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Abstract

Learning to learn is a powerful paradigm that enables machine learning models to leverage
the previously learned features for new tasks and domains more effectively. This approach
is especially useful for data-scarce, heterogeneous, and complex domains such as medical
imaging analysis. This thesis explores different aspects of learning to learn from data, models,
and semantics, and shows how they can enhance various computer vision and medical imaging
tasks. In the first part of the thesis, we present novel and fundamental research on learning
to learn from data, and in the second part, we investigate the use of high-level semantics in
generative models.

In the first part, we study how a model can learn (1) from other model parameters in a
distributed setting, (2) from other data instances in a transfer learning setting, and (3) from
the inherent structures of the data itself without using external knowledge. We address various
challenges that arise in each of these scenarios, and propose novel methods and solutions.

In the second part of this thesis, we introduce the task of semantic image manipulation, which
uses scene graphs as a structured representation of the objects and their relationships in an
image. Scene graphs can provide rich semantic and spatial information for image generation
and manipulation. Within this thesis, we develop several methods that exploit scene graphs
for different tasks, such as unconditional image generation, few-shot image generation, and
self-supervised image manipulation.

This thesis demonstrates that acquiring larger datasets or designing deeper and more complex
neural network architectures is not necessarily the best way to advance machine learning
for computer vision and medical imaging. The thesis opens new avenues for efficient repre-
sentation learning by proposing and developing methods that can benefit from the existing
knowledge from other models, other data, and the existing semantic knowledge in the world.
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Zusammenfassung

Lernen zu lernen ist ein leistungsfähiges Paradigma, das es Modellen des maschinellen Lernens
ermöglicht, die zuvor gelernten Merkmale für neue Aufgaben und Bereiche effektiver zu
nutzen. Dieser Ansatz ist besonders nützlich für datenarme, heterogene und komplexe Bereiche
wie die medizinische Bildanalyse. In dieser Arbeit werden verschiedene Aspekte des Lernens
aus Daten, Modellen und Semantik untersucht und gezeigt, wie sie verschiedene Aufgaben
der Computer Vision und der medizinischen Bildgebung verbessern können. Im ersten Teil der
Arbeit stellen wir neue und grundlegende Forschungsergebnisse zum Lernen aus Daten vor,
und im zweiten Teil untersuchen wir die Verwendung von High-Level-Semantik in generativen
Modellen.

Im ersten Teil untersuchen wir, wie ein Modell (1) von anderen Modellparametern in einer
verteilten Umgebung, (2) von anderen Dateninstanzen in einer Transfer-Lernumgebung und
(3) von den inhärenten Strukturen der Daten selbst lernen kann, ohne externes Wissen zu
verwenden. Wir gehen auf verschiedene Herausforderungen ein, die sich in jedem dieser
Szenarien ergeben, und schlagen neue Methoden und Lösungen vor.

Im zweiten Teil dieser Arbeit stellen wir die Aufgabe der semantischen Bildmanipulation
vor, die Szenegraphen als strukturierte Darstellung der Objekte und ihrer Beziehungen in
einem Bild verwendet. Szenegraphen können umfangreiche semantische und räumliche
Informationen für die Bilderzeugung und -manipulation liefern. Im Rahmen dieser Arbeit
werden mehrere Methoden entwickelt, die Szenegraphen für verschiedene Aufgaben nutzen,
z. B. für die unbedingte Bilderzeugung, die Erzeugung von Bildern mit wenigen Aufnahmen
und die selbstüberwachte Bildmanipulation.

Diese Arbeit zeigt, dass der Erwerb größerer Datensätze oder die Entwicklung tieferer und
komplexerer neuronaler Netzwerkarchitekturen nicht unbedingt der beste Weg ist, um das
maschinelle Lernen für Computer Vision und medizinische Bildgebung voranzutreiben. Die Ar-
beit eröffnet neue Wege für effizientes Repräsentationslernen, indem sie Methoden vorschlägt
und entwickelt, die vom vorhandenen Wissen aus anderen Modellen, anderen Daten und dem
vorhandenen semantischen Wissen in der Welt profitieren können.
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3Learning to Learn

There has been a large amount of research in the field of Artificial Intelligence (AI) in the past
decade, transforming it into a central pillar of computer science [196]. Two of the major areas
in AI are Computer Vision and Natural Language Processing (NLP). These areas are essential
for AI applications, since they enable AI to analyze visual and linguistic data in a similar way
to human cognition [66].

In the early days of AI research, traditional methodologies formed the backbone of data analysis
and processing. Techniques such as Principal Component Analysis (PCA) were instrumental
in reducing the dimensionality of data, making it easier for inference [107]. Simultaneously,
research endeavours focused on the development of feature extraction methods from high-
dimensional datasets. An exemplary method was the Scale-Invariant Feature Transform (SIFT),
a highly engineered yet interpretable method for identifying distinctive keypoints in images
[152].

Additionally, Support Vector Machines (SVM) provided a powerful tool for the classification and
regression analysis of these extracted features [35]. Furthermore, a host of other techniques,
such as minimum spanning trees, superpixels, and graph-cut methods, were utilized to
streamline and optimize data processing mechanisms for different tasks such as segmentation
[56, 212]. Despite their efficacy, these techniques were restricted by their inherent limitations,
predominantly their hand-crafted and manually engineered nature.

With the advent of Neural Networks and Deep Learning, a paradigm shift occurred in AI
research [128]. Neural networks, sophisticated enough to be trained for classification tasks,
emerged as automatic feature extractors, superseding their traditional counterparts. This
change, however, had its drawbacks. Despite their superior performance, the intricate internal
workings of these networks were optimized based on simple loss functions, turning them into
complex, black-box systems with limited interpretability [276].

This situation underscored the criticality of representation learning in machine learning and
AI [11]. The advent of representation learning gave rise to a new frontier in the field of
artificial intelligence, setting the stage for ground-breaking advancements like meta-learning,
self-supervised representation learning, and foundation models.

Meta-learning, often described as "learning to learn" [205], has emerged as a burgeoning
approach in machine learning, aiming to design models that can learn new skills or adapt
to new environments rapidly with a few training examples [60, 240]. The ability to adapt
to new tasks using minimal data extrapolates the principles of traditional learning methods,
offering a glimpse into the potential future of AI. Meta-learning acknowledges the necessity
of abstracting from individual task learning, and focuses on understanding the underlying
learning process itself, encapsulating this in the learning model. This conceptual shift allows
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for the rapid adaptation to new, previously unseen tasks, a capacity that is instrumental in the
practical deployment of AI systems in the real world.

Meta-learning has various definitions; In this thesis, we explore topics that go further than
few-shot learning, rather towards learning with both limited data and supervision, which
could be an ultimate goal in artificial general intelligence or AGI.

In the first part of the thesis, we discuss how our models can learn from the data. This
part focuses on different types of learning to learn without blindly increasing the amount of
annotated data or increasing the complexity of the neural network architectures.

In the second part, we introduce several approaches that leverage natural language for com-
puter vision tasks. In contrast to images that can contain huge amount of high dimensional
information, natural language contains the distilled knowledge perceived through humans
cognition. This knowledge can be employed to enrich computer vision models; however,
natural language is still not well-structured, and therefore a graph-based semantic repre-
sentation can be more accurate. This representation, taking the form of scene graphs can
be utilized to condition computer vision models more efficiently. In this thesis, we propose
novel methods that model the scenes semantically through learning a common representation
between images and scene graphs. The semantic scene modeling is employed to enhance the
performance of generative models with different levels of supervision.

In the next chapter, we summarize the contributions of this thesis.

8 Chapter 3 Learning to Learn



4Contributions

In this thesis, we explore different levels of learning to learn, a paradigm that aims to improve
the generalization and adaptation of machine learning models to new tasks and domains. We
investigate how learning from other models, other data, the inherent features in the data, and
semantics can enhance the performance of various computer vision applications. We divide
our contributions into two parts: the first part focuses on fundamental research on learning
to learn from data, and the second part focuses on learning from semantics using generative
models. Figure 4.1 shows a taxonomy of the works covered or published in the course of this
thesis.

Learning
to Learn

Learning
to Learn

from Data

Learning
from Other

Models

IDA [269] FedAP [268]

Learning
from

Other Data

MetaMedSeg
[52]

Learning
from Data

Itself

Y-Net [55] DIAMANT
[267]

Learning
to Learn

Semantics

SGGen [63] Image
Generation

MIGS [53] SceneGenie
[54]

Image Ma-
nipulation

SIMSG [42] DisPositioNet
[50]

Fig. 4.1. A taxonomy of the published works in this thesis

In the first part, we start with learning from other models in a federated, collaborative and
distributed learning setting, where each model learns from the knowledge acquired from
other nodes without directly accessing their data. This setting poses several challenges, such
as non-iid data distribution, communication efficiency, and privacy preservation. We tackle
the problem of non-iid data distribution in this collaborative learning setting in two works.
IDA [269] proposes a parameter aggregation approach on the server to optimize the feature
learning for all the models, and in FedAP [268] we propose an adaptive personalization
approach based on meta-learning and hierarchical clustering to obtain higher performing
models at each node.

Then, we focus on learning from other data rather than other models. It is possible to take
advantage of other data with abundant labels information to improve the performance on a
target domain with scarce labels. This is particularly relevant for medical image segmentation,
where annotating images is costly and time-consuming. In MetaMedSeg [52] we optimize the
model to learn from other organs by optimizing it in a meta-learning setting for the few-shot
learning task. We show that our approach can achieve state-of-the-art results on several
medical image segmentation benchmarks.

Learning from other models and other data is nice, but learning from inherent structures
inside the data is even more interesting. Such inherent structures can be seen for example
in OCT images, where the images encode some high frequency noise or there are structures
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such as retinal fluid which are scattered in the image. Therefore, we propose YNet [55] which
extracts and combines spectral features with spatial features using Fast Fourier Convolution
(FFC) layers. By combining these spectral and spatial features, we can achieve better higher
performance in downstream tasks such as segmentation.

In the second part of thesis, we explore ways of using generative models and semantics to learn
a representation of the scene. This part mostly focuses on image generation and manipulation
using semantics by modeling the scene using a scene graph, a structured representation that
captures the objects and their relationships in an image. Scene graphs can provide a rich and
flexible way of expressing various visual concepts and scenarios. We propose several methods
to leverage scene graphs for different tasks, such as unconditional image generation, few-shot
image generation, and self-supervised image manipulation.

In SceneGraphGen [63], we learn the distribution of scene graphs from a large-scale dataset
of images and their corresponding scene graphs. We then use this learned distribution to
generate new scene graphs that are realistic and diverse. We show that using these generated
scene graphs as inputs for an image generation model can produce better quality images than
using ground truth scene graphs.

In MIGS [53], we address the problem of few-shot image generation using scene graphs in
new scenes that have not been seen by the model during training. We propose a meta-learning
framework that can quickly adapt to novel scenes by learning from a few examples. We
demonstrate that our method can generate more realistic and faithful images than existing
methods.

In SIMSG [42], we tackle the problem of self-supervised image manipulation without paired
data. We design a system that can manipulate an image according to a given scene graph by
changing the attributes or relations of objects in the image. We do not require any supervision
for this task, as we use cycle-consistency and perceptual losses to ensure that the manipulated
image matches the desired scene graph.

Finally, in DisPositioNet [50], we learn disentangled scene graphs from images in an unsu-
pervised manner. We propose a novel graph neural network architecture that can separate
the appearance and position information of objects in a scene graph. We show that this
disentanglement can enable various applications, such as position-aware image generation,
position transfer, and position interpolation.
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5Representation Learning

In recent years, representation learning has become a key component of machine learning,
providing an effective method for transforming raw data into meaningful and high-level
features [11]. Representation learning, particularly in deep learning-based approaches, has
shown outstanding performance in various tasks, such as image classification, natural language
processing, and more.

Representation learning is the process of learning meaningful and useful representations
of data that can facilitate subsequent tasks such as classification and segmentation [100].
The quality of the learned representations depends on several factors, such as the amount
and diversity of the available data, the choice of the learning objective, and the architecture
of the model. Depending on these factors, different variations of representation learning
can be distinguished, such as supervised, semi-supervised, unsupervised, and self-supervised
representation learning.

Supervised representation learning is a technique that uses labeled data to learn representa-
tions that are discriminative for a specific task, such as image classification or object detection.
The labels provide a direct supervision signal for the model to optimize its parameters and
extract relevant features from the data. Supervised representation learning can achieve high
performance on the target task, but it requires a large amount of annotated data, which
can be costly and time-consuming to obtain. Moreover, supervised representations may not
generalize well to other tasks or domains that have different distributions or labels [66].

Semi-supervised representation learning is a technique that uses both labeled and unlabeled
data to learn representations that are both discriminative and generalizable. The idea is
to leverage the abundant unlabeled data to learn rich features that capture the underlying
structure of the data, while using the scarce labeled data to guide the model towards the
target task. Semi-supervised representation learning can overcome some of the limitations
of supervised representation learning, such as data scarcity and overfitting. However, it also
poses some challenges, such as how to effectively combine the information from both types
of data, how to deal with noisy or incomplete labels, and how to evaluate the quality of the
learned representations.

Few-shot learning (FSL) has similarities to semi-supervised learning and has been a subject
of substantial research interest, with the goal of designing learning systems that can generalize
well from limited data [51, 242]. This approach is particularly valuable in real-world scenarios
where large amounts of annotated data are rarely available. Meta-learning, or learning to
learn, is a key concept underpinning few-shot learning, in which models are designed to
learn rapidly when exposed to new tasks [232]. Notable meta-learning approaches include
MAML (Model-Agnostic Meta-Learning) [60] and Reptile [167], both of which optimize the
learning process to adapt quickly to new tasks with limited data. In the extreme case of
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few-shot learning, we have zero-shot learning, which aims to perform tasks on classes not
seen during the training [256]. The goal is to leverage auxiliary information, such as semantic
attributes or text descriptions, to build a bridge between seen and unseen classes. The concept
of few-shot and zero-shot learning is now being extended to more complex tasks such as
image segmentation. Few-shot segmentation methods aim to segment new object classes with
only a few annotated examples [184], while zero-shot segmentation seeks to do so without
any labeled instances [249].

Unsupervised representation learning is a technique that uses only unlabeled data to learn
representations that are invariant or robust to irrelevant variations in the data, such as
translation, rotation, or scaling. The idea is to learn features that capture the intrinsic
properties or factors of variation of the data, without relying on any external supervision.
Unsupervised representation learning can be useful for discovering latent structures or patterns
in the data, such as clusters, manifolds, or hierarchies. However, it also faces some difficulties,
such as how to define a suitable learning objective, how to ensure that the learned features are
interpretable or meaningful, and how to measure the usefulness of the learned representations
for downstream tasks [66].

Self-supervised learning is an unsupervised learning method that generates pseudo-labels
from the data itself to enable training without human-annotated labels [43]. It benefits from
the vast amounts of unlabeled data available, transforming them into useful, high-dimensional
representations. A key technique used in self-supervised learning is contrastive learning,
which learns representations by comparing similar and dissimilar instances [69]. The recently
proposed DINO (self-distillation with no labels) technique builds upon this contrastive learning
approach, focusing on the alignment of global views with local ones [23].

Another important category of self-supervised representation learning is denoising autoen-
coders, which learn to reconstruct data from a corrupted version of itself, ultimately learning
useful data representations in the process [241]. These autoencoders have been pivotal in
unsupervised learning, demonstrating the ability to learn powerful representations from raw,
unlabeled data and have been a basis for Diffusion Models [192] which are the current state
of the art in image synthesis.

In sum, these approaches represent significant advances in the fields of representation learn-
ing, few-shot learning, and zero-shot learning. They all strive towards the same goal: to
develop more flexible, efficient, and data-economic learning systems. By improving these
methodologies, we move closer to creating machine learning models that can perform complex
tasks with minimal human supervision or with limited labeled data. In this part of the thesis,
we will explore and propose methods that tackle the challenges in representation learning
from various types of data.
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6Learning from Other Models

6.1 Introduction

Federated learning (FL) has emerged as a transformative paradigm for collaborative learning
that respects data privacy across different clients, drawing increasing interest in recent years
[120]. Its capacity to create a consolidated global model while maintaining the confidentiality
of individual client data sets it apart as an innovative strategy in data analysis. FL achieves
this by employing a server-side model aggregation mechanism, effectively learning from the
aggregated knowledge of all clients without compromising the privacy of individual data.

Despite its immense potential, FL presents certain challenges. Most prominently, the data
across different clients tends to be widely distributed, non-independent, and non-identically
distributed (non-iid), as well as unbalanced, posing significant complexities [83]. These issues
are particularly evident in the medical field, where data heterogeneity arises due to various
factors such as class imbalance in pathology [156], intra-/inter-scanner variability, intra-/inter-
observer variability, and multi-modal data [135]. Consequently, under such heterogeneous
conditions, models struggle to learn effectively in a distributed setting with non-iid data
distribution.

To address these challenges, we introduce two innovative methods: Inverse Distance Aggrega-
tion (IDA) [269] and Adaptive Personalization (FedAP) [268]. Both approaches are designed
specifically to manage non-iid and unbalanced data within the context of FL.

In addition to dealing with general FL challenges, it is vital to recognize and address compli-
cations resulting from the varying participation rates of clients. A flexible model capable of
adapting to fluctuating participation rates is critical for ensuring the robustness and validity of
the learning process. Our proposed methods consider this crucial factor and offer solutions
capable of performing efficiently even when client participation is less than optimal.

Although the potential of FL is profound, especially in the healthcare sector [210], existing
methodologies have failed to adequately consider the role of aggregation mechanisms amid
data and system heterogeneity. Our contribution directly confronts this issue, providing
strategies capable of effectively handling non-iid data and variations in client participation.

IDA offers an aggregation strategy that computes adaptive weighting based on meta-information
derived from the statistical properties of model parameters. This technique diminishes the
effect of non-iid and unbalanced data, leading to the creation of a more reliable global model.
It helps to alleviate the divergence problem often encountered by FL systems, thereby boosting
overall model performance.
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On the other hand, FedAP acknowledges the unique data distribution associated with each
client, treating each as a separate learning task. By using meta-learning principles, the method
is designed to learn how to learn, thereby personalizing the model to each client’s unique
characteristics. This personalization fosters better model convergence and overall performance,
while ensuring robustness to heterogeneity.

Our goal in FedAP is to enhance personalization, and to achieve this, we are treating Feder-
ated Learning (FL) as a meta-learning [60, 167] problem. By integrating a meta-learning
schema with clustering, we highlight its benefits, including improved personalization, better
preservation of specialized data, and expedited model convergence.

Meta-learning, alternatively referred to as learning to learn [239], is the process of effectively
learning how to resolve new tasks from a collection of known tasks [60]. In the context of
FL, clients can be seen as meta-learning tasks, as each client’s data distribution represents a
unique problem. Therefore, the application of meta-learning concepts to FL has been successful
[24, 47, 98, 116]. Following the MAML approach [60], we cluster clients with analogous
distributions into groups of tasks, effectively transforming each cluster into an independent FL
problem. This enhances the homogeneity of the data shared among the clients within their
respective clusters. Despite the data in FL not being directly accessible, we assess the similarity
between clients based on the value differences in model parameters between the clients
and the global model from the most recent round. Briggs et al. explored a technique that
uses hierarchical clustering to group similar models [17]. We adopted this approach for the
personalization of clients’ models, merging it with our Adaptive Personalization (FedAP) for
the final cluster-based training. We maintain the simplicity of FedAvg [98], yet we differentiate
in two key areas: 1) FedAP views the consolidated global update as a meta-level gradient that
can be employed with a different optimizer to refresh the global model, thereby introducing
a new hyperparameter - the meta-learning rate, and 2) At the completion of the training,
FedAP customizes the global model for each client, providing a robust advantage within the
FL context [47, 98].

Our solutions are evaluated across multiple datasets, proving their efficacy in handling the
challenges associated with FL. We demonstrate improved classification accuracy, reduced
accuracy variance between clients, and enhanced robustness against non-iid data, positioning
our approach as a step forward in the application of FL.

Visualizations of IDA and FedAP pipelines are presented in Figure 6.1 and Figure 6.2, respec-
tively. The main contributions of this chapter are as follows:

• We propose IDA and INTRAC, two model aggregation techniques to tackle the non-IID
data distribution problem in the federated learning setting.

• We introduce FedAP, a novel method employing hierarchical clustering to enact adaptive
personalization within the clusters and for each client, when dealing with non-IID
(non-identical or independent) data.

• Our methods register substantial performance enhancements in classification accuracy
and in the reduction of accuracy disparity between different clients.
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The subsequent sections of this work delve into the detailed methodology of both the IDA and
FedAP, followed by a comprehensive showcase of our experimental results. By demonstrating
the tangible benefits of our approach in dealing with the realities of non-iid data in federated
learning environments, we hope to illuminate a new pathway for the application of FL,
particularly in medical imaging.

Fig. 6.1. IDA. Federated learning with non-iid data - The data has different distributions among clients.

6.2 Related Work

Federated Averaging (FedAvg) [158] is one of the most well-known FL methods which uses the
normalized number of samples in each client to aggregate the models in the server. FedAvg
(federated averaging) [158] was proposed as one of the first FL algorithms and has been used
as a standard benchmark.

Another aggregation approach using temporal weighting along with a synchronous learning
strategy was proposed in [27]. Many recent approaches have been proposed in order to
improve the generalization or personalization of the global model using the ideas of knowledge
transfer, knowledge distillation, multi-task learning and meta-learning [10, 24, 34, 94, 98,
131, 219].

HAM10k 
dataset

34 clients client 1 client 2 client 34 clusters cluster training

1) 2) 3) 4)

Fig. 6.2. FedAP. The pipeline has four steps: 1) splitting the dataset, 2) training all clients with FedAvg for
predefined rounds, 3) clustering the clients based on the latest model update, 4) performing FedAvg or
FedAP on each separate cluster.
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A large number of recent works on FL such as [143, 204] are focused on communication
efficiency due to its application on edge devices with unstable connections [135], commonly
using approaches such as compressed networks or compact features, however FL’s most
determining aspects in the medical field are data privacy and heterogeneity [109, 190].

Non-IID data in FL Non i.i.d. data is shown to impact both the convergence speed and the
final performance of the FedAvg algorithm [138, 204]. [138, 288] tackle data heterogeneity
by sharing a limited common dataset. Motivated from classical machine learning techniques
[135] introduces a weight regularization term to the local objective function to prevent the
divergence between local and global models. Recently, a semi-supervised learning approach for
federated learning on the ISIC skin lesion dataset was proposed [8, 9]. Yue et al. [275] surveys
on the data availability and heterogeneity in the medical domain, concluding that privacy
restrictions and missing data pipelines block the full potential of deep Learning which requires
big data sets. The described advances in the field of federated learning can help overcome the
challenge of medical data privacy and disseminate machine learning techniques in healthcare
[209]. Notably, data heterogeneity remains a significant hurdle to this development, so robust
techniques towards non-IID data carry considerable future potential [190].

There has been numerous works to handle each of these data assumptions [108]. Sattler et
al. [203] propose clustering loss terms and using cosine similarity to overcome the divergence
problem when clients have different data distributions. Zhao et al. [288] overcome the
non-iid problem by creating a subset of data which is shared globally with the clients. In order
to maintain system heterogeneity (affected by their main idea of nonuniform local updates),
FedProx [136] proposes a proximal term to minimize the distance between the local and
global models. Close to our approach, geometric median is used in [179] to decrease the
effect of corrupted gradients on the federated model.

FL in healthcare In the last few years, there has been a growing interest in applying FL in
healthcare, in particular, to medical imaging. Sheller et al. [210] were among the first works
who applied FL to multi-institutional data for Brain Tumor Segmentation task. To date, there
has been numerous works on FL in Healthcare [87, 137, 209, 210, 260].

Personalization A study on live data of millions of users shows that significant improvements
can be achieved by personalizing the learning rate and batch size to clients [248]. FedOpt
[186] extends the FedAvg algorithm and implements personalization by introducing adjustable
gradient update strategies for each client and server. Employing weight decay over training
rounds on the server-side is shown to be required to lower the error on non-i.i.d. data [138].
[3] proposes to learn base layers globally while keeping classification layers private on the
client-side. FedMD [131] introduces a framework for individually designed by each client. The
MOCHA [219] enables efficient meta-learning in the federated environment. Communication
efficiency in federated learning is also addressed in [204] suggesting a compression protocol
based on quantization.

18 Chapter 6 Learning from Other Models



6.3 Definitions

We are given a set of M clients, where each client i ∈ {1, . . . ,M} only sees its local dataset,
which is a subset Si ∼ Di of the global data distribution D and x1, ..., xNi

= Si, where S ∼ D
is the sampled data points and x1, ...xN = S and Di is the client’s local data distribution.

A neural network with parameters denoted by θ, where θglobal corresponds to the global model
parameters is shared between the server and thee clients. The objective is to train a global
model minimizing the following objective function:

min
θglobal

L(S) = min
θglobal

1
M

M∑
i=1

lθglobal
(Si) (6.1)

where L is the global loss function and l the local loss function of each client.

6.3.1 Client

A client is selected randomly from a total of M clients, considering the participation rate pr.
Each client i receives the global model parameter θtglobal at the communication round t and
trains the shared model, initialized by θtglobal, on its training data Si for E iterations. This
process minimizes the local objective function fi(x) = Ex ∼ Si[f(x; θti)], where θti are the
weight parameters of the client i. Each client’s training data is a subset of the entire training
data, possibly sampled from different classes of data, denoted by ncc.

6.3.2 Server

The server plays a crucial role in each round t, aggregating the updated local parameters θti
from the clients to form the updated global parameter θtglobal, defined as:

θtglobal =
M∑
i=1

αi · θt−1
i . (6.2)

In this equation, αi represents the weighting coefficient. This aggregation procedure is
repeated for the total communication rounds T .

6.3.3 Federated Averaging

Assume that there are M clients, and Ni = |Di| denotes the quantity of data samples available
with client i. The global and local loss functions can be formulated as:

f(θ) =
∑

i = 1M Ni
N
Fi(θ) where Fi(θ) = 1

Ni

∑
jfj(θ) (6.3)

In this equation, Fi(θ) refers to the local objective specific to each client, and f(θ) represents
the global objective, computed as an average across all clients.
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The training process using FedAvg incorporates two fundamental updating mechanisms:

• Firstly, local training is carried out at the clients, using a model initially distributed
among them. This model is trained on their local data for a predefined number of epochs,
denoted by e. In each communication round, client i updates its model parameter θi,
employing a learning rate α, as specified in the equation,

∀i, θt+1
i ← θti − α ·∆θ (6.4)

• Secondly, the server carries out a computation, calculating a weighted average. This
calculation is based on the number of data points Ni held by each client i and uses all
locally updated model parameters θi. This process is captured in the equation:

θt+1
global ←

M∑
i=1

Ni
N
θt+1
i (6.5)

In this manner, the FedAvg algorithm effectively combines the benefits of local client-side
computation and global server-side updates, enabling efficient collaborative learning.

6.4 Inverse Distance Aggregation (IDA)

To alleviate inconsistencies arising among local parameter updates due to non-IID challenges,
we introduce an innovative and robust method for aggregation, termed Inverse Distance
Aggregation (IDA). This method hinges on the manner in which coefficients αi are computed.
This computation is based on the inverse distance of each client’s parameters from the average
model of all clients, an approach designed to downplay or dismiss out-of-distribution, or
’poisoning’, models.

To achieve this, we utilize the `1-norm to determine the distance between the parameters of
each client θi and the average parameters θAvg, as shown in the equation:

αi = 1
Z
|θt−1Avg − θt−1i|−1, (6.6)

Here, Z =
∑
i∈M |θt−1Avg − θt−1i|−1 serves as a normalization factor. To avert numerical

instability, we introduce ε to both the numerator and denominator. When a client’s parameters
align with the average, we get αi = 1, and when αi = ni, it corresponds to the FedAvg [158].

Furthermore, we propose the utilization of the training accuracy of clients in the final weight-
ing, a method we term INTRAC (INverse TRaining ACcuracy). This method penalizes over-
fitted models and rewards under-trained ones within the aggregated model. For INTRAC,
coefficients are determined as α′i = Z′

max( 1
M ,acci) , where the max function ensures all values

exceed chance level. In this equation, acci stands for the training accuracy of client k, α′i
represents the INTRAC coefficient, and Z ′ =

∑
i ∈Mmax( 1

M , acci) is the normalization
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factor. These calculated coefficients, α′i, are then normalized again to fit within the (0, 1]
range. Lastly, to integrate different coefficient values (i.e., INTRAC, IDA, FedAvg), we multiply
and then normalize the coefficients to fit within the (0, 1] range.

