
Timor Python: A Toolbox for Industrial Modular Robotics

Jonathan Külz, Matthias Mayer, and Matthias Althoff

Abstract— Modular Reconfigurable Robots (MRRs) repre-
sent an exciting path forward for industrial robotics, opening
up new possibilities for robot design. Compared to mono-
lithic manipulators, they promise greater flexibility, improved
maintainability, and cost-efficiency. However, there is no tool
or standardized way to model and simulate assemblies of
modules in the same way it has been done for robotic manip-
ulators for decades. We introduce the Toolbox for Industrial
Modular Robotics (Timor), a Python toolbox to bridge this
gap and integrate modular robotics into existing simulation
and optimization pipelines. Our open-source library offers
model generation and task-based configuration optimization for
MRRs. It can easily be integrated with existing simulation tools
– not least by offering URDF export of arbitrary modular robot
assemblies. Moreover, our experimental study demonstrates the
effectiveness of Timor as a tool for designing modular robots
optimized for specific use cases.

I. INTRODUCTION

Modular Reconfigurable Robots (MRRs) offer a promising
extension to conventional robotic manipulators. Assembled
from a combination of individual hardware parts referred to
as modules, they pose unprecedented flexibility, easy main-
tainability, and transportability by design [1], [2]. However,
the vast number of possible robot morphologies resulting
from a given set of modules comes with significant chal-
lenges when designing MRRs [3]. Every configuration of
modules leads to a new dynamic and kinematic model,
which must be generated to apply control and planning
procedures designed for traditional manipulators. While there
are multiple well-established frameworks for conventional
robots enabling physical simulation, none of them can be
used in a scenario where the robot model is subject to
constant change.

A. Contributions

The Toolbox for Industrial Modular Robotics (Timor)
provides modeling and simulation capabilities for MRRs,
starting from a standardized module description. Assem-
bled configurations of modules can easily be exported to
the Unified Robot Description Format (URDF)1 for easy
integration into existing pipelines. Furthermore, it facilitates
the design of task-tailored MRRs by incorporating search
heuristics and optimization algorithms. User-defined as well
as provided module libraries can easily be assembled to
robots with the possibility to automatically generate dy-
namic, kinematic, and collision models, all within the same

All authors are with the Cyber-Physical Systems Group, Depart-
ment of Computer Science, Technical University of Munich, 85748
Garching, Germany [jonathan.kuelz, matthias.mayer,
althoff]@tum.de. Matthias Althoff and Jonathan Külz are also with
the Munich Center for Machine Learning (MCML).

1https://wiki.ros.org/urdf

framework. Furthermore, any module combination – also
referred to as assembly – comes with visualization capa-
bilities. Timor is fully implemented in Python and hosted
on https://gitlab.lrz.de/tum-cps/timor-python.
Code coverage, unit tests, documentation, and a moderated
issue board are publicly available. The toolbox and all
dependencies can be installed with

$ pip install timor-python

B. Related Work

Timor enables modeling, simulating, and designing arbi-
trary configurations of robot modules, effectively bridging
the divide between modular robots and traditional manipula-
tors. As a result, recent advancements in robotic simulation
suites are now within reach for MRRs, taking an essential
step toward their implementation in industrial settings.

a) Modular Reconfigurable Robots (MRRs): An MRR
consists of multiple independent modules that can be recon-
figured externally or by the robot (self-reconfiguring modular
robots). The separation of module-level and system-level
design enables rapid change-over, expansion, and robustness
[1], [4]. Early publications on the concept of MRRs, such
as the CEBOT [5] and the RMMS [6] in 1988, already
established a distinction between joint and link modules
with the possible extension of functional (i.e., end effector)
modules, a classification that is frequently used until today.
Over the last decades, various modular robot systems have
been proposed [2], [7], [8]. However, it is only recently that
MRRs have finally left research laboratories.

The benefits of MRRs become particularly noteworthy
when multiple tasks, which may not be known during the
hardware design phase, need to be accomplished using a
single robot or set of modules only [1]. However, utiliz-
ing modular robots in varying configurations often requires
the expertise of professional and experienced programmers,
rendering industrial implementation impractical. This lim-
itation has been overcome with the introduction of self-
programming capabilities for modular robots [9]. In recent
years, multiple industrial solutions for modular robots en-
tered the market2,3 or have been announced for a future
release4. Despite the increased supply in MRR hardware
and the acknowledgment of the necessity of fast model
generation [10], distinct modeling libraries for industrial
MRRs are not yet available and development and research

2https://www.hebirobotics.com/
3https://www.robco.de/en
4https://www.beckhoff.com/en-en/products/motion/

atro-automation-technology-for-robotics/

https://wiki.ros.org/urdf
https://gitlab.lrz.de/tum-cps/timor-python
https://www.hebirobotics.com/
https://www.robco.de/en
https://www.beckhoff.com/en-en/products/motion/atro-automation-technology-for-robotics/
https://www.beckhoff.com/en-en/products/motion/atro-automation-technology-for-robotics/

departments often resort to tools designed for traditional
robotics.

