright 2023, Alsina, M., Arrazubi, V., Diez, M. and Tabernero, J.
Current developments in gastric cancer: from molecular profiling to treatment
strategy. Nature Reviews Gastroenterology Hepatology, 20(3), pp.155-170.

chemotherapy. Although some complete durable tumor responses in
trastuzumab-treated patients were reported [15, 16], most patients
experience initial or acquired resistance. The overall response rate of
the combined therapy is below 50%, indicating a considerable
proportion of HER2-positive cancers are resistant to HER2 inhibition
[17, 18, 19]. Several issues have been addressed to account for the
limited benefit of HER2 blockade. Among them, tumour molecular
heterogeneity and molecular mechanisms responsible for anti-HER2
drug resistance are being considered and getting researchers’
attention.

Programmed cell death protein 1 (PD–1), a T cell co-inhibitory receptor,
plays an important role in cancer cell escape from the host’s immune
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system [20]. The programmed death-ligand 1/programmed cell death
protein 1 (PD–L1/PD–1) axis can protect cancers from T-effector cells
and help maintain an immunosuppressive microenvironment [21].
PD-L1 blockade has changed the direction of cancer care, and gastric
cancer is no exception. Some subtypes, such as microsatellite instability
high (MSI-H) tumours or Epstein-Barr Virus (EBV+) GC, are especially
sensitive to PD-L1 blockade [22, 23]. The post hoc analysis of the 84
patients with MSI-H tumours treated in the pembrolizumab trials
KEYNOTE-059, KEYNOTE-061 and KEYNOTE-062 supported these
findings [20]. Another novel approach to improving the treatment of
GC patients is the combination of HER2-directed therapies with
immunotherapy. The phase 3 KEYNOTE-811 trial recently showed that
adding pembrolizumab to trastuzumab and chemotherapy effectively
reduced tumor size, induced complete responses in some participants,
and significantly improved objective response rate chemotherapy in
HER2-positive, metastatic gastroesophageal adenocarcinoma [24].
However, the answer to the question regarding the best treatment line
for immunotherapy remains uncertain. The prediction of response
before therapy is an important issue in GC because the cost/benefit ratio
for patients could be dramatically enhanced and overtreatment could be
prevented.

1.2.2 Clinical therapy of lung squamous cell
carcinoma

Progress in translating advances in our understanding of the molecular
biology of GC into personalized treatments has lagged behind that
achieved in certain other tumour types, such as NSCLC [25]. In NSCLC,
unlike lung adenocarcinomas, no FDA-approved targeted therapy
regimens available to benefit lung squamous cell carcinoma (SCC)
patients [26], which will will serve as the central focus of my second
study in the thesis. Given the emphasis of my second research on the
SCC subtype in this thesis, the clinical therapy of SCC will accordingly
be introduced in this part.
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Fig. 1.3. Proposed treatment algorithm for advanced squamous cell lung
cancer. Request with permission from [27]. Copyright 2018, Socinski, M.A.,
Obasaju, C., Gandara, D., Hirsch, F.R., Bonomi, P., Bunn Jr, P.A., Kim, E.S.,
Langer, C.J., Natale, R.B., Novello, S. and Paz-Ares, L. Current and emergent
therapy options for advanced squamous cell lung cancer. Journal of Thoracic
Oncology, 13(2), pp.165-183.

The clinical treatment of SCC is described in Fig. 1.3. For the patients
with PD–L1 expression in less than 50%, treatment guidelines
recommend first-line treatment with platinum-based doublet
chemotherapy [27]. Pembrolizumab is the immunotherapeutic
approved for use in the first-line, treatment-naive setting, but only for
patients with PD–L1 expression in at least 50% of NSCLC cells [27, 28].
Pembrolizumab targets the PD–1/PD–L1 pathway, which has been
shown to play a crucial role in mediating immune tolerance in NSCLC
and producing durable responses [29]. Although pembrolizumab
represents a major breakthrough for first-line treatment of SCC, only
about 23% to 30% of the NSCLC population exhibits PD–L1 expression
at this high level [30, 31, 32]. Consequently, most patients with SCC
remain ineligible for first-line immunotherapy treatment. Thus,
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identifying and validating additional predictive biomarkers for the new
agents are also needed to enable their optimal use in clinical practice
and improve patient outcomes.
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2Molecular Investigation
for Personalized
Therapy

2.1 Molecular classification systems

Given the high morbidity and mortality rate, the study of GC and SCC
represents a critical area of clinical research, and much work is ongoing
[33, 34, 35, 36, 37]. In GC, HER2 overexpression, HER2 amplification,
MSI–H, and PD–L1+ are predictive biomarker [38]. In NSCLC, although
a wealth of information on adenocarcinoma is available, only recently
has information specifically focusing on SCC become available [39]. This
is because SCC often lacks the targetable genetic alterations commonly
found in adenocarcinoma, such ad epidermal growth factor receptor
(EGFR), anaplastic lymphoma kinase (ALK), and ROS proto-oncogene 1
(ROS1) rearrangements. While SCC may have fewer targetable genetic
alterations, it has shown responsiveness to immune checkpoint inhibitors
like PD–1 inhibitors [39].

2.1.1 Molecular classifications of GC

Despite substantial histopathological evaluation systems, including
tumor node metastasis (TNM) staging, Union for International Cancer
Control (UICC) staging and Lauren classification system, have been well
accepted as the current diagnostic reference, it is unable to identify
actionable molecular targets and observed with a difference in
treatment responsiveness of many therapeutic agents, which makes the
development of an adjuvant molecular classifier a novel trend [40]. To
have better GC stratification for clinical practice, researchers are now
focusing on the development of classification systems based on multiple
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molecular levels and the identification of predictive biomarkers to select
patients for targeted modalities [33, 34, 35, 36].

Fig. 2.1. Molecular subtypes established by TCGA. Request with permission
from [41] without any changes. Copyright 2016, Chen, T., Xu, X.Y. and Zhou,
P.H. Emerging molecular classifications and therapeutic implications for gastric
cancer. Chinese journal of cancer, 35(1), pp.1-10.

Several recent studies have provided a molecular subtyping framework,
including genomic, transcriptional, and proteomic features, to draw a
roadmap for GC drug development and personalized therapy [33, 34].
Among these molecular classification systems, there are two
comprehensive, large-scale studies from the Cancer Genome Atlas
(TCGA) Research Network in 2014 and the Asian Cancer Research
Group (ACRG) Network in 2015. The TCGA study characterized the GC
genome and proteome using complex bioinformatics analysis of
array-based somatic copy number, whole-exome sequencing,
array-based DNA methylation profiling, messenger ribonucleic acid
sequencing, microRNA sequencing and reverse-phase protein array data.
It identified four genomic subtypes: EBV+ tumors (9% of the cases),
MSI tumors (22% of the cases), genomically stable tumors (20% of the
cases), and tumors with chromosomal instability (50% of the cases)
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(Fig. 2.1) [40]. The original TCGA study did not investigate the
relationship between tumour subtype and clinical outcome, although
subsequent studies have. Among the four subtypes, MSI and EBV+

tumours have gained attention, as they are candidates for
PD-1/PD-L1-based immune check-point inhibition, which has become a
promising therapeutic option in advanced GC [42, 43]. Another
large-scale study by the ACRG identified four subtypes which allows the
stratification of GC patients into different prognostic and predictive
groups, using the gene expression, genome-wide copy number
microarray and targeted sequencing: Microsatellite
stability/Epithelial–mesenchymal transition (MSS/EMT) subtype
represent 15%, MSI subtype represent 23%, Microsatellite
stability/Tumor protein p53-active (MSS/TP53-active) subtype
represent 26%, and MSS/TP53-inactive subtype represent 36% (Fig.
2.2) [40, 44]. Survival analysis (median follow-up 86.4 months)
indicated that the MSI subtype confers the best prognosis, followed by
MSS/TP53+, MSS/TP53− and MSS/EMT.

Fig. 2.2. Molecular subtypes established by ACRG. Request with permission
from [41] without any changes. Copyright 2016, Chen, T., Xu, X.Y. and Zhou,
P.H. Emerging molecular classifications and therapeutic implications for gastric
cancer. Chinese journal of cancer, 35(1), pp.1-10.
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2.1.2 Molecular classifications of SCC

Lung squamous cell carcinoma (SCC) has seen substantial progress
in recent years, with efforts to classify subtypes based on molecular
characteristics. Recent comprehensive surveys have defined the genomic
and epigenomic alterations driving lung SCC [39, 45, 46]. Before these
studies, little was known about SCC genomics. However, these reports
using single-platform methods, such as gene expression profiling, SNP
arrays, and focused DNA sequencing, showed that the genetic alterations
defining lung adenocarcinomas and SCC were distinct, likely explaining
the lack of efficacy of targeted therapeutic agents in SCC that had been
applied successfully in lung adenocarcinomas.

Genomic and transcriptomic technologies have enabled important
insights into the molecular underpinnings of SCC, leading to initial
molecular classification strategies [39, 45, 46]. The Cancer Genome
Atlas (TCGA) identified recurrent mutations in genes associated with
cell cycle and apoptosis, including tumor protein p53 (TP53), cyclin
dependent kinase inhibitor 2A (CDKN2A), and retinoblastoma 1 (RB1),
antioxidant gene expression, including nuclear factor erythroid-derived
2-like 2 (NFE2L2) and kelch-like ECH-associated protein 1 (KEAP1),
phosphatidylinositide 3-kinase signaling, including
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
(PIK3CA) and phosphatase and tensin homolog (PTEN), and epigenetic
signaling , including mixed lineage leukemia 2 (MLL2) [39]. Based on
these results, studies such as the NCI’s Molecular Analysis for Therapy
Choice (MATCH) trial are attempting to capitalize on improved
molecular knowledge of SCC to employ precision therapeutic medicine
targeting phosphoinositide 3-kinases (PI3K), cyclin-dependent kinase
4/6 (CDK4/6), fibroblast growth factor receptor (FGFR), MET
proto-oncogene, receptor tyrosine kinase (MET), and PD-L1 [47]. In
addition, a recent study did a comprehensive proteogenomic
characterization of SCC, which will aid in the understanding of SCC and
in subsequently identifying therapeutic vulnerabilities and effective,
biomarker-based patient stratification [37].
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2.2 Molecular biomarkers and molecular
subtypes could benefit personalized
therapy

2.2.1 Molecular biomarkers of GC for
personalized therapy

Classification of gastric cancer based on molecular subtypes provides an
opportunity for personalized therapy. Specific agents recommended for
the evaluation of distinct gastric cancer patient populations in clinical
trials would be guided by these molecular subtypes. The subtypes-
related molecular biomarkers, in particular microsatellite instability
(MSI), programmed cell death ligand 1 (PD–L1), human epidermal
growth factor receptor 2 (HER2), tumor infiltrating lymphocytes (TILs),
and Epstein-Barr virus (EBV), are increasingly driving systemic therapy
approaches and allowing for the identification of populations most likely
to benefit from immunotherapy and targeted therapy [22, 44, 48, 49].

With the improved understanding of GC, a distinct and well recognized
subset of gastric cancer patients infected with EBV has been identified.
The EBV+ subtype highlights the viral aetiology of GC; the TCGA
characterization of this subtype suggests potential therapeutic targets
for this subgroup of cancers [48]. EBV is a human herpes virus with a
prevalence of around 10% of all GC, which is implicated in several
malignancies, including gastric adenocarcinoma [50]. EBV+ GC is
associated with a rich CD8+ T-cell infiltrate and increased PD–L1
expression, potentially making it more susceptible to PD–1 blockade.
Several clinical studies have described robust responses of EBV-positivity
to PD–1/PD–L1 blockade [22, 51, 52]. Recently, Panda et al. found
EBV+ gastric cancer with low mutation burden to be a subset of
microsatellite stable (MSS) gastric cancer, which may respond to
immune checkpoint therapy [53]. Thus, EBV+ gastric cancer is now
considered a unique molecular subtype of gastric cancer [54] and is
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associated with good prognosis in patients. Several clinical studies have
correlated MSI status with PD–1/PD-L1 blockade [23]. The high
response and benefit of microsatellite instability-high (MSI-H) patient
subtypes to PD-L1 blockade therapy is another example of how
personalized treatment can benefit specific patient subgroups based on
molecular features [20]. Identification of MSI tumours can be
accomplished by using mismatch repair protein (MMR, including MLH1,
PMS2, MSH2 and MSH6) immunohistochemistry. The concordance rate
of MMR expression profiles by immunohistochemistry and microsatellite
instability testing has been shown to be as high as 99% for GC [43, 55,
56]. Mismatch repair (MMR) genes are responsible for fixing errors that
occur during deoxyribonucleic acid (DNA) replication. Tumors with
defects in the mismatch repair system (MMR-deficient [dMMR]) harbor
significantly more mutations than tumors with intact MMR machinery
(MMR proficient). dMMR tumors are vulnerable to mutations in
microsatellites, which are repetitive sequences of nucleotide bases found
throughout the genome, leading to high levels of MSI [56]. Across
tumor types, patients with dMMR cancers are more likely to respond to
PD–1 blockade than those with MMR-proficient cancers. In part, this is
because of high levels of neoantigens and PD–L1+ T-cell infiltration in
dMMR tumors. Interestingly, the tendency to have a lymphocytic
infiltrate, which is observed in MSI tumors, likely reflects immune
activation of T cells that are associated with MSI [57, 58]. Further, one
study extended to four surface markers of TILs, including PD–1, cluster
of differentiation 8 (CD8), cluster of differentiation 4 (CD4) and
forkhead box P3 (FOXP3) in patients with GC [49]. Thus, identification
of these multiple molecular markers, together with their molecular
classifications, opens novel perspectives to stratify patients who may
benefit from immune and targeted therapies.
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2.2.2 Molecular biomarkers of SCC for
personalized therapy

The prognosis of SCC is not desirable due to the absence of reliable tumor
biomarkers that can enhance the development of targeted therapies
[39]. Consequently, there is an ongoing pursuit for new SCC biomarkers.
Additionally, investigating additional predictive biomarkers to identify
patients with SCC who are most likely to benefit from novel agents is of
great interest.

The immune checkpoint pathway has been shown to play a crucial role
in mediating immune tolerance in NSCLC, with antibody agents that
block this pathway, such as agents against PD–1/PD–L1, producing
durable responses [29, 59], and where expression of checkpoint
markers correlates with treatment efficacy [31]. Some studies address
the need by combining established molecular subtypes with multiple
immunological markers, such as PD–1, PD–L1, CD3 and CD8, which can
increase the predictive robustness and guide the implementation of
NSCLC precision medicine [45]. Alternative markers for checkpoint
blockade response, including T-cell and other immunological markers,
are also being considered [60, 61, 62].

The Lung Master Protocol in SCC (Lung-MAP) project addresses the
need by using a multi-substudy master protocol to facilitate the approval
of targeted therapy-predictive biomarker combinations. This project
consists of multiple ongoing phase II/III trials, capable of independently
opening and closing without interfering with other substudies. Patients
eligible for second-line therapy for SCC undergo genomic screening of
their cancers using a next-generation sequencing (NGS) platform [63,
64]. Lung-MAP optimizes patient enrollment efficiency by employing
a master protocol to screen patients and assigning each patient to a
substudy based on biomarker identification. The Lung-MAP study is
designed to adapt as new targeted agents become available for testing,
and the results of this study are expected to have significant implications
for the management of advanced SCC. However, targeting potentially
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druggable genetic events in three primary pathways, which includes
FGFR1, PI3K, or G1/S checkpoint genes such as CDKN2A, has largely
failed in the Lung-MAP project [63, 64].

2.3 Metabolomics for predicting therapy
response

As mentioned before, many important clinical advances in GC, SCC and
other cancers have been driven by genomic profiling of bulk tumor
material. The stratification of patients into appropriate treatment
groups, and the prediction of response to treatment are all highly
crucial for maximising survival rates of cancer patients [65]. In addition
to the alterations in genomic or proteomic pathways, promising
discoveries have been made with metabolomic studies. Thus we
anticipate that the same will prove true of bulk metabolomic
characterization. The metabolite profile may be considered as a factor
in assessing a patient’s initial response to treatment and selecting drug
regimens to effectively increase tumor response rate in cancer patients
[66]. Recently, the metabolomic approaches have been adopted in order
to better understand the pathology and to search for novel diagnostic
and therapeutic targets through the characterization of the metabolomic
profile of cancer patients treated with therapy in GC and SCC [67,
68].

