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Abstract. Site schedules are usually developed by the rule of thumb
based on the experience of on-site managers. While this approach can
be suitable for smaller job sites, it is challenging to make good decisions
for larger projects. Planning errors can result in massive delays and in-
creasing costs. Significant improvements in other industries showed that
data-driven productivity analysis of past processes advances the planning
and execution of current and future projects. However, in the Architec-
ture, Engineering & Construction (AEC) domain, automated productiv-
ity analysis of the construction phase has barely been investigated.
To overcome this deficiency, this paper presents a first approach for
multi-level productivity analysis of shell constructions. We discuss sev-
eral state-of-the-art vision-based technologies that serve as a foundation
for large-scale evaluation of the progress on a construction site. A com-
plete pipeline is introduced that uses different types of neural networks to
extract productivity information from images at various levels of detail.
The proposed workflow is demonstrated for the construction process of
cast-in-place concrete pillars, implementing the first two layers. Finally,
remaining challenges are discussed.
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1 Introduction

For planning of construction projects, it is of utmost importance to make good
estimations of how long individual construction processes will take. This highly
influences the project end date and also the project cost. So-called expense val-
ues are reference values that describe the working hours required to complete a
certain task, e.g. build one meter of concrete wall. They can be specific to the
construction method used, differentiate between various types of building ele-
ments or other criteria and are based on the requirements of the ongoing plan-
ning phase [5]. In current practice, the expense values are often estimated by the
project planner or construction manager using experience, tacit knowledge and
gut feeling. Some companies perform time measurements of specific processes to
obtain reference values. Yet another option is to rely on expense values provided
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by the literature. These are often calculated based on responses from expert
interviews. All these options can be highly influenced by the subjective percep-
tion of the construction planner, interviewed expert, or the construction worker
who notes down the time he/she spent on a construction task. Furthermore, the
expense values are influenced by many different factors, like the construction
method used, the specific circumstances of the construction site and project, as
well as the company’s internal processes [6, 21].

Within the last few years, a lot of progress has been made in the field of
automated image analysis. Especially, AI-based approaches have found applica-
tion in many fields, including the construction industry. Since acquiring regular
images from a construction site is very affordable compared to other types of
sensor data, they have become popular input data for many different types of
automated analysis. AI-based approaches to process images can also provide
progress-related information that is essential for automated productivity evalua-
tion. They are characterized by fast execution times, which makes them suitable
for application on large data sets [12].

Even though productivity on construction sites is a crucial topic, previous
productivity analysis in construction is either based on surveys [6] or conducted
in small-scale, well-controlled surroundings over a short period of time [10, 15].
The lack of comprehensive productivity analysis is related to the limited avail-
ability of large data sets and computational resources. Both result in uncer-
tainties of the derived statements about productivity in construction and make
their validity for a wide range of construction projects questionable. Therefore,
a data-driven approach is required to objectively judge productivity. The aim of
our work is to enhance the understanding of productivity in the context of the en-
tire construction environment. For this, insights are given into how productivity
is calculated according to the construction practice. Furthermore, state-of-the-
art vision-based approaches are presented that can serve as a basis for auto-
mated productivity analysis. As the main contribution of this paper, we propose
a methodology that allows to determine productivity-related values in varying
levels of granularity. It is demonstrated with a prototypical implementation on
the example of erecting cast-in-place concrete pillars, identifying the individual
operational states not started, rebar, formwork, and finished. The pipeline is pre-
sented together with remaining challenges, especially in regard to fine-grained
productivity evaluation.

2 Background

2.1 Construction Monitoring

A large amount of monitoring solutions are being developed to support con-
struction environments. For this purpose, various sensor technologies such as
laser scanners, cameras, and Bluetooth Low Energy (BLE) tracking systems
have been considered [8,16]. A conventional approach to monitoring construction
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progress is through image-based methods, which rely on capturing images and
processing them to obtain information about the construction site. The informa-
tion extraction is increasingly performed using machine learning methods [20].
This information is essential to represent the as-performed construction state
by a digital twin [14]. Studies that provide insights into the construction phase
based on real-world construction sites are scarce. Further research is necessary to
develop a comprehensive understanding of the benefits and limitations of using
diverse technologies like UAVs and crane cameras for monitoring construction
sites and creating an as-performed digital twin [9].