Theoretical groundwork for MRR model generation have
been published in recent years: The CoBRA benchmark
[11] provides a standardized module description format and
benchmarks to compare MRRs and the authors of [12], [13]
propose a language to describe MRRs through constraints
implicitly. Despite introducing a framework for an MRR
modeling language, these works lack the possibility of kine-
matic and dynamic model generation for explicitly defined
configurations of robot modules. Modular robot URDF files
can be generated using a SolidWorks plugin as described in
the work in [14]. However, its limitations include dependence
on third-party software and a need for pre-defined CAD
models. The work in [15] proposes a procedure for automatic
robot model description generation but only supports serially
connected and asymmetric modules.

Timor extends existing theoretical works by offering sup-
port of kinematic trees and a unified module description
format to model modules with an arbitrary number of con-
nection interfaces, bodies, and joints. It further implements
this approach and leverages it for MRR design, making it
accessible for future research.

b) Search for MRR configurations: Identifying an opti-
mized configuration of MRR modules to meet desired robot
performance characteristics poses a considerable challenge.
An exhaustive algorithm that uses enumeration of kine-
matically distinct configurations is theoretically applicable
[16]; however, the large search space renders this method
impractical. Various attempts have been made to simplify this
problem: In [9], [17], the search is limited to configurations
with constraints on the alternation between static links and
joints. The work in [18] restricts the search even further to
kinematics known from industrial robots. In addition to a
search space reduction, heuristic algorithms are commonly
applied. The early work in [19] co-adapted morphology and
control of virtual creatures using genetic algorithms (GAs).
In GAs, solution candidates (chromosomes) composed of
a fixed number of variables (genes) are evolved for a
fixed number of generations by selection, reproduction, and
mutation operations [20]. In applications of MRR design,
a representation of modules as genes and assemblies as
chromosomes is usually utilized. This approach has ever
since been explored in various works [21], [22], [23]. Fur-
thermore, learning-based methods have recently been pro-
posed to optimize modular agents both in industrial and non-
industrial contexts [24], [25], [26]. While these approaches
share a common robot design principle and are evaluated in
simulation, they are based on individual software interfaces.
There is no possibility to evaluate them on a common
set of robot modules, nor are they directly applicable to
custom industrial tasks. Timor provides a unified interface
for constructing, evaluating, and optimizing MRR models,
allowing one to utilize arbitrary optimization algorithms in
a plug-and-play manner.

c) Robotics Simulation: Simulation tools offer great
potential for developing control, morphology, and motion

planning in robotics [27]. There is a wide range of so-
phisticated physics engines like Bullet [28], MuJoCo [29],
DART [30], or the Gazebo Simulator [31] that can be used to
develop and fine-tune model-based controllers and precisely
simulate robot and contact dynamics. On the other side
of the spectrum are toolboxes with a more narrow focus
on kinematic and dynamic modeling in robotics, such as
the Robotics Toolbox [32] or Pinocchio [33]. These tools,
frequently used for tasks such as path planning and controller
synthesis, commonly use a higher level of abstraction that
realizes fast computation and provide a high-level application
programming interface (API). While there is a great choice
of tools for monolithic robots, all assume a known robot
model. A lack of support for MRRs, whose robot model
is subject to change, requires users to craft workarounds
for established simulation tools, mostly tailored to specific
hardware. Simulators like the USSR [34], ReBots [35], or
VisibleSim [36] enable the simulation of self-reconfigurable
robots that consist of up to millions of modules. However,
these simulators do not provide a high-fidelity computation
of robot kinematics and dynamics, which is essential for
achieving realistic simulations of industrial tasks. There have
been efforts to connect disassembled robot modules with
traditional robotics libraries, but they are only applicable to
specific sets of modules, such as the HEBI HRDF format5.
Timor aims to provide a standardized interface to enable the
modeling of arbitrary module libraries, making it possible to
use established tools for MRRs.

II. MODEL GENERATION

Timor provides automatic model generation for mod-
ule configurations, including a URDF export interface. In
addition, the models are used by the built-in simulation
capabilities of Timor to support the design process of MRRs.