Metabolism reprogramming is a hallmark of cancer. Metabolomics
provides in-depth information on metabolic perturbation between
healthy and neoplastic states in the stomach and lung, and further help
discovery disease-specific biomarkers [69]. In order to meet the
increased energy demands necessary for cell proliferation, cancer cells
exhibit a dysregulated metabolism that involves glucose, glutamine,
fatty acids, amino acids, various nutrients and metabolites. This
dysregulated metabolism encompasses processes such as glycolysis,
suppressed aerobic respiration, and de novo fatty acid synthesis [69, 70,
71, 72]. Recent extensive investigations into the molecular changes
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induced by rewired metabolism have resulted in the development of
targeted therapies. [73, 74]. Indeed, a previous study has identified
several metabolite-dependent subtypes among different cancer types
[75]. Thus, unique metabolic characteristics in cancers may have
potential as targets for cancer therapy.

Extensive research conducted in the field of GC and SCC has resulted in
significant advances through targeted investigations of the mechanisms
underlying altered metabolism and specific metabolic pathways.
However, a comprehensive exploration of metabolite-level classification
for therapy response prediction in GC and SCC is lacking. Therefore,
our study aimed to assess the potential of metabolite profiles to stratify
cancer patients and examine their association with clinical molecular
features in GC and SCC individually.
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3MALDI-IMS Technology
and Clustering Methods

Due to the interconnected nature of the studies within this dissertation,
my initial emphasis will be on showcasing matrix-assisted laser
desorption/ionization imaging mass spectrometry (MALDI–IMS) and
introducing the developed immunophenotype-guided spatial
metabolomics approach of tissue regions based on MALDI–IMS.
Additionally, I will delve into the cutting-edge clustering techniques
which are applied in my PhD thesis, including K–means clustering and
hierarchical clustering analysis.

3.0.1 MALDI–IMS

High mass resolution MALDI–IMS is a technique that combines mass
spectrometry with conventional histology, resulting in a new quality of
data in biochemical research and diagnostics, which has emerged as
an influential analytical tool in clinical research, such as being used to
discover new predictive and prognostic markers in cancer research [76].
Apart from detecting new biomarkers, MALDI–IMS has been used to
increase understanding of the patient response to therapy. A MALDI–IMS
study of GC tumours highlights the possibility that MALDI–IMS would
expand the understanding of patient response beyond histological and
morphological appearance [77].

MALDI–IMS remains the most widely applied IMS owing to its
capability to analyse a wide range of analyte classes [78]. The ability to
simultaneously detect thousands of molecules within a single sample
offers many advantages over traditional techniques that require
labelling, such as immunoassays [79]. In addition, various mass
spectrometry technologies allow for the detection of molecules which
may not be easily labelled, for example, lipids, nucleotides, and other
low molecular weight compounds [80].

27



In addition to its capability to analyze a wide range of analyte classes,
MALDI–IMS technique directly enables the detection and localization
of thousands of different molecules, including proteins, peptides, lipids
and drugs in tissue sections [80]. The principle and application of
MALDI—IMS is shown in Figure 3.1. A tissue or tissue microarray
(TMA) block is cut into slices and placed onto a conductive glass side.
The tissue section could be either from fresh frozen (FF) or archived
material like formalin-fixed, paraffin-embedded (FFPE) tissues. Then,
the section has to be coated with the matrix, including negative matrix
and positive matrix. This is a crucial step because it determines the
maximum spatial resolution, sensitivity, and reproducibility of a MALDI–
IMS experiment. Next, the coated glass slide is introduced into the mass
spectrometer and mass spectra are acquired in a raster process. Each
individual measurement spot has an associated mass spectrum that will
later constitute a pixel in the resulting MALDI image. The pixel size
is technically limited by both the laser focus diameter and the average
matrix droplet size. The spatial resolution typically ranges in the range
of tens to hundreds of micrometers [80].

The MALDI images are subsequently correlated to histology, which
allows the extraction of spectra generated from ‘regions of interest’, for
example, the spectra from tumor or stroma tissue [81]. Tumor and
stroma are distinct biological entities, and the same metabolites
contribute differentially to the estimation of prognosis and treatment
relevance in both tumor cells and the stroma [68, 82]. Assigning tumor
tissues to specific molecular subtypes can be influenced by molecular
expression profiles, giving rise to interpretive challenges. Subsequently,
the extracted region-specific mass spectra can undergo additional
bioinformatics processing to identify patterns, such as clustering similar
spectra. Those advantages greatly facilitate the application of
MALDI-IMS for tumor subtyping [81, 83, 84].

Recently, a new computational multimodal immunophenotype-guided in
situ spatial metabolomics workflow, Spatial Correlation Image Analysis
(SPACiAL), which designed to combine molecular imaging data with
multiplex immunohistochemistry, facilitates the automated and objective
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Fig. 3.1. The principle and application of MALDI–IMS. MALDI imaging
is able to analyze even the smallest tissue samples from patients, such as
endoscopic biopsies, which are readily collectable in a gastroenterological
setting. The subsequent histology-directed and unlabeled analysis allows to
extract spatially resolved, cell type-specific molecular signatures from a wide
variety of molecule classes and to correlate them with clinical endpoints. These
patterns may, therefore, directly support the clinician in relevant questions
such as in tissue diagnostics, therapy response prediction, or disease outcome
prediction. Request with permission from [80] without any changes. Copyright
2012, Balluff, B., Rauser, S., Ebert, M.P., Siveke, J.T., Höfler, H. and Walch, A.
Direct molecular tissue analysis by MALDI imaging mass spectrometry in the
field of gastrointestinal disease. Gastroenterology, 143(3), pp.544-549.

identification of histological and functional features in intact tissue
sections and the comprehensive analyses of metabolic constitutions of
tumor and the stroma regions from large-scale clinical cohort studies
[85]. The workflow of immunophenotype-guided annotation of tissue
regions for multi-omics analyses (SPACiAL pipeline) is shown in Fig.
3.2. This thesis will apply the immunophenotype-guided in situ spatial
metabolomics workflow and focus on the separate extraction of tumor
and stroma-based metabolite signatures in the patient stratification
approach for both GC and SCC studies.

29



Fig. 3.2. Immunophenotype-guided in situ metabolomics workflow is
exemplified using the islet of Langerhans. (A) MALDI and IHC workflow
starting with matrix application on tissue sections, MALDI imaging and data
processing which includes peak picking and annotation. Then, the matrix
is removed for subsequent multiplex immunofluorescence staining. (B) The
SPACiAL pipeline integrates molecular MALDI data and immunohistochemical
data. The IHC images need to be co-registered to the coordinates of the
mass spectra per pixel. Color values per pixel are used to define regions
or to conduct pixel-precise metabolic analyses. Request with permission
from [85] without any changes. Copyright 2020, Prade, V.M., Kunzke, T.,
Feuchtinger, A., Rohm, M., Luber, B., Lordick, F., Buck, A. and Walch, A. De
novo discovery of metabolic heterogeneity with immunophenotype-guided
imaging mass spectrometry. Molecular Metabolism, 36, p.100953.
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3.0.2 Clustering methods

Clustering methods of ion images was proposed to investigate spatial
similarities between ion images [86], and its usefulness for supervised
analysis was recently demonstrated [87]. K–means is one of the
commonly used clustering algorithms used in spatial metabolomics [88].
K–means analysis is a widely employed technique for segmenting and
grouping spatially resolved metabolomic data into distinct clusters
based on the similarities of metabolite profiles across different regions
of interest, such as tumor and stroma-specific regions [89]. Hierarchical
cluster analysis is another vital method in spatial metabolomics, which
is one of the common used tree-based clustering algorithms [90].
Unlike K–means, hierarchical clustering doesn’t require specifying the
number of clusters beforehand. The advantage of this method is that it
does not require prior knowledge about the number of expected clusters
as it finds a whole cluster hierarchy [90]. Both K–means analysis and
hierarchical cluster analysis contribute significantly to spatial
metabolomics by revealing spatially dependent metabolic variations,
distinct biochemical zones, and potential correlations between
metabolites and spatial locations [89, 90]. The hierarchical clustering
and K–means clustering of the tumour tissues were both applied in my
PhD studies, which results in identifying molecular subtypes
characterized by the abundance of identified metabolites in tumor and
stroma-specific regions, making possible the formulation of hypotheses
to account for their significance and the underlying biological
heterogeneity between tumor and stroma sub-regions.
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4Aim of Thesis

This dissertation had the goal to investigate the association between
metabolomics and the response to clinical therapy. To address this
objective, a novel classification scheme was developed to stratify
patients with gastric cancer (GC) and lung squamous cell carcinoma
(SCC) based on their metabolic profiles. This classification scheme
considered clinicopathological characteristics, molecular feature
correlation, and importantly, assigned clinical treatment relevance to
different patient subtypes. High mass resolution MALDI-IMS combined
with unsupervised clustering analyses were utilized to establish
metabolic subtypes using tumor- and stroma-specific tissue regions in
GC and SCC patients separately. This approach enabled the monitoring
and visualization of metabolites to understand their collective function
and impact on therapy response. The validity of the results obtained
from the GC study was confirmed in an independent validation cohort,
demonstrating the predictive ability of metabolic subtypes for
trastuzumab therapy. Similarly, the findings from the SCC study were
also supported by results obtained from an independent cohort,
indicating an association between metabolic subtypes and
chemotherapy response. The use of metabolic profiling provides an
alternative strategy for patient stratification in these two cancer types.
These findings have implications for the development of personalized
therapeutic approaches in clinical settings for patients with GC and SCC.
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Part IV

Published Results



This chapter provides the first author publications that comprise my PhD
work and makes this thesis eligible for credit as a cumulative dissertation.
The first publication establishes three tumor-specific and stroma-specfic
metabolic subtypes in a large series of 362 patients with GC. The results
were validated in an independent validation cohort to demonstrate the
ability of metabolic subtypes for trastuzumab therapy prediction. The
second publication establishes four tumor-specific and stroma-specfic
metabolic subtypes in a large series of 330 patients with SCC. The
results were also confirmed in an independent cohort that metabolic
subtypes had association with chemotherapy response. Taken together,
our results suggest that distinct subtypes of GC and SCC as defined using
metabolomics may show better responses to specific targeted therapies.
Before each embedded publication, a short introduction resuming the
respective work is given, and my individual contributions are mentioned.
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5Paper 1

Spatial Metabolomics Identifies Distinct Tumor-Specific Subtypes in
Gastric Cancer Patients

The publication entitled "Spatial Metabolomics Identifies Distinct
Tumor-Specific Subtypes in Gastric Cancer Patients" [1] represents the
starting of my work to identify metabolic subtypes for therapy response
prediction. We were interested in the idea of using spatial metabolomics
to stratify patients and test the therapy response prediction ability of the
established tumor-specific metabolic subtypes.

In this paper, I processed the data using R programming and calculated
all statistics included in this manuscript. In addition, I interpreted
the data, wrote the original draft of the manuscript, and prepared all
figures. After peer-review, I was responsible for editing the manuscript
and performing the new figures according to reviewers’ suggestions.
In addition, I co-designed this study together with Axel Walch and Na
Sun.
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Spatial Metabolomics Identifies Distinct Tumor-Specific
Subtypes in Gastric Cancer Patients
Jun Wang1, Thomas Kunzke1, Verena M. Prade1, Jian Shen1, Achim Buck1, Annette Feuchtinger1,
Ivonne Haffner2, Birgit Luber3, Drolaiz H.W. Liu4,5, Rupert Langer5, Florian Lordick2,6, Na Sun1, and
Axel Walch1

ABSTRACT
◥

Purpose: Current systems of gastric cancer molecular classifi-
cation include genomic, molecular, and morphological features.
Gastric cancer classification based on tissue metabolomics remains
lacking. This study aimed to define metabolically distinct gastric
cancer subtypes and identify their clinicopathological and molec-
ular characteristics.

Experimental Design: Spatial metabolomics by high mass res-
olution imaging mass spectrometry was performed in 362 patients
with gastric cancer. K�means clustering was used to define tumor
and stroma-related subtypes based on tissue metabolites. The
identified subtypes were linked with clinicopathological character-
istics, molecular features, and metabolic signatures. Responses to
trastuzumab treatment were investigated across the subtypes by
introducing an independent patient cohort with HER2-positive
gastric cancer from a multicenter observational study.

Results: Three tumor- and three stroma-specific subtypes with
distinct tissue metabolite patterns were identified. Tumor-specific
subtype T1(HER2þMIBþCD3þ) positively correlated with HER2,

MIB1, DEFA-1, CD3, CD8, FOXP3, but negatively correlated
with MMR. Tumor-specific subtype T2(HER2�MIB�CD3�) neg-
atively correlated with HER2, MIB1, CD3, FOXP3, but positively
correlated with MMR. Tumor-specific subtype T3(pEGFRþ)
positively correlated with pEGFR. Patients with tumor sub-
type T1(HER2þMIBþCD3þ) had elevated nucleotide levels,
enhanced DNA metabolism, and a better prognosis than T2
(HER2�MIB�CD3�) and T3(pEGFRþ). An independent valida-
tion cohort confirmed that the T1 subtype benefited from
trastuzumab therapy. Stroma-specific subtypes had no associa-
tion with clinicopathological characteristics, however, linked to
distinct metabolic pathways and molecular features.

Conclusions: Patient subtypes derived by tissue-based spatial
metabolomics are a valuable addition to existing gastric cancer
molecular classification systems. Metabolic differences between the
subtypes and their associations with molecular features could
provide a valuable tool to aid in selecting specific treatment
approaches.

Introduction
Gastric cancer is a leading cause of cancer-related deaths with the

fourth highest mortality rate worldwide (1). Treatment responsiveness
of gastric cancer differs markedly among current therapeutic regi-
mens (2). To improve gastric cancer stratification for clinical practice,
research focuses on developing classification systems based on mul-
tiple molecular levels, such as genome, transcriptome, and proteome,

to identify novel predictive biomarkers for personalized gastric cancer
treatment (3, 4).

Several recent studies have provided a molecular subtyping frame-
work, including morphological, genomic, and proteomic features, to
draw a roadmap for gastric cancer drug development and personalized
therapy (5, 6). Two comprehensive, large-scale studies from theCancer
Genome Atlas (TCGA) Research Network in 2014 and the Asian
Cancer Research Group (ACRG) Network in 2015 are among these
molecular classification systems. TCGA characterized the gastric
cancer genome and proteome using complex bioinformatics analysis
of array-based somatic copy number, whole-exome sequencing, array-
based DNA methylation profiling, messenger ribonucleic acid
sequencing, microRNA sequencing and reverse-phase protein array
data. The TCGA study identified four genomic subtypes: Epstein–Barr
virus–positive (EBVþ) tumors, microsatellite instable (MSI) tumors,
genomically stable tumors, and tumors with chromosomal instability.
Another large-scale study by the ACRG established four molecular
subtypes using the gene expression, genome-wide copy-number
microarray and targeted sequencing:MSS/EMT subtype,MSI subtype,
MSS/TP53-active subtype, and MSS/TP53-inactive subtype (7, 8).

Gastric cancer could be considered potentially immunogenic. Sev-
eral other studies characterized gastric cancer with immunological
features (9, 10). Li and colleagues (9) identified three subtypes using a
newly proposed pathway-based gastric cancer classification method:
Immune-derived subtype (ImD), stroma-enriched subtype, and
immune-enriched subtype and Zeng and colleagues (10) defined three
gastric cancer subtypes based on patterns of immune cell infiltration
into the tumor microenvironment.

The development of practical classification systems to predict
treatment responses in patients with gastric cancer would be a valuable
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addition to clinic settings. For example, trastuzumab represents the
first option for approximately 20% of patients with HER2 overexpres-
sion (11). The MSS/TP53-inactive molecular subtype established
by the ACRG study has been reported to potentially benefit from
anti–HER2-directed therapy (8). The immunotherapeutic antibody,
pembrolizumab, selectively binds to programmed cell death protein 1
(PD-1; ref. 12) and several clinical studies have correlated EBV
infection and MSI status with PD1/PD-L1 blockade (13, 14). The
high response and benefit of microsatellite instability-high (MSI-H)
patient subtypes to PD-L1 blockade therapy is another example of how
personalized treatment can benefit specific patient subgroups based on
molecular features (15). Interestingly, the tendency to have a lym-
phocytic infiltrate, which is observed in MSI tumors, likely reflects
immune activation of T cells that are associated with MSI (16, 17).
Furthermore, one study extended to four surface markers of tumor-
infiltrating lymphocytes (TIL), including cluster of differentiation 8
(CD8), cluster of differentiation 4 (CD4), PD-1, and forkhead box P3
(FOXP3) in patients with gastric cancer (18). Thus, identification of
these multiple molecular markers, together with their molecular
classifications, opens novel perspectives to stratify patients who may
benefit from immune and targeted therapies.

