
Reducing Safety Interventions in Provably Safe Reinforcement Learning

Jakob Thumm1, Guillaume Pelat1, and Matthias Althoff1

Abstract— Deep Reinforcement Learning (RL) has shown
promise in addressing complex robotic challenges. In real-world
applications, RL is often accompanied by failsafe controllers as
a last resort to avoid catastrophic events. While necessary for
safety, these interventions can result in undesirable behaviors,
such as abrupt braking or aggressive steering. This paper
proposes two safety intervention reduction methods: proactive
replacement and proactive projection, which change the action
of the agent if it leads to a potential failsafe intervention. These
approaches are compared to state-of-the-art constrained RL on
the OpenAI safety gym benchmark and a human-robot collab-
oration task. Our study demonstrates that the combination of
our method with provably safe RL leads to high-performing
policies with zero safety violations and a low number of failsafe
interventions. Our versatile method can be applied to a wide
range of real-world robotic tasks, while effectively improving
safety without sacrificing task performance.

I. INTRODUCTION

A. Motivation

Reinforcement learning (RL) has emerged as a promising
approach for solving complex tasks in a variety of robotic ap-
plications, such as manipulation [1]–[3], mobile robots [4]–
[6], and autonomous driving [7]–[9]. Recent works have
shown that safety can be guaranteed for RL agents us-
ing additional system knowledge [10]–[18]. However, these
safety mechanisms can result in undesirable behavior, such as
sudden braking or high torques, which can be uncomfortable
for humans or demanding for robot hardware. In addition,
bringing the system to an invariably safe state (ISS) [19], e.g.,
a full stop through a failsafe maneuver, can lead to significant
recovery times. Consequently, keeping the number of safety
interventions as low as possible is desirable.

This work addresses the problem of safe reach-avoid
robotic tasks in environments with static and dynamic ob-
stacles. Specifically, the robot aims to reach a target position
while avoiding collisions with obstacles. In this work, we
guarantee the safety of robots using a generalized version of
our proposed shield in [18]. We seek to minimize the number
of safety interventions while guaranteeing safety to promote
natural and interference-free robot behavior.

Our two proposed approaches for achieving the desired
reduction of safety interventions are proactive replacement
and proactive projection. The integration of these methods

1The authors are with the School of Informatics, Technical Uni-
versity of Munich, 85748 Garching, Germany. {jakob.thumm,
guillaume.pelat, althoff}@tum.de

© 2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in
other works.

Fig. 1. Proposed intervention reduction technique: First, the agent generates
an action ai, which is then transformed into an intended trajectory via a
trajectory planner. In case the intended trajectory would potentially trigger
a failsafe controller, we replace it using proactive replacement or proactive
projection. We verify the chosen trajectory during execution and fall back on
a failsafe trajectory that ends in an invariably safe state (ISS) when needed.

in the safe RL learning cycle is illustrated in Fig. 1. We
first check if the RL action potentially triggers a failsafe
intervention. If that is the case, we can either proactively
replace the action with a verified randomized action, or
proactively project the action to a verified action that lies
nearby in Euclidean space. Our safety shield and the pro-
posed proactive replacement and projection methods utilize
set-based reachability analysis, making them real-time capa-
ble for most high-dimensional systems. We incorporate all
possible obstacle trajectories with limited prior knowledge,
system and measurement uncertainties, and time delays in
our reachability analysis. To our best knowledge, we are
the first to propose a technique that can significantly reduce
the number of safety interventions in provably safe RL for
any robotic environment. We compare our two approaches to
constrained RL, which tries to solve the original RL problem
while keeping the number of safety interventions below a
predetermined threshold.

B. Related work

The safety of RL agents has been a significant concern
since the introduction of RL and deep RL [20], [21]. To
broadly categorize safe RL, Brunke et al. [22] classify safe
RL methods according to their types of constraints, including
soft, probabilistic, and hard constraints.

This work does not rely on probabilistic constraint meth-
ods, so readers interested in this topic are referred to [22].

The most common soft constraint method is constrained
RL, which aims to learn the policy with the highest reward
while limiting the number of constraint violations [20].
The Lagrangian method [20] is a popular way to address
constrained RL problems by converting them to a dual
problem, following constrained optimization theory [23,
Chapter 5] and optimizing the Lagrangian multiplier in
conjunction with the RL policy. More recent works, such
as constrained policy optimization [24], constrained RL
with a proportional–integral–derivative-controlled Lagrange
multiplier (PID-Lagrangian) [25], and worst-case soft actor-
critic [26] build on the Lagrangian method and make it
applicable to deep RL. A drawback of constrained RL is that
it cannot guarantee safety in a provable way, as the learned
behavior is not formalized or proven. Additionally, most
constrained RL implementations have a non-zero constraint
violation threshold, making it impossible to ensure safety
with complete certainty.

