
TUM School of Computation, Information and Technology
Technische Universität München

Inductive Statements for Regular Transition Systems

Christoph Welzel-Mohr

Vollständiger Abdruck der von der TUM School of Computation, Information and Tech-

nology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Matthias Althoff

Prüfende der Dissertation:

1. Prof. Dr. Francisco Javier Esparza Estaun

2. Prof. Dr. Anthony Widjaja Lin

Die Dissertation wurde am 26.09.2023 bei der Technischen Universität München ein-

gereicht und durch die TUM School of Computation, Information and Technology am

04.03.2024 angenommen.

Für meinen Tölpel

D

In Erinnerung an

Prof. Dr. Bertram Wild,

dessen Liebe zum Zählen meine Frau zu einer akademischen Laufbahn inspirierte

– wo wir uns trafen.

Abstract

Regular model checking is a well-established formalism for reasoning about parameter-

ized systems which are modeled as regular transition systems. In this thesis, we propose

to analyze regular transition systems using inductive statements. A statement φ is in-

ductive if the transition relation only relates a state v satisfying φ with states that also

satisfy φ. Thus, the set of all states that satisfy φ over-approximates the set of all states

reachable from v. We present a way to encode and reason about inductive statements

using finite state automata – called interpretations.

Based on interpretations, we introduce an approach for regular model checking by

using inductive statements to over-approximate all reachable states. (Because regular

model checking is undecidable this approach is, necessarily, incomplete.) We provide

an algorithm for this which runs, for any given interpretation, in space exponential in

its input. Thus, we prove that checking safety conditions using the over-approximation

induced by inductive statements is, for any interpretation, in ExpSpace.

For three specific interpretations, we prove that checking safety conditions using in-

ductive statements is PSpace-hard. Additionally, we provide, for two of these inter-

pretations, an algorithm that solves the problem using space polynomial in its input –

rendering the problem for them PSpace-complete.

In a second step, we show how, based on automata learning, one can learn a set

of inductive statements that are powerful enough to establish a given safety property.

We do so to improve the performance of the approach and to provide certificates of a

reasonable size for established properties. Additionally, we consider how to speed up

this learning process for parameterized systems with specific communication topologies.

All these approaches are implemented in our tool dodo, which we evaluate on a set of

common examples for parameterized verification.

i

Übersicht

Reguläre Modell-Verifikation analysiert parametrisierte Systeme, welche als reguläre

Transitionssysteme beschrieben werden.

In dieser Arbeit beschreiben wir wie man die erreichbaren Zustände eines reguläre

Transitionssystems mit Hilfe induktiver logischer Aussagen abschätzen kann. Hierbei ist

eine Aussage φ induktiv, wenn man von einem Zustand v, welcher die Aussage erfüllt, in

einem Schritt lediglich Zustände erreichen kann, die die Aussage φ auch erfüllen. Dem-

nach kam man vom Zustand v aus mit beliebig vielen Schritten stets nur solche Zustände

erreichen, die auch φ erfüllen. Damit ist die Menge der Zustände, die φ erfüllen, eine

sichere Abschätzung all jener Zustände, die von v überhaupt erreicht werden können.

Im Folgenden führen wir einen Formalismus ein, der mittels endlicher Automaten, die

wir Interpretationen nennen, die Erfüllbarkeitsrelation für diese logischen Aussagen be-

schreibt.

Dies erlaubt uns einen Ansatz für reguläre Modell-Verifikation zu präsentieren, der

aufgrund der Unentscheidbarkeit des Problems notwendigerweise unvollständig ist. Un-

ser Algorithmus benötigt exponentiell viel Speicher relativ zur Eingabe und zeigt damit,

dass die Analyse regulärer Transitionssysteme mit Hilfe von induktiven Aussagen in der

Komplexitätsklasse ExpSpace liegt.

Wir stellen uns die Frage, ob induktive Aussagen ausreichen, um eine Eigenschaft

des Systems zu beweisen, für drei konkrete Interpretationen. Für alle drei von diesen

zeigt sich, dass das Problem nun PSpace-schwer ist. Für zwei Interpretationen finden

wir einen Algorithmus, welcher das Problem mit polynomiell viel Speicher relativ zur

Eingabe löst. Demnach ist das Problem für diese Interpretationen PSpace-vollständig.

Mithilfe eines Verfahrens zum Lernen von endlichen Automaten ist es möglich ledig-

lich für das Verifikationsproblem ausreichend viele induktive logische Aussagen zu finden.

Auf diese Weise kann die Effizienz des Ansatzes verbessert und gleichzeitig eine Zerti-

fikat für die Lösung präsentiert werden. Da viele parametrisierte Systeme sich in ihrer

ii

Kommunikationsstruktur ähneln, zeigen wir ferner wie man diese Strukturen ausnutzen

kann, um den Lernprozess weiter zu verbessern.

Schließlich diskutieren wir eine experimentelle Auswertung dieser Ansätze anhand

unserer protoypischen Implementierung dodo.

iii

Acknowledgements

Look, Javier, no hands. . .

First, I want to thank my supervisor Javier Esparza. Our discussions and collabora-

tions were vital to shape the ideas that ultimately led to the results of this thesis. He

also provided helpful comments on drafts of this thesis. Also, Javier gave me time when

I desperately needed it.

Mikhail Raskin is equally influential to the content of this thesis. Without his brilliant

ideas, far fewer questions would be answered.

The seed of what would grow into this work was a collaboration with Radu Iosif,

Marius Bozga, and Joseph Sifakis. For this initial spark, I am very grateful.

During the last five years, my friends and colleagues from Chair I7 were a huge support.

In particular, my roommate Chana. Because Chana was, academically, only a few

weeks my senior, we could support each other through the initial struggles as doctoral

candidates. Due to our companionship and, especially, all the amazing memes, many

problems were easier to bear.

Although promised, Bala never cooked me French toast. However, his friendship

makes more than up for it. A shared love for movies was the foundation on which we

built this friendship and, begrudgingly, I have to admit that discussions with Bala were

extremely helpful in improving the presentation of the results in the thesis1.

Also, I am indebted to Michael Luttenberger for enduring my tutoring for his various

lectures. Although it is my impression that I still do not understand much of cryptog-

raphy, stochastic games, or algebra, Michael complained only a little. Regardless, I very

much enjoyed all my teaching duties and those with Michael in particular.

1So much so that I refer any reader to him that feels that the presentation is lacking.

v

Philipp Czerner and Christopher Hugenroth read and commented on an early draft

of this thesis. Their input is greatly appreciated. Philip Offtermatt and Qais Hamarneh

trusted me to advise them with their master’s theses. Since both excelled in their work,

this was a very rewarding experience for which I am grateful.

More personally, I want to thank my family. First and foremost my wife, Steffi.

Without her unfailing support and kindness, this thesis would not have been possible.

How she refrained from strangling me during times of constant complaints will remain

a mystery to me, forever.

Secondly, my parents, Christiane and Thomas, and siblings, Philipp and Anne, for

providing constant encouragement when it was desperately needed. Also, I want to thank

my inlaws, Bettina and Wolfgang, and Sebastian, Tobias, and Torben, for welcoming me

into their family.

The annual Christmas dinner with my friends, Johannes, Simon, Kerstin, Nick, Lukas,

and Andreas, is a highly valued tradition and, thus, an event I look forward to the whole

year. Similarly, I am very glad for my friendship with Jannik, Marjo, and Theo.

Finally, this thesis would not have been possible without the help of the accessibility

software talon and its community. Due to some problems with repetitive strain, most

of the text in this thesis was generated by speaking rather than typing. I am extremely

grateful that this software allowed me to finish my work – something that appeared very

doubtful at times. Since I had to learn how to use this software, the preparation of this

thesis took longer than anticipated. Therefore, I gratefully acknowledge the financial

support from the European Research Council (ERC) under the European Union’s Hori-

zon 2020 research and innovation program under grant agreement No 787367 (PaVeS)

which allowed me to conduct my research and finish this thesis.

vi

https://talonvoice.com/

Contents

1. Introduction 1

1.1. Contribution . 9

2. Inductive statements for regular transition systems 13

2.1. Preliminaries . 13

2.2. Inductive statements for regular transition system 23

2.3. A generic approach to statements . 28

2.4. Concrete interpretations . 37

2.5. Abstractions are (PSpace-)hard . 42

2.6. Trap in PSpace . 67

2.7. Topologies . 85

3. Learning inductive invariants 115

3.1. Learning inductive statements . 118

3.2. The word problem for concrete interpretations 128

3.3. Accelerate learning via topologies . 132

4. Implementation & Experiments 135

4.1. Case studies . 135

4.2. Verification procedures . 137

4.3. Qualitative comparison with other approaches 145

5. Conclusion 147

5.1. Future work . 147

A. Experimental results for oneshot 157

A.1. Dijkstra’s algorithm for mutual exclusion 159

vii

Contents

A.2. Dijkstra’s algorithm for mutual exclusion with a token 159

A.3. Other mutual exclusion algorithms . 160

A.4. Dining philosophers . 160

A.5. Cache coherence protocols . 161

A.6. Termination detection . 166

A.7. Dining cryptographers . 166

A.8. Leader election . 166

A.9. Token passing . 167

B. Experimental results for learn and adaptive 169

B.1. Dijkstra’s algorithm for mutual exclusion 171

B.2. Dijkstra’s algorithm for mutual exclusion with a token 171

B.3. Other mutual exclusion algorithms . 172

B.4. Dining philosophers . 173

B.5. Cache coherence protocols . 174

B.6. Termination detection . 186

B.7. Dining cryptographers . 186

B.8. Leader election . 187

B.9. Token passing . 187

Definitions

Deterministic finite automaton (DFA) . 13

Non-deterministic finite automaton (NFA) . 14

Transducer . 16

Regular transition system (RTS) . 18

Interpretation . 29

Inductive statements . 30

Potential reachability . 32

Concrete interpretations . 41

Flipped relations and transducers . 43

Turing Machine . 45

A run of a Turing machine . 45

Bounded Turing machine . 48

viii

Examples

Divergence in a run . 57

Separator sequence . 70

Tableau . 73

Columns . 74

Column order . 76

Separator transducer . 79

Reduced separator transducer . 81

Step game . 82

Ring topology . 87

Non-inductive pairs in rings . 89

Compatible patterns for Vflow . 92

Hitting and missing pairs . 94

Bow topology . 102

Non-inductive pairs in bows . 103

Crowd topology . 110

Counting occurrences . 111

Examples

Simple regular language . 15

Token passing as RTS . 18

Dining philosophers as RTS . 20

A satisfied statement . 29

An inductive statement of Example 2.2 . 30

Approximating reachability via inductive statements 30

Computing an over-approximation . 35

Winning the lottery with siphons . 38

Flowing through previous examples . 40

A Turing machine . 47

A bounded Turing machine . 49

Micro steps that form a macro step . 50

The construction of the prefix of a run . 51

Local information in arrangements . 52

Positions and indices . 52

ix

Contents

The three sections of a configuration . 53

The initial and transducer language for the Vtrap reduction 54

Siphons for Example 2.10 . 58

The language of undesired words for the reduction for Vflow 62

Circular token passing . 67

Computing a separator . 69

A tableau for Example 2.21 . 72

Columns in a tableau . 73

Expanding columns . 75

An order on columns . 77

Base columns . 77

Constructing a common child for two columns . 79

Steps in a reduced separator transducer . 84

Circular token passing as a ring . 86

Ring definition of circular token passing . 87

A non-trap in circular token passing . 90

Flows in circular token passing . 91

Flows with incompatible pairs . 93

Token passing as a bow . 102

Mutual Exclusion . 107

MESI . 108

Explanation for safety conditions in Example 2.2 115

A generalization example for a flow statement . 132

Figures

NFA for Σ∗ (a b b|b a a) Σ∗ . 14

DFA for Σ∗ (a b b|b a a) Σ∗ . 15

I for Example 2.2 . 19

T for Example 2.2 . 19

I of the dining philosophers . 22

T of the atomic dining philosophers . 23

Disjunctive statement interpretation automaton 26

Parity statement interpretation automaton . 27

x

Figures

2-clause statement interpretation automaton . 28

Illustration of Vsiphon . 39

Illustration of Vflow . 40

The transducer of the reduction . 56

Automaton for undesired words of reduction for Vflow 64

An automaton for InductiveVtrap(R) . 116

Automata for useful subsets of InductiveVtrap(R) 116

A graph to find a refining transition . 131

Qualitative analysis of results in oneshot . 150

xi

1 Introduction

Because software systems are omnipresent, it is an ongoing endeavor to make them as

reliable as possible. Although excessive testing of a software system increases confidence

in it, it cannot replace a formal correctness proof. For this reason, we are interested in

formally verifying software systems automatically.