Metabolism reprogramming is a hallmark of cancer. To meet the
growing energy demands required for cell proliferation, gastric cancer
cells have a unique metabolism comprising glucose, glutamine, fatty
acids, amino acids, and many other nutrients and metabolites, such as
glycolysis, repressed aerobic respiration, and de novo fatty acid
synthesis (19–21). The recent deep exploration of molecular changes
induced by rewired metabolism has led to the development of targeted
therapies (22, 23). Indeed, a previous study identified several metab-
olite-dependent subtypes among 33 cancer types (24).Metabolite-level
classification has not been comprehensively investigated in gastric
cancer; hence, we assessed the ability of metabolite profiles to stratify
patients with gastric cancer and explored the association with clinical
molecular features.

High mass resolution Matrix-assisted laser desorption-ionization
(MALDI) imagingmass spectrometry (IMS) directly enables detection
and localization of thousands of different molecules within a routinely
preserved tissue section, and thus greatly facilitates the application of
MALDI-IMS for tumor subtyping (25–27). Recently, a new compu-
tational multimodal workflow, Spatial Correlation Image Analysis
(SPACiAL), which designed to combine molecular imaging data with

multiplex IHC, was developed for an objective analysis of high-
throughput data from large-scale clinical cohort studies (28).

This study aimed to derive a novel classification scheme to stratify
patients with gastric cancer by their metabolic profiles, encompass
clinicopathological characteristics and molecular feature correlation,
and more importantly, assign clinical treatment relevance to patient
subtypes. High mass resolution MALDI-IMS combined with
K�means clustering analysis was applied to establish metabolic
classification based on tumor- and stroma-specific tissue regions in
patients with gastric cancer. The results were validated in an inde-
pendent validation cohort to demonstrate the predictive metabolic
constitution of the subtypes for the trastuzumab therapy. The met-
abolic constitution in gastric cancer provided an alternative for patient
stratification.

Materials and Methods
Collection of tissue samples and clinical characteristics data

Primary resected gastric cancer samples were obtained from 362
patients who had not received prior chemotherapy, trastuzumab
therapy, or immunotherapy. Tissuemicroarrays (TMA)were analyzed
in triplicates (three tissue cores from each patient; Table 1). All
samples used in this studywere obtained frompatients who underwent
gastrectomy between 1995 and 2005 at the Surgery Department at the
TechnicalUniversityMunich. This studywas conducted in accordance
with the Declaration of Helsinki, and approved by the local Ethics
Committee of the Faculty ofMedicine at Technical UniversityMunich
with informed written consent from all patients. Table 1 describes the
clinical characteristics of the gastric cancer participants. Pathological
TNM-staging was performed according to the Union Internationale
Contre le Cancer (UICC) system 7th edition (29) and histopatholog-
ical grading was classified in accordance to the World Health Orga-
nization (30). Parameter variables were categorized as follows: Sex into
female versus male; tumor node metastasis classification, pT1–pT4 for
primary tumor, pN0–pN3 for primary lymph nodes, M0 and M1
category for distant metastasis; UICC classification into stage I–stage
IV; resection state into R0–R2; Lauren classification into diffuse,
intestinal, and mixed type; and primary tumor grading into scores
of G1–G3.

Patients and tissue samples for the independent validation
cohort (VARIANZ cohort)

A previous publication established a metabolomic classifier to
predict trastuzumab therapy response in patients with HER2-positive
advanced gastric cancer (VARIANZ cohort; ref. 31). The VARIANZ
cohort data were integrated here as a validation study for predicting
trastuzumab therapy response of the metabolic subtypes. The
VARIANZ cohort (n ¼ 42) was divided into therapy-resistant
(n ¼ 17) and therapy-sensitive (n ¼ 25) patients (31). This study was
conducted in accordance with the Declaration of Helsinki, and
approved by the Ethics Committee of the Leipzig University Medical
Faculty with informed written consent from all patients (32). The
patients were centrally reviewed, and their HER2 status was fully
characterized by the application of IHC staining and ISH. All patients
included in this analysis belonged to UICC stage IV, were HER2-
positive and underwent trastuzumab therapy and chemotherapy
(platin-fluoropyrimidine; Supplementary Table S1).

Sample acquisition and preparation
Sample preparation was performed as previously described (26).

Briefly, formalin-fixed paraffin-embedded sections (3 mm, Microm,

Translational Relevance

In recent years, several gastric cancer molecular classification
systems have been established. However, gastric cancer classifica-
tion based on metabolomics is still lacking. Here, we developed a
novel tumor- and stroma-specific classification model to stratify a
large series of patients with gastric cancer by applying tissue-based
spatialmetabolomics combinedwithK�means clustering analysis.
Using this model, all of tumor- and stroma-specific subtypes were
strongly associated with molecular features and distinctive metab-
olism pathways. Application of an independent validation cohort
revealed that two tumor-specific subtypes were predictive of
trastuzumab response. This is the first study to stratify patients
with gastric cancer based on tissue metabolomics. Metabolic
differences of the patient subtypes and their associations with
molecular features could improve the personalization of therapeu-
tic regimens.

Wang et al.
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HM340E, Thermo Fisher Scientific) were mounted onto indium–
tin–oxide-coated glass slides (Bruker Daltonik) pretreated with
1:1 poly-L-lysine (Sigma-Aldrich) and 0.1% Nonidet P-40 (Sigma).
Deparaffinized tissue sections were spray-coated with 10 mg/mL
of 9-aminoacridine hydrochloride monohydrate matrix (Sigma-
Aldrich) in 70% methanol using a SunCollect sprayer (Sunchrom).

High mass resolution MALDI-Fourier transforms ion cyclotron
resonance IMS

High mass resolution MALDI-IMS was conducted as previously
described (26). MALDI-IMS was performed in negative ion mode
using a Bruker Solarix 7.0 T FT-ICR (Fourier transforms ion cyclotron
resonance) MS (Bruker Daltonik) equipped with a dual ESI-MALDI
source and a SmartBeam-II Nd: YAG (355 nm) laser. Data acquisition
parameters were specified in ftmsControl software 2.2 and flexImaging
(v. 5.0; Bruker Daltonik). Mass spectra were acquired covering m/z
50–1100. The laser operated at a frequency of 1000 Hz, using 100 laser
shots per pixel, and with a pixel resolution of 60 mm. Non-tissue
regions were measured as a background control to differentiate
between tissue and matrix-associated peaks. L-Arginine was used for
external calibration in the ESI mode. After MALDI-IMS analysis, the
matrix was removed with 70% ethanol, and the samples were stained
with hematoxylin and eosin (H&E), coverslipped, and scannedwith an
AxioScan.Z1 digital slide scanner (Zeiss) equipped with a �20 mag-
nification objective.

Multiplex fluorescent IHC staining
TMAs were analyzed by double staining for pan-cytokeratin

[monoclonal mouse pan-cytokeratin plus (AE1/AE3þ8/18; 1:75),
catalog no. CM162, Biocare Medical, RRID: AB_10582491] and
vimentin [recombinant anti-vimentin antibody (EPR3776; 1:500),
catalog no. ab92547, Abcam, RRID: AB_10562134]. Signal was
detected using fluorescence-labeled secondary antibodies [goat
anti-rabbit IgG (H þ L)-cross-adsorbed secondary antibody-DyLight
633 (1:200), catalog no. 35563; and goat anti-mouse IgG (Hþ L)-cross-
adsorbed secondary antibody-Alexa Fluor 750 (1:100), catalog no.
A-21037, RRID: AB_2535708, both Thermo Fisher Scientific]. Nuclei
were identifiedwithHoechst 33342 in all stains. Fluorescence stainswere
scannedwith anAxioScan.Z1 digital slide scanner (Zeiss) equippedwith
a�20 magnification objective and visualized with ZEN 2.3 blue edition
software (Zeiss).

IHC and ISH
Protein expression of molecular features, including HER2, DNA

mismatch repair (MMR), phospho-EGFR (pEGFR), E3 ubiquitin-
protein ligase (MIB1), cluster of differentiation 3 (CD3), CD8,
FOXP3, and human alpha defensin 1 (DEFA-1), HER2 ISH status
and Epstein–Barr virus (EBV) positivity, were performed as pre-
viously described (33, 34). In short, IHC with anti-HER2/neu
(A0785; 1:300, DAKO), anti-pEGFR (36-9700; 1:100, Invitrogen,
RRID: AB_2533287), anti-CD3 (RM-9107-S; 1:200; Thermo Fisher
Scientific, RRID: AB_149922), anti-CD8 (ab178089; 1:50, Abcam,
RRID: AB_2756374), anti–DEFA-1 (T1034; 1:400, Dioanova),
anti-FOXP3 (12653; 1:100, Cell Signaling Technology), and anti-
MIB1 (M7240; 1:100, DAKO, RRID: AB_2142367) were performed
on consecutive 3-mm sections using an automated stainer (Ventana
DISCOVERY XT System, Ventana Medical Systems, Inc.) accord-
ing to the manufacturer’s instructions. Antibodies mutL homolog
1 (MLH1; clone ES05, Agilent Dako, RRID: AB_2631352) and
mutS homolog 2 (MSH2; clone FE11, Biocare Medical) of the
DNA MMR proteins were stained on consecutive 3-mm sections
(BenchMark ULTRA System). An assay with fluorescence-labeled
locus-specific DNA probes for HER2 and chromosome-17 (CEP17)
centromeric a-satellite was hybridized onto TMAs for ISH anal-
ysis. The TMAs were incubated with an EBV-encoded small RNA
probe (DAKO Cytomations) for EBV-encoded small RNA ISH
analysis.

Table 1. Summary of patient characteristics.

Characteristic Numbers

Number of patients 362
Age, y

Median 68
Range 17–100

Sex
Male 219
Female 123
NA 20

Survival time (mo)
Median 20
Range 0–344
NA 108

Lauren classification
Intestinal 178
Diffuse 146
Mixed 15
NA 23

Primary tumor extension
pT1 40
pT2 140
pT3 134
pT4 28
NA 20

Regional lymph nodes
pN0 93
pN1 100
pN2 107
pN3 35
NA 27

Distant metastasis
M0 193
M1 82
NA 87

UICC stage
Stage I 87
Stage II 71
Stage III 77
Stage IV 105
NA 22

Primary resection state
R0 203
R1 78
R2 29
NA 52

Grade
G1 2
G2 48
G3 285
NA 27

Note: Distant metastasis was defined as metastasis in any lymph node other
than regional. Samples with insufficient data to make a conclusion were set
to “NA.”
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Immunophenotype-guided IMS and data processing
In situ tissue cores were processed using the SPACiAL pipeline for

immunophenotype-guided MALDI-IMS analysis, which includes a
series of MALDI data and image-processing steps to automatically
annotate tumor and stroma regions as previously described (28). First,
H&E staining was removed by incubating tissue sections with 70%
ethanol for 5 minutes followed by IHC. Tumor and stroma regions
were distinguished by multiplex fluorescent IHC staining with epi-
thelial cell–specific cytokeratin antibody [(AE1/AE3þ8/18; 1:75), cat-
alog no. CM162, Biocare Medical, US, RRID: AB_10582491] and
stroma cell–specific vimentin antibody [recombinant anti-vimentin
antibody (EPR3776; 1:500), catalog no. ab92547, Abcam, UK, RRID:
AB_10562134] on the same tissue section. Immunostaining images
were then co-registered with the MALDI measurement region to
define 347 tumor region samples and 339 stroma region samples by
SPACiAL workflow. Specification of tumor and stroma regions and
exportation of each patient’s spectral data were finally managed using
the SPACiAL pipeline (28).

Consensus clustering
Consensus clustering was conducted using the “ConcensusCluster-

Plus” package in R to explore gastric cancer subtypes based on the
cancer patient sample matrix. The consensus matrix was used to check
cluster co-occurrence, find intrinsic groupings over variation in dif-
ferent numbers of clusters, and use K�means on the distance matrix.
The matrix is arranged so that samples belonging to the same cluster
are adjacent to each other.

Pathway enrichment analysis
Metabolites were annotated with the Kyoto Encyclopedia of Genes

and Genomes (KEGG, RRID: SCR_012773; www.genome.jp/kegg/),
allowing M�H, M�H2O, MþK�2H, MþNa�2H, and MþCl as
negative adducts with a mass tolerance of 4 ppm. Significance analysis
of tumor- or stroma-specific subtypes was performed by a Kruskal–
Wallis test with subsequent Benjamini–Hochberg correction
(P < 0.05). The enriched metabolites in each subtype were identified
by comparing with every other subtype using the Dunn’s test with a
cutoff P value of <0.05 and a fold change of >1 based on the significant
metabolites. The feature matrix of enriched metabolites was then
normalized by the 0–1 normalization method, which scaled the
minimum of each row to zero and maximum to one as visualized by
the abundance heatmap. Pathway enrichment analysis was performed
via theKEGGdatabase (RRID: SCR_012773) using theMetaboAnalyst
online tool (RRID: SCR_015539; www.metaboanalyst.ca; Fisher’s
exact test, q < 0.05 for FDR correction).

Statistical analysis
Correlations were calculated using pairwise Spearman’s rank-

order correlation and P values were adjusted with Benjamini–
Hochberg correction. The clinicopathological characteristics dif-
ferences among tumor- and stroma-specific subtypes was evaluated
by the x2 test or Fisher’s exact test, and P values in the pairwise
comparison between subtypes were adjusted with FDR correction.
To determine the intensity differences of representative metabo-
lites, the Kruskal–Wallis and post hoc Dunn’s multiple comparison
tests were used in conjunction with Benjamini–Hochberg correc-
tion. The Mann–Whitney U test was used for testing intensity
differences in the validation cohort. Further statistical differences
and comparison in patient survival were determined using the
Kaplan–Meier curve and the Log–Rank test. Multivariate survival
analysis was performed using Cox proportional hazard regression

model. All statistical tests were conducted using R (R version 4.0.0,
RRID: SCR_001905).

Data availability
The data generated in this study are available upon reasonable

request from the corresponding author.

Results
Identification of gastric cancer patient subtype based on
metabolite profiling

The study workflow is shown in Fig. 1. From a total of 362 patient
samples, 347 could be automatically annotatedwith tumor regions and
339 could be annotated with stroma regions using immuno-guided
spatial metabolomics. The annotatable patient cases form the basis for
our calculations. To determine whether tumor and stroma regions had
significantly different metabolite compositions, we performed a tumor
and stroma region-specific unsupervised K�means clustering analy-
sis. A total of 9,278 ion features were identified and selected as the basis
of K�means clustering.

Consensus matrix heatmaps and cumulative distribution function
(CDF) plots were drawn to determine the optimal number of K
clusters. Optimal cluster numbers for tumor-specific and stroma-
specific data were both set to 3, which led to a lesser increase in CDF
difference following the consensus index (Fig. 2A andB). Color-coded
heatmaps corresponding to the consensus matrix were obtained by
applying consensus clustering to tumor- and stroma-specific datasets
(Fig. 2C and D). The selected blocks were almost disjointed in the
heatmap, indicating that the three clusters could be distinguished on
tumor-specific spectra. The three clusters also had relatively clean
separation and displayed a well-defined three-block structure for
stroma-specific data. The sharp and crisp boundaries further validated
stable and robust clustering of the tumor- and stroma-specific dataset.
Both datasets were subsequently processed by unsupervised K�means
centroid clustering. Of the 347 tumor regions, 161 were assigned to
subtype T1 (46%), 55 to T2 (16%), and 131 to T3 (38%), respectively.
Furthermore, of the 339 stroma regions, 125 were assigned to subtype
S1 (37%), 50 to subtype S2 (15%), and 164 to subtype S3 (48%).

To estimate the ability of MALDI-IMS data to distinguish gastric
cancer subtypes and validate subtype assignments without referring to
clustering, we additionally assessed the variance among molecular
subtypes using a t-distributed stochastic neighbor embedding-based
approach. Results showed that both tumor- and stroma-specific
subtypes were clearly separated, indicating that they could be readily
distinguished on the basis of metabolite levels (Fig. 2E and F).