This work falls in the group of provably safe RL, which
fulfills hard constraints by incorporating additional system
knowledge in the form of abstract models into the RL
framework. Krasowski et al. [27] categorizes provably safe
RL into three classes based on the methods used to alter
the actions of the RL agent: action replacement [11], [16],
[28], [29], action projection [13], [14], [30], [31], and action
masking [12], [15], [32]. However, both action projection
and replacement can cause noticeable interventions with the
adverse effects mentioned earlier. To address this issue, some
works have used a negative reward to penalize safety inter-
ventions [11], [13], [16]. Nonetheless, this approach requires
careful hand-tuning and often results in either no reduction
of interventions or significant performance loss, as we will
discuss in more detail later. To evaluate the effectiveness of
safe RL methods, the OpenAI safety gym [33] has become a
widely used benchmark, offering a range of tasks that require
balancing performance and safety considerations.

C. Contributions

Our contributions are fourfold. First, we introduce the first
RL agent to the OpenAI safety gym [33] that guarantees
zero constraint violations. Second, we propose proactive
replacement and proactive projection, two particular forms of
action replacement and projection, that significantly reduce
the number of failsafe interventions in safe RL and com-
pare it to constrained RL. Third, we evaluate our proposed
approaches in the OpenAI safety gym and a human-robot
collaboration task1. Finally, we demonstrate our proposed
method’s real-world impact using a six degree-of-freedom
(DoF) manipulator in a human environment.

D. Article structure

Sec. II introduces the necessary notation for the RL ap-
proaches and set-based reachability analysis, and formalizes
a generalization of our previously introduced safety shield
to general robotic environments. We then present how the

1Our code and experimental evaluation are available at
https://github.com/JakobThumm/safety-intervention-reduction.

frequency of failsafe interventions can be reduced in Sec. III.
Sec. IV discusses the main results of our experiments.
Finally, we conclude this article in Sec. V.

II. PRELIMINARIES
This section introduces the required foundations of RL,

set-based reachability analysis, and our safety shield.

A. Reinforcement learning
RL aims to find an optimal policy for Markov decision

processes (MDPs), defined by the tuple (S,A, R, p, γ) [34].
This work focuses on continuous state and action spaces S
and A, respectively, as is common in robotic applications.
We define the state-transition probability density function p :
S ×A×S → [0,∞) to describe the probability of reaching
the next state si+1 when choosing action ai in state si. The
environment provides a reward R : S × A × S → R for
each transition, which is discounted by the discount factor
γ ∈ [0, 1]. The agent learns a stochastic policy π(ai|si) from
which action ai is sampled in state si.

For constrained RL, Altman [20] extends the MDP by a
cost function C : S ×A×S → R, a cost limit d : S ×A →
R, and a cost discount γC ∈ [0, 1]. In practice, we limit
ourselves to a fixed cost limit d ∈ R.

B. Reachablility analysis
In this work, we adopt a set-based reachability analysis

approach for ensuring safety and finding low-interfering
actions. We consider systems with the dynamics ẋ(t) =
f(x(t),u(t),w(t)), with bounded control inputs u(t) ∈ U ,
disturbances w(t) ∈ W , and possible states x(t) ∈ X . We
denote the control input trajectory in the time interval [t0, t]
as u([t0, t]) and adopt this notation for all signals. Given
such a control input trajectory, an initial state x0, and a
disturbance trajectory w([t0, t]), the system follows the tra-
jectory χ (t,x0,u([t0, t]),w([t0, t])). The forward reachable
set R(t) of a system starting in the set of initial states X0

with unknown control inputs comprises all states reachable
at time t:

R(t) = {χ (t,x0,u([t0, t]),w([t0, t])) | (1)
x0 ∈ X0,∀t : u(t) ∈ U ,w(t) ∈ W} .

A general state-feedback control law uZ(t) = ΦZ(x(t)) ∈ U
can also generate an input signal, resulting in the trajectory
χZ (t,x0,uZ([t0, t]),w([t0, t])). We denote the reachable set
under a feedback controller by RZ(t):

RZ(t) = {χZ (t,x0,uZ([t0, t]),w([t0, t])) | (2)
x0 ∈ X0,∀t : w(t) ∈ W} .

