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Abstract

The availability of high-performance computational resources has increased steadily, but
we are still far from the capacity to perform high-fidelity simulations for turbulent flows
in real-world applications. Thus, we still rely on computationally cheaper surrogates like
Reynolds-Averaged Navier-Stokes (RANS) turbulence modeling. The most commonly used
RANS models are the linear eddy viscosity models (LEVM), which rely on the turbulent vis-
cosity hypothesis for their Reynolds stress closure, a known source of structural uncertainty.
Despite the development of theoretically superior turbulence models such as algebraic mod-
els or Reynolds stress transport models, the LEVMs remain the most widely used class of
turbulence models due to their efficiency and stability. This work combined a nonlinear eddy
viscosity model with a deep neural network to yield improved predictions of the anisotropy
tensor on flow cases with surface curvature and flow separation traditionally challenging to
LEVMs. The neural network used an extensive set of rotationally invariant local flow fea-
tures for predictions and incorporated realizability constraints in the training process. Using
visualizations based on the barycentric map, our results indicate that the proposed machine
learning method’s anisotropy tensor predictions offer a significant improvement over the best
performing LEVM (baseline) and compare very well with the DNS/LES (ground truth). The
predicted anisotropy tensor could uncover secondary flow information in some flow cases,
which the baseline model completely missed. However, in a significant number of cases,
the improved predictions did not translate into an improvement of the mean velocity and
pressure fields when measured against the best-performing LEVM.
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Chapter 1

Introduction

The incompressible Navier-Stokes equations describe the motion of a Newtonian fluid un-
der external forces in the range of low Reynolds numbers, often with turbulent motion, and
are subject to current research. They are considered one of the most important unanswered
engineering problems because they enable the description of the physics of a wide variety
of scientific phenomena. This offers a vast array of applications, including aircraft design,
biomechanics (e.g., blood flow), and weather and ocean current modeling. To date, no
analytical solution for the equations is known. Even fundamental properties such as the ex-
istence of a solution for a given set of boundary conditions have yet to be proven. However,
numerical approximations of the analytical solution are sufficient for many of the applica-
tions. Computational Fluid Dynamics (CFD) is a scientific field that deals with this topic and
has long been an essential engineering discipline.

The most accurate solution strategy for turbulent flows is the direct numerical simulation
(DNS), which aims at fully resolving all scales of motion. While this simulation method yields
impeccable results, it is prohibitively expensive regarding computational costs due to exces-
sive mesh requirements that scale with O

�

Re11/4
�

. The computational effort can be reduced
by performing large-eddy simulations (LES), which only resolve the large-scale motions and
account for the smaller scales with a turbulence model. The most widely used simulation
methods are the Reynolds-averaged Navier-Stokes (RANS) simulations, which do not resolve
any turbulent motion but solve the Navier-Stokes equations for mean-field quantities. While
resolved LES or related methods like wall-modeled LES and hybrid LES/RANS are expected
to displace RANS in industrial CFD gradually, the predicted time for this shift in the simula-
tion paradigm has been significantly delayed. RANS methods are projected to be the industry
standard for turbulent flow simulations in the coming decades [58].

The fluctuation terms (Reynolds Stresses) in RANS need to be modeled, which requires
the formulation of a constitutive relation for the Reynolds stresses as a function of mean
fields. The most widely used RANS models, such as the Launder-Sharma k−ε [27] or Wilcox’s
k−ω [72] model, are based on the Boussinesq turbulent-viscosity hypothesis, which linearly
relates the Reynolds stresses to the viscous forces. While these models perform well in sim-
ple, canonical flow cases, this modeling assumption prevents these models from accurately
predicting the anisotropy in more complex flow scenarios and is identified as one of the
primary sources of structural uncertainty [41]. Attempts to overcome this weakness have
been made in the form of nonlinear eddy viscosity models (e.g., [61]) or Reynolds stress
transport models (e.g., [26]). These models have not found widespread attention because
they lack the simpler linear models’ robustness and involve more parameters that need to
be calibrated. They are frequently outperformed by the linear models regarding accuracy,
convergence properties, and computational costs. Overall, no single turbulence model that
can accurately predict flow physics over a broad range of circumstances has been identified.

The development of turbulence models has entered a period of stagnation around the
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2000s, after rapid advancements in the 1980s and 1990s. The greater availability of com-
putational resources and the development of sophisticated algorithms in the field of pattern
recognition and machine learning has transformed many disciplines of engineering, and the
field of computational fluid mechanics is no exception [8]. Data-driven approaches for aug-
menting RANS models have been proposed in recent years, revitalizing turbulence modeling
research efforts [15].

The key idea of data-driven turbulence modeling is to capitalize on the increasing amount
of high-fidelity fluid data. Machine learning models are trained to recognize patterns in the
data, which can then be used to augment turbulence models. The data-driven approaches to
increase the predictive capabilities of RANS simulations fall into four main categories: learn-
ing model coefficients of a given turbulence model [65], modeling of correction or source
terms for an existing turbulence model [16], adjusting the orientation of eigenvalues of the
Reynolds stresses [64], and directly modeling the Reynolds stresses [66], or their anisotropic
part [32].

The first two of these approaches adjust the magnitude, but not the orientation of the
Reynolds stresses, and have thus not been found eligible to improve linear models in complex
flow scenarios. In [14] and [76], the spatial discrepancy field of the Reynolds stresses was
inferred from DNS data and extrapolated to a similar flow case. However, these approaches
have limited generalization potential, as the discrepancy inference was based on physical co-
ordinates. Ling and coworkers [32] proposed to model the anisotropy tensor from turbulent
quantities. They combined an integrity tensor basis with a deep neural network to parame-
terize the anisotropy tensor. The neural network architecture is ensured to yield predictions
that adhere to basic physical requirements. The network learned a functional relationship
between invariant local flow features and the anisotropy tensor from corresponding high-
fidelity fluid data. Wang et al. [66, 68] constructed regression functions from an extended
set of local flow features to the Reynolds stresses, using Gaussian processes.

In this work, the additional flow features derived by Wang and colleagues [66, 68] were
combined with the neural network architecture proposed by Ling et al. [32], to give point-
based estimates of the anisotropy tensor. Eventually, the trained network was tested on
an unseen flow scenario. Finally, the predictions were used as a source term in the RANS
equations, which then were solved for mean-flow quantities.

Objectives

Extending the model proposed by Ling et al. [32], it was first hypothesized that their choice
of input features is insufficient and an extended feature set might benefit the model’s overall
accuracy. Second, the effects of physical constraints on the training process were investi-
gated. Third, the model was tested on flow geometries present in the training data set for
unseen flow parameters and tested for its extrapolation properties on an unseen flow ge-
ometry. Mesh convergence studies were performed to compare the machine learning model
against the best-performing LEVM. The barycentric triangle was used extensively to analyze
the model’s predictions and investigate the anisotropy tensor’s spatial componentiality. It was
investigated whether the predicted anisotropy tensors break free from the plain strain line,
to which the LEVM is restricted. Finally, it was analyzed whether an improved anisotropy
tensor translates into improved mean fields.

Outline

Chapter 2 outlines the incompressible Navier-Stokes equations and the three main solution
strategies, followed by a more detailed description of the most important aspects of RANS
turbulence modeling and the closure problem. Chapter 3 gives an overview of machine
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learning techniques for regression problems. Chapter 4 provides the framework for predicting
and propagating the anisotropy tensor employed in this work. The numerical results are
presented in Chapter 5. In its first section, the flow cases considered in this work are described
alongside mesh convergence studies. After that, the machine learning method’s predictions
for the anisotropy tensor are interpreted and analyzed, followed by assessing the predicted
anisotropy tensor’s propagation through the RANS equations. Finally, Chapter 6 summarizes
and concludes the main findings of this work and provides a future research perspective.





Chapter 2

Turbulent Flows & the Reynolds Stress Closure Prob-
lem

2.1 Governing Equations

The Navier-Stokes equations can be derived from conservation of mass and Newton’s second
law, which relate the fluid acceleration to the surface and body forces. Following the notation
of [48], the incompressible Navier-Stokes equations for a Newtonian fluid read

∂ Ui

∂ t
+ U j

∂ Ui

∂ x j
=
∂

∂ x j

�

−
p
ρ
δi j + ν

�

∂ Ui

∂ x j
+
∂ U j

∂ x i

��

+ gi (2.1)

∂ Ui

∂ x i
= 0, (2.2)

and consist of the momentum equation (2.1) and the incompressibility constraint (2.2). The
Einstein summation convention is used throughout this work, with the exception of Chapter
3. The left-hand side of the momentum equation forms the material derivative of the velocity
Ui and expresses the change of momentum of a fluid particle. The right hands side contains
the pressure p, viscous stresses ν (∂ Ui/∂ x j + ∂ U j/∂ x i), and external force terms, such as
gravity, which are denoted gi. The density and kinematic viscosity are denoted ρ and ν,
respectively. Finally, δi j is the Kronecker delta. These equations are believed to fully capture
the physics of a fluid with constant molecular properties and a viscous stress tensor, which is
linearly dependent of the velocity gradient ∂ Ui/∂ x j and its transpose.

2.2 Fundamentals of Turbulent Motion

Turbulent flows exhibit a wide range of length and time scales making it notoriously hard to
predict the evolution of the full flow field. Before the three main simulation approaches are
discussed, the scales of turbulent motion are presented to better understand the underlying
physical processes. The turbulent energy cascade is introduced alongside the Kolmogorov
hypotheses.

The energy cascade was introduced by Richardson in 1922 [50], where he states that
turbulent motion consists of eddies of various sizes. Eddies of a certain size l have a char-
acteristic velocity u(l) and corresponding timescale τ(l) ≡ l/u(l). Turbulent energy enters at
the largest scales of motion l0, comparable to the flow scale L. The velocity u0 ≡ u(l0) of
these large eddies is comparable to the characteristic velocity U of the turbulent flow. The re-
sulting Reynolds number Re0 ≡ u0l0/ν is large for these eddies and comparable to the global
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Reynolds number Re, which means viscous forces are relatively small. Large eddies are there-
fore unstable and will eventually break up into smaller ones. These might break up again,
and the process is repeated until the local Reynolds number Re(l) ≡ u(l)l/ν is small enough
for the viscous effects to become dominant, and kinetic energy dissipates. This energy trans-
fer is strictly local, reminiscent of a waterfall, where large basins feed to smaller ones all the
way down the energy cascade. The key takeaway from the energy cascade is that turbulence
is a sequence of processes with dissipation at its end. The rate of dissipation ε is dependent
of the first process in the chain, and thus the largest eddies. These eddies introduce energy
into the cascade of the order O(u0)2 with a timescale of τ0 = l0/u0. The rate of dissipation
can then be supposed to scale as

ε∼
u2

0

τ0
=

u3
0

l0
, (2.3)

which is in good alignment with experimental observations in free shear flows. Interestingly,
the rate of dissipation ε scales independently of the kinematic viscosity ν at high Reynolds
numbers. However, Richardson did not specify the smallest scales which contribute to dissi-
pation. He predicted a decreasing Reynolds number, when the scale l of the eddies decreases.
But it remained unclear, how the characteristic velocity u(l) and timescale τ(l) relate to a de-
creasing length scale l.

These questions were answered by Kolmogorov in 1941 [25], when he introduced three
hypotheses on the matter. The first one states that small-scale motions are statistically
isotropic and that directional information is lost when the energy passes down the cascade.
The second and third hypotheses describe the universality of small-scale motions for high-
Reynolds-number flows. Below a certain threshold, the statistics of the motions are uniquely
defined by ν and ε. These parameters can be used to formulate length, velocity, and time
scales which are known as the Kolmogorov scales:

η≡ (ν3/ε)1/4, (2.4)

uη ≡ (εν)1/4, (2.5)

τη ≡ (ν/ε)1/2. (2.6)

The Reynolds number of motions described by these scales is unity, which means that viscous
and inertia forces are in equilibrium and indicates that these are the very smallest dissipa-
tive eddies. By substituting the rate of dissipation ε with relation (2.3), the scaling of the
Kolmogorov scales can be estimated as

η/l0 ∼ Re−3/4, (2.7)

uη/u0 ∼ Re−1/4, (2.8)

τη/τ0 ∼ Re−1/2. (2.9)

This means that higher Reynolds numbers result in smaller Kolmogorov scales compared to
the scales of the largest eddies.

2.3 Solution Approaches

The numerical solution of the Navier-Stokes equations is notoriously hard, especially if one
attempts to resolve all time and length scales. The solution approaches can be divided into
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three main groups, which are direct numerical simulation (DNS), large eddy simulation (LES)
and Reynolds-averaged Navier-Stokes simulation (RANS). These three techniques, their ad-
vantages and drawbacks, and field of application will be briefly discussed in the following. A
detailed description can be found in [47].

Direct Numerical Simulation:

As the name suggest, this simulation approach aims at directly resolving all fluid motion
down to the smallest spatial and temporal scales and thus yields by far the most accurate
results. This approach is, however, prohibitively expensive in most cases, which can be easily
seen when examining the scaling of the Kolmogorov scales (2.7 - 2.9). For a 3D flow field
that should be advanced over time, the complexity of the computational system is of order

Odns =O
�

�

l0
η

�3

·
�

τ0

τη

��

=O
�

Re11/4
�

. (2.10)

So at best, the number of computations necessary to perform a DNS for a given domain
and time interval scales with Re2.75. In practice, the computational overhead will increase
with the problem size, so Equation (2.10) must be seen as a lower bound. This is especially
true for inhomogeneous turbulence since efficient Fourier representations cannot be used
in directions of inhomogeneity, physical boundary conditions are required, and near-wall
motions require even further mesh refinement. All things considered, DNS is not feasible
for applications even at modest Reynolds numbers and will possibly remain unfeasible in the
foreseeable future.

That being said, DNS lends itself very well to the study of turbulence and provides a
great complement to experiments. Statistics such as the pressure-rate-of-strain tensor are
virtually impossible to extract from experiments but are readily available from simulation
results. DNS results are also considered accurate enough to serve as ground truth for model
calibration and validation for coarse-grained simulation approaches. These data have also
facilitated recent developments in data-driven turbulence modeling and will also be used as
high fidelity data throughout this work whenever available.

Large Eddy Simulation

Yet again, the name states the principle of this simulation technique. Instead of resolving all
scales of motion, only the large, energy-containing eddies are resolved in LES. This approach
is based on the observation that the vast majority of modes are in the dissipative range
and contribute little to the transport of momentum and energy but are responsible for the
excessive mesh requirements. The energy and anisotropy are contained in the larger-scale
motions, which are directly represented. Simple models represent smaller scales.

For this purpose, a spatial filtering operation is defined to decompose the velocity into a
filtered and a residual component. The filtered equations can be solved after introducing a
closure model for the residual-stress tensor, which results from the unresolved motions. The
computational cost drastically decreases compared to DNS when not resolving the smallest
scales. LES is still expected to yield more accurate results than RANS as the turbulence is
still resolved to a limited extent, whereas RANS does not attempt to resolve turbulence at all.
Due to the limited availability of DNS data, the data set in present study was supplemented
with high-quality LES data.
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Reynolds-Averaged Navier-Stokes

In this simulation approach, all unsteady motions are neglected, and the Reynolds equations
are solved for the mean velocity and pressure fields. The Reynolds equations are obtained
by time-averaging the Navier-Stokes equations with the help of the Reynolds decomposition.
The Reynolds stresses are unknown after the time-averaging, and the Reynolds equations are
an unclosed set of equations. A turbulence model is introduced to determine these stresses.
Classic turbulence models are built on the turbulent-viscosity assumption or directly model
the transport of the Reynolds stresses. Models based on the turbulent-viscosity are most
widely spread as they are easy to implement and yield good results in specific scenarios.
However, the turbulent-viscosity assumption is invalid in a wide range of flows and can-
not provide accurate predictions. Due to the high cost of DNS and LES, especially for high
Reynolds number flows, engineers are often left without a choice but to use these flawed mod-
els. Recently, data-driven approaches have been introduced to improve the existing models
or directly model the Reynolds stresses. The following Section 2.4 will give an overview of
classic RANS models and serve as the foundation for the data-driven approach.

2.4 Reynolds-Averaged Navier-Stokes

2.4.1 Mean-Flow Equations

The starting point of a Reynolds-Averaged Navier-Stokes simulation is the description of the
mean fields. In the case of an incompressible Newtonian fluid with constant molecular prop-
erties, these are given by the Reynolds decomposition. Let X be a random variable; then it
can be split up into mean and fluctuation components:

X ≡ 〈X 〉+ x (2.11)

with x being the fluctuating component and 〈X 〉 the mean component. The mean component
is estimated by the time-average given by

〈X 〉=
1
T

∫ t0+T

t0

X dt. (2.12)

The time window of the averaging process is denoted T . This interval should be as large as
possible as the estimator in Equation (2.12) asymptotically approaches the true mean. The
choice of averaging interval does not affect theoretical considerations but should be kept in
mind when using fluid data from unsteady simulations. In the following, the estimator is
assumed to equal the true mean. Variable-property flows rely on the more elaborate Favre
decomposition, which can be seen as a weighted density time-average. As this greatly com-
plicates the Reynolds equations, these types of flows will not be discussed in this work.

