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Abstract— Scenario-based testing is a promising approach for
the verification of automated vehicles (AVs). In this paper, we
present a novel approach that combines reachability analysis
and numerical optimization to derive concrete scenarios from
formal specifications. This promises to address multiple defi-
ciencies of previous approaches: Improvement of computation
times, handling of nonlinear specifications (e.g., traffic rules),
and incorporation of criticality metrics. Our evaluation shows
that the computation time increases linearly with the number
of agents and the time horizon, compared to a typically
exponential increase for methods without reachability analysis.
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I. INTRODUCTION

Autonomous driving has enormous potential for improving
safety, conservation of resources, and productivity gains [1],
[2]. A key challenge for the homologation and societal
adoption of AVs is to guarantee their functional safety [3].
One promising approach is scenario-based testing, in which
the behavior of AVs is simulated in relevant scenarios [4].
A scenario contains information on the road infrastructure
as well as the abstract behavior of agents [5]. Menzel et
al. [6] distinguish between functional, logical, and concrete
scenarios, with concrete ones offering the highest level of
detail [4]. The presented traffic scenario synthesis derives
concrete scenarios from logical ones. Existing approaches
are presented subsequently.

A. Related Work

We distinguish between knowledge-based and data-driven
generation of concrete scenarios [3], [4], [7]. Data-driven
approaches rely on a database of recorded real-world traffic
scenarios [7, Sec. III]. This enables data-driven approaches
to accurately reflect realistic human behavior [7, Sec. VII-
A]. Clustering techniques are often used to extract relevant
recordings [4]. In addition, machine learning approaches can
generate new scenarios based on previously learned behavior
from datasets [4], [7], [8]. As situations that require signifi-
cant actions arise only rarely in real-world traffic, data-driven
approaches have the disadvantage that their collection and
selection process is inefficient [7, Sec. VII-B]. In addition,
the desired behavior of the generated scenario cannot be
properly controlled [7, Sec. VII-E].

Knowledge-based approaches instead leverage external
knowledge, such as traffic rules, physical laws, or formal
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specifications, to guide the generation of concrete scenarios
[7, Sec. V]. As such, they are capable of testing AVs
against formal requirements, see [9]. However, depending on
which type of knowledge is used as input, the behavior of
the traffic participants might be unrealistic [7, Sec. VII-A].
Subsequently, we categorize knowledge-based approaches
into those using ontologies or temporal logics.

Bagschik et al. [10] use ontologies for the knowledge
description of traffic scenarios. One straightforward approach
to derive concrete scenarios is to sample values for each
parameter of a scenario directly from the permissible range
defined in the logical description [6]. Variation methods aim
at selecting the samples more sensibly [3], e.g., with bound-
ary value analysis [11] or statistical methods [12]. Other
approaches for converting logical scenarios into concrete
ones derive a valid combination of specifications from the
ontology description and use these as the input to traffic
simulators, see [13], [14], [15].

Besides ontologies, expert knowledge, traffic rules, and
scenario specifications can be described by temporal logic.
In the control engineering domain, several works exist that
solve optimal control problems considering temporal logics,
see [16], [17]. This is described in more detail in [18], where
the formal (logical) scenario description is converted into a
mixed integer quadratic programming (MIQP) optimization.
While the quality of the generated trajectories is satisfying,
the runtime of MIQP increases exponentially with the num-
ber of binary variables [19]. Thus, the work in [20] reduces
the number of binary variables originating from temporal
logic. Another limitation of the MIQP optimization approach
is that some traffic rules cannot be directly formulated as
linear constraints, such as the evaluation of the safe distance
predicate [21]. Moreover, for efficient gradient-based numer-
ical optimization strategies to work, the objective function
must be smooth [22]. When using criticality metrics as the
objective function, this is not generally applicable [23], [24].