All states reachable during the time interval [t0, t1] are given
by R ([t0, t1]) =

⋃
t∈[t0,t1]

R(t). We denote the set of points
that a system can occupy in Euclidean space at time t and
a time interval by O(R(t)) and O(R([t0, t1])), respectively,
and further refer to it as the reachable occupancy (RO). We
further introduce a point in Euclidean space as p, a ball as
B(c, r) = {p | ∥p− c∥2 ≤ r} with center c and radius r,
and a function ball that overapproximates a RO with a ball
O ⊆ ball (O) = B(c, r).

https://github.com/JakobThumm/safety-intervention-reduction

C. Safety shield

To ensure the safety of RL agents, we utilize the safety
shield for manipulators proposed in [18] and generalize it
to arbitrary robotic environments. The safety shield relies
on the existence of an ISS that is reachable from any state.
An example of an ISS is an entirely stopped robot for ma-
nipulators or mobile robots, as per ISO 10218-1 2021 [35].
As we demonstrated in [18], a safety shield for RL is less
restrictive when it operates on a higher frequency than the
output frequency of the RL agent. We, therefore, execute
each RL action ai for L time steps and perform a safety
shield update at every time step.

At each time step k, we calculate an intended and a failsafe
trajectory. Without loss of generality, we reset the clock to t0
at each time step. The intended trajectory χI results from the
desired agent action output and is executed with the control
law ΦI(x(t),a) for L time steps. The failsafe trajectory χF
leads the robot to an ISS using a failsafe controller ΦF(x(t))
in F time steps, where F depends on the state of the robot.
We append an entire failsafe trajectory to a single step of the
intended trajectory to form a so-called shielded trajectory

χS =

{
χI (t,x0,uI([t0, t]),w([t0, t])) , t ∈ [t0, tD]

χF (t,x1,uF([tD, t]),w([tD, t])) , t ∈ [tD, tS] ,

(3)

with D = 1, tS as the time at the end of the shielded
trajectory, and S = D + F .

We verify the shielded trajectory by calculating the
ROs of the robot O(RS([t0, tS])) and the J obstacles
Oobs([t0, tS]) =

⋃
j∈J O(Rj([t0, tS])) for each partial time

interval in the overall time interval [t0, tS]; see Fig. 3. We
then check if the ROs are intersection-free for all partial time
intervals using our open-source toolbox SaRA [36]:

O(RS([tk−1, tk])) ∩ Oobs([tk−1, tk]) = ∅, ∀k ∈ {1, . . . , S} .
(4)

We ensure safety indefinitely through induction by assuming
that the robot starts in an ISS and executing the last verified
failsafe trajectory if the verification in (4) fails. The set-based
representation of the system enables us to guarantee safety
in both simulation and real-world applications, thus bridging
the simulation-to-reality gap. For a detailed implementation
of our safety shield for the OpenAI safety gym, we refer the
reader to the Appendix.

III. METHODOLOGY

This work investigates four methods for reducing the fre-
quency of failsafe interventions. The state-of-the-art method
is to assign a fixed negative reward for each failsafe inter-
vention [11], [13], [16]. However, the evaluation of reward
tuning for the Point-Button environment (see Sec. IV),
in Fig. 2 shows that this approach often results in either no
improvement in the frequency of failsafe interventions or a
drastic reduction in performance. To improve this, we intro-
duce two safety reduction techniques, proactive replacement
and projection, and compare them with constrained RL.

0 2 4 6 8
0
5

10
15
20
25

Steps (in 106)

R
et

ur
n

rs = 0

rs = −0.01

rs = −0.1

rs = −1

0 2 4 6 8
0

200
400
600
800

1000

Steps (in 106)

Sa
fe

ty
In

te
rv

en
tio

ns

Fig. 2. Reward and shield activation for different values of reward
punishment rs for shield usage with the shielded PPO agent. If the reward
punishment is too weak (rs = −0.01), the shield usage is not affected,
and if it is slightly too high (rs = −0.1), the agent learns to never use the
shield at all cost.

Fig. 3. Four types of trajectories can be distinguished in proactive
replacement: The intended trajectory results from the action output of the
RL agent. To build the shielded trajectory, a failsafe trajectory is appended to
a single step of the intended trajectory. The verification trajectory comprises
the intended trajectory and a subsequent failsafe trajectory, and is used to
validate the RL action. In this particular example, the shielded trajectory
is safe, but the RL action is replaced because the verification trajectory
collides with the reachable set of the dynamic obstacle.

A. Proactive replacement

Our first approach replaces actions that result in an in-
tersection between the ROs of the robot and obstacles. The
new action as any other action does not impair safety due
to the safety shield as described in Sec. II-C. To prevent
interventions during the RL step, we construct a verification
trajectory χV as depicted in Fig. 3, composed of the intended
trajectory of the RL step followed by a failsafe trajectory.
We define the verification trajectory analogous to (3) except
that D is replaced by L and S is replaced by V = L + F .
After constructing the verification trajectory, we verify it for
potential failsafe interventions by checking for intersections
with the robot’s ROs in the time interval [t0, tV] using (4),
where S is replaced by V .