Correlation of tumor- and stroma-specific subtypes with
molecular features

To explore differences in tumor- and stroma-specific subtypes,
we investigated their association with protein expression of molec-
ular features, including DNA MMR, HER2, pEGFR, E3 ubiquitin-
protein ligase (MIB1), CD3, CD8, FOXP3, and human alpha
defensin 1 (DEFA-1), HER2 ISH status, and EBV positivity. All
associations between molecular features and patient subtypes are
shown in Fig. 2G–H and Supplementary Tables S2 and S3. Among
the three tumor-specific subtypes, gastric cancer molecular fea-
tures, including HER2 (P ¼ 0.00017), CD3 (P ¼ 0.005), CD8 (P ¼
0.02), FOXP3 (P ¼ 0.0011), MIB1 (P ¼ 0.0012), and DEFA-1 (P ¼
0.014) positively correlated with tumor-specific subtype T1. Con-
versely, pEGFR (P ¼ 0.012) and MMR (P ¼ 0.0033) negatively
correlated with T1. Tumor-specific subtype T2 negatively
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correlated with HER2 (P ¼ 0.0076), CD3 (P ¼ 0.017), FOXP3 (P ¼
0.0013), and MIB1 (P ¼ 0.00009). Meanwhile, T2 showed no
significant correlation with CD8 (P ¼ 0.13), DEFA-1 (P ¼
0.080), and pEGFR (P ¼ 0.89). Conversely, MMR (P ¼ 0.047)
positively correlated with T2. Tumor-specific subtype T3 positively
correlated with pEGFR (P ¼ 0.013) and showed no significant
correlation with HER2 (P ¼ 0.082), MMR (P ¼ 0.17), CD3 (P ¼
0.23), CD8 (P ¼ 0.23), FOXP3 (P ¼ 0.36), MIB1 (P ¼ 0.71), and
DEFA-1 (P ¼ 0.26). The metabolic subtypes significantly corre-
lated with HER2 IHC status, but showed no correlation with HER2
ISH status. As shown in Supplementary Table S4, EBV positivity
was observed in 14 patients. Of these, 9 and 5 EBV-positive tumors
were the T1 and T2 subtype, whereas no EBV-positive tumor
sampleswere theT2subtype.On thebasis of these results,we categorized
tumor-specific subtypes based on HER2, MIB1, and CD3-positive
correlation as T1(HER2þMIBþCD3þ), those based on negative HER2,

MIB1, and CD3 correlation, as T2(HER2�MIB�CD3�), and the
remaining tumor subtype based on elevated pEGFR protein expres-
sion, as T3(pEGFRþ).

Stroma-specific subtype S1 did not significantly correlate with
HER2 (P ¼ 0.098), MMR (P ¼ 0.572), pEGFR (P ¼ 0.49), MIB1
(P¼ 0.21), DEFA-1 (P ¼ 0.20), CD3 (P¼ 0.22), or CD8 (P¼ 0.51),
and indeed had a negative correlation with FOXP3 (P ¼ 0.028).
Stroma-specific subtype S2 was negatively associated with HER2
(P ¼ 0.028), MIB1 (P ¼ 0.002), FOXP3 (P ¼ 0.002), and CD3
(P ¼ 0.019). Meanwhile, S2 did not significantly correlate
with MMR (P ¼ 0.0847), pEGFR (P ¼ 0.14), DEFA-1
(P ¼ 0.47), or CD8 (P ¼ 0.22). Stroma-specific subtype S3 had
a positive correlation with HER2 (P ¼ 0.0019), MIB1
(P ¼ 0.00079), FOXP3 (P ¼ 0.000013), and CD3 (P ¼ 0.008),
and had no significant correlation with MMR (P ¼ 0.5), pEGFR
(P ¼ 0.11), DEFA-1 (P ¼ 0.082), and CD8 (P ¼ 0.14). Of the 14

Figure 1.

Spatial metabolomics pipeline scheme and subtype characterization process. The workflow begins with immunophenotype-guided spatial metabolomics, including
matrix application, immunophenotype-guided MALDI-IMS assessment, and data processing. For the immunophenotype-guided MALDI-IMS approach, tumor and
stroma cells were annotated using multiplex fluorescent IHC staining. Tumor and stroma region-specific mass spectra were then subjected to further the K�means
clustering and statistical analysis.
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EBV-positive tumors, 3 and 11 EBV-positive tumors were the S1
and S3 subtype, whereas no EBV-positive tumor samples were the
S2 subtype (Supplementary Table S4). Hence, stroma-specific
subtypes were accordingly named S1(FOXP3–), S2(HER2–MIB–CD3–),

and S3(HER2þMIBþCD3þFOXP3þ). The alluvial diagram shown
in Fig. 2I indicated the distribution of patients between tumor- and
stroma-specific subtypes. Subtype similarities were observed
between T1(HER2þMIBþCD3þ) and S3(HER2þMIBþCD3þFOXP3þ),

Figure 2.

Tumor- and stroma-specific subtypes
identification and their association
with molecular features. The relative
change in the area under CDF curve of
(A) tumor and (B) stroma datasets.
The number of cluster K changed
from 2 to 8. K ¼ 3 led to a lesser
increase in CDF difference following
the consensus index and thus was
selected as the optimal number of
cluster. Consensus matrix heatmap of
the chosen optimal number of cluster
K ¼ 3 of (C) tumor and (D) stroma-
specific datasets. A color gradient of
0–1 is used, blue¼ consensus score of
1, meaning that patients were always
clustered together; white ¼ consen-
sus score of 0, meaning that patients
were never clustered together. Three-
dimensional t-SNE analysis suppor-
ted that patients could be stratified
into three subtypes in both tumor- (E)
and stroma-specific datasets. F,
Points represented samples colored
according to the metabolic patient
subtypes. Statistical association of
molecular features (HER2, MMR,
pEGFR, MIB1, CD3, CD8, FOXP3, and
DEFA-1) with tumor- (G) and stro-
ma-specific subtypes (H). I, Alluvial
diagram depicted the relationship
of tumor- and stroma-specific sub-
types. Detailed patient numbers in
each subtype were shown in the
table; � , P < 0.05; �� , P < 0.01; and
��� , P < 0.001.
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T2(HER2�MIB�CD3�) and S2(HER2–MIB–CD3–), and T3(pEGFRþ)
and S1(FOXP3–).

Tumor-specific subtypes have different clinicopathological
features

We next tested whether consensus clustering subtypes had striking
differences in the most common gastric cancer clinicopathological
characteristics. Our results showed that the proportion of samples in
pT (P ¼ 0.022), pN (P ¼ 0.0043), M (P ¼ 0.00017), and UICC stage
(P ¼ 0.00026) was significantly different in distinct tumor-specific
subtypes (Supplementary Fig. S1D–S1F and S1H). Particularly, T1
(HER2þMIBþCD3þ) subtype had a significantly different propor-
tion of samples in the “M stage” in comparison with the T2
(HER2�MIB�CD3�) and T3(pEGFRþ) subtypes. No associations of
tumor-specific subtypes with age, sex, grade, or Lauren classification
were found (Supplementary Fig. S1A, S1B, S1G, and S1I). Stroma-
specific subtypes were not significantly associated with clinicopatho-
logical characteristics (Supplementary Fig. S1).

Association between tumor-specific subtypes and patient
prognosis

Wenext compared potential differences in prognosis among tumor-
and stroma-specific subtypes. The Kaplan–Meier survival analysis
indicated better outcomes for subtype T1(HER2þMIBþCD3þ) than
T2(HER2�MIB�CD3�;P¼ 0.022;Fig. 3B). No statistically significant
differences were observed in other pairwise tumor-specific subtype
comparisons or overall, in three tumor-specific subtype comparisons
(Fig. 3A, C, and D). In stroma-specific subtypes, survival was not
statistically different in pairwise subtype comparisons or in an overall
comparison of the three subtypes (Fig. 3E–H). The T1
(HER2þMIBþCD3þ) and T2(HER2�MIB�CD3�) subtypes, which
have significant survival differences, were included in the multivariate
Cox regression analysis, and showed that tumor-specific subtypes do
not serve as independent prognostic subtypes with regard to the UICC
classification system [T1(HER2þMIBþCD3þ): P¼ 0.323; hazard ratio
(HR), 1.244; T2(HER2�MIB�CD3�): P ¼ 0.481; HR, 1.184; UICC
stage: P ¼ 5.38 � 10–12; HR, 1.970].

Gastric cancer patient subtypes with distinct metabolites and
related metabolism pathways

To gain a deeper insight into the underlying metabolism differences
among tumor- and stroma-specific subtypes, a differential analysis
was conducted on 277 annotated metabolites, and significant
enriched metabolites for each of tumor- and stroma-specific subtypes
were identified. Enriched metabolites for each subtype were visualized
by a heatmap as shown in Fig. 4A and Supplementary Fig. S2A. Figure
4B–D and Supplementary Fig. S2B–S2D separately demonstrated
distinct subtype-specific pathway patterns of tumor and stroma. T1
(HER2þMIBþCD3þ) had 45 significantly upregulatedmetabolic path-
ways, 13 ofwhichwere related to carbohydratemetabolism, as opposed
to 10 that were related to amino acid metabolism (Fig. 4B). Notably,
nucleotide metabolism and ascorbate and aldarate metabolism were
upregulated exclusively in T1(HER2þMIBþCD3þ). At the same time,
T2(HER2�MIB�CD3�) had 17 significantly upregulated metabolic
pathways, 7 of which were related to carbohydrate metabolism and 4
were related to amino acid metabolism, respectively (Fig. 4C). T3
(pEGFRþ) was found to be related to biotin metabolism and the
cytosolic DNA-sensing pathway (Fig. 4D). Concerning stroma-
specific subtypes, S3(HER2þMIBþCD3þFOXP3þ) had 32 specific
upregulated metabolism pathways, in comparison with 2 and 17 in
S1(FOXP3–) and S2(HER2–MIB–CD3–), respectively (Supplementary

Fig. S2B–S2D). S1(FOXP3–) was related to the pentose phosphate
pathway and cysteine and methionine metabolism (Supplementary
Fig. S2B). Furthermore, some amino acid-related pathways
were elevated in S3(HER2þMIBþCD3þFOXP3þ; Supplementary
Fig. S2D). Figure 4E and Supplementary Fig. S2E showed the
spatial distribution of one representative metabolite selected from
each tumor- and stroma subtype-specific pathway. The above
results demonstrate that tumor- and stroma-specific subtypes were
enriched with diverse metabolites and metabolism pathways.

T1(HER2þMIBþCD3þ) and T2(HER2�MIB�CD3�) subtypes
correlate with trastuzumab therapy efficiency in an
independent validation cohort (VARIANZ cohort)

Response to trastuzumab therapy in gastric cancer has been linked
to a metabolomic classifier in our recent study (Fig. 5A and B; ref. 31).
This metabolomic classifier was established by applying spatial meta-
bolomics and machine learning. The metabolomic classifier could
stratify patients diagnosed with HER2-positive gastric cancer into
trastuzumab-sensitive and trastuzumab-resistant, and thus predict
those patients’ response to trastuzumab. HER2-positive tumor
patients from the study were used as an independent validation
cohort (VARIANZ cohort), and the metabolomic classifier was
applied to predict trastuzumab responses in T1(HER2þMIBþCD3þ)
and T2(HER2�MIB�CD3�) subtypes, due to their specific correlation
with HER2 protein expression. As shown in Fig. 5C and D, the
metabolomic classifier can distinguish T1(HER2þMIBþCD3þ)
and T2(HER2�MIB�CD3�) subtypes in our discovery cohort.
In the VARIANZ cohort (n ¼ 42), patients treated with trastu-
zumab therapy were classified into the T1(HER2þMIBþCD3þ)
and T2(HER2�MIB�CD3�) subtypes, which significantly corre-
lated with a response to trastuzumab (Fig. 5E). The percentage
of trastuzumab-sensitive patients was significantly higher in
the T1(HER2þMIBþCD3þ) subtype (82%) than in the T2
(HER2�MIB�CD3�) subtype (44%; Fig. 5F). In addition, trastu-
zumab-treated patients in the T1(HER2þMIBþCD3þ) subtype also
had a better prognosis than patients in the T2(HER2�MIB�CD3�)
subtype (Fig. 5G). Spearman correlation analysis revealed no
correlation between patient subtypes T1(HER2þMIBþCD3þ) and
T2(HER2�MIB�CD3�) with HER2 IHC status or ISH gene ampli-
fication rate (Supplementary Table S5). Overall, these analyses
demonstrate the correlation of these tumor-specific subtypes with
survival and reveal their potential as a biomarker across trastu-
zumab therapy. Particularly, Spearman correlation analysis showed
no correlation between any of these metabolites and HER2 protein
(Supplementary Table S6). Moreover, multivariate analysis showed
that HER2 did not show an independent prognostic value of either
the T1(HER2þMIBþCD3þ) subtype [P ¼ 0.26; HR, 0.68; 95%
confidence interval (CI), 0.34–1.34] or the T2(HER2�MIB�CD3�)
subtype (P ¼ 0.26; HR, 1.48; 95% CI, 0.75–2.93; Supplementary
Table S7), further confirming that patient response to trastuzumab
depends on tumor-specific subtype variables irrespective of HER2
expression.

Discussion
This study describes a novel tumor- and stroma-specific classifi-

cation model in a large series of patients with gastric cancer based on
metabolites. We defined three distinct tumor-specific subtypes: T1
(HER2þMIBþCD3þ), T2(HER2�MIB�CD3�), and T3(pEGFRþ),
and three stroma-specific subtypes: S1(FOXP3–), S2(HER2–-

MIB–CD3–) and S3(HER2þMIBþCD3þFOXP3þ). The characteristics
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Figure 3.

Metabolic patient subtypes and their prognosis.
Survival analysis of (A) three tumor-specific sub-
types and (B–D) pairwise subtype comparison
in Kaplan–Meier curves. Survival analysis of (E)
three stroma-specific subtypes and (F–H) pairwise
subtype comparison. The x-axis represented the
survival time, and the y-axis represented the prob-
ability of survival. The log-rank test was used to
assess the statistical significance of the prognostic
differences among the subtypes; � , P < 0.05.
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of tumor-specific subtypes are summarized in Fig. 6. T1
(HER2þMIBþCD3þ) was characterized by high immune cell infiltra-
tion, presence of EBV, MSI-H, earlier UICC stage, nucleotide metab-
olism, and good prognosis. By contrast, T2(HER2�MIB�CD3�) was
characterized by low immune cell infiltration, absence of EBV, low
MSI, later UICC stage and poor prognosis; Finally, T3(pEGFRþ) was
characterized by high pEGFR. Stroma-specific subtypes were linked to
distinct metabolic pathways and molecular features. An independent
validation cohort confirmed that the T1(HER2þMIBþCD3þ) subtype
had predictive power for a trastuzumab benefit. Identification of these

tumor- and stroma-specific subtypes would be a valuable addition to
current molecular classification by maximizing the use of established
therapy in proper patient populations and reducing the use of costly
drugs.

In recent years, molecular methods, such as next-generation
sequencing, including deoxyribonucleic acid sequencing, ribonucleic
acid sequencing, whole-exome sequencing, copy-number variation
analysis, and DNA methylation arrays, have been used for the clas-
sification of gastric cancer into molecular subtypes (7–10, 35). Our
subtype classification drew from these stratification approaches and

Figure 4.

Tumor subtype-specificmetabolite characteristics andpathways enrichment.A,Upregulatedmetabolites of each tumor-specific subtype. Each row represented one
metabolite. Colored bars at the top indicated tumor-specific subtypes. B–D, Pathways enriched in each tumor-specific subtype were represented by scatter plots.
The x-axis indicated the pathway impact factor, and the y-axis indicated the pathway term. Dot color indicated the q value. Dot size indicated the counts of
metabolites. E, Representative upregulated metabolite distribution and its intensities in the tumor-specific subtypes. Deoxyadenosine monophosphate (dAMP), a
nucleotide metabolism member; D-Fructose 6-phosphate, carbohydrate metabolism member; Biotin, biotin metabolism member. The statistic differences were
evaluated with the Kruskal–Wallis test. �� , P < 0.01; ��� , P < 0.001.
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supplemented them using tissuemetabolomics to stratify patients with
gastric cancer. The T1(HER2þMIBþCD3þ) subtype shared similarity
to the EBVþ and MSI subtypes established by TCGA study (7) for the
presence of EBV and high MSI. The T2(HER2�MIB�CD3�) subtype
was similar to the ImD in immune cell absence and showed consis-
tently poor survival (9). Good prognosis in T1(HER2þMIBþCD3þ)
and poor prognosis in T2(HER2�MIB�CD3�) subtypesmay be due to
the combined effects of high CD3, CD8, and FOXP3 expression.

Previous studies support our observation that high T-cell density was
associated with improved gastric cancer clinical outcomes (14, 36).

Only a subset of patients benefit from trastuzumab therapy (32).
However, effective prediction of treatment response to trastuzumab
could dramatically enhance this benefit ratio while preventing over-
treatment. Several response predictors have been proposed. However,
at present, neither HER2 IHC (11) nor HER2 ISH (37) provides a
robust prediction of trastuzumab therapy benefit in patients with

Figure 5.