6.4.1 Experiments and Results

Our proposed method was assessed on a variety of widely used databases to provide a Proof-
of-Concept (PoC) demonstration, followed by an illustration of results on a real-world clinical
use case. We compare the results obtained from our proposed method, the IDA, with the
established baseline method, FedAvg [158]. The first sequence of PoC trials aims to explore
the following aspects:

1. Non-IID vs. IID: Comparative analysis of FedAvg and IDA under both IID and non-IID
conditions, utilizing various datasets and architectural frameworks.

2. Ablation Study: Investigation into the efficacy of IDA in relation to FedAvg.

3. Sensitivity Analysis: A performance comparison under extreme conditions.

Datasets The evaluation results of our method are exhibited across three distinct datasets:
cifar-10 [122], fashion-mnist (f-mnist) [257], and HAM10K (an assortment of dermatoscopic
images of pigmented lesions) [236]. F-mnist, a recognized derivative of mnist, contains
50k images of 28× 28 monochromatic clothing items. Cifar-10, another dataset commonly
employed in computer vision research, offers 60k 32 × 32 images of various vehicles and
animals. For the clinical study, we assessed our method utilizing the HAM10k dataset, which
encompasses a total of 10015 images of diverse pigmented skin lesions classified into 7 groups.
The classes and their respective sample counts in HAM10k are: Melanocytic nevi: 6705,
Melanoma: 1113, Benign keratosis: 1099, Basal cell carcinoma: 514, Actinic Keratoses: 327,
Vascular lesions: 142, Dermatofibroma: 115. We selected this dataset due to its pronounced
imbalance.

Implementation Details The specific training configurations for each dataset were as follows:
For f-mnist, we utilized the LeNet architecture [127] designed for 10 classes, with a batch
size of 128, learning rate (lr) of 0.05, and a local iteration value of 1 (E=1). For cifar-10,
we employed VGG11 [216] without batch normalization and dropout layers, designed for
10 classes with a batch size of 128, lr of 0.05, and E=1. In the case of the HAM10K dataset,
we employed the Densenet-121 architecture [86], designed for 7 classes, with a batch size of
32, lr of 0.016, and E=1. For all experiments, 90% of the images were randomly chosen for
training, with the remainder being used for evaluation. All models underwent training for a
total of 5000 rounds. Unless specified otherwise, these values were kept consistent across all
experiments.

Evaluation Metrics In all experiments, we partitioned a portion of each client’s dataset to
act as its test set, and we reported the accuracy of the global (aggregated) model on the
combined test sets of all clients, as well as the local accuracy of each client on its own test
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Tab. 6.1. Comparison to the baselines on cifar10 and f-mnist with different number of classes per client in iid and
non-iid scenarios

ncc 3c 5c iid
Dataset

Method
pr 30% 50% 100% 30% 50% 100% 100%

FedAvg 63.20 65.11 69.81 19.68 83.11 80.94 87.77
cifar-10

IDA 64.36 67.70 70.80 76.06 83.55 83.82 89.46
FedAvg 86.23 87.09 87.45 87.60 87.81 87.16 86.95

f-mnist
IDA 87.64 87.61 87.44 87.93 87.89 87.46 87.10

Tab. 6.2. Ablation study of various weighting combinations on the F-MNIST and CIFAR-10 datasets with ncc = 3,
pr = 30%.

f-mnist cifar-10
Method

Settings
K=10 K=10 K = 20

Mean 87.47 65.82 84.80
FedAvg 86.23 63.20 22.84

IDA 87.64 64.36 83.98
IDA + FedAvg 86.67 67.29 82.14
IDA +INTRAC 88.33 64.93 85.23

data. This process helps us gauge the representativeness of the global model with respect to
the combined dataset. We reported classification accuracy for all experiments.

Proof-of-Concept Experiments
Non-IID vs. IID In this section, we evaluate and compare IDA to FedAvg on f-mnist and
cifar-10 datasets across various data distribution scenarios among clients. Table 6.1 illustrates
the outcomes in scenarios of balanced data distribution, where all clients possess an equal
or similar number of samples for ncc ∈ 3, 5, 10(iid) and pr ∈ {30%, 50%, 100%}. Our findings
indicate that IDA exhibits superior or comparable performance to FedAvg across all balanced
data distribution scenarios.

Ablation Study In this section, we investigate the impact of various components of the
weighting coefficients. For this purpose, we undertake an evaluation of all the proposed
components on the CIFAR-10 and F-MNIST datasets. Our findings are compared against two
baseline methods, specifically FedAvg and an alternative baseline where αi = 1, which is
referred to as Mean and demonstrated in Table 6.2. Furthermore, we assess the fusion of
our weighting method with the number of samples per client (IDA + FedAvg) as well as the
incorporation of each client’s training accuracy into the weighting scheme (IDA + INTRAC).
The results underscore that merging diverse weighting schemes can enhance the performance
of the global model within Federated Learning (FL). This validates our hypothesis that, if
a subset of clients possess lower quality or malicious models, FedAvg would be susceptible.
However, our methods can mitigate the influence of poor models (overfitted, low quality or
malicious models) thus leading to a more robust final model that performs optimally on the
federated dataset.

Sensitivity analysis In real-world applications, the stability of the learning process under
less-than-ideal conditions is crucial. In FL, there is no obligation for participants to contribute
in each round, leading to potentially varying participation rates during different training
rounds and the possible presence of suboptimal models at any given time. Moreover, it is
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quite plausible that some clients may have a scarce amount of data samples, while others
may possess a large volume of data. In this section, we explore the performance of the global
model under conditions of low participation rate and severe non-IIDness.

Low Participation Rate in Non-IID Distribution To examine the impact of the participation
rate, we employed 1000 clients on the F-MNIST dataset, with parameters set as follows:
batch size=30, learning rate=0.016, number of communication rounds=3, and up to 500
samples per client. In this experiment, we find that, despite the relative ease of learning from
this dataset, reducing the client participation rate hampers performance (as demonstrated
in Figure 6.3). Notably, the model trained using FedAvg fails when the participation rate drops
to 1%. However, as the participation rate rises to 5%, the model recovers and continues to
learn. Both IDA and IDA + FedAvg exhibit robust performance in both scenarios, underscoring
their resilience against fluctuations in participation rates.

Fig. 6.3. Left: participation rate pr= 0.01; Right: pr = 0.05. The participation rate significantly influences
the stability of federated learning. As demonstrated, IDA consistently exhibits stable performance,
showcasing a marked advantage over FedAvg.

Severity of Non-IID In order to evaluate the influence of non-IID conditions on the perfor-
mance of our method, we devised an experiment where the number of data samples from
underperforming clients was increased.

Initially, we conducted our training according to the parameters established in the preceding
sections. Subsequently, we selected the three clients with the lowest accuracy following the
initial training and doubled their sample count in the training data distribution. The training
was then repeated with this newly generated data distribution.

This experiment was designed to assess the effects of the FedAvg weighting in a scenario
where underperforming clients were attributed higher weight. As shown in Figure 6.4, prior
to increasing the number of samples, IDA outperformed the other methods by a small margin.
However, following the sample increase in the three selected clients, FedAvg’s performance
significantly deteriorated at the start of training.

By considering the performance of the Mean aggregation, we can infer that IDA plays a crucial
role in the learning process.
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Fig. 6.4. Accuracy of the global model for clients with non-IID data distribution on the CIFAR-10 dataset. On
the right, the experiment conditions remain the same as on the left, but with an increased number of
samples for three clients that initially had poor performance. The local distribution of data points for
those three clients remained unchanged. This experiment was conducted on the CIFAR-10 dataset with
K = 10 clients, ncc = 3, E = 2, learning rate of 0.01, and a random number of samples per class per
client, up to 1,000 samples.

Clinical Application We applied our proposed method to the HAM10k dataset and presented
our findings in Table 6.3. Although the global accuracy of the model utilizing IDA is comparable
to that of FedAvg, it’s evident that the local accuracy (accuracy of clients on their own test set)
achieved with IDA exceeds that of FedAvg in every scenario. This demonstrates that IDA offers
superior generalization and a reduced variance in the local accuracy of clients.

Tab. 6.3. Comparison on an unbalanced data distribution among clients in a federated setting, with five random
classes per client, and a random number of samples per client for the HAM10k dataset.

Method ncc Global Accuracy Local Accuracy
FedAvg 1 69.72 60.52± 9.20

IDA 1 69.16 61.21± 8.79
FedAvg 2 62.23 57.14± 10.84

IDA 2 61.21 60.21± 5.48
FedAvg 10 (iid) 63.5 52.88± 15.73

IDA 10 (iid) 63.72 57.38± 10.56

6.5 Federated Adaptive Personalization (FedAP)

In this section, we elucidate the process of our proposed federated adaptive personalization
method (FedAP), and detail the integration of hierarchical clustering within our approach.
Later, we present and discuss the results of our experiments using FedAP.

Our FedAP methodology commences with the initialization of the global model parameters,
denoted as θglobal. As each of the k federated rounds starts, these parameters are transmitted
to a set of n clients, chosen randomly. This initiates the local training phase in each client i,
resulting in the creation of updated local model parameters, θi.

Subsequently, an update of θ is carried out using an adaptive meta learning rate, η, which is
determined based on the current round number. This rate possesses a unique property - it
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diminishes linearly throughout the training process. The equation given below represents this
phase of model parameter adjustment:

θglobal ← θglobal + η

n∑
i=1

Ni
N

(θi − θglobal) (6.7)

Once the final federated round is completed, a personalization step is undertaken for the local
model parameters of all clients i ∈ 1, . . . ,M . This involves conducting a fixed number of
gradient optimization epochs on the local training data, tailoring the models more closely to
the respective client data distributions.

6.5.1 Hierarchical Clustering

In this section, we explain how the personalization of local models can be further enhanced by
exploiting the similarities in data across different clients. With this goal in mind, we propose
to employ hierarchical clustering, a method previously presented by Briggs et al. [17], after
a preliminary phase of global federated learning that includes all the clients. Once FedAvg
has been executed for a predetermined number of federated rounds, we conduct hierarchical
clustering of clients based on their model updates in the current round. Each cluster of clients
that emerges from this process is then treated as an independent federated learning scenario,
wherein either FedAvg or our proposed FedAP methodology is applied.

Our underlying hypothesis here is that, even though each distribution Di is distinct, these can
be grouped based on similarity. Drawing from [17], we introduce a unique model θc for each
resulting cluster c ∈ C, where C represents the set of all clusters, and θC signifies the set of
all cluster model parameters.

We denote the data distribution in each cluster by Dc, where Sc ∼ Dc refers to the data
points, and s1, ..., sNc = Sc. By incorporating these clusters into equation (1), we derive the
subsequent global and local loss function for each cluster c:

min
θC

L(S) = min
θC

1
|C|

∑
c∈C

lθc(Sc) lθc(Sc) = 1
|c|
∑

i ∈ clθc(Si) (6.8)

We can further personalize this model, enabling each client to have its unique model, leading
to equation (2):

min
(θ1,...,θM )

L(S) = min
(θ1,...,θn)

1
M

M∑
i=1

lθi
(Si) (6.9)

Both equation (2) and equation (3) introduce additional flexibility, thereby enabling a more
nuanced learning of the sampled training data points from the corresponding distributions,
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compared to a single model as demonstrated in equation (1). The resultant inequality can be
summarized as:

min
θglobal

L(S) ≥ min
θC

L(S) ≥ min
(θ1,...,θM )

L(S) (6.10)

While Equation 6.10 establishes the concept of each client learning its own model to diminish
the loss on its respective distribution, it’s important to note that this approach could potentially
limit the amount of data available for training. As illustrated by theoretical research in deep
learning, the generalization error of models can increase if the volume of training samples
decreases. This is also observed in practical scenarios and is exhibited as the overfitting
phenomenon.

To uphold optimal generalization performance, we propose a multi-tiered training approach
that captures information from the maximum number of training samples, simultaneously
reducing the complexity each model needs to tackle in a step-wise manner. We initiate with a
comprehensive training across all clients, aiming to identify a global model, denoted as θglobal,
designed to learn basic features spanning the entire distribution. Following this, we cluster
the clients and launch training within these clusters. The models derived from these clusters,
represented as θC , are subsequently personalized in the final step by conducting local training
on each client i, culminating in the creation of a uniquely tailored model θi for each client.

6.5.2 Experiments and Results

In this section, we outline the experimental design and share the findings from our conducted
experiments. Detailed discussions concerning the dataset, data preprocessing, and the data
split implementation for federated learning can be found in section 6.5.2. Our proposed
approach, involving personalized models configured through clustering, is compared to two
baseline methodologies. The first is a conventional supervised model designed within a
centralized setting, and the second is FedAvg [158]. Additionally, we explore the results
of integrating clustering and personalization elements with existing strategies, focusing
specifically on the HAM10k skin lesion dataset [236].

Experimental Setup
In this experimental setup, we utilize a pre-trained MobileNetV2 model [199, 202], initially
trained on ImageNet, as our foundational classifier for all the baselines as well as our proposed
model.

Hyperparameter tuning was carried out with a designated validation set, ensuring no overlap
with the test set for the centralized model. For the federated learning experiments, we
implemented a two-step process for hyperparameter optimization: Initially, all clients were
generated utilizing a consistent random seed, while hyperparameters were optimized against
each client’s respective test sets. Subsequently, we regenerated all clients using a different
random seed for evaluation purposes, and a final learning curve was established based on the
previously fixed hyperparameters.
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Key hyperparameters that were optimized include the learning rate, batch size, and the number
of local training epochs. The final values that were obtained were then consistently applied
across all experiments. Models were optimized using the Stochastic Gradient Descent (SGD)
optimizer, with a learning rate of 0.001, internal epochs set to e = 1, inner personalization
epochs set to 7, inner batch size at 16, initial and final meta-learning rates defined as η0 =
1.0, ηi = 0.46, total federated rounds k = 220, and meta batch size n = 5.

For the Federated Adaptive Personalization (FedAP) experiments, SGD was also employed for
global training, resulting in the global update rule being defined as θ ← θ+η ·∆θ. Furthermore,
the adaptive weight was designed to decrease linearly with the number of federated rounds,
transitioning from specified initial to final values.

In the experiments involving Hierarchical Clustering (HC), the models underwent training
with 20 cluster initialization rounds, and utilized the Euclidean distance metric, a ward linkage
mechanism, and a maximum distance of 5.

Dataset and Preprocessing The evaluation of our method employs the HAM10k dataset
[236], a collection encompassing 10,015 dermatoscopic images depicting seven distinct
types of skin lesions. Ground truth labels in HAM10k are ascertained through multiple
methods - histopathology in over half of the cases, alongside follow-up examination, expert
consensus, or in-vivo confocal microscopy. The preference for HAM10k is primarily driven
by the dataset’s inherent non-IID nature and significant imbalance. In order to mitigate the
dataset’s imbalance, we adopted a strategy of random undersampling [59], thus limiting the
training set to a maximum of 500 randomly sampled images from each lesion class.

Federated Data Partitioning Clinical datasets frequently exhibit low statistical heterogeneity
[255], a property that poses significant challenges to machine learning methodologies. With
this in mind, our clients were designed to exhibit highly non-IID data distributions, effectively
representing this ubiquitous problem. The images within each class were segmented into 35
groups, and clients were then randomly allocated two distinct partitions from different classes
until all partition pairs were exhausted. This led to the creation of 34 clients, each receiving
a total of 70 images from two classes (for a distribution heatmap, see the supplementary
material). These 70 images were subsequently randomly partitioned into training and test
sets, maintaining an 80:20 split within each client.

Results and Discussions

In this section, we showcase the outcomes of our experimental evaluation and benchmark our
proposed model against preceding studies. To accommodate the number of personalization
rounds within FedAP and initialization rounds in HC, we base the accuracy values reported in
Table 6.4 on the cumulative number of training steps across all models.
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Fig. 6.5. Test Accuracy Averages Across Various
Rounds. This figure depicts the classifi-
cation accuracy, averaged over all clients,
highlighting the improvement in the con-
vergence rate facilitated by both FedAP
and HC.

Method Accuracy (%)

Centralized 76.8

FedAvg [158] 41.1 ± 34.31

FedAvg + HC [17] 44.1 ± 20.86

FedAP (Ours) 84.1 ± 14.53

FedAP + HC (Ours) 86.9 ± 12.81

Tab. 6.4. Results. This table offers a comparison of
our methods versus the baselines on the
non-IID HAM10k dataset. The values re-
ported for federated models are based on
the mean and standard deviation across
all clients.

A conventional centralized training setting was established as a benchmark to measure the
results of the more restricted federated learning experiments. In this setup, global training
and test datasets were created by consolidating all the training and test data from each client.
Given the access to data from all clients, this model yields significantly better performance
compared to FedAvg.

FedAvg registered the least satisfactory performance among all the methods. Its learning curve
exhibited substantial fluctuation, indicative of the single global model’s inability to grasp the
necessary features across diverse learning tasks, due to the differing data distributions across
clients. This underscores FedAvg’s vulnerability in highly non-IID data scenarios, aligning with
initial indications from prior studies [138, 204, 288].

FedAvg + HC For the FedAvg + HC experiment, several rounds of FedAvg (defined by the
"cluster initialization rounds" hyperparameter) were conducted prior to initiating the clustering
process. Subsequently, clients were categorized based on their local updates using hierarchical
clustering, as suggested by Briggs et al. [17]. Within these individual clusters, traditional
FedAvg training was carried out. The global accuracy was derived by averaging the test set
accuracy across all clients. The application of hierarchical clustering boosted the overall
convergence speed of FedAvg. A noteworthy surge in accuracy, along with an enhancement in
the final model performance, becomes apparent post-clustering in Figure 6.5. This suggests
that a pseudo-homogeneous learning setting is reestablished within the clusters, validating
the notion that model updates can indeed represent data distribution. Nevertheless, this
approach still trails significantly behind FedAP, highlighting the indispensable role of model
personalization in highly non-IID data settings.

FedAP Similar to FedAvg, FedAP draws a random sample of n clients at each round. The
evaluation of FedAP followed the same process as FedAvg, with the exception that after
the global model was disseminated, it was personalized to individual clients by executing
several gradient optimization steps on their respective local training sets. Following this
personalization, the model was assessed on the test set, and a global accuracy score was
computed by averaging all local test set accuracies. The global model for FedAP demonstrated
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continuous learning, while the personalization step facilitated adaptation to the diverse client
distributions. This method, particularly the personalization aspect, performed exceptionally
well under an extreme non-IID setting with simplistic underlying tasks.

FedAP + HC The FedAP + HC experiment mirrored the methodology of the previous one,
with the distinction that adaptive personalization was implemented subsequent to hierarchical
clustering. As in the FedAvg + HC experiment, clusters were created based on the clients’
model updates after an initial 20 rounds of FedAvg. The FedAP + HC approach achieved the
best overall performance in comparison to all other strategies. The learning curve behavior
was akin to that observed in FedAvg + HC, as it expedited the algorithm’s convergence speed,
which is evidenced by the immediate surge in balanced accuracy following clustering, as
depicted in Figure 6.5. Even though the FedAP + HC model surpassed other federated settings
in terms of performance, it was found to be susceptible to overfitting during extended runs.
In other words, if both FedAP and FedAP + HC were trained for an additional 500 rounds
or so, the performance of FedAP remained constant or saw negligible improvement, whereas
the performance of FedAP + HC began to decline. We theorize that this is indicative of the
global model’s enhanced adaptability to disparate tasks compared to the cluster models. The
fundamental concept of meta-learning stems from the ability to learn from a multitude of
distinct tasks. Given that clustering clients (which represents the meta-learning task in a
federated learning scenario) reduces the diversity of tasks within each cluster to learn from,
this could potentially explain the FedAP + HC model’s proclivity towards overfitting during
extended training periods.

6.6 Conclusion

In this chapter, we delve into two innovative methodologies tailored to federated learning,
both designed to confront the issue of non-Independent and Identically Distributed (non-IID)
data.

The first methodology introduces a novel weighting scheme for the aggregation of client
models. This strategy is designed to operate efficiently in a federated learning context
characterized by non-IID and unbalanced data distribution. By calculating weights based
on statistical meta-information, this approach assigns higher aggregation weights to clients
whose data is closer to the global average. We also propose an additional weighting technique,
INTRAC, intended to normalize models and mitigate the influence of overfitted models on
the shared model. This method proves particularly resilient to low-quality or poisonous data.
Intriguingly, we found that if the majority of clients’ models align well, they can counteract
out-of-distribution models. This approach proves advantageous over Federated Averaging
(FedAvg), which assumes that clients with more data should inherently have more influence
on the global model. Our experiments reveal that this proposed method surpasses FedAvg in
classification accuracy, particularly in non-IID scenarios.

Our second methodology for federated learning involves an adaptive model parameter weight-
ing strategy combined with hierarchical clustering. This technique allows for better adaptation
of the local client models to their unique data distribution, while still benefiting from the
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global aggregation of various client model updates. By clustering clients based on the simi-
larity of local model updates, we can approximate an IID setting within respective clusters.
This approach has demonstrated significant improvements in classification accuracy when
tested on the HAM10k dataset with the MobileNetV2 network, surpassing both the standard
supervised learning and the FedAvg baseline. The reduced standard deviation in comparison
to previous works indicates the superior generalizability of all client models. Moreover, hierar-
chical clustering increases the convergence speed and supports the creation of superior global
models.

Both of these methods provide valuable contributions to federated learning, especially in the
context of non-IID data.
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7Learning from Other Data

7.1 Introduction

Segmentation of medical images serves as a valuable tool in assisting healthcare professionals
with diagnosis. The advent of deep learning has fostered high accuracy in organ and tumor
segmentation [160, 193]. However, despite these advancements, conventional supervised
learning scenarios often necessitate a significant amount of labeled data. While there can be an
ample supply of labeled data for certain organs, such as the liver, it can be drastically limited
for others. An initial solution to this constraint was transfer learning, a method where a neural
network is pre-trained on a substantial labeled dataset (source domain) and subsequently
fine-tuned on a smaller labeled data set (target domain) [191].

Few-shot learning, a technique that aspires to learn from a limited number of examples,
has gained substantial popularity as another approach. One recent application of few-shot
learning is the detection of COVID-19 using chest X-rays [92]. Few-shot methods can be
broadly categorized into augmentation-based learning and task-based meta-learning. In this
study, we concentrate on the meta-learning approach, which encompasses various forms:
metric learning (for instance, prototypical networks [220, 247, 262]), memory-based learning
[85, 245], and gradient-based methods. While few-shot learning for image segmentation
has been a dynamic research area [5, 15, 62, 149, 214, 233, 234], there are a handful of
works [37, 163] that concentrate on few-shot medical image segmentation. Another strategy
to minimize the need for supervision in medical image segmentation involves the use of
superpixels as pseudo-labels for self-supervised segmentation [173].

In this study, we adopt the meta-learning approach, specifically utilizing a recent adaptation of
the Model-Agnostic Meta-Learning (MAML) algorithm—Reptile [167]. Reptile is a simple yet
effective algorithm that affords expansive opportunities for experimentation. Our focus lies
on two principal components of gradient-based meta-learning: task definition and gradient
aggregation. Here, ’gradient aggregation’ refers to the updating of the meta-model’s weights,
while ’task definition’ involves the formulation of tasks by sampling pairs of images and their
corresponding segmentation maps based on established criteria. We put forth a volume-based
task definition explicitly crafted for volumetric data and introduce a weighting mechanism
for the aggregation of gradients in each meta-training step. This mechanism is particularly
advantageous when dealing with non-Independent and Identically Distributed (non-IID)
data.

This work primarily introduces a novel concept of volumetric task definition. We demonstrate
that task-specific optimization of local models can be enhanced by sampling data from a single
volume per task, enabling better control over the variability of shots. This stands in contrast
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Fig. 7.1. The diagram on the left showcases the meta-training process conducted on source organs. This process
involves defining specific meta-training tasks and assigning weights to these tasks according to their
relative significance. Here, θ stands for the parameters of the meta-model, while φ′ symbolizes the
model currently under meta-training. Once meta-training is completed, the model, now characterized by
the parameters φ, undergoes the final fine-tuning phase on the target organ.

to conventional settings where tasks are randomly sampled and may end up with images
from similar parts of the volume (e.g., just the initial slices from different volumes). In our
approach, we ensure a certain level of diversity among the shots while limiting the overall
diversity of the source set, as each volume is linked to a fixed, limited number of shots (for
example, 15), and other shots are not involved in training. As shown in [208], this approach
can positively influence the training process.

Our second contribution lies in the development of an importance-aware weighting scheme. In
the traditional Reptile framework, gradients of sampled tasks are averaged in each meta-epoch.
Conversely, in our proposed method, gradients are weighted based on the importance of each
task, defined as the distance between a local model trained on a given task and the average of
all models trained on other tasks. This weighting mechanism has been previously proposed in
the federated learning framework [269] for non-IID data. We argue that by attributing less
weight to tasks that significantly deviate from the average model, we minimize the influence
of outlier data, potentially averting catastrophic forgetting—a neural network’s tendency to
lose previously learned information [12]. This method could also serve as a regularization
mechanism to prevent overfitting when tasks are similar, and enhance the training when the
cross-domain distance is substantial.

Our evaluation demonstrates that the introduced volumetric task definition and weighted
gradient aggregation enhance the accuracy of the segmentation. We assess our method under
two distinct settings: (1) a few-shot setting, wherein models are fine-tuned using a small
number of shots, and (2) a full-data setting, wherein the model is fine-tuned using all available
data for the target organ. We juxtapose our results with several baselines: (1) supervised
learning with random initialization, (2) supervised learning employing transfer learning
initialization, (3) the Reptile baseline, both with and without our proposed volumetric task
definition, and (4) few-shot cell segmentation by Dawoud et al. [37], which is the most
directly related work, tested both with and without our proposed volumetric task definition.
An overview of our method is depicted in Figure 7.1.
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In summary, we introduce MetaMedSeg 1, an innovative meta-learning strategy tailored for
medical image segmentation. The principal contributions of this research include: (1) The
development of a new task definition, rooted in data volumes, specifically designed to address
medical scenarios; (2) The implementation of a unique update rule optimized for few-shot
learning in contexts with high cross-domain distance; and (3) A substantial enhancement in
segmentation performance in comparison to traditional methodologies.

7.2 MetaMedSeg

Consider a dataset D = S, T , where S = S1 · · · Sn symbolizes the training set or source
domain, and T = T1 · · · Tm signifies the test set or target domain. Here, n and m represent
the total number of organ datasets within the source and target domains, respectively, and
there is no intersection between T and S, hence T ∩ S = ∅. Each dataset is made up of paired
images and their corresponding segmentation masks. Therefore, we define a task as a subset
of k shots, sampled from either Si or Tj .

The learning process comprises two stages: meta-training and fine-tuning. The model pa-
rameters derived from the meta-training step are represented by θi, while the parameters of
the fine-tuned model are signified by φ. During each meta-training step, each task learns its
distinct set of parameters, denoted as θl, starting with meta-model weights θ. The network
structure employed in this research is the renowned U-Net [193] architecture, frequently used
for medical image segmentation. The network accepts a batch of images Ib as input, and its
outputs are the segmentation maps yb. The ground-truth segmentation maps are signified
by y′b. Instead of batch normalization, we opt for the instance normalization technique [20,
96] for the meta-learning context. The algorithm at the core of our approach is outlined in
algorithm 1. Our work’s principal components are: 1. Meta-learning 2. Image Segmentation,
each of which is elaborated below.

Algorithm 1: MetaMedSeg for organ segmentation
Input: Meta-training datasets S = S1,S2, ...,Sn
Input: Meta-testing dataset T

1 Initialize: θ
2 for meta-epoch = 1,2,...,N do
3 Sample L datasets from meta-training datasets S
4 for l = 1,2,...,L do
5 Sample K shots from dataset Sl using rule R
6 Train base learner (U-Net) to obtain θl = g(L(θ,Sl))
7 Compute task importance wl
8 Perform meta-update: θ ← θ + β

∑L
l=1 wl(θl − θ)

9 Sample K ′ shots from meta-testing dataset T to generate T ′ ∈ T
10 Fine-tune on T ′

11 Compute test IoU on T ′′ ∈ T, T ′ ∩ T ′′ = ∅

1Project page: http://metamedseg.github.io/
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7.2.1 Meta-learning

As illustrated in fig. 7.1, during each meta-training round, a series of tasks —composed of
images and their matching segmentation maps— are selected based on the predetermined rule
and fed into the U-Net model. The weights learned from these models are subsequently aggre-
gated according to the specified update rule. The ultimate model serves as the initialization for
the fine-tuning stage. In the conventional Reptile algorithm [167], the updates acquired from
all tasks are averaged in each meta-epoch. In contrast, we put forth an alternative strategy for
weighting these updates, contingent upon the importance of the tasks. The task definition,
task sampling, and update rules will be detailed in the subsequent sections.