2.2 Vision-based AI methods in Construction

In recent years, there have been significant improvements in computer vision
technology, particularly in image classification [2], object detection [7], and
semantic segmentation [17]. These advancements have unveiled potential use
cases for computer vision technology in the construction industry. Some po-
tential applications of image-based methods in construction include identifying
safety hazards, monitoring construction progress, and conducting quality con-
trol checks [20]. With the development of more sophisticated computer vision
algorithms, these applications will become more accurate and reliable, leading
to safer and more efficient construction environments.

In the context of progress monitoring and productivity analysis, existing
vision-based approaches can be classified into two different groups. On the one
hand side, some researchers focus on the construction workers or the equipment
as main objects of interest. As an example, [10] detect construction workers on
images to estimate their productivity. Based on their pose, they distinguish be-
tween effective, ineffective, and contributory work. Similarly, [15] track construc-
tion workers to identify their actions. Using YOWO (You Only Watch Once), a
neural network that simultaneously executes object detection and classification,
they detect workers in images and categorize their actions into standing, walk-
ing, transporting, drilling, and hammering. Focusing on the concrete bucket as
the critical resource for the concreting process, [3] assesses the productivity of
concreting works. Depending on the bucket’s location, its current status is identi-
fied, while its change over time indicates different types of production scenarios.
On the other hand, some researchers focus on the building elements that are the
primary output of the construction processes to judge progress and productivity.
In their literature review, [12] showed that many approaches are based on 3D
reconstruction from a set of images, while others directly analyze the 2D images.
As an example, [18] monitor the installation process of precast wall elements.
They use a combination of several neural networks for objection detection, in-
stance segmentation, and object tracking. With this methodology, they are able
to identify when wall elements are moved by the tower crane or installed in their
final location.
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3 Productivity in Construction

To evaluate how well processes are executed, they need to be observed and
measured. Only then it is possible to timely detect deviations from the plan
and induce change. Many industries determine productivity values of processes
to quantify their effectiveness. In the construction industry, different types of
productivity-related values are significant as reference values for construction
planning. They help to make more accurate estimations of a project’s required
time and cost. On a generic level, productivity is defined by the ratio of input to
the output of an activity, as shown in eq. (1) [6]. The input can include labor,
required construction materials, used equipment, and more. The output often
refers to the building elements that are built as the result of the construction
process.

Productivity =
Output

Input
(1)

It is the objective of construction managers to constantly enhance produc-
tivity by increasing production quantities, reducing costs, and improving profit
margins. Specifically, the income-to-expense ratio is of high interest to construc-
tion managers when it comes to calculating the project costs to be expected,
since it determines the construction company’s efficiency and profit [6]. Even
though productivity values can reflect long-time average values, they can not
be assumed as constant during a single construction project. Every project un-
dergoes various changes of productivity over time. During the early phase, the
construction workers need to set up and get familiar with the processes of this
particular construction site. During this initial adoption phase, productivity will
be lower than during the main phase. Towards the end of the project, there is
another phase of lowered productivity because of a lower amount of workers on
site and the characteristics of the finishing works. Therefore, productivity can be
considered as constantly changing [6]. While productivity describes the actual
number or volume of building elements per labor unit, the expense value defines
the amount of labor required for a certain element. Expense values (Exp) have
a significant impact on the overall productivity of the project and are therefore
included in process productivity estimation [5].

Productivityx =
1

Expx
(2)

To estimate expense values, the total amount of working hours (Ht) is divided
by the amount of produced components. The number of working hours can be
further dissected by multiplying the number of workers (Aw), the working hours
per day (Hd), and the duration of the process in days (d) [1, 4, 6].