The averaging process applied to the instantaneous velocity field Ui(x i , t) gives

U(x , t)≡ 〈U(x , t)〉+ u(x , t) (2.13)

and is referred to as the Reynolds decomposition. The mean velocity is also steady for flows
with steady boundary conditions and reduces to 〈Ui(x i)〉. The instantaneous velocity, the
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mean, and fluctuating components will be written without their spatial and temporal depen-
dencies for clarity. Inserting the decomposed velocity field in the continuity equation (2.2)
gives

∂ Ui

∂ x i
=
∂ (〈Ui〉+ ui)

∂ x i
= 0. (2.14)

It follows from the mean of the continuity equation (2.14) that 〈U〉 is a solenoidal vector
field. It should be noted that the linear mean and the linear divergence operator commute.
The continuity equation reduces to

­

∂ (〈Ui〉+ ui)
∂ x i

·

=
∂ 〈Ui〉
∂ x i

+
∂ 〈ui〉
∂ x i

=
∂ 〈Ui〉
∂ x i

= 0, (2.15)

as the mean of the fluctuation component equals zero. The divergence of the fluctuating
component is then obtained by subtraction

∂ ui

∂ x i
= 0. (2.16)

The mean of the continuity equation very much resembles the instantaneous continuity equa-
tion. The averaging process is less straightforward for the momentum equation due to the
nonlinear convective term. Its derivation is most convenient when writing the material
derivative in conservative form

DUi

Dt
=
∂ Ui

∂ t
+
∂

∂ x j
(U jUi). (2.17)

The mean of the material derivative is

­

DUi

Dt

·

=
∂ 〈Ui〉
∂ t

+
∂

∂ x j




UiU j

�

. (2.18)

After inserting the Reynolds decomposition (2.13) in the nonlinear term, it becomes clear that
the fluctuating velocity component u does not altogether vanish. The expression becomes




UiU j

�

=



(〈Ui〉+ ui)(〈U j〉+ u j)
�

(2.19)

= 〈Ui〉 〈U j〉+



uiu j

�

. (2.20)

The velocity covariances



uiu j

�

will be referred to as the Reynolds stresses, which are of
central interest of turbulence modeling. Reinserting the nonlinear term into Equation (2.18)
gives

­

DUi

Dt

·

=
∂ 〈Ui〉
∂ t

+



U j

� ∂ 〈Ui〉
∂ x j

+
∂

∂ x j




uiu j

�

. (2.21)

The first two terms on the right-hand side of equation (2.21) describe the change of momen-
tum of a point moving with the mean velocity. The Reynolds decomposition of the linear
viscous, pressure gradient, and external force term is trivial. The mean viscous stresses read
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�

ν
∂

∂ x j

�

∂ Ui

∂ x j
+
∂ U j

∂ x i

��

= ν
∂

∂ x j

�

∂ 〈Ui〉
∂ x j

+
∂



U j

�

∂ x i

�

. (2.22)

The mean pressure gradient reads

­

∂ p
∂ x i

·

=
∂ 〈p〉
∂ x i

. (2.23)

Finally, equations (2.21 - 2.23) are combined to the mean-momentum or Reynolds equations

∂ 〈Ui〉
∂ t

+



U j

� ∂ 〈Ui〉
∂ x j

+
∂



uiu j

�

∂ x j
= ν

∂

∂ x j

�

∂ 〈Ui〉
∂ x j

+
∂



U j

�

∂ x i

�

−
1
ρ

∂ 〈p〉
∂ x i

+ 〈gi〉 (2.24)

The Reynolds equations are often written in their momentum conservation form

∂ 〈Ui〉
∂ t

+



U j

� ∂ 〈Ui〉
∂ x j

=
∂

∂ x j

�

ν

�

∂ 〈Ui〉
∂ x j

+
∂



U j

�

∂ x i

�

−



uiu j

�

−
〈p〉
ρ
δi j

�

+ 〈gi〉 , (2.25)

which highlights the similarity of the viscous stresses, Reynolds stresses, and pressure gra-
dient, which are grouped. Just as the viscous stresses stem from momentum transfer at
the molecular level, the Reynolds stresses stem from momentum transfer by the fluctuating
velocity field.

To compact Equation (2.25) even further, the mean rate of strain Si j and the mean rate of
rotation tensor Ω̄i j, which defined as

S̄i j ≡
1
2

�

∂ 〈Ui〉
∂ x j

+
∂



U j

�

∂ x i

�

, (2.26)

Ω̄i j ≡
1
2

�

∂ 〈Ui〉
∂ x j

−
∂



U j

�

∂ x i

�

, (2.27)

are introduced. While this section does not use the mean rotation rate, it is rational to
introduce it alongside the mean strain rate due to their similarity, and it will be useful later
on. Further, a mean material derivative D̄/D̄t is introduced as

D̄
D̄t
≡
∂

∂ t
+



U j

� ∂

∂ x j
. (2.28)

Also, the external force vector is dropped for clarity, and the Reynolds stresses



uiu j

�

are
referred to as τi j. The momentum equation then reads

D̄ 〈Ui〉
D̄t

=
∂

∂ x j

�

2νS̄i j −τi j −
〈p〉
ρ
δi j

�

. (2.29)

The mean pressure 〈p〉 satisfies a Poisson equation, just as the instantaneous pressure p. It is
obtained by taking the divergence of the Reynolds equations (2.25):

−
1
ρ

∂ 2 〈p〉
∂ x2

i

=

�

∂ Ui

∂ x j

∂ U j

∂ x i

�

=
∂ 〈Ui〉
∂ x j

∂ 〈U j〉
∂ x i

+
∂ 2



uiu j

�

∂ x i x j
. (2.30)
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2.4.2 Reynolds Stresses

The mean momentum equation (2.25) and pressure Poisson equation (2.30) combined give
a total of four independent equations. They govern the mean velocity and pressure fields for
a general three-dimensional flow. However, besides the three velocity components and the
pressure, the Reynolds stresses are also unknown, and thus, there are more unknowns than
equations. The Reynolds-averaged Navier-Stokes equations are an unclosed set of equations
and cannot be solved unless the Reynolds stresses can be expressed by other flow quantities.
Solutions to this closure problem are called Reynolds stress closure models or simply closure
models. The various strategies to model the Reynolds stresses will be presented in the next
section. Before that, it is convenient to discuss the Reynolds stress tensor’s properties and
introduce additional descriptive quantities.

The Reynolds stress components form a second-order tensor, which is invariant under
coordinate transforms. The tensor is symmetric, as the product of the velocity components
is commutative:




uiu j

�

=



u jui

�

. Its diagonal and off-diagonal components are normal and
shear stresses, respectively. The turbulent kinetic energy, which is the mean kinetic energy
per unit mass, is defined to be

k ≡
1
2
〈uiui〉 . (2.31)

In its principal axes, the shear stresses vanish, and the eigenvalues give the normal stresses.
The eigenvalues are be non-negative, since




u2
i

�

≥ 0. Usually, all eigenvalues are positive, but
in extreme situations, one or two can be zero. The tensor is thus positive semi-definite. A
matrix A ∈ Rn×n is positive semi-definite, if

x T Ax ≥ 0 ∀x ∈ Rn (2.32)

holds for an arbitrary real vector x . The outer product of the fluctuating velocity with itself
is given by

u ⊗ u = uiu j =





u2
1 u1u2 u1u3

u2u1 u2
2 u1u3

u3u1 u3u2 u2
3



 . (2.33)

Any tensor that is formed as the outer product with itself is by default positive semi-definite,
which can easily be seen from

x T u ⊗ u x = xkuiu j x lδikδ jl = (x iui)
2 ≥ 0. (2.34)

The Reynolds stresses are the mean of the outer product of the fluctuating velocity with itself,
given by




uiu j

�

=
1
T

∫ t0+T

t0

uiu jdt, (2.35)

and since the integrand of (2.35) is positive semi-definite, the mean must be as well. The
Reynolds stresses are consequently a positive semi-definite second-order tensor and have a
non-negative determinant and trace. Following [56], these resulting physical constraints read



12 2 Turbulent Flows & the Reynolds Stress Closure Problem

〈uαuα〉 ≥ 0 ∀α ∈ {1, 2,3}, (2.36)

〈uαuα〉



uβuβ
�

≥



uαuβ
�2 ∀α 6= β , (2.37)

det
�


uiu j

��

≥ 0, (2.38)

where Greek subscripts are excluded from the summation convention. These requirements
are essential for its modeling and will be of central interest to this work. As the partition of
the Reynolds stresses into normal and shear stresses depends on the coordinate system, it is
more convenient to split the tensor into isotropic and anisotropic parts. The isotropic part is
2/3kδi j. The anisotropic part is

ai j =



uiu j

�

−
2
3

kδi j , (2.39)

and consequently has zero trace. The anisotropic part is often normalized by the turbulent
kinetic energy, takes the form

bi j =
ai j

2k
=




uiu j

�

ukuk
−

1
3
δi j , (2.40)

and is referred to as anisotropy tensor. The diagonal component bαα take their minimal value
for 〈uαuα〉 = 0. The maximum value occurs, when 〈uαuα〉 = 2k and all turbulent kinetic
energy is concentrated in one component. The extreme values for the off diagonals bαβ occur
when




uαuβ
�

= ±k. Inserting these values into Equation (2.39), the following intervals for
the components of b can be found

−
1
3
≤ bαα ≤

2
3
∀α ∈ {1, 2,3}, −

1
2
≤ bαβ ≤

1
2
∀α 6= β . (2.41)

It should be noted that the isotropic part of the Reynolds stresses do not contribute to the
transport of momentum and can be absorbed into a modified mean pressure p̂ as

∂



uiu j

�

∂ x j
+

1
ρ

∂ 〈p〉
∂ x i

=
∂ ai j

∂ x j
+

1
ρ

∂

∂ x i

�

〈p〉+
2
3
ρk
�

=
∂ ai j

∂ x j
+

1
ρ

∂ 〈p̂〉
∂ x i

. (2.42)

The main focus of turbulence modeling is thus on the anisotropic part a, or rather the
anisotropy tensor b.
A transport equation for the spatial and temporal evolution of the Reynolds stresses can
be derived from the Reynolds equations. It should be noted that this does not close the
Reynolds equations, but shifts the modeling requirements away from the stresses themselves
to quantities involved in their transport. The transport equation for the Reynodls stresses
reads

D̄



uiu j

�

D̄t
= −

∂

∂ xk
Tki j +Pi j +Ri j − εi j , (2.43)

with Reynolds-stress flux Tki j, production tensor Pi j, pressure-rate-of-strain tensor Ri j, and
dissipation tensor εi j given by
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Tki j ≡



uiu juk

�

+
1
ρ




ui p
′�δ jk +

1
ρ




u j p
′�δik (2.44)

Pi j ≡ −〈uiuk〉
∂



U j

�

∂ xk
−



u juk

� ∂ 〈Ui〉
∂ xk

, (2.45)

Ri j ≡
�

p′

ρ

�

∂ p′

∂ x j
+
∂ p′

∂ x i

��

, (2.46)

εi j ≡ 2ν

�

∂ ui

∂ xk

∂ u j

∂ xk

�

, (2.47)

where p′ is the pressure’s fluctuating component. A transport equation for the turbulent
kinetic energy k is obtained by taking the trace of the Reynolds stress transport equation
(2.43), which yields

D̄k
D̄t
= −

1
2

∂



u ju jui

�

∂ x i
+ ν
∂ 2k
∂ x2

j

−



uiu j

� ∂ 〈Ui〉
∂ x j

−
1
ρ

∂



ui p
′
�

∂ x i
− 2ν

�

∂ ui

∂ x j

∂ ui

∂ x j

�

. (2.48)

It should be noted that equations (2.43) and (2.48) remain unclosed and still require some
form of modeling to render them solvable. However, they form the basis of all RANS tur-
bulence models. These models can be distinguished by which terms of these equations are
neglected or approximated. Their behavior can be understood when carefully studying the
modeling implications.

2.4.3 Linear Eddy Viscosity Models

The Reynolds equations require a stress closure, as described above. Numerous approaches
with varying degree of complexity have been proposed for that matter. Most of these ap-
proaches are built on the Boussinesq turbulent-viscosity hypothesis. These models are re-
ferred to as linear eddy viscosity models (LEVM). Even though more elaborate models have
been developed, it is valuable to study the earlier, more simple models, as they remain pop-
ular to this day. According to the hypothesis, the anisotropic stresses a and the mean rate of
strain S̄ are aligned,

−τi j +
2
3

kδi j = νt

�

∂ 〈Ui〉
∂ x j

+
∂



U j

�

∂ x i

�

, (2.49)

= 2νt S̄i j , (2.50)

where νt is the turbulent viscosity or eddy viscosity and is yet to be defined. In other words,
the anisotropy tensor a is a linear function of the mean rate of strain tensor S̄. In this case,
turbulence modeling reduces to modeling the eddy viscosity νt . Linear eddy viscosity models
can be categorized into algebraic models and transport models. Both modeling approaches
are briefly described in the following.

Details on the the ramifications of the turbulent-viscosity hypothesis will be given in sub-
section 2.4.5. The following observations can be made at this stage:

• By aligning the anisotropic stresses and the velocity gradient, LEVM are restricted to
a small subset of possible state. This subset is referred to as plain strain line and will
be shown in more detail later. Experimental and DNS data show, that turbulent flows
explore large regions of the domain of realizable turbulence states.
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• It has been shown that the angle between the principal axis of the Reynolds stresses
and the velocity gradient can be as high as 65◦ even for homogeneous turbulent shear
flow [63].

• Even though the turbulent-viscosity hypothesis often is a cruel assumption, it facilitates
the formulation of robust, computationally cheap, easy to implement, and easy to use
turbulence models. Therefore, these models are still widely used up to this date.

Algebraic Models

Algebraic models are based on the assumption that the eddy viscosity νt is a function of
flow characteristics, which means no additional differential equations have to be solved.
Therefore, these models are also referred to as zero-equation turbulence models. The eddy
viscosity is obtained by evaluating algebraic equations only. These models are usually easy
to implement and offer good stability. One of the most simple models is the mixing-length
model by Prandtl, who introduced it along with the idea of a boundary layer in confined
flows. He assumed that the eddy viscosity must vary with distance from the wall. The eddy
viscosity is given by

νt =

�

�

�

�

∂ U
∂ y

�

�

�

�

l2
m, (2.51)

where lm is the mixing length and ∂ U/y is the partial derivative of the streamwise velocity in
wall-normal direction. This model is reasonably accurate for wall-bounded flow fields with
small pressure gradients and no separation. Small deviations from this setting quickly lead to
inaccurate flow predictions. Besides, this model is incomplete, as the mixing length has to be
defined by the user. More elaborate algebraic models such as the Cebeci-Smith model [59] or
the Baldwin-Lomax model [2] have been defined over the 70ies and 80ies. All models of this
class either lack generality, complexity, or both and are mainly used in early design stages
when stability is more of an issue than accuracy.

Transport Models

In contrast to the algebraic models, transport models are not restricted to evaluating algebraic
equations. Instead, additional statistics are defined and propagated through the flow field.
Therefore, one or more transport equations, which account for history effects like convection
and diffusion. Most models are based on the transport of the turbulent kinetic energy (2.31),
but other approaches, e.g., the Spalart-Allmaras [60] model, which models the transport of
viscosity-like variable, are feasible. The eddy viscosity is modeled as

νt = ck1/2lm, (2.52)

where c is a model constant. However, this model is still incomplete, as the mixing length lm
still has to be defined. The currently most widely used turbulence models are two-equation
models. Among those, the k − ε [22, 27] and k − ω [71] models are especially popular.
Both models introduce a time scale as the second variable. The k − ε model introduces a
transport equation for the turbulent dissipation rate ε, whereas the k −ω model is based on
the transport of the specific turbulent dissipation rate ω. The mixing length can be related
to k and ε by using relation (2.7) and subsequently be eliminated from the eddy viscosity
(2.52), which yields
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ε= CD
k3/2

lm
, (2.53)

νt = cCD
k2

ε
= Cµ

k2

ε
=

k
ω

. (2.54)

The two model constants c and CD in Equation (2.54) can be combined into a single constant
Cµ. This value has been calibrated to Cµ = 0.09 by comparing RANS, and DNS results for fully
developed turbulent channel flows. Finally, it should be noted that both these two-equation
models are complete, meaning no additional quantities have to be specified.

k− ε model

The exact transport equation for the turbulent kinetic energy, which was derived previously
(2.48), can be written in a compact fashion

D̄k
D̄t
=
∂ k
∂ t
+ 〈U〉 · ∇k, (2.55)

= −∇ · T ′ +P − ε, (2.56)

where T ′i and P are the flux and production of turbulent kinetic energy, respectively. The
turbulent dissipation rate ε appears as a sink in the k-equation. The turbulent kinetic energy
flux is

T ′i =
1
2




uiu ju j

�

+



ui p
′�/ρ + 2ν




u jsi j

�

, (2.57)

P = −



uiu j

� ∂ 〈Ui〉
∂ x j

(2.58)

ε= 2ν

�

∂ ui

∂ x j

∂ ui

∂ x j

�

(2.59)

where si j = 1/2(∇u +∇uT ) is the fluctuating rate of strain tensor. Only the mean material
derivative D̄k/D̄t and the production P, when employing the turbulent viscosity assumption,
are in closed form. The turbulent kinetic energy flux T ′ and the turbulent dissipation rate ε
are unknown and have to be modeled. For the k− ε model, the turbulent kinetic energy flux
is approximated by

T ′i ≈ −
νt

σk
∇k. (2.60)

with a gradient-diffusion hypothesis (see [47]). The turbulent Prandtl number is a model
constant and generally taken to be σk = 1.0 and has been determined by examining exper-
imental data for free turbulent flows [27]. The production of turbulent kinetic energy is
approximated by

P ≈ 2νt S̄i j S̄i j , (2.61)

where the Reynolds stresses τ were substituted according to the turbulent viscosity hypothe-
sis.
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An exact equation for the turbulent dissipation rate ε can also be derived but is unfit
for RANS-modeling, as it is dependent on processes in the dissipative range. The equation
specified by Launder and Spalding [22] is empirically driven and reads