A. Graph Representations

Timor can compute two graph representations for robot
modules and the relations between them. They are generated
automatically without additional user input and serve as an
abstract and domain-independent view of MRRs. A short
overview of the terminology is given in the following –
details on the definition and generation of the graphs are
provided in the referenced sections.

• The directed module graph Gm (Sec. II-B) represents
a single module and, on its edges, contains information
about the relative transformations between the reference
frames of its constituent joints, bodies, and connectors.

• The directed assembly graph Ga (Sec. II-E) is a com-
bination of multiple module graphs. It represents the
relative placement of every joint, body, and connector
reference frame within an assembly of modules.

As a consequence of declaring the graphs directed, homo-
geneous transformations between their constituent elements
can directly be assigned as edge features.

x

y y

x

z z

x

y

C2

zB3

zB2,J2

B2,J2

B3,C2

C2

yB3

C1

zB1,J1

B2,J2

C1

y
B1,J1

C1,B1,J1

PB B1 PB B3

PB B2

(a) Powerball module with reference frames F for connectors (FC1 and FC2),
bodies (FB1, FB2, and FB3), and revolute joints (FJ1 and FJ2).

C2
B3

J2B2
J1

B1
C1

(b) Module graph Gm for the Powerball module. The nodes of the graph
represent bodies (Bi), joints (Ji), or connectors (Ci). The homogeneous
transformations between their reference frames are stored on the edges of the
graph.

<robot name="IMPROV">
<link name="PB B1">

<!-- Link Details -->
</link>
<link name="PB B2">

<!-- Link Details -->
</link>
<link name="PB B3">

<!-- Link Details -->
</link>

<!-- Data from other modules -->

<joint name="PB_conector_in" type="fixed">
<parent link="base body"/>
<!-- Joint Details -->

</joint>
<joint name="PB_joint_1" type="revolute">

<parent link="PB B1"/>
<child link="PB B2"/>
<!-- Joint Details -->

</joint>
<joint name="PB_joint_2" type="revolute">

<parent link="PB B2"/>
<child link="PB B3"/>
<!-- Joint Details -->

</joint>
</robot>

(c) The URDF excerpt shows the structure for links and joints
modeling the Powerball module in an assembly, assuming it is
attached to a base body.

Fig. 1. Relative placements of bodies, connectors, and joints in a module are defined by the positioning of their reference frames. The homogeneous
transformations between reference frames are stored in the module graph Gm that also captures neighbor relations. This information can be used to
auto-generate URDF models for assemblies.

B. Module Definition

The implementation of modules in Timor is inspired by
the framework introduced for the CoBRA benchmark [11].
Modules are composed of rigid bodies and joints. Bodies can
have an arbitrary number of connectors, defining interfaces
to attach them to other modules. Every body, joint, and
connector is assigned a reference frame F . The placement
and orientation of any joint or connector reference frame
Fi is defined relative to a body reference frame Fj by
a homogeneous transformation T (Fi, Fj) – in this case,
we say there exists a neighbor relationship between the
corresponding elements. Fig. 1a shows a module designed
for the Schunk LWA 4P robot, consisting of three bodies,
two connectors, two revolute joints, and the corresponding
reference frames.

For any module mi with connectors Cmi , bodies Bmi , and
joints Jmi , we define the directed module graph as a tuple
Gmi

= (Vmi
, Emi

) with

Vmi
= Cmi

∪ Bmi
∪ Jmi

Emi
= {(u, v) ∈ Vmi

× Vmi
| neighbor(u, v)},

where the neighbor(u, v) predicate evaluates to true if a
neighbor relationship between u and v exists and false,
otherwise. To any edge e ∈ Emi

between vertices (u, v)
with reference frames (Fu, Fv), we assign the feature

5https://github.com/HebiRobotics/hebi-hrdf

Te := T (Fu, Fv). Fig. 1b shows the module graph for the
Powerball module displayed in Fig. 1a.

While a module can be composed of an arbitrary number
of these base elements, it usually represents one piece of
hardware as produced by a manufacturer. Due to the possible
multiplicity of bodies and joints, even complex hardware
with arbitrary geometries, such as fully integrated multiple
degrees-of-freedom joints or mobile bases can easily be
described as a single module.

C. Connectors

Connectors are interfaces placed on bodies, used to define
a connection between two modules. Any connector Ci has a
gender gi ∈ {male, female, hermaphroditic}, a type ti, and
a size si. There are two special connector types, eef and
base, that define end effector frame(s) and the base reference
frame(s). Apart from these reserved keywords, other types
can be chosen freely by users to reflect the connector
hardware (e.g., flange, clamp). We define the compatibility
function between two connectors (Ci, Cj) as

σc(Ci, Cj) :=

true,

if ti = tj ,

and si = sj ,

and

{
gi ̸= gj , if gi, gj ∈ {m, f},
gi = gj = h, otherwise.

false, otherwise.

https://github.com/HebiRobotics/hebi-hrdf

Fig. 2. A Schunk LWA 4p robot built from four modules and the
corresponding assembly graph Ga. The nodes of the composing module
graphs Gm are drawn in the same color as the corresponding modules.
Edges connecting modules (Σd) are highlighted in blue.