For finite state systems model checking is the most established automatic verification

procedure [CES09; BK08]. However, not all software systems can be modeled with

finitely many states. For instance, one can consider protocols for mutual exclusion that

should grant mutually exclusive access to some resource regardless of the number of

participants in the protocol. We call these systems parameterized, where the parameter

is the number of participants.

Such parameterized systems are the focus of this thesis. In particular, we consider

systems in which each of the participants can be identified – for example, with numbers

from 1 to n. This separates this model from models in which the agents are anonymous :

Petri nets, population protocols, VASS, et cetera. Also, we do not consider randomized

or probabilistic systems [Hon+19; Len+17; LR16].

One “important framework for infinite state model-checking” [Abd12] which is con-

sidered “elegant, simple, but powerful” [LR21] is regular model checking. Initially advo-

cated in [Abd+04; Abd12; WB98; Kes+01], regular model checking was the focus of a

considerable amount of research; e. g. [Abd+12; Boi12; Bou+12; BT12; DR12; Leg12;

Abd+02]. At its core, regular model checking defines a (potentially infinite) transition

system using a regular language and a transition relation that can be captured by a

finite state automaton, and asks whether one can reach in this transition system any

undesired configuration. These undesired configurations are defined by another regular

language. In this way, regular model checking is used to establish safety properties for

parameterized systems. This thesis contributes a novel approach to this framework.

1

1. Introduction

Related research

Because there is such a large body of research on regular model checking, we do not

provide an exhaustive picture of all approaches to it. Instead, we present, first, three

approaches that are the main subjects of two surveys, [Abd+04] and [Abd12], for regular

model checking. To do so, we begin by giving an informal definition of regular model

checking. Regular model checking defines a parameterized system with the help of

regular languages1. In particular, every configuration of the parameterized system is

represented as a word in Σ∗. Additionally, there is one regular language I ⊆ Σ∗ that

describes the initial configurations of the system and a second language T ⊆ (Σ× Σ)∗

that describes the transition relation. More specifically, there is a transition from v to

u if and only if there is a word t ∈ T such that v is the projection of every letter in t to

its first component and u is the projection of every letter in t to its second component.

For now, we identify the transition relation and the regular language T . Additionally,

we also introduce a composition operation ◦ for the transition relation. For instance,

T ◦ T relates v and u if and only if there is w such that there is a transition from v

to w and there is a transition from w to u. In other words, T ◦ T is the relation of

doing two steps at once (which we also denote with T 2), T ◦ T ◦ T is the relation of

doing three steps at once (which we also denote with T 3), and so on. Note here that

the relations T i are “regular” for every i; that is, there exists a finite state automaton

for each of these relations. The task of regular model checking is to establish that there

is no initial configuration v ∈ I that can be related to some undesired configuration u

in T + =
⋃

i>0 T i where the set of undesired configurations is another regular language

B. Unfortunately, the relation T + =
⋃

i>0 T i is not necessarily regular anymore.

Based on this introduction, let us present three approaches for regular model checking:

Quotening This approach tries to construct a finite state automaton for the relation T +.

Conceptionally, the idea is to start with the automaton for T . This automaton is

then modified to accept the relation T ∪ T 2, T ∪ T 2 ∪ T 3, and so on. To do so,

the states of the automaton are columns of the states of the automaton for T . A
run c0 . . . cm in this automaton encodes multiple runs, say n, of the automaton

for the relation T . This means, there are n transitions (one for each run) t1, . . . , tn

that are executed successively. Specifically, for any 0 ≤ j ≤ m, the state cj is a

1We assume a basic familiarity with the concept of regular languages. For more formal definitions, we
refer the reader to Section 2.1.

2

column of n states from the automaton for the relation T , and projecting to the

i-th element of these columns yields an accepting run for ti.

This construction never terminates. The idea is to identify repetitions in columns

that can be repeated arbitrarily. For instance, consider a state qL in the automaton

for the relation T which can only be reached by using letters from {⟨v, v⟩ : v ∈ Σ}.
In other words, the state qL can only be reached in a run on a transition t after a

prefix t′ such that t′ does not change any letter. Such a state is called left-copying.

One can consider a second (symmetric) notion for states: if every accepting run

from some state qR only uses letters from {⟨v, v⟩ : v ∈ Σ}, then it is considered

right-copying.

Intuitively speaking, applying multiple transitions that all lead to a left-copying

state qL does not have any effect on the prefix of the configuration because those

transitions can only copy letters in this prefix. Based on this observation, one can

introduce an equivalence relation that considers columns the same if they are the

same after every uninterrupted sequence of the same left-copying or right-copying

state is replaced by a single occurrence of this state. Using this equivalence relation,

one considers, roughly speaking, the quotient automaton of the current automaton

and checks whether adding another application of T to this quotient automaton

changes what it relates. By construction, every quotient automaton in step m

recognizes a relation R such that
⋃

0<i≤m T i ⊆ R ⊆ T + – hoping to eventually

reach R = T +.

Abstraction The approach before tries to compute an automaton for the relation T +.

For regular model checking computing this relation is sufficient but not necessary.

Instead, it already suffices to compute a relation R which contains at least T + but

which does not relate any v ∈ I to any u ∈ B.

Thus, one can try a similar construction as before. Now, however, one considers

equivalence relations (to construct the quotient automaton) which are, potentially,

more reductive. More specifically, it suffices to guarantee that the quotient automa-

ton in every step m recognizes a relation R such that
⋃

0<i≤m T i ⊆ R but there is

no guarantee anymore that R ⊆ T +.

A core strength of this approach is that one can use B to inform the choice of the

used equivalence relation because we only want to exclude undesired configurations

3

1. Introduction

but are less interested in all possible behaviors of the system.

Extrapolation This last approach is, at its core, a rule-based generalization technique

for the set of all reachable words. Similar to before, one considers the relations T ,
T ∪T 2, T ∪T 2∪T 3, and so on. Here, however, we apply all these relations to the

language of initial configurations I. In this way, we get regular languages A1, A2,

A3, and so on, which are all configurations that can be reached from some initial

configuration in at most one step, at most two steps, at most three steps, and so

on.

Roughly speaking, we hope to identify some regular expression Λ which corre-

sponds to the change of executing one step. The idea is to “guess” the change

after arbitrarily many steps as Λ∗. That is, if Ai is the language of a regular

expression ρ1 · ρ2 and Ai+1 is the language of a regular expression ρ1 · (Λ|ε) · ρ2,
then one can try to over-approximate all reachable configurations as the language

of the regular expression ρ1 · Λ∗ · ρ2.

Another strain of research has applied learning techniques to regular model checking

[Nei14; Var06; Che+17; NJ13; Var+04]. Since we are considering a related approach

later, we discuss this in more detail at the beginning of Chapter 3.

[LR21] is a recent article that is closest to our approach in spirit. Therefore, we want

to discuss the content of [LR21] in more detail in the following.

You can stand under my umbrella

In [LR21], the authors propose existential second-order logic for automatic structures as

“umbrella covering a large number of regular model checking tasks”. Since we believe

that we fit well under this umbrella, we want to discuss this framework.

Roughly speaking, an automatic structure is a relational2 logical structure where all

elements of the structure are words of a finite alphabet Σ and all its relations can be

captured by finite state automata. For instance, consider an automatic structure A over

a vocabulary that contains a ternary relation symbol τ . Then, there exists a finite state

automaton S such that

⟨a1 . . . an, b1 . . . bn, c1 . . . cn⟩ ∈ τA

if and only if

2That is, the vocabulary of the structure does not contain any function symbols.

4

S accepts the word ⟨a1, b1, c1⟩ . . . ⟨an, bn, cn⟩

where τA is the interpretation of the relation symbol τ in the structure A3.

This means, that any regular transition system can be understood as an automatic

structure over one unary relation symbol I which are the initial configurations of the

system, and one binary relation symbol T which corresponds to the transitions of the

system. In any automatic structure, one can compute a finite state automaton that

captures any relation that can be defined in first-order logic [Grä20]. For instance, one

can define the relation T ∪ T 2 in first-order logic:

AtMostTwoSteps(x, y) = T (x, y) ∨ (∃z . T (x, z) ∧ T (z, y)) .

Consequently, this shows, as previously already used, that there exists a finite state

automaton for the relation T ∪ T 2.

The authors of [LR21] argue that many verification problems for parameterized sys-

tems can be formulated as automatic structures. Additionally, one can describe ap-

proaches to solve these verification problems in the existential second-order logic for

these structures. Formulas of the existential second-order logic of an automatic struc-

ture over the vocabulary ⟨τ1, . . . , τk⟩ are of the form ∃R1, . . . , Rn . φ where φ is a first-

order formula over the vocabulary ⟨τ1, . . . , τk, R1, . . . , Rn⟩. Intuitively, the existentially

quantified relations R1, . . . , Rn encode a “solution” to the verification problem. Coming

back to regular model checking, recall that we want to prove that one cannot reach any

undesired configuration. Thus, we can encode an instance of regular model checking as

an automatic structure S = ⟨Σ∗, I, T ,B⟩ where

Σ∗ is the universe of the structure,

I is a unary relation symbol which represents the initial configurations of the system,

T is a binary relation symbol which represents the transitions of the system, and

B is a unary relation symbol which represents the undesired configurations.

In order to prove that no undesired configurations can be reached, it suffices to find a

set of configurations that contains at least all reachable configurations but no undesired

3To ease presentation, we only consider those structures where all relation symbols only relate words
of the same length.

5

1. Introduction

ones. This can be expressed in existential second-order logic in the following formula:

ψ = ∃Safe . ∀x . I(x)→ Safe(x) (1.1)

∧∀x, y . (T (x, y) ∧ Safe(x))→ Safe(y) (1.2)

∧∀x . B(x)→ ¬Safe(x). (1.3)

In other words, ψ states the question whether some set of configurations Safe exists such

that

(1.1) all initial configurations are part of Safe,

(1.2) Safe is closed under the transition relation T ; that is, if we take any configuration

from Safe and execute one step, then we can only reach a configuration from Safe

again, and

(1.3) no undesired configuration is part of Safe.

Specifically, the structure S satisfies the formula ψ if and only if one cannot reach any

undesired configuration from an initial configuration in this regular transition system.

This is because, if the structure S satisfies the formula ψ, then there is a set Safe which

satisfies the conditions (1.1), (1.2), and (1.3). This set contains at least all reachable

configurations (because of (1.1) and (1.2)) but no undesired configuration (because of

(1.3)). Therefore, no undesired configuration can be reached.

On the other hand, if the set of all reachable configurations does not contain any un-

desired configuration, then this set of all reachable configurations satisfies the conditions

(1.1), (1.2), and (1.3). Therefore, the structure satisfies the formula ψ because a suitable

set Safe exists.

Thus, regular model checking can be formulated as a satisfiability question in existen-

tial second-order logic for an automatic structure. Unfortunately, one needs to consider

all possible sets of configurations for Safe to judge whether the formula can be satisfied

or not. In fact, deciding whether such a set exists at all is undecidable [Blo+16].

To avoid checking all possible sets, the authors of [LR21] propose to consider only

regular languages for Safe. Or, more generally, for all the existentially quantified second-

order variables R1, . . . , Rn that encode a solution to the verification problem in a formula

∃R1, . . . , Rn . φ, one only tries to find relations that can be captured by finite state

automata. The benefits of this restriction are twofold: on the one hand, this is complete

6

for many important properties, and, on the other hand, has proven practically viable

because there are sophisticated enumeration techniques for finite state automata.

In contrast to the three approaches that we have discussed before, this framework

considers regular model checking from a logical perspective. In this way, it is closer to

the approach we want to present in this thesis. Moreover, we present, in the following,

the rough structure of the thesis by formulating its content in this framework.

Structure of the thesis

Let us consider an instance of regular model checking as an automatic structure S =

⟨Σ∗, I, T ,B⟩. In this thesis, we present an approach for the analysis of regular model

checking that is based on inductive logical statements for the regular transition system.