If the initial verification fails, we sample up to M replace-
ment actions uniformly from the action space and repeat the
verification until an action is successfully verified. The agent
executes the first verified replacement action found during the
RL step. If we cannot find a verifiable replacement action,
we execute an environment-specific neutral action, e.g., the
zero vector a = 0. As a result, the proactive replacement

Fig. 4. Our proactive projection method finds the longest intersection-free
line segment from the current robot position to the end of the verification
trajectory.

might fail to prevent safety interventions, which we evaluate
in our experiments in Sec. IV.

B. Proactive projection

Our second intervention reduction approach is a type of
action projection. The goal is to find a reachable point
in Euclidean space near the position of the robot at the
end of the intended trajectory without colliding with the
environment. For this, we model the robot as a multi-body
system and describe its RO as the union of the ROs of
its N bodies O (R) = ∪n∈NO (Rn). We overapproximate
the RO of a robot body with a capsule C (p,d, r, l) ={
p+ β l d

∥d∥2
| β ∈ [−1, 1]

}
⊕ B (0, r), where ⊕ is the

Minkowski sum2. The ROs of the obstacles in the time
interval [t0, tV] are expanded by the radius of the robot body
capsules rexp = rV + ϵ using

Oexp =
⋃
j∈J

Oexp,j (5)

=
⋃
j∈J

O
(
Rj([t0, tV])

)
⊕ B (0, rexp) .

Depending on the current position p0, we select different
projection strategies. Suppose p0 is already in Oexp. In that
case, we use the projection of p0 to the nearest point outside
of Oexp as the new target position

min p̃⊤p̃ (6)
subject to (p0 + p̃) /∈ Oexp ,

where p̃ is the displacement between target and current
position. To solve the non-convex optimization problem in
(6), we use the l1 penalty method for sequential convex opti-
mization using trust regions presented in [37, Algorithm 1]
and refer the reader to the Appendix for implementation
details.

If at the beginning of the RL step p0 /∈ Oexp, we construct
a straight line for each robot body part from its current
Carthesian position pn

0 to its predicted Carthesian position
at the end of the verification trajectory pn

V as

gn(α) = pn
0 + α (pn

V − pn
0) , α ∈ R , (7)

2A⊕ B = {a+ b | a ∈ A, b ∈ B}

and hn(α) = dn
0 + α (dn

V − dn
0). We then look

for the longest intersection-free line segment
for each robot body part with Gn ([α1, α2]) =
{gn(α) + β ln hn(α) | α ∈ [α1, α2], β ∈ [−1, 1]} from
the current robot body part position to pn

V using

max αopt (8)
subject to 0 < αopt < 1 ,

Gn ([0, αopt]) ∩ Oexp = ∅, n ∈ 1, . . . , N .

The line segment approach in (8) is illustrated exemplary for
hn = 0 and N = 1 in Fig. 4. Finally, we use a trajectory
planner to plan a trajectory χP from p0 to an ISS in an ϵ-
bound around pV . The trajectory planner has to ensure that
the first L steps of the trajectory have a constant control
input. As the projection only checks against intersection
in the end-configuration of the verification trajectory, it
is not guaranteed that the resulting projected trajectory is
intersection-free in (4) with S being replaced by V . There-
fore, if χP would result in an intersection, we can repetitively
reduce α for M times to find a more conservative projection
point. If we cannot project the action to a verifiable trajectory
χP, we execute the neutral action and continue to ensure
safety with our safety shield.

C. Constrained RL

We compare the two presented methods with a constrained
RL approach that aims to minimize the number of failsafe
interventions in an episode. We assign a constant cost CF to
each failsafe intervention in an RL step and train a PID-
Lagrangian agent to perform the environment task while
staying below a threshold of safety interventions. This ap-
proach minimizes safety interventions without any additional
implementation effort.

IV. EXPERIMENTS

This section discusses the effects of our proposed inter-
vention reduction methods in two different applications, the
OpenAI safety gym benchmark and a human-robot collabo-
ration setting.

A. OpenAI safety gym

Our OpenAI safety gym experiments evaluate the pro-
posed safety reduction methods on two continuous control
tasks: Point-Goal and Point-Button. For both tasks,
we consider a cylindrical robot modeled as a point mass that
is controlled by its yaw rate and acceleration in the direction
of travel. The agent perceives its velocity, acceleration, and
distance to the target and the obstacles through a velocity, an
acceleration, and a LiDAR sensor, respectively. Each episode
starts with randomized positions of the robot, obstacles, and
goals.