Task definition
The definition of a task in meta-learning for segmentation can vary. Our initial approach takes
its cue from [37], where a task consists of k images and masks from the same dataset. For
instance, a task could involve k-shots randomly selected from all available slices of vessel
cancer. This method primarily caters to 2D data. While our work also involves 2D slices, there
exists additional information that can be exploited. Our data comprises not just a collection of
images, but an assemblage of volumes (3D tensors that, when sliced along a chosen direction,
yield sets of 2D images). Hence, we put forth a volume-based task definition. We define a
task as a group of images originating from the same volume V , sampled with a step size equal
to
⌈
|V|
K

⌉
. This assures task size balance across datasets. It’s noteworthy that the support and

query set do not come from the same volume.

Weighted Task Sampling
Certain organs exhibit varied modalities and/or zones (for example, the prostate can be
partitioned into peripheral and transitional zones). We treat these as separate datasets. One
could anticipate this leading to some organs holding sway during task sampling (for instance,
the BRATS dataset alone translates into 12 distinct source datasets). To offset this, we propose
using weighted sampling to afford each organ an equitable opportunity to be included in the
task set during each meta-epoch. For each organ with z different modalities or zones, we set
the sampling rate for each modality/zone to 1

z and then normalize them.

Importance-Aware Task Weighting
In our method, we utilize the original Reptile [167] update rule as a baseline for comparison:

θ ← θ + β
1
L

L∑
l=1

(θl − θ), (7.1)

where θl represents the weight vector of the local model, θ stands for the weight vector of the
meta-model, L as the number of tasks, and β as the meta learning rate.

We assess the following configurations:

• Average Weighting (AW): Here, all updates are deemed to have equal weights and thus,
(θl − θ) are averaged across tasks.
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• Inverse Distance Weighting (IDW): In this case, higher weight is assigned to models that
are closer to the meta-model.

The weights for AW update are computed based on the number of tasks sampled in each
meta-epoch. With L tasks sampled, the weights for each of these tasks would be: 1

L . The
weight for the inverse distance update is computed as:

wl = 1∑L
i=1 (θl,i − θi)2

, (7.2)

where θi denotes the i-th weight of the meta-model, while wl,i represents the i-th weight of
the l-th task’s model in the current meta-epoch. The weights are normalized so that their sum
equals 1, which can be done using wl = wl∑L

j
wj

. As such, the update rule can be written as:

θ ← θ + β

L∑
l=1

wl(θl − θ), (7.3)

7.2.2 Image Segmentation

Binary Cross Entropy (BCE) is commonly employed as a loss function for optimizing image
segmentation models. However, in the few-shot setting, our initial trials revealed suboptimal
performance. Consequently, we explored alternate loss functions. We utilized a combined
approach, incorporating weighted BCE loss and an approximation of the Intersection over
Union (IoU) loss [183] for segmentation tasks.

Weighted BCE Loss

For a given input image I, the predicted segmentation map y, and the ground truth segmenta-
tion map y′, the weighted BCE loss can be computed as follows:

BCE(y, y′) = −(pposy log(y′) + (1− y) log(1− y′)) (7.4)

Here, ppos represents the weight of positive samples, calculated as the ratio of the sum of
object pixels to the sum of background pixels.
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IoU Loss

For the IoU loss component, we adopted the IoU approximation suggested by Rahman et
al. [183], which is defined as:

X (y, y′) =
∑
i∈P

yi ∗ y′i

U(y, y′) =
∑
i∈P

(yi + y′i − yi ∗ y′i)

IoU(y, y′) = X + ε

U + ε
,

(7.5)

The variable P represents the set of all pixel values in the training images, while yi and
y′i signify the ground truth pixel value (0 for background, 1 for object) and the probability
respectively. The probability is determined by the sigmoid output of the U-Net. The inclusion
of ε in the equation helps ensure numerical stability.

Ultimately, we also conducted experiments using a combination of BCE and logarithmic DICE
loss, applying the following formula (Equation 7.6):

Q(L(y, y′) = BCE(y, y′)− log
(

2IoU(y, y′)
IoU(y, y′) + 1

)
(7.6)

which is derived in Equation 7.7:

L(y, y′) =

BCE(y, y′)− log(DICE) =

BCE(y, y′)− log
( 2

∑
i∈P yi ∗ y′i∑

i∈P yi +
∑
i∈P y

′
i

)
=

BCE(y, y′)− log
( 2

∑
i∈P yi ∗ y′i∑

i∈P yi +
∑
i∈P y

′
i −
∑
i∈P yi ∗ y′i +

∑
i∈P yi ∗ y′i

)
=

BCE(y, y′)− log
(

2X
U +X

)
= BCE(y, y′)− log

(
2X ∗ U

U ∗ (U +X)

)
=

BCE(y, y′)− log
(

2X
U

X+U
U

)
= BCE(y, y′)− log

(
2IoU(y, y′)
IoU(y, y′) + 1 ,

)
(7.7)

7.3 Experiments

In this section, we present the results of the experiments using our proposed methodologies
and compare them against the related work.
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Tab. 7.1. Comparison of the proposed task sampling and weighting schemes to related work in the few-shot
setting, fine-tuned on 15 shots on 4 organs. AW: Average weighting, IDW: Inverse distance weighting.

Update rule Target organ
IoU ↑

Standard Volume-based
Supervised Learning Cardiac 58.78 −

Transfer Learning Cardiac 66.22 −
Dawoud et al. [37] Cardiac 68.28 67.7

MetaMedSeg + IDW (Ours) Cardiac 67.49 64.86
MetaMedSeg + AW (Ours) Cardiac 67.83 68.33

Supervised Learning Spleen 38.81 −
Transfer Learning Spleen 51.18 −

Dawoud et al. [37] Spleen 49.29 58.34
MetaMedSeg + IDW (Ours) Spleen 55.64 50.50
MetaMedSeg + AW (Ours) Spleen 55.98 56.44

Supervised Learning Prostate Peripheral 7.35 −
Transfer Learning Prostate Peripheral 10.87 −

Dawoud et al. [37] Prostate Peripheral 15.99 12.82
MetaMedSeg + IDW (Ours) Prostate Peripheral 17.15 13.89
MetaMedSeg + AW (Ours) Prostate Peripheral 16.17 22.69

Supervised Learning Prostate Transitional 38.64 −
Transfer Learning Prostate Transitional 41.09 −

Dawoud et al. [37] Prostate Transitional 42.85 46.28
MetaMedSeg + IDW (Ours) Prostate Transitional 44.25 44.72
MetaMedSeg + AW (Ours) Prostate Transitional 42.43 48.33

Tab. 7.2. Comparison of the proposed task sampling and weighting schemes to related work in full-data setting on
4 different organs. AW: Average weighting, IDW: Inverse distance weighting.

Update rule Target organ
IoU ↑

Standard Volume-based
Supervised Learning Cardiac 90.26 −

Transfer Learning Cardiac 90.46 −
Dawoud et al. [37] Cardiac 90.38 92.47

MetaMedSeg + IDW (Ours) Cardiac 91.38 94.51
MetaMedSeg + AW (Ours) Cardiac 91.08 95.55

Supervised Learning Spleen 86.74 −
Transfer Learning Spleen 86.10 −

Dawoud et al. [37] Spleen 89.65 87.53
MetaMedSeg + IDW (Ours) Spleen 89.96 91.53
MetaMedSeg + AW (Ours) Spleen 90.00 92.27

Supervised Learning Prostate Peripheral 39.06 −
Transfer Learning Prostate Peripheral 39.94 −

Dawoud et al. [37] Prostate Peripheral 37.05 41.58
MetaMedSeg + IDW (Ours) Prostate Peripheral 47.58 68.26
MetaMedSeg + AW (Ours) Prostate Peripheral 46.20 70.90

Supervised Learning Prostate Transitional 68.04 −
Transfer Learning Prostate Transitional 69.84 −

Dawoud et al. [37] Prostate Transitional 70.42 71.55
MetaMedSeg + IDW (Ours) Prostate Transitional 68.98 79.95
MetaMedSeg + AW (Ours) Prostate Transitional 67.68 78.84
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We evaluate our methodology using the medical decathlon dataset [217]. This dataset en-
compasses 3D MRI and CT scans from nine distinct organs: the Brain (with 368 volumes),
Hippocampus (260 volumes), Lung (25 volumes), Prostate (32 volumes), Cardiac (20 vol-
umes), Pancreas (279 volumes), Colon (121 volumes), Hepatic Vessels (216 volumes), and
Spleen (41 volumes). For the architectural backbone of our model, we employ the U-Net
architecture [193], and optimize our model using IoU, BCE, and their hybrid combination as
loss functions.

As a benchmark for comparison, we utilize a transfer learning strategy where all available
training data are used to derive initial weights for fine-tuning the model.

To validate the robustness of our results and mitigate potential bias from k-shot selection, we
fine-tune our model over five different random selections, consistently testing on the same
test set of unseen data. Subsequently, the evaluation metric (IoU) is averaged across these five
runs.

7.3.1 Experimental Setup

The dataset is prepared for processing by segregating different techniques (for example, T2
and FLAIR) and distinct regions (such as edema and tumor) into separate datasets, leading
to a total of 24 distinct datasets. Each dataset has an associated threshold, established based
on pixel count and a visual assessment of the results, which determines whether an object is
deemed present on the image.

Thresholds for different organs and zones include: 1000 for brain edema, 400 for enhancing
tumors, and 600 for non-enhancing tumors; 700 for cardiac; 100 for both anterior and
posterior hippocampus; 300 for the peripheral zone and 600 for the transitional zone of the
prostate; 1000 for the lung, pancreas and vessel; 600 for the spleen; and 400 for the colon.

All images were resized to a resolution of 256× 256 pixels, with the threshold applied post-
resizing.

We also ensure volume normalization during slicing by subtracting the mean and dividing by
the standard deviation of all the non-zero pixels within the entire volume. The conditions
for all fine-tuning experiments are standardized: we train for 20 epochs, applying a weight
decay of 3× 10−5 and a learning rate of α = 0.005 with a step learning rate decay of γ = 0.7
at every alternate step. For full-data training, we use a learning rate of 0.001 and weight decay
of w = 3× 10−5.

For the meta-training phase, we train the model for 100 epochs, sampling 5 tasks with 15
shots and 1 image per shot at each meta-epoch. We employed a learning rate of α = 0.01
for both local and meta-model, with a weight decay of w = 0.003 and the aforementioned
learning rate decay. In the transfer learning phase, we exclude cardiac, prostate, and spleen
datasets and train over 20 epochs. Hyperparameter tuning is achieved through the particle
swarm optimization approach, with no augmentations performed on the data across any of
the settings.
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To facilitate comparison with [37], we replicate the original paper’s hyperparameters for
meta-training. It’s important to note that, as per the protocol from [37], we sequentially
traverse all available source datasets rather than sampling them. Additionally, for each task,
we sample 2 extra tasks from different source datasets to create 2 additional losses. For
fine-tuning, we also adhere to the approach outlined in [37], but extend training to 40 epochs
instead of 20 to enhance performance, and use IoU loss in place of BCE.

7.3.2 Comparison to Related Work

Table 7.1 presents a comparison of our methodology with baseline methods in a few-shot
setting, specifically for 15 shots across four different organs. The performance metrics for
models fine-tuned on the entirety of the support set are presented in table 7.2. A selection of
segmentation results can be found in fig. 7.2 and fig. 7.3. Additionally, we experimented with
an inverse form of the proposed update rule, which penalizes outlier models. However, this
alteration did not yield any improvement.
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Fig. 7.2. A qualitative comparison of our method to different segmentation baselines on four different target
organs in the full-data setting.
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7.3.3 Discussion

Our experimental results indicate that volume-based task formulation significantly enhances
the performance of segmentation, especially in settings involving full data. The impact of our
suggested update rule is marginal in some instances, but notably influential in other organs,
like the Prostate Transitional. This differential influence could be due to the variation in data
distribution and organ morphology. When organ shapes demonstrate high variability (e.g.,
the prostate in comparison to other organs), outlier shapes could potentially benefit from the
proposed inverse distance update rule, which assigns less weight to gradients farther from the
average.

We believe that when the volumetric task definition is employed, all organs are given an equal
opportunity to contribute to the final model, resulting in a more balanced setting. Consequently,
when the weighted update rule is combined with volumetric tasks, the overall performance
experiences a decrease. Another plausible explanation could be that the weighting of updates
aids in biasing the model towards tasks that bear greater resemblance to the target.

To better understand the role of image diversity, we construct an adjacency matrix depicting
the average Euclidean distances between pairs of randomly selected volumes. As illustrated
in Figure 7.4, among our target organs, the distances, from the least to the greatest, are as
follows: cardiac, spleen, prostate. The influence of this distance variation is perceptible in the
final segmentation performance for each organ.

7.3.4 Ablation Study

Table 7.3 displays the influence of our proposed update rule, various segmentation losses,
and the volume-based task formulation employed in this study. The models underwent meta-
training with five distinct losses, including Focal Tversky loss [2] and Dice loss [222], followed
by fine-tuning using IoU loss. The most effective performance is attained when employing the
weighted BCE loss for meta-training and IoU loss for fine-tuning.

Tab. 7.3. Ablation study of various objective functions in few-shot setting for the cardiac segmentation task. AW:
Average weighting, IDW: Inverse distance weighting.

Update rule Segmentation loss
IoU ↑

Standard Volume-based
AW IoU 67.82 68.13
IDW IoU 67.42 64.86
AW Tversky Focal loss [2] 65.90 65.72
IDW Tversky Focal loss [2] 63.71 62.78
AW Dice loss [222] 65.87 66.03
IDW Dice loss [222] 62.58 62.73
AW BCE 67.83 68.33
IDW BCE 65.09 64.29
AW BCE + IoU 66.85 67.30
IDW BCE + IoU 66.98 64.71
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7.4 Conclusion

In this work, we have proposed an innovative task definition approach for few-shot learning
that caters specifically to volume-based 2D data. Additionally, we’ve introduced an update
rule that is contingent on the importance of tasks during the meta-training phase. We tested
our method on four distinct organ types that have minimal data available, specifically the
heart, spleen, peripheral prostate, and transitional prostate. Our approach is versatile and
applicable not only to organ segmentation, but also to tumor segmentation and other types of
density segmentation.

Our results demonstrate that our proposed approach to defining volumetric tasks significantly
bolsters the performance of segmentation across all organs tested. The introduction of update
rules based on importance also contributes substantially to the improvement of IoU results.
The benefits of both the volumetric tasks and the weighted update rule vary according to
different scenarios. While the volumetric task definition is consistently advantageous, the use
of a weighted update rule is particularly beneficial when the target class data distribution
diverges from the source. This is especially the case in the segmentation of new diseases
where the available labeled data is scarce.
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Fig. 7.3. Additional qualitative results for organ segmentation
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8Learning from Within the Data

8.1 Introduction

Optical Coherence Tomography (OCT) of the eye is a frequently used clinical imaging technique
in ophthalmology, especially by retina specialists. Segmentation of OCT images aids in
diagnosing and treating ocular conditions such as diabetic macular edema (DME) [243] and
age-related macular degeneration (AMD). Particularly, the segmentation of intraretinal fluid
pockets proves crucial, as it indicates the presence, severity, and treatment response of the
retina. Despite the significance of fluid segmentation in OCT images, current methods struggle
to efficiently delineate these regions. To address this, our work proposes harnessing spectral
domain information due to the presence of spectral features in OCT images, which might
be overlooked by existing spatial neural networks. It has been demonstrated in previous
research [28] that spatial information often emphasizes local details while overlooking global
information distributed across the entire image. Our approach resolves this issue by integrating
features from both the spectral and spatial domains.

To summarize, our main contributions are:

• We introduce Y-Net, a dual-encoder autoencoder-based architecture, for automated
segmentation of retinal layers and fluids in OCT images.

• Our spectral encoder is specifically designed to extract frequency domain features from
images.

• Y-Net surpasses the widely-recognized U-Net [193] architecture and other related work,
improving fluid segmentation by at least 13% and dice score by an average of 1.9%.

• Y-Net operates with fewer parameters compared to U-Net.

• We have made the source code for this work publicly accessible at github.com/azadef/
ynet.

8.2 Related Work

Several early techniques for retinal OCT image segmentation [29] leveraged graph-based
strategies (such as graph cut, shortest path). Later works [49, 132] integrated neural net-
works with graph-based methods to better estimate retinal layer boundaries or fused graph
convolutional networks with other neural networks.
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He et al. conducted a series of investigations [71, 72, 73] into OCT segmentation, with a focus
on OCT scan topology. The utilization of fully convolutional networks (FCN) was examined
[74, 124] with the objective of predicting segmentation maps and refining topology based on
specific topology criteria.

A recent trend in medical image segmentation emphasizes the use of autoencoder-based deep
neural networks [117, 195] for end-to-end segmentation. U-Net [193], one of the earliest and
most widely recognized autoencoder-based architectures for 2D medical image segmentation,
spurred considerable research interest in the development of U-shaped networks for image
segmentation. Several studies, including MDAN-U-Net [150], have sought to enhance the
segmentation performance of existing methods through multiscale features or attention
mechanisms. Feature Pyramid Networks (FPNs), commonly utilized in computer vision, have
also piqued interest in the medical imaging domain for global feature extraction [58, 134].
Other research directions have concentrated on networks specifically tailored for the OCT
segmentation task [117, 187, 253], employing techniques like Gaussian process [177], feature
alignment [44, 157], or epistemic uncertainty [172].

The application of Recurrent Neural Networks (RNNs) for OCT segmentation has been in-
vestigated in [125, 235]. While Kugelman et al. [125] considered sequences across various
scans, Tran et al. [235] used natural language to model OCT retinal layers and created an
OCT segmentation approach utilizing RNNs for pixel sequence processing.

The concept of an autoencoder network with two encoder branches has been previously
deployed for polyp detection [162] leveraging a pre-trained VGG network [216]. However,
the goal of this application significantly differs from ours. A combination of U-Net [193] and
fast Fourier transforms (FFT) [164] has been explored as a means to reduce the computational
demands of convolutional networks. Recently, fast Fourier convolutions [28] were integrated
into an image inpainting task [225] by the computer vision community, aiming to utilize global
patterns in images potentially overlooked by standard convolutional layers. This inspired us to
exploit fast Fourier convolutions for OCT segmentation, given the presence of high-frequency
speckles, a characteristic of tissue layers [206]. The existence of these speckles can negatively
impact model performance when only spatial features are used. Therefore, we hypothesize
that spectral feature extraction from OCT images will enable our network to separate features
from different frequency distributions. This will allow the model to focus on more significant
frequency ranges in the features using adaptive learnable kernels in FFT Convolutions, and to
effectively model the high-frequency variation and distribution within each layer.

8.3 Method

In this section, we delve into the foundational aspects of our work. We initially outline the
overall architecture of the segmentation framework. Subsequently, we elucidate the elements
of our proposed spectral encoder, with a focus on the Fourier unit that fulfills the spectral
feature extraction function. Lastly, we discuss the loss functions employed in this study.
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Fig. 8.1. a) Y-Net: Our proposed network comprises two branches: one for handling spatial features, akin to
previous works, and our proposed branch designed for extracting spectral features. The spectral encoder
incorporates four Fast Fourier Convolution (FFC) blocks, which take local and global features xl, xg as
input and produce processed features x′

l, x
′
g. b) FFC Block: The FFC blocks extract the local features

via Conv2D layers and process the global features utilizing the spectral norm. c) Spectral Norm: The
global information is partitioned into two parts, each of which is delivered to a Fourier unit. d) Fourier
Unit: In this step, a fast Fourier transform is applied to the features, followed by a convolutional layer,
to extract frequency domain features. Ultimately, the processed features are reverted back to the spatial
domain using an inverse FFT.

8.3.1 Segmentation Framework

Our segmentation network takes an input image x ∈ RH×W and its associated segmentation
label y ∈ ZH×W to generate the segmentation map ŷ. Here, H and W denote the image
height and width, respectively. As depicted in Figure 8.1-a, the Y-Net segmentation net-
work incorporates two encoder branches, Ec and Ef . The Ec serves as the spatial encoder
comprising convolutional blocks, while Ef is our proposed spectral encoder, integrating fast
Fourier convolutional (FFC) blocks [28]. The decoder network G(.) gets the fused spatial
and spectral features derived from the encoder networks to produce the segmentation map ŷ,
where ŷ = G(Ec(x), Ef (x)). Resembling U-Net [193], Y-Net possesses an autoencoder-based
structure, with skip connections transitioning from spatial encoder blocks to decoder blocks.
The primary function of the proposed spectral encoder is to extract and process global features
in the frequency domain, which may not have been captured by spatial convolutions. This
section further elaborates on each component of our network and the objective functions.

Spatial Encoder
Our network incorporates a spatial encoder identical to the original U-Net [193], which
includes four convolutional blocks. Each block is constituted by a convolutional layer, a batch
normalization layer (BN), an activation function (ReLU), and a max pooling (MP) layer. The
input to the initial convolutional block is the input image, and the output from each block is
subsequently fed into the next block, as depicted in Figure 8.1-a.
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Spectral Encoder

In this section, we introduce our spectral encoder, designed to extract features from the
spectral domain. The spectral encoder receives the same input as the spatial encoder. The
input image x serves as local information xl for the first FFC block. The value of xg is initialized
to zeros for the first block, as the input image pixels are treated as local information, and
there are no global features present in the input image. Mirroring the spatial encoder, the
spectral encoder comprises a total of four FFC blocks.

Spatial Decoder

The spatial decoder network, denoted as G, is comprised of four up-convolutional blocks in
total. It accepts the spectral and spatial features, concatenates them, and then directs them
to the bottleneck layer. Following this, the features from the previous decoder block and the
features from the skip connections are upscaled using a convolutional block similar to the
spatial encoder, followed by transpose convolutional layers. The final segmentation map is
produced by the ultimate decoder block. As an optional step, we consider the concatenation
of the features from the spectral encoder with the features from the spatial encoder.

8.3.2 Components of the Spectral Encoder

Fast Fourier Convolutional Block

The Fast Fourier Convolutional (FFC) block, as shown in Figure 8.1-b, is designed to accept
global and local information, xg and xl, as input. This information is then processed through
three convolutional layers to extract global and local spatial features, as well as through
the spectral norm to extract frequency domain features. Subsequently, batch normalization,
a non-linear activation function, and max pooling are applied to these features, thereby
generating the global and local features, x′g and x′l, for the next FFC block.

Spectral Norm

The spectral norm, depicted in Figure 8.1-c, first applies a convolutional block with a kernel
size of 1 to xg, yielding x′′. The channels of x′′ are then divided into two portions based
on a predefined value α, with α percent of channels designated as global information and
the remaining 1− α percent as local information. The divided global and local features are
independently fed into Fourier units (FUg and FUl) to extract spectral features x′′g and x′′l .
Note that FUg and FUl share the same architectural design. Lastly, x′′ and the output of
global and local Fourier units x′′g and x′′l are added and fed into a convolutional layer with a
kernel size of 1.

Fourier Unit

As shown in Figure 8.1-d, the Fourier unit accepts a portion of x′′ as input, then performs
a Fourier transform on those features to obtain real and imaginary parts represented as
a+ bi ∈ C. These real and imaginary parts, a and b, are stacked together and then processed
through a convolutional layer with a kernel size of 1. The output of this layer is then subjected
to an activation layer and a batch normalization layer. The processed output is then divided
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into two parts, specifically the real and imaginary parts a′ and b′, which are fed into the
inverse Fourier transform to convert the features back to the spatial domain.

8.3.3 Objective Functions

We utilize a combined version [227] of dice loss [222] and cross-entropy loss to train our
models. This particular pairing of losses has been frequently employed in medical image
segmentation task.

The loss is computed between each ground truth segmentation label y and its corresponding
predicted segmentation map ŷ according to Equation 8.1:

LDice(y, ŷ) = 1− 2yŷ + ε

y + ŷ + ε
(8.1)

The dice loss in Equation 8.1, evaluates the intersection over union (IoU) between the
predicted and true labels. To ensure numerical stability during the computation of dice loss,
we use a very small value, ε.

The cross-entropy loss, as outlined in Equation 8.2, strives to maximize the cross-entropy
information between the true labels and the predictions.

LCE(y, ŷ) = − 1
N

N∑
i=0

yi log(ŷi) (8.2)

The total loss is then computed as a weighted sum of the dice loss and the cross-entropy loss,
where λDice and λCE are the weighting factors for each respective loss term.

Ltotal = λDiceLDice + λCELCE (8.3)

The combined loss function ensures effective segmentation performance by leveraging the
strengths of both individual losses.

8.4 Experiments and Results

In this section, we assess our proposed method’s performance by contrasting it with well-
established benchmarks and prior research. We begin with an outline of our experimental
setup, followed by a comparison of our model’s results with those reported in previous studies.
Finally, we conduct an ablation study to understand the contribution of individual components
of our model. As previously discussed, our focus is on the segmentation of retinal layers and
fluid using OCT images.
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Tab. 8.1. Comparison to SOTA on Duke. Mean and layer-wise Dice Score compared to related works on the
Duke OCT dataset [30]

Method ILM NFL-IPL INL OPL ONL-ISM ISE OS-RPE Fluid Mean
RelayNet [195] 0.84 0.85 0.70 0.71 0.87 0.88 0.84 0.30 0.75
Language [235] 0.85 0.89 0.75 0.75 0.89 0.90 0.87 0.39 0.78
Alignment [157] 0.85 0.89 0.75 0.74 0.90 0.90 0.87 0.56 0.81

U-Net [193] 0.84 0.89 0.77 0.76 0.89 0.89 0.85 0.80 0.836
Y-Net (Ours) 0.86 0.89 0.78 0.75 0.90 0.88 0.85 0.93 0.855

Tab. 8.2. Comparison to UNet on UMN. Mean Dice Score and mIoU compared to U-Net on the UMN dataset
[185] for fluid segmentation.

Method DSC mIoU
U-Net [193] 0.91 0.80
Y-Net (Ours) 1.0 0.86

Our method is trained and tested on the Duke OCT dataset1 [30], and the UMN fluid seg-
mentation dataset [185], two publicly available retinal OCT datasets. We benchmark our
results against several seminal works on OCT segmentation. Except for U-Net [193], all results
reported are derived from the original values published in the respective papers. The results
attributed to RelayNet [195] are taken from [235] and are based on a 6-2-2 evaluation split.

Fig. 8.2. Some qualitative results of Y-Net compared to U-Net [193]

8.4.1 Experimental Setup

Our experimental procedure adheres to the same protocol as previous work [157, 235] when
training and evaluating our method on the Duke OCT dataset. This dataset consists of OCT
scans from ten patients, annotated by two experts. We utilized scans from the initial six
subjects for training, the seventh and eighth subjects for validation, and the last two for

1Link: http://people.duke.edu/∼sf59/Chiu_BOE_2014_dataset.htm
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testing, following the same distribution as prior studies. All models, including ours and U-Net
[193], were trained with a batch size of 10, a learning rate of 5 × 10−4, weight decay of
1× 10−4, and the Adam optimizer [118], over a maximum of 80 training epochs. The training
epoch count was selected based on peak validation accuracy for all models.

The coefficients λDice and λCE , both set to 1, were determined empirically. We resized images
to (224× 224) resolution. Evaluation outcomes are presented in terms of Dice score values for
all retinal layers, fluid, and their average. U-Net and our Y-Net model comprised 7.76M and
7.46M parameters, respectively.

8.4.2 Results

Table 8.1 highlights our proposed method’s Dice score for various retinal layers and cor-
responding fluid pockets, in comparison to the state-of-the-art methodologies. Our model
demonstrates comparable or superior performance to existing methods for retinal layer seg-
mentation, and significantly outperforms other models in fluid segmentation. We believe that
this boost in performance is attributable to the presence of features within specific frequency
ranges that are associated with fluid pockets.

To validate this hypothesis, we conducted an experiment adjusting the range of frequency
values within the Fourier unit. Some qualitative results are also showcased to contrast the
fluid segmentation performance of our model and U-Net in Figure 8.2. We note that our
model’s segmentation of fluid pockets closely resembles the annotations provided by the first
expert, while U-Net exhibits shortcomings in segmenting fluid in certain areas.