Moreover, we automate reasoning about these logical statements in a very similar fashion

as automatic structures automate reasoning about first-order logic. Specifically, we

introduce a second alphabet Γ which is used to encode logical statements. That is,

a logical statement is a word from Γ∗. Secondly, we introduce a binary relation |=
which relates configurations from Σ∗ and statements from Γ∗. This relation is used to

state whether a configuration u satisfies a statement I. Crucially, we only consider

satisfiability relations |= that can be captured by finite state automata; that is, there is

a finite state automaton V over the alphabet (Σ× Γ) such that u1 . . . un |= I1 . . . In if

and only if V accepts ⟨u1, I1⟩ . . . ⟨un, In⟩.
In this way, we capture our approach to regular model checking as an automatic

structure Z = ⟨(Σ ∪ Γ)∗ , σ, γ, I, T ,B, |=⟩. Here, (Σ ∪ Γ)∗ is the universe of this structure.

However, we want to strictly separate words from Σ∗ and Γ∗. Thus, we introduce two

unary relation symbols σ and γ such that σ is interpreted with Σ∗ and γ is interpreted

with Γ∗. As before, I, T ,B describe the initial configurations, the transitions, and the

undesired configurations of the regular model checking instance.

In the first part of our thesis, we consider the set of all inductive statements. These are

statements that, if T relates the configurations u and v and u satisfies the statement,

then v satisfies the statement as well. First, we observe that the set of all inductive

statements can be defined in first-order logic in the structure Z as

Inductive(I) = γ(I) ∧ ∀x, y . (T (x, y) ∧ x |= I)→ y |= I.

Observe that all inductive statements that are satisfied by some configuration u are also

7

1. Introduction

satisfied by all configurations that can be reached from u. In other words, if there is

an inductive statement I that is satisfied by u but not by v, then v cannot be reached

from u. In this way, we can define, based on inductive statements, a relation that

over-approximates reachability in the regular transition system ⟨I, T ⟩:

PotentiallyReachable(x, y) = σ(x) ∧ σ(y) ∧ ∀I . (Inductive(I) ∧ x |= I)→ y |= I.

Equipped with this over-approximation, we can check whether all inductive statements

suffice to establish that no undesired configuration can be reached from an initial con-

figuration. For this, we compute whether the structure Z satisfies the formula

φ = ¬∃x, y . I(x) ∧ B(y) ∧ PotentiallyReachable(x, y).

If this is the case, then we can give a positive answer for this instance of regular model

checking.

In Chapter 2, we examine this approach in more detail. In particular, we show that

it is possible to check whether Z satisfies φ in exponential space (w. r. t. to the size of

the automata that capture the relations of Z). Additionally, we consider three specific

examples for the relation |=. For two of these, we show that the question of whether Z

satisfies φ is PSpace-complete. For the last instance of the relation |=, we prove that

the question is PSpace-hard but we do not provide a matching upper bound. Finally,

we consider common communication topologies for parameterized systems and provide,

for these topologies, alternative characterizations of the sets of all inductive statements.

In the second part of the thesis, we propose that it is not necessary to consider

all inductive statements but we can look for sufficiently many. For this, we check if

there exists a regular set R which only contains inductive statements such that, for

every combination of initial and undesired configuration, there is at least one inductive

statement in R that is satisfied by the initial but not the undesired configuration. This

question can be formulated in existential second-order logic:

∃R . ∀x . R(x)→ Inductive(x)

∧∀x, y . (I(x) ∧ B(y))→ ∃I . (R(I) ∧ x |= I ∧ ¬y |= I)

such that we only look for regular witnesses for R.

8

1.1. Contribution

Since the set of all inductive statements is itself a regular set, only considering regular

subsets of it does not restrict the power of the approach. This is because if there is any

such subset there is a regular one – at least, the set of all inductive statements itself.

We formulate the search for a sufficient set of inductive statements as an instance of

automata learning in Chapter 3. There, we encounter the question whether, for two

given configurations u, v ∈ Σ∗, the structure Z satisfies the formula

ψ = ∃x . Inductive(x) ∧ u |= x ∧ v ̸|= x.

We analyze the complexity of this question in more detail then. Also, we discuss how

to speed up this learning process by exploiting the topologies of parameterized systems.

In Chapter 4, we provide an experimental evaluation of all of these approaches based

on a prototype called dodo.

1.1 Contribution

Previous publications

As a PhD student, the author published some relevant results for this thesis. In the

following, we present a list of the relevant publications with a synopsis of their content.

This thesis is preceded by four conference publications:

[Boz+20] In this publication we consider a different model. This model, however, can

be embedded into regular model checking. Here, we already introduce the concept

of over-approximating reachability based on inductive statements. It is, therefore,

an inspiration for Chapter 2.

[ERW21b] This publication introduces the concept of learning sufficiently many induc-

tive statements to prove safety properties for parameterized systems. Thus, this

already contains ideas that lead to the results of Chapter 3. The learning pro-

cedure is not formulated in the context of automata learning but solely relies on

generalizing one single inductive statement to a family of inductive statements4.

This contribution was awarded the Best Paper Award of the conference.

[ERW21a] Here we apply the methodology of the previous publication to more complex

parameterized systems. In particular, these systems cannot be embedded into

4We formulate these generalizations in Lemma 3.5.

9

1. Introduction

regular model checking anymore because the state space of every single agent

grows with the size of the considered instance. Consequently, its relevance for this

thesis is only tangential.

[ERW22b] This publication already contains most of the ideas of this thesis. In par-

ticular, the considered model is regular model checking and we consider an over-

approximated reachability relation which is induced by a particular family of inter-

pretations. One basic member of this family is also considered in this thesis. With

the introduction of interpretations in this thesis, we subsume most of its results.

Additionally, we present some of its results in this thesis in an expanded form.

Three of these publications were expanded to form two additional articles:

[ERW22a] This article contains the ideas of [ERW21b] and [ERW21a]. Fundamentally,

both operate with the same methodology; that is, generalizing a single inductive

statement to a language of inductive statements for the whole parameterized sys-

tem by exploiting the topologies of the system.

[ERW22c] This is an extended version of [ERW22b] that is currently under review for

the journal “Logical Methods in Computer Science”. Although interpretations

were developed for this thesis, they are presented in this contribution as well

because the manuscripts were written in parallel. Thus, there is some overlap of

the content in this article and Chapter 2.

Contributions of this thesis

The central, to the best of our knowledge, genuinely new contribution of this thesis is the

introduction of interpretations as a tool for the analysis of regular transition systems.

With their introduction we subsume and streamline the results presented in [Boz+20;

ERW21b; ERW22b; ERW22c]. Proving the problem whether Z satisfies the formula

φ PSpace-hard for the interpretation Vflow (Theorem 2.5) is here one of the central

contributions. Minor contributions are Theorem 2.3 and Theorem 2.4 because the first

one essentially is folklore knowledge in the Petri net community. Also, Theorem 2.3

implies Theorem 2.4 on the basis of results from [ERW22b]. Section 2.6 does not contain

new results but presents the results in a more explicit way than [ERW22b]. We believe

that this presentation renders the complex construction more accessible. In Section 2.7,

10

1.1. Contribution

the results of [ERW21b] are expanded and, for the first time, formulated for regular

transition systems.

With the idea to learn inductive statements to prove safety properties in the framework

of automata learning of Chapter 3, we generalize the results of [ERW21b] significantly.

Although the problem whether Z satisfies the formula ψ for two given configurations u

and v already arose in [ERW21b], its complexity has not been studied there. Mikhail

Raskin was the first person to show that this problem is in PTime for Vtrap and that there

are interpretations for which it is NP-complete [Ras22]. Valentin Krasotin has refined

and expanded on these results in his master’s thesis [Kra23]. Since this master’s thesis

uses [ERW22c] as a basis, it already contains the concept of interpretations. Considering

the interpretation Vflow for the problem whether Z satisfies the formula ψ for two given

configurations u and v and proving it to give an NP-hard instance of this problem

(Lemma 3.2) is a contribution of this thesis.

The implementation and evaluation of all approaches presented in this thesis; that is,

Chapter 4, is one of the major contributions of it.

11

2 Inductive statements for regular

transition systems

2.1 Preliminaries

In this section, we introduce some basic notions that we use throughout this thesis: reg-

ular languages and regular transition systems. Regular languages are languages that can

be recognized by a finite state automaton. On the other hand, regular transition systems

are a model for parametrized systems that define a language of reachable configurations

with the help of two regular languages.

Finite automata

We use standard notions of finite automata. We distinguish between deterministic and

non-deterministic automata to recognize regular languages of finite words.

Definition 2.1: Deterministic finite automaton (DFA).

A DFA is a quintuple A = ⟨Q, q0,Σ, δ, F ⟩ where Q is a set of states with q0 ∈ Q
which we call initial state. Σ is a finite set of letters. We call this set the alphabet

of A. δ : Q×Σ→ Q is As step function and F ⊆ Q is the set of accepting states.

For any word u1 . . . un ∈ Σ∗ the DFA A provides a unique run q0 q1 . . . qn on

u1 . . . un by setting qi = δ(qi−1, ui) for all 1 ≤ i ≤ n. This run is called accepting

if qn ∈ F . We say A accepts a word w if the run of A on w is accepting. The set

of all words that A accepts is denoted by L(A).

For any DFA its step function provides a deterministic way of computing its run on

a word. Employing non-determinism to define a set of runs on a word renders finite

13

2. Inductive statements for regular transition systems

automata for regular languages more compact (and, sometimes, more intuitive).

Definition 2.2: Non-deterministic finite automaton (NFA).

An NFA is a quintuple A = ⟨Q,Q0,Σ,∆, F ⟩ where Q, Σ and F are as for a DFA.

We replace, however, the unique initial state of a DFA with a set Q0 ⊆ Q of

initial states and the step function with a step relation ∆ ⊆ Q × Σ × Q. We

adapt the notion of accepting run accordingly: for any word u1 . . . un ∈ Σ∗ we

consider a sequence of states q0 q1 . . . qn a run of A on u1 . . . un if q0 ∈ Q0 and

⟨qi−1, ui, qi⟩ ∈ ∆ for all 1 ≤ i ≤ n. As before, we call this run accepting if qn ∈ F .
A accepts a word w if there exists an accepting run of A on w. L(A) still denotes
the set of all accepted words of A.

Throughout the thesis, we also use regular expressions to compactly denote some reg-

ular languages. Moreover, we mix regular expressions and set notations as we see fit

to describe regular languages as conveniently as possible. We do not introduce regu-

lar expressions here but refer the interested reader to a standard textbook on regular

languages; e. g. [HMU07].

Figure 2.1: NFA for Σ∗ (a b b|b a a) Σ∗.

This automaton is constructed by simply guessing at which point of the word one

of the possible patterns is read.

a, b a, b
a

b

b

b

a

a

14

2.1. Preliminaries

Example 2.1: Simple regular language.

Consider the alphabet Σ = {a, b} and the language of all words in which either

the pattern a b b or the pattern b a a occurs. This language can be described

via the regular expression Σ∗ (a b b|b a a) Σ∗. Alternatively, one can recognize

this language with a DFA (as depicted in Figure 2.2) or a NFA (as depicted in

Figure 2.1).

Figure 2.2: DFA for Σ∗ (a b b|b a a) Σ∗.

We construct this automaton by storing the last two letters of any word in the

states of the automaton and, upon encountering one of the desired patterns, we

move into an accepting sink state.

⊤

a a a b

b b b a

a

b

ε

a

b

a b

ab

a
b

a

b

a

b

a
b

a, b

Regular transition systems

This thesis deals with regular transition systems as a model of parameterized systems.

The surveys [Abd12] and [Abd+04] on regular model checking (RMC) both credit

[WB98] and [Kes+01] for the introduction of RMC (or at least for the observation that

15

2. Inductive statements for regular transition systems

regular languages are a powerful tool to reason about parameterized systems). Since

then the notation of the model has been streamlined significantly. We follow standard

notations. In particular, the following definitions are akin to the ones in the aforemen-

tioned surveys [Abd12; Abd+04].

The underlying concept for RMC is simple. Consider some systems S that is param-

eterized by some value n. For example, S may describe a protocol for mutual exclusion

in which n is the number of agents that participate in the execution of this protocol. If

we additionally assume that every agent can be only in a finite number of states, say Σ,

one can describe the state of some execution of S for n agents as some word of Σn. The

first letter of this word is then the state of the first agent, the second letter the state of

the second agent, and so on. Considering the current state of some instance of S as a

word over the finite alphabet Σ allows us to define sets of configurations as languages

in Σ∗. Assume that c ∈ Σ is the critical state for which S guarantees mutual exclusion.

Then, all elements of the set Σ∗ c Σ∗ c Σ∗ violate that property and must not be reached

in S.