Expx =
Ht

Vt
=

Aw · d ·Hd

Vt
(3)

Productivity and expense values can be calculated at various granularity
levels. On the top-most level, they are determined on the basis of all types of
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processes on the construction site. Going more into detail, they are differenti-
ated based on the type of construction work. As an example, productivity could
be calculated separately for excavations, masonry, and reinforced concrete ele-
ments. These can be further dissected into productivity values for the individual
operational steps. Reinforced concrete would, e.g., require work related to re-
inforcement, formwork, and concrete pouring. One level further down, one can
group different types of building elements, like walls, pillars, and slabs. Finally,
the productivity-related values can also be calculated for individual elements or
element groups [5].

To assess productivity, it is crucial to compare the target expense values from
the construction plan to the actual expense values achieved during a project.
This supports determining if the project goals have been fulfilled. Such expense
values support construction managers in identifying problems during the project
and ensure that project goals will be met. The expense values can be set in com-
parison with the target expense values of a project to compute the productivity
loss of several processes, as formalized in eq. (4).

∆Productivityloss =

1
Exptarget

− 1
Expactual

1
Exptarget

(4)

4 Proposed solution

Fig. 1: Automated productivity evaluation pipeline

To compute the productivity on construction sites we use photographic im-
ages acquired from on-site environments as input source. In this research contri-
bution, we focus on cast-in-place concrete pillars which require multiple individ-
ual steps to be built. The images get processed by diverse AI-based frameworks.
Depending on the estimated productivity, a more in-depth investigation of a con-
struction process is necessary. Therefore, our proposed pipeline, shown in fig. 1, is
categorizing the productivity deltas into three levels: coarse ∆p,c, medium ∆p,m,
and fine∆p,f . One of the reasons for not computing the fine-grained productivity
for all building elements on the total amount of images is to save computational
costs and avoid hardware failures.

We apply multiple methods to extract the duration of concreting pillars.
However, the equation to compute productivity ∆p stays the same for all using
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eq. (4). The sum of working hours is computed by the number of daily working
hours and the size of worker groups allocated to one building component. The
volume of the pillars is derived from the BIM model. Having acquired all the
site-related information stated above, the expense values and productivity are
determined. As the starting point, the duration of the entire pillar construction
process is derived by detecting two states of the classified pillars: start and
finish (see fig. 2). When productivity deltas differ significantly from the expected
outputs, more fine-grained methods are applied to dismantle the pillar concreting
process in its individual parts: preparation, rebar, formwork, and finished.

In case further details are required, spatio-temporal activities (e.g., standing,
walking, placing) are identified to quantify the time that was spent working
on a particular pillar. The following subsections go more into detail about the
productivity analysis on the three different granularity levels. It needs to be
mentioned that the selected neural networks represent only one possibility to
tackle the given task and might be replaced, e.g. when focusing on other building
elements.

Fig. 2: Object detection pipeline

A framework to detect diverse objects on construction sites that forms the
starting point of the pipeline was developed by [11]. The approach passes the
captured images to a Convolutional Neural Network (CNN) using a one-stage
anchor-based detector to identify the type and location of the pillars. Since the
location of the detected pillars remains constant, objects can be monitored over
multiple images within a construction project to estimate the diverse states of
the building components. For example, the beginning of a pillar (rebar) and finish
state (concreted column) is captured, as demonstrated in fig. 3. With the time
and location-dependent information, the process duration is estimated allowing
productivity computation.

The pillars with exceptionally long construction times and low productivity,
highlighted in fig. 4 are usually of particular interest to better understand issues
in the construction process. However, more detailed information is required to
identify possible reasons for low productivity. The same applies if pillars are
particularly relevant for overall the construction project. In that case, all pillars
are examined in further detail.
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(a) Pillars detected from crane camera (b) States of pillars

Fig. 3: Start- and finish time computed with object detection

The identified starting and end times of the pillar construction process are
used to narrow down the time interval in which images are analyzed in closer
detail. Based on the bounding boxes from the object detection, image sections
between start and finish of a building component are cut out from the frequently
captured images. These are classified into four different classes according to their
current status to identify the operational steps. To do so, the approach developed
by [13] is applied, which is described in further detail in the following paragraph.