The Point-Goal task requires the agent to navigate to
a target area while avoiding hazards. On the other hand, in
the Point-Button task, the agent needs to move to the
correct button from multiple options while avoiding dynamic
obstacles called gremlins. For both tasks, the agent incurs a
cost of 1 for being in a hazard or an incorrect button area

– PPO – PID-Lagrangian – Shielded PPO– Shielded PID – Shielded PPO + Replacement – Shielded PPO + Projection

0 1 2

·106

0

5

10

15

20

25 PG1

Steps (in 106)

R
et

ur
n

0 1 2

·106

0

20

40

60

80

100

Steps (in 106)

C
os

t

0 1 2

·106

0

200

400

600

800

1000

Steps (in 106)

Sa
fe

ty
In

te
rv

en
tio

ns

0 1 2

·106

0

5

10

15

20

25 PG2

Steps (in 106)

R
et

ur
n

0 1 2

·106

0

20

40

60

80

100

Steps (in 106)

C
os

t

0 1 2

·106

0

200

400

600

800

1000

Steps (in 106)

Sa
fe

ty
In

te
rv

en
tio

ns

0 1 2

·106

0

5

10

15

20

25 PB1

Steps (in 106)

R
et

ur
n

0 1 2

·106

0

20

40

60

80

100

Steps (in 106)

C
os

t

0 1 2

·106

0

200

400

600

800

1000

Steps (in 106)

Sa
fe

ty
In

te
rv

en
tio

ns

0 1 2

·106

0

5

10

15

20

25 PB2

Steps (in 106)

R
et

ur
n

0 1 2

·106

0

20

40

60

80

100

Steps (in 106)

C
os

t

0 1 2

·106

0

200

400

600

800

1000

Steps (in 106)

Sa
fe

ty
In

te
rv

en
tio

ns

Fig. 5. Mean and its 95% confidence interval over ten random seeds for the OpenAI safety gym environments. From top to bottom: Point-Goal1,
Point-Goal2, Point-Button1, and Point-Button2. From left to right: the return, cost, and number of safety interventions per episode with
length 1000. Our proactive projection method reduces the number of failsafe interventions drastically with only slight performance loss. The costs for the
shielded agents in the Button environments are non-zero because we did not account for incorrectly pushed buttons. There are no other collisions with the
static environment or the gremlins.

and for colliding with a vase or a gremlin. The shielded PID-
Lagrangian agent additionally receives a cost of CF = 1
for failsafe interventions. Both tasks have two difficulty
levels, with level 2 featuring more obstacles. Each episode
lasts 1000 RL steps, with a new goal randomly selected
upon completion. All training results in Fig. 5 show the
mean metrics and their 95% confidence intervals3 over 2
million RL steps on ten random seeds. We kept the training
hyperparameters from [25] for all training runs on every
environment.

In the Point-Button environments, we exclude button
constraints from our safety shield as buttons trigger instan-
taneously from being eligible to invalid upon contact. This
breaks the assumption that a stopped robot is in an ISS.
Therefore, we only test the capabilities of our shielded PID-

3We use the default values of the scipy bootstrap function.

Lagrangian agent to reduce shield interventions and incorrect
button violations simultaneously.

Our results in Fig. 5 demonstrate the effectiveness of
our safety shield in mitigating all environmental costs in
the Point-Goal tasks and all costs except those due to
button constraints in the Point-Button task, serving as
the first provably safe benchmark in the OpenAI safety
gym. Our proactive projection method significantly reduces
failsafe interventions of the shielded PPO agent across all
environments. In contrast, the proactive replacement method
is less effective in lowering safety interventions due to its
failure to find a verified replacement action when using
our randomized selection. The proactive projection method
receives slightly less return than our shielded PPO agent,
but still performs better than the shielded PID-Lagrangian
agent. In the Point-Button tasks, the PID-Lagrangian
agent reduces the incorrect button presses significantly. This

– Shielded PPO – Shielded PID-Lagrangian– Shielded PPO + Replacement – Shielded PPO + Projection

0 2 4 6 8 10

−40

−30

−20

−10

0

Steps in 105

R
et

ur
n

0 2 4 6 8 10
0

10

20

30

40

50

Steps in 105

Sa
fe

ty
In

te
rv

en
tio

ns
Fig. 6. Mean and its 95% confidence interval over five random seeds of
the cumulative reward and failsafe interventions per episode for the human-
robot collaboration environment with 1 million RL steps and 400 RL steps
per episode.

indicates that constrained RL is a suitable technique for
reducing non-safety-critical constraints, which would be hard
to shield against otherwise.

B. Human-robot collaboration

To test the transferability of our findings to more complex
robotics tasks, we trained a reaching task in a human-robot
simulation. We deployed the trained agents on a Schunk
LWA 4P manipulator in a real-world setting. Our six DoF
manipulator has to move from a given initial end effector
position pinit to a target end effector position pgoal, with the
episode terminating upon goal achievement. The RL agent
receives two types of observations: the difference between
the target and current end effector position in all three dimen-
sions and the Euclidean distance between the end effector
and the human head, i.e., s = [(pgoal−p0)

⊤, ∥p0−phead∥2]⊤.
The RL actions are the desired change in end effector
positions from the current position p0 to the next position pL,
i.e., pL = p0+a. Our proactive projection technique is only
applied to the RO of the end effector, i.e., N = 1, to reduce
calculation time. The human in the environment follows
pre-recorded movements with randomized start positions.
As safety is paramount in human environments, we only
compare the shielded agents and refer to [18] for a detailed
comparison with unsafe agents.