D̄ε
D̄t
=∇ ·

�

νt

σε
∇ε
�

+ Cε1
Pε
k
− Cε2

ε2

k
. (2.62)

The model coefficients have been given by Launder and Sharma [27] after numerous itera-
tions of data fitting over a large spectrum of turbulent flows. The model coefficients are

Cµ = 0.09, Cε2 = 1.44, Cε2 = 1.92, σk = 1.00, σε = 1.30. (2.63)

k−ω model

Several two-equation models have been suggested previously. For most of these, k is taken
as one of the variables, but the choices are more diverse for the second. Quantities with
dimensions of kL, ω, ω2 and τ are examples. These choices are intangible for homogeneous
turbulence, but for homogeneous flows, the diffusion term’s form is different. For a choice of
ω= ε/k, the transport equation for ω is

D̄ω
D̄t
=∇ ·

�

νt

σω
∇ω

�

+ Cω1

Pω
k
− Cω2ω

2 (2.64)

which contains a different set of model coefficients that can be determined from experimental
and high-fidelity simulation data. As the k −ω model has been developed over the past six
decades, the k and ω equations have been adjusted. For this work, Wilcox’s formulation from
1998 [71] is used. The turbulent kinetic energy equation is

D̄k
D̄t
=∇ ·

��

ν+σk
k
ω

�

∇k
�

+P − β∗0ωk, (2.65)

and the specific dissipation rate equation is

D̄ω
D̄t
=∇ ·

��

ν+σω
k
ω

�

∇ω
�

+ γ
Pω
k
− βω2. (2.66)

The model constants and auxiliary function are

σk = 0.5, σω = 0.5, γ=
13
25

, β∗0 = 0.09, β = β0 fβ , β0 =
9

125
(2.67)

fβ =
1+ 70χω
1+ 80χω

, χω =

�

�

�

�

Ω̄i jΩ̄ jkS̄ki

(β∗0ω)3

�

�

�

�

(2.68)

f ∗β =

(

1, χk ≤ 0,
1+680χ2

k

1+400χ2
k
, χk > 0,

χk =
1
ω3

∂ k
∂ x j

∂ω

∂ x j
, (2.69)

where the so called Pope correction χω [46] in Equation (2.68) makes of the mean rate of
strain S̄i j and mean rate of rotation Ω̄i j, which were defined in Equation (2.26) and (2.27),
respectively.
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Summary

There are particular well-known shortcomings in both the k−ε and k−ω turbulence models,
which are addressed in Menter [39], for instance. First of all, the k − ε model is considered
insensitive to adverse pressure gradients, resulting in separation delays. It also incorrectly
captures the rate of spreading for the round jet, which is still considered a simple flow case.
These deficiencies have been in part addressed by Pope [46], Hanjalić and Launder [21],
Bardina et al. [4]. However, when applied to a broader range of cases, the original model’s
overall performance prevails. The greatest strength of the k− ε model is its simplicity, which
is weakened by all modifications. The k−ω turbulence model performs well for small adverse
pressure gradients and can resolve the viscous sublayer without wall modeling so that it can
be directly used for low Reynolds number flows. It is, however, sensitive to the free stream
values for ω. This dependency can be reduced by including the kinematic viscosity in the
diffusion terms, as in Wilcox’s model. The model still fails for flows with significant mean
streamline curvature, flows with a strong swirl or mean rotation, and secondary flows [47].

2.4.4 Nonlinear Eddy Viscosity Models

A more general class of turbulence models can be formulated, when dropping the assumption
that the anisotropy tensor ai j is a linear function of the mean rate of strain tensor S̄i j. The
class of algebraic stress models is formed by models, which determine the Reynolds stresses
from the local quantities k, ε, and the mean velocity gradient. The subclass of models that ex-
plicitly formulate the Reynolds stresses is called nonlinear eddy viscosity models. An explicit
formulation is beneficial as no additional equations have to be solved when comparing these
models with the two-equation models described above. The computational overhead for
evaluating algebraic expressions is only small. It is assumed that the normalized anisotropy
tensor is of the form

bi j = f (Ŝi j , Ω̂i j), (2.70)

where Ŝi j is the normalized mean rate of strain and Ω̂i j the normalized rate of rotation, which
are defined by

Ŝi j =
1
2

k
ε

�

∂ 〈Ui〉
∂ x j

+
∂



U j

�

∂ x i

�

, Ω̂i j =
1
2

k
ε

�

∂ 〈Ui〉
∂ x j

−
∂



U j

�

∂ x i

�

. (2.71)

The normalized anisotropy tensor is required to be non-dimensional, symmetric, and devi-
atoric. Pope [45] has shown that every second-order tensor, that can be formed from Ŝi j

and Ω̂i j and fulfills these requirements, is a linear combination of ten basis tensors T (n)i j . The

integrity basis T (n)i j can be found by applying the Cayley-Hamilton theorem and is listed in
table 2.1. The most general form of a nonlinear eddy viscosity model (NLEVM) is given by

bi j =
10
∑

n=1

G(n)(λ1, ...,λ5)T
(n)

i j (Ŝi j , Ω̂i j), (2.72)

where G(n) are the coefficients of the basis tensors. Pope suggested making these coefficients
functions of tensor invariants λk of Ŝi j and Ω̂, to ensure that they are invariant under coordi-
nate transformations. He has shown that there are only five independent invariants that can
be formed for Ŝi j and Ω̂i j, which read
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Table 2.1: Complete set of basis tensors T (n), that can be formed form Ŝ and Ω̂. Matrix notation is used for clarity.
The trace of a tensor is denoted tr(Ŝ) = Ŝii .

T (1) = Ŝ, T (6) = Ω̂
2
Ŝ+ ŜΩ̂

2 − 2
3 tr(ŜΩ̂

2
)I ,

T (2) = ŜΩ̂− Ω̂Ŝ, T (7) = Ω̂ŜΩ̂
2
+ Ω̂

2
ŜΩ̂,

T (3) = Ŝ
2 − 1

3 tr(Ŝ
2
)I , T (8) = ŜΩ̂Ŝ

2 − Ŝ
2
Ω̂Ŝ,

T (4) = Ω̂
2 − 1

3 tr(Ω̂
2
)I , T (9) = Ω̂

2
Ŝ

2
+ Ŝ

2
Ω̂

2 − 2
3 tr(Ŝ

2
Ω̂

2
)I ,

T (5) = Ω̂Ŝ
2 − Ŝ

2
Ω̂, T (10)= Ω̂Ŝ

2
Ω̂

2 − Ω̂2
Ŝ

2
Ω̂,

λ1 = tr(Ŝ
2
), λ2 = tr(Ω̂

2
), λ3 = tr(Ŝ

3
), λ4 = tr(Ω̂

2
Ŝ), λ5 = tr(Ω̂

2
Ŝ

2
). (2.73)

The ten scalar functions are complex, nonlinear functions of the five invariants. When the
NLEVM was proposed, it was impossible to find good approximations for these function by
modeling intuition. Therefore, this approach has not gained traction back then. However,
mathematics has evolved, and computational resources are more widely available. It has thus
been proposed by Ling [32] to make use of modern machine learning methods to learn these
functions G(n) from high fidelity fluid data.

Reynolds Stress Models

Nonlinear eddy viscosity models break free from the turbulent viscosity assumption and the
limitations related to it. However, they still contain model form uncertainty since the un-
closed terms in the Reynolds-stress transport equation (2.43) are approximated with alge-
braic expressions. While the assumption, that the Reynolds stresses are in local equilibrium
with the imposed mean velocity gradient is valid in some circumstances, this does not hold in
general. A more ambitious approach is to find closure models for the Reynolds stress flux Ti jk,
the production Ri j, and εi j and solve the Reynolds-stress transport equation. The production
Pi j is already in closed form. These models are referred to as Reynolds stress models and will
be briefly discussed for completeness.
The most important quantity to be modeled is the pressure-rate-of-stain tensor Ri j. It has
zero trace and thus does not contribute to the transport of turbulent kinetic energy. It in-
stead serves to redistribute energy among the Reynolds stresses. The pressure-rate-of-strain
tensor can be spilled into a rapid, slow, and harmonic contribution. Limiting states can be
identified when only one of these contributions is taken into account. In case of decaying
homogeneous anisotropic turbulence, there is no production or transport, and only the slow
pressure contribution R(s)i j remains. The anisotropy of turbulence decays when the anisotropy
of all contributions return to isotropy. Since the slow pressure is the only contribution to the
anisotropy, it is natural to relate R(s)i j and bi j. Rotta [52] has formulated his model by as-
suming a linear relation of these quantities, but nonlinear return-to-isotropy models have
been proposed as well [55]. Another limiting state is rapid distortion, where the rapid pres-
sure contribution drives the evolution of turbulence. The harmonic contribution becomes
dominant in wall-near regions.

In most cases, however, the state of turbulence incorporates all of the three limiting states.
This is taken into account by pressure-rate-of-strain models, such as the HL model [20], the
LRR-IP model [26], or the SSG model [62]. These models can be written
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Ri j

ε
=

8
∑

n=1

f (n)T (n)i j , (2.74)

where T (n)i j is a set of non-dimensional, symmetric, deviatoric tensors that can be formed

from bi j, Ŝi j, and Ω̂i j, somewhat similar to (2.72). The coefficients f (n) are constant in some
models, whereas others assume them to depend on P/ε. The turbulent convection is the
dominant factor from the three fluxes in the turbulent transport Tki j. The viscous diffusion is
in closed form, and pressure transport is either neglected completely or incorporated in the
turbulent convection by a gradient-diffusion assumption [34]. Even more elaborate models
can be formulated when taking the transport equation for the triple correlation




uiu juk

�

into
account, but most practitioners do not see a significant improvement from further complexity
[28]. Instead, a gradient-diffusion model [12] is often employed.

The dissipation is assumed to be isotopic in most models, i.e εi j =
2
3εδi j. The difference

between the equation used for Reynolds-stress transport models and the equation from the
k − ε model is that the Reynolds stresses are used in the production term, and the diffusion
term involves anisotropic diffusivity.

Six equations have to be solved for the Reynolds-stress transport models since the Reynolds-
stresses are symmetric and only contain this many independent components. In addition,
one equation must be solved for the dissipation, amounting to a total of seven equations.
The turbulent kinetic energy can be obtained by computing the trace of the Reynolds-stress
equation. Reynolds-stress models introduce an inconvenient numerical coupling between the
mean flow and turbulence equations compared to eddy viscosity models. Overall, Pope [47]
estimates the computational costs of Reynolds-stress models to be twice as high as the costs
of a linear eddy viscosity model, which can render those models unfeasible for large scale
industrial applications.

2.4.5 The Characterization of Reynolds Stress Anisotropy

The anisotropy tensor b is of central interest for RANS modeling, as it does not only appear
in the momentum equation but also impacts the transport equations for k and ε or ω, de-
pending on the model choice. Since it is difficult to assess a model’s behavior by taking all six
components of b into account, an easier representation of the state of turbulence is desired.
In fact, the anisotropy tensor only contains two independent invariants, as it has zero trace
(bii = 0). This reduction to two variables allows simple graphical representations, which
facilitate insights into the nature of turbulence for a given flow case and how well different
models can replicate the turbulence.

The anisotropy tensor is symmetric (bi j = b ji), since the whole tensor was scaled by
the turbulent kinetic energy before 1/3 was subtracted from the diagonal components (see
(2.39)). The eigenvalues of a symmetric tensor are real, and the eigenvectors associated
with each eigenvalue can be chosen to be mutually orthogonal. By choosing an orthonormal
set of eigenvectors, the anisotropy tensor can be associated with a shape, defined by the
eigenvalues, and an orientation, defined by the eigenvectors. All representations are based
on invariants of b, which are ultimately dependent on the eigenvalues, so these are presented
first.

The eigenvalue decomposition of the anisotropy tensor reads

bi j = Vi jΛkl Vjl , (2.75)
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where V = [v1, v2, v3] are the eigenvectors and Λ = diag[λ1,λ2,λ3] is the diagonal matrix
of eigenvalues. The coordinate system spanned by the eigenvectors is called the principal
component system. From here on, a circumflex c(·) denotes a tensor in its principal component
system, meaning b̂i j = Λi j. Further, the eigenvalues are assumed to be in descending order
in this work, giving

λ1 =max
α
(b̂αα), λ2 =max

β 6=α
(b̂ββ), ∀α,β ∈ {1, 2,3}. (2.76)

The anisotropy tensor has zero trace. Consequently, the smallest eigenvalue λ3 can be ob-
tained from the larger ones, yielding

λ3 = −λ1 −λ2 = max
γ6=α,β

(b̂γγ), (2.77)

λ1 ≥ λ2 ≥ λ3. (2.78)

Every distinct state of turbulence corresponds to a unique anisotropy tensor in its principal
component system b̂i j, when sticking to notation (2.76) with non-increasing order of the
diagonal elements.

The first representation of the state of turbulence was introduced by Lumley and Newman
[35], and is based on the invariants II = bi j b ji and III = bi j b jl bl i. A functional relationship of
the invariants II, III and the eigenvalues can be obtained by

II = 2(λ2 +λ1λ2+
2
2), III = −3λ1λ2(λ1 +λ2). (2.79)

The constraints on b (2.41) can be used to define a triangle in the II-III-plane, which contains
all realizable states of turbulence. The vertices form limiting states, which only occur in
extreme circumstances. All points within this triangle correspond to a state of turbulence that
adheres to the physical requirements for the Reynolds stresses (2.37, 2.38). The constraints
on the invariants read

II ≥
3
2

�

4
3
|III|

�2/3

, II ≤
2
9
+ 2III. (2.80)

In a second approach, Lumley [34] suggested using the eigenvalues as an invariant map. The
boundaries in terms of the eigenvalues are given by

λ1 ≥ (3|λ2| −λ2)/2, λ1 ≤
1
3
−λ2. (2.81)

Choi and Lumley [10] even presented a third map, which emphasizes their findings, that
homogeneous anisotropic turbulence does not linearly return to isotropy but has an even
greater desire to turn to an axisymmetric state before returning to isotropy. Their proposed
invariants are η and ξ, which are defined by

η2 = −II/2, ξ3 = III/2. (2.82)

This third representation has found the most widespread usage out of all of Lumley’s propos-
als and has proven useful for developing turbulence models that obey realizability conditions.
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A number of scalar invariant measures have now been introduced with (II, III), (λ1,λ2),
and (η,ξ), which are convenient to extract different attributes from the anisotropy tensor.
They all convey information on b in terms of limiting states and allow the definition of
a region of realizable turbulence states. However, all of the resulting triangles are either
heavily skewed or feature curved boundaries due to the nonlinearities of the invariants in
the eigenvalues. It is also difficult to project the invariant maps back on the physical domain,
which motivated the further search for improved invariant maps.

The deficiencies of earlier maps were addressed in [3] by introducing a barycentric map
for defining invariant measures and allow an elegant visualization. Limiting states are defined
by the componentiality of the Reynolds stresses, which reflect the number of nonzero velocity
fluctuations ui and match the number of zero eigenvalues of
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. The state of turbulence
is expressed as a convex combination of these limiting states, i.e.

b̂ = C1c b̂1c + C2c b̂2c + C3c b̂3c , (2.83)

C1c ≥ 0, C2c ≥ 0, C2c ≥ 0, (2.84)

where b̂1c, b̂2c, and b̂3c are the limiting states and C1c, C1c, and C1c are the barycentric
coordinates. The limiting states are presented in detail in the following.

One-component limiting state (1c): The anisotropy tensor contains one dominant value,
where λ1 > λ2 = λ3. The Reynolds stresses only have one nonzero eigenvalue. Note that an
eigenvalue of −1/3 for b̂ translates to a zero-eigenvalue of
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. All turbulent kinetic energy
is transferred along a line. The anisotropy tensor is can be reduced to one basis tensor:

b̂ = b̂1c =





2/3 0 0
0 −1/3 0
0 0 −1/3



 (2.85)

Two-component limiting state (2c): In the two-component limiting state, which is also
referred to as axisymmetric limiting state, the two largest eigenvalues are equal, i.e.
λ1 = λ2 > λ3. One eigenvalue of
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is zero, and the turbulent kinetic energy is restricted
to a plane. The basis tensor for this turbulence state is given by

b̂ = b̂2c =





1/6 0 0
0 1/6 0
0 0 −1/3



 (2.86)

Three-component limiting state: In this case, all eigenvalues of b are equal and zero, i.e.
λ1 = λ2 = λ3 = 0. The Reynolds stress tensor is of full rank and all eigenvalues are nonzero.
The turbulence is isotropic and restricted to a sphere. The basis tensor of this state is trivial,
but given for completeness:

b̂ = b̂3c =





0 0 0
0 0 0
0 0 0



 (2.87)

It is clear from Equation (2.83), that the barycentric coordinates are a measure for how close
b̂ is to the limiting states. Since the basis tensors are not linearly independent, the coefficients
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can only be determined up to a constant. This normalization constant is chosen in a manner
such that

C1c + C2c + C3c = 1, (2.88)

and that all coefficients {C1c , C2c , C3c} lie in the range [0,1]. As stated previously, all metrics
can be traced back to the eigenvalues, which yields

C1c = λ1 −λ2, (2.89)

C2c = 2(λ2 −λ3), (2.90)

C3c = 3λ3 + 1. (2.91)

The metrics can now be interpreted as coordinates of a barycentric map, in analogy to [70].
Similar to the other maps, the three limiting states form the vertices of a triangle. Each
coefficient takes the value 1 in its corresponding vertex, and takes the value 0 on the opposite
edge, meaning this limiting state makes no contribution to the underlying turbulence state.
When visualizing the state of turbulence, the edges of the triangle can be assigned to an
arbitrary points in Euclidean space. It is however common to set them in a way that they
form an equilateral triangle, e.g. x 1c = (1,0), x 2c = (0, 0), and x 1c = (1/2,

p
3/2). To plot a

point, the barycentric coordinates can be converted to euclidean coordinates by computing
the convex combination of the limiting states:

xb = C1c x1c + C2c x2c + C3c x3c , (2.92)

yb = C1c y1c + C2c y2c + C3c y3c , (2.93)

where xb and yb are the euclidean coordinates of a point. The general layout of such a
triangle is displayed in Subfigure 2.2a. The barycentric map has two crucial advantages over
the previously proposed maps. First, the map’s vertices can be set arbitrarily, allowing simple
choices such as a unilateral triangle. Second, the vertices can be joined by lines (see [3] for
the proof). Third, since every point yields three unique coefficients in the range [0, 1], a color
map can be created from the barycentric coordinates [17] that allows for a very compact way
of displaying a state of turbulence. Every stress state is represented by a unique color, that
can be projected on the physical domain of a flow scenario. The anisotropy tensor of different
turbulence models can be compared efficiently and regions of large discrepancies are easy to
detect.