The second crucial observation is the following: the system S specifies some opera-

tional semantics; i.e., how instances of the system might change their state. In RMC we

assume that the behavior of S can be captured by a regular language over the alphabet

Σ × Σ such that the configuration v1 . . . vn can change into configuration u1 . . . un if

(and only if) the word ⟨v1, u1⟩ . . . ⟨vn, un⟩ is part of that language. To formalize this,

we introduce the concept of transducers1.

Definition 2.3: Transducer.

A Σ-Γ-transducer is an NFA ⟨Q,Q0,Σ× Γ,∆, F ⟩. We identify with any Σ-Γ-

transducer T a relation{
⟨v1 . . . vn, u1 . . . un⟩ ∈

⋃
n≥0

Σn × Γn | ⟨v1, u1⟩ . . . ⟨vn, un⟩ ∈ L(T)

}

which we denote with JT K. Note that this relation can only relate words of the

1More particularly, the transducers we introduce are all length-preserving which means that one can
only relate words of the same length via a transducer.

16

2.1. Preliminaries

same length. Let us introduce some related notation.

For v ∈ Σ∗ : targetT (v) = {u ∈ Γ∗ | ⟨v, u⟩ ∈ JT K}

For u ∈ Γ∗ : sourceT (u) = {v ∈ Σ∗ | ⟨v, u⟩ ∈ JT K}

Additionally, we want to extend this notation to sets in the expected way:

targetT (V) =
⋃

v∈V targetT (v) and sourceT (U) =
⋃

u∈U sourceT (u).

Throughout the thesis, we use the folklore knowledge that one can use standard prod-

uct constructions to chain the relations of transducers together. More specifically, one

can obtain from a Σ-Γ-transducer F and a Γ-Υ-transducer S a Σ-Υ-transducer C such

that

JCK = JFK ◦ JSK =

{
⟨u,w⟩ ∈

⋃
n≥0

Σn ×Υn | ∃v . ⟨u, v⟩ ∈ JFK and ⟨v, w⟩ ∈ JSK

}
.

Additionally, we use that one can obtain from a given NFA A over the alphabet Σ in a

straightforward way a Σ-Σ-transducer B such that JBK = {⟨u, u⟩ : u ∈ L(A)}. We refer

to this relation in the future as Id(A). Finally, one can also project, for any transducer,

to either the origin or target of all letters and obtain a NFA for the language of all origins

or the language of all targets.

Lemma 2.1. Let

• F be a Σ-Γ-transducer with nF states,

• S be a Γ-Υ-transducer with nS states, and

• A be a NFA over the alphabet Σ with nA states.

One can effectively construct

• a Σ-Υ-transducer C with nF · nS states such that JCK = JFK ◦ JSK,

• a Σ-Σ-transducer B with nA states such that JBK = {⟨u, u⟩ : u ∈ L(A)} = Id(A),
and

• NFAs D and E over the alphabets Σ, Γ respectively with nF states each such that

L(D) = sourceF(Γ
∗) and L(E) = targetF(Σ

∗).

17

2. Inductive statements for regular transition systems

Based on this definition, we introduce regular transition systems; the central model

of this thesis.

Definition 2.4: Regular transition system (RTS).

An RTS is a triple R = ⟨Σ, I, T ⟩ where Σ is a finite alphabet while I is an NFA

with alphabet Σ and T is a Σ-Σ-transducer.

We denote with ⇝T the relation JT K and call a pair ⟨v, u⟩ ∈⇝T (which we also

write v ⇝T u) a transition of R. Moreover, let ⇝∗T denote the reflexive transitive

closure of ⇝T .

We consider w ∈ Σ∗ reachable in R if there exists u ∈ L(I) with u ⇝∗T w. Let

reach(R) ⊆ Σ∗ denote all reachable configurations.

In the following, we represent pairs ⟨σ1, σ2⟩ ∈ Σ × Σ in transducers as
[
σ1

σ2

]
for read-

ability. Also, we denote with struck-out versions of relation symbols; e. g. ̸⇝T , the
complement of the relation (which still only relates words of the same length). In this

case, ̸⇝T=
{
⟨u, v⟩ ∈

⋃
n≥0Σ

n × Σn | ⟨u, v⟩ /∈ JT K
}
.

We want to conclude this chapter with the presentation of two examples. The first

is a token passing algorithm2 [Abd+04; Abd12]. The second example is the dining

philosophers – a well-known parametrized system.

Example 2.2: Token passing as RTS.

This system consists of a linear array of agents. Initially, the first agent holds a

token. In every step, the agent that currently holds the token can pass it down the

line one step. To represent the system as an RTS we choose to represent the agent

that holds the token as the letter t and the agents that do not hold the token as

the letter n. Consequently, we choose the language of initial configurations to be

t n∗. We capture the transitions of the system via the language
[
n

n

]∗ [
t

n

] [
n

t

] [
n

n

]∗
.

The corresponding NFAs I and T are depicted in Figure 2.3 and Figure 2.4,

respectively.

Let us consider t n n ∈ L(I). We have targetT (t n n) = {n t n} because t n n⇝T
n t n is the only transitiona that originates in t n n. Similarly, there is exactly

2This example is the, so to speak, canonical example for RMC.

18

2.1. Preliminaries

one transition that originates in n t n which is n t n ⇝T n n t. Since the token

has reached the end of the agents, there are no more transitions to apply to the

configuration n n t. Moreover, t n n is the only configuration in L(I) of length 3.

Hence, reach(R) ∩ Σ3 coincides with {t n n, n t n, n n t}.
On close inspection of the language of T one observes that, from every initial

configuration, there is a deterministic sequence of configurations that are reachable

by handing down the token to the end of the line. Therefore, the language of all

reachable configurations is reach(R) = n∗ t n∗.

at n n⇝T n t n is a transition because
[
t
n

] [
n
t

] [
n
n

]
is accepted by T .

Figure 2.3: I for Example 2.2.

Illustration of the automaton that recognizes the language of initial words for

Example 2.2.

q0 q1
t

n

Figure 2.4: T for Example 2.2.

Illustration of the automaton that recognizes the language of transitions for Ex-

ample 2.2.

p0 p1 p2

[
n

n

]
[

t

n

] [
n

t

]
[
n

n

]

Remark 2.1. Note that the definition of regular transition systems only allows con-

figurations to reach configurations of the same length. Hence, once one has selected

any initial configuration, there are only finitely many configurations reachable from that

19

2. Inductive statements for regular transition systems

initial configuration3.

Example 2.3: Dining philosophers as RTS.

Let us introduce the example of the dining philosophers. In this parameterized

system we consider a group of philosophers of some arbitrary but fixed size n.

These philosophers sit around a round table and there is a fork placed between

every two adjacent philosophers (and many cakes in the middle of the table). Every

philosopher alternates between a state thinking and eating. In the state eating the

philosopher picked up both forks adjacent to them and uses these to eat cakes

from the middle of the table. The state thinking, on the other hand, models that

the philosopher does not hold any fork but is only concerned with the thoughts in

their head. The forks alternate between states free and busy to indicate whether

they are lying on the table or are taken by a philosopher, respectively.

We model two different ways for the philosophers to move from state thinking to

eating as RTSs. In the first version, all philosophers grab the forks adjacent to

them in an atomic step. For this, we represent the state free and busy of the forks

as f and b respectively. The states thinking and eating of the philosophers are

represented as t and e, respectively.

In the second version, all philosophers grab the forks adjacent to them one by one.

Here, we introduce a third state for all the philosophers (h) to indicate that this

philosopher already grabbed one of the forks adjacent to them but not the second

one. Moreover, we fix, for all philosophers but one, that they grab first the fork on

their right and, afterward, the fork on their left. For the one special philosopher,

this order is reversed. We refer to this philosopher as a left-hander. That is, this

philosopher first grabs the fork on their left and, then, the fork on their right.

The atomic version

First, we consider the atomic variant where the philosophers grab both adjacent

forks simultaneously. Initially, all philosophers are thinking and all forks are free.

Hence, we choose I such that L(I) coincides with the regular expression (t f)∗ (as

illustrated in Figure 2.5). Grabbing both forks simultaneously can be modeled via

3For this reason, one sometimes refers to such systems as weakly finite [EGK12].

20

2.1. Preliminaries

the union of three regular languages. We describe these languages as regular ex-

pressions. To ease the presentation, we introduce two placeholders P and F which

describe that we skip over a philosopher or fork respectively without changing it.

Formally, we set

P =
([

t

t

]
|
[
e

e

])
and F =

([
f

f

]
|
[
b

b

])
.

The first language encodes that some philosopher but the first either grabs or

releases their adjacent forks:

P (F P)∗
([

f

b

] [
t

e

] [
f

b

]
|
[

b

f

] [
e

t

] [
b

f

])
(P F)∗ .

The other two model the behavior of the first philosopher:[
t

e

] [
f

b

]
(P F)∗ F

[
f

b

]
and

[
e

t

] [
b

f

]
(P F)∗ F

[
b

f

]
.

The language that corresponds to these regular expressions is recognized by the

NFA depicted in Figure 2.6.

The version with one left-hander

Alternatively, we consider a non-atomic variant of the dining philosophers. Here

the philosophers take the forks one by one in two individual steps. Since we

introduce a third state (h) for the philosophers to indicate that they already

grabbed one of the forks, we modify P from before slightly:

P =
([

t

t

]
|
[
h

h

]
|
[
e

e

])
.

Recall that we introduced one left-hander to the groups of philosophers. We do

so because otherwise the philosophers are in danger: Assume, for the moment,

that all philosophers grab the forks adjacent to them in two individual steps but

all do so in the same order (first, the one to their right and second, the one to

their left). Now imagine all philosophers doing the first step once. Thus, every

philosopher holds exactly one fork and awaits the second fork to become free

again. Unfortunately, this configuration cannot change anymore. Consequently,

the system deadlocks and all philosophers starve. That is undesirablea.

21

2. Inductive statements for regular transition systems

As already indicated, we fix this problem by introducing one philosopher who takes

their forks in the opposite order than everyone else – the left-hander. By arbitrary

choice, the first philosopher is the left-handed one. For the formalization, we keep

I as before and we introduce T ′. We describe the language of T ′ in terms of

regular expressions:

• P (F P)∗
[
f

b

] [
t

h

]
(F P)∗ F and (P F)+

[
h

e

] [
f

b

]
(P F)∗ model that a right-

handed philosopher grabs their first or second fork.

•
[

t

h

] [
f

b

]
(P F)∗ and

[
h

e

]
F (P F)∗ P

[
f

b

]
model that the left-handed philoso-

pher takes their first or second fork.

• P (F P)∗
[

b

f

] [
e

t

] [
b

f

]
P (F P)∗ and

[
e

t

] [
b

f

]
(P F)∗ P

[
b

f

]
model that any

philosopher returns their forks.

aSo I have been told.

Figure 2.5: I of the dining philosophers.

Illustration of the NFA recognizing the initial states of the dining philosophers of

Exampe 2.3.

q0

q1

tf

22

2.2. Inductive statements for regular transition system

Figure 2.6: T of the atomic dining philosophers.

Illustration of the NFA recognizing the transitions of the atomic philosophers of

Exampe 2.3.

p0

p1

[
t

t

]
,
[
e

e

]
p2

[
f

f

]
,
[
b

b

]
[
t

t

]
,
[
e

e

]

p3

[
f

b

]

p4

[
t

e

] p5

[
b

f

]

p6

[
e

t

]

p7

[
f

b

] [
b

f

]

p8

[
t

t

]
,
[
e

e

]
[
f

f

]
,
[
b

b

]

q0

q1

[
t

e

]

q2

[
f

b

]

q3

[
t

t

]
,
[
e

e

] [
f

f

]
,
[
b

b

]

q4

[
e

t

]

q5

[
b

f

]

q6

[
t

t

]
,
[
e

e

] [
f

f

]
,
[
b

b

]

q7

[
f

b

] [
b

f

]

2.2 Inductive statements for regular transition system

In this chapter, we explore a framework to reason over the reachable set of any RTS with

logical statements. More precisely, we present an approach that is modular with respect

to the form of the logical statements. At its core, this approach separates a logical

statement into an encoding and the interpretation of an encoded statement. This allows

us to consider a very broad class of ways to reason about RTSs. Central to this chapter

are inductive statements ; that is, statements that are necessarily true after the execution

23

2. Inductive statements for regular transition systems

of one transition if they were true before this transition. More specifically, a statement I

is inductive if, for any transition v ⇝ u where v satisfies I, u also satisfies the statement.