Similarly, we define the compatibility function between two
modules (m1,m2) with connectors (Cm1

, Cm2
) as

σm(m1,m2) :=

{
true, if ∃(Ci, Cj)∈Cm1

×Cm2
:σc(Ci, Cj)

false, otherwise.

The possibility to assign an arbitrary number of connectors
to a body and the introduction of hermaphroditic connectors
allows one to model non-serial kinematics and (multidi-
rectional) modules without a unique mounting orientation.
Without loss of generality, we assume that the reference
frames (Fi, Fj) of the connectors (Ci, Cj) when connected
are arranged such that the x-axes are aligned, and the z-
axes are pointing away from the module (Fig. 1a). Therefore,
T (Fi, Fj) = Rx(π) where Rx(π) is a homogeneous transfor-
mation performing a rotation of 180° around the x-axis.

D. Assembling Modules

We denote a set of robot modules as R. A config-
uration of modules M = {m1, . . . ,mn} with connections
Σ = {{Ca, Cb}, {Cc, Cd}, . . . } is referred to as an assem-
bly A. Timor efficiently depicts both serial and branched
kinematics. For representing closed-chain kinematics, Timor
provides a robust framework, although simulation and va-
lidity checks require utilization of external libraries. Rec-
ognizing that many MRR configurations are chains, Timor
also allows specifying an assembly implicitly as a tuple
of modules (m1,m2, . . .) as long as there is exactly one
possible connection between any two neighboring modules
(mi,mi+1).

Algorithm 1 Generate URDF
1: function GENERATE_URDF(Assembly, name)
2: G ← Assembly graph Ga

3: Cb ← Assembly base connector
4: urdf ← initialize URDF(name)
5: T ← {Cb.frame : I4} ▷ I4 ←identity matrix
6: for (node n, edge e, successor s) ← bfs(G,Cb) do
7: Fn, Fs ← n.frame, s.frame
8: Ts ← T [Fn] · e.T
9: T [Fs] ← Ts

10: if is body(s) then
11: link ← make URDF link (s, Ts)
12: urdf ← append(urdf, link)
13: else if is joint(s) then
14: joint ← make URDF joint (s, Ts)
15: urdf ← append(urdf, joint)
16: T [Fs] ← {Fb : I4}
17: else if is connector(s) then
18: joint ← make URDF fixed joint (s, Ts)
19: urdf ← append(urdf, joint)
20: T [Fs] ← {Fb : I4}
21: end if
22: end for
23: end function

E. Building Kinematic and Dynamic Models

For deriving the kinematic and dynamic model of an
assembly, we introduce the directed assembly graph (Fig. 2)
as the tuple Ga = (Va, Ea) with

Va = Vm1
∪ · · · ∪ Vmn

,

Ea = Σd ∪ Em1
∪ · · · ∪ Emn

,

where Σd represents the connections between different mod-
ules and contains, for every connection in Σ, two directed,
antiparallel edges (Fig. 2) to which we assign the feature
Te = T−1

e := Rx(π).
For any given sequence E(u, v) = (e1, . . . , en) of edges

on a path between two nodes (u, v) in Ga, the homogeneous
transformation between any two reference frames T (Fu, Fv)
is

T (Fu, Fv) = Te1Te2 . . . Ten , u ̸= v

Obviously, any sequence E works; we usually determine the
shortest one using breadth-first search.

By performing a breadth-first iteration over Ga, start-
ing at the base reference frame, Timor generates URDF
descriptions for arbitrary module arrangements, as shown
in Alg. 1, as long as Ga composes a tree (URDF does
not natively support closed-chain kinematics). Homogeneous
transformations from parent joints to URDF elements are
stored in the map T , so T [F] is the relative transformation
between a frame and its parent joint. All further required
information to write a corresponding URDF element6,7 such

6URDF links: https://wiki.ros.org/urdf/XML/link
7URDF joints: https://wiki.ros.org/urdf/XML/joint

https://wiki.ros.org/urdf/XML/link
https://wiki.ros.org/urdf/XML/joint

import numpy as np
from timor.Module import *
from timor.utilities.visualization import animation

db = ModulesDB.from_json_file(db_file)
modules = (’base’, ’J2’, ’i_45’, ’J2’, ’J2’, ’eef’)
A = ModuleAssembly.from_serial_modules(db, modules)
q0 = A.robot.random_configuration()
q1 = A.robot.random_configuration()
trajectory = np.linspace(q0, q1)
animation(A.robot, trajectory, dt=.1)

Fig. 3. Code sample to generate an animation.

as inertia or joint limits are stored within the modules. Fig. 1c
shows the resulting structure for a partial URDF generated
for the module shown in Fig. 1a.