Various color schemes are possible, but usually, an RGB map is best to distinguish different
states. An RGB triplet consists of three scalar values, indicating the intensity of each color.
A specific color is represented by a triplet, such that [1, 0,0]T is red, [0,1, 0]T is green, and
[0,0, 1]T is blue. All colors can be written as a convex combination of these. The barycentric
coordinates and RGB triplets share the interval [0,1], with the difference that the sum of the
barycentric coordinates must equal one. The most basic color-map is created by setting the
barycentric triangle’s vertices to the aforementioned RGB triplets. The color of a point is then
given by





R
G
B



= C1c





1
0
0



+ C2c





0
1
0



+ C3c





0
0
1



 (2.94)
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While this choice ensures clear visibility of the limiting states, as the vertices appear bright,
it is difficult to determine the state of turbulence towards the center or the edges. Follow-
ing [23] and [64], the color map can be brightened overall by dividing each triplet by its
maximum value. This gives





R
G
B



=
1

max Cic



C1c





1
0
0



+ C2c





0
1
0



+ C3c





0
0
1







 for i ∈ {1,2, 3}. (2.95)
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(b) RGB scaled

Figure 2.1: Barycentric map componentiality contours using (a) the RGB mapping defined by (2.94), (b) scaled
RGB mapping defined by (2.95).

The two different RGB maps are displayed in Figure 2.1. The scaled RGB map is used in this
work, as it is brighter overall while still having characteristic edges.

Limitations of LEVM

LEVM are based on the turbulent-viscosity assumption, and the anisotropic Reynolds stresses
a are assumed to be aligned with the mean rate of strain S̄. This assumption limits the pos-
sible states of turbulence to a small subset of all realizable states marked by the barycentric
triangle. This subset is also known as plain strain line, and is displayed in Subfigure (a) of
Figure 2.1. Along with the general layout of the triangle with distinct regions, simulation re-
sults of a flow through a square duct at Re=2000 are presented in the remaining subfigures.
Since this flow is periodic in flow direction and contains two symmetry planes, a quarter of a
cross-section contains all relevant information. Subfigure (b) contains the data points from
a RANS simulation with k −ω model. As expected, all data points fall on the plain strain
line. The data points from a DNS, which was performed by [43], are displayed in Subfigure
(c) and explore different and larger regions of the triangle. Subfigures (d) and (e) show
the RGB mapping of the barycentric coordinates on the physical domain for RANS and DNS,
respectively. While the state of turbulence in the free stream region (y = 0, z = 0) seems
to be somewhat similar for both simulations as they return to isotropy (3C), the differences
become clear at the boundaries (y = 1.0 or z = 1.0). Close to the walls, the dominant state
is the two-component limit, which defines the triangle’s bottom boundary. This behavior can
not be replicated by the LEVM, which remains close to isotropic (3C) turbulence throughout
the cross-section. The fundamentally different nature of turbulence becomes evident after
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comparing the barycentric coordinates of RANS and DNS simulations. The RGB mapping
on the physical domain gives a nice visualization of the discrepancies and gives additional
information on where the discrepancies are large.
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Figure 2.2: Barycentric map based on scalar metrics, which are functions of the eigenvalues. Characteristic
regions are displayed in (a). Simulation results for Square Duct with Re= 2000 from RANS simulation with k−ω
turbulence model in (b), DNS from [43] in (c). RGB plots over physical domain corresponding to RANS in (d), and
DNS in (e).



Chapter 3

Elements of Machine Learning for Fluid Mechanics

Traditionally, fluid mechanics has worked with vast quantities of experimental data, field
measurements, and large-scale numerical simulations. Indeed, in the past few decades,
thanks to high-performance computer architectures and developments in measurement ca-
pabilities, big data has become a reality in fluid mechanics science. The available data have
been used in turbulence modeling for a long time, for example in the development, param-
eter calibration, and validation of LEVM models (see (2.4.3)). However, the evaluation was
mostly based on the intuition of the engineer and resulted in the formulation of heuristic
models.

The approach for gaining insights from large amounts of data in fluid mechanics has sig-
nificantly changed over the past two decades. This trend is driven by a growth of data volume
across various scientific disciplines and accessibility of computational resources and storage
capacities, which paved the way for the development of sophisticated algorithms. These algo-
rithms are called machine learning (ML) algorithms and are available to researchers through
a wealth of open-source tools. Many of the ML algorithms were developed for computer
vision, natural language processing, and data classification but can be employed for fluid
mechanics as well in many circumstances. ML algorithms have been successfully applied to
fluids mechanics for challenges such as reduced-order modeling, shape optimization, control,
and turbulence modeling.

ML provides a wide variety of algorithms, which can be categorized into supervised, unsu-
pervised, and semisupervised, depending on the problem at hands and the type of information
available. Supervised learning describes the process of learning from previously labelled
data. Depending on the type of labels, the models are referred to as classifier for binary labels
and regressor for non-binary labels. Unsupervised learning describes the extraction of infor-
mation from unlabelled data, such as clustering or dimensionality reduction. Semisupervised
algorithms learn either from partially labelled data or from interactions of the model with
its environment. In the latter approach, the model learns a policy to maximize long-term re-
wards by incorporating feedback from the system’s interactions. A comprehensive overview
of the application of different ML methods to fluid mechanics can be found in [8].

3.1 Neural Networks

This work focuses on supervised learning algorithms, as they have proven useful in augment-
ing turbulence models over the past few years [15]. A regression model is trained to learn
a functional relationship Fθ from an input space to an output space, parameterized by θ .
The output set consists of the labels Y = {y1, ..., y D}, e.g., high-fidelity fluid data from DNS.
Note that in this section, the sum convention is not used to be consistent with the notation of
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reference books, such as [6, 19]. The inputs X = {x 1, ..., x D} are an arbitrary set of features,
in this case, data from a low fidelity RANS simulation. D denotes the number of samples in
the data set. The simplest model is the linear regression, given by

ŷ(x ,θ ) = b+w1 x1 + ...+wN xN , (3.1)

where x = (x1, ..., xN )T are the input variables, w = (w1, ..., xN )T are the weights, b is the bias,
and ŷ is the prediction, or output. The weights and biases are often combined to a parameter
vector θ = (w , b) with length N + 1. Even though this model is linear in the inputs x , the
name stems from the linearity in the parameters θ . A more general model can be formulated,
when considering a linear combination of nonlinear functions

ŷ(x ,θ ) = b+
N
∑

j=1

w jφ j(x ). (3.2)

The class of generalized linear models consists of linear models that are wrapped in an acti-
vation function f (·), so that

ŷ(x ,θ ) = f

 

N
∑

j=0

w jφ j(x ) + b

!

. (3.3)

The choice of f (·) determines the behavior of the model. If f (·) is chosen as the step function,
Rosenblatt’s perceptron [51], which corresponds to a two-class model, is obtained. The gen-
eralized linear model resorts to the linear model when setting a linear activation function.
The purpose of the perceptron was to mimic a single neuron of the brain. Connecting several
artificial neurons in an organized hierarchy gives an artificial neural network (ANN), or short
neural network (NN). The most basic version of a NN with an N -dimensional input vector is
the feed-forward network and starts with the definition of an input layer

a j =
N
∑

i=1

w(1)ji x i + b(1)j for j = 1, ..., M , (3.4)

where superscripts (l) mark the lth layer of the network. Parameters w ji are the weights,
b j are the biases. The quantities a j are known as activations. M denotes the number of
neurons, or nodes, in the first hidden layer. Those nodes are again transformed by a nonlinear
activation function h(·) to yield an output

z(1)j = h(a j). (3.5)

The quantities z(l)j are the outputs of single neurons. The concept of an artificial neuron is
displayed in Figure 3.1.
The neurons are also known as hidden units and can be used as inputs for another layer of
neurons. The general structure is thus given by

z(l+1)
j = h

� N
∑

i

w(l)ji z(l)i + b(l)j

�

. (3.6)
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Figure 3.1: Scheme of an artificial neuron. All inputs features x i are added in a weighted sum. An activation
function like the hyperbolic tangent is applied to this sum, and results in an output value which can be one of the
inputs of a following neuron.

Outputs are obtained by setting ŷk = z(L)k . An NN with L hidden layers is given by

Fθ (x ) = ŷ = h
�

... h
�

h
�

x w (1) + b(1)
�

w (2) + b(2)
�

... w (L+1) + b(L+1)
�

. (3.7)

The general structure of a neural network can be seen in Figure 3.2. Altogether, the neural
network is simply a nonlinear function from a set of input variables x to a set of output vari-
ables y , determined by a set of adjustable parameters θ . Therefore, these models are seen as
universal approximators of arbitrary functions. It has been shown that even a simpler neu-
ral network like the two-layer model outlined in Figure 3.2 can approximate any continuous
function on a compact input domain with up to arbitrary accuracy when enough hidden units
are provided [11].

xN

x1

1
1

yK

y1

Hidden
layer

Input
layer

Output
layer

z(1)Mw(1)MN

b(1)1

b(2)1

Inputs Outputs

Figure 3.2: Network diagram of a fully connected two-layer network with one hidden layer. The input, hidden, and
output variables are represented by nodes. The link from the ith to the jth node represents the weight w(1)ji . The

variables b(1) and b(2) are the biases. The arrows indicate the forward propagation of information. The network is
fully connected, as each node of a given layer is connected to each node of the subsequent layer.

Besides increasing the number of nodes per layer, one could also increase the number of
hidden layers to enhance the model complexity. The latter approach has been proven to be
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favorable in terms total number of nodes required for a given target accuracy [44]. Networks
with a high number of hidden layers are also known as deep neural networks (DNN) and have
gained significant momentum over the past few years (see [30] for an overview).

However, a downside of the excellent approximation properties is the difficulty of finding
suitable hyperparameters, such as the number of layers, number of nodes per layer, and
activation functions for a given task, followed by a complex training process compared to
other ML methods.

3.2 Gradient-Based Learning

Regardless of the application, an objective function, which quantifies the mismatch between
predictions ŷ(x i ,θ ) and labelled data y i is required. The objective function is often called
loss function or error function in context of deep learning. The general optimization problem
reads

E(θ ) =
1
D

D
∑

i=1

L
�

ŷ(x i ,θ ), y i

�

, (3.8)

θ ∗ = argminθ E(θ ), (3.9)

with the loss function E and the sample loss L. The superscript (·)∗ denotes the optimal set of
parameters. In a probabilistic setting, the optimization problem can be seen as minimizing the
negative log likelihood of seeing ŷ i given x i and θ , i.e. L( ŷ(x i ,θ ), y i) = −ln p( ŷ i|xi ,θ ). As-
suming a Gaussian likelihood, this is equivalent to minimizing the mean-square-error (MSE)
[6], which is given by

E(θ ) =
1
D

D
∑

i=1

‖ ŷ(x i ,θ )− y i‖
2 , (3.10)

L( ŷ(x i ,θ ), y i) = ‖ ŷ(x i ,θ )− y i‖
2 , (3.11)

alongside its corresponding sample loss.
Other choices for the loss function are possible and should reflect prior knowledge of the

data. Usually, the choice is motivated by the computational costs for a given problem. It is im-
portant to note that the NN’s nonlinearity leads to a nonconvex optimization problem, which
must be solved iteratively using gradient-based optimization algorithms. The MSE function
is an especially convenient choice for the loss function, as it produces linear gradients with
respect to ( ŷ(x i ,θ )− y i). The computation of the gradient per sample loss with respect to the
weights ∇θL is more complicated but can be done efficiently by using the back-propagation
algorithm [54]. The cost function often consists of a sum of the sample loss over all data
points. The gradient can then be computed as the sum over all sample loss gradients, which
reads

∇θ E(θ ) =
1
D

D
∑

i=1

∇θL( ŷ(x i ,θ ), y i). (3.12)

A learning rate ε is defined to control the step size of the optimization algorithm. The pa-
rameters θ are updated according to
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θ ← θ − ε∇θ E(θ ). (3.13)

In general, large training sets are required to achieve good generalization for an NN model.
However, larger training sets increase the computational cost required per optimization step.
The gradient computation then scales with O(D), as one has to sum over all sample loss
gradients. The cost of one single gradient computation can become prohibitively expensive
for training sets with large numbers of samples.

Therefore, most deep learning applications make use of the stochastic gradient descent
(SGD) algorithm, which is an extension of the standard gradient descent algorithm. Instead
of using all training samples to compute the exact gradient in every step of the optimization,
the data set is decomposed into smaller subsets to compute an estimate of the gradient. These
subsets are called minibatches B = {x 1, ..., x D′}, where samples x i are drawn uniformly from
the training set. The minibatch size D′ is problem-specific but typically ranges from a few to
a few hundred samples. More importantly, D′ remains unchanged when the training set size
is increased. This way, the number of computations per optimization step is constant. The
estimate of the gradient is straightforward and reads

∇θ E(θ ) =
1
D′

D′
∑

i=1

∇θL( ŷ(x i ,θ ), y i). (3.14)

The data set is partitioned into non-overlapping minibatches. A different minibatch is used
for the gradient computation until all samples in the data set were used once. An epoch
is completed when the whole data set has been presented to the NN. The model is trained
until a convergence criterion is met. A common practice is to stop the optimization when the
validation loss starts to increase. At this point, further optimization is expected to result in
overfitting.

The optimization algorithm is not guaranteed to converge to the global minimum but
can instead arrive at a local minimum or a saddle point of the optimization surface. In
practice, minibatch stochastic methods rarely get stuck in a local minimum, and if so, they
tend to find sufficiently low values of the cost function at much lower computational costs.
Many versions of SGD have been proposed over the last decade. Arguably the most popular
variant is the Adaptive Moment Estimation (Adam) algorithm introduced by Kingma & Ba
[24]. It uses an exponentially decaying average of the first and second statistical moment
(mean and uncentered variance) to adapt each parameter’s learning rate. The algorithm is
considered robust with regard to the choice of hyperparameters [19], efficient, and suitable
for a wide range of nonconvex optimization problems. It is often recommended for NNs [53]
and therefore will be used in this work exclusively.

3.3 Activation Functions

The second large design choice which impacts the model’s performance and the training pro-
cess is the neurons’ activation functions. The simplest choice is a linear activation function,
but it is almost exclusively used for output layers. A neural network with only linear acti-
vation functions can ultimately be transformed into a linear single-layer network, unable to
approximate nonlinear functions.

In the early stages, the sigmoid function (3.15) was used to introduce nonlinearity to the
network. It transforms very large values to 1.0 and very small values to 0.0. The function’s
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overall shape takes the form of an S with a nearly linear behavior around its midpoint. In the
’90s and ’00s, the most popular choice was the hyperbolic tangent function (3.16), as it was
found to perform better than the sigmoid functions, and the resulting models were easier
to train. The hyperbolic tangent function is essentially a sigmoid function stretched to the
interval [−1, 1], which passes through the origin. One of the first successful applications of
neural networks in fluid mechanics uses the hyperbolic tangent function [40]. The general
problem for both the sigmoid and hyperbolic tangent function is an over-saturation for very
large or very small inputs. Once saturated, the sigmoidal function takes a nearly constant
value and, its gradient vanishes and this neuron becomes challenging to train. On the other
hand, neurons with a sigmoid or hyperbolic tangent activation function are overly sensitive
to inputs close to zero [19].

Sigmoid f (a) =
1

1+ e−a
(3.15)

Hyperbolic tangent (tanh) f (a) =
ea − e−a

ea + e−a
(3.16)

ReLU f (a) =max(0, a) (3.17)

Leaky ReLU f (a) =max(0.01a, a) (3.18)

The vanishing gradient can be overcome by using the rectified linear activation function
(3.17), or ReL for short. It is linear for inputs larger than zero and zero for inputs less than
zero. Units with this nonlinearity are known as rectified linear units, or ReLU. Their adoption
is seen as one of the great breakthroughs in deep learning, and it has quickly become the
default activation function for most types of neural networks. The success of the ReLU is
based on a few key advantages over its predecessors:

• Simplicity: The implementation only requires a simple max function, in contrast to the
sigmoid and hyperbolic tangent activations, which are based on exponential functions.

• Linear behavior: For its active part, the ReLU behaves like a linear unit. Models with
nearly linear behavior are easier to optimize and generalize well. The linearity also
improves the sensitivity on the activations of the neuron. Gradients remain proportional
to the activations and will flow well unless the neuron is set to zero.

• Sparsity: The ReLU can output a true 0, which the sigmoid function can only approx-
imate. The hyperbolic tangent function could, in theory, output a zero value but tends
to continue to move around the origin.