The main result of this chapter is that, for any given encoding and interpretation, the set

of all inductive statements form a regular language and are, therefore, algorithmically

accessible.

The general safety problem

In general, we ask whether a given RTS can reach any word that we consider undesirable.

In particular, we define a regular set of undesirable words and try to prove (automat-

ically) that no word of this set is reachable. Essentially, the question we are trying to

solve algorithmically is the following:

Problem 2.1 (The reachability problem).

Given: RTS R and NFA B

Compute: reach(R) ∩ L(B) = ∅?

Unfortunately, this problem is, in general, undecidable [Blo+16]. Therefore, we con-

sider a semi-decision procedure for it that answers the following question:

Do an initial configuration v and an undesired configuration u exist, such

that u satisfies all inductive statements that v satisfies?

It is clear that, if u is reachable from v, then u satisfies the inductive statements that

v satisfies since they are inductive. Depending on the inductive statements, it is also

possible that we can guarantee that no undesired configuration can be reached from

any initial configuration. In other words, this means that, for every pair of initial and

undesired configurations, there exists (at least) one inductive statement that is satisfied

by the initial but not the undesired configuration. In this case, one can naturally deduce

that no undesired configuration can be reached.

We proceed by developing the notion of logical statements and how to compute induc-

tive ones. Let us introduce an example first and develop the formalism afterward: We

consider a system where each agent is either in state p, q or t. Consider the statement

“in all configurations of length 4 at least one of the first three agents is in state q”. The

configurations q p p p, p q p p, and p p q p satisfy this statement while p p p q does not.

A similar statement could be “in all configurations of length 3 the first agent is in state

24

2.2. Inductive statements for regular transition system

p or the first agent is in state q”. Here p t p or q t q satisfy the statement but t q p does

not. Both statements share a common logical structure; that is, they follow the pattern

“in all configurations of a certain length m either agent i1 is in state σ1 or agent i2 is

in state σ2 or . . . or agent ik is in state σk.” If we stipulate that the statement “agent

ij is in state σj” is captured by the atomic proposition σj(ij) one can express all these

statements in the form size = m→
∨

1≤j≤k σj(ij). Then, the statements above translate

to

size = 4→ (q(1) ∨ q(2) ∨ q(3)) and size = 3→ (q(1) ∨ p(1)) .

We specify for every statement the size for which it applies. Recall that, as soon as

one picks the initial word, one can only reach configurations of the same size. Thus, we

believe it makes sense to consider these instances ; that is, the finite reachability graph

of words of the same length, individually.

Consider a different view on statements: for example, the statement size = 4 →
(q(1) ∨ q(2) ∨ q(3)) contains two separate pieces of information. On the one hand, the

size of the instance for which it applies, and, on the other hand, which states the first

agent (in this case the state q), the second agent (q), the third agent (q), or the fourth

agent (which is in this case irrelevant) can be in to satisfy the statement. In general, the

necessary information of any statement can be encoded as a function f : {1, . . . ,m} →
2Σ. For any such function, the domain encodes for which instance the statement is

applicable, while the set of letters f(i) corresponds to the states the i-th agent can be

in to satisfy the statement. Thus, our examples would be

• the function {1 7→ {q} , 2 7→ {q} , 3 7→ {q} , 4 7→ ∅}, and

• the function {1 7→ {p, q} , 2 7→ ∅, 3 7→ ∅}, respectively.

Note that a function f : {1, . . . ,m} → 2Σ can be equivalently described as a word of

length m over the alphabet 2Σ. Therefore, we can represent our examples by the words

{q} {q} {q} ∅ and {p, q} ∅ ∅. These words are non-descriptive on their own. Their

interpretation is crucial to understanding the statement they encode. Thus, one might

ask the question: “Does q p p p satisfy the statement encoded as {q} {q} {q} ∅?”
This can be easily decided because one only has to check whether any of the following

statements is true: q ∈ {q}, p ∈ {q}, p ∈ {q}, or p ∈ ∅. In fact, one can decide this with

the help of a Σ-2Σ-transducer which we depict in Figure 2.7.

25

2. Inductive statements for regular transition systems

Figure 2.7: Disjunctive statement interpretation automaton.

Illustration of an automaton that validates disjunctive statements. More precisely,

we depict a Σ-2Σ-transducer V such that ⟨v, I⟩ ∈ JVK if (and only if) the config-

uration v satisfies the encoded statement of a disjunction of atomic propositions

I. For the transitions, we write H which denotes all pairs in ⟨v, I⟩ ∈ Σ× 2Σ such

that v ∈ I and M for all pairs in ⟨v, I⟩ ∈ Σ× 2Σ such that v /∈ I.

rej. acc.

M

H

H,M

Consider now a slightly different form of statements; i.e., statements of the form

size = m→ (σ1(i1) xor . . . xor σk(ik)) .

That means the statement is satisfied by configurations of lengthm where an odd number

of atomic propositions is satisfied by the configuration. Using the same considerations

as before, one can express a statement of this form which ensures an odd amount of

letters p in all configurations of length 6 as {p} {p} {p} {p} {p} {p}. Although the

encoding is similar to before, the interpretation differs. However, any procedure that

reads some configuration and this encoding in parallel only requires finite memory to

decide whether the configuration satisfies the statement. In fact, the procedure only

needs to update one bit to keep track of the fact whether an even or an odd amount

of atomic propositions are satisfied. We present a Σ-2Σ-transducer that realizes this in

Figure 2.8.

Finally, we want to consider a third type of statement. This time we allow ourselves

a conjunction of two disjunctions. Hence, the statements encode formulas of the form

size = m→
∨

1≤j≤k

σj(ij) ∧
∨

1≤j≤ℓ

ρj(nj).

Essentially, this can be understood as reading two clauses simultaneously. As an exam-

26

2.2. Inductive statements for regular transition system

ple, consider the statement

size = 4→


p(1) ∨ q(1)
∧

t(1) ∨ t(2) ∨ t(3) ∨ t(4)

 . (2.1)

Thus, we consider an encoding as a word over the alphabet 2Σ × 2Σ. Projecting every

letter to its first component yields the same encoding for the first clause as before while

projection to the second element of each letter gives us an encoding for the second clause.

The example statement in (2.1) would be encoded as

⟨{p, q} , {t}⟩ ⟨∅, {t}⟩ ⟨∅, {t}⟩ ⟨∅, {t}⟩ .

Consequently, it is expected that we can construct a similar transducer as before by

considering both clauses individually. We present this Σ-2Σ×2Σ-transducer in Figure 2.9.

Figure 2.8: Parity statement interpretation automaton.

Illustration of a Σ-2Σ-transducer that validates xor statements. As for Figure 2.7

we write H, and M to denote all pairs in ⟨v, I⟩ ∈ Σ × 2Σ such that v ∈ I and

v /∈ I, respectively.

rej. acc.

M

H

H

M

27

2. Inductive statements for regular transition systems

Figure 2.9: 2-clause statement interpretation automaton.

Illustration of a Σ-2Σ× 2Σ-transducer that validates statements with two clauses.

For the transitions, we introduce four different short forms which all represent

pairs ⟨u, ⟨A,B⟩⟩ ∈ Σ×
(
2Σ × 2Σ

)
:

M : represents the case u /∈ A and u /∈ B,

F : represents the case u ∈ A and u /∈ B,

S: represents the case u /∈ A and u ∈ B, and

H: represents the case u ∈ A and u ∈ B.

The states are vectors of two bits. The first bit indicates whether the first clause

is already satisfied. Similarly, the second bit tracks the satisfaction of the second

clause.

[
0

0

]

[
0

1

]

[
1

0

]

[
1

1

]

M

F

S
H

M,S
H,F

M,F

H, S

M,F, S,H

2.3 A generic approach to statements

As we have mentioned before, we are particularly interested in inductive statements.

The reason for this is that one can use inductive statements to over-approximate the

28

2.3. A generic approach to statements

reachable configurations from any given initial configuration. As we have seen before,

one could consider various types of statements (each encoded and evaluated in some

particular way). More formally, we relied on transducers to formalize encoding and

evaluating statements. In this section, we show that, for any such transducer, the set of

all inductive statements is a regular one. Moreover, we can use the set of all inductive

statements to obtain an over-approximation of all reachable configurations.

Definition 2.5: Interpretation.

For any RTS R = ⟨Σ, I, T ⟩, we call a pair ⟨Γ,V⟩ an Γ-interpretation where Γ is

a finite alphabet and V is a deterministic Σ-Γ-transducer. In the following, we

sometimes write u |=V I to indicate ⟨u, I⟩ ∈ JVK.

Example 2.4: A satisfied statement.

Given our intuition, one would expect that q p p q satisfies the statement size =

4 → (q(1) ∨ q(2) ∨ q(3)). Therefore, the interpretation automaton depicted in

Figure 2.7 should accept ⟨q, {q}⟩ ⟨p, {q}⟩ ⟨p, {q}⟩ ⟨q, ∅⟩ because size = 4 →
(q(1) ∨ q(2) ∨ q(3)) is encoded as {q} {q} {q} ∅. And, indeed, we can verify that

⟨q p p q, {q} {q} {q} ∅⟩ is part of the relation of this interpretation.

If Γ is clear from the context we might refer to a Γ-interpretation simply as an inter-

pretation. We choose to make the interpretation deterministic to ease some of the proofs

later. Naturally, this requirement can be lifted for all the following results. However,

some of the bounds on the number of states of some of the automata have to be adapted

accordingly.

Any Γ-interpretation describes a class of statements for any RTS R = ⟨Σ, I, T ⟩. Now,
we identify statements that are inductive with respect to the transitions of R; that is,
JT K.

29

2. Inductive statements for regular transition systems

Definition 2.6: Inductive statements.

For any given Γ-interpretation V for R = ⟨Σ, I, T ⟩, we define

InductiveV(R) = {I ∈ Γ∗ | ∀u⇝T v . if ⟨u, I⟩ ∈ JVK then ⟨v, I⟩ ∈ JVK}

= {I ∈ Γ∗ | ∀u⇝T v . if u |=V I then v |=V I} .

Example 2.5: An inductive statement of Example 2.2.

Recall the token passing model R of Example 2.2. Additionally, we focus on

the interpretation that we illustrated in Figure 2.7. That means, that we specif-

ically consider an 2Σ-interpretation
〈
2Σ,V

〉
. We argue that ∅∗ {n} ∅∗ {n} ∅∗ ⊆

InductiveV(R). To this end, observe that each word of this language corresponds

to the statement “for two given indices i, j either the i-th letter is n or the j-th

letter is n” where the indices correspond to the two positions where the letters

are {n}; e.g., {n} ∅ ∅ {n} ∅ applies to words of the length 5 and ensures that

either the first or fourth letter is n. Note that all transitions of this example

originate in a configuration where exactly one letter is t and end up in a config-

uration where exactly one letter is t. Consequently, the origin and the target of

every transition satisfy all of these statements. Therefore, we can conclude that

∅∗ {n} ∅∗ {n} ∅∗ ⊆ InductiveV(R).

Note that, for any RTS R = ⟨Σ, I, T ⟩ and interpretation V , any inductive statement

I ∈ InductiveV(R) that is satisfied in one configuration w (w |=V I) is also satisfied

in all configurations that can be reached from w (u |=V I for all w ⇝∗T u). This is

because I stays satisfied along every possible transition of the RTS. In this way, we can

try to approximate the relation ⇝∗ by considering some configuration u reachable from

configuration w if u satisfies the same inductive statements as w. Let us illustrate this

with another example.

Example 2.6: Approximating reachability via inductive statements.

As we have seen in the previous example ∅∗ {n} ∅∗ {n} ∅∗ ⊆ InductiveV(R) for
the interpretation that is depicted in Figure 2.7 and the RTS from Example 2.2.

30

2.3. A generic approach to statements

With respect to these statements one can, for example, conclude that t n n n can

be reached from n t t t. The reason for this is that the words of ∅∗ {n} ∅∗ {n} ∅∗

that are satisfied by n t t t are

{n} {n} ∅ ∅,
{n} ∅ {n} ∅,
{n} ∅ ∅ {n}.

All these statements are also satisfied by t n n n.

On the other hand, one can also see that ∅∗ {t}∗ ⊆ InductiveV(R). This is true

because every transition only moves the letter t one step to the right. Using these

statements one can immediately see that t n n n cannot be reached from n t t t

because the latter satisfies

∅ {t} {t} {t},
∅ ∅ {t} {t},
∅ ∅ ∅ {t}

while the former does not.