B. Contributions and Structure

We present a novel knowledge-based approach to synthe-
sizing traffic scenarios, which overcomes the aforementioned
disadvantages of MIQP approaches. To this end, we leverage
the computation of reachable sets that are a) specification-
compliant, b) forward-consistent, and c) convex, making it
possible to find the optimal trajectories within them using
quadratic programming (QP). The mediation process among
the agents is handled by the reachable analysis instead of
the previously necessary mixed integer formalism. As a con-
sequence, a) the computational performance is substantially



improved, b) traffic rules can be considered, and c) criticality
metrics can be included in objective functions.

In the following section, preliminaries are introduced. The
methodology of our novel approach is presented in Sec. III.
In Sec. IV, its performance is assessed and compared to
the work of Klischat et al. [18] based on two numerical
examples. Finally, the paper concludes with a summary and
an outlook on future work.

II. PRELIMINARIES

To describe traffic scenarios, we formalize the road infras-
tructure and agents, including their coordinate frame, system
dynamics, and abstract behavior specification.

A. Road Infrastructure

The road infrastructure description follows the Common-
Road scenario specification. CommonRoad scenarios consist
of a lanelet network, intersections, traffic signs and lights,
static obstacles, etc. [25]. The backbone of CommonRoad
scenarios are lanelets, which are defined by polylines of their
left and right boundaries (see Fig. 1). They also contain refer-
ences to their predecessors, successors, and adjacent lanelets.
In addition to the information provided by CommonRoad
scenario files, information facilitating the subsequent tasks
is provided: For each lanelet, its centerline and references to
merging and diverging lanelets are stored. Furthermore, the
conflict sections of lanelets at intersections and merges (see
Fig. 2) are determined similarly to [18, Sec. II-C].
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Fig. 1. Lanelet network definitions.

Fig. 2. Conflict sections (grey) at an intersection (left) and a merge (right).

B. Agents

To reference agents, an identifier □i is used. For conve-
nience, we define a shorthand notation

A{1,2,...,N} ⇔ {Ai | i ∈ {1, 2, ...,N}}, (1)

with N being the number of agents.
1) Route-based Coordinate Frame: Each agent Ai is

initialized with a route γi. It is defined as a sequence of
lanelets (li1, l

i
2, ..., l

i
Ri
) that the agent Ai traverses over the

course of time. Based on the route γi, a reference path Γi is

composed for each agent Ai similar to the procedure of the
CommonRoad route planner1.
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Fig. 3. Reference path Γ for route γ = (1, 2, 4) and lonigtudinal position
interval [s2, s2] in which the agent intersects with lanelet l2.

With the reference path Γ serving as a curvilinear coor-
dinate frame, the longitudinal position s and lateral position
d of an agent A are defined as indicated in Fig. 3. For each
lanelet lr ∈ γ, the longitudinal position interval [sr, sr] in
which the agent A intersects the lanelet lr is determined (see
Fig. 3). The symbols □ and □ indicate the lower and upper
limits, respectively. Analogously, the longitudinal position
intervals of the agents intersecting with conflict sections
are computed. Preprocessing and storing this information
facilitates the evaluation of predicates (see Sec. III-B.2). This
procedure is similar to [18, Sec. II-C].

2) Interference of Agents: Next, the relationship among
the agents is analyzed. For those agent pairs (Ai1 , Ai2)
whose reference paths (Γi1 ,Γi2) intersect, the intersection
point is determined in their respective curvilinear coordinate
frames. This will be relevant for the evaluation of some
predicates (see Sec. III-B.2). This procedure is identical to
[18, Sec. II-B].

3) System Dynamics: A linear point mass model with
acceleration as an input variable is used for each agent.
Both acceleration and velocity are constrained by upper and
lower bounds. In this paper, we only consider longitudinal
dynamics. The state xi = [s, v]T of an agent Ai is composed
of its longitudinal position s and velocity v. Accordingly, the
input ui = ai is the longitudinal acceleration ai. We use a
time discretization with a fixed time increment ∆t, and the
acceleration ai is assumed to be constant during each time
step □k. Thus, the discrete-time vehicle model describing
the longitudinal system dynamics is

xi
k+1 =

[
1 ∆t

0 1

]
︸ ︷︷ ︸

As

xi
k +

[
∆t2

2

∆t

]
︸ ︷︷ ︸

Bs

ui
k, (2)

with bounded acceleration aik ∈ [ai, ai] =: U i, and velocity
vik ∈ [vi, vi]. In addition, the initial state of each agent Ai

is limited to the convex set Ri
0. The matrices As and Bs are

the system and input matrices, respectively.
4) Abstract Behavior Specification: For the abstract spec-

ification of the behavior of each agent and the formalization
of traffic rules [21], we use a subset of metric temporal logic
(MTL) [26]. Its clarity and flexibility make MTL well suited
for this task. MTL consists of temporal and logic operators
that connect predicates [26].