Ablation Study
In Table 8.3, we conduct an ablation study of the components incorporated into our model. The
initial row illustrates the performance of the Y-Net architecture utilizing standard convolutional
blocks in the second branch. By evaluating our model with this configuration, we demonstrate
that the observed enhancement in average Dice score, particularly in fluid segmentation
performance, is not solely due to an increased network size, but rather significantly influenced
by the incorporation of FFC blocks.

The remaining rows of the table present the performance of our model with varying α values.
As detailed in the methodology section, α delineates the proportion of features within the
global and local Fourier units. As presented in Table 8.3, optimal performance is attained with
α values of 0.25 and 0.5. Both configurations yield a Dice score of 0.93 for fluid segmentation
while maintaining comparable performance with other models in retinal layer segmentation.

We assert that both local and global features provide crucial information that our model
can effectively learn. By selecting an α value that is neither too large (1) nor too small
(0), our model is capable of correlating the global and local features to accomplish peak
performance.

We continue our investigation into the influence of FFC blocks in Table 8.4 by adjusting the
frequency ranges processed by the Fourier units. The initial row in Table 8.4 represents the
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Tab. 8.3. Ablation study on the FFC blocks and the value of α.

FFC Block α ILM NFL-IPL INL OPL ONL-ISM ISE OS-RPE Fluid Mean
- - 0.87 0.90 0.77 0.75 0.89 0.88 0.86 0.89 0.851
! 0 0.86 0.89 0.76 0.75 0.90 0.89 0.85 0.86 0.845
! 0.25 0.86 0.89 0.77 0.74 0.89 0.89 0.86 0.93 0.854
! 0.5 0.86 0.89 0.78 0.75 0.90 0.88 0.85 0.93 0.855
! 0.75 0.84 0.87 0.76 0.73 0.89 0.88 0.86 0.90 0.841
! 1 0.85 0.89 0.77 0.76 0.89 0.88 0.85 0.88 0.846

Tab. 8.4. Ablation Study on the effect of variation in frequency ranges.

Spectral features range ILM NFL-IPL INL OPL ONL-ISM ISE OS-RPE Fluid Mean
No change 0.85 0.89 0.77 0.75 0.90 0.89 0.85 0.93 0.854

keep(-10,10) 0.86 0.89 0.78 0.75 0.90 0.88 0.85 0.93 0.855
remove(-10,10) 0.84 0.88 0.76 0.74 0.90 0.88 0.85 0.78 0.829

standard model configuration, where the frequency range generally lies between −40 and
40. In the second row, we limit the frequency range to (−10, 10), resulting in a marginal
enhancement in the overall segmentation performance. In the final row, we exclude frequen-
cies between (−10, 10) by setting the frequency values from −10 to 0 to −10 and assigning
the positive values between 0 and 10 to 10. Under these conditions, the fluid segmentation
performance significantly decreases to 0.78, while the retinal layer segmentation performance
experiences a minimal reduction. These experiments indicate that the superior fluid segmen-
tation achieved by our model is significantly influenced by spectral domain features and that
the features utilized for fluid segmentation belong to a particular frequency range (in this
case, approximately (−10, 10)).

In our experimental process, we also explored the use of focal frequency loss [97] and
attempted to integrate skip connections from the spectral encoder to the spatial decoder.
However, these modifications did not yield an enhancement in model performance. We
postulate that incorporating skip connections from the spectral domain to the spatial domain
does not confer a substantial benefit, as spectral features and global information may not
exhibit a strong correlation with the segmentation map.

8.5 Conclusion

In this study, we introduced an end-to-end autoencoder framework for the segmentation of
retinal layers and fluid pockets in optical coherence tomography (OCT) images. Our proposed
Y-Net incorporates a secondary encoder branch, designed by us, that extracts spectral domain
features in conjunction with the spatial encoder utilized in prior works. Given that OCT
images contain high-frequency, non-uniform speckles that vary according to tissue type and
retinal layers, we posited that our model could enhance OCT segmentation performance by
learning these spectral domain features. By recognizing features in the frequency domain,
our network is equipped to model and understand the speckle distribution within each layer.
Our experimental results demonstrated a significant impact on the model when altering the
frequency range within the Fourier units, integral to our Fast Fourier Convolutional (FFC)
blocks. This lends support to our hypothesis that certain frequencies in OCT images may

52 Chapter 8 Learning from Within the Data



correspond to specific layers or fluid pockets. Our final proposed model was benchmarked
against numerous prior works, illustrating that it surpasses existing models by 13% in fluid
segmentation, achieving a dice score of 0.93, whilst maintaining a comparable or superior
performance in retinal layer segmentation.
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9Semantic Scene Modelling

In computer vision, a scene is a complex and rich representation of an image that captures
its objects, categories, locations, and relationships. Different methods have been proposed to
represent scenes, each with varying levels of detail and complexity. In this part of the thesis,
we explore the concept of semantic scene understanding using generative models and scene
graphs.

A scene graph is a graph-based structure that encodes the elements and relationships of a
scene as nodes and edges. Scene graphs can capture the complexity of a scene in a refined and
comprehensive manner, making it possible to manipulate the scene semantically. However,
constructing scene graphs is challenging and requires extracting features from both the objects
and the relationships in the scene.

In this section, we review some of the previous methods for scene representation and feature
extraction, and introduce our proposed methods for scene modeling, image generation, and
image manipulation using scene graphs.

9.1 Scene Representation

The task of defining a scene has evolved over time in computer vision. Historically, the
earliest works conducted image classification tasks by viewing an image as a unified whole and
assigning it a categorical label [123]. This method represented a fundamental and essential
approach to image analysis but was relatively simplistic and did not account for the intricate
complexity of scenes.

To address this, object detection techniques were subsequently introduced that defined a scene
in terms of individual object categories contained within bounding boxes [65]. However,
this approach still lacked in capturing the detailed intricacies of a scene. To overcome this,
semantic segmentation maps were proposed, which provided a more granular view of a scene
by assigning labels to each pixel in an image [151]. The notion of semantic segmentation was
then extended to instance segmentation, which not only labels each pixel of an image but also
differentiates between individual instances of objects within the same category [70].

However, these methods still do not capture the relationships between objects in a scene,
which are crucial for understanding the semantics of a scene. To address this, graphs have
been utilized to depict a scene [105]. In a semantic scene graph, the nodes are assigned object
categories, and the relationships between these objects are encoded as edges of the graph.
The difference between a regular graph and a scene graph in literature is the existence of the
edge features. A graph is normally a representation of an affinity matrix that defines whether
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edges exist between pairs of nodes in the graph or not; while in a scene graph the edges can
define semantic relationships between the objects (e.g. riding, sitting), proximity (near, on),
etc.

9.2 Learning from Semantics

We aim to explore the potential of generative models for semantic scene understanding,
focusing on the task of image generation and manipulation using scene graphs. Scene graphs
are structured representations of scenes that capture the objects and their relationships. To
generate images from scene graphs, we need to extract useful features from the scene graph
and use them to condition a generative model.

We propose to use text embeddings as node and edge features for scene graphs, as they
can capture more information and context about the objects and their predicates. These
embeddings can be obtained from existing models such as WordNet [159], Glove [178] and
GPT-3 [21], or learned from scratch during training. We also propose to use graph neural
networks (GNNs) to process these features and update them based on the graph structure.
GNNs are neural networks that can operate on graph data, and can learn to propagate
information across nodes and edges through message passing mechanisms. GNNs can learn to
extract high-level features from scene graphs that can be used for downstream tasks such as
image generation or manipulation.

To perform the image generation task, we condition a generative model on the features
extracted from the scene graphs. Given pairs of images and scene graphs and the bounding
box locations of the objects in the scenes, the goal of the model is to infer images conditioned
on the scene graph without using the ground truth bounding box coordinates or any shape
information at inference time. Therefore, we need to extract object features from the scene
graph and predict the location and shape of the objects in the scene. We use a GNN to extract
object features from the scene graphs, and then use these features to predict the spatial layout
of the scene. The layout is then used as a conditioning input for the generator.

We investigate the application of meta-learning for improving the quality of image generation
[60]. Furthermore, we apply our scene graph to image model for the task of semantic
image manipulation. We seek to improve the learned representation by disentangling the
latent embeddings and employing neighborhood routing mechanism within the graphs [155].
Semantic image manipulation is a task that allows users to modify images by changing or
adding elements in the scene graph. For example, users can change the color or size of an
object, or add a new object with a specific relationship to an existing one.
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10Modelling Scenes through
Unconditional Scene Graph
Generation

10.1 Introduction

Scene graphs provide a detailed depiction of a given scene by denoting categorical object
instances as nodes and their categorical relationships as edges. This comprehensive form of
representation offers a nuanced understanding of the scene that transcends the simplicity
of object-level reasoning. Various methodologies for generating scene graphs from images
have been explored within the computer vision discipline [166, 259]. This particular form
of representation has demonstrated its utility in various applications such as image retrieval
[105] and visual question answering (VQA) [64]. Due to the high level of semantic control
scene graphs offer over image components, they serve as an effective means of representation
for tasks related to semantically driven image generation [104] and manipulation [42].

The domain of unconditional scene graph generation, in essence, creating a scene graph from
a random input rather than a predetermined image, has seen comparatively little exploration.
The modelling of such scene graphs holds the potential to facilitate the learning of patterns
inherent in real-world scenes, like the co-occurrence of objects, their relative placements, and
interactions.

In this chapter, we delve into the unconditional generation of scene graphs using generative
models, aiming to produce novel and realistic scene graphs. Prior work has touched upon
the generation of relational graphs [246] and probabilistic grammar [110], each designed
specifically for a certain domain. However, to the best of our knowledge, our study is the first
to investigate the application of a generative model for generating semantic, language-based
scene graphs [105, 121]. Since scene graphs provide a detailed account of scenes, it is feasible
to transform the generated graph to another domain using advanced models specialized in
tasks like graph-to-image translation [104].

In the area of unconditional image generation, recent works have achieved remarkable results,
primarily with images that feature a single main subject or exhibit uni-modal distributions,
such as datasets of faces or cars. However, these models often struggle when it comes
to intricate and diverse scenes containing multiple objects. Our experiments reveal that
employing scene graphs for unconditional image scene generation results in more discernible
object instances, due to the graphs’ ability to grasp complex and frequently abstract semantic
concepts like objects, their interactions, and attributes. Moreover, such a generative model can
identify scene graphs that fall outside the distribution and complete partial scene graphs.
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Fig. 10.1. SceneGraphGen overview. a) SceneGraphGen generates scene graphs unconditionally from a randomly
sampled seed object. b) Applications in Left: translation of a generated scene graph to an image, using
an off-the-shelf graph-to-image network Right: detection of out-of-distribution samples

A couple of deep generative models for graph data have been recently introduced [14, 48,
68, 215, 273], with the goal of producing realistic domain-specific graphs while capturing
key graph patterns such as degree distribution and clustering. Nevertheless, each model has
limitations which render them unsuitable for certain applications. Scene graphs often exhibit
significant size variations, object and relationship categories are inherently unbalanced, and
the edges are directed.

Addressing these challenges, we propose a specialized model dubbed SceneGraphGen1 [63]
(as illustrated in Figure 10.1). The overarching auto-regressive structure borrows inspiration
from GraphRNN [273], as it caters to varying graph sizes, unlike models like [22, 48, 215].
More specifically, the model is designed to process categories for nodes and edges and to
accommodate the directionality of the edges. In this auto-regressive setup, the scene graphs
are modelled as a sequence of sequences. The sequence’s history is preserved in a hidden state
using a Gated Recurrent Unit (GRU) [31], which is then utilized to generate a categorical
distribution over the nodes and edges at each stage, from which the node and edge categories
can be sampled. The nodes are generated using a multi-layer perceptron (MLP), while a GRU
is employed for sequential edge generation.

1https://SceneGraphGen.github.io/

60 Chapter 10 Modelling Scenes through Unconditional Scene Graph Generation

https://SceneGraphGen.github.io/


As the task of unconditional scene graph generation is still underexplored, appropriate metrics
for evaluating the quality of the generated graphs are yet to be proposed. Thus, following
[273], we adopt a Maximum Mean Discrepancy (MMD) metric, adapted with a random-walk
graph kernel and a node kernel suitable for the scene graph structure. We validate the
effectiveness of these kernels using sets of corrupted datasets.

Our contributions can be encapsulated as follows:

• We propose SceneGraphGen, a novel approach to address the relatively unexplored task
of unconditional semantic scene graph generation. We utilize a graph auto-regressive
model to effectively process the structural intricacies of scene graphs.

• We showcase the versatility of our learned scene graph model through three key applica-
tions - image generation, anomaly detection, and scene graph completion.

• We introduce an innovative MMD metric to assess the quality of the generated scene
graphs, which takes into consideration both the node and graph level.

We conduct a thorough evaluation of our model on the Visual Genome dataset [121] and
demonstrate its ability to generate semantically plausible scene graphs. Furthermore, we
exhibit how these scene graphs can be translated into novel images, leveraging cutting-edge
scene graph to image models [104]. Moreover, we demonstrate the model’s proficiency in
detecting anomalous scene graphs and augmenting incomplete scene graphs.

10.2 Related Work

Scene graphs and their applications Scene graphs, as introduced in [105], provide a semantic
interpretation of an image, articulating the relationships between objects through semantic
labels. The availability of large-scale datasets such as Visual Genome [121], annotated with
scene graphs, has facilitated deep learning tasks. Various studies have investigated scene graph
prediction conditioned on an image [139, 166, 259, 263, 277] or point clouds [244, 254].
Most of these efforts involve initially identifying the objects in a scene, followed by reasoning
about their interconnections. Our work, in contrast, delves into the realm of unconditional
graph generation, where the task is to model the scene graph distribution independent of any
input during the testing phase.

Scene graphs have demonstrated their utility in a myriad of tasks. Johnson et al. [104]
pioneered the use of scene graphs for image generation, which has subsequently been explored
in interactive setups for generation [4] and semantic manipulation [42]. Wang et al. [246]
utilized relational graphs for indoor scene planning. Other researchers have harnessed scene
graphs for image retrieval that transcends specific domains [105, 244]. Scene graphs have also
been integrated with language, exemplified in applications such as Visual Question Answering
(VQA) [64, 265], or for predicting the type of an object given its location in the scene [289].
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Fig. 10.2. SceneGraphGen Overview. Left: An overview of the auto-regressive generation process, sequentially
considering the current graph sequence at each step to create a new node and a set of associated edges.
Right: Detailed breakdown of the various modules: a) history encoder, b) node generator, c) edge
generator.

Generative models on graphs Historical methods [1, 45, 130, 252] for graph generation,
which were engineered to capture specific patterns, often fall short when tasked with general-
izing to diverse graph patterns due to their domain-specific nature.

Deep auto-regressive models for graph generation, such as those presented in [88, 142, 144,
273], typically allow flexibility in the number of nodes but require a pre-determined node
ordering. In particular, GraphRNN [273] views the graphs as a sequence of sequences and
leverages a hierarchical GRU architecture to model the dependencies between nodes and
edges. This model, with its O(N2) complexity, allows for the generation of graphs of varying
sizes. The authors also utilize a breadth-first search (BFS) ordering to drastically limit the
possible orderings. However, their work is focused solely on the generation of unlabeled
graphs.

Other studies have turned to Variational Autoencoders (VAE) which embed the graphs into a
vector [215], or a junction tree of node clusters [99], or blend VAE with an auto-regressive
approach [148]. Although these models generally enable graph modeling with attributes or
categories, they tend to capture imprecise likelihoods and struggle to scale to larger graphs.

Generative Adversarial Network (GAN)-based works, on the other hand, are usually con-
strained to either a single sample [14], or a small and fixed size graph [22, 48], rendering
them unsuitable for scene graphs that vary in size and diversity. They also face challenges in
maintaining training stability.

In our study, we investigate an auto-regressive approach that allows for a flexible number of
graph nodes. Our method, unlike GraphRNN, supports semantic labels for nodes and edges,
models directed edges, and deploys an edge generation GRU that takes into account the node
categories.

Although recent studies have delved into generative tasks with comparable scene structures,
such as relational graphs [246] and probabilistic grammar [38, 110], our focus lies on
semantic graphs that are associated with images taken from real-world scenarios. These
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semantic graphs are substantially more diverse in terms of their node and edge labels, and
exhibit less regular graph size and connectivity patterns, compared to the synthetic datasets
used in other works.

10.3 SceneGraphGen

Given a set of n scene graphs, denoted by Gs = G1
s, G

2
s, .., G

n
s , which we assume that exemplify

the data distribution of scene graphs pdata(Gs), our aim is to construct a generative model
based on dataset Gs, capable of producing new scene graph samples. A scene graph sample Gs,
associated with an image I, is defined by Gs = (O, E), where O represents the set of objects
(nodes), and E corresponds to relationships (edges). Each object oi in the set O = o1, o2, .., om

holds an object category oi ∈ C, with C = 1, 2, .., C. The edges are defined as ordered triplets
E ⊆ (oi, rk, oj)|oi, oj ∈ O, oi 6= oj , denoting a directed edge from oi to oj , where rk ∈ R
represents the category of relationship between the objects, and R = 1, 2, .., R (e.g. man -
wearing - shirt). We approach this task with an auto-regressive model, providing flexibility
in terms of node count and graph connectivity. We provide an overview of the network in
section 10.3.1, and delve into the details of each component in the subsequent sections.

10.3.1 Definitions

The SceneGraphGen model aims to learn a distribution pφ(Gs) over scene graphs that closely
resembles the original data distribution pdata(Gs). By adopting an auto-regressive approach,
we translate scene graphs into a sequence representation. Given a permutation π, the node set
O is transformed into a sequence O = (π(o1), π(o2), .., π(om)). The edges E are depicted via
two upper triangular sparse matrices Efrom and Eto, with the relationship label rk located at
index (i, j) if either (π(oi), rk, π(oj)) ∈ E or (π(oj), rk, π(oi)) ∈ E , respectively. These matrices
correspond to the two potential edges (to and from) between any pair of nodes. Consequently,
a scene graph Gs can be expressed as a sequence X = (O,Eto, Efrom). Each element of
sequence X is itself a sequence, given by Xi = (Oi, Etoi , E

from
i ), where Oi is the object node,

and Etoi and Efromi represent sequences of edges connecting Oi and preceding nodes. The
goal of learning pφ(Gs) is thus translated to learning a sequence distribution pφ(X), which
can be modeled using an auto-regressive approach. The probability over sequence X is broken
down into consecutive conditional probabilities.

pφ(X) = p(X1)
n∏
i=2

pφ(Xi|X<i). (10.1)
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The notation X<i = (X1, .., Xi−1) illustrates the partial scene graph sequence up to step i.
Each conditional probability pφ(Xi|X<i) is further dissected into three components, each
pertaining to a constituent of Xi, as follows:

pφ(X) = p(O1)
n∏
i=2
pφ1(Oi|X<i)pφ2(Etoi |Oi, X<i)

pφ3(Efromi |Oi, Etoi , X<i).
(10.2)

We propose to model Equation 10.2 to learn the probability distribution over the scene graph
sequences, pφ(X). Unlike certain models, SceneGraphGen does not make any conditional
independence assumptions in its formulation, thus enabling the potential to encapsulate all
intricate object and relationship dependencies that exist within the data. We designate p(O1)
as a presumed prior distribution over the initial node, such as the categorical distribution
concerning object occurrences. The auto-regressive modeling is undertaken in three distinct
phases:

1. History Encoding: This phase focuses on encapsulating the information from prior steps,
X<i, into a hidden representation hi, modeling hi = Encoder(X<i).

2. Node Generation: Utilizing the hidden state, this phase generates the subsequent object
node, modeling pφ1(Oi|hi).

3. Edge Generation: Employing both the hidden state and the explicit node data, this phase
sequentially generates edges, modeling pφ2(Etoi|Oi, hi) and pφ3(Efromi |Oi, Etoi , hi).

Figure 10.2 provides a schematic representation of both the overall architecture and each
component of SceneGraphGen. We will now delve into a detailed description of each stage.

10.3.2 History Encoding

To capture the prior information, X<i, at each time step i, we utilize a Gated Recurrent
Unit (GRU) module. Specifically, we deploy three distinct GRUs, each tailored to process
information for the three outputs: Oi, E

from
i , andEtoi . This approach facilitates the decoupling

of information among the three outputs. It’s crucial to note that while each of the three GRUs
maintains unique parameters, these parameters are shared throughout all time steps. We
denote these networks as gGRUO, gGRUEfrom , and gGRUEto .

Initially, the hidden states of the GRUs are set as zero (empty) vectors. In subsequent steps, the
input to all three GRUs is the prior sequence Xi−1, which is interpreted as the concatenated
trio of outputs from the previous step i − 1—namely, Oi−1, Efromi−1 , and Etoi−1. In the first
step, the edge inputs are zero (empty), and the node is sampled from a predetermined
distribution. This prior distribution is calculated based on the occurrence of the first node
category according to the selected ordering strategy.
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10.3.3 Node Generation

We employ a multi-layer perceptron (MLP) network—referred to as nMLP—that accepts the
hidden state from gGRUO as an input. This network outputs a categorical distribution over the
object categories C, represented as prediction scores θOi . The nMLP’s parameters are shared
across all time steps. The node Oi is then sampled from this distribution. The generation of
new nodes (and subsequently, the scene graph) ceases when an EOS (end of sequence) token
appears.

10.3.4 Node-Aware Edge Generation

Each step i produces a sequence of edges Efromi , which essentially forms a sequence of
sequences, necessitating a sequential model for each step of the sequence. For this hierarchical
structure, we utilize a GRU that shares parameters, not only across all time steps i, but also
for each step within that sequence i, denoted as j. A similar GRU is used to generate Etoi at
each step i. We label these networks as eGRUEfrom and eGRUEto .

The initial hidden state of the GRUs is derived from the hidden state outputted by gGRUEfrom

and gGRUEto networks, respectively. The initial input to these GRUs is an SOS (start of
sequence) token, which triggers the generation process.

For any step j, the input for eGRUEto is the combination of four elements: the edges from the
previous step Efromi,j−1 and Etoi,j−1, the node Oi at the current step i, and the node Oj from the
jth time step.

This additional node information provides extra conditioning for the edge generation process,
inspired by the significant predictability of relationship co-occurrence for a given object
pair—that is, additional knowledge of node pairs may enhance relationship predictions.

The GRUs generate categorical distribution parameters over the relation categories R (and a
no-edge category), denoted by θE

to

i,j , from this input. The next edge Etoi,j is then sampled from
the generated categorical distribution.

The inputs of eGRUEfrom at step j are identical to those of eGRUEto , in addition to the edge
Etoi,j generated by eGRUEto at step j. The next edge Efromi,j is produced by eGRUEfrom in a
similar manner.

This procedure continues for i− 1 steps, corresponding to the number of previous nodes that
can connect to the current node Oi.

10.3.5 Objective Functions

The parameters φ of the model pφ(X) are learned by maximizing the likelihood of the training
data G with respect to the model. Training is conducted using the teacher forcing technique,
where, at each step i, we utilize the actual sequences Oi, Etoi , E

from
i instead of sampling

10.3 SceneGraphGen 65



from the model’s predictive scores θOi , θ
Efrom

i , θEto
i . The objective function is calculated using

the cross-entropy (CE) between the predicted scores and the actual sequence at each step,
followed by their summation. For a given scene graph sequence X, the objective function is
expressed as follows:

L(X;φ) = LO(O;φ1) + LE(Etoi , E
from
i ;φ2, φ3) (10.3)

LO =
n∑
i=2

CE(θOi , Oi) (10.4)

LE =
n∑
i=2

i−1∑
j=1

CE(θEto
i,j , E

to
i,j) +

n∑
i=2

i−1∑
j=1

CE(θEfrom

i,j , Efromi,j ) (10.5)

10.3.6 Inference

After acquiring the distribution over scene graph sequences pφ(X), SceneGraphGen can sample
new instances of scene graphs. This sampling process essentially adheres to the auto-regressive
generation method explained thus far. Initially, we sample the first object node from the prior
distribution, thereby creating the initial sequence X1. This prior distribution is calculated
empirically from the training set, based on the frequency of the first node when nodes are
ordered according to the strategy chosen during training. In subsequent steps, we utilize
the preceding sequence Xi−1 as input to compute the hidden states with the three gGRUs.
These hidden states are then used to generate the next node Oi using nMLP by sampling
from the categorical output. Similarly, we generate sequences of edges Etoi and Efromi using
eGRUEto and eGRUEfrom , respectively, from the corresponding categorical outputs. The node
and sequence of edges are merged to form the next sequence Xi. This process continues until
the node generator produces an EOS token.

Additionally, SceneGraphGen can evaluate the likelihood of a given sample. For a provided
scene graph converted into a sequence X, each element of the sequence Xi−1 is fed into the
network to generate the node categorical outputs θOi as well as the edge categorical output
sequences θEfrom

i and θEto
i . We then select the probability of the actual node/edge category for

each output, and calculate the negative of the sum of the logarithm over the entire sequence
X to determine the negative log-likelihood (NLL). This NLL value illustrates the ’unlikeliness’
of the occurrence of a given scene graph sample. We apply the NLL to detect anomalies in
section 10.4.2.

10.3.7 MMD Kernels

We propose two MMD kernels, namely the random walk graph kernel and the object set kernel.
We explain them as follows.
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Random Walk Graph Kernel

We adopt a generalized formulation for the random walk kernel from [61], allowing flexibility
in the selection of appropriate node and edge kernels. When comparing two graphs Ga and
Gb, we may want to compare two respective nodes r and s. This comparison can be achieved
by juxtaposing all walks of length p in Ga that start from r with all walks of length p in Gb
that start from s. The similarity between each pair of walks can be computed by comparing
the corresponding nodes and edges encountered in the walks using appropriate kernels. The
kernel to compare any two nodes can be written as:

kpR(Ga, Gb, r, s) =
∑

(r1,e1,..,ep−1,rp)∈Wp
Ga

(r)
(s1,f1,..,sp−1,fp)∈Wp

Gb
(s)

[
knode(rp, sp)

p−1∏
i=1

knode(ri, si)kedge(ei, fi)
] (10.6)

To contrast the entire structure, the kernel in Equation 10.6 is aggregated over all pairs of
nodes, and then normalized based on the maximum value of the kernel evaluations for each
graph with itself.

kpG(Ga, Gb) =
∑
r∈VGa
s∈VGb

kpR(Ga, Gb, r, s) (10.7)

kNG (Ga, Gb) = kG(Ga, Gb)
max(kG(Ga, Ga), kG(Gb, Gb))

(10.8)

To compare the nodes, we utilize the Kronecker delta function which outputs 1 when the
node categories align and 0 otherwise, i.e. knode(r, s) = δ(r, s). Nonetheless, as there can be
multiple nodes of the same category, the significance of the nodes in a graph will be lower for a
category with a single occurrence and higher for categories with multiple occurrences. Indeed,
the importance of a category with multiple occurrences should decrease as the occurrences
increase. To address this, the node kernel is normalized with the frequency of occurrence
within a graph. The node kernel is derived as:

kNnode(r, s) = σ(r)σ(s)knode(r, s),

where σ(s) = 1∑
s∈VGs

knode(r, s)
(10.9)

To compare the edges, we again use the Kronecker delta function, i.e. kedge(p, q) = δ(p, q).
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Fig. 10.3. Scene Graph generation visualization by SceneGraphGen on Visual Genome. The size and content of the
generated graphs are diverse and the scene contents are reasonable.