The generation of a dynamic and kinematic model from
URDF that can be used for simulation can be achieved
by various software packages, such as the open-source tool
Pinocchio [33], [37]. For the sake of computational effi-
ciency, we also provide a direct conversion from any assem-
bly to Pinocchio, omitting an intermediate URDF generation.
Furthermore, Timor offers an interface to the FCL library
[38] that we use for efficient collision checking.

III. MRR CONFIGURATION SEARCH

As the number of possible MRR configurations grows
exponentially with the number of assembled modules, the
search for an optimal configuration for an application cannot
be performed exhaustively in general. Timor offers multiple
tools to aid human and algorithmic optimization of assem-
blies for robot tasks.

A. Task Definition

Tasks can be formally described in the format introduced
in [11]. They are composed of goals that can be end-effector
poses to reach or trajectories to follow. All tolerances, ob-
stacles, and constraints supported by the CoBRA benchmark
can be specified and visualized with Timor, thus supporting
a wide range of applications.

B. Visualization

Timor extends the meshcat8 visualizer capabilities that
are integrated in Pinocchio to enable manual inspection in
an interactive browser-based visualization for robots and
tasks. Furthermore, Timor allows generating videos for robot
trajectories and exporting them as a file. Fig. 3 shows a code
sample for loading a set of modules, defining an assembly,
generating the corresponding robot model, and visualizing a
random trajectory.

C. Pruning Iterators

Timor can enumerate valid combinations between modules
and can produce configurations satisfying human-specified
constraints without the need of pre-computing all valid

8https://github.com/rdeits/meshcat-python

configurations, therefore being memory-efficient. In partic-
ular, reasonable alternations between static links and joints,
as proposed in [9], [17], can be enforced – not at least
to resemble kinematics from industrial robots as in [18].
Furthermore, a custom set of valid sequences of modules
can be defined explicitly, and the range of desired degrees
of freedoms for an MRR can be set.

D. Assembly Filters

In the search for task-specific MRRs, the feasibility of sub-
problems is often checked. Simple metrics can be used to
eliminate a majority of unfit MRR morphologies before per-
forming computationally expensive evaluations [22]. Timor
implements filters on criteria that are first evaluated for the
goal pose and later for an entire trajectory, such as

• kinematic solutions exist,
• no self-collision, or
• no collision with the environment.

By evaluating metrics prior to model generation whenever
feasible, the benefits of having a comprehensive and inte-
grated library are demonstrated.

E. Genetic Algorithms (GAs)

The flexibility of MRRs can be leveraged to mimic
various industrial robot kinematics. However, overly strong
constraints on the search space for MRR configurations can
limit the potential to discover specialized, previously unseen
kinematics. Metaheuristics, such as GAs, offer a potential
solution by providing a method to explore a range of MRR
configurations while efficiently navigating the search space.
Timor provides a user-friendly interface to integrate GAs into
the optimization process of MRR configurations. Users can
define industrial tasks, load a set of available modules, and
optimize their configuration using GAs within minutes. As
demonstrated in Sec. IV-B, these capabilities can be utilized
to uncover unique robot morphologies.

IV. NUMERICAL EXPERIMENTS

To demonstrate the usefulness of Timor, we conducted
two experiments. In our first experiment, we use a module
set that was published in [9] to generate URDF models for
arbitrary combinations of modules, showing how Timor can
be leveraged to extend and unify existing work on MRRs.
In our second experiment, we compare two optimization
algorithms to human experts in designing a use-case-tailored
MRR. The code to reproduce both experiments and more
details on experimental results are provided together with a
set of tutorials in the official repository9. All experiments
were conducted on a desktop PC with an Intel i7-11700KF
processor.

9https://gitlab.lrz.de/tum-cps/timor-python/-/
tree/main/tutorials

https://github.com/rdeits/meshcat-python
https://gitlab.lrz.de/tum-cps/timor-python/-/tree/main/tutorials
https://gitlab.lrz.de/tum-cps/timor-python/-/tree/main/tutorials

Fig. 4. Best lightweight assembly: The lightest robot reaching the two
goals (marked as coordinate systems) while avoiding obstacles (red) was
found by a GA.