Currently, our implementation supports the logic connec-
tive and as well as the temporal always operation. These

1commonroad.in.tum.de/tools/route-planner



offer the same functionality as previous MIQP approaches
[18]. Other logic connectives and temporal operators (e.g.,
or, once, eventually) require case distinctions, which lead to
the splitting of the reachable set computation into several
branches. This will be part of future research.

The set of currently supported predicates is listed in Tab.
I and Tab. II. To improve readability, we use an informal
notation; a formal description is given in [27].

Tab. I. Supported predicates involving a single agent.

Predicate Description

OnLanelet(Ai, l) Agent Ai is required to be on the speci-
fied lanelet l ∈ γi.

OnCS(Ai, cs)
BeforeCS(Ai, cs)
BehindCS(Ai, cs)

Agent Ai is required to be on / before /
behind a specified conflict section cs.

VelocityLimit(Ai) The velocity v of agent Ai is required to
be within a permissible range.

Tab. II. Supported predicates involving multiple agents.

Predicate Description

BehindAgent
(Ai1 , Ai2 , Ai3 , ..., AiM )

Agent Ai1 is required to be behind Ai2 ,
which is required to be behind Ai3 , etc.

SlowerAgent
(Ai1 , Ai2 , Ai3 , ..., AiM )

Agent Ai1 is required to be slower than
Ai2 , which is required to be slower than
Ai3 , etc.

A variety of traffic scenarios may be modeled by MTL
formulas consisting of these operators and predicates. The
MTL formulas are converted to sets of predicates Pk for
each time step □k. The notations Psingle

k and Pmulti
k return

the single- and multi-agent predicates at time step □k,
respectively.

III. METHODOLOGY

Our synthesis of traffic scenarios consists of two steps.
First, for each agent, its specification-compliant, forward-
consistent, convex reachable sets are computed for each time
step (see Sec. III-A – III-C). Second, a QP optimization
synthesizes a concrete trajectory for each agent within these
reachable sets (see Sec. III-D).

A. Concept for Computing the Reachable Sets

A state xi
k+1 is defined to be reachable in this work if

its predecessor xi
k is in the previous reachable set Ri

k, the
input ui

k is in the permissible interval U i, and the system
dynamics (2) are adhered to:

Ri
k+1 = {Asx

i
k +Bsu

i
k | xi

k ∈ Ri
k, u

i
k ∈ U i}. (3)

Specification-compliant sets R̃i
k are subsets of the reach-

able sets Ri
k whose states that fulfill the predicates p ∈ Pk

with respect to the specification-compliant reachable sets of
the other agents R̃{1,2,...,N}\i

k

R̃i
k = {xi

k ∈ Ri
k | ∀p ∈ Pk (p(x1

k, x
2
k, ..., x

N
k )),

∀j ∈ {1, 2, ...,N} (xj
k ∈ R̃

j
k)}.

(4)

Forward consistency ensures that for each state in a
set, there exists a dynamically feasible trajectory that leads

to a state in the final set. We use a recursive, one-step
forward consistency definition. This is computed backwards
in time, starting at the final time step □f with [28]:

↶
Ri

f = R̃i
f ,

↶
R

i
k = {xi

k ∈ R̃i
k | xi

k+1 = Asx
i
k +Bsu

i
k,

ui
k ∈ U i, xi

k+1 ∈
↶
R

i
k+1}.