We proceed now by proving that InductiveV(R) is a regular language for any RTS R
and interpretation V . We do so by considering the complement of the language since it

is more intuitive.

Lemma 2.2. Let R = ⟨Σ, I, T ⟩ be an RTS. One can construct effectively an NFA with

O(nT ·n2
V) states for InductiveV(R) where nT and nV are the number of states of T and

V, respectively.

Proof. By definition

InductiveV(R) = {I ∈ Γ∗ | ∃u⇝T w . u |=V I and w ̸|=V I} .

In the remainder of the proof, we construct an automaton that recognizes this lan-

guage. This automaton guesses for its input I1 . . . In an accepting run of T on

some transition u1 . . . un ⇝T v1 . . . vn and tracks the state qu of V for the word

⟨u1, I1⟩ . . . ⟨un, In⟩ and qv for ⟨v1, I1⟩ . . . ⟨vn, In⟩, respectively. Since the transition

u1 . . . un ⇝T v1 . . . vn needs to witness that I1 . . . In is not inductive the au-

tomaton accepts if qu is an accepting state while qv is not. To this end, let T =

31

2. Inductive statements for regular transition systems

⟨P,Σ× Σ,∆, p0, E⟩ and V = ⟨Q,Σ× Γ, δ, q0, F ⟩. The automaton for InductiveV(R) is

⟨P ×Q×Q,Γ,∇, ⟨p0, q0, q0⟩ , E × F × (Q \ F)⟩ where

∇ =

⟨⟨p, q1, q2⟩ , I, ⟨p′, q′1, q′2⟩⟩
∣∣∣∣∣∣∣∣
∃ ⟨σ1, σ2⟩ ∈ Σ× Σ . ⟨p, ⟨σ1, σ2⟩ , p′⟩ ∈ ∆

and δ(q1, ⟨σ1, I⟩) = q′1

and δ(q2, ⟨σ2, I⟩) = q′2

 .

Observe now that any accepting run in this automaton can be separated into three parts:

• The projection to the first element of the run yields an accepting run of T on some[
u1

v1

]
. . .

[
un

, vn

]
.

• The projection to the second element of the run yields the accepting run of V on

⟨u1, I1⟩ . . . ⟨un, In⟩.

• The projection to the third element of the run yields the rejecting run of V on

⟨v1, I1⟩ . . . ⟨vn, In⟩.

As we said before (and have illustrated in Example 2.6), we want to use the inductive

statements to obtain a relationship of potential reachability between two configurations.

Before we state the definition, recall that targetV(u) is, for any interpretation V , the set
of all statements I such that u |=V I.

Definition 2.7: Potential reachability.

Let R = ⟨Σ, I, T ⟩ be any RTS and ⟨Γ,V⟩ any interpretation. We write u⇒V v if

and only if v |=V I for all I ∈ targetV(u) ∩ InductiveV(R).

From this definition and the definition of InductiveV(R), the following observation is

immediate:

Lemma 2.3. Let R = ⟨Σ, I, T ⟩ be an RTS and ⟨Γ,V⟩ an interpretation. If u ⇝∗T v,

then u⇒V v.

We dedicate the remainder of this section to proving that this relation of potential

reachability can be captured by a Σ-Σ-transducer.

In fact, we prove the following result.

32

2.3. A generic approach to statements

Theorem 2.1. For any RTS R = ⟨Σ, I, T ⟩ and interpretation ⟨Γ,V⟩, there exists a

Σ-Σ-transducer C such that ⇒V coincides with JCK.

To do so, we first look at the complement of this relation. More specifically, we show

that we can construct a Σ-Σ-transducer C such that

q
C
y
=

{
⟨u, v⟩ ∈

⋃
n≥0

Σn × Σn | u ̸⇒V v

}
.

The intuition behind our construction is as follows: u ̸⇒V v means that there is some

statement I ∈ InductiveV(R) such that u |=V I and v ̸|=V I. Hence, it suffices to non-

deterministically guess this statement I and verify that u satisfies it while v does not.

Therefore, we set out to prove:

Lemma 2.4. For any RTS R = ⟨Σ, I, T ⟩ and interpretation ⟨Γ,V⟩ there exists a Σ-Σ-

transducer C such that

q
C
y
=

{
⟨u, v⟩ ∈

⋃
n≥0

Σn × Σn | u ̸⇒V v

}
.

We prove a slightly stronger result that we can reuse later. The idea is that Lemma 2.4

may use any statement I from InductiveV(R) to witness that one cannot reach from some

configuration u another configuration v. We provide a construction that is agnostic

concerning the set of statements it may use to disprove reachability as long as this set

is regular and provided as an NFA. Lemma 2.4 can be obtained as a corollary from that

by choosing InductiveV(R) as the set of statements available in the construction.

Lemma 2.5. Let R = ⟨Σ, I, T ⟩ be an RTS, ⟨Γ,V⟩ an interpretation, and S an NFA

over the alphabet Γ. Then there exists a Σ-Σ-transducer C such that

q
C
y
=

{
⟨u, v⟩ ∈

⋃
n≥0

Σn × Σn | ∃I ∈ L(S) . u |=V I and v ̸|=V I

}
.

Moreover, C can be effectively computed and has O(nS · n2
V) many states, where nS and

nV are the numbers of states of S and V, respectively.

Proof. Fix S = ⟨P,Γ,∆, p0, E⟩ and V = ⟨Q,Σ× Γ, δ, q0, F ⟩ and construct

C = ⟨Q× P ×Q,Σ× Σ,∇, ⟨q0, p0, q0⟩ , F × E × (Q \ F)⟩

33

2. Inductive statements for regular transition systems

with ⟨⟨q1, p, q2⟩ , ⟨σ1, σ2⟩ , ⟨q′1, p′, q′2⟩⟩ ∈ ∇ if and only if there exists I ∈ Γ such that

⟨p, I, p′⟩ ∈ ∆ and δ(qi, ⟨σi, I⟩) = q′i for i ∈ {1, 2}. Any run of C on its input
[
u1

v1

]
. . .

[
un

vn

]
corresponds to a guess for I1 . . . In that can be separated in three parts:

• The projection to the first element of the states of the run yields the run of V on

⟨u1, I1⟩ . . . ⟨un, In⟩.

• The projection to the second element of the states of the run yields a run of S on

I1 . . . In.

• The projection to the third element of the states of the run yields the run of V on

⟨v1, I1⟩ . . . ⟨vn, In⟩.

By the choice of the accepting states, the correctness of the construction follows.

We see now that Theorem 2.1 follows from Lemma 2.4 because regular languages

are closed under complement. In the same manner, one can also prove the following

observation:

Lemma 2.6. Let R = ⟨Σ, I, T ⟩ be an RTS, ⟨Γ,V⟩ an interpretation, and S an NFA

over the alphabet Γ. Then there exists a Σ-Σ-transducer C such that

JCK =

{
⟨u, v⟩ ∈

⋃
n≥0

Σn × Σn | ∀I ∈ L(S) . if u |=V I then v |=V I

}
.

Moreover, C can be effectively computed and has O(2nS ·n2
V) many states, where nS and

nV are the numbers of states of S and V, respectively.

Since this relation becomes relevant later, we introduce a notation for it here. Thus,

in the following, we denote for any language L ⊆ Γ∗ with
L
=⇒V the relation

{
⟨u, v⟩ ∈

⋃
n≥0

Σn × Σn | ∀I ∈ L . if u |=V I then v |=V I

}
.

For example, ⇒V coincides with
InductiveV (R)
========⇒V .

Recall the initial question of this chapter. There we asked how we can establish

certain safety conditions for given RTSs by using inductive invariants as a basis for an

34

2.3. A generic approach to statements

over-approximation of the reachable states. With the help of ⇒V we can formalize this

idea.

For this, consider a RTS R = ⟨Σ, I, T ⟩ and any Γ-interpretation V . We can construct

a Σ-Σ-transducer P such that JPK = Id(I)◦ ⇒V4 by using Lemma 2.1. Observe now

that targetP(Σ
∗) is indeed a regular5 over-approximation of reach(R). Let us illustrate

this in our running example.

Example 2.7: Computing an over-approximation.

Consider the formalization of the token passing algorithm R from Example 2.2

and the interpretation V depicted in Figure 2.7, again. Additionally, recall that

we observed that {t}∗ ⊆ ∅∗ {t}∗ ⊆ InductiveV(R) and ∅∗ {n} ∅∗ {n} ∅∗ ⊆
InductiveV(R). We argue now that the over-approximation that arises from

targetP(Σ
∗) where P is the transducer for Id(I)◦ ⇒V coincides with the set of

actually reachable configurations n∗ t n∗. The reason for this is that the language

{t}∗ of inductive statements enforces that in every configuration at least one of

the letters is t while the language ∅∗ {n} ∅∗ {n} ∅∗ ensures that there are no

t. For the latter observation, consider a configuration in the instance of length m

with two t, say at positions i < j. This configuration fails to satisfy the state-

ment ∅i−1 {n} ∅j−1−i {n} ∅m−j although the unique initial configuration t nm−1

of this instance does satisfy this statement. Consequently, the over-approximation

coincides, in this instance, with reach(R).

We have shown how to obtain, for any interpretation V , a regular over-approximation

of reach(R). This observation inspires a semi-decision procedure for the initially stated

question of whether reach(R) ∩ L(B) = ∅ for some given RTS R and an automaton

B which recognizes undesired words. To state the computational problem, we observe

that targetP(Σ
∗) ∩ L(B) = ∅ where P is the transducer for Id(I)◦ ⇒V if and only if

Id(I)◦ ⇒V ◦Id(B) = ∅.

4Remember that Id(I) = {⟨u, u⟩ : u ∈ L(I)}.
5We use, again, Lemma 2.1.

35

2. Inductive statements for regular transition systems

Problem 2.2 (The approximated reachability problem).

Let V be any Γ-interpretation.

Given: RTS R = ⟨Σ, I, T ⟩ and NFA B
Compute: Id(I)◦ ⇒V ◦Id(B) = ∅?

Remark 2.2. Note here that we treat the interpretation V as a constant of the problem.

This is not necessary. The interpretation could be part of the input as well. We argue,

however, that it is implausible that one tailors an interpretation to a specific problem

since this requires a lot of human effort. Rather we expect that one relies on some

standard interpretations that come with any program for this problem.

Also, note that all regular languages of this problem are defined via NFAs. It is impor-

tant to note that the hardness results we present later do not rely on this fact. Specifically,

they still hold if one restricts oneself to only using deterministic automata for I, T , and
B.

Relying on the previous analysis, we can immediately give an upper bound on the

complexity of this problem:

Theorem 2.2. Problem 2.2 is in ExpSpace.

Proof. Fix R = ⟨Σ, I, T ⟩. Also, we denote with

• nI the number of states of I,

• nT the number of states of T , and

• nB the number of states of B.

In Lemma 2.2, an NFA for InductiveV(R) with O(nT) states is constructed. Hence,

one can obtain a DFA for InductiveV(R) with O(2nT) states by complementing the

automaton for InductiveV(R). Equipped with this automaton, one can construct C
as described in Lemma 2.4 with roughly the same amount of states; that is, again

O(2nT). This yields a DFA C which captures ⇒V with O(22nT) states. More precisely,

the states of this automaton C are subsets of states of C. Therefore, one of the states

can be stored in space O(2nT). Using Lemma 2.1, one can see that checking whether

Id(I)◦ ⇒V ◦Id(B) = ∅ can be realized by checking for emptiness in an automaton where

every state can be stored in space O(log(nI) ·2nT · log(nB)). Since the transition relation

of this automaton can be computed via consulting the given R, the space requirement

of the algorithm is primarily restricted by the size to store a constant amount of these

states.

36

2.4. Concrete interpretations

2.4 Concrete interpretations

As we have noted in Remark 2.2, we believe that one should fix some interpretations

to provide a starting point for the analysis of RTS. In this section, we will introduce

three interpretations and explore them in more detail. The way we decide which in-

terpretations to consider is mostly motivated by previous work. In particular, we rely

for our choice on the promising results in [ERW21b; Boz+20; ERW22b] which, in turn,

are inspired by [Esp+14; EM00]. Another benefit of the chosen interpretations is that

they are relatively simple; that is, they have 2 or 3 states, and they all share the same

alphabet 2Σ for their statements.