Object Set Kernel
We aim to compare two sets of object instances. It is demonstrated in [75] that for a domain
set X and two sets A,B ∈ X , given positive definite kernels klabel and kcount, a generalized
set kernel between A and B can be defined as:

kset(A,B) =
∑
x∈X

∑
y∈X

klabel(x, y)kcount(A(x), B(y)) (10.10)

We adopt klabel(x, y) = δ(x, y) as the Kronecker delta function, which yields one when both
x and y share the same object categories. Here, A(x) represents the frequency of element
x in A, while B(y) denotes the frequency of element y in B. We define kcount, which is the
generalized t-student kernel [16, 182] as:

kcount(A(x), B(y)) = 1
1 + |A(x)−B(y)| (10.11)

This enables us to identify when the two sets share the same object category member and gauge
how similar the frequency of those object categories are. In line with the graph kernel above,
the object-set kernel is normalized based on the maximum value of the kernel evaluation of
each object set and itself.

kNset(A,B) = kset(A,B)
max(kset(A,A), kset(B,B)) (10.12)

10.4 Experiments and Results

In this section, we outline the experiments conducted to evaluate the efficacy of our model. We
begin by detailing our implementation details, evaluation settings, encompassing evaluation
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Model Ordering
Graph Image

MMD node (×103) ↓ MMDG (×103) ↓ FID ↓ IS ↑ Precision ↑ Recall ↑

GraphRNN [273]
BFS 2.3 1.3 75.8 4.88 0.680 0.660

Random 0.39 1.2 74.5 4.85 0.679 0.664

BFS 2.05 1.82 73.3 5.04 0.679 0.690
SceneGraphGen Hierarchical 1.85 0.63 72.2 5.26 0.717 0.714

Random 0.37 0.11 71.2 4.95 0.727 0.714

Ground Truth 0.018 0.023 73.0 5.22 0.693 0.707

Tab. 10.1. Quantitative results of the graph samples (left) and image samples (right)

metrics, baselines, and datasets. Subsequently, we deliver both qualitative and quantitative
results pertaining to graph generation. Lastly, we demonstrate the practical utility of the
trained model across three applications: image generation, anomaly detection, and graph
completion.

10.4.1 Experimental Setup

Implementation details We trained SceneGraphGen for 300 epochs using a batch size of 256,
from which we sampled 256 batches with replacement per epoch. The initial learning rate
was set to 0.001 and was decreased at a rate of 0.95 every 1710 steps. Node and edge inputs
were embedded to a size of 64 and 8, respectively. All gGRUs and eGRUs were composed of 4
GRU layers, each having a hidden size of 128. The nMLP was constructed with 2 layers and
utilized ReLU activation.

Evaluation Settings Our model is evaluated on the Visual Genome (VG) dataset [121]. In
particular, we employ the scene graphs from the VG split popularized by [259]. This split
contains 150 object categories and 50 relationship categories, and is divided into training
and testing sets, consisting of 58k and 26k samples respectively. However, the VG dataset
presents scene graphs with incomplete relationships, for which we supplement the edges using
the Unbiased causal TDE model [229]. This model was selected from the SGG benchmark
[228] because it demonstrates less bias in PredCls for infrequently occurring relationship
categories. Given that various instances of objects (represented as bounding boxes) in scene
graphs can be attributed to the same underlying object, we utilize a conservative bounding
box intersection-over-union (IoU) of 0.5 along with a membership test in manually curated
group categories to identify duplicate objects, randomly selecting one from each group. We
somewhat alleviate this issue by employing heuristics to eliminate such relationships.

As there are no existing solutions specifically tailored for unconditional scene graph generation,
we draw a comparison between our model and GraphRNN, modified to incorporate node
and edge categories along with edge directions. However, SceneGraphGen stands out as it
integrates node information during edge generation and conditions Efrom edges on Eto edges.
We further subject our model to various node ordering schemes, such as BFS order, hierarchical
order, and random order. The BFS node ordering, introduced in GraphRNN [273], visits the
graph in a Breadth-First Search sequence. Hierarchical order, on the other hand, classifies
nodes based on their relational attributes, for instance, background (field), objects/beings
(person), parts (foot).
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Fig. 10.4. Image synthesis examples with 64x64 resolution using SG2Im conditioned on the scene graphs generated
by SceneGraphGen

Fig. 10.5. Image synthesis examples with 64x64 resolution using a.) Unconditional StyleGAN trained on Visual
Genome (left) b.) SG2Im on scene graphs generated by SceneGraphGen trained on Visual Genome
(right).

Assessing graph generative models based on the quality of samples is a complex endeavor
[231], since it necessitates the comparison between the generated set with the test set. To
this end, we employ Maximum Mean Discrepancy (MMD) to compare the generated and test
datasets. Defined between two distributions p and q for a given kernel k, MMD is expressed as
follows:

MMD2(p, q) =Ex,y∼p[k(x, y)]− 2Ex∼p,y∼q[k(x, y)]

+ Ex,y∼q[k(x, y)].
(10.13)

Considering MMD has not been previously implemented with kernels for directed and labeled
graphs, we conceive two kernels for comparing any two samples of scene graphs:

Random Walk Graph Kernel, drawing inspiration from [61], we measure the similarity
between two scene graph samples based on the comparison between the directed random
walks generated from the graphs.

Object Set Kernel measure the similarity between the object sets in the scene graphs based
on the comparison between the object categories and the quantity of object instances.
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Fig. 10.6. Anomaly Detection Task Left: The distribution of negative log-likelihood (NLL) for datasets with
different levels of corruption is presented. The value adjoining each distribution signifies the area under
the ROC curve. Right: An instance showcasing an increasing trend in NLL value.

We label these metrics asMMDG andMMDN . TheMMDG metric contrasts the distributions
based on the holistic graph similarity between samples (such as triplets, larger clusters,
etc), while MMDN contrasts the distributions contingent on the similarity between the
corresponding set of objects (considering co-occurrence, number of instances, etc). We
corroborate these metrics by examining their results on randomly corrupted datasets as well
as the test dataset (refer to Table 10.2). A dataset corruption of x% is executed by randomly
selecting x% of the nodes and edges in the graph and substituting them with a random label.
As anticipated, the MMD values between two distinct sets of test datasets as well as between
two fully corrupted datasets are remarkably low, as the datasets being compared are very
alike. As the corruption intensifies, the MMD metrics between the test set and the corrupted
set escalate, given that the distributions grow increasingly dissimilar.

Comparison MMDN ↓ MMDG ↓

test Vs test 0.018 0.023
100% corrupt Vs 100% corrupt 0.11 0.0098

test Vs 20% corrupt 6.0 3.7
test Vs 50% corrupt 10 6.3
test Vs 100% corrupt 44 25

Tab. 10.2. MMD metrics (×103) sanity check, comparison between a set of ground truth graphs (test) and a
randomly corrupted set.

We further attest the performance of SceneGraphGen by evaluating the quality of images
produced by the scene graphs that it generates. Specifically, we use SceneGraphGen to
generate scene graphs that are then input into the SG2Im model [104] to produce 64 × 64
images. To measure the quality of the generated samples, we employ established metrics
commonly used in image generation tasks, such as Frechet Inception Distance (FID) [79],
Inception Score (IS) [201], and the Precision (F1/8) and Recall (F8) scores [200]. The
produced images are then contrasted with the original images from the Visual Genome dataset
to quantify their quality.

10.4.2 Results

We evaluate our proposed scene graph generation model in various downstream tasks. In this
section, we present their results.
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Fig. 10.7. Diversity in the scene graph graph completion task from a partial input scene graph.

Graph Generation Our model, SceneGraphGen, is capable of generating plausible and diverse
scene graph samples. Visual illustrations of generated graphs can be found in Figure 10.3. The
model successfully generates graphs that represent both indoor environments (bed, chair)
and outdoor scenes (tree, giraffe, road), and forms logical co-occurrences of objects and
meaningful relationships between them. When compared to GraphRNN, SceneGraphGen
proves superior in both MMDG and MMDN metrics (Table 10.1, left), suggesting that
the inclusion of node information significantly enhances edge generation. We also note
that a random ordering scheme outperforms other methods for scene graph data. BFS and
hierarchical ordering are predisposed to certain node orderings due to their reliance on node
connectivity and semantics respectively. This bias is not beneficial for a dataset like Visual
Genome which exhibits significant structural variation and little regularity. We surmise that
random ordering performs better due to the absence of such bias.

ImageGeneration fromCreatedGraphs We aim to demonstrate that SceneGraphGen-generated
graphs can facilitate the synthesis of unique images. We utilize SG2Im [104], a method for
image generation from scene graphs, to convert the generated graphs into images, a method
we name SG2Im-SGG. Figure 10.4 provides examples of the novel scenes generated from their
respective novel scene graphs. Quantitative assessment of the generated images (Table 10.1,
right) illustrates that SceneGraphGen surpasses GraphRNN across all metrics and closely
aligns with the ground truth, i.e. images generated using the test set of the ground truth
data.

We further contrast these images with those produced by a leading model in unconditional im-
age generation, namely StyleGAN2 [113]. To maintain fairness, we train the StyleGAN2 model
on the same Visual Genome training split used to train SG2Im. The results for both methods
are displayed in Figure 10.5. We find that while StyleGAN2 generates high-quality images for
simpler configurations (e.g., landscapes), it struggles to maintain semantic properties in more
intricate scenes (e.g., multiple instances of the same object or indistinct objects). Conversely,
the images generated from our generated graphs exhibit more consistent compositions, as
directed by the scene graphs. To further this comparison, we detect objects in StyleGAN and
SG2Im-SGG images using a Faster-RCNN model trained on COCO. This detector identified
50 object categories in SG2Im-SGG images, as opposed to 40 categories in StyleGAN images,
illustrating that using scene graphs as an intermediate representation contributes to the
generation of semantically diverse scenes. Additionally, when comparing object occurrences
to the ground truth test set from VG, SG2Im-SGG aligns more closely with the ground truth
than the StyleGAN2 model does, with an average error of 1.2 compared to 1.4.
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Anomaly Detection Our model can also be leveraged to detect anomalies in scenes. We
calculate the likelihood over the test dataset using SceneGraphGen, identifying anomalies as
scene graphs whose likelihoods deviate from the overall likelihood distribution. The utility
of likelihood in anomaly detection is illustrated by computing the negative log-likelihood
(NLL) over datasets subject to varying degrees of node and edge corruption. We measure the
effectiveness of NLL in anomaly detection by using NLL scores to classify corrupted samples as
anomalies, and then calculating the area under the ROC curve (AUROC) [76]. The distribution
of NLL along with AUROC values can be seen in Figure 10.6 (left). The equivalent GraphRNN
plot is available in the supplementary material. An example of an anomaly, where unexpected
samples lead to a higher NLL value, is shown in Figure 10.6 (right).

A comparison of SceneGraphGen with the GraphRNN baseline on the NLL plot, is depicted
in Figure 10.8. We believe that our model displays greater sensitivity to the level of dataset
corruption compared to the baseline, i.e., the NLL gap between different corruption levels is
more substantial than for the baseline.

Fig. 10.8. NLL Distribution with various corruption levels

Overfitting Analysis Examples of generated graphs and their respective nearest counterparts
in the training data, determined through graph kernel comparison, are presented in Fig-
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ure 10.9. The graphs are distinct from each other, indicating that the model is not simply
duplicating examples from the training set.

Fig. 10.9. Graph Generation Examples based with the closest sample from the training set.

Scene Graphs Completion SceneGraphGen also has the capability to generate a scene graph
based on partial graph input, allowing for a more controlled generation of scenes. Starting
from an incomplete graph, we stochastically sample a sequence of nodes/edges (Xi) that is
conditioned on the preceding sequence (Xi−1), just like in graph generation. This leads to an
accumulation of randomness at each step, resulting in diverse graph completions. Figure 10.7
illustrates how the model is able to generate a range of possible scene graph completions
starting from the same triplet tree - near - house.

Dataset Statistics Beyond the MMD metrics, which provide a comparison at the sample
level, we provide statistics to compare generated and test samples at the dataset level. We
contrast 20k samples of scene graphs generated by SceneGraphGen with the ground truth,
i.e. the test dataset from Visual Genome. Figure 10.10 presents various patterns such as
object occurrence (a), relationship occurrence (b), and object co-occurrence (c). Object
occurrence calculates the probability of each object label appearing throughout the entire
dataset. Similarly, relationship occurrence estimates the probability of each relationship label
occurring across the full dataset. Object co-occurrence is determined by the normalized
frequency at which two distinct object labels appear within the same scene graph (scene).
For better visibility of co-occurrence patterns, we employ a maximum threshold of 0.05. In
all measurements presented in Figure 10.10, we discern analogous patterns between the
generated and ground truth datasets. Given that each object category can appear multiple
times in an image (instances), we compare the distribution of counts (1, 2, and so on) for
each object category using the Kullback-Leibler (KL) divergence of the generated dataset from
the test dataset. Figure 10.11 displays the KL divergence of the object count distribution for
each object category, showcasing a low average value of 0.048.

Object Occurrences in Synthesized Images Figure 10.12 illustrates the occurrence of objects
detected (utilizing FasterRCNN) in the images generated by StyleGAN (unconditional) versus
those produced by SG2Im based on scene graphs created by SceneGraphGen (SG2Im-SGG).
The results show that SG2Im-SGG is more efficient in generating images with a higher number
of detectable objects and superior object statistics compared to StyleGAN. However, StyleGAN’s
FID on Visual Genome is 66.3, which surpasses SG2Im-SGG. This disparity is attributed to the
image generative models in use rather than the quality of the input scene graph.
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(a) Object occurrence

(b) Relationship occurrence

(c) Object Co-Occurrence

Fig. 10.10. Dataset Statistics Comparison of generated scene graphs versus the ground truth scene graphs from
Visual Genome. a.) Object Occurrence, b.) Relationship Occurrence, c.) Object Co-Occurrence
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Fig. 10.11. Generated data KL divergence from test dataset, comparing the object frequency distribution for each
object category

Fig. 10.12. Object Occurrence Comparison based on the detections of Faster R-CNN on the generated images by
Unconditional-GAN (StyleGAN2) vs. SG2Im+SceneGraphGen model

Additional Applications Examples We offer additional examples of image generation in Fig-
ure 10.13, and examples of scene graph completion can be found in Figure 10.14.

10.5 Conclusions

In this chapter, we presented SceneGraphGen, a model explicitly designed for the generation of
unconditional scene graphs. Our results exhibit the model’s proficiency in discerning semantic
patterns prevalent in real-world scenes and its ability to create diverse, yet plausible scene
graphs. When benchmarked against established baselines, our model demonstrated superior
performance on both graph-centric and image-centric metrics. Furthermore, we showcased
the utility of our model and the generated graphs through a variety of applications, including
image generation, identification of out-of-distribution samples, and scene graph completion.
In terms of future work, we are keen to explore conditional variants of our model, for instance,
using textual descriptions as a way to guide the creation of specific scene categories.
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Fig. 10.13. Additional Image Synthesis examples with 64×64 resolution using SG2Im conditioned on the scene
graphs generated by SceneGraphGen

Fig. 10.14. Additional Scene Graph Completion Results from a partial scene graph using SceneGraphGen
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Fig. 11.1. Image generation samples of MIGS in various scene attributes on the BDD dataset [207] in a 10-shot
setting.

11.1 Introduction

The field of image generation and manipulation has drawn significant research interest over the
past years. Recent breakthroughs in deep learning for unconditional image synthesis [111, 113,
114, 115] have given rise to high-quality images that often appear real to human observers.
Impressive outcomes have also been achieved in class-conditional image generation [18]
and image generation from semantic segmentation masks [174]. Although the latter allows
pixel-level control over the image, acquiring a segmentation map might be challenging in
practical scenarios. A more straightforward alternative for representing image semantics is
a scene graph [105], i.e., a graph where nodes symbolize the objects, and edges denote the
relationships between them. Image generation from such graphs is an attractive concept as
they offer complete control over the semantics and are easy to modify for scene editing. Image
generation from scene graphs was first introduced in [104]. While the results were promising,
the images generated by this model showed a lack of quality when trained on datasets with
diverse scenes, as the network struggled to learn meaningful representations to accommodate
these discrepancies. To tackle this issue, we propose using meta-learning to assist the network
in focusing on specific tasks during training. Such a model can quickly adapt to a broad range
of tasks during testing, with only a few training samples available. Furthermore, our approach
allows us to introduce the task of few-shot learning for the scene graph to image generation
problem, an appealing scenario that can assist in generating semantically meaningful images
in applications with limited data. The main contributions of this work are as follows:
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• We propose MIGS (Meta Image Generation from Scene Graphs), a novel meta-learning
approach for the generation of images from scene graphs, outperforming previous
methods.

• We introduce the concept of few-shot learning to the problem of scene graph to image
generation.

• We present a new task sampling method for wild scenes that can benefit other image
generation scenarios involving meta-learning.

Our proposed method is evaluated on automatically generated scene graphs for Berkeley
Deep Drive [207], Action Genome [95], and Visual Genome [121] datasets, showing superior
results compared to the baselines, both qualitatively and quantitatively. This superiority is
further confirmed by a user study on the quality of the images. The project page and source
code for this work can be accessed at https://migs2021.github.io/.

11.2 Related Work

Image Generation Generative models, particularly Generative Adversarial Networks (GANs)
[67] and Diffusion Models [168], have significantly improved the quality of image generation
in recent years. There is an array of work focusing on generative models for unconditional
image generation [111, 113, 114, 115]. Conditional image generation models have also been
investigated, leveraging a variety of priors such as semantic segmentation maps[25, 174, 250],
natural language descriptions[141, 188, 280, 284], or transforming one image domain to
another using paired [90] or unpaired data [291]. Among these, methods generating images
from scene graphs [104] are most pertinent to our research.

Scene Graph-based Image Generation Scene graphs [105] are representational tools that
describe images where nodes symbolize objects, and edges represent relationships between
them. With the advent of large-scale scene graph datasets, such as Visual Genome [121], a
wide range of scene graph-related tasks have been explored. Several works propose strategies
for generating scene graphs from images [78, 166, 259]. Johnson et al. [104] pioneered the
reverse task of image generation from scene graphs, employing a 2D layout as an intermediary
between graphs and images. These layouts were then decoded into images using a Cascade
Refinement Network (CRN)[25] architecture. Similar architectures were subsequently exam-
ined for interactive image generation[4] and semantic image manipulation [42]. Herzig et
al. [77] introduced a model utilizing canonical scene graphs to enhance robustness against
graph size and noise.

In section 10, we proposed a method [63] to unconditionally generate scene graphs and
subsequently synthesize images from the produced graphs. Other related studies investigate
image generation directly from layouts [224, 226, 285] or delve into 3D scene graphs [39,
244].
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Advances in Meta-learning As discussed earlier in section 7, Model-agnostic Meta-Learning
[60] (MAML) and Reptile [167] are well-known meta-learning approaches commonly used for
the few-shot classification task. A combination of meta-learning and GANs was presented in
[282], utilizing adversarial training for few-shot image classification. However, the application
of meta-learning to the problem of few-shot image generation has been a relatively under-
explored topic. FIGR [33] employed meta-learning for few-shot image generation, focusing on
smaller datasets with black and white images, while few-shot image-to-image translation [147]
generates images by transferring inputs from a source domain to a target domain. Even though
meta-learning has been used for image generation in the past, its application has been limited
to datasets with restricted diversity and low resolution. As far as we are aware, this is the first
work on the few-shot generation of high-resolution scenes ’in the wild’.

11.3 MIGS

11.3.1 Problem Definition

In the topic of few-shot image classification meta-learning, a task is defined as a set of image-
label pairs. In our work, we adapt this definition to the problem at hand and define a task
as a pair of scene graphs and images. Given a set D of image I and scene graph G pairs,
our preliminary dataset D = I,G is delineated. The dataset is further divided into various
tasks based on a predefined task definition. During each iteration of the training phase, a task
is randomly selected and the parameters of the scene graph-to-image model are optimized
according to the selected task. In the testing phase, the trained parameters are then utilized
to fine-tune the model on specific target tasks. Our methodology, comprised of the image
generation and meta-learning components, is elaborated in the subsequent sections.

11.3.2 Image Generation

In order to address the task of generating images from scene graphs, we leverage the
SG2Im [104] architecture as a the baseline. SG2Im receives the scene graph G, with the nodes
representing objects and the edges defining their relationships. The scene graph is parsed
by a graph convolutional network (GCN) which operates on subject-predicate-object triplets,
enabling the dissemination of information along the edges. This results in processed per-node
features, wherein each object is attributed with an embedding vector that encodes information
about the object itself as well as relationships with interconnected objects. These embeddings
are subsequently used to predict a set of bounding boxes and segmentation masks for each
object. The predicted boxes and masks are amalgamated to project the GCN features onto the
image space and to generate a scene layout. Following this, an image generator receives the
scene layout and fabricates an image corresponding to the defined semantics. To compel the
network to generate images that are not only visually realistic but also semantically accurate,
two image discriminators are applied to the generated image. The first discriminator discerns
individual objects in a local context, while the second one classifies the entire image.
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Fig. 11.2. MIGS Overview. Our methodology comprises two phases: Meta-training and Testing. During the
meta-training phase, the model parameters, represented by θ, are updated on a randomly sampled task l
in each iteration. One task represents a set of image and scene graph pairs that are collectively grouped
according to specific criteria. We route a scene graph through a GCN to generate features from the node
embeddings for creating a scene layout. This layout is relayed to the generator, which synthesizes the
ultimate image. During the testing phase, we fine-tune the model θ for a predetermined number of shots
on each specific task, resulting in the generation of our final images.

We utilize various loss functions for training the model. While most of the losses are borrowed
from [105], we also introduce additional loss terms, outlined below. To prevent the model
from generating trivial solutions, we implement the perceptual loss [106] λpLp using the VGG
network. The GAN losses are defined as: LGAN,global for the whole image and LGAN,obj to ensure
the realism of individual objects. The auxiliary classification loss Laux,obj is used to maintain
the quality of the generated objects. The loss for predicting the bounding boxes, denoted by
Lbox, is calculated using the L1 loss between the predicted and ground truth bounding boxes.
Finally, the image loss Lim, which is the L1 distance between the predicted image and the
ground truth image, is used. The task loss Lτ definition is presented in Equation 11.1.

Lτ = λbLbox + λg min
G

max
D
LGAN,global

+ λo min
G

max
D
LGAN,obj + λaLaux,obj

+ λpLp + λimLim,

(11.1)

where the weighting factors are λb,λg, λo, λa, λp, λim.

LGAN = E
q∼preal

logD(q) + E
q∼pfake

log(1−D(q)), (11.2)

Here, preal designates the real data distribution derived from the ground truth, and pfake

denotes the distribution of the generated faux images or objects. The discriminator’s input is
denoted by q.

To enhance the image quality produced by SG2Im and address a few-shot learning scenario,
we modify the Reptile [167] algorithm for GANs, following the approach used in FIGR [33].
However, FIGR is designed for the problem of unconditional image generation and it ex-
periments with images that contain a single object. In contrast, our setup is conditioned
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on a scene graph with multiple objects, posing a more substantial challenge compared to
FIGR. We meta-train all components of the SG2Im pipeline on an array of diverse scenes
and demonstrate that this process facilitates high-quality image generation from the scene
graph.

11.3.3 MIGS

In this section, we present our Meta Image Generation from Scene Graphs (MIGS) method and
its constituent parts. Our primary aim is to rapidly and efficiently adapt a model, trained on a
variety of images, to a specific task using just a few training shots. To address this problem,
we refer to the meta-learning models [60, 167] and their application in a few-shot learning
context. To our knowledge, MIGS is the first method introducing a few-shot learning scenario
for the scene graph to image generation.

Task Definition Meta-learning models require a set of tasks T , composed of various learning
problems τ . Each image generation from the scene graph task is represented by τ and contains
a set of image-graph pairs Dτ = I,Gτ . These pairs have been grouped into one task based
on certain unifying criteria, such as the type of objects in the scene, specific background
surroundings, or any other attributes of either the graphs or the images. Nevertheless, the
criteria for splitting should be consistent across the entire set of tasks T . The task-splitting
criteria depend on the dataset characteristics. It can be defined based on the scene attributes
such as the time of day, the context, or by merely clustering the images into a set of clusters
based on their visual attributes using an unsupervised clustering method such as [237].

Meta-learning We denote a loss function on a task τ as Lτ . For the sake of simplicity, we
define Lτ as a combination of all generator Lτ,G and discriminator Lτ,D losses in the SG2Im
model. Our meta-learning objective is to identify such initial model parameters θ that for a
randomly selected task τ , the loss Lτ will be minimized after k iterations with only a few
available data points. In brief, such an objective is defined as:

min
θ

[Lτ
(
Ukτ (θ)

)
], (11.3)

where Ukτ (θ) represents an operator that uses image-graph pairs fromDτ to update the weights
θ, k times.

To determine such parameters θ, the models are trained using the Reptile algorithm [167],
where it consists of inner and outer loops. In the inner loop, k iterations of the operator U are
executed on the locally copied weights θl for a randomly sampled training task l. In the outer
loop, the weight vector of the meta-model θ is updated in the inner loop using the calculated
difference between θ and θl. This update is summarized as:

θ ← θ + β
1
L

L∑
l=1

(θl − θ), (11.4)

Here L defines the number of the tasks and β defines the meta-learning rate. These updates
are performed separately for the image generator model and the two discriminators.
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Fig. 11.3. Qualitative Results on BBD. This figure displays examples of images generated from the BDD dataset,
corresponding to a task characterized by: daytime, rainy weather, and highway driving scenario. All
images have been generated from the scene graph provided at the top. The MIGS model not only
generates more lifelike images, but also shows higher accuracy when cross-verified with the given scene
graph. Specifically, the MIGS + SPADE model is the only one where the truck is distinctly visible in all
three scenarios.

Inference For the evaluation of the meta-model during inference, first we fine-tune the
trained weights θ on the training split of each specific test task l to obtain the final weights θl
for this task. Subsequently, we generate images from the (unseen) test set scene graphs of
each task.

In order to make a fair comparison of our meta-models with baseline methods, we apply
transfer learning to each of the non-meta models’ weights Φ , where they are fine-tuned on
each task to obtain the corresponding Φl. Then, we evaluate the images generated by θl and
Φl on each task l.

11.4 Experiments and Results

Our method is evaluated using three datasets: Berkeley Deep Drive (BDD) [207], Action
Genome (AG) [95], and Visual Genome (VG) [121]. We benchmark our model against various
baselines, demonstrating its independence from the generator architecture. Performance
improvements are noticeable across two different generator architectures, specifically CRN
[25] and SPADE [174]. To quantify the quality and realism of the images generated by our
method, we provide the Fr’echet Inception Distance (FID) [79], Kernel Inception Distance
(KID) [13], and precision and recall metrics [200]. Additionally, we compare the image
samples generated by our method with those from related work across various scenarios. We
also provide the architectural details of CRN, SPADE, and GCN networks in the appendix.
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Fig. 11.4. Qualitative Results on Action Genome. This figure showcases examples of images generated from the
Action Genome dataset. Each column corresponds to one task (i.e., a video sequence) on which each
model was fine-tuned. As can be seen, the MIGS results on each video sequence contain a significant
level of detail when compared to their baseline counterparts.

11.4.1 Datasets

Considering the lack of standardized datasets for meta-learning in conditional image genera-
tion, we sought out datasets that naturally lend themselves to categorization into multiple
tasks.

Berkeley Deep Drive (BDD) [207] This dataset comprises images taken in city streets, residen-
tial areas, and highways under diverse scene conditions. Given that BDD does not include
associated scene graphs with images, we generate spatial scene graphs automatically using the
provided ground truth bounding boxes. This process results in six mutually exclusive spatial
relationships: left of, right of, above, below, inside, and surrounding. To focus primarily
on the objects and their relationships, we pre-process the images and crop the areas of interest
that contain all objects with minimal background.

Based on the meta-learning objectives, we divide the BDD dataset into tasks based on the
given image attributes such as time of day, weather conditions, and driving scenarios. We
exclude tasks that have fewer than 500 images, resulting in a total of 23 distinct meta-learning
tasks. Of these, 20 tasks are designated for training and validation, and the remaining 3 for
testing.
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Action Genome (AG) [95] Originally developed for action recognition, the Action Genome
dataset comprises video frames showing human interactions with objects within a scene. We
directly use human-object relationship labels from Action Genome to generate semantically
meaningful scene graphs.

Given the large volume of videos in the AG dataset, each featuring different actions, we use
these videos as criteria for task division. We remove frames from videos that either do not
feature humans, or only feature humans with no other objects, as these do not allow for the
construction of meaningful scene graphs. We then select only horizontal videos that have at
least 30 frames annotated by humans for our tasks. Following this process, we are left with
735 tasks, from which 662 are assigned to training and validation, while 73 are reserved for
testing.

Visual Genome (VG) [121] The Visual Genome dataset is fitting for image generation from
scene graphs, as it provides images along with their corresponding semantic scene graphs and
bounding box annotations. Given the absence of specific scene attribute annotations in the VG
dataset, we construct tasks by classifying all images into 100 clusters using the SCAN model
[237] pre-trained on the ImageNet dataset in an unsupervised manner. The first 60 clusters
are used for the pre-training phase, and the final 40 clusters are allocated for evaluation.