(5)

By limiting the states xi
k to specification-compliant reachable

sets R̃i
k in (5), the resulting forward-consistent reachable

sets
↶
Ri

k are specification-compliant. In the remainder of this
paper, we refer to all types as reachable sets and specify the
precise type by its corresponding symbol.

For an efficient computation of the reachable sets, the pro-
cedure is split into two parts: First, specification compliance
and forward propagation are handled in the forward path (see
Alg. 1). Subsequently, the backward path ensures forward
consistency. As the initial sets are convex and all applied
operations (intersection, linear transformation, Minkowski
sum) preserve convexity [29], [30], all sets are convex.

Input: Initial sets R{1,2,...,N}
0 ,

formal specifications Psingle
{0,1,...,f}, Pmulti

{0,1,...,f}

Output: Reachable sets
↶
R

{1,2,...,N}
{0,1,2,...,f}

▷ Forward path
for k ∈ {0, 1, ...,N} do
R̃{1,2,...,N}

k ← R{1,2,...,N}
k ▷ Initialization

for pj ∈ Psingle
k ▷ Spec. comp. – single agent □i do

R̃i
k ← R̃i

k ∩ Sij,k
for pj ∈ Pmulti

k ▷ Spec. comp. – multi agent do
R̃{1,2,...,N}

k ← R̃{1,2,...,N}
k ∩ S{1,2,...,N}

p,k

for i ∈ {1, 2, ...,N} ▷ Forward propagation do
Ri

k+1 ← AsRi
k ⊕BsU i ▷ (6)

▷ Backward path
↶
R

{1,2,...,N}
f ← R̃{1,2,...,N}

f ▷ Initialization
for i ∈ {1, 2, ...,N} do

for k ∈ {f − 1, ..., 1, 0} ▷ Forward consistency do
↶
R

i

k ← A−1
s (

↶
R

i

k+1 ⊕−BsU i) ∩ R̃i
k ▷ (8)

Alg. 1. Computation of specification-compliant, forward-consistent,
convex reachable sets.

B. Forward Path of Reachability Analysis

1) Forward Propagation: The forward propagation imple-
ments the one-step reachability Ri

k → Ri
k+1, as defined in

(3), using the Minkowski sum2:

Ri
k+1 = AsRi

k ⊕BsU i. (6)

2) Restricting Sets to Comply with Predicate Specifica-
tions: In classic MTL, the fulfillment of a predicate p is
evaluated on concrete states [26]. As the fulfillment of a

2A⊕ B = {a+ b | a ∈ A, b ∈ B}



predicate can differ for various states within a set, evaluating
predicates cannot be readily extended to sets. One approach
to achieving specification compliance for reachable sets R̃i

k

is to restrict them to those sets that assuredly fulfill the
predicates as defined in (4) [27].

To this end, the permissible state space intervals of the
affected agents Sij,k are determined that fulfill a predicate
pj ∈ Pk. Subsequently, the corresponding specification-
compliant reachable set is updated R̃i

k ← R̃i
k ∩ Sij,k (see

Alg. 1).
For single-agent predicates, the intervals Sij,k are immedi-

ately accessible in our implementation due to the preprocess-
ing (see Sec. II). E.g., for the OnLanelet(Ai, l) predicate,
the longitudinal position interval [si, si], for which an agent
Ai intersects with the lanelet l, is read from the route
information of the agent (see Sec. II-B.1).

For predicates involving multiple agents, a partition of
the state space among the agents is required if their reach-
able sets Ri

k intersect, to determine the permissible in-
tervals Sij,k. We present a simple implementation below
that ensures specification compliance using a heuristic to
underapproximate the reachable sets R̃i

k. More sophisticated
approaches are conceivable that, e.g., utilize negotiation
strategies [31]. Our implementation is presented exemplarily
for SlowerAgent(A1, A2, A3, A4). This predicate requires
that A1 is the slowest agent and A4 the fastest one, with a
nonintersecting partition of the velocity domain of the state
space among all agents. Our approach consists of three steps:

1) The reachable velocity interval of each agent is deter-
mined as the projection of reachable sets Ri

k onto the
velocity domain (see Fig. 4: outer rectangles).