Association with trastuzumab therapy response in HER2-associated tumor-specific subtypes T1(HER2þMIBþCD3þ) and T2(HER2�MIB�CD3�). A, Importance plot,
including the most significant metabolites, which represented an unequal distribution of trastuzumab-sensitive and -resistant patients in the metabolomic classifier
from the VARIANZ cohort.B,Abundance difference ofmetabolites in trastuzumab-sensitive and trastuzumab-resistant patientswith gastric cancer using theMann–
WhitneyU test.C,The abundancedifference ofmetabolites in T1(HER2þMIBþCD3þ) andT2(HER2�MIB�CD3�) subtypes using theMann–WhitneyU test.D,Heatmap
illustrating the abundance ofmetabolites showed tumor-specific subtype classification in our discovery cohort. E,Heatmap of the abundance ofmetabolites showed
tumor-specific subtype classification in the VARIANZ cohort. F, Numbers of trastuzumab-sensitive and trastuzumab-resistant patients in T1(HER2þMIBþCD3þ) and
T2(HER2�MIB�CD3�) subtypes. The P value was calculated by using the Fisher’s exact test. G, Survival difference of patients with T1(HER2þMIBþCD3þ) and T2
(HER2�MIB�CD3�) subtypes treated with trastuzumab therapy using the log-rank test; � , P < 0.05.
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gastric cancer. Therefore, a priori identification of responders is
critically needed as it would improve treatment outcomes. A meta-
bolomic classifier involving DNA metabolism molecules was built in
our previous study, and could predict trastuzumab response in patients
with HER2-positive gastric cancer (31). Patients with HER2-positive
tumor from this recent study were used as the validation cohort, and
the same metabolomic classifier was applied in the current study. We
successfully confirmed that our tumor-specific subtypes can further
stratify HER2-positive patient responses to trastuzumab therapy, with
patients with gastric cancer possessing T1(HER2þMIBþCD3þ)
experiencing better outcomes to trastuzumab therapy than T2
(HER2�MIB�CD3�) patients. Strikingly, nucleotides were elevated
in sensitive patients, and DNA metabolism in gastric cancer tumor
cells has been reported as a crucial factor that affects the response to
trastuzumab therapy in our previous study (31). The current study
consistently showed a higher abundance of nucleotides and DNA
metabolism in the T1 (HER2þMIBþCD3þ) subtype. Together, this
evidence suggests that the T1(HER2þMIBþCD3þ) subtype assign-
ment predicts a benefit when initiating trastuzumab therapy.

In addition, response to trastuzumab therapy has been reported to
improve when combined with bifunctional HER2/CD3 CART-like
human T-cell treatment (38). Significant inhibition in drug-resistant
solid tumors has been exhibited in other HER2-targeted bispecific
antibodies undergoing clinical investigation, including ertumaxomab-
targeting HER2 and CD3 on T cells and activated T-cell armed with
HER2-targeted bispecific antibody (HER2Bi-aATC; ref. 39). In our
study, HER2 and CD3 protein expressions were found to be positively

correlated with the T1(HER2þMIBþCD3þ) subtype. Hence, we expect
the T1(HER2þMIBþCD3þ) subtype to be predisposed with the tras-
tuzumab therapy combined with HER2-targeted bispecific antibodies.

Pioneering studies in this field revealed a close correlation between
TILs and PD-L1 overexpression in gastric cancer (16, 40). The
expression of PD-1 is found not only on CD8þ-infiltrated cells but
also on FOXP3þ Treg cells (18). Tumors with elevated immune
infiltration often have a more active response to immunotherapy (41).
Patients with these characteristics had better clinical outcomes in
response to immune checkpoint therapy. Thus, TILs can be considered
a potentially important predictive marker in a broad variety of gastric
cancer and other tumor types (14, 42). Some previous studies have
demonstrated that PD-1 blockade could be effective in patients with
elevated CD8þ TILs, even with low PD-L1 expression (43–45). In
addition, several recent studies found a close relationship of immune
checkpoints with EBV-positive and MSI-high gastric cancer (14, 15).
Thus, we expect T1(HER2þMIBþCD3þ) to be predisposed with
immune checkpoint inhibitors, such as PD-1 blockade, because of its
higher frequency of EBV positivity, MSI and positive correlation with
CD8þ T-cell infiltration and FOXP3-positive Treg cells.

Immunotherapy has also been successfully added to HER2-directed
therapy. The phase 3KEYNOTE-811 trial recently showed that adding
pembrolizumab to trastuzumab and chemotherapy markedly reduced
tumor size, induced complete responses in some participants, and
significantly improved objective response rate chemotherapy in
HER2-positive, metastatic gastroesophageal adenocarcinoma (46).
Notably, there was an impressive 74.4% response rate, which was

Figure 6.

Summary of clinicopathological and molecular characteristics of three tumor-specific gastric cancer patient subtypes. The three tumor-specific subtypes displayed
significantly distinct metabolites and molecular features. EBV, Epstein–Barr virus; HER2, human epidermal growth factor receptor 2; MSI, microsatellite instability;
pEGFR, phosphoepidermal growth factor receptor; TIL, tumor-infiltrating lymphocytes.
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significantly higher than the 47% response rate achieved with che-
motherapy plus trastuzumab, suggesting that T1(HER2þMIBþCD3þ)
treatment responsiveness may be increased by combining checkpoint
blockade with standard trastuzumab plus chemotherapy.

The distinct metabolite networks and biochemical processes in
tumor- and stroma-specific subtypes revealed by enriched pathway
analysis were consistent with previously known features of gastric
cancer. For instance, previous studies suggested that metabolic
alteration was typically characterized by repression of the Warburg
effect aerobic respiration and increased glycolysis for glucose
metabolism (19, 47, 48). The association between glucose metab-
olism and gastric cancer has been confirmed and discussed in several
studies (19, 48). One proposed explanation why the Warburg
effect is advantageous for tumor growth is that through increased
glycolysis, glycolytic intermediates can funnel into anabolic
side pathways to support de novo synthesis of nucleotides,
lipids, and amino acids needed to support cell proliferation (47, 49).
This evidence robustly supports our observation that carbohydr-
ate metabolism and amino acid metabolism pathways are
enriched among T1(HER2þMIBþCD3þ), T2(HER2�MIB�CD3�),
S2(HER2–MIB–CD3–), and S3(HER2þMIBþCD3þFOXP3þ) sub-
types. Apart from commonly enriched metabolism, T1
(HER2þMIBþCD3þ) and S3(HER2þMIBþCD3þFOXP3þ) specif-
ically exhibited upregulation of nucleotide metabolism. Accumu-
lation of nucleotide metabolism end products is also found in
patients with gastric cancer (50).

Molecular expression profiles of tumor tissues may influence
their assignment to specific molecular categories, creating inter-
pretative challenges. Novel, distinctive, stroma-based signatures
have been proposed for predominant cancer phenotypes (35). In
this study, we successfully performed the classification of tumor
epithelial cells and stromal cells, whereas no well-established large-
scale classification research has considered the influence of active,
nonmalignant stromal cells. As we found, T1(HER2þMIBþCD3þ)
and S3(HER2þMIBþCD3þFOXP3þ) share similar metabolic path-
ways but different correlations with pathological parameters and
molecular features. This result shows that tumor- and stroma-
specific metabolite patterns from the same patient may convey
different information, and the same patient cohort may have
different subtype patterns in tumor- and stroma-specific regions.

Thus, identification of subtypes must be more precise to individual
tumor or stroma regions rather than mixed tissue regions.

In conclusion, our results increase the understanding of the met-
abolic subtypes of gastric cancer. With the further development of
image mass spectrometry tools, the metabolic classification of gastric
cancer will become more precise. If confirmed and extended in future
studies, the association between metabolic subtypes reported here and
therapy responses might refine patient selection for personalized
therapy.
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6Paper 2

Spatial Metabolomics Identifies Distinct Tumor-specific and
Stroma-specific Subtypes in Patients with Lung Squamous Cell
Carcinoma

The second publication, entitled "Spatial Metabolomics Identifies
Distinct Tumor-specific and Stroma-specific Subtypes in Patients with
Lung Squamous Cell Carcinoma" [2], reveals the alternative option of
SCC patient stratification based on spatial metabolomics. This
publication applies high-mass-resolution MALDI-IMS combined with
hierarchical clustering analysis to establish metabolic subtypes based on
tumor- and stroma-specific tissue regions in SCC patients. The results
were tested in an independent cohort to demonstrate the ability of
metabolic subtypes to associate with the response to chemotherapy.

In this paper, I processed the data using python and R programming
and calculated all statistics included in this manuscript. Additionally,
I interpreted the data, wrote the original draft of the manuscript, and
prepared all figures. After peer-review, I was responsible for editing
the manuscript and performing the new figures according to reviewers’
suggestions. In addition, I co-designed this study together with Axel
Walch and Na Sun.
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ARTICLE OPEN

Spatial metabolomics identifies distinct tumor-specific and
stroma-specific subtypes in patients with lung squamous cell
carcinoma
Jun Wang1,5, Na Sun1,5, Thomas Kunzke1, Jian Shen 1, Philipp Zens2,3, Verena M. Prade1, Annette Feuchtinger1,
Sabina Berezowska 2,4✉ and Axel Walch1✉

Molecular subtyping of lung squamous cell carcinoma (LUSC) has been performed at the genomic, transcriptomic, and proteomic
level. However, LUSC stratification based on tissue metabolomics is still lacking. Combining high-mass-resolution imaging mass
spectrometry with consensus clustering, four tumor- and four stroma-specific subtypes with distinct metabolite patterns were
identified in 330 LUSC patients. The first tumor subtype T1 negatively correlated with DNA damage and immunological features
including CD3, CD8, and PD-L1. The same features positively correlated with the tumor subtype T2. Tumor subtype T4 was
associated with high PD-L1 expression. Compared with the status of subtypes T1 and T4, patients with subtype T3 had improved
prognosis, and T3 was an independent prognostic factor with regard to UICC stage. Similarly, stroma subtypes were linked to
distinct immunological features and metabolic pathways. Stroma subtype S4 had a better prognosis than S2. Subsequently,
analyses based on an independent LUSC cohort treated by neoadjuvant therapy revealed that the S2 stroma subtype was
associated with chemotherapy resistance. Clinically relevant patient subtypes as determined by tissue-based spatial metabolomics
are a valuable addition to existing molecular classification systems. Metabolic differences among the subtypes and their
associations with immunological features may contribute to the improvement of personalized therapy.

npj Precision Oncology           (2023) 7:114 ; https://doi.org/10.1038/s41698-023-00434-4

INTRODUCTION
Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) are the most common histological subtypes of non-small
cell lung cancer (NSCLC), which accounts for almost 85% of all
human lung cancers1. Unlike LUAD, patients with LUSC have not
benefited from targeted therapies2–4, and there are substantial
differences of LUSC treatment responses among current ther-
apeutic options5. There continues to be great interest in
investigating additional predictive biomarkers to facilitate the
selection of those patients with LUSC who are most likely to
benefit from chemotherapy, immunotherapy, targeted therapy,
and other novel agents. To address this issue, research is now
focusing on the development of classification systems based on
multiple molecular levels, including genomics, transcriptomics,
and proteomics, which would aid in understanding LUSC and in
subsequently identifying therapeutic vulnerabilities and achieving
effective, biomarker-based patient stratification.
Genomic and transcriptomic technologies have provided

important insights into the molecular underpinnings of LUSC,
leading to preliminary patient stratification strategies6–10. The
Cancer Genome Atlas established four LUSC-related gene
subtypes associated with cell cycle and apoptosis, antioxidant
gene expression, phosphatidylinositide 3-kinase signaling, and
epigenetic signaling6. In addition, two recent studies performed
comprehensive proteogenomic characterization of LUSC11,12. One
of these identified five distinct molecular subtypes by multiomic
clustering analysis: the basal-inclusive subtype, classical subtype,
EMT-enriched subtype, inflamed-secretory subtype, and

proliferative-primitive subtype12. Based on these molecular
classification results, research such as the NCI’s Molecular Analysis
for Therapy Choice trial is attempting to capitalize on improved
molecular knowledge of LUSC to employ precision therapy13.

Combining multiple immunological markers, such as pro-
grammed cell death protein 1 (PD1), programmed death ligand
1 (PD-L1), cluster of differentiation 3 (CD3), and cluster of
differentiation 8 (CD8), with established molecular subtypes may
increase the predictive robustness and guide the implementation
of NSCLC precision medicine7. The genomic and transcriptomic
alterations in LUSC shape the functional proteome, control the
infiltration of immune cells, and present potential vulnerabilities
that can be exploited therapeutically. The immune checkpoint
pathway has been shown to play a crucial role in mediating
immune tolerance in NSCLC, with antibody agents that block this
pathway (e.g., agents against PD1/PD-L1) producing durable
responses14,15, and where expression of checkpoint markers
correlates with treatment efficacy5. Alternative markers for
checkpoint blockade response, including T-cell immunohisto-
chemistry and other immunological markers, are also being
considered16–18.
Many important clinical advances in LUSC have been driven by

genomic and proteomic profiling of bulk tumor material, and thus
we anticipate that the same will prove true of bulk metabolomic
characterization in the LUSC tissues. Recently, one study
demonstrates the feasibility of an ensemble machine learning
approach to accurately predict NSCLC patient survival from tumor
core biopsy metabolomic data19, while another study suggests
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that metabolomic analysis of lung tumor core biopsies can
differentiate patients into low- and high-risk groups based on
survival events and probability20. The two studies applied liquid
chromatography-tandem mass spectrometry (LC-MS/MS) and
showed great promise of metabolomics in identifying diagnostic
and prognostic biomarkers for NSCLC patients in clinical
practice19,20. High-mass-resolution matrix-assisted laser
desorption-ionization (MALDI) imaging mass spectrometry (IMS)
directly enables the detection and localization of thousands of
different molecules within a routinely preserved tissue section,
allowing for the discrimination of tumor and stroma regions in
NSCLC tissues21 and tumor subtyping22–24. The metabolic
compositions of both tumor and stroma regions were able to
provide rich molecular information and may contribute to
estimating prognosis in patients diagnosed with NSCLC. Spatial
metabolomics enables immunophenotype-guided in situ meta-
bolomics, facilitating the automated and objective identification
of histological and functional features in intact tissue sections and
the comprehensive analyses of metabolic constitutions of tumor
and the stroma regions from large-scale clinical cohort studies25.
This is the first large-scale study to stratify LUSC patients based

on their tissue metabolic profiles. High-mass-resolution MALDI-IMS
combined with consensus clustering analysis was applied to
establish metabolic classification based on tumor- and stroma-
specific tissue regions in LUSC patients. The results were tested in
an independent cohort to demonstrate the ability of metabolic
subtypes to associate with the response to chemotherapy. The
metabolic constitution in LUSC provides an alternative option with
which to stratify LUSC patients.

RESULTS
Identification of LUSC patient subtype based on metabolite
profiling
A schematic overview of the conceptual methodology in this
study is shown in Fig. 1. To determine whether tumor and stroma
regions in the primary resected patient cohort had significant
differences in metabolite composition, we performed tumor and
stroma region-specific unsupervised consensus clustering analysis.
Consensus matrix heatmaps and cumulative distribution function
(CDF) plots were drawn to determine the optimal number of
clusters. The delta area plot shown in Fig. 2a, b reflects the relative
changes in the area under the CDF curve. The largest changes in
area for tumor-specific and stroma-specific data occurred when
the number of clusters was set to 4, at which point the relative
increase in area became noticeably smaller. Thus, the optimal
cluster numbers for both tumor-specific and stroma-specific data
were set to 4. Color-coded consensus heatmaps were obtained by
applying consensus clustering to tumor- and stroma-specific
datasets (Fig. 2c, d). As shown in Fig. 2c, the blocks are barely
overlap in the heatmap, indicating that the four clusters could be
distinguished on tumor-specific spectra. The four stroma-specific
clusters also have clean boundaries, indicating good cluster
stability over repeated iteration (Fig. 2d). Of the 313 tumor
regions, 91 were assigned to subtype T1 (29%), 64 to T2 (20%), 81
to T3 (26%), and 77 to T4 (25%). Furthermore, of the 268 stroma
regions, 100 were assigned to subtype S1 (37%), 71 to subtype S2
(27%), 22 to subtype S3 (8%), and 75 to subtype S4 (28%).
To estimate the ability of MALDI-IMS data to distinguish LUSC

subtypes, we additionally assessed the variance among molecular
subtypes using sparse partial least-squares discriminant analysis
(sPLSDA). The results revealed clear separation of both tumor- and
stroma-specific subtypes, indicating that they could be readily
distinguished based on metabolite levels (Fig. 2e, f). The alluvial
diagram shown in Fig. 2g indicates the distribution of patients
between tumor- and stroma-specific subtypes. Subtype similarities
are observed between T1 and S2.