11.4.2 Experimental Setup

Our models are trained to generate images of dimensions 128 × 256 for BDD and AG, and
64×64 for VG. All meta-learning models utilize an inner learning rate of 0.0001 and are trained
for 10 inner iterations with the Adam optimizer. The outer loop employs a learning rate of 1
and makes use of SGD. The total number of training iterations depends on the specific model
and dataset; for instance, as AG is more diverse than BDD, it requires a longer convergence
time. Meta-learning models on AG are trained for 40000 outer loop iterations, while those on
BDD are trained for 30000.

The baseline model, SG2Im [104], undergoes training on the same data as MIGS (across all
training tasks) during the pre-training phase. During the testing phase, the pre-trained model
serves as the initial point and is fine-tuned and tested in a similar few-shot setting to MIGS.
In all datasets, both models are trained until they reach convergence. The SG2Im model
undergoes training for 250k iterations on AG, 200k iterations on BDD, and 40k iterations
on VG. Conversely, the MIGS model is trained for 40k and 30k iterations on AG and BDD
respectively, and 8k iterations on VG.

11.4.3 Results

The quantitative outcomes of our experimental work are presented in Table 11.1, Table 11.4,
Table 11.2, Table 11.5. We set our method against two baselines: the SG2Im model with its
original CRN decoder, and an alternative version of SG2Im that utilizes the SPADE network as
the decoder to enhance the quality of generation.
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Method Decoder
FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓

160-shot 10-shot 5-shot

SG2Im [104] CRN 194 210 176 186.5 196.8 224.2
MIGS (Ours) CRN 158.5 156.4 157 158.4 183.5 187.6
SG2Im SPADE 66.1 42.2 70.6 48.3 95.2 73.1
MIGS (Ours) SPADE 49.5 26.7 46.1 24 53.5 30.7

Tab. 11.1. Quantitative results using FID and KID trained and fine-tuned on BDD100k using 5,10 and 160 shots.

Method Decoder
F8 ↑ F1/8 ↑ F8 ↑ F1/8 ↑ F8 ↑ F1/8 ↑

160-shot 10-shot 5-shot

SG2Im CRN 0.101 0.135 0.063 0.131 0.06 0.057
MIGS (Ours) CRN 0.06 0.176 0.052 0.123 0.05 0.06
SG2Im SPADE 0.486 0.612 0.462 0.45 0.329 0.438
MIGS (Ours) SPADE 0.7 0.86 0.79 0.854 0.74 0.823

Tab. 11.2. Quantitative results using Precision and Recall trained and fine-tuned on BDD100k using 5,10 and 160
shots.

BDD Results The performance of the aforementioned models on the BDD dataset is demon-
strated with a range of shot values from 5 to 160, both quantitatively in Table 11.1 and
Table 11.2 and qualitatively in Figure 11.3. Across all three experiments, we notice that all
metrics, including FID, KID and Precision / Recall display approximately a twofold improve-
ment compared to their counterparts in the model without meta-learning. A user study was
conducted on BDD images, wherein users were asked to rank the quality of images (generated
by different methods from the same scene graph) and evaluate whether the scene reflects the
designated attribute. According to the user study, MIGS + SPADE was commonly chosen as
the most realistic method, followed by MIGS + CRN, and then SG2Im + SPADE and SG2Im +
CRN, ranked third and fourth respectively. The specific ranking percentages are outlined in
Table 11.3. The table represents the percentages of users who selected a specific method as a
particular rank based on image quality. Regarding attribute representation, MIGS + SPADE
and MIGS + CRN secured the 1st and 2nd ranks, while SG2Im + SPADE and SG2Im + CRN
were ranked 3rd and 4th respectively.

Figure 11.3 depicts examples of scene graphs and images generated using the baselines and
our method for a single test task from BDD. These images clearly illustrate that our method
surpasses all baselines, being able to generate highly detailed and realistic-looking images,
even in exceptionally challenging scenarios where only 5 frames are available for training.
Furthermore, Figure 11.1 exhibits sample images generated for a diverse set of training tasks.
Our method effectively captures the variations in scenes associated with changes in daytime
and driving scenarios.

Our method’s quantitative performance using precision (F1/8) and recall (F8) metrics, in
comparison to the baselines, is presented on both the BDD (Table 11.2) and the AG (Table 11.5)
datasets.

We present further qualitative results from applying MIGS to the BDD dataset under the
conditions of 160-shot learning (Figure 11.5), 10-shot learning (Figure 11.6), and 5-shot
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learning (Figure 11.7). The model consistently generates persuasive results across a wide
range of tasks. All images were produced using the MIGS model equipped with a SPADE
generator. Both the 160 and 10-shot learning models demonstrate their capacity to generate a
variety of images within a single task. The quality of their output is comparable, and both
are adept at rendering intricate details, such as cloud formations in an overcast task or the
reflective glares of rain on a road. The 5-shot learning model is also capable of producing
realistic images for many tasks. However, it encounters difficulty when asked to produce
significantly varied images within a single task, and it is less successful at rendering detailed
features compared to the 160 and 10-shot learning models. This outcome is to be expected,
given the minimal amount of training images available to the model, which limits the diversity
it can accurately represent.

User Study For the user study, we generated 600 images at random, divided evenly across
three different scene attributes: daytime, dawn/dusk, and night. Each image was evaluated
by three different participants. In each instance, the participant was presented with four
randomly ordered images—each representing one of our four studied methods—and asked to
rank them. Additionally, we offered a checkbox for each image, allowing the user to indicate
whether a particular attribute was fulfilled.

Method Decoder
Rank

1 (%) 2 (%) 3 (%) 4 (%)

SG2Im [104] CRN 15.79 23.34 26.55 35.58
MIGS (Ours) CRN 24.46 25.57 25.16 24.81
SG2Im SPADE 25.36 24.60 28.29 21.74
MIGS (Ours) SPADE 34.72 26.48 20.0 17.79

Tab. 11.3. User study ranking results on randomly sampled images from the BDD dataset. The provided results
represent the percentages of users who ranked the method in the specified position.

AG Results On the Action Genome (AG) dataset, the model is trained on all training images
for each test task, which consists of around 30 frames, and is evaluated on the frames extracted
from the complete videos that were not used for training. The test set includes approximately
65,000 images.

The AG dataset poses a considerable challenge for image generation from scene graphs. It
contains labels for only a few selected objects in an image, and these objects are often quite
small, such as a phone or book. Example images generated by our model and the baselines
on the AG dataset are displayed in Figure 11.4, while the quantitative performance on AG is
reported in Table 11.4. Given the complexity of the dataset in use, it’s not surprising that the
results differ from those on BDD. However, even under these conditions, our method generates
images with more detail compared to the respective baseline. This improvement is further
confirmed quantitatively by the substantial reduction in both FID and KID scores.

In Table 11.5, we present the quantitative results using the precision and recall metrics.
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Fig. 11.5. Additional quantitative results of 160-shot learning on Berkeley Deep Drive (BDD) with MIGS + SPADE
model.
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Fig. 11.6. Additional quantitative results of 10-shot learning results on Berkeley Deep Drive (BDD) with MIGS +
SPADE model.
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Fig. 11.7. Additional quantitative results of 5-shot learning results on Berkeley Deep Drive (BDD) with MIGS +
SPADE model.
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Method Decoder FID ↓ KID ·103 ↓

SG2Im [104] CRN 198 163.4
MIGS (Ours) CRN 174.5 137.8
SG2Im SPADE 141.3 76.3
MIGS (Ours) SPADE 98.1 47.4

Tab. 11.4. Quantitative results on the Action Genome dataset, contrasted with related work.

Method Decoder F8 ↑ F1/8 ↑

SG2Im CRN 0.217 0.116
MIGS (Ours) CRN 0.167 0.09
SG2Im SPADE 0.59 0.31
MIGS (Ours) SPADE 0.6 0.5

Tab. 11.5. Additional quantitative results on the Action Genome dataset contrasted with related work.

We offer further qualitative results from the AG dataset on Figure 11.8. These additional
examples underline how our method accurately captures the semantic relationships between
objects, as defined by the scene graph, in a variety of circumstances.

Additionally, we showcase how our model, when trained on a singular video from the AG
dataset, can create a variety of semantically different images. These generated images mimic
different frames from the video while consistently maintaining the same style (Figure 11.9).

VG Results The comparative performance of MIGS and SG2Im [104] on the VG dataset is
presented in Table 11.6 and illustrated in Figure 11.10. The results demonstrate that MIGS
consistently surpasses the baseline across all metrics for various shot values, even with a
reduced number of training epochs. Despite the wide diversity and wild nature of the images
in the VG dataset, MIGS exhibits the ability to generate images that appear more lifelike than
those generated by the baseline model.

Ablation Study On Memorization In Figure 11.11, we illustrate some training examples for a
5-shot training task along with generated images from the same task’s test set, accompanied
by their corresponding ground truth images. As can be observed in the figure, the generated
images present several differences from the five training samples in aspects like car colors and
shapes. Interestingly, the model has managed to generate cars in colors distinct from those it
was trained on. As indicated by the Precision and Recall metric in Table 11.2, and FID and
KID metrics, the diversity of the generated images surpasses that of the original SG2Im model.
During the testing phase, for each task composed of distinct images and their corresponding

Method Decoder
FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓

160-shot 10-shot 5-shot

SG2Im [104] (All epochs) SPADE 55.20 35.54 81.42 59.39 91.79 68.52
MIGS (Ours, 1/3 epochs) SPADE 54.83 34.21 76.56 52.02 84.87 59.38
MIGS (Ours, All epochs) SPADE 54.24 29.00 75.96 50.69 83.54 55.28

Tab. 11.6. Quantitative comparison of MIGS and SG2Im on the VG dataset, fine-tuned on 5, 10, and 160 shots.
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from the Action Genome.
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Fig. 11.9. Example images generated with the MIGS + SPADE model, trained on a specific video class from
the Action Genome. These examples highlight how our approach successfully interprets the semantic
relationships between objects, as indicated by the scene graph.

5-shot 10-shot 160-shotGT

MIGS (Ours) SG2Im MIGS (Ours) SG2Im MIGS (Ours) SG2Im

Fig. 11.10. Sample images generated using MIGS + SPADE and SG2Im + SPADE on the Visual Genome dataset.

scene graphs, five separate images (in the case of 5-shot) are sampled for model fine-tuning.
Subsequently, other images from the same task possessing similar attributes are sampled.
Their scene graph is employed to generate images, which are then compared with their ground
truth counterparts.

11.4.4 Discussion

Our experimental results demonstrate that meta-learning applied to image generation from
scene graphs remarkably outperforms the corresponding baselines, nearly doubling the effec-
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Fig. 11.11. This figure demonstrates 5-shot learning results on the Berkeley Deep Drive (BDD) using the MIGS +
SPADE model, highlighting the effect of memorization.

tiveness based on the metrics employed, when compared to the model without meta-learning
integration.

In the cases of both BDD and AG datasets, MIGS + SPADE drastically surpasses the respective
baseline, with almost double the precision and recall. This enhancement signifies that images
generated through the meta-learning technique look more realistic (precision) and cover a
broader range of the real data distribution (recall). The outcomes achieved with MIGS + CRN
are relatively equivalent to those of the baseline.

Our proposed method proves to be advantageous across all contexts, even when restricted
to merely 5 training samples. Despite the significant performance boost rendered by meta-
learning, we noticed the emergence of considerable artifacts in images, such as grayish or
blurred sections, when the model was trained with a higher number of shots. We associate
this issue with overfitting, a behavior also noted in non-meta-learning models when subjected
to prolonged training. We have also found that meta-learning is particularly susceptible to
overfitting, a phenomenon underscored in Table 11.1, where 10-shot training outperforms
the 160-shot setup. Therefore, it may be beneficial to monitor and mitigate overfitting by
limiting the number of samples or implementing model regularization.
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The qualitative results garnered from the BDD dataset vary considerably, a factor attributable
not only to AG’s more complex environment but also its unsuiteness for the image generation
task. Given its design for action recognition in videos, only objects interacting with the person
are annotated. This often leads to instances where certain object frames are neglected until
an action is performed or remain unannotated throughout the entire video if the main actor
doesn’t interact with them.

Such inconsistencies can confound the model, resulting in subpar quality. Additionally, this
dataset includes a multitude of small objects in relation to the frame size. We posit that a
better-constructed dataset for semantically meaningful scene graphs should enable the model
to produce results akin to BDD. The findings on the VG dataset suggest that incorporating a
straightforward yet effective task construction scheme, like clustering (which can be applied
to any other dataset), with the meta-learning approach, can enhance image generation
performance. The impact of task construction on the performance of meta-learning presents a
fascinating area for future research exploration.

11.5 Conclusion

In this chapter, we introduced MIGS, a novel meta-learning method for generating images from
scene graphs, marking the first attempt at few-shot image generation of diverse real-world
scenes. This adaptable method can be implemented across various generator architectures
and datasets. Evaluation results from three distinct datasets demonstrate that our proposed
meta-learning strategy significantly enhances the quality of generated images in all contexts.
Our method proves that it’s feasible to produce high-quality images with as few as 5 shots of
data. The superior performance of our method compared to earlier works is demonstrated
both quantitatively and qualitatively in the results.
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12Semantic Image Manipulation
using Scene Graphs

12.1 Introduction

The objective of image understanding is to extract meaningful and comprehensive informa-
tion from an image. Over the years, various tasks such as object recognition [189], visual
relationship detection [153], and image captioning [103] have greatly benefited from deep
representation techniques. Additionally, image synthesis tasks, like generating realistic images
from semantic layouts [25, 250, 285] or natural language descriptions [81, 141, 188, 280,
284], heavily rely on image understanding.

Despite these advancements, image manipulation, involving alterations, additions, or removal
of image elements, has received comparatively less attention. Traditional image manipulation
typically involves pixel-level changes using photo editing software and low-level tools like
in-painting. Some methods target high-level manipulations, focusing on specific objects, like
facial modifications or reenactment.

Deep generative models, especially Generative Adversarial Networks (GANs) [67], have also
been applied to image manipulation. However, the existing approaches often require user
interfaces that may involve tedious segmentation maps for image editing [82, 169], requiring
pixel-level changes on semantic segmentation maps.

A more efficient approach to image manipulation, based on semantic understanding, encom-
passing objects, their relationships, and attributes, could offer an easier and more user-friendly
image editing experience, reducing the need for extensive manual effort from the user.

Fig. 12.1. Semantic Image Manipulation. Our approach begins with an input image, and from that, we predict a
corresponding scene graph that represents the objects, their attributes, and their interactions within the
image. The user can then interact with this scene graph by making changes to its nodes or edges. Based
on the user’s edits, we generate a new image that incorporates the modifications made to the scene
graph. This enables the user to seamlessly edit the image’s content and relationships by manipulating
the underlying scene graph, resulting in a visually updated image reflecting the desired changes.
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Motivated by the mentioned limitations, we propose a framework for semantic image editing
that allows the user to modify a scene graph, which is a representation of the objects, attributes
and interactions in the image (Figure 12.1). 1

Scene graphs define a scene by using nodes to represent objects and edges to represent
relationships between them. This formulation enables the user to perform different editing
functions by simply changing the nodes or edges in the graph. For example, the user can delete
unwanted tourists in a holiday photo by removing the corresponding <person> nodes, instead
of manually segmenting, deleting and in-painting them. The user can also replace graph nodes
with different semantic categories, for example replacing <clouds> with <sky>. Moreover, the
user can re-arrange the spatial composition of the image by swapping object nodes on the
image canvas. To the best of our knowledge, this is the first approach to image editing that
also enables semantic relationship changes, for example changing a person walking in front of
the sunset” to a person jogging in front of the sunset” to create a more scenic image. Semantic
image editing based on scene graphs is not only useful for photo editing, but also for other
domains, such as robotics. For example, a robot tasked to tidy up a room can manipulate the
scene graph of the perceived scene by moving objects to their designated spaces, changing
their relationships and attributes: clothes lying on the floor” to folded clothes on a shelf”, to
obtain a realistic view of the room after the action is performed.

Previous research efforts have predominantly focused on two separate tasks: generating a
scene graph from an image [139, 166] or generating an image from a given scene graph [4,
104]. However, our work addresses the unique challenge of combining these tasks into a
single problem. Specifically, we aim to generate an image while simultaneously manipulating
it based on the provided scene graph. This manipulation requires preserving the identity of
certain elements, such as objects, in the scene while modifying the relationships between
them. For instance, changing the relationship between a "boy" and "grass" from "sitting on"
to "standing on" necessitates generating an image with the same "boy" while adjusting the
positioning according to the new relationship.

Creating a fully supervised dataset that contains pairs of images before and after manipulation,
along with their corresponding scene graphs, is highly challenging and resource-intensive.
However, our approach does not rely on such extensive supervision. Instead, we propose a
method that leverages existing training data comprising image and scene graph pairs. Through
this semi-automatic process, users interact indirectly with the image by modifying the nodes
and edges of the scene graph. This allows for flexible changes in the visual entities’ interactions,
both semantically and spatially, without the need for manual image editing.

Our contribution is an innovative approach that enables various types of edits using a single
model. This includes modifying the semantic relationships between objects while preserving
the original content of the image. The resulting images accommodate user-specified changes
and seamlessly integrate new or modified content as desired. Our method, known as SIMSG
[42], achieves this manipulation by employing masking techniques on specific data compo-
nents, such as object features or bounding box information, depending on the manipulation
mode.

1https://he-dhamo.github.io/SIMSG/
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Source SIMSG Ours

man riding wave              man near wave person sitting in sand              person standing in sand

Source SIMSG Ours

Fig. 12.2. DisPositioNet preserves the object features by disentangling them in the latent space, leading to more
realistic objects compared to SIMSG [42] in semantic image manipulation.

Despite the promising results achieved by SIMSG, there exists a limitation in the way it learns
object features for manipulation. Specifically, the learned object features encode both pose and
appearance simultaneously, making it challenging to preserve one aspect while modifying the
other. This issue becomes apparent in scenarios where we aim to change object relationships
while maintaining specific visual attributes. For instance, in Figure 12.2, when the relationship
of a man changes from riding to near the wave (left), or from sitting to standing in the sand

(right), SIMSG (middle column) may lose some visual characteristics of the man during the
adaptation to the new pose, such as changes in body shape or outfit color.

To address this limitation, we propose a novel network called DisPositioNet, which stands
for Disentangled Pose and Identity in Semantic Image Manipulation. DisPositioNet aims
to disentangle object features using a self-supervised variational approach, employing two
branches to encode pose and appearance features separately in the latent space. By disentan-
gling features in the image manipulation process, we hypothesize that the model will preserve
visual attributes more reliably, leading to more meaningful and accurate results. Additionally,
to further enhance feature disentanglement and ensure compatibility with the variational
embedding, we propose DSGN, a disentangled scene graph neural network for extracting
disentangled features from scene graphs.

Our proposed models, DisPositioNet and SIMSG, are thoroughly evaluated on standard bench-
marks for image manipulation, including CLEVR [102], Visual Genome [121] and Microsoft
COCO [145]. The evaluation demonstrates the superior performance of our models compared
to previous approaches, both quantitatively and qualitatively. In particular, DisPositioNet
outperforms SIMSG [42] in cases where preserving object appearance while changing pose is
crucial.

To summarize our contributions:

• A method for semantic image manipulation that allows for constellation changes without
the need for pairs of before and after modifications.

• A self-supervised approach for disentangling pose and appearance features in semantic
image manipulation, which does not require labeled information for the disentanglement
task.
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Fig. 12.3. Training Overview. Top: We employ a two-step process in our approach. First, given an input image,
we predict its corresponding scene graph, capturing the objects and their relationships within the image.
Next, we reconstruct the input image using a masked representation. a) Within the scene graph, the
graph nodes oi (depicted in blue) are enriched with bounding boxes xi (shown in green) and visual
features zI,i (highlighted in violet) obtained from cropped objects. To create the reconstruction, we
randomly mask certain boxes xi, object visual features zI,i, and parts of the source image. The model
then reconstructs the same scene graph and image utilizing the remaining information. b) To further
visualize the process, we project the per-node feature vectors to a 2D space using the bounding box
predictions from SGN (Scene Graph Network). This projection facilitates a clearer representation of the
features in a reduced-dimensional space.

• A disentangled scene graph neural network, DSGN, that efficiently extracts disentangled
features from scene graphs.

• A variational latent representation that offers higher diversity in image manipulation.

• Superior quantitative and qualitative performance compared to state-of-the-art methods
on three well-established public benchmarks.

These contributions collectively demonstrate the effectiveness of our approach and highlight
its potential for advancing the field of semantic image manipulation. The source code and
additional information for SIMSG and DispoNet can be found at our project page 2.

12.2 Related Work

Image generation Deep generative models [67, 119, 171, 181, 238] have played a pivotal role
in advancing (un)conditional image synthesis techniques. The progress in image generation
has been largely driven by Generative Adversarial Networks [67] and diffusion models
[168]. Among these developments, conditional variants [161] have been extensively explored,
allowing image generation based on different input conditions.

Conditional image generation involves modeling the conditional distribution of images given
specific prior information. Practical tasks, such as denoising or inpainting, can be viewed as
generating images from noisy or partially available inputs. Existing literature has investigated
various conditional models for different use cases, including conditioning on image labels

2https://scenegenie.github.io/DispositioNet/

100 Chapter 12 Semantic Image Manipulation using Scene Graphs

https://scenegenie.github.io/DispositioNet/


[161, 170], attributes [261], lower-resolution images [129], semantic segmentation maps
[25, 174, 250], natural language descriptions [141, 188, 280, 284], or performing domain
translation using paired [90] or unpaired data [291]. Pix2Pix [90] and CycleGAN [291] are
notable examples of models that enable general image translation between different domains,
with the latter relaxing the requirement for paired training data. Additionally, some works
focus on unconditional image generation within specific domains, such as faces [112, 113].

Semantic image generation, where an image is generated from an input semantic map, has
also been addressed in the literature [25, 174, 250]. In these approaches, the input semantic
map provides essential information for image synthesis.

Another relevant line of research involves generating images from layout information, repre-
sented as sets of bounding boxes and class labels for each scene instance [81, 224, 285]. More
closely related to our work are methods that generate images conditioned on a scene graph [4,
53, 91, 104]. In such approaches, the layout serves as an intermediate step to translate
the graph structure into the image space. For instance, Sg2im [104] was the pioneering
method that tackled this task using a combination of object-level and image-level GAN loss
in a supervised manner. Subsequent works have sought to enhance the performance on this
challenging task by incorporating per-object neural image features to increase diversity [4],
leveraging meta-learning for improved learning on highly diverse datasets (MIGS) [53], and
utilizing contextual information to refine the layout (CoLoR) [91].

Image manipulation Unconditional image synthesis remains a challenging task, especially
when dealing with complex scenes. In contrast, image manipulation focuses on specific parts
of the image, allowing for the generation of higher-quality samples. This task involves partial
image generation and often involves a user interface to indicate the subject of change [133].

Early works in scene-level image editing took a hand-crafted approach, where some image
parts were replaced with sample patches from a database [84].

Image manipulation based on semantics has mostly been confined to object-centric scenarios.
For instance, face editing has been automated using attributes [32, 126, 286] or accomplished
through manual edits with paintbrushes and scribbles [19, 290]. Image composition, which
also involves individual objects, faces the challenge of decoupling appearance and geometry [6,
279].

At the scene level, generative models have been used for tasks like inpainting [176] with
additional guidance from semantics [271] or edges [165, 274]. Other works have allowed
user-specified content [101, 287] and object removal [41, 211].

A learned model on a semantic layout representation was employed by Hong et al. [82],
enabling users to make changes to the image by adding, moving, or removing bounding
boxes. Similarly, SESAME [169] enables users to draw masks with semantic labels on images
to indicate changed pixels. EditGAN [146] offers detailed object part segmentation map
modifications to alter object appearance.
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Image synthesis from semantics also facilitates interactive editing through changes applied to
the semantic map [250]. In contrast, our approach follows a semi-automatic methodology,
encompassing all these scenarios using a single general-purpose model, where edits are
incorporated via a scene graph. Additionally, Hu et al. [84] proposed a hand-crafted image
editing approach using graphs for library-driven patch replacement. While [84] focused
on copy-paste tasks, our framework enables high-level semantic edits and addresses object
deformations.

Our proposed framework is trained by reconstructing the input image, thereby avoiding the
need for paired data. A similar idea was explored by Yao et al. [266] for 3D-aware modification
of scenes (specifically 3D object pose) by disentangling semantics and geometry. However,
their approach is limited to specific scene and object types (streets and cars) and requires CAD
models. In contrast, our approaches tackle semantic changes of objects and their relationships
in natural scenes, achieved through scene graphs. Recently, Su et al. [221] proposed an
improvement to SIMSG by utilizing masks instead of bounding boxes for object placement.

Images and scene graphs Scene graphs serve as structured, abstract representations of image
content, capturing objects, their attributes, and relationships. Initially defined by Johnson et
al. [105], a scene graph is represented as a directed graph, where objects constitute the nodes,
and their interactions are expressed by the edges.

Numerous methods have been proposed to generate scene graphs from images [78, 139,
140, 166, 180, 223, 229, 259, 263, 277], and more recently, even from point clouds [244,
254]. The main goal is to identify objects and their visual relationships within the scene.
Diverse approaches have been explored for this task, including iterative message-passing [259],
sub-graph decomposition [139], and attention mechanisms [263]. SceneGraphGen [63] has
recently addressed this task unconditionally by employing an auto-regressive model for scene
graph generation.

Scene graph generation inherently depends on successful object detection [189] and visual
relationship detection [36, 93, 153, 198, 272], which enable the identification of visual entities
and their interactions in the image.

Conversely, the reverse and more challenging problem involves generating an image from its
scene graph. Johnson et al. tackled this challenge using a graph convolution network (GCN)
to decode the scene graph into a layout and subsequently translate it into an image [104].
Scene graphs have also been employed effectively for conditional scene generation [40, 104,
154].

We extend this architecture and introduce additional mechanisms for information transfer from
an image to serve as conditioning when the objective is image editing, rather than free-form
generation. Related works have explored image generation directly from layouts [285]. Recent
research focuses on interactive image generation from scene graphs [4] or layouts [224].
However, these methods differ from ours in two main aspects. First, while [4, 224] process a
graph/layout to generate multiple variants of an image, our approach manipulates an existing
image. Second, we address complex semantic relationship editing, while they use graphs with
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simplified spatial relations, such as left of or above in [4], or without relations at all, as in
the layout-only approach of [224].
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Fig. 12.4. DisPositioNet Overview. Given a source image and its corresponding scene graph, we obtain a set of
node features. The node features along with the edge features are passed through the Disentangled
GNN to produce the object features. The disentangled object features are then fed to two branches, i.e.,
the pose encoder EP and the appearance encoder EA. The scene layout is computed by embedding
object features at the spatial locations from predicted object bounding boxes. Finally, the predicted
transformation by the pose decoder QP is applied to feature patches of the layout for each object, and
the final image is generated by passing the transformed layout to the decoder network QA.

Disentangled Representation Learning Disentangled representation learning has been exten-
sively studied using variational autoencoders [46, 230], as demonstrated in tasks like changing
digits and handwriting in the MNIST dataset. Early works on disentangled representation
learning [26] focused on maximizing variational mutual information or reducing the channel
capacity of the variational autoencoder [80]. More recent approaches explore disentanglement
using deformable networks [213, 258], contrastive learning [7, 175], or disentangling identity
and pose for face manipulation [278]. However, many of these methods require labeled
information to condition the model on specific attributes for disentangling. Moreover, they
often disentangle the data without explicitly identifying which feature corresponds to which
factor. Recently, an unsupervised approach called [218] was proposed to disentangle pose and
appearance. It employed two branches to predict the image’s transformation parameters and
then applied the learned transformation to the appearance features.

Disentanglement in graph neural networks (GNN) has also been explored in previous works
such as [155, 264], where the graph features are decomposed into different factors to aid
in disentangling the latent representation. However, these approaches primarily operate on
regular graphs, considering only neighboring nodes when computing features. In contrast,
GNNs designed for scene graphs incorporate the modulation of edge features into the GNN
network, providing a more comprehensive representation.

12.3 Method

The main focus of this chapter is to perform semantic manipulation of images without direct
supervision for image edits, meaning that we do not require paired data consisting of original
and modified content. The process starts with an input image I from which we generate its
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scene graph G that serves as the interaction interface with a user. Subsequently, a new image
Ĩ is generated based on the user-modified graph representation G̃ and the original content of
I. An overview of the method is depicted in Figure 12.1.