2) Intersections of the velocity intervals of succeeding
agents [vj , vj ] are determined, with j counting the
partitions (see Fig. 4: interval symbols between rect-
angles).

3) Thresholds for the partitions of the state space among
the agents are determined (see Fig. 4: horizontal lines
connecting two rectangles). With M being the number
of involved agents, the threshold values vj are

vj =

(
1− j

M

)
vj +

j

M
vj . (7)

R1
k

1)

s[m]

v
[m s

]

1 2 3
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j

v
[m s

]

Fig. 4. Partition of velocity intervals for SlowerAgent(A1, A2, A3, A4)
predicate.

For predicates of the type BehindAgent, the partition
procedure is similar. However, the longitudinal offset of the
different route-based coordinate frames Γi and the length

of the agents must be considered when determining the
intersection of the position intervals. Predicates describing
nonlinear relations, e.g., safe distance predicates [21], can
be handled similarly to [27].

3) Order of Predicate Consideration: In Alg. 1, the
single-agent predicates are considered prior to the multi-
agent ones. Single-agent predicates are evaluated precisely,
whereas considering multi-agent predicates underapproxi-
mates the left-over reachable sets R̃i

k. With this order of
predicate consideration, we reduce the approximation effect.

C. Backward Path of the Reachability Analysis

We remove non forward-consistent states in the backward
path. This is achieved by intersecting the specification-
compliant reachable set R̃i

k with
↶
R

i

k according to (5). This
procedure is carried out iterating backward, starting with
k = f − 1 (see Alg. 1). Our implementation uses the
Minkowski sum to compute the backward propagation [32]:

Ri
k = A−1

s (
↶
R

i

k+1 ⊕−BsU i) ∩ R̃i
k. (8)

The inverse of As always exists for discrete-time linear
systems [33, Sec. 7.2]. A more detailed description of for-
ward consistency computation is given in [28]. The resulting
reachable sets

↶
R

i

k are the input to the QP optimization
trajectory synthesis.

D. Trajectory Synthesis

To derive the trajectory of each agent, a QP optimization is
solved for each agent Ai individually. The objective function
is the sum of squared accelerations (9a). As constraints,
the system dynamics of the agent (2) must be considered
(9b). The search space of the optimization is given by the
reachable sets

↶
Rk (9c).

min
ui
k

J =

f−1∑
k=0

ui
k

2
(9a)

s.t. xi
k+1 = Asx

i
k +Bsu

i
k ∀k ∈ {0, 1, ..., f − 1}, (9b)

xi
k ∈

↶
R

i

k ∀k ∈ {0, 1, ..., f}. (9c)

For modeling the convex reachable sets
↶
R

i

k as constraints
(9c), the vertex representation used in previous computations
is converted to the half-space representation [34]. As the
reachable sets

↶
R

i

k consider dynamical limitations and formal
specifications, the optimizations for the different agents are
simultaneously executable, reducing the computation time.
With the trajectory synthesis being defined, the pipeline
for synthesizing traffic scenarios for formal specifications
is complete. Crucial for the success of our approach is its
performance, which is assessed in the following section.

IV. NUMERICAL RESULTS

Two numerical examples are presented to assess the results
of the reachability-based scenario synthesis. Both examples
are based on [18]. The first one describes a lane change
and merge maneuver, and the second one specifies the
order in which traffic participants pass the conflict section
on a T-junction. The solution quality and computational



performance are compared to the MIQP approach from
[18], which is well-suited as a reference due to its similar
definitions and functionality. For both examples, the lanelet
networks are available on our website3 as ZAM Zip, and
ZAM Tjunction. All agents have the same limits for acceler-
ation a = [−6, 3]m s−2, and velocity v = [0, 30]m s−1. The
time increment in both examples is ∆t = 0.25 s.

A. Merge Scenario

In the merge scenario, two adjacent and equally directed
lanes merge. This occurs, e.g., with lane narrowing in urban
traffic or with road works on highways. Four agents appear
in the traffic scenario (see Fig. 5). Initially, there are two
vehicles in each of the adjacent lanes. The rear vehicle in
the left lane A2 then changes lanes and moves to the front
of the vehicles in the right lane. Subsequently, the vehicle
remaining in the left lane A1 is to merge with the right lane
in front of the last vehicle A4. The formal description is
provided in Tab. III and the time horizon is f = 40 time
steps.