Correlation of tumor- and stroma-specific subtypes with
immunological features and DNA damage
To explore differences in tumor- and stroma-specific subtypes, we
investigated their associations with DNA damage (γH2AX expres-
sion) and immunological features including cluster of differentiation
3 (CD3), cluster of differentiation 8 (CD8), and programmed death
ligand 1 (PD-L1). All associations of those features with tumor-
specific subtypes and stroma-specific subtypes are shown in Fig. 3a,
b (left) and Supplementary Tables 2 and 3. Among the four tumor-
specific subtypes (Fig. 3a), PD-L1 (p= 0.0012), CD3 (p= 0.0002), CD8
(p= 0.0001), and γH2AX (p= 0.0016) are positively correlated with
tumor-specific subtype T1. Conversely, tumor-specific subtype T2 is
negatively correlated with PD-L1 (p= 0.0390), CD3 (p= 0.0071), CD8
(p= 0.0080), and γH2AX (p= 0.0933). No significant correlation is
found between T3 and these features. Tumor-specific subtype T4 is
positively correlated with PD-L1 (p= 0.0004) and γH2AX
(p= 0.0333). Meanwhile, T4 shows no significant correlation with
CD3 (p= 0.9919) or CD8 (p= 0.1755). Based on these results, we
categorize the tumor-specific subtype with negative associations
with PD-L1, CD3, and CD8 as T1(PD-L1-CD3-CD8-), that with positive
associations with PD-L1, CD3, and CD8 as T2(PD-L1+CD3+CD8+),
that with elevated PD-L1 protein expression as T4(PD-L1+), and the
remaining tumor subtype as T3. The distribution of the expression of
all immunological features and DNA damage in the tumor-specific
subtypes is shown as boxplots in Fig. 3a (right).
As shown in Fig. 3b, stroma-specific subtype S2 is negatively

associated with PD-L1 (p= 0.0058), CD3 (p= 0.0041), CD8
(p= 0.3660), and γH2AX (p= 0.1242). In contrast, stroma-
specific subtype S4 is positively associated with PD-L1
(p= 0.0056), CD3 (p= 0.0019), CD8 (p= 0.0017), and γH2AX
(p= 0.1242). No significant correlations with these features are
found in S1 and S3. Thus, stroma-specific subtypes are
accordingly renamed S1, S2(PD-L1-CD3-CD8-), S3, and S4(PD-
L1+CD3+CD8+). The distribution of the expression of all
immunological features and DNA damage in stroma-specific
subtypes is shown as boxplots in Fig. 3b (right).

Association of tumor-specific and stroma-specific subtypes
with patient prognosis and clinicopathological features
The potential differences in prognosis among the tumor- and
stroma-specific subtypes were analyzed. The Kaplan–Meier curve
and log-rank test indicate better outcomes for subtype T3 than for
T1(PD-L1-CD3-CD8-) (p= 0.0158) and T4 (PD-L1+) (p= 0.0404)
(Fig. 3c). No statistically significant differences are observed in other
pairwise tumor-specific subtype comparisons or overall in the four
tumor-specific subtype comparisons. The multivariate Cox regres-
sion analysis shows that T3 can serve as a subtype with an
independent effect on prognosis with regard to the UICC
classification system (p= 0.021, HR= 0.439) (Fig. 3d). In the
stroma-specific subtypes, S4(PD-L1+CD3+CD8+) has a better prog-
nosis than S2(PD-L1-CD3-CD8-) (p= 0.0394). Survival does not differ
significantly in other pairwise subtype comparisons or in an overall
comparison of the four subtypes (Fig. 3e). None of the stroma-
specific subtypes is found to serve as independent predictors of
prognosis with regard to the UICC classification system (Fig. 3f).
We next investigated whether tumor-specific and stroma-

specific subtypes differed in the most common clinicopathological
characteristics. In all tumor-specific and stroma-specific subtypes,
no associations were found with age, sex, resection status, grade,
UICC stage, or TNM stage (Supplementary Fig. 1).

Tumor- and stroma-specific metabolic subtypes with distinct
metabolites and related metabolic pathways
To obtain a deeper insight into the underlying differences in
metabolites among the metabolic subtypes, a correlation network
analysis and quantitative enrichment analysis were conducted
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based on each of the tumor- and stroma-specific subtypes, and
significantly correlated metabolites of each subtype were
identified and visualized as networks and pathways as shown in
Fig. 4a and Supplementary Fig. 2. As shown in Fig. 4a, the dense

cluster and enriched pathways in T1(PD-L1-CD3-CD8-) indicates a
correlation of lipid metabolism and pyrimidine metabolism. For
the T2(PD-L1+CD3+CD8+) subtype, there are correlations of
metabolites involved in amino acid metabolism and nucleotide

tumor-specific subtypes stroma-specific subtypes

clustering analysis
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Fig. 1 Study design for combining spatial metabolomics with consensus clustering analysis to stratify LUSC patients. LUSC patients were
analyzed with spatial metabolomics by MALDI–IMS. The pipeline includes immunophenotype-guided spatial metabolomics, data
preprocessing, and data analysis. Separate consensus clustering analyses were performed using the metabolic features evaluated in tumors
and the stroma, resulting in tumor and stroma-specific subtypes. The tumor and stroma-specific subtypes of the primary resected cohort were
then characterized by clinicopathological features, clinical outcomes, molecular features (immunological features and DNA damage marker),
and specific metabolic pathways. The independent NAC-treated cohort was applied to associate chemotherapy responses with the
established metabolic subtypes.
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metabolism. For the T3 subtype, there are multiple correlations of
metabolites involved in nucleotide metabolism. T4(PD-L1+) is
representatively characterized by amino acid metabolism. As
shown in Supplementary Fig. 2, the most representative pathways
are amino acid metabolism and nucleotide metabolism in
S1 subtype. Similar to the T1(PD-L1-CD3-CD8-) subtype, S2(PD-
L1-CD3-CD8-) demonstrates a correlation of lipid metabolism and
pyrimidine metabolism. S3 is representatively characterized by lipid
metabolism. For the S4 subtype, there are correlations of
metabolites involved in nucleotide metabolism. Figure 4b showed
the spatial distribution of representative metabolites selected from
correlated networks of tumor-specific subtypes. The above results
demonstrate that tumor- and stroma-specific subtypes are
correlated with diverse metabolites and metabolic pathways.
Specifically, the subtype similarities of enriched metabolic pathways
are observed between T1(PD-L1-CD3-CD8-) and S2(PD-L1-CD3-CD8-).

Three stroma-specific subtypes correlate with chemotherapy
efficiency in an independent neoadjuvant chemotherapy-
treated cohort (NAC-treated cohort)
A previous study established a metabolomic classifier which
comprises 100 metabolites to evaluate the response to

chemotherapy in patients with non-small cell lung cancer26. This
metabolomic classifier was established by applying spatial
metabolomics and machine learning. The metabolomic classifier
could stratify NSCLC patients into chemotherapy-sensitive and
chemotherapy-resistant groups, and thus assess those patients’
response to chemotherapy. The metabolomic classifier of tumor
and stroma were separately applied to associate chemotherapy
responses in the established tumor- and stroma-specific subtypes.
As shown in Fig. 5a, the stroma metabolomic classifier can
distinguish the stroma-specific subtypes in our discovery cohort.
In the NAC-treated cohort (n= 40), patients treated with
chemotherapy were classified into the four stroma-specific
subtypes (Fig. 5b). The proportion of chemotherapy-resistant
patients was significantly higher in the S2(PD-L1-CD3-CD8-)
subtype (92%) than in the S1 subtype (44%) (p= 0.018) and
S3 subtype (22%) (p= 0.002) (Fig. 5c). In addition, chemotherapy-
treated patients in the S2(PD-L1-CD3-CD8-) subtype also had a
worse prognosis than patients in the S1 (p= 0.005) and
S3 subtypes (p= 0.006) (Fig. 5d). Multivariate analysis shows that
stroma-specific subtypes S1 and S2(PD-L1-CD3-CD8-) can serve as
subtypes that are independently predictive of prognosis with
regard to the major pathological response (MPR) and UICC
classification system [S1: p= 0.024, HR= 0.381; S2(PD-
L1-CD3-CD8-): p= 0.002, HR= 4.187] (Fig. 5e). No association of
tumor-specific subtypes with chemotherapy response is found
(Supplementary Fig. 3). Overall, these analyses demonstrate the
correlation of these stroma-specific subtypes with survival and
reveal their potential as biomarkers reflecting the response to
chemotherapy.

DISCUSSION
This study establishes metabolic subtypes in a large series of 330
patients with lung squamous cell carcinoma (LUSC). We define
four distinct tumor-specific subtypes: T1(PD-L1-CD3-CD8-), T2(PD-
L1+CD3+CD8+), T3, and T4(PD-L1+), and four stroma-specific
subtypes: S1, S2(PD-L1-CD3-CD8-), S3, and S4(PD-L1+CD3+CD8+).
The characteristics of these subtypes are summarized in Fig. 6.
T1(PD-L1-CD3-CD8-) is characterized by low immune cell infiltra-
tion, low PD-L1 expression, low DNA damage (γH2AX expression),
and poor prognosis. By contrast, T2(PD-L1+CD3+CD8+) is char-
acterized by high immune cell infiltration, high PD-L1 expression,
and good prognosis; meanwhile, T3 has a favorable prognosis.
Finally, T4(PD-L1+) is characterized by high PD-L1 expression.
Stroma-specific subtypes are linked to immunological features
and prognosis. An independent neoadjuvant chemotherapy-
treated cohort (NAC-treated cohort) confirms that the S2(PD-
L1-CD3-CD8-) subtype has an association with chemotherapy
resistance. Taken together, our results suggest that distinct
subtypes of LUSC as defined using metabolomics may show
better responses to specific targeted therapies.
In recent years, molecular methods have been used for the

classification of cancer into molecular subtypes2–4,6–8,27. Our
subtype classification drew from these stratification approaches
and supplemented them using tissue metabolomics to stratify
LUSC patients. However, previous metabolomics stratification
studies on patients with lung cancer focused largely on a mixture
of tumor and stroma regions, analyzing few stromal regions from
tumors and matching nonmalignant tissue. One study recently
proposed distinctive stroma-based lung cancer subtypes by using
single-cell RNA-sequencing28. In this study, we successfully
separately performed the classification of tumor epithelial cells
and stromal cells based on tissue-based spatial metabolomics. We
found that the metabolic profiles of tumor and stroma tissues can
be used to assign them to specific metabolic categories. Both
tumor and stroma regions play important roles in the LUSC
stratification, which could be confirmed by the tumor-specific
subtype associations for several immune-related markers,

Table 1. Summary of patient characteristics.

Characteristic Numbers

Number of patients 330

Age [years]

Median 69

Range 43–85

Sex

Male 281 (85%)

Female 49 (15%)

pT stage

T1 72 (22%)

T2 157 (48%)

T3 75 (22%)

T4 26 (8%)

pN stage

N0 187 (57%)

N1 105 (32%)

N2 38 (11%)

M

M0 321 (97%)

M1 9 (3%)

UICC stage

I 98 (30%)

II 113 (34%)

III 110 (33%)

IV 9 (3%)

Primary resection status

R0 287 (87%)

R1 40 (12%)

R2 3 (1%)

Grade

G1 6 (2%)

G2 163 (49%)

G3 161 (49%)

M: distant metastases (M0: absent; M1: present).
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Fig. 2 Identification of tumor- and stroma-specific subtypes and their association with molecular features. The relative change in the area
under CDF curve of a tumor and b stroma datasets. The number of clusters is changed from 2 to 10. Delta area plot reflecting the relative changes
in the area under the CDF curve. Setting the number of clusters to 4 leads to the relative increase in area became noticeably smaller; this number
was thus selected as the optimal number of clusters. Consensus matrix heatmap of the chosen four clusters of c tumor- and d stroma-specific
datasets. A color gradient ranging between 0 and 1 is defined as the average consensus value for all pairs of individuals. A value closer to 1 indicates
better cluster stability. Three-dimensional sPLSDA analysis suggests that patients could be stratified into four subtypes in both e tumor- and
f stroma-specific datasets. Points representing samples are colored according to the metabolic subtypes of patients. g Alluvial diagram depicts the
relationship of tumor- and stroma-specific subtypes. CDF cumulative distribution function, sPLSDA sparse partial least-squares discriminant analysis.
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including PD-L1, CD3, and CD8, being retained in the stroma-
specific subtypes. However, stroma-specific subtypes were con-
firmed to be associated with chemotherapy response, while tumor
metabolite signatures were not. This shows that tumor- and
stroma-specific metabolite patterns from the same patient may

convey different information, and the same patient cohort may
have different subtype patterns in tumor- and stroma-specific
regions. Thus, subtypes must be more precisely identified for
individual tumor or stroma regions, rather than regions containing
a mixture of tissues.
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Several predictors of response to chemotherapy have been
proposed in small cell lung cancer29. However, none yet provides
a robust prediction of the benefit of chemotherapy in LUSC
patients. There is thus an urgent need for a priori identification of
responders to improve treatment outcomes. A metabolomic
classifier was established in a previous study, and could assess
the response to chemotherapy in patients with non-small cell lung
cancer26. In the current study, LUSC patients from this recent
study were used as an independent cohort and the identical
metabolomic classifier was applied. Key metabolomic patterns
distinguishing the LUSC stroma-specific subtypes, as first observed
in the discovery cohort, were confirmed from the independent
NAC-treated LUSC cohort. We successfully confirmed that our
stroma-specific subtypes can further stratify patient responses to
chemotherapy, with LUSC patients possessing S1 and S3
exhibiting better clinical responses to chemotherapy than
S2(PD-L1-CD3-CD8-) patients. This evidence suggests that those
assigned to the S1 and S3 subtypes are associated with a benefit
from chemotherapy. In addition, the LUSC patients analyzed from
the independent cohort could be classified into one of the four
stroma-specific subtypes in the discovery cohort, raising the
realistic possibility that prospective subtyping could be performed
in a single trial, wherein patients are assigned to other treatment
arms on the basis of their LUSC subtype [e.g., T2(PD-
L1+CD3+CD8+) to PD-L1 immune checkpoint inhibitor].

To date, only immunotherapy has evolved into a successful
therapeutic strategy for patients with LUSC30,31, but differences in
patients’ responses to PD-1/PD-L1 inhibitors hinder its clinical
application32. Effective prediction of the response to immunother-
apy could dramatically enhance the proportion of patients who
benefit while preventing overtreatment. T2(PD-L1+CD3+CD8+)
captures several immunological features that are predictive of
response to immunotherapy. The predictive biomarker for this
immunotherapeutic class is PD-L1 overexpression14,15. Apart from
this, the rate of tumor-infiltrating lymphocytes (TILs) is considered
a potentially important predictive marker in a broad variety of
tumor types33–35. In addition, pioneering studies in this field have
confirmed a close correlation between TILs and PD1 overexpres-
sion in NSCLC36–39. Consequently, we expect T2(PD-
L1+CD3+CD8+) to be susceptible to immune checkpoint inhibi-
tors, such as PD-1/PD-L1 blockade, because of its positive
association with PD-L1 expression, and CD3 and CD8+ T-cell
infiltration. Besides the low expression of PD-L1, the T1(PD-
L1-CD3-CD8-) subtype also shows low expression of CD3 and CD8.
If confirmed in future studies, molecular classification might
potentially be used to identify tumors of the T1(PD-L1-CD3-CD8-)
subtype in order to select optimal treatment, particularly as these
cases appear to represent an “immunologically ignorant” group
unlikely to respond to immune checkpoint inhibitors.
To investigate the metabolites’ processes and events that play a

role in the established tumor or stroma subtypes, we performed
metabolic network analysis determining the correlations between
endogenous metabolites. The metabolites that are correlated
within each subtype comprise different classes of biomolecules,
such as nucleotides and amino acids. These are involved in various
pathways contributing to cancer cell growth and survival40. Cancer

cells exhibit the deactivation of crucial DNA damage response
signaling routes and have often undergone rewiring of their
metabolism and energy production networks41,42. In addition,
amino acids play a role in energy generation, maintaining cellular
redox homeostasis and driving the synthesis of nucleic acids.
Typically, alongside its association with the DNA damage-related
protein γH2AX, T1(PD-L1-CD3-CD8-) also 2’-demonstrates a dense
cluster which strongly involves 2'-deoxycytidine diphosphate,
cytidine diphosphate (CDP), uridine diphosphate (UDP), 2’-
Deoxyinosine 5’-phosphate and cytidine in the metabolite net-
work, which can be interpreted as an involvement in nucleotide
metabolism occurring in response to DNA damage.
One major advantage of using FFPE TMAs in this study is the

ability to directly detect and visualize metabolites, assigning them
to specific tumor or stroma types in their native histological
context. Compared to fresh frozen samples, FFPE TMAs offer
superior morphological integrity23, enabling better tumor and
stroma classification of metabolite content. A major limitation of
using FFPE TMAs is the reduced or removed intensity of
hydrophobic molecules. In a previous study, it was found that
although metabolite peaks in the low mass range (m/z 50–400)
were comparable to those in fresh frozen tissue, several peak
intensities were decreased in the mass range above m/z 60024.
The loss of hydrophobic molecules, for example, lipids, from the
sample is a general limitation with FFPE patient samples due to
the tissue embedding process and removal of paraffin wax via
solvents, but there were classes of robust metabolites both
chemically and spatially preserved in FFPE tissue specimens23.
Moreover, many mass spectrometry studies, including those
based on liquid- and gas-chromatography MS, have demonstrated
that metabolites are reliably retained in FFPE tissue samples43,44. A
recently published protocol for metabolomic and lipidomic
profiling in FFPE kidney tissue by LC-MS with subsequent
detection of selected lipid species by an independent in situ MS
imaging approach demonstrates the complementary use of both
techniques45.
In summary, our approach presented in this paper was

successfully applied to reveal the ability of metabolomics to
stratify LUSC patients. Such studies should aid in connecting
metabolic profiles to clinical immunological features and in
subsequently identifying therapeutic vulnerabilities and achieving
effective, biomarker-based patient stratification.