Traps

We already introduced one of the interpretations we are interested in; that is, the in-

terpretation for one disjunctive clause as depicted in Figure 2.7. We call this inter-

pretation the trap interpretation. Let us convey the intuition behind the name. For

this, we introduce (informally) an alternative view on instances of some RTS. Ini-

tially, we fix the size of the instance as n. Here, we refer to a “value” as a tuple

⟨i, σ⟩ ∈ {1, . . . , n} × Σ. One can think of a value as the state of one single agent

in the configuration. Therefore, we can identify any configuration u1 . . . un with a

set of values Hu1 . . . unI =
⋃

1≤i≤n {⟨i, ui⟩}. Any statement I1 . . . In can be under-

stood, similarly, as a collection of values HI1 . . . InI =
⋃

1≤i≤n {i} × Ii. For example,

Ht n tI = {⟨1, t⟩ , ⟨2, n⟩ , ⟨3, t⟩} and H∅ {t} {t, n}I = {⟨2, t⟩ , ⟨3, t⟩ , ⟨3, n⟩}. The trap in-

terpretation relates a configuration u and statement I if and only is HuI ∩ HII ̸= ∅.
Intuitively, once a configuration has some value in the inductive statement, it cannot

remove all its values again from it – it gets “trapped”. In the following, we refer to an

inductive statement of the trap interpretation as a trap.

Siphon

We illustrate another interpretation in Figure 2.10 which we call the siphon interpreta-

tion. A trap I is satisfied by any configuration u if at least one of its values is part of

HII. Intuitively, a siphon I ′ requires that none of its values is part of the configuration

that satisfies I ′. That is, u |=Vsiphon I ′ if and only if HuI ∩ HI ′I = ∅.
In other words, if any configuration u does not share a value with a siphon (or, more

37

2. Inductive statements for regular transition systems

specifically, an inductive statement of the siphon interpretation) then one can only reach

configurations from u for which this is also true. Let us give an example of this concept.

Example 2.8: Winning the lottery with siphons.

Assume we have an array of agents. All of them draw a ticket. Exactly one of the

tickets is winning. For this protocol, the agents pass a token down the line from

the first to the last agent. However, the agent with the winning ticket marks the

token in some way.

Let us model this lottery with an RTS R. To this end, we introduce the alphabet

Σ =
{
ℓ, w, ℓ, w, ℓ, w

}
. Here, the letters express the following states:

ℓ: This describes an agent who drew a losing ticket.

w: This describes an agent who drew a winning ticket.

x: This describes an agent with ticket x who currently holds an unmarked token.

x: This describes an agent with ticket x who currently holds a marked token.

Initially, the first agent holds an unmarked token and exactly one of them drew

a winning ticket. Therefore, we choose the initial language to be ℓ ℓ∗ w ℓ∗|w ℓ∗.

There are now different transitions to consider – depending on what ticket the

agent with the token has. Let us introduce, first, an auxiliary notion that describes

that no change occurs at that position; that is, DC =
([

ℓ

ℓ

]
|
[
w

w

]
|
[
ℓ

ℓ

]
|
[
w

w

]
|
[
w

w

]
|
[
ℓ

ℓ

])
.

We separate the transitions into two cases:

• DC ∗
([

ℓ

ℓ

] ([
ℓ

ℓ

]
|
[
w

w

])
|
[
ℓ

ℓ

] ([
ℓ

ℓ

]
|
[
w

w

]))
DC ∗ models an agent with a losing

ticket passing down the token unchanged.

• In contrast, DC ∗
([

w

w

]
|
[
w

w

]) ([
ℓ

ℓ

]
|
[
w

w

])
DC ∗ models an agent with the

winning ticket passing down a marked token.

In this example, it must be impossible for an unchanged token to reach the last

agent if this last agent is not the one with the winning ticket. More formally, we

expect that no word in Σ∗ ℓ can be reached.

38

2.4. Concrete interpretations

Indeed, we can prove this by observing ∅∗
{
ℓ, ℓ, ℓ

}
{ℓ}∗ ⊆ InductiveVsiphon (R).

First, let us consider the statements that are encoded in this language. In every

word of this language, there is exactly one position where the letter is
{
ℓ, ℓ, ℓ

}
.

We call this position the barrier. Intuitively, any word of this language encodes

the statement “there is no agent with a losing ticket that holds an unmarked token

after the barrier”. To verify this, recall that the siphon interpretation accepts if

and only if the i-th letter in the configuration is not part of the i-th letter of the

statement for all i.

We need to verify that all the statements in this language are siphons. Consider,

for any statement of this language, any position j after its barrier. Any transition

t that changes the j-th letter into ℓ changes the state of the j − 1-th agent from ℓ

to ℓ. Since the statement does not allow the j− 1-th letter to be ℓ (as ℓ ∈
{
ℓ, ℓ, ℓ

}
if j − 1 is the barrier and ℓ ∈ {ℓ} if it is not), the source of t cannot satisfy

the statement. For the barrier itself, one can simply observe that no transition

changes which lottery ticket the agent drew initially.

Every initial configuration has exactly one agent, say at position i, in either the

state w or w. Choose the statement of the siphons we introduced where the barrier

is i. This initial configuration satisfies the chosen statement and proves the desired

property. In this way, we established that, for this parameterized system,

“there is no agent with a losing ticket that holds an unmarked token

after the agent with the winning ticket”.

Figure 2.10: Illustration of Vsiphon .

Again, we denote with H all pairs in ⟨v, I⟩ ∈ Σ × 2Σ such that v ∈ I and M all

pairs in ⟨v, I⟩ ∈ Σ× 2Σ such that v /∈ I.

q0 q1

M

H

M,H

39

2. Inductive statements for regular transition systems

Flow

The third and last interpretation we are interested in is the flow interpretation Vflow .
This time, we want that exactly at one position the letter of the configuration is part of

the set in the same position in the encoded statement. In other words, u |=Vflow I if and

only if |HuI ∩ HII| = 1. For example, for Σ = {a, b}, a b a a a |=Vflow {b} {b} {b} {b} {b}
while a b a b a ̸|=Vflow {b} {b} {b} {b} {b}. In fact, the statement {b} {b} {b} {b} {b}
essentially states that the configuration contains exactly one b. We depict the automaton

for this interpretation in Figure 2.11.

Figure 2.11: Illustration of Vflow .

We denote with H all pairs in ⟨v, I⟩ ∈ Σ× 2Σ such that v ∈ I and M all pairs in

⟨v, I⟩ ∈ Σ× 2Σ such that v /∈ I.

q0 q1 q2

M

H

M

H

M,H

Let us illustrate this interpretation in more detail with an example.

Example 2.9: Flowing through previous examples.

Recall the formalization of the lottery R from Example 2.8. One can verify that,

in this example, there is at every moment in time exactly one agent who initially

drew the winning ticket. This can be expressed via a language of statements for

the interpretation Vflow : namely, {w,w,w}∗ ⊆ InductiveVflow (R). Similarly, one

can express that there is exactly one token in all reachable configurations with a

similar language
{
ℓ, ℓ, w, w

}∗
.

Let us go back to the token passing algorithm of Example 2.2. The initial lan-

guage of the formalization R was t n∗ and the language of all transitions was[
n

n

]∗ [
t

n

] [
n

t

][
n

n

]∗
. In order to prove that there exists exactly one token at any

moment in time we used the interpretation Vtrap and the two languages of in-

ductive statements ∅∗ {n} ∅∗ {n} ∅∗ and {t}∗. One should note here that the

40

2.4. Concrete interpretations

transitions implicitly encode that there is exactly one t – otherwise no transition

is applicable. However, since there is initially only one token, one could model

a system with the same behavior by choosing
([

n

n

]
|
[
t

t

])∗ [
t

n

] [
n

t

] ([
n

n

]
|
[
t

t

])∗
as

transitions. Although the behavior of the system did not change, one cannot es-

tablish anymore (using only inductive statements for Vtrap) that there is exactly

one token in every reachable configuration: To this end, assume that we want to

prove that t n t is unreachable from t n n. If this is possible, then there would be

I1 I2 I3 ∈ InductiveVtrap such that t n n |=Vtrap I1 I2 I3 but t n t ̸|=Vtrap I1 I2 I3.
This is only possible if n ∈ I3 – exploiting the only difference between the two

configurations. This statement must be inductive with respect to the transitions.

In particular, consider the transition
[
t

t

] [
t

n

] [
n

t

]
. The target of this transition is

the undesired configuration while the origin satisfies the statement because n ∈ I3.
This is a contradiction to the choice of I1 I2 I3 since it must be inductive but also

disallow t n t.

However, we can consider the statements {t}∗ for Vflow . Essentially, the statement

{t}n encodes (w. r. t. Vflow) that all configurations of the instance of size n have

exactly one token. Since all transitions of this instance do not alter the number of

tokens, the statement is inductive. Moreover, it trivially establishes that one can

only reach configurations in this instance with exactly one token. This argument

holds for transitions
([

n

n

]
|
[
t

t

])∗ [
t

n

] [
n

t

] ([
n

n

]
|
[
t

t

])∗
and

[
n

n

]∗ [
t

n

] [
n

t

][
n

n

]∗
.

Let us close this section with the formal definition of all these interpretations. For

clarity, we refer the reader to the illustrations of those interpretations in Figure 2.7,

Figure 2.10, and Figure 2.11.

Definition 2.8: Concrete interpretations.

Let us fix one RTS R = ⟨Σ, I, T ⟩. We introduce three different interpretations:

Vtrap , Vsiphon , and Vflow . They are defined as

Vtrap =
〈
{q0, q1} , q0, 2Σ, δ, {q1}

〉
with δ(q, ⟨σ, I⟩) =

q0 if q = q0 and σ /∈ I

q1 otherwise

41

2. Inductive statements for regular transition systems

Vsiphon =
〈
{q0, q1} , q0, 2Σ, δ, {q0}

〉
with δ(q, ⟨σ, I⟩) =

q0 if q = q0 and σ /∈ I

q1 otherwise

Vflow =
〈
{q0, q1, q2} , q0, 2Σ, δ, {q1}

〉
with δ(q, ⟨σ, I⟩) =



q0 if q = q0 and σ /∈ I

q1 if q = q0 and σ ∈ I

q1 if q = q1 and σ /∈ I

q2 if q = q1 and σ ∈ I

q2 if q = q2

2.5 Abstractions are (PSpace-)hard

In Theorem 2.2, we established that Problem 2.2 can be solved in ExpSpace for any

interpretation. We ask ourselves if we can find better algorithms for the specific inter-

pretations Vtrap , Vsiphon , and Vflow . First, however, we are focusing on lower bounds for

this problem.

In this section, we establish that Problem 2.2 is PSpace-hard for the interpretations

Vtrap , Vsiphon , and Vflow . We do this in three steps:

• First, we prove that Problem 2.2 is essentially the same for the interpretations

Vtrap and Vsiphon ; that is, one can reduce the problem in polynomial time in both

directions (Theorem 2.3).

• Second, we prove PSpace hardness of Problem 2.2 for the interpretation Vsiphon
(Theorem 2.4).

• Finally, we prove PSpace hardness of Problem 2.2 for the interpretation Vflow
(Theorem 2.5).

Vtrap and Vsiphon are equally hard

Here, we prove that Problem 2.2 is essentially the same for the interpretations Vtrap and

Vsiphon . First, let us illustrate the crucial ideas informally. Remember that u |=Vtrap I if

and only if HuI ∩ HII ̸= ∅ and u |=Vsiphon I if and only if HuI ∩ HII = ∅. Consequently,

u |=Vtrap I if and only if u ̸|=Vsiphon I. This observation can be exploited further. To this

42

2.5. Abstractions are (PSpace-)hard

end, let R = ⟨Σ, I, T ⟩ be an RTS. Consider some word6 I ∈
(
2Σ
)n
. If we look at I as

a statement for Vtrap , then a transition ⟨u, v⟩ shows that I is not inductive if u |=Vtrap I
and v ̸|=Vtrap I. On the other hand, the “flipped” transition ⟨v, u⟩ shows that I is not an

inductive statement for Vsiphon (because u ̸|=Vsiphon I and v |=Vsiphon I). More generally,

we will establish that words in
(
2Σ
)∗

are traps7 if and only if they are siphons in the

RTS where all transitions are “flipped”.

We make these observations now more precise. Thus, we introduce the concept of

flipped transitions first. Then, we establish that traps and siphons coincide if one flips

the transition of any RTS. Finally, we give the complete reduction which, at that point,

is straightforward.

Definition 2.9: Flipped relations and transducers.