Once the activation of a ReLU becomes negative, the activation function sets the output
value to zero and effectively renders the neuron inactive. An inactive neuron will hinder the
error from getting propagated back through this neuron, and hence the attached weights will
not be adjusted. The neuron possibly remains inactive for the whole training process. This
phenomenon, which is referred to as dying ReLU, can be limited by careful initialization of the
weights and normalization of the data. However, arguably the most popular extension is to
allow small negative values for an inactive neuron. Neurons with this activation function are
called leaky ReLU (3.18) and allow for a recovery of inactive neurons. The leaky ReLU is found
to only slightly impact the sparsity of the ReLU while offering almost identical predictive
capabilities [36]. All before mentioned activation functions are shown in Figure 3.3.
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Figure 3.3: Most commonly used activation functions in neural networks.





Chapter 4

Tensor Based Neural Network Framework for the
Anisotropy Tensor’s Prediction and Propagation

Due to the advent of modern high-performance computer architectures and increasing popu-
larity of machine learning methods, various data driven approaches to the turbulent closure
problem have been proposed. They reach from correcting the turbulent viscosity [65], to cor-
recting the eigenvalues [64], and predicting turbulent kinetic energy, the eigenvalues, and
eigenvectors of the anisotropy tensor, which directly give the Reynolds stresses [66], have
been proposed. The first two of these approaches model scalar quantities, which are inde-
pendent of the frame of reference but have been found too simple to improve predictions for
complex flows, as the Reynolds stresses orientation remains unchanged. The resulting models
still adhere to the shortcomings of their corresponding baseline LEVM. The third approach,
where the Reynolds stresses are directly predicted, has given more promising results. How-
ever, the eigenvectors’ discrepancy is based on a reference coordinate system and renders this
approach unsuitable for predictions on unseen flow cases.

A modeling attempt that yields predictions of the eigenvalues and eigenvectors indepen-
dent of the frame of reference is the tensor basis neural network (TBNN) proposed by Ling
et al. [32]. The approach is based on Pope’s [45] work on NLEVMs, where the anisotropy
tensor is assumed to be a linear combination of ten basis tensors (see Equation (2.72) and
Table 2.1). A neural network is trained to learn a mapping from local flow features to the
coefficients of the linear combination. This work presents a framework that amalgamates
parametrization of the anisotropy tensor using the TBNN, coloured barycentric map for in-
vestigation of anisotropic Reynolds stress tensor and enforcing anisotropy tensor realizability
constraints in the training process.

This chapter begins with a description of the TBNN in Section 4.1. Section 4.2 discusses
suitable input features for the machine learning method. Strategies to ensure smoothness
and turbulent realizability of the predictions are presented in Section 4.3. Section 4.4 talks
about imposing the realizability constraints during training. Even though the neural network
is trained to yield an anisotropy tensor as close to the ground truth as possible, the quantities
of interest in computational fluid dynamics are usually the mean velocity and mean pressure.
These quantities can be obtained by propagating the predicted anisotropy tensor through a
fluid solver. The approaches to incorporate the predictions into the Reynolds equations are
described in Section 4.5. Finally, Section 4.6 summarizes the workflow of the framework.

4.1 Tensor Basis Neural Network

In general, there are two approaches for applying machine learning to a specific problem.
The first one is the generic approach, where some machine learning method is selected in
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advance. The data set is split into training and validation sets. The latter one is used to find
suitable hyperparameters. The model is then optimized with the training set. The second
approach is to incorporate problem knowledge at least at some stage of a model’s design pro-
cess. In engineering, this approach is often referred to as physics informed machine learning
(PIML), emphasizing the attempt to guide the modeling process with partial knowledge of
the underlying physics, e.g. in [33, 49].

Ling et al. [32] followed the PIML approach and created a neural network that yields
predictions that automatically satisfy the physical constraints of the anisotropy tensor b. As
stated in Section 2.4.2, the anisotropy tensor is a symmetric, second-order tensor that is in-
variant under rotations of the coordinate system. Additionally, the anisotropy tensor has zero
trace. The framework for Ling’s approach has been given by Pope [45] nearly half a century
ago in the context of NLEVM (see Section 2.4.4), where the anisotropy tensor is modeled
as a linear combination of ten basis tensors T (n), which adhere to the aforementioned con-
straints. The basis tensors form an integrity basis of all tensors that can be formed from the
mean rate of strain Ŝ and mean rate of rotation Ω̂. Pope then assumed the coefficients G(n)

of the tensor basis series to be functions of five invariants λ1, ...,λ5 of local flow quantities,
specifically Ŝ and Ω̂. When Pope published his formulation, the approach did not gain much
traction as approximating these functions turned out to be a difficult task with the compu-
tational resources and mathematical tools available. Ling et al. [32] have proposed to train
a DNN to find a mapping from the scalar invariants λk to the coefficients of the tensor basis
series. The general structure of the TBNN is given in Figure 4.1. A discussion about suitable
hyperparameters is given in Section 5.2.
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G(1)
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T (10)
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.

.

.

b

Input layer Hidden layers Final hidden layer

Tensor input layer

Output layer

Figure 4.1: Scheme of the TBNN. Inputs are the invariants λ1, ...,λk. The coefficients G(n), given by the final
hidden layer, are combined with the basis tensor T (n) to give the anisotropy tensor b. The input features are
scalar invariants of flow features such as Ŝ and Ω̂ and are independent of the frame of reference. The tensor input
layer consists of second order tensors only and is rotated accordingly when the frame of reference is changed.
The predicted anisotropy tensor b hence satisfies Galilean invariance.

In an earlier paper, Ling et al. [31] have shown the impact of incorporating physical con-
straints in the ML model. Many rotations of the frame of reference are needed to ensure that
a generic feed-forward NN adheres to the invariance property of a physical quantity. The data
set size increases by three orders of magnitude for a 3D database. This enormous increase in
data set size translates to increased training time, which is the computational bottleneck for
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neural networks. Training a neural network with embedded invariance takes about 1% of the
time needed to learn the invariance from rotations of the available data. Further, the tensor
basis neural network has been reported to yield better predictive accuracy than a generic
neural network for quantities that are invariant under rotations of the coordinate system.
The TBNN was reproduced using the open-source Python machine learning library PyTorch
[42]. The code is available at https://github.com/leonrccs/data_driven_rans.git.

4.2 Input Features

Pope [47] suggests that the coefficients G(n) of an NLEVM should be functions of local flow
quantities only so that the resulting models are complete, consequently the user does not
have to make further specifications. He postulates that a suitable set of input features are the
five invariants λ1, ...,λ5 that can be extracted from Ŝ and Ω̂. In the original proposal of the
TBNN, Ling et al. [32] stuck to these five invariants. Even though good results have been
reported for the TBNN, it has proven difficult to extract enough information from these five
invariants to yield a good approximation of the ten coefficients and subsequently replicate
these results. This is especially true for flow cases with at least one direction of homogene-
ity, where invariants λ3 and λ4 vanish for the whole flow domain and only display a noisy
pattern. Proof of this statement is given in appendix A.
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Figure 4.2: Contour plot of the five invariants used by Ling et al. [32] for flow over periodic hills at Re = 5600.
See Section 5.1 for a detailed description of the flow case. Description of the invariants is given in Section 2.4.4.
Invariants λ3 and λ4 should be zero in theory, as the flow is homogeneous in z-direction, but show noisy patterns.

Figure 4.2 shows that variance in those two defective invariants is low compared to the other
invariants. No coherent pattern is visible. The noisy patterns, which occur in similar regions
for both λ3 and λ4, are assumed to stem from the continuity equation’s residuals. These
features are excluded as the data exclusively consists of flow cases with one direction of
homogeneity. Kaandorp & Dwight [23] excluded these features due to their low variance

https://github.com/leonrccs/data_driven_rans.git
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and the spurious patterns, but without the thorough investigation of this phenomenon given
in this work. In addition, invariants λ1 and λ5 show a similar spatial distribution. Because
two invariants are deficient, and two of the remaining features mimic each other, it has thus
been concluded that this set of invariants does not contain enough information for the ML
algorithm’s training process.

It is, however, possible to include more features from local flow quantities and derive more
invariants while still employing the integrity basis formed by T (n). The TBNN is expanded to
map an arbitrary set of input features λk to the labels bi j:

bi j =
10
∑

n=1

G(n)(λ1, ...,λk)T
(n)

i j (Ŝi j , Ω̂i j). (4.1)

This work in part follows the research of Wang et al. [67], where a set of invariants derived
from Ŝ, Ω̂, ∇k, and ∇p was introduced. The turbulent kinetic energy and pressure gradi-
ents are normalized with

p
k/ε and 1/(ρ ‖ 〈U〉 · ∇〈U〉 ‖), respectively, and transformed into

antisymmetric, dimensionless tensors Âk and Âp:

Âk = −I×
p

k
ε
∇k, (4.2)

Âp = −I×
1

ρ ‖ 〈U〉 · ∇〈U〉 ‖
∇p. (4.3)

As long as the input features themselves are invariant under frame rotations, predictions
based on these features will remain unchanged under rotations of the coordinate system.
Galilean invariance is lost when including features that depend on the velocity or the pres-
sure.

Just as for the five invariants used by Ling et al. [32], many of the additional features
when using the gradients of the turbulent kinetic energy and pressure have a low variance
or show noisy patterns. Only five of the additional invariants have been used in this work.
The feature set is further enriched with the nine scalar features derived by Wang et al. [66],
which are based on physical reasoning, following Kaandorp & Dwight [23]. All 17 input
features used in this work are presented in Table 4.1.

The input features can vary strongly in magnitude which can slow down the training
process. Assuming a Gaussian distribution, the features can be normalized according to

λ̂i =
λi −µi

σi
, (4.4)

with the mean µi and the standard deviation σi per feature λi. Ling et al. [32] further
proposed to limit all features to the interval [−2σ, 2σ] to make the framework less sensitive
to outliers. Geneva et al. [18] uses a sigmoid scaling for the input features. Many features are
either strictly positive or strictly negative (see Figure 4.2), which is not changed by a sigmoid
scaling. Besides, many values fall into the region, where the sigmoid function is considered
saturated. The scaled features are heavily skewed to either −1 or 1 and almost show a binary
pattern. Thus, this scaling has not been found suitable, and the normalization process of
Ling et al. [32] was used. The mean and standard deviation from the normalization of the
training set are stored for scaling the testing set to ensure the framework’s consistency.
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Table 4.1: Input features used for the TBNN, from [45] (FS1), [66] (FS2), and [68] (FS3). For FS1 and FS2, the
trace of the given tensor quantities is used as features. The features from FS3 are obtained by normalizing them
with normalization factor λ∗, according to λi = λ̂i/(|λ̂i | + |λ∗i |), except for λ11, which is already bounded and
dimensionless. Invariant λ11 makes use of the wall distance d. All other quantities have been defined previously.
‖ · ‖ is the Frobenius norm given by ‖A‖F =

p

tr(AT A). The original papers include a total of 57 invariants, but
only features that were used in this work are listed below. Features marked with † are rotationally invariant, but
not Galilean invariant, as the features themselves or their normalization factor depend on the velocity or pressure
directly, instead of their gradients.

Set Feature Raw feature λ̂ Normalization λ∗ Description

FS1 λ1 −λ3 Ŝ
2
, Ω̂

2
, Ω̂

2
Ŝ

2
n/a Invariants based on Ŝ, Ω̂

FS2 λ4 −λ8
Â

2

k, Â
2

kŜ, Â
2

kŜ
2
,

ÂkŜÂkŜ, Ω̂
2
ÂkŜ

2 n/a Invariants when including ∇k

FS3 λ9
1
2

�

‖Ω̂i j‖
2 − ‖Ŝi j‖

2�

‖Ŝi j‖
2 Ratio of excess rotation rate to

strain rate (Q criterion)
λ10 † k 1

2 〈Ui〉 〈Ui〉 Turbulence intensity

λ11 min
�p

kd
50ν , 2

�

n/a
Wall-distance based Reynolds
number

λ12 † 〈Uk〉
∂ p
∂ xk

r

∂ p
∂ x j

∂ p
∂ x j
〈Ui〉 〈Ui〉

Pressure gradient along stream-
line

λ13
k
ε

1
‖S̄i j‖

Ratio of turbulent time scale to
mean strain time scale

λ14

Ç

∂ p
∂ xi

∂ p
∂ xi

1
2

∂ 〈U2
k 〉

∂ xk

Ratio of pressure normal
stresses to shear stresses

λ15 † 〈Ui〉
∂ k
∂ xi

�

�τ jkS̄ jk

�

�

Ratio of convection to production
of turbulent kinetic energy

λ16 ‖τi j‖ k
Ratio of total to normal Reynolds
stresses

λ17 †
�

�

�〈Ui〉



U j

�

∂ 〈Ui 〉
∂ x j

�

�

�

r

〈Ul〉 〈Ul〉 〈Ui〉
∂ 〈Ui 〉
∂ x j
〈Uk〉

∂ 〈Uk〉
∂ x j

Nonorthogonality between velo-
city and its gradient

4.3 Regularization & Post-processing

The raw predictions of the TBNN encounter two issues when using the hyperparameters pro-
posed by Ling et al. [32]: First, the predicted anisotropy tensor can violate the realizability
constraints given in Section 2.4.5. Second, the predicted anisotropy tensor field can show
noisy patterns. The predicted field can exhibit jumps even though a Reynolds stress field
must be smooth. Both these issues can be addressed by a regularization of the NN’s weights
and biases. A common choice is to set a penalty on the L2-norm of the parameters θ . This
regularization strategy is commonly known as weight decay, as it pushes the parameters to-
wards the origin unless the training data supports the current value. A regularization term is
added to the loss function (3.10), resulting in

Ẽ(θ ) = E(θ ) +
α

2
‖θ‖22 , (4.5)

with regularization parameter α, that determines the influence of the regularization on the
loss function.

While training the NN with regularization can effectively reduce noise and violations of
physical constraints of the predicted tensor field, the generalization error is also affected.
For choices of α that yield smooth predictions that lie inside the barycentric triangle, the
predictive accuracy is reduced significantly, as will be shown in Section 5.2.

Another approach that yields predictions that adhere to the physical constraints on b is to
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directly enforce the constraints and push the outliers back in the triangle. First, the predicted
anisotropy tensor is checked for violations of (2.41). If one diagonal component falls below
−1/3, all diagonal entries are shifted such that the minimum entry now lies on the lower
bound of the admissible interval. Only altering one diagonal component would lead to a
tensor with a nonzero trace. After the shifting has been performed, the off-diagonals are
scaled if they violate the Cauchy-Schwarz inequality.

In a second step, the anisotropy tensor is diagonalized. It is then tested whether its
eigenvalues adhere to the constraints given by Lumley [34], which mark the boundaries
of the Lumley triangle and the barycentric triangle. The eigenvalues are shifted to these
bounds if a violation is present. The full anisotropy tensor is reconstructed with the original
eigenvectors and the shifted eigenvalues. Note that this step might lead to violations of the
previous constraints. The predictions are therefore checked interactively until none of the
constraints are violated. This approach has been very effective in ensuring that predictions
align with the underlying physics and do not impact the predictions’ accuracy.

An approach to ensure smooth predictions was given by Kaandorp & Dwight [23], where
an image filter was used to ensure spatial smoothness of the tensor field. The n-dimensional
image filter (ndimage) from the open-source Python library SciPy was initially designed to
filter multidimensional image data. The value of a pixel is given by the convolution of the
field with a Gaussian kernel. The kernel is specified by its standard deviation σ, which
determines how many neighboring pixels are used for a convolution at a given point. This
filter can be applied to data on nonuniform grids if the grid is structured and ordered. The
kernel is not based on distance but on the connectivity of the mesh. This approach is cheap
in computational costs as no spatial covariance matrix must be computed. Even though the
smoothing operation based on connectivity yields good results for this work, is an ad-hoc
choice and should be thoroughly investigated in the future and be compared to filtering
options based on radial basis function kernels. The effects of the image filter are presented
in Section 5.2, alongside the effects of regularization.

4.4 Enforcing Realizability Constraints in Training

Instead of enforcing the realizability constraints during post-processing, it is also possible to
penalize their violation during the NN training. This way, the NN has a stronger incentive
to only yield predictions that adhere to the realizability requirements. The inequalities given
in Section 2.4.5 can be transformed into contributions to the loss function via the penalty
method. The additional term reflects prior knowledge about the problem structure and es-
sentially acts as a regularizer. In plain words, if training samples are outside of the domain of
realizable turbulence states, the penalty term will force them back in. The constraints read

c1(bi j) =min
α
(bαα)− 1/3< 0 ∀α ∈ {1,2, 3}, (4.6)

c2(bi j) = 2|b12| −
�

b11 + b22 +
2
3

�

< 0, (4.7)

c3(bi j) = 2|b13| −
�

b11 + b33 +
2
3

�

< 0, (4.8)

c4(bi j) = 2|b23| −
�

b22 + b33 +
2
3

�

< 0, (4.9)

c5(bi j) =
3|φ2| −φ2

2
−φ1 < 0, (4.10)
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c6(bi j) =
1
3
−φ2 < 0, (4.11)

where φi denotes the eigenvalues of b in order to distinguish them from the invariants. φ1
and φ2 are the largest and second-largest eigenvalues. The penalty term per sample is then
given by

Lreal(b) = β
6
∑

k=1

max(0, ck(b)), (4.12)

with penalty coefficient β that determines its impact on the loss function.
The complete loss function, considering the MSE loss, the regularization and penalty

terms, is given by

E(λi ,θ ) =
1
D

D
∑

i=0

‖b̂(λi ,θ )− bi‖
2
+
α

2
‖θ‖22 +

β

D

D
∑

i=0

6
∑

k=1

max(0, ck(b̂(λi ,θ ))), (4.13)

where λi is the collection of invariants per sample, b̂(λi ,θ ) are the predicted anisotropy
tensors, and bi are the high-fidelity responses. The number of samples in denoted D. The
concept is sketched in Figure 4.3.