Our method consists of three interconnected parts. The first step is scene graph generation,
where we encode the image contents into a spatio-semantic scene graph that is designed to
be easily manipulated by a user. During inference, the user is able to modify the scene graph
by making changes to object categories, locations, or relations, directly interacting with the
nodes and edges of the graph. Finally, the output image is generated based on the modified
graph. The three components and their connections are illustrated in Figure 12.3. We extend
this methodology by disentangling the pose and identity features in the latent space of the
semantic image manipulation model.

An inherent challenge in this problem lies in obtaining training data, as it requires matching
pairs of source and target images along with their corresponding scene graphs. To address
these limitations, we propose a method that learns the task through unsupervised image
reconstruction, leveraging readily available training data. In contrast, graph prediction is
learned with full supervision due to the availability of labeled data.

12.3.1 Definitions

We are given an input image I and its corresponding scene graph G = O,R, where O
represents the set of objects (nodes) in the scene and R denotes the set of relationships
(edges) between the objects, our objective is to obtain a modified image Ĩ based on an altered
version of the scene graph G̃. To achieve this, we formulate the image manipulation task with
a reconstruction proxy objective, eliminating the need for paired images with explicit changes
for training.

For fine-grained control over specific object attributes, we extend the semantic graph repre-
sentation to obtain an augmented graph. Each node in this graph contains a semantic class
embedding, a bounding box x, and a neural visual feature zI . During training, we randomly
mask object regions in the image, visual features, or bounding boxes using a noise vector, and
the model’s objective is to reconstruct the masked parts using the information from the scene
graph G and the remaining regions in the image.

In mathematical terms, G defines a set of triplets Gi = (si, ri, oi), where si, ri, and oi represent
the subject, predicate, and object, respectively. Each object in the graph belongs to a class of
object categories C = c1, c2, ..., cn. We extract image features zI from the input image using
a pre-trained classifier network, such as VGG16 [216]. The graph triplets are then passed
through a scene graph neural network (SGN) with parameters Φ, facilitating message passing
between the nodes. Consequently, zG is obtained from SGN, which processes the scene graph
G, the input bounding boxes x, and the visual features zI .

12.3.2 Semantic Image Manipulation using Scene Graphs
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Scene Graph Generation

The problem of generating a scene graph from an image has been extensively studied [139,
166, 259, 277]. It involves representing the image with a directed graph G = (O,R) consisting
of objects O (nodes) and their relations R (edges).

To achieve this, we adopt a state-of-the-art scene graph prediction method (F-Net) [139] and
use its output as the foundation for our work. Since the desired output of our system is a
generated image, we aim to encode as much image information as possible into the scene
graph, in addition to semantic relationships.

We define each pair of objects and the relationship between them as a triplet oi = (ci, zI,i, xi) ∈
O, where ci ∈ Rd is a d-dimensional learned embedding of the i-th object category, and xi ∈ R4

represents the four values defining the object’s bounding box. The visual feature encoding of
the object is denoted as zI,i ∈ Rn, which can be obtained from a pre-trained convolutional
neural network (CNN) used for image classification. Similarly, for each relationship between
two objects i and j, we learn an embedding ρij of the relation class rij ∈ R.

Conceptually, one can view our graph representation as an augmentation of a simple graph
containing only object and predicate categories, enriched with image features and spatial
locations. By incorporating this additional information into the graph, our model ensures the
preservation of object identity and appearance even when corresponding locations and/or
relationships are modified.

Graph Feature Extraction

The core of our approach centers around the spatio-semantic scene graph network (SGN),
which plays a pivotal role in handling the user modified graph. The SGN is designed to learn a
graph transformation that facilitates the smooth flow of information between objects and their
relationships. Its primary objective is to acquire resilient object representations that will be
employed in the image reconstruction process. To achieve this, the SGN conducts a sequence
of convolutional operations on the graph structure.

These graph convolutions are executed through an operation denoted as τe, which primarily
operates on the edges of the graph:

(α(t+1)
ij , ρ

(t+1)
ij , β

(t+1)
ij ) = τe

(
ν

(t)
i , ρ

(t)
ij , ν

(t)
j

)
, (12.1)

where we define ν
(0)
i as oi, and t denotes the layer of the SGN, and τe is realized as a

multi-layer perceptron (MLP). Given that nodes may appear in multiple edges, the updated
node feature ν(t+1)

i is obtained by averaging the outcomes of the edge-wise transformation.
Subsequently, the averaged result undergoes another projection using τn.
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The number of edges that start or end in node i is denoted by Ni. After T graph convolutional
layers, the final layer generates a latent representation for each node, i.e., per object. This
output object representation includes predicted bounding box coordinates x̂i ∈ R4, a spatial
binary mask m̂i ∈ RM×M , and a node feature vector ψi ∈ Rs.

The prediction of coordinates for each object serves as a form of reconstruction, since the object
locations are known and already encoded in the input oi. This reconstruction is necessary
when modifying the graph, for example, when adding a new node.

The predicted object representation is then assembled into the spatial configuration of an
image, forming the scene layout. This layout will be used to generate the modified image
based on the user’s changes to the scene graph.

Image Generation
Scene Layout The subsequent component of our method is responsible for converting the
graph-structured representations predicted by the SGN into a 2D spatial arrangement of
features, which can be subsequently decoded into an image.

To achieve this, we utilize the bounding box coordinates x̂i predicted by the SGN to project
the corresponding masks m̂i into the appropriate regions of a 2D representation that matches
the resolution of the input image. By concatenating the original visual feature zI,i with the
node features ψi, we obtain the final node feature.

The projected mask regions are then filled with their respective features, while the remaining
areas are padded with zeros. This process is repeated for all objects, resulting in |O| tensors of
dimensions (n+s)×H×W . These tensors are subsequently aggregated through summation to
form a single layout representing the scene, which contains enough information to reconstruct
the image.

We then fill the projected mask region with the respective features, while the remaining area
is padded with zeros. This process is repeated for all objects, resulting in |O| tensors of
dimensions (n+ s)×H ×W , which are aggregated through summation into a single layout
for the image. The output of this component is an intermediate representation of the scene,
which is rich enough to reconstruct an image.

Image Decoding The final stage of our pipeline involves synthesizing the target image based
on the information from the source image I and the layout prediction. To accomplish this task,
we employ two different decoder architectures: cascaded refinement networks (CRN) [25]
(similar to [104]), as well as SPADE [174], originally designed for image synthesis from a
semantic segmentation map.

To condition the image synthesis process, we concatenate the predicted layout with the
extracted low-level features from the source image. Before extracting these features, specific
regions of I are masked, a mechanism that is further explained in section 12.3.2. These
masked regions are filled with Gaussian noise, introducing stochasticity to the generator for
more diverse output.
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Training

Full supervision training would necessitate quadruplet annotations (I,G, G̃, Ĩ), where an image
I is paired with its original scene graph G, a modified graph G̃, and the resulting modified
image Ĩ. However, obtaining ground truth data for (Ĩ , G̃) is challenging. To address this, we
train our model using only the (I,G) pairs through a reconstruction-based approach. We
generate annotation quadruplets (Ĩ , G̃,G, I), where (I,G) serves as the target supervision and
(Ĩ , G̃) is simulated using a random masking procedure applied to object instances.

When training, we randomly mask an object’s visual features zI,i with probability pzI
and

independently mask the bounding box xi with probability px. When information is “hidden,”
the corresponding image regions are occluded before feature extraction. This unsupervised
approach enables learning without the need for paired modified images, making the training
process more feasible and efficient.

The masking mechanism employed effectively transforms the image editing task into a recon-
struction proxy task. During runtime, a user can directly edit the nodes or edges of the scene
graph. When an edit is made, the regions in the image that are subject to modification are
occluded. The network, having learned to reconstruct the image from the scene graph, then
generates a plausible modified image based on the edited graph.

For instance, consider the example of a person riding a horse (Figure 12.1). Suppose the user
desires to change the interaction between these entities, modifying the predicate from riding

to beside. As the spatial arrangement is expected to alter, we discard the localization xi of
these entities in the original image. Instead, their new positions x̂i will be estimated based
on the layout of the rest of the scene (e.g., grass, trees). To facilitate this change, the system
automatically masks the original image regions corresponding to the target objects. However,
to preserve the visual identities of the horse and rider throughout the modification, their visual
feature encodings zI,i must remain unchanged. This ensures that the appearance of the horse
and rider is consistent even after the interaction has been altered.

To train the model effectively, we employ a combination of loss terms. First, the bounding
box prediction is trained using the L1-norm, represented as Lb = ‖xi − x̂i‖1

1, with a weighting
term λb.

For the image synthesis task, adversarial training is utilized with two discriminators. The local
discriminator Dobj works on each reconstructed region ensuring that the generated patches
appear realistic. Additionally, we apply an auxiliary classifier loss [170] to enable Dobj to
correctly classify the generated objects into their respective real labels. On the other hand, the
global discriminator Dglobal ensures overall consistency throughout the entire image.

To preserve the image content in regions that remain unchanged, we apply an image recon-
struction loss term Lr = |I − Ĩ|1. This term enforces that regions not subject to modification
maintain their original appearance.
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The total image generation loss is then a combination of all these individual loss terms:

Lsynthesis = Lr + λg min
G

max
D
LGAN,global

+ λo min
G

max
D
LGAN,obj + λaLaux,obj,

(12.3)

where λg, λo, λa are weighting terms.

LGAN = E
q∼preal

logD(q) + E
q∼pfake

log(1−D(q)), (12.4)

We denote the ground truth distribution of the image or its objects by preal and the distribution
of the generated or edited ones by pfake. The discriminator input q is sampled from either
preal or pfake. We use SPADE with a perceptual loss λpLp and a GAN feature loss λfLf as in
[174]. We also use a multi-scale discriminator Dglobal. See the Appendix for more details on
the architectures, hyper-parameters and training.

12.3.3 Disentangled Semantic Image Manipulation

We aim to learn a representation that disentangles the appearance and pose of the objects in the
latent space for semantic image manipulation, which allows us to preserve specific attributes’
features. In this section, we explain our disentangled graph model and our variational
disentanglement approach. Figure 12.4 illustrates our method.

DisPosioNet (Ours) SIMSG

Fig. 12.5. A graphical model of DisPositioNet compared to SIMSG. Both models take an image I and a scene
graph G as inputs. The blue color highlights the differences between the two methods. DispositioNet
disentangles the graph representation and the latent embeddings, while SIMSG directly generates the
image from the latent embedding zl.

We use two encoder networks, EA and EP , to disentangle the pose and appearance features
of the per-object features zG . The appearance features zGA are used to predict the object
bounding boxes and pseudo-segmentation maps with two networks. The pose features zGP
are used to predict a set of transformation parameters γ with a pose decoder network QP .
These parameters define a transformation function τ that modifies the object features in the
scene layout zl. The scene layout zl is obtained by projecting the appearance features zGA
of each object onto the image space, using the predicted bounding boxes and segmentation
maps. The object features are cropped from zl using the bounding boxes x and transformed
by τ . The image decoder network QA takes the transformed layout τ(zl) and produces the
reconstructed image Ĩ.
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Graphical Model Figure 12.5 shows the graphical model of DisPositioNet and SIMSG for
comparison.

Disentangled Graph Neural Network The SIMSG formulation has a major drawback: the
object features from the SGN are not separated. To enhance the pose and appearance
disentanglement, we propose a disentangled graph neural network, called DSGN. Our proposed
DSGN is inspired by [155], but it also incorporates the edge features (here predicates) in
the disentangled feature extraction, as they are essential for our task. Our network handles
triplets of the form Gi = (si, ri, oi). The DSGN uses disentangled convolutional layers and
neighborhood routing mechanism [197] to project the features into different subspaces. The
neighborhood routing mechanism identifies the latent factor that causes the edge between a
node and its neighbors. It assigns the neighbor to a different channel to extract the features
for that factor. The DSGN takes the triplets Gi = (si, ri, oi) as input, where oi, si ∈ O and
ri ∈ R. Every layer e in the DSGN is a function fe(.) that applies the edge features to the
nodes in the graph and their neighbours:
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where ν(0)
i = oi, and t is the layer index of the DSGN, with T layers in total. The node features

ν
(t)
i are first split into k factors by a Sparse Input Layer [57]. Then, each factor is processed

by a separate neighbourhood routing layer. The final object features ν(T )
i are obtained by

concatenating the object features from all k factors.

Disentangled Variational Embedding We use two encoder and two decoder networks to force
our model to disentangle the pose and appearance features in the latent embedding, following
[218]. The object features zG are fed to the variational encoders EA, EP , which have two
subnetworks that estimate the mean µ and variance σ of the data. They both produce the
latent representation z, using the reparameterization trick z = µ+ σε, where ε is a random
noise vector.

EA extracts the appearance features, while EP extracts the pose information. A simple
MLP network QP predicts the transformation γ for each object, which is applied to the
object patches cropped from the scene layout zl. The purpose of predicting and applying
the transformation γ by QP is to isolate the pose information in the pose branch and make
the model learn only the appearance features in EA. The image is then reconstructed by
conditioning the image decoder QA on the scene layout zl. In our experiments, we use the
the SPADE [174] generator as our image decoder.

The affine transformation function τ for the input z is defined as follows:

τγ(z) =


γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33



za

zb

1

 (12.6)
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which is then derived as:

τγ,affine(z) =
[

cos(α) − sin(α)
sin(α) cos(α)

][
1 m

0 1

][
δza

0
0 δzb

]
+
[
tza

tzb

]
(12.7)

The MLP QP models the parameters γ for each object, which define the following transforma-
tions: rotation by angle α, shear by factor m, scaling by factors δza

and δzb
, and translation by

distances tza
and tzb

.

Training The objective functions utilized for training the DisPositioNet model are a combina-
tion of original losses used in SIMSG [42] and variational terms. The generative adversarial
loss is defined as:

LGAN = E
q∼pdata

logD(q) + E
q∼pg

log(1−D(q)), (12.8)

The discriminator network D takes inputs q from either the ground truth data distribution
pdata or the fake data distribution pg, which consists of generated images or object patches.
The model uses two discriminators: a global image discriminator Dimage and an object
discriminator Dobj that operates on cropped object patches to enhance their quality and
realism. The model also predicts the bounding box coordinates xi for each object and
minimizes the L1 loss Lbbox = λb ‖xi − x̂i‖1

1 with respect to the ground truth coordinates x̂i.
The generative objective is:

Lgenerative = λg min
G

max
D
LGAN,image + λo min

G
max
D
LGAN,obj

+ λaLaux,obj + Lrec + λpLp + λfLf ,
(12.9)

The model uses constant weights λg, λo, λa to balance the different loss terms. The object
classifier loss Laux,obj [170] is an auxiliary term to encourage object-level discrimination.
The perceptual loss Lp and the GAN feature loss Lf are adopted from the SPADE generator
[174] to capture high-level semantic and style information. The image reconstruction loss
Lrec = ‖I − Ĩ‖1 measures the pixel-wise difference between the input and output images.

The model also aims to disentangle the latent features by maximizing the evidence lower
bound (ELBO):

Lvar = EqA,qP
[log(p(I|zGA, zGA))]−DKL(qP (zGP |I)||p(zGP ))

− EqP
[DKL(qA(zGA|I)||p(zGA))].

(12.10)

The final objective is then defined as:

Ltotal = Lvar + Lgenerative + Lbbox (12.11)
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12.4 Experiments and Results

This section presents our experimental setup, results, and discussion. We first describe the
datasets, hyperparameters and the metrics used in our framework. Then we analyze the effects
of our model components and compare our methods with previous work both quantitatively
and qualitatively. We also conduct a user study to evaluate our methods. Finally, we discuss
the implications and the limitations of our work.

12.4.1 Experimental Setup

We test our method on three datasets, CLEVR [102] Visual Genome [121], and Microsoft
COCO [145], with different purposes. CLEVR is a synthetic dataset that provides ground truth
image pairs for editing, which enables quantitative evaluation of our method. Visual Genome
(VG) and COCO are real datasets that pose more challenges and diversity for image editing.
Since VG and COCO do not have ground truth image pairs, we use an image inpainting proxy
task and compare our method with a baseline based on sg2im [104]. We use standard image
reconstruction metrics: the structural similarity index (SSIM), mean absolute error (MAE)
and perceptual error (LPIPS) [281]. To measure the image generation quality and diversity,
we use the inception score (IS) [201] and the FID [79] metric.

Datasets
CLEVR [102]. To be able to analyze paired image editing setting in a supervised manner, we
create 21,310 image pairs that show the same scene with a specific modification, such as
swapping positions, adding, removing or changing the attributes of the objects. We use 80%
of the image pairs for training, 10% for validation and 10% for testing. The images have a size
of 128× 128× 3 and include n random objects (3 ≤ n ≤ 7) with random colors and shapes.
The dataset does not have graph annotations, so we use the relative positions in front of,
behind, left of, right of of different object pairs as predicates. The dataset also provides
annotated information of scene graphs, bounding boxes, object classes and object attributes.

Visual Genome (VG) [121]. We follow the splits of [104] and use 80%, 10% and 10% of
the VG v1.4 dataset for training, validation and testing, respectively. After applying the
pre-processing of [104], the dataset has 178 object categories and 45 relationship types. The
processed dataset consists of 62,565 training, 5,506 validation, and 5,088 testing images with
graph annotations. We test our models with ground truth (GT) scene graphs on all the testing
images. For the experiments with predicted (P) scene graphs, some images are filtered out (e.g.
no objects are detected), so we test on 3874 images from the testing set. We notice that some
relationships are duplicated in the dataset, which does not affect the image generation task,
but causes confusion when editing only one of the duplicate edges (when using GT graphs).
Therefore, we remove such duplicates when one of them is edited.

Microsoft COCO [145] We follow a similar preprocessing to [104] for the COCO dataset.
The dataset includes 40,000 train and 5000 validation images with bounding boxes and
segmentation masks for 171 categories. We use the ground truth bounding box and object
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category information to construct geometric scene graphs. The six relationship categories
consists of (left of, right of, above, below, inside, and surrounding).

Baselines

Conditional SG2ImBaseline (Cond-SG2Im). We adapt the SG2IM model of [104] as a baseline.
Their method generates images from scene graphs without using a source image, so we
condition their image synthesis network on the input image by concatenating it with the
layout component (instead of noise as in the original work). To make it fair to our approach,
we mask the image regions that correspond to the target objects before concatenation.

Interactive Scene Generation (ISG) [4] We compare our models againt the interactive scene
generation (ISG) model from Ashual et al. Since the ISG model is not originally designed for
image editing, we evaluate it in the fully generative setting where the whole image region is
conditioned on a scene graph.

Modification types.

We introduce a new task of image editing using scene graphs, and we define several modifi-
cation modes, depending on the user’s interaction with the graph. In the testing phase, we
support four modification modes: relationship change, object replacement, object removal,
and object addition. The model takes the source image and the desired modification on the
graph as input. It masks specific features based on the modification mode and generates the
target image by the decoder. For example, for relationship changes, it keeps the object features
but masks the bounding box features. For object replacement, it drops the object features but
keeps the bounding box features. We explain each modification mode in detail below:

Object removal A node and its connected edges are deleted from the graph. The source
image region that belongs to the object is masked.

Object replacement A node is changed to a different semantic category. We do not delete the
whole node; however, we set the visual encoding zI,i of the original object to zeros, as it does
not match the new object. The location of the original entity is used to place the new object,
while the size comes from the bounding box predicted by the SGN, to fit the new category.

Relationship change This operation usually involves changing the positions of entities. The
goal is to preserve the subject and object but alter their interaction, e.g. <sitting> to
<standing>. Both the original and new appearance image regions are occluded, to allow
background in-painting and target object generation. The visual encodings zI,i are used to
condition the SGN and retain the visual identities of objects on re-appearance.

Object addition: A new node is inserted in the graph, with masked xi and zI,i.

Object Addition The node location is predicted by the model from the target scene graph.
For the visual features, we query objects from the same category for the object to be added.
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Evaluation Metrics

We use common GAN metrics such as Inception Score (IS) [201], Frechet Inception Distance
(FID) [79], structural similarity metric (SSIM) [251], Perceptual Similarity (LPIPS) [281]
and the Mean Absolute Error (MAE) to evaluate the quality of our generated images. We
also compute the MAE and SSIM for the Region of Interest (RoI) where the modification or
reconstruction occurs.

Implementation Details

We train all models on 64× 64 images with a batch size of 32. We use a VGG-16 pretrained
on ImageNet for visual feature extraction. The learning rate for all models is 2e − 4, and
the disentangling factor k in the Disentangled SGN is set to 16. We train all models for
300k iterations on VG and COCO. The networks EP , EA, and DP are MLPs with two FC
layers with 64 filters, 1 BN layer, and a LeakyReLU activation function. The decoder and
discriminator networks in SIMSG and DisPositioNet have the same architecture. We choose
the hyperparameter values empirically or based on previous works. We provide the details of
network architectures in the appendix.

12.4.2 Results

In this section, we present the results on both synthetic and real data.

Synthetic Data

We use the CLEVR framework [102] to create a dataset (see the Appendix for details) of image
and scene graph editing pairs (I,G, G̃, Ĩ), to test our method with exact ground truth.

We train our model without using image pairs and compare it with a fully-supervised setting.
In the fully-supervised setting, the model receives the complete source image and target graph
and is trained by minimizing the L1 loss to the ground truth target image instead of using the
proposed masking scheme.

Table 12.1 shows the mean SSIM, MAE, LPIPS and FID on CLEVR for the manipulation
task (replacement, removal, relationship change and addition). Our method outperforms or
matches the fully-supervised setting on the reconstruction metrics, which demonstrates the
ability of generating meaningful changes. The FID results indicate that additional supervision
for pairs, if available, would improve the visual quality. Figure 12.6 presents qualitative results
of our model on CLEVR. At test time, we make changes to the scene graph in four different
modes: changing relationships (a), removing an object (b), adding an object (d) or changing
its identity (c). We mark the modification with a bounding box around the selected object.

Ablation study on CLEVR We report additional results on CLEVR for the image reconstruction
and manipulation tasks in Table 12.2 and Table 12.4. We find that our method with a
SPADE decoder performs better than the other models in the reconstruction setting. For the
manipulation modes, our method excels for relationship changes, while the performance for
other changes is comparable with the baseline.
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Fig. 12.6. Image manipulation on CLEVR We demonstrate different changes in the scene such as changing the
relationship between two objects, removing a node or changing a node (corresponding to attribute
changing).

Method
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ FID ↓ MAE ↓ SSIM ↑

Fully Supervised (CRN) 6.75 97.07 0.035 3.35 9.34 93.49
SIMSG (CRN) 7.83 96.16 0.036 6.32 10.09 93.54
SIMSG (SPADE) 5.47 96.51 0.035 4.73 7.22 94.98

Tab. 12.1. Image manipulation on CLEVR. We compare SIMSG to a fully-supervised baseline.

Real Images
We test our method on Visual Genome [121] and COCO [145] to demonstrate its performance
on realistic images.

Feature Encoding We measure the role of the visual feature zI,i in encoding visual appear-
ance. For a given image and its graph, we condition the SGN on all the object locations xi and
visual features (w/ zI,i). However, we mask the region of the conditioning image that belongs
to a candidate node. The task can be seen as conditional in-painting. We test our approach in
two scenarios; using ground truth graphs (GT) and graphs predicted from the input images
(P). We evaluate on all objects in the test set and report the results in Table 12.5, measuring
the reconstruction error a) over all pixels and b) in the target area only (RoI). We compare
with the same model without using visual features (w/o zI,i) but only the object category to
condition the SGN. As expected, in all cases, including the missing region’s visual features
improves the reconstruction metrics (MAE, SSIM, LPIPS). However, inception score and FID
remain similar, as these metrics do not consider similarity between direct corresponding pairs
of generated and ground truth images. From Table 12.5 we can observe that while both
decoders perform similarly in reconstruction metrics (CRN is slightly better), SPADE excels for
the FID and inception score, indicating higher visual quality.

Quantitative Results We use the reconstruction quality to evaluate our methods on a real-
world dataset, since there is no paired source and target data for image manipulation. The
input images are partially masked, and the model has to reconstruct the masked regions using
the scene graph. We report the results of our experiments in Table 12.5 and Table 12.6. In the
generative mode, the entire region of the image is masked, and the model generates the image
only from the scene graph to test its image generation performance. We test our method in a
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Method Decoder
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ FID ↓ MAE ↓ SSIM ↑

Image Resolution 64× 64

Fully-supervised CRN 6.74 97.07 0.035 5.34 9.34 93.49
SIMSG (GT) w/o zI,i CRN 7.96 97.92 0.016 4.52 14.36 81.75
SIMSG (GT) w/ zI,i CRN 6.15 98.50 0.008 3.73 10.47 88.53
SIMSG (GT) w/o zI,i SPADE 4.25 98.79 0.009 3.75 9.67 87.13
SIMSG (GT) w/ zI,i SPADE 2.73 99.35 0.002 3.42 5.42 94.16

Image Resolution 128× 128

Fully-supervised CRN 9.83 97.36 0.061 4.42 12.38 91.94
SIMSG (GT) w/o zI,i CRN 14.82 96.85 0.041 8.09 20.59 74.71
SIMSG (GT) w/ zI,i CRN 14.47 96.93 0.038 8.36 19.56 75.25
SIMSG (GT) w/o zI,i SPADE 9.26 98.27 0.029 3.21 15.74 79.81
SIMSG (GT) w/ zI,i SPADE 5.39 99.18 0.007 1.17 8.32 89.84

Tab. 12.2. Image reconstruction on CLEVR. The results are reported using ground truth scene graphs (GT).

fully generative setting, where we occlude the whole image and only use the encoded features
zI,i for each object. We compare with the state of the art in interactive scene generation
(ISG) [4], tested in the same setting. Table 12.5 shows similar reconstruction errors for the
generative task, while we outperform [4] when a source image is available. This supports our
choice of manipulating an existing image directly, rather than merging different node features,
as parts of the image need to be kept. Inception score and FID mostly depend on the decoder
architecture, where SPADE performs better than Pix2pixHD and CRN.

The models use either ground truth graphs or predicted ones by a scene graph to image
model [139] as input. The results indicate that SIMSG and DispositioNet models achieve
the best performance in semantic image manipulation in all metrics and scenarios. We show
that DispositioNet, which disentangles shape and pose, performs better than SIMSG. We also
present the results of our user study on comparing SIMSG and DispositioNet for different
manipulation modes in Table 12.7.

Qualitative Results Figure 12.7 shows qualitative examples of SIMSG compared to the
baseline. Both SIMSG and the Cond-SG2Im baseline can generate realistic object categories
and shapes. However, SIMSG can preserve visual features from the original image in the
output. This property is especially useful when we want to move objects in the image without
altering their identity.

We show some qualitative results of SIMSG and DisPositioNet on VG dataset in Figure 12.8. Dis-
PositioNet learns better feature representations and generates more realistic results compared
to the baselines and SIMSG.

Image Modification We present visual results in three different settings in Figure 12.9,—
,object removal, replacement and relationship changes. The user makes all image modifications
at test time, by editing nodes or edges in the graph. We demonstrate diverse replacements
(a), from small objects to background elements. The new entity fits the image context, e.g.
the ocean (second row) does not cover the person, which we would expect in standard image
inpainting. A more difficult scenario is to change the interaction between two objects, which
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Tab. 12.3. Image manipulation on CLEVR. The results are reported for different modifications categories on 64
× 64 images using GT graphs.

Method Decoder
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ MAE ↓ SSIM ↑

Image Resolution 64× 64

Change Mode Addition

Fully-supervised CRN 6.57 98.60 0.013 7.68 97.72
SIMSG w/ zI,i CRN 7.88 96.93 0.027 9.79 95.10
SIMSG w/ zI,i SPADE 4.96 97.45 0.026 6.13 96.86

Change Mode Removal

Fully-supervised CRN 4.52 98.60 0.006 5.53 97.17
SIMSG w/ zI,i CRN 5.67 97.13 0.026 7.02 96.41
SIMSG w/ zI,i SPADE 3.45 97.32 0.022 3.88 98.09

Change Mode Replacement

Fully-supervised CRN 6.64 97.76 0.015 7.33 97.11
SIMSG w/ zI,i CRN 8.24 96.96 0.025 9.29 96.02
SIMSG w/ zI,i SPADE 5.88 97.43 0.023 6.56 97.48

Change Mode Relationship changing

Fully-supervised CRN 9.76 93.91 0.111 17.51 83.24
SIMSG w/ zI,i CRN 10.09 93.50 0.0678 14.91 86.17
SIMSG w/ zI,i SPADE 8.11 93.75 0.069 13.01 86.99

usually involves changing positions. Figure 12.9 (b) shows that the model can distinguish
between semantic concepts, such as sitting vs. standing and riding vs. next to. The
objects are repositioned accordingly to the change in relationship type. In the case of object
removal (c), the method performs well for backgrounds with uniform texture, but can also
handle more complex structures, such as the background in the first example. Interestingly,
when the building on the rightmost example is removed, the remaining sign is improvised
standing in the bush.