METHODS
Patients and tissue samples for the primary resected
squamous cell lung carcinoma (LUSC) cohort
This study includes two retrospective single-center patient cohorts
of primary resected and neoadjuvant chemotherapy-treated LUSC
cases (Fig. 1). We analyzed 330 consecutive patients with primary
resected LUSC46, diagnosed at the Institute of Tissue Medicine and
Pathology, University of Bern, without previous or concomitant
diagnosis of LUSC of other organs, to reliably exclude metastatic
lung disease. The cohort of primary resected LUSC was resected
and diagnosed during 2000–2013. The study was performed in

Fig. 3 Association of metabolic subtypes with molecular features and prognosis. Molecular features (CD8, CD3, PD-L1, and γH2AX)
significantly associated with tumor- (a, left) and stroma-specific (b, left) subtypes by Spearman’s rank-order correlation analysis and the
distribution of expression per molecular feature in each subtype as shown by boxplots (a and b, right). Each box plot displays the interquartile
range (IQR), with the lower boundary representing the 25th percentile and the upper boundary representing the 75th percentile. The line
within the box displays the median, and the whiskers extend to ±1.5 × IQR. Two-sided p value was calculated by Kruskal–Wallis test and post
hoc Dunn’s multiple comparison test. c Survival analysis of tumor-specific subtypes using Kaplan–Meier curves by log-rank test and
d multivariate Cox proportional hazard analysis of tumor-specific subtypes as well as UICC stage. T3 remains significant in multivariate
analysis, indicating that it is a factor independently predictive of patient survival. e Survival analysis of stroma-specific subtypes using
Kaplan–Meier curves by log-rank test and f multivariate Cox proportional hazard analysis of stroma-specific subtypes as well as UICC stage.
* represents two-sided p < 0.05, ** represents two-sided p < 0.01, *** represents two-sided p < 0.001.
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accordance with the Declaration of Helsinki, and the local Ethics
Committee of the Canton of Bern approved the study and waived
the requirement for written informed consent (KEK 200/14). In this
study, we used only tissue material from the archives of the
Institute of Pathology which is left after the diagnostic process has

been finalized. Due to the retrospective nature of the study and
reusage of left-over or already collected material, and also due to
the significant number of patients already deceased, the require-
ment for informed consent was waived by the local ethics
committee. It was argued that contacting the relatives and the
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associated stress this would cause them would be dispropor-
tionate. Patients with documented refusal to participate in
research, i.e., patients who refused that their tissue and data is
used in retrospective research, had been excluded from the study.
The cohort was assembled according to pathology files and
validated according to clinical files. The histology of all cases was
reassessed in accordance with current World Health Organization
guidelines for the diagnosis of LUSC47. All tumors were restaged in
accordance with the Union for International Cancer Control (UICC)
2017, 8th edition, tumor–node–metastasis (TNM) classification48.
Disease-specific survival was defined as the duration from the date
of diagnosis until death due to LUSC other than other causes. For
patient characteristics, see Table 1. A tissue microarray was
constructed from formalin-fixed, paraffin-embedded (FFPE) tissue
blocks, as described previously49. Representative tissue blocks
were selected for each tumor after reviewing all available slides
per case (hematoxylin and eosin stained), and eight tumor cores
were randomly selected from the block by placing digital
annotations on the scanned slide. The eight cores were placed
on tissue microarray blocks to exclude technical assessment bias.

Patients and tissue samples for the independent neoadjuvant
chemotherapy-treated cohort
The NAC-treated cohort comprises 40 cases26 diagnosed at the
Institute of Pathology of the University of Bern between 2000 and
2016. All eligible patients had a pathology-confirmed diagnosis.
The NAC-treated cohort was separated into long-term (n= 19)
and short-term survivors (n= 21) according to median overall
survival26. The cohort included consecutive patients who received
at least one cycle of platinum-based chemotherapy prior to
resection (Supplementary Table 1). The study was approved by the
Cantonal Ethics Commission of the Canton of Bern (KEK 2017-
00830), which waived the requirement for a written informed
consent from patients. Due to the retrospective nature of the
study and reusage of left-over or already collected material, and
also due to the significant number of patients already deceased,
the requirement for informed consent was waived by the local
ethics committee. It was argued that contacting the relatives and
the associated stress this would cause them would be dispropor-
tionate. Patients with documented refusal to participate in
research, i.e., patients who refused that their tissue and data is
used in retrospective research, had been excluded from the study.
A tissue microarray was constructed from FFPE tissue blocks. The
NAC-treated cohort was integrated for an independent study for
evaluating the response to chemotherapy of the metabolic
subtypes.

High-mass-resolution MALDI-Fourier transform ion cyclotron
resonance (FT-ICR) IMS
Data for spatial metabolomics of the primary resected LUSC
cohort and NAC-treated cohort were obtained from previous
studies26,46. High-mass-resolution MALDI FT-ICR IMS was per-
formed as previously described23. In brief, FFPE sections (4 μm)
were mounted onto indium–tin–oxide (ITO)-coated glass slides

(Bruker Daltonik). The air-dried tissue sections were spray-coated
with 10mg/mL 9-aminoacridine hydrochloride monohydrate
matrix (Sigma-Aldrich) in methanol (70%) using the SunCollect
sprayer (Sunchrom). Spray-coating of the matrix was conducted in
eight passes, utilizing a line distance of 2 mm and a spray velocity
of 900 mm/min.
Metabolites were detected in negative-ion mode on a 7 T

Solarix XR FT-ICR mass spectrometer (Bruker Daltonik) equipped
with a dual electrospray ionization MALDI (ESI-MALDI) source and
a SmartBeam-II Nd:YAG (355 nm) laser. The SCiLS Lab software
2020b was used to export the selected peaks of the mass spectra
as processed and root mean square-normalized imzML files. Peak
annotations were based on accurate mass matching with the
Human Metabolome Database (HMDB) (https://hmdb.ca/) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(https://www.genome.jp/kegg/).

Immunophenotype-guided IMS and data processing
The SPACiAL workflow was used as previously described25 to
automatically annotate tumor and stroma regions in LUSC tissues
in the primary resected cohort and NAC-treated cohort (Supple-
mentary Fig. 4). SPACiAL is a computational multimodal workflow
that includes a series of image and MALDI data processing steps
to combine molecular imaging data with multiplex immunofluor-
escence. First, after MALDI–IMS analysis, the 9-aminoacridine
matrix was removed from tissue sections, followed by immuno-
fluorescence staining. Double staining of the TMA was performed
using the epithelial marker pan-cytokeratin [monoclonal mouse
pan-cytokeratin plus (AE1/AE3þ8/18), 1:75, catalog no. CM162;
Biocare Medical] and vimentin (Abcam, clone ab92547, 1:500).
Second, single-channel images of pan-cytokeratin and vimentin
were used to annotate and separate tumor and stroma using
fluorescence imaging. Regions positive for pan-cytokeratin were
defined as tumor. Regions negative for pan-cytokeratin but
positive for vimentin were defined as stroma; third, the digitized
and co-registered fluorescence images were scaled to match the
exact MALDI resolution and converted into numerical matrices
comprised of values corresponding to the lightness values for
each pixel; fourth, objective tissue annotations were assigned
based on semantics and function. The annotatable patient cases
formed the basis of our calculations. The entire workflow is
applied to the same tissue section, allowing for the automatic
integration of morphological and spatial metabolomics data for
thousands of molecules.

Immunohistochemistry (IHC)
IHC staining for cluster of differentiation 3 (CD3), cluster of
differentiation 8 (CD8), and programmed death ligand 1 (PD-L1)
was performed as previously described49 on consecutive sections.
In brief, an automated immunostainer (Bond III, Leica Bio-systems)
with anti-CD3 (Abcam Cambridge; clone SP7, 1:400, RRID:
AB_443425), anti-CD8 (Dako, clone C8/144B, 1:100, RRID:
AB_2075537), and anti-PD-L1 (Cell Signaling Technology, clone
E1L3N, 1:400, RRID: AB_2687655) was used. CD3 and CD8

Fig. 4 Metabolite characteristics and enriched pathways of tumor subtypes. a (top) Correlation networks of endogenous metabolites
within each of the four tumor-specific subtypes. Correlations between metabolites were calculated and filtered (adjusted two-sided p < 0.001).
Edges represent positive (green) and negative (pink) correlations between metabolites. Node color in the network indicates metabolic
pathways. a (bottom) Quantitative enrichment pathway analysis within each of the four tumor-specific subtypes. Pathways enriched in each of
the tumor-specific subtypes are represented by scatter plots. The x-axis indicates the pathway enrichment ratio, and the y-axis indicates the
pathway term. Dot color indicates the adjusted p value. Dot size indicates the counts of metabolites. b Ion distribution maps of representative
metabolites in the tumor-specific subtypes. Linoleate and (9Z)-Octadecenoic acid are selected from the correlation network T1(PD-
L1-CD3-CD8-). dCDP is selected from the correlation network T1(PD-L1-CD3-CD8-) and T2(PD-L1+CD3+CD8+). Succinate shows in the
correlation networks T1(PD-L1-CD3-CD8-) and T3. CDP and IMP are selected from the correlation network T3. S-Adenosyl-L-homocysteine is
selected from the correlation network T4(PD-L1+). IMP inosine monophosphate, CDP cytidine diphosphate, dCDP 2’-deoxycytidine
diphosphate.
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Fig. 5 Association with chemotherapy response in the stroma-specific subtypes. Heatmap illustrating the abundance of metabolites shows
stroma-specific subtype classification (a, left) in the discovery cohort and (b, left) NAC-treated cohort. The percentage of patients in the
stroma-specific subtypes in the discovery cohort (a, right) and NAC-treated cohort (b, right). c Numbers of long-term survivors (chemotherapy-
sensitive patients) and short-term survivors (chemotherapy-resistant patients) in the stroma-specific subtypes. Two-sided p value was
calculated by Fisher’s exact test. d Survival comparison using log-rank test between overall and pairwise subtypes. e Multivariate Cox
proportional hazard analysis for each of the stroma-specific subtypes, MPR as well as UICC stage. S1 and S2(PD-L1-CD3-CD8-) remain
significant in multivariate analysis. * represents two-sided p < 0.05, ** represents two-sided p < 0.01, *** represents two-sided p < 0.001.
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expression was determined using image analysis (Aperio Image
Scope) and adjusted for core completeness. PD-L1 expression was
assessed by a pathologist (S. Berezowska) as the proportion of
positive tumor cells.

Immunofluorescence analysis of γH2AX
Immunofluorescence analysis of γH2AX expression was achieved
using primary antibodies against pH2A.X (Cell Signaling Technol-
ogy; catalog no. 2577, 1:400, RRID: AB_2118010) and pan-
cytokeratin [monoclonal mouse pan-cytokeratin plus (AE1/
AE3þ8/18), 1:75, catalog no. CM162; Biocare Medical] on
consecutive sections. Slides were digitized at ×20 objective
magnification using an Axio Scan.Z1 (Zeiss). Quantification was
performed by digital image analysis in Definiens Developer XD2,
following a previously published procedure50. The quantified
parameter was the proportion of γH2AX- and pan-cytokeratin-
positive cells to the total number of pan-cytokeratin-positive cells.

Consensus clustering
Consensus clustering was conducted using the ‘ConcensusClus-
terPlus’ package in R using HMDB-annotated metabolites to
explore LUSC subtypes based on the patient sample matrix. The
consensus matrix was used to check cluster co-occurrence, find
intrinsic groupings over variation in different numbers of clusters,
and use hierarchical clustering on the distance matrix. We used a
prespecified subsampling parameter of 80% with 1000 iterations
and assigned the number of potential clusters (K) to range from 2
to 10 in order to avoid producing an excessive number of clusters
that would not be clinically useful. The matrix was arranged so
that samples belonging to the same cluster were adjacent to
each other.

Correlation network analysis and quantitative pathway
analysis
Correlation networks were created using Cytoscape (v. 3.8.0). All
networks were visualized using the absolute value of the
correlation coefficient calculated by Spearman’s rank-order
correlation. Metabolites with at least one significant correlation
are shown (p < 0.001). Quantitative pathway analysis was
performed via the KEGG database using the MetaboAnalyst online
tool (www.metaboanalyst.ca) based on the correlated metabolites.

Statistical analysis
All statistical tests were conducted using Python or R. Correlations
were calculated using Spearman’s rank-order correlation. The
significance of differences in clinicopathological characteristics
among tumor- and stroma-specific subtypes was evaluated by chi-
squared test or Fisher’s exact test. To determine the intensity of
differences of representative metabolites, Kruskal–Wallis test and
post hoc Dunn’s multiple comparison test were used in
conjunction with Benjamini–Hochberg correction. Further com-
parisons to identify the statistical significance of differences in
patient survival were performed using the Kaplan–Meier curve
and the log-rank test. Multivariate survival analysis was performed
using Cox proportional hazard regression model. A two-sided p
value of <0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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7Cancer Metabolomics
and Clinical Therapy

The aim of this thesis was to examine the association between spatial
metabolomics and clinically significant factors, including prognosis and
therapy prediction, in patients diagnosed with gastric cancer (GC) and
lung squamous cell carcinoma (SCC). Using a combination of clustering
analysis and MALDI-IMS technology, this study successfully identified
metabolic profile-based subtypes in both GC and SCC patients. The
primary focus of the first published study was to stratify GC patients
based on spatial metabolomics. As a result, the application of spatial
metabolomics facilitated the stratification of GC patients, leading to the
identification of tumor and stroma-specific metabolic subtypes.
Furthermore, an independent validation cohort demonstrated that one
specific tumor-specific subtype exhibited a unique benefit from
trastuzumab therapy. The second published study aimed to stratify SCC
patients based on spatial metabolomics and successfully established
tumor and stroma-specific metabolic subtypes. Additionally, the
application of an independent cohort revealed that one stroma-specific
subtype was uniquely associated with resistance to chemotherapy, while
the other two stroma-specific subtypes were associated with a benefit
from chemotherapy. Overall, the identification of these metabolic
subtypes provides a complementary approach to patient stratification in
both GC and SCC.

Our results from the patient stratification of GC and SCC demonstrate
that metabolite patterns in tumor-specific and stroma-specific regions
within the same patient can convey distinct information. In SCC, notable
differences outweigh the similarities between tumor-specific and stroma-
specific subtypes, exhibiting substantial variation in patient distribution,
except for a large overlap between the T1 subtype and the S2 subtype.
Conversely, unique SCC subtypes specific to tumors and the stroma
exhibit equivalent significance regarding their clinical prognosis value. In
contrast, for GC, there are noteworthy similarities in patient distribution

67



and their association with clinical molecular features between tumor-
specific and stroma-specific subtypes. In this context, the tumor-specific
metabolic signature holds greater importance than the stroma-specific
metabolic signature in relation to their association with clinical relevance
in GC.
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7.1 Metabolic subtypes for personalized
therapy

This thesis showed that metabolic subtypes with distinct tissue
metabolite patterns can be identified in both the first GC study and the
second SCC study. In the first GC study, three distinct tumor-specific
subtypes, which includes T1(HER2+MIB+CD3+), T2(HER2−MIB−CD3−)
and T3(pEGFR+), and three stroma-specific subtypes, which includes
S1(FOXP3−), S2(HER2−MIB−CD3−) and
S3(HER2+MIB+CD3+FOXP3+) were defined. T1(HER2+MIB+CD3+)
was characterized by high immune cell infiltration, presence of
Epstein–Barr virus (EBV), high microsatellite instability (MSI), earlier
UICC stage, nucleotide metabolism, and favorable prognosis. In
contrast, T2(HER2−MIB−CD3−) was characterized by low immune cell
infiltration, absence of EBV, low MSI, later UICC stage and poor
prognosis; T3(pEGFR+) was characterized by high pEGFR. In the
second SCC study, we defined four distinct tumor-specific subtypes,
which includes T1(PD-L1−CD3−CD8−), T2(PD-L1+CD3+CD8+), T3,
and T4(PD-L1+), and four stroma-specific subtypes, which includes S1,
S2(PD-L1−CD3−CD8−), S3 and S4(PD-L1+CD3+CD8+).
T1(PD-L1−CD3−CD8−) was characterized by low immune cell
infiltration, low PD-L1 expression and poor prognosis. In contrast,
T2(PD-L1+CD3+CD8+) was characterized by high immune cell
infiltration, high PD-L1 expression and good prognosis; T4(PD-L1+),
was characterized by high PD-L1 expression.