A. Model Generation for an Existing Module Set

For this experiment, we use the IMPROV module set as
introduced in [9], which is composed of modules of the
Schunk LWA 4P robot and additionally designed modules. It
contains two Powerballs (shown in Fig. 1a), ten static links
of varying sizes and shapes, and a base module. By applying
Timor’s assembly iterator, we obtain the 32,768 possible
configurations of modules for a six degrees-of-freedom robot
as reported in [9]. Generating URDF files for all of them
takes 127 seconds (3.9ms on average). Directly transforming
an assembly to a Pinocchio-based robot model is equally
computationally expensive. By providing tens of thousands
of kinematic and dynamic models in a standardized format
within a matter of minutes, Timor facilitates research on
MRRs.

B. User Study

In a simulated environment, we challenged human experts
to optimize the configuration of an MRR given the task in
Fig. 4 and compared their results to two algorithms in Timor.
A common use case for modular robots is machine tending,
where the robot has to perform a pick-and-place operation
in a potentially cluttered environment. We abstract this task
by fixing a robot base in an environment with two static
obstacles and two goal poses that need to be reached. An
assembly poses a valid solution if an inverse kinematics
solution can be found for both goals, given a position
tolerance of 0.01mm and an orientation tolerance of 45°
around an arbitrary axis relative to the desired positioning.
While path planning was not explicitly incorporated into the
optimization process, we could identify valid trajectories for
animating both the algorithm and human-generated results
by adopting basic sampling-based planners.

For this experiment, we provide module data for robot
modules manufactured by RobCo10 – for the remainder
of this section, we refer to modules from this set that
contain a joint as joint modules and static modules as base,

10https://www.robco.de/en

Fig. 5. Modules of the user study: For the experiment, we provide ten static
link modules (grey) and one module containing a revolute joint (orange).
The base and end effector are automatically added to every assembly.

end effector, and links. Fig. 5 shows the module set used,
consisting of four L-shaped links, six I-shaped links and
one joint, base, and gripper module each. The objective
is to find an assembly that can reach both goals while
minimizing the sum of individual module costs. This can be a
weighted sum of the acquisition cost, availability preferences,
or module mass. For this experiment, we assign costs directly
proportional to the module mass. We asked eight experts11

to find an optimal solution to the task described above
within 30 minutes (excluding briefing and debriefing). After
each guess, a user interface provides feedback on the cost
and goal reachability of the chosen solution. Furthermore,
an animation is made available to the expert showing the
assembly in the closest configuration to the goals found using
a numerical inverse kinematics solver integrated in Timor.

We compare the human performance against a constrained
search algorithm and a genetic algorithm (GA). The number
of configurations achievable from a given set of modules
can be limited through the utilization of Timor’s pruning
iterators; for the constrained search, robots can have at most
five degrees of freedom, at most one successive link between
any two joint modules, the first module after the base must
contain a joint, and there can be at most one link module
between the last joint and the end effector. Under these
assumptions, there are

dof∑
n=1

|J | · ((|L|+ 1) · |J |)n =

5∑
n=1

11n = 177, 155

assemblies with exactly one base and end effector. We
integrate the built-in filters that prevent further assembly
evaluation if a lighter solution has already been found or if,
even without considering the obstacles, no inverse kinematics
solution can be found that satisfies joint torque constraints.
By leveraging a comprehensive evaluation pipeline within
a single library, we are able to pre-filter a large number of

11Either people with an engineering degree focused on robotics or master
students within the last year of a robotics-specific master program. All
experts had prior experience working with MRRs.

https://www.robco.de/en

10 11 12 13 14 15 16

HE

CS

GA

mass [kg]

Best final solutions

Fig. 6. User study results: The best result (9.92kg) was found using a GA.
While the median GA result (10.92kg) is equal to the constrained search
(CS) result, none of the human experts (HE) was able to find a solution
with a mass of less than 11kg (median: 14.1kg).

solutions prior to model generation. This drastically increases
efficiency, leading to a total runtime of 5.5 minutes.

Lastly, we utilize the Timor optimization interface and a
genetic algorithm provided by the PyGAD library [39]. Each
solution candidate is encoded as a chromosome consisting
of thirteen genes that define the module configuration of the
robot. We limit the search space to alternating joint and link
genes, where each gene can either represent a {link, joint}
module (fig. 5) or an empty slot. While restricting the search
space to robots with at most six degrees of freedom, other
than in the constrained search, an alternation of joints and
links is not enforced due to the possibility of empty slots.
The solution space consists of

(|J |+ 1)6 · (|L|+ 1)7 = 26 · 117 = 1, 247, 178, 944

different chromosomes – some of which represent equivalent
assemblies12. We perform 100 trials of 500 generations, each
with an average runtime of 21.9 minutes per trial. Fig. 4
shows the final solution found by the best trial.