Relationship Changes Figure 12.10 shows how our method handles relationship changes
in more detail. We examine how the bounding box placement and the image generation of
an object are affected by changing one of its relationships. We contrast the results between
auto-encoding mode and modification mode. The bounding box coordinates are masked
in both modes so that the model can determine where to place the target object based on
the relationships. In auto-encoding mode, the predicted boxes (red) match the original
relationship, while in the modified setup, the predicted boxes follow the changed relationship,
e.g. in auto mode, the person stays on the horse, while in modification mode the box moves
next to the horse.

Comparison to ISG [4] Figure 12.11 shows qualitative samples of SIMSG and a comparison
with [4] for the auto-encoding (a) and object removal task (b). We modify [4] for object
removal by deleting a node and its connected edges from the input graph (same as in
ours), while the visual features of the remaining nodes (from our source image) are used to
reconstruct the rest of the image. We obtain similar results for the auto-encoding, even though
our method is not specifically trained for the fully-generative task. For object removal, SIMSG
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Tab. 12.4. Image manipulation on CLEVR. The results are reported for different categories of modifications on
128 × 128 images using GT graphs.

Method Decoder
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ MAE ↓ SSIM ↑

Image Resolution 128× 128

Change Mode Addition

Fully-supervised CRN 9.72 97.57 0.031 10.61 94.09
SIMSG w/ zI,i CRN 13.77 96.44 0.048 13.21 91.05
SIMSG w/ zI,i SPADE 7.79 97.89 0.040 7.57 96.18

Change Mode Removal

Fully-supervised CRN 6.15 98.72 0.014 7.27 95.58
SIMSG w/ zI,i CRN 11.75 97.21 0.052 11.55 92.34
SIMSG w/ zI,i SPADE 4.48 98.54 0.042 4.60 97.68

Change Mode Replacement

Fully-supervised CRN 10.49 97.57 0.035 11.23 95.09
SIMSG w/ zI,i CRN 16.38 96.14 0.052 14.74 91.98
SIMSG w/ zI,i SPADE 10.25 97.51 0.041 9.98 96.14

Change Mode Relationship changing

Fully-supervised CRN 13.91 95.26 0.169 21.49 82.46
SIMSG w/ zI,i CRN 16.61 94.60 0.128 19.21 85.24
SIMSG w/ zI,i SPADE 11.62 95.76 0.125 14.01 89.15

Tab. 12.5. Image reconstruction on Visual Genome. We compare the results of our method to previous works
using ground truth (GT) and predicted scene graphs. In the experiments denoted by (Generative), the
whole input image is masked. N/A: Not Applicable.

Method Decoder
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ FID ↓ IS ↑ MAE ↓ SSIM ↑

Generative, GT Graphs

ISG [4] Pix2pixHD 46.44 28.10 0.32 58.73 6.64±0.07 N/A N/A
SIMSG (Ours) [42] CRN 41.57 33.9 0.34 89.55 6.03±0.17 N/A N/A
SIMSG (Ours) [42] SPADE 41.88 34.89 0.27 44.27 7.86±0.49 N/A N/A
DispositioNet (Ours) SPADE 41.62 35.30 0.26 40.75 7.93±0.36 N/A N/A

GT Graphs

Cond-SG2Im [104] CRN 14.25 84.42 0.081 13.40 11.14±0.80 29.05 52.51
SIMSG (Ours) [42] w/o zI,i CRN 9.83 86.52 0.073 10.62 11.45±0.61 27.16 52.01
SIMSG (Ours) [42] w/ zI,i CRN 7.43 88.29 0.058 11.03 11.22±0.52 20.37 60.03
SIMSG (Ours) [42] w/o zI,i SPADE 10.36 86.67 0.069 8.09 12.05±0.80 27.10 54.38
SIMSG (Ours) [42] w/ zI,i SPADE 8.61 87.55 0.050 7.54 12.07±0.97 21.62 58.51
DispositioNet (Ours) w/ zI,i SPADE 8.41 87.56 0.048 7.66 11.65±0.58 21.76 58.18

Predicted Graphs

SIMSG (Ours) [42] w/o zI,i CRN 9.24 87.01 0.075 18.09 10.67±0.43 29.08 48.62
SIMSG (Ours) [42] w/ zI,i CRN 7.62 88.31 0.063 19.49 10.18±0.27 22.89 55.07
SIMSG (Ours) [42] w/o zI,i SPADE 13.16 84.61 0.083 16.12 10.45±0.15 32.24 47.25
SIMSG (Ours) [42] w/ zI,i SPADE 13.82 83.98 0.077 16.69 10.61±0.37 28.82 49.34
DispositioNet (Ours) w/ zI,i SPADE 9.39 86.91 0.052 14.42 10.69±0.33 25.40 51.85

performs better in general, since it is designed for direct manipulation on an image. For a fair
comparison, we train [4] on Visual Genome. Since we focus on semantically rich relations, we
use their publicly available code to train [4] on Visual Genome. Since Visual Genome does
not have segmentation masks, we disable the mask discriminator. Therefore, we expect lower
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Fig. 12.7. Visual feature encoding. We compare the baseline (top) and our method (center). The scene graph is
the same; an object in the image is masked, but zI,i and xi are not. Our latent features zI,i maintain
appearance when the objects are hidden from the image.

man riding horse                             man beside horse

man riding bike                          man beside bike

plant near boy                                    plant on boy

Source SIMSG Ours

  a) relationship change    b) object replacement

boy                              person

dog                             elephant

elephant                             person 

Source SIMSG Ours

   c) object removal

snow                              removed

cat                              removed

Source SIMSG Ours

girl                              removed

Fig. 12.8. Qualitative comparison to SIMSG [42] on VG. We can see that in a) the plant looks more realistic and
has a more similar shape to the original object, and the same goes for b) where the boy and the elephant
are replaced by person. For the object removal in c) there are some artifacts after removing the cat and
snow, but our method does not have these artifacts and produces more realistic images.

quality results than in the original paper (trained on MS-COCO with mask supervision and
simpler scene graphs).

Results on CoCo We show the qualitative results on the COCO [145] dataset in Figure 12.12.
DispositioNet predicts the target bounding box for moving the object more accurately due to
the disentanglement of pose and appearance. The modifications by DispositioNet have fewer
artefacts and look more realistic than SIMSG.

User Study We conduct a user study to compare the qualitative results of DisPositioNet and
SIMSG [42] for different image manipulation modes on the Visual Genome [121] dataset.
The user study has 21 questions with images before and after the manipulation by the two
methods. The users have to select the image that matches better with the specified change.
The user study has 37 participants and the summary of their responses is given in the main
paper. The order of the methods for each example in the study is randomized, to avoid bias.
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"sand" to "ocean"

a) object replacement

"riding" to "next to"

"sitting in" to "standing on"

b) relationship change
"near" to "on"

source ours CRNoriginal graph

c) object removal

remove "building"remove "bird"remove "tree"

ours SPADEsource ours CRNoriginal graph ours SPADE

"sheep" to "elephant"

"car" to "motorcycle"

Fig. 12.9. Image manipulation We edit the image semantically by modifying the graph, given the source image
and the GT scene graph. a) object replacement, b) relationship changes, c) object removal. Green box
marks the edited node or edge.

The values reported in the user study table in the main text, show the percentage of images
chosen as having higher quality and relevance to the specified change by the participants.
The results indicate that our method outperforms SIMSG significantly in all manipulation
modes.

Ablation Study
We report the results of our ablation study in Table 12.8 and Figure 12.13. In Figure 12.13
we qualitatively ablate the components of our method. For a given image, we occlude a
certain object instance that we want to reconstruct. We test the method with all the possible
combinations of occluding bounding boxes xi and/or visual features zI,i from the augmented

Tab. 12.6. Image reconstruction on COCO

Method
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ MAE ↓ SSIM ↑

Generative

SIMSG [42] 54.03 24.12 0.490 N/A N/A
DispositioNet (Ours) 51.07 26.53 0.418 N/A N/A

Non Generative

SIMSG [42] 9.36 87.00 0.086 27.68 49.93
DispositioNet (Ours) 9.24 88.26 0.057 27.52 50.35
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"riding"
to

"beside"

"riding"
to

"next to"

"behind"
to

"front of"

source auto mode modification graph change

Fig. 12.10. Detailed evaluation of re-positioning. We mask the bounding box xi of an object and generate a target
image in two modes. We select a relationship that involves this object. In auto-mode (left), we keep the
relationship unchanged. In modification mode, we change the relationship. Red: Predicted box for the
original or modified relationship. Green: Ground truth bounding box for the original relationship.

Tab. 12.7. User study on VG

Method Removal Replacement Relationship Change Mean
SIMSG [42] 14.06 27.68 26.95 23.51

DispositioNet (Ours) 85.94 72.32 73.04 76.49

graph representation. Since we may want to in-paint the region with a different object
(changing either the category or style), we also experiment with an additional setting, in
which external visual features zI are extracted from an image of the query object. Masking
the box properties leads to a small shift in the location and size of the reconstructed object,
while masking the object features can result in an object with a different identity than that in
the original image.

In Table 12.8, we first show the model performance without the disentanglement. Then, we
test the effect of disentangling the latent embeddings. Finally, we show the model performance
with disentanglement in both latent embedding and the graph features. The disentanglement
of both components improves most metrics.

Spatial Distribution of Predicates Figure 12.14 shows the heatmaps of the ground truth
and predicted bounding box distributions for each predicate. For each triplet (i.e. subject -
predicate - object) in the test set, we predict the subject and object bounding box coordinates
x̂i. Then, we compute the relative distance between the object and subject centers for each
triplet and group them by predicate category. The plot illustrates the spatial distribution of
each predicate. We notice similar distributions, especially for the relationships that have clear
spatial constraints, such as wears, above, riding, etc. This suggests that SIMSG can accurately
localize new (predicted) objects with respect to existing objects in the scene.

Diversity Analysis DisPositioNet [50] generates more diverse images than SIMSG [42] by
using a variational representation for the object features. This allows our model to sample
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remove "building" remove "beach" remove "girl" remove "building"

remove "boat" remove "bus" remove "train" remove "bird"
source [1] ours

b) object removal

[1]

ours

source

a) autoencoding

source [1] ours source [1] ours source [1] ours source [1] ours

source [1] ours source [1] ours source [1] ours

Fig. 12.11. Qualitative results comparing SIMSG + CRN and [4] a) Fully-generative setting b) Object removal

features probabilistically from the latent space. However, this also introduces some quality loss
in the objects, as they may not match the realistic appearance of the scene. For instance, in
Figure 12.15, our model generates sand that looks like grass, which is unrealistic. Therefore,
our model is more suitable for scenarios where diversity is more important than realism.

12.4.3 Discussion

Our proposed models, SIMSG and its extended version DispositioNet, achieves state-of-the-art
performance in image manipulation using semantic graphs. DispositioNet generates images
with higher quality, more meaningful results, and more diversity than SIMSG. It also reduces
artifacts and preserves the original image content. We conducted a user study to compare
DispositioNet with SIMSG [42]. The users were asked to rate the models based on the image
quality and the consistency between the graph and the image. DispositioNet was preferred
over SIMSG in 76.49% of the cases. However, both methods still faces some challenges that
are common in this domain, which we discuss in this section.

Limitations and Failure Cases Our approach has some limitations in manipulating high-
resolution images and reconstructing faces and complex scenes. We think that these limitations
come from the difficulty in generating high-quality images from scene graphs [104] that could
be due to the wild nature of images in the VG dataset and occasional errors in the scene
graph annotations. We expect that using a higher quality dataset with scene graphs and
semantic segmentation annotations would help to overcome this issue. Regarding the face
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Tab. 12.8. Ablation Study of Disenatanglement on VG

Disentanglement All pixels RoI only

Model Embeddings Graph MAE ↓ SSIM ↑ LPIPS ↓ MAE ↓ SSIM ↑

Generative

SIMSG − − 41.88 34.89 0.27 N/A N/A
DisPositioNet X − 41.80 35.18 0.26 N/A N/A
DisPositioNet X X 41.62 35.30 0.26 N/A N/A

GT Graphs

SIMSG − − 8.61 87.55 0.050 21.62 58.51
DisPositioNet X − 8.47 87.53 0.048 21.77 58.30
DisPositioNet X X 8.41 87.56 0.048 21.76 58.18

Predicted Graphs

SIMSG − − 13.82 83.98 0.077 28.82 49.34
DisPositioNet X − 9.65 86.68 0.054 25.62 51.19
DisPositioNet X X 9.39 86.91 0.052 25.40 51.85

reconstruction problem, although this is an easy task with datasets of pure face images, the
model does not generalize well to the faces when mixed with images in the wild. We show
some failure case examples below.

In the image manipulation task we propose, we have to restrict the feature encoding to prevent
the encoder from “copying” the whole RoI, which is not desired if we want to change non-
rigid objects, e.g. from sitting to standing. While the model can keep general appearance
information such as colors and textures, it is true that some visual properties of modified
objects are not recovered. For example, the color of the green object in Figure 12.16 a) is kept
but not the material.

The model does not adjust unchanged areas of the image as a result of a change in the
modified parts. For instance, shadows or reflections do not follow the moved objects, if they
are not nodes of the graph and explicitly marked as changing by the user, Figure 12.16 b).

Moreover, like other methods tested on Visual Genome, the quality of some close objects is
limited, e.g. close-up of people eating, Figure 12.16 c). Also, having a node face on animals
often gives them a human face.

12.5 Conclusion

In this work, we have introduced a novel task, semantic image manipulation using scene
graphs, and have proposed an innovative approach to address the learning problem without
relying on paired training data. This unique method empowers users to directly interact
with the nodes and edges of the scene graph, allowing for modifications to both the content
and relationships among scene entities. We have demonstrated the competitiveness of our
resulting system with existing image synthesis methods, and qualitative evaluations provide
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compelling evidence of its ability to support real-world image modification. Moving forward,
we plan to focus on further enhancing these capabilities and exploring potential applications
in interactive editing and robotics.

An additional key contribution of our work is the novel disentangling framework for image
manipulation using scene graphs. Our experiments have convincingly shown that leveraging
disentangled representations in the latent embedding significantly enhances image generation
and manipulation quality. Notably, the variational representation for object features enables
the generation of diverse images, surpassing previous approaches. Furthermore, our use
of a disentangled graph neural network for scene graph feature extraction results in more
meaningful and useful features for the disentangled latent embedding, leading to superior
reconstruction performance. As part of our future research direction, we aim to explore
the potential of diffusion models to further improve the decoder network and extend the
capabilities of our system.
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   c) object removal

Source SIMSG Ours Source SIMSG Ours

dog                              removed

horse                              removed cup                              removed

person                              removed

   a) relationship change

Source SIMSG Ours Source SIMSG Ours

pizza left of person                           pizza right of person

kite above person                   kite below person person left of person                      person right of person

sports ball left of bear                 sports ball right of bear

   b) object replacement

Source SIMSG Ours Source SIMSG Ours

horse                              bench

car                                   boat person                              bear

person                              sheep

Fig. 12.12. Qualitative results for image manipulation on COCO
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gt mask both ��
�� keep both query image query maskmask �� query image query ��

Fig. 12.13. Ablation of the SIMSG components We show all the different combinations in which the SIMSG
operates - i.e. masked vs. active bounding boxes xi and/or visual features zI,i. When using a query
image, we extract visual features of the object marked with a red bounding box and update the node of
an object of the same category in the original image.
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Fig. 12.14. Heatmaps of object and subject relative positions for different predicates. The object is located at
the origin (0, 0) and the subject’s position is relative to the object. The heatmaps are based on the relative
distances between the object and subject centers. Top: Ground truth boxes. Bottom: Our predicted
boxes (without using location information from the graph and relying on synthesis).
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Fig. 12.15. Diversity in image generation. DisPositioNet leverages variational embedding to introduce diversity
in the object features, which leads to diverse image generation. In contrast, SIMSG produces the same
image repeatedly. As shown in the figure, DisPositioNet can generate objects with varying textures, sizes,
and colors, while SIMSG cannot.
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Fig. 12.16. Some Failure Cases
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Part IV

Conclusion and Outlook





13Summary of Findings

This thesis has investigated different aspects of learning to learn, a concept that aims to
enhance the performance of machine learning models on new tasks and domains by learning
from other models, other data, and other semantics. We have applied this paradigm to various
computer vision and medical imaging applications. Our contributions have been divided into
two parts: the first part has dealt with fundamental research on learning to learn from data,
and the second part has dealt with learning from semantics using generative models.

In the first part, we have addressed the different challenges arising in learning to learn from the
data. First, we tackle the problem of non-iid data distribution in federated, collaborative and
distributed learning, where each model learns from the knowledge acquired from other nodes
without directly accessing their data. We have developed IDA and FedAP, two methods that
use meta-learning and hierarchical clustering to aggregate parameters and personalize models.
We have also developed MetaMedSeg, a meta-learning framework for few-shot medical image
segmentation that uses other organs with abundant labels to boost the performance on a
target organ with scarce labels. Moreover, we have developed YNet, a novel method for image
segmentation that extracts and fuses spectral and spatial features.

In the second part, we have used generative models and semantics to learn a representation
of the scene. We have used scene graphs, a structured representation that describes the
objects and their relationships in an image, as a versatile tool for image generation and
manipulation. We have developed several methods that use scene graphs for different tasks,
such as unconditional image generation, few-shot image generation, and self-supervised image
manipulation. We have also developed DisPositioNet, a framework for self-supervised feature
disentanglement in the semantic image manipulation task.

Our work opens up new possibilities for future research on learning to learn and semantic
representation learning for computer vision and medical imaging applications. We hope that
our work will inspire more researchers to investigate the potential of learning from existing
knowledge sources and semantics, rather than relying solely on large-scale data and models.
By doing so, we believe that we can achieve more efficient, robust, and generalizable machine
learning models that can better understand and interact with the visual world. We discuss
some possible directions for future work in the next chapter.
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14Future Work

In this thesis, we have explored representation learning with limited data and supervision, as
well as methods for scene modeling using generative models that can capture and manipulate
the appearance and structure of objects in an image. However, there are still many challenges
and opportunities for future research in this area. In particular, the following directions can
be explored:

Modeling scenes using dynamic scene graphs We aim to develop methods that can model
the scenes with graphs that account for the dynamics of the scene caused by actions. We will
investigate how to model the scene changes due to actions by agents or external forces, how
to generate realistic images that match the updated scene graph after an action, and how
to infer the causal effects of actions on the scene graph. This direction is relevant for both
medical and non-medical domains, where actions can have significant impacts on the scene.

Modeling scenes using physics We aim to develop methods that can incorporate physics
into scene modeling, which can provide a principled way of modeling scenes that is consistent
with reality and generalizable across domains. We will investigate how to model the physical
properties of objects, such as mass, shape, material, elasticity, friction, etc., how to model
the physical interactions between objects, such as collision, contact, gravity, etc., and how to
model the physical effects of actions on objects, such as deformation, displacement, rotation,
etc. This direction is crucial for both medical and non-medical domains, where physics can
affect the appearance and state of objects in a scene. For example, we can use physics to
capture the biomechanical properties of human anatomy and physiology that can affect health
conditions.
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AMIGS

A.0.1 Architecture Details

CRN The CRN version of the decoder network is composed of five successive refinement
blocks, with their respective channel counts being 1024, 512, 256, 128, and 64. Each block is
built with two 3× 3 convolution layers, each of which is followed by batch normalization and
a leaky ReLU activation function. The output of each block is concatenated with the initial
input to the CRN, after being rescaled to match the feature resolution.

SPADE The SPADE decoder is structured with five residual blocks, each with respective
channel counts of 1024, 512, 256, 128, and 64. We leverage the layout to modulate the layer
activations within each block, instead of using the semantic map from the original design. The
global discriminator, Dglobal, is designed with two scales.

GCN Our GCN network is constructed with five layers. Each layer processes triplet embed-
dings of subject-predicate-object, which are derived from feeding each semantic label into an
embedding layer. The construction of each layer involves three steps. First, the propagation
layer (a two-layer MLP) accepts the concatenated triplet feature, resulting in an output of 128
channels. Second, the aggregation layer calculates the average of features related to a certain
node. Third, the update layer applies a final processing to each node feature via another
two-layer MLP. Both MLPs mentioned above incorporate a hidden layer with 512 channels.
The input embeddings for the objects and predicates each consist of 128 dimensions. The
final layer of the GCN delivers node features (128 channels), binary masks (16 × 16), and
bounding box prediction by implementing a two-layer MLP with a hidden layer size of 128.
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BSIMSG

B.0.1 Implementation details

Image→ scene graph
A state-of-the-art scene graph prediction network [139] is used to acquire scene graphs for the
experiments on VG. We use their publicly available implementation1 to train the model. The
data used to train the network is pre-processed following [36], resulting in a typically used
subset of Visual Genome (sVG) that includes 399 object and 24 predicate categories. We then
split the data as in [104] to avoid overlap in the training data for the image manipulation
model. We train the model for 30 epochs with a batch size of 8 images using the default
settings from [139].

Scene graph→ image
SGN architecture details. The learned embeddings of the object ci and predicate ri both
have 128 dimensions. We create the full representation of each object oi by concatenating
ci together with the bounding box coordinates xi (top, left, bottom, right) and the visual
features (n=128) corresponding to the cropped image region defined by the bounding box.
The features are extracted by a VGG-16 architecture [216] followed by a 128-dimensional
fully connected layer.

During training, to hide information from the network, we randomly mask the visual features
φi and/or object coordinates xi with independent probabilities of pφ = 0.25 and px = 0.35.

The SGN consists of 5 layers. τe and τn are implemented as 2-layer MLPs with 512 hidden and
128 output units. The last layer of the SGN returns the outputs; the node features (s=128),
binary masks (16× 16) and bounding box coordinates by 2-layer MLP with a hidden size of
128 (which is needed to add or re-position objects).

CRN architecture details. The CRN architecture consists of 5 cascaded refinement modules,
with the output number of channels being 1024, 512, 256, 128 and 64 respectively. Each
module consists of two convolutions (3× 3), each followed by batch normalization [89] and
leaky Relu. The output of each module is concatenated with a down-sampled version of the
initial input to the CRN. The initial input is the concatenation of the predicted layout and the
masked image features. The generated images have a resolution of 64× 64.

SPADE architecture details. The SPADE architecture used in this work contains 5 residual
blocks. The output number of channels is namely 1024, 512, 256, 128 and 64. In each block,

1https://github.com/yikang-li/FactorizableNet
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the layout is fed in the SPADE normalization layer, to modulate the layer activations, while the
image counterpart is concatenated with the result. The global discriminator Dglobal contains
two scales.

The object discriminator in both cases is only applied on the image areas that have changed,
i.e. have been in-painted.

Full-image branch details. The image regions that we randomly mask during training are
replaced by Gaussian noise. Image features are extracted using 32 convolutional filters (1× 1),
followed by batch normalization and Relu activation. Additionally, a mask is concatenated
with the image features that is 1 in the regions of interest (noise) and 0 otherwise, so that the
areas to be modified are easier for the network to identify.

Training settings. In all experiments presented in this paper, the models were trained with
Adam optimization [118] with a base learning rate of 10−4. The weighting values for different
loss terms in our method are shown in Table B.1. The batch size for the images in 64 × 64
resolution is 32, while for 128 × 128 is 8. All objects in an image batch are fed at the same
time in the object-level units, i.e. SGN, visual feature extractor and discriminator.

All models on VG were trained for 300k iterations and on CLEVR for 40k iterations. Training
on an Nvidia RTX GPU, for images of size 64× 64 takes about 3 days for Visual Genome and 4
hours for CLEVR.

Loss factor Weight CRN Weight SPADE

λg 0.01 1
λo 0.01 0.1
λa 0.1 0.1
λb 10 50
λf - 10
λp - 10

Tab. B.1. Loss weighting values
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CDisPositioNet

The weighting hyperparameters follow the same values as SIMSG and are presented in
table B.1. The optimizer used for all the experiments is Adam [118] with an initial learning
rate of 0.0002. The batch size used for all trainings is set to 32. The models were trained on a
single NVIDIA Titan V, which takes five days for 300k iterations.

C.1 Architecture Details

DSGN architecture

The input to the DSGN is the visual features from a VGG-16 [216] network, bounding box
coordinates, node embeddings, and the edge embeddings, along with the edges. The DSGN
has two subnetworks, with the same architecture shown in table C.1. The first network
produces latent features by applying the edge information to the concatenated features. The
second network receives these latent features and produces the final object features, which
are later used by the pose and appearance encoder network. Each DSGN subnetwork reduces
the input dimensionality via a Sparse input layer [57] to k ∗ nhidden, where nhidden = 14 is
the size of the hidden dimension in the neighborhood routing (NeibRouting) layer, and k = 16
determines the disentangling factor. The routing is performed for 12 iterations for each of the
10 NeibRouting layers. The output of these layers is then processed by a fully connected layer,
1D Batchnnorm, and an activation function.

Tab. C.1. DisenGCN Architecture

Input: node_features (node_dim), edges (edge_dim)
SparseInputLayer (node_dim, k * nhidden)

LeakyRelu
10X NeibRouting (k * nhidden)

FC (k * nhidden, out_dim)
BatchNorm1D (out_dim)

LeakyRelu
Output: zG (out_dim)

Appearance decoder QA

The appearance decoder network consists of 5 SPADE Residual Blocks from the original imple-
mentation [174] with up-sampling layers in between, followed by a Conv2D, an activation
function, and another Conv2D layer as shown in table C.2.
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Tab. C.2. Appearance decoder architecture

Input: zl (in_dim)
SPADEResBlock (in_dim, 1024)

Upsample (scale=2)
SPADEResBlock (1024, 512)

Upsample (scale=2)
SPADEResBlock (512, 256)

Upsample (scale=2)
SPADEResBlock (256, 128)

Upsample (scale=2)
SPADEResBlock (128, 64)

Conv2D (64, 64, kernel=(3,3), padding=1)
LeakyRelu

Conv2D (64, 3, kernel=(1,1))
Output: Image (64, 64, 3)

Encoder architectures

For both EA, EP , we use small convolutional networks to encode the object features. Both
encoders have the same architecture and consist of two encoders, one for modeling data mean
µ and one for the data variance σ. The variance encoder branch has a SoftPlus activation layer
in the output. table C.3 shows the architecture of the encoders.

Tab. C.3. Encoder Architecture

Input: zG (in_dim)
BatchNorm2D (in_dim)

Conv2D (in_dim, 128, kernel=(1,1), stride=1)
LeakyRelu

BatchNorm2D (128)
Conv2D (128, in_dim, kernel=(1,1), stride=1)

LeakyRelu
Output: zGA/P (in_dim)

Pose Decoder QP

The pose decoder network QP receives the latent embeddings from the pose encoder EP
and outputs a vector with the size of 6 per object for each of the transformation parameters.
As shown in table C.4, the final output has the shape of out_dim, which is equal to 6 here.
Similar to the encoders, the QP has two subnetworks with the same architecture for modeling
µ and σ. The σ branch, again has a SoftPlus layer in the output.

Discriminator architecture

Both global and local discriminators follow the implementation of Multiscale Discriminator
from SPADE [174]. There are three discriminator networks at different scale values, with each
having 3 Conv2D layers.
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Tab. C.4. Pose Decoder Architecture

Input: zGP (in_dim)
FC (in_dim, 64)

LeakyRelu
FC (64, out_dim)

LeakyRelu
Output: γ (out_dim = 6)

Additional Qualitative Results on VG [121] More qualitative results compared to [42] are
provided in Figure C.1. Similar to the results on the COCO dataset, our model modifies the
objects more realistically on the VG dataset.
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   c) object removal

Source SIMSG Ours Source SIMSG Ours

ball                              removed

book                              removed beach                              removed

bottle                              removed

   a) relationship change

Source SIMSG Ours Source SIMSG Ours

woman near ocean                           woman  on ocean

person riding wave                   person next to wave rock near water                      rock on water

people sitting  in snow                  people standing in snow

   b) object replacement

Source SIMSG Ours Source SIMSG Ours

man                              person

sand                              ocean bush                              person

field                              sand

Fig. C.1. Additional qualitative results for image manipulation on VG
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