Fig. 6 shows that the shielded PPO agent performs well
in the reaching task but triggers a failsafe intervention in
2.5% of the RL steps, with up to 7.5% at the beginning
of the training. Our proposed failsafe prevention techniques
reduce the number of safety interventions by a factor of 10 to
around 0.25%, with no decrease in performance for proactive
replacement and only a slight decrease for the projection
method. Contrary to the OpenAI safety gym environment,
the PID-Lagrangian agent is unable to learn a suitable policy
that is both high-performing and reduces failsafe interven-
tions, even after exhaustive hyperparameter optimization.
We attribute the limited success of PID-Lagrangian to the
increased complexity of the human-robot environment.

The runtime analysis4 in Fig. 7 illustrates that both

4Run on an Intel® Core™ i7-10750H CPU @ 2.60GHz × 12 and 32GB
DDR4 RAM @ 3.2 GHz.

Shield Replacement Projection
0

5

10

15

20

25

T
im

e
p
er

R
L
st
ep

[m
s]

Fig. 7. Comparison of calculation times per RL step for the shielded
agent, the shielded agent plus proactive replacement, and the shielded agent
plus proactive projection in the human-robot environment. We report the
median (black line), 25%- and 75%-quantile (box), the smallest value that
is larger than the 25%-quantile − 1.5 · interquartile range (lower whisker),
the largest value that is smaller than the 75%-quantile + 1.5 · interquartile
range (upper whisker), and outliers (dots).

proactive replacement and proactive projection do not add
a significant overhead to the calculation time in each RL
step, despite the highly complex environment. Proactive
replacement shows significant outliers that occur when no
replacement action can be found. These outliers can be
reduced by lowering the number of resamples, or selecting
a different replacement strategy.

We also present the performance of our agents on a
real-world robot in our supplementary video. The shielded
PPO agent consistently fulfills the task, while the action
replacement and projection techniques allow the agent to
move away from the human RO, resulting in smoother
trajectories and fewer safety interventions.

V. CONCLUSIONS

Our results clearly show that our proposed proactive pro-
jection method significantly reduces the frequency of failsafe
interventions while maintaining competitive performance.
Contrary to existing intervention reduction methods, our
approach does not require careful parameter tuning to reduce
failsafe interventions, making it easily applicable in complex
robotic environments. The results of evaluations on the real
manipulator further strengthen our findings and make us
confident that our approach is transferable to other tasks. To
further demonstrate the effectiveness of combining a safety
shield with proactive projection, we intend to test it in more
challenging real-world human-robot collaboration environ-
ments, such as construction sites or manufacturing facilities.
These environments pose additional safety challenges due to
heavy machinery and high-risk tasks and thus provide an
opportunity to evaluate the robustness of our approach.

APPENDIX

A. Adaptions to safety shield for point robot

In the OpenAI safety gym, we consider a robot modelled
as a point mass, whose state can be described by its position
p⊤ = [px, py], velocity v⊤ = [vx, vy], and orientation φ,
i.e., x = [px, py, vx, vy, φ]

⊤. The robot has two inputs u =

[u1, u2]. The nonlinear system dynamics are given by [33]

ṗ = v, (9a)

v̇ = Rz(φ) [u1, 0]
⊤ − v

kd
m

(9b)

φ̇ = u2 , (9c)

where Rz(φ) describes the rotation matrix around the z-axis
with angle φ, kd = 0.01 kg s−1, and the mass of the robot
is m = 5.19 g. The input is limited by |u1| ≤ u1,max =
9.63m s−2 and |u2| ≤ u2,max = 1 s−1. It is important to
note that the robot dynamics are only approximated by these
equations and do not necessarily reflect the physical behavior
of a real-world robot.

We directly obtain the intended trajectory from (9). The
aim of the failsafe trajectory is to brake the robot as fast as
possible, so the objective function is

max
u1,u2

(
∥v∥22 − ∥v +∆tv̇∥22

)
, (10)

which has a global optimum at u1,opt = (cos(φ)vx +
sin(φ)vy)(

kd

m − 1
∆t) and u2,opt = (atan2(vy, vx) − φ)/∆t.

Therefore, the failsafe controller uses u =
[clip (u1,opt,−u1,max, u1,max) , clip (u2,opt,−u2,max, u2,max)],
where clip(a, b, c) clips a to the interval [b, c].