As depicted in fig. 5, the input for the image classification are the image
sections originating from the object detection. These are passed to a CNN that
classifies them according to their status. It differentiates between the status not
started, rebar, formwork, and finished. The process of pouring concrete is not
considered in this approach since it cannot be detected by observing the pillar
itself but would require to shift the attention to the detection of the construction
equipment like the concrete bucket.

Since the accuracy of the CNN is limited and further decreased by clutter
on the construction site and moving objects, some images are wrongly classi-
fied. However, having several images of the same pillar is used as an advantage
to correct some of the erroneous image classifications. Based on the expected
sequence of statuses, the transitions points from one status to the next are iden-
tified and then used to correct the status predictions of the CNN. As the final
result, the start and end times of every construction phase of the pillar are pro-
vided [13]. Even though this gives more insights into the construction process,
it still does not allow to directly measure the time that construction workers
actively spent working on individual building elements. It also includes the time
which a particular pillar remained in a certain status without any working being
done.

Similar to the step described beforehand, the operational steps with excep-
tionally low productivity rates are of particular interest to identify reasons for
delays. The level of productivity analysis requires measuring the actual time
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Fig. 4: Productivity of the concreting process of sample pillars: Pillars with sig-
nificantly low productivity ∆p,c compared to other values are highlighted in red

Fig. 5: Status classification pipeline for cast-in-place concrete pillars

that construction workers spent working on a specific pillar. This can help, e.g.,
to distinguish situations where workers were waiting for material deliveries from
situations where the delay was caused by faulty execution and therefore required
rework. The results from the classification step help to narrow down the time
intervals of special importance. The points in time when status changes occur
roughly indicated the time when construction personnel has worked on the build-
ing element. Observing the construction activities in a predefined time interval
before and after the status change will suffice to analyze the construction pro-
cess. To identify the time that construction workers were working on a specific
pillar, an approach is required that takes into account the spatial location of
the column but also the movement of the workers. A single image is often not
sufficient to identify what a worker is currently doing.

Spatio-temporal action localization networks [19] are a natural fit for this
task. They depend upon extracting information from images frame by frame
and utilizing the relationships between them to create additional features within
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the network. The model is trained using the extracted features to create a com-
prehensive understanding of the activity being performed over time. This allows
for accurate in-depth activity classification, and the identification of the propor-
tion of time when workers are performing specific actions on-site. One of the
shortcomings is that action classification networks require multiple frames per
second since movements need to be tracked precisely. Based on current data lim-
itations, the spatio-temporal action localization part of the framework has not
been implemented yet and remains conceptual at this stage.

5 Conclusion

Traditional literature sources that rely on questionnaires may not provide a
complete picture of productivity in construction sites, since their primary data
source was based on surveys of experts [6]. The proposed objective measurement
approach provides more accurate and reliable data.

In this paper, we presented a comprehensive method to measuring productiv-
ity for pillar production in construction sites. We gave a detailed introduction to
past productivity measurements in on-site environments. In addition, we devised
a methodology to compute on-site productivity on diverse levels of granularity
based on real-world image data. Finally, we provided a framework using state-
of-the-art machine learning methods for a new way to derive productivity on
construction sites and support construction management.

While measuring the time taken to complete a specific building element such
as a pillar is a useful metric, it is necessary to further extend the approach to de-
tect the factor of time a worker spent efficiently creating a building component.
In addition, it is essential to monitor the entire construction site, including all
types of building elements, to provide accurate productivity values. By tracking
workers’ time spent on various building elements, we can obtain valuable insights
into their performance. The scope of this objective measurement approach is to
identify potential inefficiencies in the construction process, such as delays or
bottlenecks, that may be hampering productivity. With this information, con-
struction managers can improve decision-making to optimize their operations
and enhance productivity. In conclusion, adopting a comprehensive approach
to computing productivity that involves monitoring the entire construction site
and utilizing objective measurements is essential. This approach provides valu-
able data that can help identify inefficiencies, optimize operations, and improve
productivity in the construction phase.
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