1C2C

3C

(a) Predictions violate constraints

1C2C

3C

(b) Predictions are pushed back in the triangle

Figure 4.3: Scheme of the potential of enforcing the realizability constraints during training.

4.5 Propagation of the Anisotropy Tensor

All RANS simulations were performed with the open-source C++ toolbox OpenFOAM [69]. It
is a standard CFD kit that includes a broad range of solvers for incompressible, compressible,
and multi-phase flows, as well as pre- and post-processing utilities. The toolbox provides the
simpleFoam solver for incompressible, turbulent flows with constant boundary conditions.
The solver is based on the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) al-
gorithm [9], and follows a segregated strategy. The flow variables are solved sequentially, the
nonlinearity in the convective term is resolved by using the velocity from the previous itera-
tion for the computation of the fluxes. The finite volume method is used for the spatial dis-
cretization. OpenFOAM was chosen for the underlying work as the code is open-source and
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could be accessed for the modifications necessary for a forward propagation of the Reynolds
stresses.

The forward propagation is needed to arrive at the primary quantities of interest, the
mean velocity, and mean pressure. Incorporating the predictions in the fluid solver can lead
to instabilities. Wu et al. [75] have shown that the Reynolds equations with explicit Reynolds
stress terms from data-driven closure models can be ill-conditioned. Geneva & Zabaras [18]
proposed to use a blending function for the Reynolds stresses in near-wall regions. In free-
flow regions, the predicted Reynolds stresses are used. Close to the wall, the fluid solver
falls back to the Reynolds stresses from a LEVM model to satisfy boundary constraints and
use wall modeling. This approach was not pursued as it seems to be connected to severe
stability issues. Besides, it does not use improved predictions in wall-regions, where the
discrepancy in the Reynolds stresses is assumed to be large. Instead, this work follows the
approach from Kaandorp & Dwight [23], who proposed a continuation solver that under-
relaxes the predicted anisotropy tensor bNN against the anisotropy tensor of the baseline
LEVM bB. Additionally, modified transport equations, which take the predicted anisotropy
bNN into account, are solved for k and ω.

Recall from Equation (2.29), that the momentum equation for a fluid with constant den-
sity and viscosity can be written in compact form when not considering body forces:

D̄ 〈U〉
D̄t

=∇ ·
�

2νS̄−τ−
〈p〉
ρ

I
�

, (4.14)

where vector and matrix notation is used for the sake of clarity. The Reynolds stresses τ must
be defined by a closure model. For LEVM and NN prediction, the Reynolds stresses are given
by

τB =
2
3

kI+ 2kbB, τNN =
2
3

kI+ 2kbNN , (4.15)

where bB = −
1
ω S̄ was used. Instead of taking the raw NN prediction, a blending factor γ is

introduced to blend both tensors. The Reynolds stresses then read

τNN '
2
3

kI+ 2k
�

(1− γ)bB + γbNN

�

, (4.16)

and are inserted into Equation (4.14) to yield the modified momentum equation.
The blending factor γ is a function of pseudo time steps. It increases linearly during the

simulation until the target value γmax is reached. The blending factor at iteration n is given
by

γn = γmax min
§

1,
n

nmax

ª

, (4.17)

where nmax denotes the iteration count for which γ= γmax. After that, γ is held constant at its
maximum value, and further iterations are performed until the solver converges. Similar to
the pseudo-transient continuation method OpenFOAM uses to solve the Reynolds equations,
this gradual blending of bNN and bB can also be seen as a continuation method. A low value
of γmeans the eddy viscosity assumption is dominant, resulting in a more stable solution. The
higher the maximum blending factor, the more prone to instabilities the simulation becomes.
A blending factor of γ = 0.8 was achieved for all forward propagations of the predicted
anisotropy tensor and the anisotropy tensor from a high-fidelity simulation.
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The Reynolds stresses also appear in the production term (2.61) of the transport equations
for k and ω (2.65, 2.66). The modified production reads

P = −τNN :∇〈U〉 , (4.18)

where the blended Reynolds stresses τNN from Equation (4.16) are used.
The implementation was carried out by creating a custom turbulence model class in Open-

FOAM. The turbulence model is equipped with a modified version of the divDevRhoReff
member function of the eddyViscosity base class, which is called by simpleFoam to pro-
vide the Reynolds stresses. The solver is available on github.com/leonrccs/dd-simpleFoam.

4.6 Workflow of the Framework

The workflow is similar to other ML applications to fluid mechanics [32, 57, 76] and consists
of two key phases. In the training phase, the ML method of choice, here the TBNN, learns
regression functions from the RANS inputs to the high-fidelity responses. In the testing phase,
these regression functions are used to predict the responses for a set of inputs of an unseen
flow case.

The training data set consists of fluid flows that exhibit flow characteristics of interest,
such as adverse pressure gradients, flow separation, and secondary flows. For all flows in the
training data set, a baseline RANS simulation (e.g., with k−ω or k− ε model) is performed,
local flow features are extracted to serve as inputs λi for the TBNN. A detailed description of
the inputs is given in Section 4.2. The responses are the anisotropy tensors b of corresponding
high-fidelity fluid simulations, either from DNS or highly-resolved LES. These high-fidelity
simulations are expensive, so this work makes use of preexisting data only.

After the model is trained, it yields predictions of the anisotropy tensor for an unseen
flow case. The testing phase also starts with a baseline RANS simulation. Input features are
extracted from the mean fields. These inputs are passed through the previously trained model
to predict the anisotropy tensor for each RANS mesh cell. The predicted anisotropy tensor
field bM L ideally yields an anisotropy tensor closer to the ground truth than the anisotropy
tensor of a LEVM.

Even though the Reynolds stresses anisotropy tensor is assumed to be one of the primary
sources of uncertainty, it is not useful to only give a parameterized correction of this quantity.
In most engineering applications, the principal quantities of interest are the mean fields 〈U〉,
p and quantities related to those. Thus the predicted anisotropy tensor is propagated into
the RANS equations to obtain the mean fields as per Section 4.5. The updated fields are
investigated for potential improvements over the field produced by the LEVM.

This work’s approach must be seen as a correction to existing LEVM rather than a stand-
alone turbulence model. The TBNN is evaluated with mean flow quantities of a converged
baseline RANS simulation. The prediction is queried once and propagated into the flow field,
and the Reynolds equations are solved yet again. A real turbulence model could be created
when the ML method is updated after each RANS solver’s iteration. The ML model would
then be used as a surrogate for the Reynolds stress transport equations, and no baseline
RANS is needed. In that case, the NN must be trained to learn a mapping from high-fidelity
inputs to high-fidelity responses. It is, however, unclear whether such an approach leads to
a converged solution, considering the stability issues that have been reported already for the
corrective approach [23, 66, 67]. The iterative approach has been discussed in related works,
but no successful implementation is known to the author. This approach thus remains out of
scope for this work.

https://github.com/leonrccs/dd-simpleFoam.git




Chapter 5

Numerical Results

The present chapter starts with a description all flow cases considered in this work. To
obtain baseline RANS simulations, mesh convergence studies were performed for all flow
geometries. In Section 5.2, results from preliminary investigations of TBNN parameters are
presented together with the data sets used for training, validation, and testing. Next, the pre-
diction performance of the TBNN on the anisotropy tensor is assessed in Section 5.3. Finally,
the results from propagating the predicted anisotropy tensor into the Reynolds equations are
presented in Section 5.4.

5.1 Flow Cases

A total of four flow geometries were used in this work, including flow over periodic hills (PH),
converging-diverging channel flow (CDC), and curved backward-facing step (CBFS). These
three scenarios exhibit adverse pressure gradients over curved surfaces, leading to flow sep-
aration and subsequent reattachment of the flow. The data set was also extended to include
the square duct (SD) flow case. This scenario clearly illustrates the limitations of LEVMs and
is well suited for investigating the forward propagation of the predicted anisotropy tensor.
This section gives a brief description of all flow cases and presents mesh convergence studies
for the RANS simulations. The general OpenFOAM case setup and meshing of all four flow
scenarios were based on Kaandorp et al. [23].

Periodic Hills

The flow over periodic hills was initially proposed by Mellen et al. [38] and was designed as
a benchmark case to be considered for the development and validation of turbulence models.
It consists of periodically aligned hills in the streamwise direction and is homogeneous in
the spanwise direction. The flow case is considered challenging for RANS modeling, as it
exhibits flow features such as massive separation on the leeward side of the hill, followed by
reattachment of the flow between the hills and non-parallel shear layers. Breuer et al. [7]
performed a detailed numerical and experimental analysis of the flow scenario. DNS data is
available for the flow geometry for Re= {700,1400, 2800,5600} as well as data from a highly
resolved LES for Re= 10595. The Reynolds number is based on the hill height H and the bulk
velocity on the hillcrest Ūx =

1
2.035H

∫ 3.035H
H Uxdy. The periodicity in streamwise direction

was realized by enforcing periodic boundary conditions on the flow domain’s inlet and outlet
patch. Constant mass flux of Ūx = 1 was ensured by imposing a uniform momentum source
on all internal field cells. At the top and bottom boundaries, no-slip boundary conditions
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were enforced. Homogeneity in spanwise direction was achieved in OpenFOAM by imposing
empty boundary conditions on both x-y planes, which effectively reduced the flow domain
to the two-dimensional case. The case structure of the other flow cases was similar to the
current case unless declared otherwise.
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Figure 5.1: Visualization of stress types of RANS k−ω (a) and LES (b) for flow over periodic hills at Re= 10595
with RGB colormap. LES is from Breuer et al. [7].

The RGB colormap (see 2.4.5) is displayed in Figure 5.1 for both a baseline RANS simulation
with the k−ω model and the LES data, giving insights into the kind of turbulence present in
this flow case. While RANS mostly produced homogeneous turbulence and some states closer
to the two-component limit, LES appeared to explore the whole scope of possible states. The
LEVM correctly predicted isotropic turbulence on the hillcrest and some parts of the free-
stream region but failed to capture the true state of turbulence for most of the domain. The
discrepancy was most evident at the domain’s walls, where the LEVM predicted isotropic
or nearly isotropic on the bottom and top wall, respectively. The LES showed that the cor-
rect state of turbulence on the top wall was located on the two-component limit, ranging
from one component turbulence in the center to two-component turbulence at the hillcrest.
The bottom boundary layer was dominated by two-component turbulence and showed some
one-component turbulence on the hill’s windward side. The turbulence occurring in the
free-stream region ranged from one-component to two-component turbulence, following the
barycentric triangle’s axisymmetric expansion line.
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Figure 5.2: Mesh convergence study for the flow over periodic hills at Re= 10595.

Result from the mesh convergence studies are displayed in Figure 5.2. Subfigure (a) shows
graphs of the wall shear stresses for different refinement levels. The refinement level was
determined by the number of cells in y-direction Ny . The number of cells in the x-direction
was adjusted such that the ratio Nx/Ny remained constant. The wall shear stress curves
started to overlap from Ny = 80 and became nearly indistinguishable for Ny = 150 or higher.
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In Subfigure (b), the corresponding reattachment points are shown together with their mesh
cell length in x-direction to give an estimate of accuracy. It was decided to chose Ny = 150
as refinement level, as the estimated reattachment point was within the finest mesh’s error
bounds. Further refinement brought little change. This choice led to a maximum value of
y+max = 0.42 for the first cell of the internal mesh, which means the viscous sublayer was
well-resolved.

Converging-Diverging Channel

The converging-diverging channel flow was first proposed by Marquillie et al. [37] and
is similar to the periodic hills flow in that it features a hill that leads to a strong adverse
pressure gradient. The adverse pressure gradient along the curved surface leads to flow
separation and a recirculation bubble. The flow is homogeneous in spanwise direction but is
not periodic in streamwise direction, contrary to the PH flow case. DNS on this flow geometry
were performed by Laval & Marquillie [29] for Re = 7900 and Re = 12600 and are publicly
available from TurBase. The Reynolds number is based on the maximum streamwise velocity
at the inflow Ux ,max and half the channel height H. The mean velocity 〈U〉, turbulent kinetic
energy k, and specific rate of dissipation ω needed for the Dirichlet boundary condition at
the inflow boundary were obtained from a precursor channel simulation.

Figure 5.3, where the RGB colormaps for baseline RANS and DNS are displayed, showed
similar patterns as for PH. The LEVM correctly predicted isotropic turbulence at the center of
the inflow and outflow regions. It failed to capture the various states of turbulence occurring
at the walls. Besides, the LEVM expected a large region of two-component turbulence on the
hillcrest, which did not appear in the DNS data at all.
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Figure 5.3: Visualization of stress types of RANS k−ω (a) and DNS (b) for flow in a converging-diverging channel
at Re= 12600 with RGB colormap. DNS is from Marquillie et al. [37].

The result from the mesh convergence study are presented in Figure 5.4. Again, wall shear
stress and reattachment points of various mesh refinement levels are shown. The number of
cells in streamwise direction was adjusted to match the refinement levels defined by Ny . The
curves for the wall shear stress started to overlap for Ny = 60 and above. The variance in
the reattachment point was smaller compared to the previous flow case. To ensure a mesh,
where the viscous sublayer is well resolved, refinement level Ny = 100, which corresponds to
y+max = 0.55, was chosen.

https://turbase.cineca.it/init/routes/#/logging/view_dataset/39/tabmeta
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Figure 5.4: Mesh convergence study for the flow in a converging-diverging channel at Re= 12600.

Curved Backward-facing Step

The backward-facing step has long been considered a central test case for the development
of turbulence models. A more challenging version is the curved backward-facing step. It
features a rounded step which increases the dependency of both separation and reattachment
point to the Reynolds number. The original backward-facing step has a fixed separation point
and a recirculation region that is less sensitive to the Reynolds number. Compared to PH and
CDC, the CBFS has a thinner recirculation bubble. An LES was performed by Bentaleb et al.
[5] for Re = 13700 and is publicly available from the Langley Research Center Turbulence
Modeling Resource. The Reynolds number is based on the maximum streamwise velocity at
the inflow Ux ,max and the step height H. Similar to the CDC, flow quantities from a precursor
channel simulation have been used to realize the Dirichlet boundary condition at the inflow
boundary.
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Figure 5.5: Visualization of stress types of RANS k −ω (a) and LES (b) for flow over a curved backward-facing
step at Re= 13700 with RGB colormap. LES is from Bentaleb et al. [5].

The interpretation of stress types from LEVM and LES is more difficult for this flow case
compared to the previous ones. The mesh used for the LES was only refined at the bottom
boundary where the flow separation takes place. Turbulent boundary layers were imposed
at the inflow, whereas a constant velocity was imposed on cells in the region around the
centerline. The dominant state at the center of the channel was two-component turbulence,
whereas fully resolved channel flows should show states close to the isotropic limit (see PH
and CDC, where the full channel was well resolved). Due to these irregularities, it was
decided not to use this case for training. The boundary layers themselves were reported to be
in good agreement with DNS results from channel flows. It was thus concluded to consider

https://turbmodels.larc.nasa.gov/Other_LES_Data/curvedstep.html
https://turbmodels.larc.nasa.gov/Other_LES_Data/curvedstep.html
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this case for testing only.
At the bottom wall, a similar pattern as the previous two cases with one-component tur-

bulence prior to the step and two-component turbulence on the leeward side could be iden-
tified. Further away from the wall, the turbulence state was closer to the three-component
limiting state. As for PH and CDC, the LEVM mostly predicted isotropic turbulence with
some deviations towards the two-component limit. It failed to predict the one-component
and two-component turbulence correctly before and right after the step, respectively.

Figure 5.6 shows the mesh convergence study results for the CBFS. The number of cells
was only varied in the y-direction. The number of cells in the x direction was fixed at Nx
to ensure a smooth boundary profile at the curved step. The curves of the wall shear stress
started to overlap at Ny = 120. However, refinement level Ny = 150 was chosen to ensure a
well-resolved viscous sublayer. The first cell’s maximum wall distance was y+max = 0.90.
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Figure 5.6: Mesh convergence study for the flow over a curved backward-facing step at Re= 13700.

Square Duct

The last and most simple flow scenario is the flow in a square duct. The flow is of interest
for RANS turbulence modeling, as it features Prandtl’s secondary motions of the second kind,
which a LEVM can not resolve. Pinelli et al. [43] analyzed this flow scenario for Reynolds
numbers ranging from Re = 1100 to Re = 3500, based on half the channel height H and bulk
velocity Ub. The DNS results are available publicly from the Institute for Hydromechanics,
KIT.

The flow domain and corresponding Reynolds stress types are displayed in Figure 5.7.
The square duct is homogeneous in streamwise direction and exhibits two symmetries planes,
perpendicular to the cross-sections. It is, therefore, sufficient to only display one-fourth of
a slice of the flow domain to show all possible information. The flow scenario was realized
by imposing periodic boundary conditions in streamwise direction and symmetric boundary
conditions on the left and bottom boundary. No-slip slip boundary conditions were imposed
on the top and right boundary.

The LEVM predicts isotropic turbulence close to the walls and in the center of the channel
and tended towards two-component in between. The DNS showed close to isotropic turbu-
lence in the center, but the walls were dominated by one-component turbulence.