For the reachability analysis, we consider the OpenAI
safety gym as a two-dimensional environment. The reach-
able occupancies of the obstacles are calculated using
the velocity-constrained model proposed by Liu et al.
[38]. To calculate the reachable occupancy of the point
robot, only the position is relevant, so we define its tra-
jectory with abuse of notation as the solution of (9a)
χp (t,x0,u([t0, t]),w([t0, t])). To achieve fast calculation
times, we linearly interpolate the trajectory of the robot
between two shield steps t0 and t1 as

χ̃p (t,x0,u([t0, t]),w([t0, t])) = ξp(t0) + (1− ξ)p(t1) ,
(11)

with ξ ∈ [0, 1]. The resulting linearization error in the
position can be over-approximated by

ζ =

∥∥∥∥χ̃p

(
t1 + t0

2

)
− χp

(
t1 + t0

2

)∥∥∥∥
2

≤ d2p(t)

dt2
(∆t)2

8
,

(12)

as shown by Beckert et al. [39] for general point movements
with known acceleration limits. For the point robot, this
results in ζ =

a0,max(∆t)2

8m . The reachable set of the position
of the robot is therefore

Rp(t) = (ξ(t)p(t0) + (1− ξ(t))p(t1))⊕ B(0, ζ) , (13)

where ξ(t) = t1−t
t1−t0

. To get the reachable occupancy of the
robot, we simply add its radius r to the reachable set

O(Rp(t)) = Rp(t)⊕ B(0, r) . (14)

The linearization in (11) simplifies the reachable occupancy
of the robot between two shield steps to a capsule, which
allows for fast intersection checking with the environment.

The OpenAI safety gym only provides lidar measurements
of the obstacles, which can result in occlusions of obstacles
by other obstacles. Such occlusions can be handled using set-
based predictions as shown exemplary for an autonomous
driving task in [40]. However, this solution increases the
size of the reachable sets, making the safety shield more
restrictive. To mitigate this issue, we decided to augment
the safety shield with precise information about the exact
position of each obstacle. The shielded RL agent, however,
does not have access to the exact positions, ensuring a fair
comparison with unshielded agents.

B. Implementation details for proactive projection

We specify the constraint function of (6) as

− sd (p0 + p̃,Oexp,j) ≤ 0,∀j ∈ J . (15)

Here, sd (p,O) is the signed distance between a point p and
a set O with

sd (p,O) = sign
(
(pE − p)⊤(pC − p)

)
∥pE − p∥2 , (16)

where pE is the closest point on the edge of O to p, and
pC is the center of O. As the projection at the beginning of
an RL step is time-critical, we use a simplified linearization
of the inequality constraints for the convexify step of [37,
Algorithm 1]:

hj(p̃) = − sd (p0 + p̃,Oexp,j) (17)

≈ sd (p0,Oexp,j)
pj
E − p0

∥pj
E − p0∥22

p̃− sd (p0,Oexp,j) .

(18)

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by
the Horizon 2020 EU Framework Project CONCERT under
grant 101016007.

REFERENCES

[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” in Proc. of the Int. Conf. on Learning Representations
(ICLR), 2016.

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba,
“Learning dexterous in-hand manipulation,” International Journal of
Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[3] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley,
“Deep reinforcement learning for the control of robotic manipulation:
A focussed mini-review,” Robotics, vol. 10, no. 1, pp. 1–13, 2021.

[4] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2017, pp. 31–36.

[5] K. Zhu and T. Zhang, “Deep reinforcement learning based mo-
bile robot navigation: A review,” Tsinghua Science and Technology,
vol. 26, no. 5, pp. 674–691, 2021.

[6] L. Chang, L. Shan, C. Jiang, and Y. Dai, “Reinforcement based mobile
robot path planning with improved dynamic window approach in
unknown environment,” Autonomous Robots, vol. 45, no. 1, pp. 51–76,
2021.

[7] A. El Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforce-
ment learning framework for autonomous driving,” in Proc. of the
IS&T Int. Symp. on Electronic Imaging (EI): Autonomous Vehicles
and Machines, 2017, pp. 70–76.

[8] X. Wang, H. Krasowski, and M. Althoff, “Commonroad-rl: A con-
figurable reinforcement learning environment for motion planning of
autonomous vehicles,” in Proc. of the IEEE Int. Intelligent Transporta-
tion Systems Conf. (ITSC), 2021, pp. 466–472.

[9] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2022.

[10] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in
Proc. of the Int. Conf. on Neural Information Processing Systems
(NeurIPS), 2017, pp. 908–919.

[11] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proc. of the
AAAI Conf. on Artificial Intelligence (AAAI), 2018, pp. 2669–2678.

[12] N. Fulton and A. Platzer, “Safe reinforcement learning via formal
methods: Toward safe control through proof and learning,” in Proc. of
the AAAI Conf. on Artificial Intelligence (AAAI), 2018, pp. 6485–6492.

[13] T.-H. Pham, G. De Magistris, and R. Tachibana, “Optlayer - practical
constrained optimization for deep reinforcement learning in the real
world,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2018, pp. 6236–6243.