One of the human experts found a robot with a total mass
of 11.13kg, whereas the median expert designed a valid
solution with a robot mass of 14.1kg (Fig. 6). Within a
fraction of the time, the constrained search yielded a robot
with a mass of 10.92kg. Leveraging the goal tolerances,
the best trial of the GA resulted in a three degrees-of-
freedom robot with a total mass of 9.92kg, while even the
worst trial ended with a solution with a total robot mass
of 13.8kg (Fig. 6). The best configuration identified by the
GA clearly is untypical (Fig. 4): Three joints close to the
base in combination with two static, L-shaped links provide

12The two chromosomes ’J-L1-0-L1-0-0-J1’ and ’J-L1-0-0-0-L1-J’ are
different encodings for a chain of modules with IDs ’J-L1-L1-J’.

enough flexibility for maneuvering between the goals while
minimizing the total mass.

V. CONCLUSION

We introduced and showcased Timor, the first Python
toolbox to model, simulate, and optimize modular reconfig-
urable robots. Our open-source library is published under
the MIT license and based on readily available components,
offering easy integration in any pipeline without the need for
commercial software. The code examples and introductory
tutorials are provided with the toolbox repository, along with
the source code for all experiments conducted. Bridging the
simulation gap between conventional and modular robots,
Timor offers features necessary for configuration optimiza-
tion and model generation of MRRs.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by
the Horizon 2020 EU Framework Project CONCERT under
grant 101016007 and by the ZiM project on energy- and
wear-efficient trajectory generation (ZF4086011PO8).

REFERENCES

[1] M. Yim et al., “Modular self-reconfigurable robot systems [grand
challenges of robotics],” IEEE Robotics and Automation Magazine,
vol. 14, no. 1, pp. 43–52, 2007.

[2] J. Liu, X. Zhang, and G. Hao, “Survey on research and development of
reconfigurable modular robots,” Advances in Mechanical Engineering,
vol. 8, no. 8, 2016.

[3] C. J. J. Paredis and P. K. Khosla, “Synthesis methodology for task
based reconfiguration of modular manipulator systems,” in Proc. of
the Int. Symp. on Robotics Research (ISRR), 1993.

[4] G. Yang and I.-M. Chen, “1 – introduction,” in Modular Robots:
Theory and Practice, R. S. Han Ding, Ed., 2022, vol. 1, pp. 1–12.

[5] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, “Self organizing
robots based on cell structures – CEBOT,” in Proc. of the Int. Workshop
on Intelligent Robots (IROS), 1988, pp. 145–150.

[6] D. Schmitz, P. Khosla, and T. Kanade, “The CMU reconfigurable
modular manipulator system,” Tech. Rep. 88–7, 1988.

[7] A. Yun, D. Moon, J. Ha, S. Kang, and W. Lee, “ModMan: An ad-
vanced reconfigurable manipulator system with genderless connector
and automatic kinematic modeling algorithm,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4225–4232, 2020.

[8] E. Romiti et al., “Toward a plug-and-work reconfigurable cobot,”
Transactions on Mechatronics, vol. 27, no. 5, pp. 2319–3231, 2022.

[9] M. Althoff, A. Giusti, S. B. Liu, and A. Pereira, “Effortless creation
of safe robots from modules through self-programming and self-
verification,” Science Robotics, vol. 4, no. 31, 2019.

[10] G. C. I-Ming Chen, Song Huat Yeo and G. Yang, “Kernel for modular
robot applications: Automatic modeling techniques,” The International
Journal of Robotics Research, vol. 18, no. 2, pp. 225–242, 1999.

[11] M. Mayer, J. Külz, and M. Althoff, “CoBRA: A composable bench-
mark for robotics applications,” arXiv:2203.09337 [cs.RO], 2022.

[12] M. Bordignon, U. Schultz, and K. Stoy, “Model-based kinematics
generation for modular mechatronic toolkits,” in Proc. of the ACM
SIGPLAN int. Conf. on Generative Programming and Component
Engineering (GPCE), vol. 9, 2010, pp. 157–166.

[13] M. Bordignon, K. Stoy, and U. Pagh Schultz, “Generalized program-
ming of modular robots through kinematic configurations,” in Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2011, pp. 3659–3666.

[14] M. Feder, A. Giusti, and R. Vidoni, “An approach for automatic
generation of the URDF file of modular robots from modules designed
using solidworks,” Procedia Computer Science, vol. 200, pp. 858–864,
2022.