The results from the mesh convergence study are presented in Figure 5.8. The number of
cells in the y- and z-directions was equal due to the flow domain’s quadratic shape. Subfigure
(a) shows the wall shear stress along the top boundary. The plots nearly overlapped, even

http://www.ifh.kit.edu/
http://www.ifh.kit.edu/
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Figure 5.7: Visualization of stress types of RANS k−ω (a) and DNS (b) for square duct flow at Re = 3500 with
RGB colormap. DNS is from Pinelli et al. [43].

for the coarsest refinement level. Therefore, the velocity magnitude along a vertical line
section was considered as convergence criterion, displayed in Subfigure (b). The curves were
now easier to distinguish and started to overlap for refinement level Nx = Ny = 50 and
above, which was selected for further investigations. This refinement levels corresponded to
y+max = 0.01, which is extremely low, but was necessary to ensure a converged solution.
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Figure 5.8: Mesh convergence study for flow in a square duct for Re= 3500.
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5.2 Parameter Choice and Training Process

TBNN parameters

This work closely follows the findings of Ling et al. [32], who determined the ideal archi-
tecture through a Bayesian optimization process. The optimal number of hidden layers and
nodes per layer was found to be 8 and 30, respectively. The architecture of Geneva et al.
[18] with more nodes in the first hidden layer and fewer hidden layers overall has shown
inferior results in both accuracy and smoothness of the predictions when compared to Ling’s
NN. It should be noted that Geneva et al. were training the NN in a Bayesian setting, and
their parameter choice might be beneficial for that purpose. Different values for the learn-
ing rate, ranging from 10−7 [32] to 2.5 · 10−5 [23] have been proposed. While the learning
rate 2.5 · 10−5 achieves less accuracy, a learning rate of 10−7 translates to an overly lengthy
training process. To combine the advantages of both choices, the initial learning rate was
set to 5 · 10−5 in this work, so that the optimization algorithm shows fast progress in the
early epochs. The learning rate is then reduced step by step to 10−7 to ensure that the TBNN
converges to a minimum that yields good accuracy. The Leaky ReLU was chosen as activation
function for the hidden layers to facilitate fast convergence, while the output layer was given
a linear activation to enable unbound values for the coefficients.

The Adam optimization algorithm [24] is considered an efficient, robust choice, as de-
scribed in Section 3 and therefore was used throughout this work. The data used for NN
training was split into training and validation sets. The training set was used for the gradi-
ent calculation, while the validation set was used to monitor the training process’s progress.
Adam is an implementation of stochastic gradient descent and requires the training set to
be split into minibatches, which are then used sequentially for the gradient calculation. A
minibatch size of 100 data points per minibatch was a good compromise between fast con-
vergence and accuracy. The training process was stopped once the validation error increased
to prevent over-fitting. This technique is also known as early stopping. The validation error
showed a slightly noisy behavior, as some minibatches could contain data points that were
not represented in the validation set. The moving average of the validation loss of the last
five epochs reduced the risk of preemptively stopping the training process and was a suitable
countermeasure to the SGD algorithm’s randomness.

However, even when using early stopping, the TBNN prediction could show an undesir-
able noisy pattern. From a fluid mechanics standpoint, it is clear that the Reynolds stresses
must be a smooth tensor field. As described in Section 4.3, this issue can be addressed by
regularization. Figure 5.9 shows the impact of different choices of the regularization parame-
ter α on the validation error. The predictive accuracy was measured by the root-mean-square
error (RMSE) given by

RMSE(b̂) =

√

√

√

√

1
D

D
∑

i=1

‖b̂i − bi,DNS/LES‖
2
, (5.1)

where D is the number of cells of a flow case. Only the unique components of the anisotropy
tensor were taken into account for the RMSE calculation. It can be seen that a small value
for this parameter was beneficial for the generalization error. For a choice of α = 10−8

and higher, the validation error started to increase. The results for applying the Gaussian
image filter to the structured grid, as proposed by [23] are plotted for comparison. Usually
designed to smoothen an image, which naturally comes on a structured grid, the image filter
exploits the ordered meshes obtained from OpenFOAM and smoothens the fields based on
the mesh connectivity. It can be seen that the image filter performed well in reducing the
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validation error. The parameter σ corresponds to the number of cells in each direction used
for the Gaussian filter at each data point. Even though higher values for σ could reduce
the validation loss for this flow case even further, the forward propagation of the predicted
anisotropy tensor became more prone to instabilities. A possible explanation may be a mixing
of free stream and boundary layer predictions that were not adhering to flow physics. A good
compromise between smooth fields and stability was found for the values α = 10−10 and
σ = 2.
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Figure 5.9: RMSE (see equation (5.1)) of b for different choices of the regularization parameter α. In addition,
different choices for the variance of the image filter are presented. The analysis was performed on the converging-
diverging channel flow at Re= 7900, which is not part of the training set.

The influence of penalty term described in Section 4.4 depends on the penalty coefficient β ,
and is crucial to analyze. Small to moderate choices have no impact on the final result of the
optimization, while a very large choice for this parameters introduced a strong regularization
effect. For the data set used in this work, which is described in the following section, the
penalty term contributed to the loss function in early training stages. In later training stages,
no violations of the realizability constraints were detected, and the penalty term had no
influence on the end result. The enforcement of these constraints potentially has more impact
on a more diverse data set, where the NN is likely to produce responses that lie outside the
barycentric triangle and have to be pushed in. The penalty coefficient β is not exactly a model
parameter, but an optimization parameter. The determination of this parameter involves a
meta analysis, which is beyond the scope of the current research.

The training and validation errors for the NN training with the described parameter set-
tings are displayed in Figure 5.10. Training was stopped preemptively after 580 epochs as
the validation error started to increase.

Training and Validation Sets

The cases available for determining training parameters, the training process itself, and test-
ing have been presented in Section 5.1. From the two DNS available for the converging-
diverging channel flow, the one at Re= 7900 was used for investigating the effects of reg-
ularization and filtering. The higher Reynolds number simulation at Re= 12600 was used
for training and validation, along with the DNS at Re= 2800 and LES at Re= 10595 for the
flow over periodic hills and the flow through a square duct at Re = {2000, 2400,2900,3200}.
The baseline RANS simulations were all performed with the k −ω model. An overview of
the training data set is given in Table 5.1. As indicated in the mesh convergence studies in
Section 5.1, the flow cases had different mesh requirements, resulting in a different amount
of data points per flow case. The CDC flow consisted of 14000 data points. An equal amount
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Figure 5.10: Training and validation error during NN training.

of data points were sampled randomly from the two Reynolds number simulations of PH to
match the amount of CDC data. As the SD flow only required 2500 cells for a converged
solution, a total of 10000 data points were available from these four simulations. The SD
flow was thus slightly underrepresented in the data set. The data set was split into training
and validation set at a ratio of 70/30. Therefore, the total number of data points available
for training was 26600.

Training case geometry Re Ncel ls per case

Converging-Diverging Channel 12600 14000
Periodic Hills 2800,10595 21000
Square Duct 2000,2400, 2900,3200 2500

Table 5.1: Overview of the flow scenarios used for training.

The testing set consisted of three flow geometries. Two of these geometries, SD and PH,
were part of the training and validation set, however, at different Reynolds numbers. The
periodic hills case at Re= 5600 was selected to investigate the interpolation properties of the
TBNN. The ML model has previously seen this flow geometry at different Reynolds numbers
and is expected to yield good predictions. The square duct was part of the testing set as it
is a canonical flow case that clearly shows the deficiencies of a LEVM that does not predict
any secondary motions. It is suitable to present the difficulties of propagating the Reynolds
stresses into the flow field. Finally, the extrapolation capabilities of the TBNN were tested on
the curved backward-facing step. This flow geometry was the only one that was genuinely
new to the TBNN and gave insights into the method’s generalization potential. The flow case
was mainly selected for testing, as the Reynolds stress field showed a spurious pattern in the
center region of the channel. Only the vicinity of the curved step was finely resolved and
could be used as ground truth. For each test case, the predictions of the original features set
from [32] are presented alongside the predictions for the enriched feature set. An overview
of the test case scenarios is give in Table 5.2
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Case label Test case geometry Re Feature Sets Nf eat.

SD1 Square Duct 3500 FS1 3
SD2 Square Duct 3500 FS1, FS2, FS3 17
PH1 Periodic Hills 5600 FS1 3
PH2 Periodic Hills 5600 FS1, FS2, FS3 17
CBFS1 Curved Backward-Facing Step 13700 FS1 3
CBFS2 Curved Backward-Facing Step 13700 FS1, FS2, FS3 17

Table 5.2: Overview of the flow scenarios used for testing. Feature sets are described extensively in Section 4.2.
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5.3 Prediction of the Anisotropy Tensor

Predictions of the anisotropy tensor from the TBNN are presented and compared to the
anisotropy tensors from a RANS simulation with a LEVM and high-fidelity data. For all test
cases, the following three figures are presented: all nonzero, unique components of b; stress
type characterization with the RGB colormap; and barycentric map locations along selected
sections.
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Figure 5.11: Unique components of the anisotropy tensor b from LEVM, TBNN, and DNS
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In Figure 5.11, the anisotropy tensors from the baseline k −ω RANS simulation, the TBNN
with three features, the TBNN with 17 features, and the DNS are displayed in columns one
through four. The first three rows contain the diagonal elements of b, the last three rows
contain the off diagonals. The anisotropy tensor from the LEVM only had two nonzero com-
ponents in b12 and b23, but both could be considered close to the ground truth. The TBNN
SD1 output six nonzero components but also could not accurately predict the anisotropy
tensor from the DNS. In contrast, the TBNN SD2 with the enriched features set appeared
qualitatively close to the ground truth. All components of the ML prediction showed the
same pattern as the anisotropy tensor from DNS. The most substantial deviations occurred in
components b12 and b13, where the TBNN SD2 underpredicted the magnitude and struggled
to reproduce the triangular shape that is visible in the DNS data.

The large amount of information contained in Figure 5.11 can be condensed when making
use of the RGB colormap, as displayed in Figure 5.12. The TBNN SD1 correctly predicted one-
component turbulence close to the wall but failed to predict the nearly isotropic turbulence
at the channel’s center. The TBNN SD2 was much closer to the DNS, but some discrepancy
could be seen, especially on a line from the center towards the edge.
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Figure 5.12: Visualization of stress types of LEVM k−ω (a), TBNN with FS1 (b), TBNN with FS1, FS2, FS3 (c),
and DNS (d) for square duct flow. Only unique components are displayed.
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Figure 5.13: Barycentric map of the predicted anisotropy tensor from LEVM, TBNN SD1, and TBNN SD2,
alongside DNS results. The sections run from (y, z) = (0.25, 0.0) to (y, z) = (0.25, 1.0) for (a) and
(y, z) = (0.75, 0.0) to (y, z) = (0.75, 1.0) for (b).

In Figure 5.13, barycentric map locations of selected points are displayed. Subfigure (a)
contains the data points for a vertical section at y/H = 0.25, ranging from the x-y symmetry
plane to the wall. Subfigure (a) shows the data points corresponding to a similar section at
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y/H = 0.75. The data points corresponding to the LEVM were restricted to the plain-strain
line, as expected. Both the TBNN with original and enriched feature sets (SD1 and SD2)
could break free from this limitation and showed similar paths as the DNS. The TBNN SD1
was skewed toward the one-component limiting state, whereas the TBNN SD2 followed the
DNS path. Both curves started close to isotropic turbulence for cells at the centerline and
moved towards the two-component limit when approaching the wall.

The impressions from the qualitative assessment of the predictions were supported by
quantifying the predictive accuracy with the RMSE. The TBNN with all three feature sets
(SD2) was about 70% more accurate than the LEVM. The TBNN trained on FS1 was about
50% more accurate than the LEVM. In Ling et al. [32], a RMSE of 0.14, which was higher
than the RMSE for the TBNN trained on three input features for this work, and substantially
higher than the RMSE for the TBNN trained on the extended feature set. Kaandorp & Dwight
[23] reported am RMSE of 0.0521 for their tensor basis random forest, outperforming the
TBNN SD2.

Anisotropy tensor LEVM k−ω TBNN, SD1 TBNN, SD2

RMSE 0.2175 0.0992 0.0663

Table 5.3: RMSE of b from RANS and TBNN predictions for square duct flow.

5.3.2 Periodic Hills

Figure 5.14 shows the components of the anisotropy tensor for the baseline LEVM, the pre-
dictions from the TBNN for the original and enriched feature sets, and the ground truth from
the DNS. The anisotropy tensor of this flow case contains only four unique components, as
there are no velocity covariances in the direction of homogeneity, and thus b13 = b31 = b23 =
b32 = 0. The b33 component is nonzero. There are fluctuations in the direction of homogene-
ity, but those are independent of fluctuations in the other directions. The LEVM could not
correctly predict the b33 component. Its anisotropy tensor is linearly dependent on the mean
rate of strain, which takes two-dimensional stress states only for flows with homogeneity di-
rections. Further, the b11 and b22 are not close to the DNS data. Only the b12 component was
reasonably accurate.
Both TBNNs predicted nonzero b33 components, but only the network trained on the enriched
feature set (PH2) resembled the ground truth. The anisotropy tensor from TBNN PH1 showed
some artifacts on the left-hand side of the domain. It was unclear where these stem from,
as such patterns were not present in the three input features but may be interpreted as a
sign of overfitting. The TBNN PH2 showed smoother fields and resembled the DNS solution
throughout most of the domain. However, some artifacts towards the top wall were present
in b22 and b12, but less severe than in the predictions of TBNN PH1.
Figure 5.15 shows the RGB colormaps for the anisotropy tensors mentioned above and draws
a similar picture: TBNN PH1 showed some resemblance with DNS in the free-stream re-
gion, where the states of turbulence were close to the axisymmetric expansion region, but
yielded inadequate predictions for large parts of the domain. DNS exhibited a mixture of
one-component and two-component turbulence at the top wall, but the TBNN PH1 only pre-
dicted one-component turbulence. The TBNN PH2 showed improved predictions on the top
wall. It also rightfully predicted two-component turbulence on the bottom wall but failed to
capture the actual physics on the hillcrest and the hill’s windward side.

The previous findings are further manifested by the barycentric map locations of cells
along specific sections of the flow domain, displayed in Figure 5.16. Again, the anisotropy
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Figure 5.14: Components of the anisotropy tensor b from LEVM, TBNN, and DNS for flow over periodic hills. Only
unique, nonzero components are displayed.
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Figure 5.15: Visualization of stress types of LEVM k−ω (a), TBNN with FS1 (b), TBNN with FS1, FS2, FS3 (c),
and DNS (d)

tensor of the LEVM was restricted to the plain strain line. Both TBNNs explored the triangle
domain more broadly. The TBNN PH1 was mostly located on a curve line from three- to
one-component turbulence. The DNS paths started close to the two-component limit on the
bottom wall, moved towards the isotropic state in the center region of the channel, and ended
up on the two-component limit when approaching the top wall. The TBNN PH2 ran along
those lines but could not follow the DNS path towards the two-component limiting state.
The RMSE for the different anisotropy tensors in Table 5.4 confirms the qualitative analysis
for this flow case. The RMSE for the TBNN PH1 prediction was almost 40% lower than the
RMSE for the anisotropy tensor from the LEVM. The TBNN PH2 was even more accurate with
an RMSE that was about 60% lower than the one for the LEVM’s anisotropy tensor.
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Figure 5.16: Barycentric map of the predicted anisotropy tensor from LEVM, TBNN PH1, and TBNN PH2, along-
side DNS results. The data points correspond to cells along vertical sections of the domain at the specified
x -locations. Only every other cell of each section is displayed for the sake of clarity of the figures.

Anisotropy tensor LEVM k−ω TBNN, PH1 TBNN, PH2

RMSE 0.1016 0.0628 0.0419

Table 5.4: RMSE of b from RANS and TBNN predictions for the flow over periodic hills.

5.3.3 Curved Backward-Facing Step

The third and last flow case considered for testing was the curved backward-facing step. As
for the two previous cases, the components of the anisotropy tensor are presented first. This
time, only the vicinity of the curved step is shown instead of the flow domain. The LES
data was not suitable for analyzing the anisotropy tensor due to the unresolved center region
of the channel. Similar to the periodic hills flow case, the curved backward-facing step is
homogeneous in z-direction and thus is only has four unique, nonzero components, which
are displayed in Figure 5.17. As expected, the LEVM failed to predict any variance in the b33
and only contained three distinct components. Again, the b12 showed similar characteristics
as the LES in the region right after the step. The other components did not resemble the
ground truth. The predictions from the TBNN CBFS1 were more accurate than the LEVM at
the bottom boundary, but far away from the ground truth, e.g. right before the step. Again
some artifacts, which potentially give rise to instabilities when using the anisotropy tensor as
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a source term in the RANS equations, could be spotted. Once again, the TBNN CBFS2 yielded
the best results at first glance.
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Figure 5.17: Components of the anisotropy tensor b from LEVM, TBNN, and LES for flow over curved backward-
facing step. Only unique, nonzero components are displayed.

Figure 5.18 shows the RGB mapping for the anisotropy tensors from the LEVM, the TBNN and
the LES. The TBNN CBFS1, which was trained on FS1 only, failed to predict two-component
turbulence on the slope and after the step, for x/H > 1.0. It did, however, feature turbulence
close to the one-component limiting state before the step and a mix of one-component and
isotropic turbulence in the free-stream region. The artifacts mentioned earlier were visible,
especially the yellow bulb on top of the step. Fewer artifacts were present in the predictions of
TBNN CBFS1, but a large region of isotropic turbulence was visible on top of the step, where
the state of turbulence should have been closer to the axisymmetric expansion boundary. The
one-component turbulence in the separation region was captured but evolved into a bright
purple wedge that did not appear in the LES colormap.
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Figure 5.18: Visualization of stress types of LEVM k−ω (a), TBNN with FS1 (b), TBNN with FS1, FS2, FS3 (c),
and LES (d) for flow over curved backward-facing step.