[14] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. of the AAAI Conf. on Artificial
Intelligence (AAAI), 2019, pp. 3387–3395.

[15] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. of
the IEEE Int. Intelligent Transportation Systems Conf. (ITSC), 2020,
pp. 1–7.

[16] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard (RTS): a safe and fast reinforcement learning
safety layer for continuous control,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3663–3670, 2021.

[17] N. Hunt, N. Fulton, S. Magliacane, T. N. Hoang, S. Das, and A. Solar-
Lezama, “Verifiably safe exploration for end-to-end reinforcement
learning,” in Proc. of the Int. Conf. on Hybrid Systems: Computation
and Control (HSCC), 2021.

[18] J. Thumm and M. Althoff, “Provably safe deep reinforcement learning
for robotic manipulation in human environments,” in Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), 2022, pp. 6344–6350.

[19] E. I. Liu, C. Pek, and M. Althoff, “Provably-safe cooperative driving
via invariably safe sets,” in Proc. of the IEEE Intelligent Vehicles Symp.
(IV), 2020, pp. 516–523.

[20] E. Altman, “Constrained markov decision processes with total cost
criteria: Lagrangian approach and dual linear program,” Mathematical
Methods of Operations Research, vol. 48, no. 3, pp. 387–417, 1998.

[21] J. Garcıa and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437–1480, 2015.

[22] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati,
and A. P. Schoellig, “Safe learning in robotics: From learning-based
control to safe reinforcement learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 411–444, 2022.

[23] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[24] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. of the Int. Conf. on Machine Learning (ICML),
2017, pp. 22–31.

[25] A. Stooke, J. Achiam, and P. Abbeel, “Responsive safety in reinforce-
ment learning by pid lagrangian methods,” in Proc. of the Int. Conf.
on Machine Learning (ICML), 2020, pp. 9133–9143.

[26] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. J. Spaan, “Wc-
sac: Worst-case soft actor critic for safety-constrained reinforcement
learning,” in Proc. of the AAAI Conf. on Artificial Intelligence (AAAI),
2021, pp. 10 639–10 646.

[27] H. Krasowski, J. Thumm, M. Müller, X. Wang, and M. Althoff,
“Provably safe reinforcement learning: A theoretical and experimental
comparison,” in https://arxiv.org/abs/2205.06750, 2022.

[28] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 7, pp. 2737–2752, 2019.

[29] O. Bastani, “Safe reinforcement learning with nonlinear dynamics via
model predictive shielding,” in Proc. of the American Control Conf.
(ACC), 2021, pp. 3488–3494.

[30] S. Gros, M. Zanon, and A. Bemporad, “Safe reinforcement learning
via projection on a safe set: How to achieve optimality?” in Proc. of
the IFAC World Congress, 2020, pp. 8076–8081.

[31] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems,”
Automatica, vol. 129, 2021.

[32] G. Mason, R. Calinescu, D. Kudenko, and A. Banks, “Assured
reinforcement learning with formally verified abstract policies,” in
Proc. of the Int. Conf. on Agents and Artificial Intelligence (ICAART),
2017, pp. 105–117.

[33] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in
deep reinforcement learning,” arXiv preprint arXiv:1910.01708, 2019.

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[35] ISO, “Robotics - safety requirements - part 1: Industrial robots,”
International Organization for Standardization, Tech. Rep. DIN EN
ISO 10218-1:2021-09 DC, 2021.

[36] S. Schepp, J. Thumm, S. B. Liu, and M. Althoff, “SaRA: A tool for
safe human–robot coexistence and collaboration through reachability
analysis,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2022, pp. 4312–4317.

[37] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[38] S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking,
and M. Althoff, “Provably safe motion of mobile robots in human
environments,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2017, pp. 1351–1357.

[39] D. Beckert, A. Pereira, and M. Althoff, “Online verification of multiple
safety criteria for a robot trajectory,” in Proc. of the IEEE Conf. on
Decision and Control (CDC), 2017, pp. 6454–6461.

[40] P. F. Orzechowski, A. Meyer, and M. Lauer, “Tackling occlusions
limited sensor range with set-based safety verification,” in Proc. of
the IEEE Int. Intelligent Transportation Systems Conf. (ITSC), 2018,
pp. 1729–1736.

	INTRODUCTION
	Motivation
	Related work
	Contributions
	Article structure

	PRELIMINARIES
	Reinforcement learning
	Reachablility analysis
	Safety shield

	METHODOLOGY
	Proactive replacement
	Proactive projection
	Constrained RL

	EXPERIMENTS
	OpenAI safety gym
	Human-robot collaboration

	CONCLUSIONS
	Adaptions to safety shield for point robot
	Implementation details for proactive projection

	References