This thesis showed that the metabolic differences between established
subtypes and their associations with molecular features could offer a
tool to aid in selecting specific treatment approaches. In the GC study,
the application of the independent trastuzumab-treated cohort revealed
that the T1(HER2+MIB+CD3+) subtype benefited from trastuzumab
therapy. The expression of PD-1 is found on both CD8-positive
infiltrated cells and FOXP3+ Treg cells [49]. Tumors with high immune
infiltration respond more actively to immunotherapy [91]. Patients with
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these characteristics had improved clinical outcomes in the response to
immune checkpoint therapy. Some previous studies have demonstrated
that PD-1 blockade could be effective in patients with elevated
CD8-positive TILs, even with low PD-L1 expression [92, 93, 94]. Thus,
this study also indicates other potential treatment benefit in clinical
settings, such as PD-L1 blockade, when we look at the strong correlation
of clinical biomarker PD-L1 and tumor-infiltrating lymphocyte features
with the metabolic subtypes. Additionally, several recent studies found a
close relationship of immune checkpoints with EBV+ and MSI-H GC [20,
23]. Thus, we expect T1(HER2+MIB+CD3+) to be predisposed with
immune checkpoint inhibitors, such as PD-1 blockade, because of its
higher frequency of EBV positivity, microsatellite instability and positive
correlation with CD8+ T cell infiltration and FOXP3+ Treg cells.

In addition, immunotherapy has been successfully added to
HER2-directed therapy [24]. A phase 2 trial demonstrated that
pembrolizumab could be safely combined with chemotherapy plus
trastuzumab in HER2-positive, metastatic gastroesophageal
adenocarcinoma. Notably, there was an impressive 91% response rate
and a median overall survival of 27.3 months, which were much higher
than what was seen with chemotherapy plus trastuzumab with a
response rate of 47%, suggesting that there may be a synergistic benefit
of combining checkpoint blockade with standard trastuzumab plus
chemotherapy. Efficacy is currently being evaluated in the phase 3
KEYNOTE-811 clinical trial [24]. Recently, it showed that adding
pembrolizumab to trastuzumab and chemotherapy subtantially reduced
tumor size, induced complete responses in some participants, and
significantly improved objective response rate chemotherapy in
HER2-positive, metastatic gastroesophageal adenocarcinoma. Notably,
there was an surprising 74.4% response rate, which was significantly
higher than the 47% response rate achieved with chemotherapy plus
trastuzumab. These clinical trials demostrated that
T1(HER2+MIB+CD3+) treatment responsiveness may be improved by
combining checkpoint blockade with standard chemotherapy plus
trastuzumab .
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In the SCC study, the application of the independent
chemotherapy-treated SCC cohort reveals that our stroma-specific
subtypes can further stratify patient responses to chemotherapy, with
SCC patients possessing S1 and S3 experiencing better clinical outcomes
to chemotherapy than S2(PD-L1−CD3−CD8−) patients. This evidence
suggests that the S1 and S3 subtype assignments are associated with a
benefit when initiating chemotherapy. To date only immunotherapy has
evolved into a successful therapeutic strategy for patients with SCC [95,
96]. Nevertheless, patients’ low response rate to PD-1/PD-L1 inhibitors
hinders the clinical application [97]. Effective prediction of treatment
response to immunotherapy could dramatically enhance this benefit
ratio while preventing overtreatment. T2(PD-L1+CD3+CD8+) captures
several immunological features that are predictive of immunotherapy
response. The predictive biomarker for this immunotherapeutic class is
PD-L1 overexpression [29, 59]. Apart from this, TILs is considered a
candidate of predictive marker in a wide tumor types [98, 99, 100].
Moreover, previous studies in the related field confirmed a tight
correlation between TILs and PD-1 overexpression in NSCLC [101, 102,
103, 104]. Consequently, we expect T2(PD-L1+CD3+CD8+) to be
beneficial from immune checkpoint inhibitors, such as PD-1/PD-L1
blockade, because of its positive correlation with PD-L1 expression,
CD3+ and CD8+ TILs. Regarding the T2(PD-L1+CD3+CD8+) subtype,
which includes low expression of CD3 and CD8 molecular features, are
known to have a favorable prognosis and PD-L1-negative tumors that
resist to PD-L1 blockade. If confirmed in future studies, the molecular
classification might be used to identify T2(PD-L1+CD3+CD8+) subtype
tumors for directing optimal treatment, such as immune checkpoint
inhibitors.
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7.2 Potential application of
metabolic-based therapies in
metabolic subtypes

In general, although determining the responders of metabolic targeted
therapies has proven to be challenging, metabolic targeted therapies
targeting certain metabolism processes provide alternatives for
chemoresistant patients [105, 106]. For instance, glucose metabolism
has the potential to guide decisions about neoadjuvant treatment
strategies for GC patients [106], in which the changes in glucose
metabolism could be determined using fluorodeoxyglucose
(FDG)-positron emission tomography (PET) and positron emission
tomography-computed tomography (PET-CT) imaging [107]. In the first
study of this thesis, compared with T3(pEGFR+) subtype,
T1(HER2+MIB+CD3+) and T2(HER2−MIB−CD3−) subtypes were more
active in metabolism. Some key metabolites participated in glucose,
fatty acid and glutamine metabolic process were enriched in these two
metabolic subtypes. For example, T1(HER2+MIB+CD3+) exhibited
upregulation of nucleotide associated metabolites such as guanosine
and nucleotide phosphates AMP and GMP. It has been pointed out that
these nucleotides are associated with TCA energy metabolism, mainly in
the form of ATP and GTP which are an alternative energy source of
cancer cell proliferation [108]. Additionally, TCA metabolism are closely
linked with amino acids metabolism [109]. It is rather remarkable that
T1(HER2+MIB+CD3+) also represents with a specific enrichment of
glutamine class metabolites involved in D-glutamine and D-glutamate
metabolism. Glutamine was one of the most greatly upregulated tissue
metabolites in the non-metastasis group stressed by many researches
[110, 111]. Furthermore, a previous study identified the anabolic
metabolism of DNA as an essential downstream effect of the HER2
oncogene in breast cancer [112]. DNA metabolism in GC tumor cells
was identified as a factor influencing response to HER2-targeted
trastuzumab therapy in a previous study. The changes in DNA
metabolism found in patient tissues were validated in a corresponding
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HER2+/sensitive and HER2+/resistant GC cell model [6]. In the first
study of this thesis, our established tumor-specific subtypes can further
stratify HER2+ patient into trastuzumab sensitive and trastuzumab
resistant patients. This study showed that DNA metabolism was
potentially important in response to trastuzumab therapy in HER2+

GC.

As for SCC, the metabolites that are correlated within each subtype
comprise different classes of biomolecules, such as nucleotides and
amino acids. In addition, amino acids play a role in energy generation,
maintaining cellular redox homeostasis and driving the synthesis of
nucleic acids. Typically, alongside its association with the DNA
damage-related protein, T1(PD-L1−CD3−CD8−) also demonstrates a
dense cluster which strongly involves deoxycytidine diphosphate,
cytidine diphosphate, uridine diphosphate, 2’-Deoxyinosine
5’-phosphate and cytidine, and cytidine in the metabolite network,
which can be interpreted as an involvement in nucleotide metabolism
occurring in response to DNA damage. Thus, the metabolic subtypes
might potentially serve as a metabolic therapeutic target in GC and SCC
treatment. Thus, utilizing metabolomics could be also considered to be
a promising tool to assess the sensitivity of chemotherapy in virtual
conditions and discovering therapeutic targets regarding specific tumor
metabolism.

In conclusion, both two studies successfully identified tumor- and
stroma-specific metabolic subtypes, and the identification of these
metabolic subtypes may serve as a valuable adjunct to current metabolic
subtyping approach and help to increase understanding on advancing
the patient stratification approach in GC and SCC. Independent cohorts
further confirmed that those established metabolic subtypes were
associated with clinical therapy response. We hope these results will
potentially facilitate the development of clinical trials to explore
therapies in defined sets of patients, ultimately improving survival from
this deadly disease. Importantly, the scope of a landscape study such as
this necessitates that it be understood as hypothesis-generating, and a
wider community effort will be required to validate biological
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observations and suggested therapeutic alternatives. With the
development of molecular detection biotechnology and our
understanding of metabolic perturbation in cancer grows, the molecular
classification of GC and SCC for associating therapy response will
undoubtedly be more precise. Thus, if confirmed and extended in future
studies, the classification of GC and SCC reported here may benefit
development of therapies tailored to the molecular subtypes. Ultimately,
the future cancer treatment would be a clinical-pathological-molecular
combined classification and guided individualized approach.
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8Advantages of studies

This study demonstrates for the first time that specific tumor- and
stroma-specific classification models could be developed in patients
diagnosed with GC and SCC based on tissue metabolomics. The studies
of GC and SCC included a total of 362 and 330 patients respectively.
The inclusion of a large number of patient samples enhances the
reliability and statistical robustness of the results. Additionally, the
classification models employed in both studies effectively separate
between tumor epithelial cells and stromal cells in patients diagnosed
with GC and SCC. This distinction is crucial as many well-established
large-scale classification researches did not take into account the exact
influence of active, nonmalignant stromal cells [40, 45]. Actually, not
only molecular expression profiles deriving from mixed regions of tumor
tissues may influence assignment to a specific molecular category, thus
creating interpretative troubles, but also novel stroma-based distinctive
signatures have been proposed and related to the predominant cancer
phenotype [113]. As we found in this project, both tumor and stroma
regions play important roles in the GC and SCC stratification, which
could be confirmed by the tumor-specific subtype associations for
several immune-related markers, including PD-L1, CD3, and CD8, being
retained in the stroma-specific subtypes. However, it can be concluded
that the tumor and stromal metabolite subtypes exhibit notable
differences in patients with GC and SCC in terms of their clinical
relevance and impact on survival outcomes. For example, in the first GC
study, T1(HER2+MIB+CD3+) and S3(HER2+MIB+CD3+FOXP3+) share
a large proportion of common patients with a similar metabolite
signature, but result in a difference correlated with histological
parameter and clinical parameter. In the second SCC study,
stroma-specific subtypes were confirmed to be associated with
chemotherapy response, while tumor metabolite signatures were not.
This represents that tumor and stroma-specific metabolite pattern would
convey different information even if in the same patient individual. So
identification of features should be more precise to tumor or stroma
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area rather than based on mixed tumor and stroma tissues. From our
results we conclude that patterns of moleculars and clinical features in
metabolites classification constitute robust surrogate signals for
different biochemical processes, which enable a separation of
phenotypic metabolic subtypes together with histology. Region-based
subtype from the same patient cohort also reveals different prognosis
value. Tumor dataset generates a new prognosis-related subtype called
T2(HER2−MIB−CD3−) which consists of a larger proportion GC patients
in the late stage along with more metastasis status and as a
consequence result in short survival, but none significance was found in
its related stroma subtype S2(HER2−MIB−CD3−).
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9Limitations of studies

Using FFPE TMAs in this thesis offers a significant advantage as it allows
for the direct detection and visualization of metabolites, enabling their
assignment to specific tumor or stroma types within their native
histological context. Compared to fresh frozen samples, FFPE TMAs
exhibit superior preservation of tissue morphology and cellular
structures, facilitating more accurate classification of metabolite content
in tumors and stroma [81]. This is essential for histopathological
examination, where pathologists need to visually inspect tissue samples
to make diagnostic assessments. In many clinical settings, FFPE samples
are readily available as they are routinely collected during diagnostic
procedures such as biopsies and surgeries. Fresh frozen tissue samples
require immediate processing and are not as easily accessible. However,
it should be noted that a drawback of using FFPE TMAs is the reduced
or eliminated intensity of hydrophobic molecules. Previous research has
indicated a decline in peak intensities for metabolites in the higher mass
range (m/z 600 and above), although metabolite peaks in the low mass
range (m/z 50-400) remain comparable to those in fresh frozen tissue
[76]. The loss of hydrophobic molecules, such as lipids, can be
attributed to the tissue embedding process and the removal of paraffin
wax using solvents, but there are certain classes of metabolites
preserved both chemically and spatially in FFPE tissue specimens [81].
Additionally, numerous mass spectrometry studies, including those
utilizing liquid- and gas-chromatography MS, have demonstrated
reliable retention of metabolites in FFPE tissue samples [114, 115]. A
recently published protocol for metabolomic and lipidomic profiling in
FFPE kidney tissue using LC-MS, followed by the detection of selected
lipid species through an independent in situ MS imaging approach,
highlights the complementary use of both techniques [116].

Regarding the challenges of MALDI–IMS as a tool in basic research,
several issues can not be ignored. Metabolite annotation is the process
of finding molecules represented in MS dataset and it is a key challenge
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in untargeted metabolomics, including IMS–based spatial metabolomics
[117]. In MALDI–IMS, this gap exists due to our limited understanding
of ionization pathways or principles of how an analyte forms a signal.
MALDI–IMS cannot resolve isomeric molecules as well, but this
limitation could be improved by using tandem MS to some degree
[117]. Although MS/MS cannot reconstruct the molecular structure
completely, it reduces potential ambiguity, as an MS/MS spectrum
encodes additional structural information that is missed in MALDI–IMS
[118]. In addition, the spatial resolution of MALDI–IMS is often in the
range of tens to hundreds of micrometers. Although the spatial
resolution is higher than other IMS technologies, such as desorption
electrospray ionization mass spectrometry imaging, this is still limited
and may not be sufficient to resolve cellular or subcellular structures in
highly heterogeneous samples [119].
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10Opening questions

Opening questions should also be acknowledged. Firstly, these
classifications are based on a highly complex methodology. The accurate
translation of these intricate classifications in the clinical setting
requires further validation through larger-scale studies. Such rigorous
validation efforts are essential for achieving a universally accepted and
standardized classification system in the clinical field. Secondly,
different subgroups identified across various molecular level studies
need to be aggregated. Cancer is a complex and multifaceted condition
with diverse molecular and cellular alterations. Different -omics
methods capture distinct aspects of cancer biology. Genomics provides
information about the genetic mutations underlying cancer,
transcriptomics reveals gene expression patterns, proteomics identifies
the proteins level. Metabolomics is located downstream of genomics,
transcriptomics, and proteomics. It maps the complete metabolic
changes under specific conditions associated with pathogenic factors,
host factors, or environmental co-effectors. Integrating these data
sources allows researchers to fill gaps in their understanding by
combining complementary information. In addition, metabolites often
serve as early indicators of disease or therapeutic effects, and
integrating metabolomics data with genomic or proteomic data can
enhance the precision of biomarker discovery. By the above
interpretation, it is evident that while significant progress has been
made in defining various genomic and transcriptomic subtypes, it is
essential to integrate metabolomics with other -omics methods. It
allows for a systems biology perspective, which views cancer as a
dynamic, interconnected system rather than isolated genetic or
metabolic events and provides a more comprehensive and holistic
understanding of the disease. Thus, a collaborative international effort
should be undertaken to aggregate a consensus classification by
integrated multiomic approaches, enabling more precise prognosis
prediction of targeted inhibitors, and a more integrated understanding
of underlying cancer development and progression.
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Part VI

Conclusion



In summary, this dissertation indicates that metabolically distinct
subtypes can be identified based on tissue metabolomics and are
associated with prognosis and therapy response in GC and SCC. Patient
subtypes derived by tissue-based spatial metabolomics are a valuable
addition to existing molecular classification systems in GC and SCC. The
deep-information of metabolomics will not only benefit the therapy
response at the molecular level but also improve our understanding of
the initiation and development of GC and SCC. Overall, these
classifications may provide molecular subtyping framework for
preclinical, clinical and translational studies of GC and SCC to find
effectively targeted agents and explore therapies in defined sets of
patients, ultimately improving survival from these deadly diseases in the
future.
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