The barycentric map locations, displayed in Figure 5.19, allow for a more detailed assessment
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of the turbulence states. The sections were set to four x-locations and cover the region from
the separation to the reattachment point. Only points with a wall distance of 1.0 or less
are displayed to only include well-resolved LES data. The results were consistent with the
findings of the previous flow cases. As expected, the LEVM model was restricted to the plain
strain line. The TBNN explored larger parts of the domain for both choices of input features.
Data points for the predictions of the TBNN CBFS1 were mostly confined in the triangles’
center regions. The TBNN CBFS2 followed the path of the LES more closely. Similar to
the periodic hills flow case, the anisotropy tensor from LES was oriented towards the two-
component limiting state on the bottom wall, which was a state that the TBNN cannot achieve
with the extended feature set for the selected sections.
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Figure 5.19: Barycentric map of the predicted anisotropy tensor from LEVM, TBNN CBFS1, and TBNN CBFS2,
alongside LES results. The data points correspond to cells along vertical sections of the domain at the specified
x -locations. Only cells with a wall distance of 1.0 of less are displayed as the LES is not well resolved beyond this
threshold.

Table 5.5 shows the mismatch between the different predictions of b and the ground truth
from LES, measured by the RMSE. Following the result for SD and PH, both TBNNs outper-
formed the LEVM on CBFS. Here, the predictions of TBNN with FS1 were about 40% more
accurate than the LEVM. The TBNN with all three feature sets was about 65% closer to the
ground truth when compared to the baseline model.
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Anisotropy tensor LEVM k−ω TBNN, CBFS1 TBNN, CBFS2

RMSE 0.1173 0.0619 0.0414

Table 5.5: RMSE of b from RANS and TBNN predictions for the flow over a curved backward-facing step.

5.4 Propagation of the Anisotropy Tensor

The TBNN consistently outperformed the baseline k −ω model in predicting the anisotropy
tensor, as shown in Section 5.3, even without the additional features sets FS2 and FS3. This
statement is true in a qualitative sense when comparing the states of turbulence of the predic-
tions and quantitatively comparing their respective RMSE. While some applications involving
wall shear stress computations may be directly influenced by an improved prediction of the
anisotropy tensor, the quantity of interest are mostly the mean velocity and mean pressure or
quantities related to it. Thus, the benefit of the TBNN has to be measured in its capabilities
of producing an improved mean velocity field. Hence, the predicted anisotropy tensor was
propagated into the flow fields, and the Reynolds equations were solved for the mean veloc-
ity and mean pressure. The results from these forward propagations are presented in this
section. For both the square duct and periodic hills flow cases, reliable DNS data was avail-
able and could be propagated into the flow fields. This way, an upper bound for the potential
improvements of the mean fields by using a modified anisotropy tensor was obtained. For the
flow over the curved backward-facing step, reliable high-fidelity data was available only for
parts of the flow domain, and thus, a propagation of the anisotropy tensor was not possible.
In this case, the only the propagation of the TBNN prediction was performed and compared
to the mean velocity fields from the LEVM and the LES. For all cases, only the anisotropy
tensor from the TBNN with the enriched features set was propagated, as it has proven to be
more accurate. The corresponding anisotropy tensor is referred to as bT BNN in the following,
as no distinction is needed.

5.4.1 Square Duct

The flow cases are be presented in the same order as the predicted anisotropy tensor, meaning
this section begins with the result of the square duct flow case. Figure 5.20 shows contours of
the mean velocity magnitude for the baseline RANS simulation, a converged RANS simulation
that used bT BNN , one that used bDNS, and the mean velocity field from DNS. Furthermore,
the figure contains vectors representing the in-plane velocity. The vectors were enlarged for
better visibility. A scale was given for each Subfigure that exhibited secondary motions. The
Subfigure for the LEVM contains no vectors, as it could not predict any secondary motions.
The remaining three flow fields showed a similar pattern for the in-plane velocities. The
fluid moved from the corner along both walls towards the symmetry planes. It then slowed
down when approaching the walls’ midpoints and entered a swirl towards the channel’s
centerline. From there, it moved back to the corner again and formed a circular path. Even
though this general pattern can be seen for all these three flow cases, the solution from bT BNN
significantly overpredicted these motions, especially towards the symmetry plane at y/H = 0
or z/H = 0. The velocity field that resulted from propagating the DNS anisotropy tensor
through the RANS solver matched the ground truth but slightly underpredicted the in-plane
velocities.

While in-plane velocity from RANS with bT BNN looked promising, the streamwise mean
velocity told a different story. The maximum mean velocity should occur at the centerline of
the channel. The baseline RANS simulation and the RANS simulation with bDNS produced
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similar profiles. The RANS simulation with bT BNN deviated from the pattern and had its
peak velocity at around y/H = z/H = 0.65. Apart from that, the fluid seemed to slow down
towards the top left and bottom right of the domain. This behavior was assumed to stem from
the transport of turbulent kinetic energy away from the wall, leading to increases Reynolds
stresses acting on the fluid, but further investigation of this phenomenon is needed. While not
modeling the turbulent kinetic energy yielded better results for this flow case, this approach
was not further pursued, as it was linked to severe stability issues for the other flow cases
investigated in this work.
The large discrepancies of the mean velocity field produced by RANS with the predicted
anisotropy tensor were unexpected, as the propagation of bDNS yielded good results and the
NN prediction bT BNN well resembled the DNS anisotropy tensor (see Section 5.3.1). Ling and
colleagues [32] showed visually similar velocities; however did not report the streamwise
mean velocity field making a quantitative comparison challenging. In Kaandorp & Dwight
[23] slight tendencies of spurious velocity profiles with contours skewed toward the channel’s
corner could be detected, but they are by far not as severe as the ones reported here.
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Figure 5.20: Streamwise mean velocity 〈U1〉 for the forward propagation of the predicted anisotropy tensor is
presented by colour contours. The in-plane mean velocity is displayed as a vector at every cell center. The
in-plane mean velocities are small in magnitude compared to the bulk velocity and scaled up for better visibility.
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Anisotropy tensor

k−ω k− ε bT BNN bDNS

RMSE(U) 0.0496 0.0667 0.0716 0.0322
RMSE([U2, U3]) 0.0066 0.0066 0.0045 0.0025

Table 5.6: RMSE of U for RANS with an anisotropy tensor from k−ω, k−ε, TBNN, and DNS for the square duct
flow.

Table 5.6 shows the RMSE for the mean velocity in the first row and for the in-plane mean
velocity in the second row for different choices for the anisotropy tensor. It can be seen
that RANS with bDNS was most accurate in both the total and in-plane RMSEs. RANS with
bT BNN showed better accuracy for the in-plane velocity, but performed worse than the k−ω
model regarding the RMSE of all velocity components. The k − ε model performed slightly
better than the TBNN, but also could not compete with the k − ω model. Regarding in-
plane velocity, both LEVMs show the exact same RMSE, as they both could not predict any
secondary motions.

5.4.2 Periodic Hills

Figure 5.21 shows contours of the mean streamwise velocity for the baseline RANS simu-
lation, a converged RANS simulation that used bT BNN , one that used bDNS, and the mean
velocity field from the DNS. The mean velocity contours of all simulations looked similar in
shape and magnitude. All three RANS simulations slightly overpredicted the maximum ve-
locity, which occurred shortly after the hillcrest. The LEVM was closest to the DNS regarding
maximum mean velocity.
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Figure 5.21: Streamwise mean velocity 〈U1〉 for the forward propagation of the predicted anisotropy tensor. The
true anisotropy tensor from DNS is propagated to form an upper bound of the TBNN’s prediction accuracy.

Otherwise, the contour plots can hardly be distinguished. The mean velocity profiles at
specific sections of the flow domain, displayed in Figure 5.22, allow for a more thorough
assessment. The x-locations shown here are the same ones that Breuer et al. [7] presented
in their extensive DNS/LES study of this flow scenario. As mentioned earlier, the three RANS
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simulations overestimated the maximum velocity through the top part of the domain and,
therefore, underestimated the velocity in the valley between the hills.
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Figure 5.22: Streamwise mean velocity profiles at specific x -locations of the periodic hills flow case. Velocities
are scaled by factor 2 to enhance the discrepancies between the profiles.

Surprisingly, the k−ωmodel yielded the most accurate velocity predictions for for the overall
flow domain, even when compared to the RANS simulations with bDNS. The velocity field
resulting from the propagation of the predicted anisotropy tensor bT BNN closely followed
the solution from RANS with the true anisotropy tensor bDNS. This could be expected, as
the prediction was accurate (see the previous section), but it is worth mentioning since the
square duct flow case showed large deviations in the mean fields for small deviations in the
anisotropy tensor. Ling et al. [32] did not used the periodic hills for testing but instead
used the flow over a wavy wall, which had similar characteristics, at a comparable Reynolds
number. It was reported that the TBNN’s prediction led to an improved velocity field when
compared to a LEVM. The LEVM used for their publication was the k − ε model, which is
known to be inaccurate for flows with strong adverse pressure gradients. Wu et al. [74]
reported an improvement relative to a LEVM. However, they also used the k−ε model which
did not match the ground truth as well as the k −ω model used in the present work. This
indicates that they did not measure their method against the best-performing baseline model.
Table 5.7 shows the RMSE for in-plane mean velocity for different choices of the anisotropy
tensor. It can be seen, that the TBNN outperformed the k − ε model by a small margin. The
results for bDNS were even more accurate, but could not match up against the k −ω model,
which showed the smallest RMSE.

Anisotropy tensor

k−ω k− ε bT BNN bDNS

RMSE(U) 0.0375 0.0545 0.0541 0.0465

Table 5.7: RMSE of U for RANS with an anisotropy tensor from k −ω, k − ε, TBNN, and DNS for the flow over
periodic hills.
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5.4.3 Curved Backward-Facing Step

The two previous flow cases were intended to test the interpolation properties of the TBNN.
The flow over the curved backward-facing step was used to test the predictive capabilities
of the TBNN on an unseen flow case. Figure 5.23 shows contours of the streamwise mean
velocity for the baseline LEVM, the RANS with bT BNN , and from the LES.

Visually, the LES showed higher mean velocities towards the displayed section’s upper
boundary than both RANS fields. These discrepancies occurred in the region where the tur-
bulence was not well resolved anymore, but it is unclear whether the approaching boundary
layer’s different properties impact the flow separation. Bentaleb et al. [5] state that flow over
the curved-backward facing step is sensitive to the properties of the boundary layer approach-
ing it, without quantifying this relation. The inlet boundary condition’s velocity profile was
obtained from a precursor plain-channel simulation for RANS and differed from the LES’s
inlet profile. LEVMs are considered very accurate for channel flows, and these findings are
thus rather unexpected. Potentially, the shear-Reynolds number given in [5] that defines the
boundary profile does not match the global Reynolds number reported on the Langley Re-
search Center Turbulence Modeling Resource. Nonetheless, it was decided to use this flow
case to investigate the flow patterns occurring after the step, the region that was reported to
be in excellent agreement with experiments.
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Figure 5.23: Streamwise mean velocity 〈U1〉 for the forward propagation of the predicted anisotropy tensor on
curved backward-facing step.

Both RANS simulations featured the characteristic recirculation bubble right after the curved
step. The recirculation bubble appeared to be the largest for the RANS simulation with
bT BNN . Further away from the wall, RANS k − ω and RANS with bT BNN showed nearly
identical contours. The results can be examined in detail by considering velocity profiles
at specific sections as a point-wise comparison of velocity contours is challenging. These
profiles are displayed in Figure 5.24 and reinforce the impression from the velocity contours
in Figure 5.23. The profiles corresponding to RANS with k −ω and RANS with bT BNN were
similar in the boundary layer approaching the step and towards the free-stream region. They
deviated more towards the recirculation bubble, where the RANS with bT BNN underpredicted
the velocity. The location of reattachment was consequently overestimated. The baseline
RANS simulation also overestimated the recirculation region’s extent but was consistently
closer to the LES throughout the region of interest. A reason the TBNN predicted a larger

https://turbmodels.larc.nasa.gov/Other_LES_Data/curvedstep.html
https://turbmodels.larc.nasa.gov/Other_LES_Data/curvedstep.html
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recirculation bubble could be the large region of isotropic turbulence right in front of the step
or the nearly one-componential wedge that transported turbulent kinetic energy towards the
free-stream region, potentially slowing down the motions. It is also possible that the flow
case requires too much extrapolation, and a TBNN trained on a more diverse database offers
better performance.
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Figure 5.24: Streamwise mean velocity profiles at specific x -locations of the curved backward-facing step flow
case. Velocities are scaled by factor 2 to enhance the discrepancies between the profiles.

The quantitative comparison is drawn in Table 5.8, where the RMSE of the in-plane mean-
velocity for RANS with an anisotropy tensor form k −ω, k − ε and the TBNN are displayed.
The k −ω model was about 50% more accurate than both the k − ε model and the TBNN.
Similar to the flow over periodic hills, the TBNN led to a slightly more accurate prediction
for the mean velocity than the k− ε model.

Anisotropy tensor

k−ω k− ε bT BNN

RMSE(U) 0.0609 0.0883 0.0868

Table 5.8: RMSE of U for RANS with an anisotropy tensor from k −ω, k − ε, and TBNN for the flow over the
curved backward-facing step.





Chapter 6

Conclusion & Outlook

The underlying work has thoroughly investigated the tensor basis neural network approach
for predicting the anisotropy tensor. DNS/LES databases were used to learn a functional
relationship between a baseline RANS simulation with a LEVM and high-fidelity fluid data.
The training database consisted of flows with flow separation over curved surfaces, adverse
pressure gradients, and secondary motions. The model’s predictive accuracy was examined
both quantitatively and qualitatively with the help of the barycentric map. The predicted
anisotropy tensor was used as a source term in the RANS equations, mean-flow quantities
were obtained and compared to high-fidelity fluid data.

First, it has been investigated whether it is beneficial to incorporate physical constraints
in the training process. In the early stages of the optimization process, these constraints have
contributed to the loss function, but no violations of the realizability constraints have been
detected during the later training stages. For the data set used in this work, which mainly
consisted of flows with similar parameters, the TBNN could always find a parameter setting
which only outputs responses that adhered to the realizability constraints. The optimization
process might be more challenging for a more diverse data set, for which the NN has to
find a good compromise between a small validation error and predictions that do not violate
the physical constraints. An interesting approach would be to maximize the diversity of the
data set with regard to the invariants, e.g., with the distance measure proposed by [73], and
subsequently study the impact of incorporating realizability constraints during training.

Second, it was shown that the feature set used in [32], which consists of five invariants,
reduces to only three nonzero invariants for flow geometries with one or more homogeneity
directions. While a NN trained only on those three input features exhibited improved ac-
curacy over the LEVM, the predicted anisotropy tensor fields showed spurious patterns and
missed the true state of turbulence in critical regions, e.g., where the flow separation oc-
curred. It was shown that the predictive accuracy was substantially increased by considering
additional input features. The RMSE with regard to the high-fidelity data was reduced by
at least 60% compared to the LEVM and at least 30% compared to the TBNN trained on
the original feature set for all three testing scenarios. The barycentric map was utilized to
illustrate the limitations of the LEVM and the merit of the TBNN with additional features.

Moreover, it has been studied whether the improved anisotropy tensor translates into
improved mean-field quantities. The TBNN correctly predicted the orientation of secondary
motions on the square duct flow case but overestimated their magnitude. Further, the k −ω
model was more accurate for the velocity profiles in the channel’s streamwise direction. For
the flow over periodic hills, the TBNN showed similar accuracy as the k−εmodel, but Wilcox’s
k −ω model outperformed both. The curved backward-facing step results were much alike,
and no substantial improvement over the finely tuned LEVMs could be found.

The anisotropy tensor from high-fidelity fluid data was propagated into the RANS equa-
tions for the square duct flow and the flow over periodic hills. While the simulations with the
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true anisotropy tensor produced the most accurate results for the square duct flow, this could
not be reported for the flow over periodic hills. These findings indicate that the anisotropy
tensor from high-fidelity fluid data might not lead to the most accurate mean fields. This
problem can be addressed by inverse modeling to infer the Reynolds stress tensor that yields
the best mean-field quantities. While Duraisamy and coworkers [16] inferred scalar correc-
tion terms for the Spalart– Allmaras and the k−ω model via adjoint optimization for a plane
channel flow, general applicability of this concept has yet to be shown. A combination of
the integrity basis with the adjoint optimization could bring about significant change but was
beyond this work’s scope.

Another possible extension of the framework is to use both inputs and responses from
high-fidelity data. This way, the TBNN would learn the true physics and could be used iter-
atively as a stand-alone turbulence model instead of the corrective approach pursued in this
work. Further, it would be interesting to see how the Bayesian neural network proposed by
Geneva et al. [18] performs for the extended feature set. Moreover, the testing and training
sets consisted of flow cases of moderate Reynolds number and could be extended to more
challenging flow scenarios. Finally, it is worth mentioning that the recent developments
on learning solutions of deterministic partial differential equations with neural networks
[1, 13, 49, 77] have shown promising results and could completely reshape the turbulence
modeling landscape as well.



Appendix A

Appendix 1

Two of the five scalar invariants (λ3,λ4) are zero for flows with one direction of homogeneity.
The two invariants read

λ3 = tr(Ŝ
3
), λ4 = tr(Ω̂

2
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Assuming the flow is homogeneous in z-direction, the partial derivatives of the mean velocity
with respect to z vanish, and the mean rate of strain and rotation read
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The incompressibility constraint of the Reynolds equations reduces to
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When using the simplified expressions of Ŝ and Ω̂ in combination with the incompressibility
constraint, invariant λ3 is given by
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12 + Ŝ2
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The derivation of invariant λ4 is more straightforward and thus written in terms of the mean
velocity gradient. It is given by
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Even though both invariants should be zero, in theory, they take small nonzero values in
practice. This can be interpreted as a violation of the incompressibility constraint. These
numerical errors are most considerable in regions with the coarsest mesh, as shown in figure
4.2.
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