A4

A2

A3

A1 5

Merge m

Fig. 5. Lanelet network, reference paths, and initial positions of the agents.

Tab. III. Predicate sets Pk of merge scenario.

Time step k Predicates p

0...40 VelocityLimit({A1, A2, A3, A4}),
BehindAgent(A4, A3)

0 BehindAgent(A2, A1)

15...30 BehindAgent(A1, A2)

30...40 BehindAgent(A4, A1, A3, A2)

40 OnLanelet(A1, 5), SlowerAgent(A2, A1)

One can observe that agent A1 must temporarily reduce its
velocity substantially so that the correct sequence of agents
can be achieved (see Fig. 6). Agent A2 initially has a high
velocity before it has to reduce its velocity to comply with
the SlowerAgent(A2, A1) predicate. As a consequence, the
reachable set

↶
R

2

30 is considerably restricted, since higher
velocities at this time step would lead to exceeding the
allocated velocity range at the time step k = 40 under the
given acceleration limits. In contrast, agent A3 is not affected
by such a predicate and its reachable set

↶
R

3

40 covers the
whole permissible velocity range.

After the reachable set computation, the QP optimization
for synthesizing the trajectories is conducted. By definition,
the resulting trajectories lie within the previously computed
sets in the state space representation (see solid lines in Fig.
6). The objective value (9a) of the MIQP optimization is
JMIQP = 150.7m2s−4, whereas the reachability approach
incurs an objective value of JReach+QP = 264.5m2s−4.

3https://commonroad.in.tum.de/scenarios
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Fig. 6. Reachable sets
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R

i
k over time t = {0, 2.5, 5, 7.5, 10} s (outline

color). Routes intersect at merge m (see Fig. 5) with s = 0m. Solid
trajectories: Reach + QP; Dashed trajecories: MIQP.

Apart from that, the trajectories are similar in the sense
that they both comply with the formal specifications. The
different objective values result from the ability of the MIQP
optimization to adjust the threshold value of the multi-
agent predicates as part of its optimization. In contrast,
the reachability-based approach chooses a heuristic value
which is not necessarily optimal (see Sec. III-B.2). With
more sophisticated negotiation strategies for considering the
predicates [31], a solution closer to the optimal one can
be expected. The computation performance aspect will be
assessed in Sec. IV-C. Before, the second numerical example
is presented.

B. T-Junction Scenario

The next example considers a T-junction where the routes
of six agents interfere with each other (see Fig. 7). Therefore,
a safe order in which the agents pass the conflict section cs
must be specified. This is ensured by enforcing that all agents
except one are either BeforeCS or BehindCS (see Tab. IV).

A5

A4

A6

A2

A3

A1

Conflict section cs

Fig. 7. Lanelet network, reference paths, and initial positions of agents.
Agents that are initialized in the same lanelet follow the same routes. Only
the routes of the leading vehicles are depicted.



Tab. IV. Predicate sets Pk of T-junction scenario.

Time step k Predicates p

0...48 VelocityLimit({A1, A2, A3, A4, A5, A6}),
BehindAgent({(A2, A1), (A4, A3), (A6, A5)})

BeforeCS(□, cs) BehindCS(□, cs)

0 {A1, A2, A3, A4, A5, A6} {}
8 {A2, A3, A4, A5, A6} {A1}

16 {A2, A4, A5, A6} {A1, A3}
24 {A2, A4, A6} {A1, A3, A5}
32 {A4, A6} {A1, A2, A3, A5}
40 {A6} {A1, A2, A3, A4, A5}
48 {} {A1, A2, A3, A4, A5, A6}

Once again, the MIQP achieves a substantially lower
objective value of JMIQP = 138m2s−4 compared to
JReach+QP = 503m2s−4. However, the trajectories of both
approaches have a similar shape and are smooth (see Fig. 8).
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Fig. 8. Reachable sets
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i
k over time t = {0, 4, 8, 12} s (outline color).