[15] C. Nainer, M. Feder, and A. Giusti, “Automatic generation of kine-
matics and dynamics model descriptions for modular reconfigurable
robot manipulators,” in IEEE Int. Conf. on Automation Science and
Engineering (CASE), vol. 17, 2021, pp. 45–52.

[16] I.-M. Chen and J. W. Burdick, “Enumerating the non-isomorphic as-
sembly configurations of modular robotic systems,” The International
Journal of Robotics Research, vol. 17, no. 7, pp. 702–719, 1998.

[17] E. Romiti, N. Kashiri, J. Malzahn, and N. Tsagarakis, “Minimum-
effort task-based design optimization of modular reconfigurable
robots,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2021, pp. 9891–9897.

[18] S. B. Liu and M. Althoff, “Optimizing performance in automation
through modular robots,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2020, pp. 4044–4050.

[19] K. Sims, “Evolving virtual creatures,” in Proc. of the Ann. Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH), vol. 21,
1994, pp. 15–22.

[20] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, pp. 95–99, 1988.

[21] H. Lipson and J. B. Pollack, “Automatic design and manufacture of
robotic lifeforms,” Nature, vol. 406, pp. 974–978, 2000.

[22] E. Icer, H. Hassan, K. El-Ayat, and M. Althoff, “Evolutionary cost-
optimal composition synthesis of modular robots considering a given
task,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2017, pp. 3562–3568.

[23] T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph evolution:
Automatic robot design,” in Proc. of the Int. Conf. on Learning
Representations (ICLR), 2019.

[24] J. Whitman, R. Bhirangi, M. Travers, and H. Choset, “Modular robot
design synthesis with deep reinforcement learning,” in Proc. of the
AAAI Conf. on Artificial Intelligence (AAAI), vol. 34, no. 06, 2020,
pp. 10 418–10 425.

[25] A. Zhao et al., “RoboGrammar: Graph grammar for terrain-optimized
robot design,” ACM Transactions on Graphics, vol. 39, no. 6, pp. 1–
16, 2020.

[26] J. Hu, J. Whitman, M. Travers, and H. Choset, “Modular robot design
optimization with generative adversarial networks,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2022, pp. 4282–
4288.

[27] H. Choi et al., “On the use of simulation in robotics: Opportunities,

challenges, and suggestions for moving forward,” Proceedings of the
National Academy of Sciences, vol. 118, no. 1, 2021.

[28] E. Coumans and Y. Bai, “Pybullet, a Python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org, 2021.

[29] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine
for model-based control,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2012, pp. 5026–5033.

[30] J. Lee et al., “DART: Dynamic animation and robotics toolkit,”
Journal of Open Source Software, vol. 3, no. 22, 2018.

[31] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2004, pp. 2149–2154.

[32] P. Corke and J. Haviland, “Not your grandmother’s toolbox – the
robotics toolbox reinvented for Python,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation (ICRA), 2021, pp. 11 357–11 363.

[33] J. Carpentier et al., “The Pinocchio C++ library: A fast and flexible
implementation of rigid body dynamics algorithms and their analytical
derivatives,” in Proc. of the IEEE/SICE Int. Symp. on System Integra-
tion (SII), 2019, pp. 614–619.

[34] D. Christensen, D. Brandt, K. Stoy, and U. Schultz, “A unified
simulator for self-reconfigurable robots,” in Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2008, pp. 870–876.

[35] T. Collins and W.-M. Shen, “ReBots: A drag-and-drop high-
performance simulator for modular and self-reconfigurable robots,”
University of Southern California, Tech. Rep. 714, 2016.

[36] P. Thalamy, B. Piranda, A. Naz, and J. Bourgeois, “VisibleSim: A
behavioral simulation framework for lattice modular robots,” Robotics
and Automation Systems, vol. 147, no. C, 2022.

[37] J. Carpentier, F. Valenza, N. Mansard et al., “Pinocchio: fast forward
and inverse dynamics for poly-articulated systems,” https://stack-of-
tasks.github.io/pinocchio, 2015.

[38] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA), 2012, pp. 3859–3866.

[39] A. F. Gad, “PyGAD: An intuitive genetic algorithm Python library,”
arXiv:2106.06158 [cs.NE], 2021.

http://pybullet.org
http://pybullet.org

	Introduction
	Contributions
	Related Work

	Model Generation
	Graph Representations
	Module Definition
	Connectors
	Assembling Modules
	Building Kinematic and Dynamic Models

	MRR configuration search
	Task Definition
	Visualization
	Pruning Iterators
	Assembly Filters
	Genetic Algorithms (GAs)

	Numerical Experiments
	Model Generation for an Existing Module Set
	User Study

	Conclusion
	References