Routes intersect at conflict section cs with s = 0m (see Fig. 7). Solid
trajectories: Reach + QP; Dashed trajecories: MIQP.

C. Performance Comparison to MIQP Approach

The source code for both implementations, MIQP and
reachability-based, is written in Julia. Moreover, a package4

provides the interface to the Gurobi optimizer. All timings
are conducted with an Intel i7-12700H processor.

4https://github.com/jump-dev/Gurobi.jl

Besides a general performance comparison, analyzing the
scalability of both approaches with increasing traffic scenario
complexity is of particular interest. Varying the complexity
is achieved by terminating the T-junction scenario after
differing durations, meaning that the number of vehicles that
pass the intersection differs (see Tab. V).

Tab. V. Computation times τ and objective values J with MIQP and
reachability-based approach for different scenario complexities.

Number of agents pas- 1 2 3 4 5 6
sing the conflict section
Termination at k 8 16 24 32 40 48
Scenario duration [s] 2 4 6 8 10 12

Binary variables 403 615 867 1159 1491 1863

JMIQP [m2s−4] 0 0 20.7 54.4 119 138

JReach+QP [m2s−4] 4.11 16.7 38.3 128 365 503

τMIQP [103 ms] .062 .117 .266 1.07 2.122 3.09

τReach [ms] .116 .241 .414 .623 .860 1.08

τReach+QP [ms] 1.51 3.02 4.94 6.98 9.49 11.7

Speed-up =
τMIQP

τReach+QP
40.9 38.6 53.9 153 224 264

The computation times of the MIQP implementation are
similar to those in the original paper [18]. The computation
times of the MIQP optimization increase exponentially with
the number of binary variables [19]. Moreover, depending
on how well the solving strategies of Gurobi work on the
given problem, the solution time might vary [35]. This leads
to nondeterministic execution times.

The computation time of the reachability approach in-
creases approximately linearly with the scenario duration.
Compared to the exponential increase for the MIQP ap-
proach, this leads to substantially faster computation times,
especially for scenarios with long durations and many agents.
Moreover, less than 10% of the computation time is spent
with the reachable set

↶
R

i

k computation. Instead, most time
is used for solving the QP optimization for synthesizing the
trajectories. The QP optimization for the different agents
is carried out in parallel on different cores. This reduces
the overall computation time by a factor of about three.
Within the reachable set computation, the computation time
is divided equally among the application of the predicates,
the forward propagation, the backward propagation, and the
intersection of the sets. Thus, the forward and backward
paths take nearly the same amount of time.

V. CONCLUSIONS

A novel approach for synthesizing traffic scenarios from
formal specifications is presented. First, the reachable sets
of the agents that comply with the formal specifications are
computed. In addition, using backward propagation, these
sets are limited to those states that are forward-consistent.
Subsequently, within these sets, trajectories for all agents
are synthesized using QP optimization.

The major limitation of this approach is that the optimality
of the solution cannot be guaranteed. In fact, for the investi-
gated examples, the objective value of the reachability-based



trajectory synthesis increases considerably compared to the
optimal solution. This could be mitigated by an improved
partition of the reachable sets when applying predicates
among interfering agents, e.g., using negotiation strategies
[31], [36].

In contrast, the reachability-based approach offers substan-
tial advantages over other state-of-the-art trajectory synthesis
techniques. First, the computation times scale linearly with
increasing scenario duration and complexity. In addition,
the duration of the time-consuming QP trajectory synthesis
can be kept constant for increasing numbers of agents by
solving the individual optimization problems for each agent
on multiple cores in parallel. The combination of both
aspects makes our approach highly suitable for complex
traffic scenarios with many agents.

REFERENCES

[1] M. A. Schreurs and S. D. Steuwer, “Autonomous driving - political,
legal, social, and sustainability dimensions,” in Autonomous Driving
- Technical, Legal and Social Aspects. Springer Berlin Heidelberg,
2015, ch. 8, pp. 151–173.
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