For any relation X ⊆
⋃

n≥0Σ
n × Γn we denoted with

⇋
X the relation

{⟨v, u⟩ : ⟨u, v⟩ ∈ X}.
For any Σ-Γ-transducer T = ⟨Q, q0,Σ× Γ,∆, F ⟩ we denote with

⇋
T the Γ-Σ-

transducer ⟨Q, q0,Σ× Σ,∇, F ⟩ where
〈
q,
[
σ1

σ2

]
, p
〉
∈ ∆ if and only if

〈
q,
[
σ2

σ1

]
, p
〉
∈

∇.

From the definition, one can immediately see that the flipped relation of a transducer

is recognized by the “flipped” transducer.

Lemma 2.7. If T is a Σ-Γ-transducer, then
r⇋
T

z
=

⇋

JT K.

Considering our initial intuition, the following result is expected.

Lemma 2.8. For any I ∈
(
2Σ
)n

holds w |=Vtrap I if and only if w ̸|=Vsiphon I for all

w ∈ Σn.

Proof. If w1 . . . wn |=Vtrap I1 . . . In then there exists 1 ≤ i ≤ n with wi ∈ Ii. This,

however, implies immediately w1 . . . wn ̸|=Vsiphon I1 . . . In.
On the other hand, if w1 . . . wn ̸|=Vtrap I1 . . . In then wi /∈ Ii for all 1 ≤ i ≤ n.

Consequently, w1 . . . wn |=Vsiphon I1 . . . In.

Combining these two results shows that traps in RTSs are siphons if all transitions

are flipped and vice versa.

6We deliberately do not say statement because the word is not associated with an interpretation yet.
7Remember that we call inductive statements for Vtrap traps.

43

2. Inductive statements for regular transition systems

Lemma 2.9. For all R1 = ⟨Σ, I1, T1⟩ and R2 = ⟨Σ, I2, T2⟩ such that T1 =
⇋
T2

InductiveVtrap(R1) = InductiveVsiphon (R2).

Proof. Pick any I ∈ InductiveVtrap(R1). Therefore, there is w ⇝T u with w |=Vtrap I
but u ̸|=Vtrap I. Per Lemma 2.8 this means u |=Vsiphon I and w ̸|=Vsiphon I. Because of

Lemma 2.7 we have u ⇝T2 w and, thus, I ∈ InductiveVsiphon (R2). The same reasoning

applies in the other direction. Consequently, InductiveVtrap(R1) = InductiveVsiphon (R2)

and, also, InductiveVtrap(R1) = InductiveVsiphon (R2).

Similarly, we can now establish that the potential reachability relation that is induced

by the two interpretations Vtrap and Vsiphon can be flipped as well.

Lemma 2.10. For all R1 = ⟨Σ, I1, T1⟩ and R2 = ⟨Σ, I2, T2⟩ such that T1 =
⇋
T2

u⇒Vtrap v in R1 if and only if v ⇒Vsiphon u in R2.

Proof. If u ̸⇒Vtrap v in R1 then there exists I ∈ InductiveVtrap(R1) such that u |=Vtrap I
but v ̸|=Vtrap I. Another application of Lemma 2.8 yields that u ̸|=Vsiphon I and v |=Vsiphon I.
By Lemma 2.9 we get I ∈ InductiveVsiphon (R2) and, consequently, v ̸⇒Vsiphon u in R2.

Again, use the symmetry of all the lemmas to obtain that v ̸⇒Vsiphon u in R2 necessarily

means u ̸⇒Vtrap v in R1. The statement follows.

This leads immediately to the following reduction.

Theorem 2.3. Problem 2.2 with Vtrap can be reduced in polynomial space and time to

Problem 2.2 with Vsiphon and vice versa.

Proof. For any instance R = ⟨Σ, I, T ⟩ and B for Problem 2.2 with Vtrap construct

R′ =
〈
Σ,B,

⇋
T
〉

and consider an instance of Problem 2.2 with Vsiphon with R′ and I as the automaton

for the undesired configurations.

The correctness of this reduction is an immediate consequence of Lemma 2.10. The

reduction in the other direction is symmetric.

44

2.5. Abstractions are (PSpace-)hard

From this result, we can conclude that Problem 2.2 is equally complex for the inter-

pretations Vtrap and Vsiphon .

A PSpace-hard problem

For the following reduction, we use a PSpace-hard problem for Turing machines. There-

fore, we introduce Turing machines now.

Definition 2.10: Turing Machine.

A Turing machineM = ⟨Q, q0,Γ, B, δ⟩ is defined by

• a finite set of states Q

• where one of which is a dedicated initial state q0,

• a finite set of letters Γ

• where one of which is a dedicated blank value B, and

• a transition function δ : Q× Γ→ Q× Γ× {←, ↓,→}.

For any word x ∈ Γ+, one can consider the behavior ofM on that word. Conception-

ally, the Turing machine maintains its current state (which is initially q0) and a pointer

into the word x (which is initially on the first letter of it). In every step of the computa-

tion of the machine, the transition function δ decides the behavior ofM. For example,

assume the machine currently is in state q and the pointer points to the i-th letter u of

x. If δ(q, u) = ⟨p, v,→⟩, then M replaces the i-th letter of x with v, changes its state

to p, and moves its pointer one letter to the right. We assume that, if the machine ever

moves its pointer out of the scope of the current word, then a B is silently added. We

capture this intuition with the following definition:

Definition 2.11: A run of a Turing machine.

Let M = ⟨Q, q0,Γ, B, δ⟩ be a Turing machine. We refer to a word

x1 . . . xi−1 ⟨q, xi⟩ xi+1 . . . xn where xj ∈ Γ for all 1 ≤ j ≤ n and q ∈ Q

as an arrangement of M. In particular, we say that the head position is i, the

45

2. Inductive statements for regular transition systems

current state is q, and the content of cell j is xj. Also, we call n the length of the

arrangement and the word x1 . . . xn the content of the tape. For any arrangement

α, we refer to the content of the cell j as α[j].

Consider an arrangement α where the head position is i, the current state is q,

α[i] is x, the length is n and δ(q, x) = ⟨p, y,m⟩. We say the arrangement β follows

α (denoted with α↣ β) if it meets any of the following criteria:

No Overflow If i ̸= 1 or m ̸=←, and i ̸= n or m ̸=→, and

• the length of β is n,

• the head position of β is


i− 1 if m =←

i if m =↓

i+ 1 if m =→

,

• the state of β is p, and

• β[i] is y while α[j] = β[j] for all 1 ≤ j ≤ n with i ̸= j.

Overflow Left If i = 1 and m =←, and

• the length of β is n+ 1,

• the head position of β is 1,

• the state of β is p, and

• β[i] is y while α[j] = β[j+1] for all 1 < j ≤ n with i ≤ j and β[1] = B.

Overflow Right If i = n and m =→, and

• the length of β is n+ 1,

• the head position of β is n+ 1,

• the state of β is p, and

• β[i] is y while α[j] = β[j] for all 1 ≤ j ≤ n with i ≤ j and β[n+1] = B.

Moreover, we call, for any word x1 . . . xm ∈ (Γ \ {B})∗, the infinite sequence of

arrangements α0, α1, . . . such that αi+1 follows αi and α0 is an arrangement where

• the length of α0 is m,

• the head position of α0 is 1,

46

2.5. Abstractions are (PSpace-)hard

• the state of α0 is q0, and

• the content of the tape of α0 is x1 . . . xm

the run ofM on x1 . . . xm. We sayM reaches an arrangement on x1 . . . xm if

it is part of this run.

Example 2.10: A Turing machine.

Let us introduce a Turing machine as a running example. This machine moves over

a binary word from left to right and flips all bits. Once this machine encounters

the end of the binary word it moves from right to left to start the process of

flipping the bits again. This second phase is similar to an actual “carriage return”

of a typewriter.

We fix Q = {q→, q←} and Γ = {0, 1, B}. The initial state is q→. It remains to

define δ; we do so, by setting

• δ(q→, 0) = ⟨q→, 1,→⟩,

• δ(q→, 1) = ⟨q→, 0,→⟩,

• δ(q→, B) = ⟨q←, B,←⟩,

• δ(q←, 0) = ⟨q←, 0,←⟩,

• δ(q←, 1) = ⟨q←, 1,←⟩, and

• δ(q←, B) = ⟨q→, B,→⟩.

Formally, we obtainM = ⟨Q, q←,Γ, B, δ⟩.
The run ofM on 0 1 0 begins with

⟨q→, 0⟩ 1 0↣ 1 ⟨q→, 1⟩ 0↣ 1 0 ⟨q→, 0⟩↣ 1 0 1 ⟨q→, B⟩

↣1 0 ⟨q←, 1⟩ B↣ 1 ⟨q←, 0⟩ 1 B↣ ⟨q←, 1⟩ 0 1 B↣ ⟨q←, B⟩ 1 0 1 B.

In this section, we prove different variations of Problem 2.2 PSpace-hard. We do

so by reducing some problem which is known to be PSpace-hard to our instances of

Problem 2.2. Or, more precisely, we give a sequence of reductions that start in the

47

2. Inductive statements for regular transition systems

following PSpace-hard problem [Pap94, Theorem 19.9]:

Problem 2.3.

Given: A Turing machineM, an input word x, and a state qf ofM
Compute: DoesM reach an arrangement on x where the state is qf before

an arrangement with length > |x|?

We want to simplify this problem slightly by only considering inputs x for which the

sequence of arrangements of M is of constant size; that is, |x|. We call this property

boundedness. Roughly speaking, this means that the machine must not move its head

past its input.

Definition 2.12: Bounded Turing machine.

We call a TuringM bounded on input x ifM does not reach an arrangement on

x of any length but |x|.

One can immediately verify that the machine from Example 2.10 is not bounded on

the input 010. In fact, this machine is not bounded on any input. We illustrate how

to remedy this in a moment. First, however, we want to introduce the problem we are

using for our reductions. It is essentially Problem 2.3 but with the guarantee that the

machine is bounded on the given input.

Problem 2.4.

Given: A Turing machineM that is bounded on x and a state qf

Compute: DoesM reach an arrangement on x with state qf?

The reduction from Problem 2.3 to Problem 2.4 can be achieved via standard methods:

Roughly speaking, one can modify the machine of Problem 2.3 by adding a new letter #

to its alphabet, and introducing a new initial state q′ and a new final state p′. Moreover,

we add δ(qf , γ) = ⟨p, γ, ↓⟩ for all γ ∈ Γ8, δ(q,#) = ⟨q,#, ↓⟩ for all states but q′ and

δ(q′,#) = ⟨q0,#,→⟩ where q0 is the initial state of the original machine. Since q′ cannot

be reached after the first step, the values of δ for q′ and any other letter are immaterial.

We call this altered machine M′. Consider now the instance of M′, # x # and p′ for

8In other words, there is one “stutter” in the machine before reaching its final state. However, the
machine does not move into the final state on the letter # but, there, it “stutters” indefinitely in
the previously final state qf .

48

2.5. Abstractions are (PSpace-)hard

Problem 2.3. M′ can reach the final state p′ only if it reaches the final state qf of the

machineM on any letter but #. BecauseM′ “deadlocks” if it encounters the letter # in

any step but the first, it does so, in particular, if the original machine ever left its input

and, then, it cannot reach an arrangement with state p′ anymore. Thus, the answer

for this instance for Problem 2.4 coincides with the answer of the original instance for

Problem 2.3.

Example 2.11: A bounded Turing machine.

We construct a variant of the Turing machine introduced in Example 2.10 where

we introduce # as a new symbol that can be used as a delimiter for the input.

Thus, we fix Γ = {0, 1,#, B} and Q = {q0, q→, q←} where q0 is the new initial

state. The definition of δ changes slightly:

• δ(q0,#) = ⟨q→,#,→⟩, and δ(q0, x) = ⟨q→, x, ↓⟩ for all other letters x.

• As before we have δ(q→, 0) = ⟨q→, 1,→⟩, δ(q→, 1) = ⟨q→, 0,→⟩ and

δ(q→, B) = ⟨q←, B,←⟩, and δ(q←, 0) = ⟨q←, 0,←⟩, δ(q←, 1) = ⟨q←, 1,←⟩
and δ(q←, B) = ⟨q→, B,→⟩.

• On the other hand, we expand the behavior for the letter # as expected

with δ(q→,#) = ⟨q←,#,←⟩ and δ(q←,#) = ⟨q→,#,→⟩.

With this definition, the machine is bounded on every input that starts with any

letter but # (since it deadlocks then). Moreover, for every input that starts with

and contains at least one other #, the machine also does not leave its input. In

all other cases, it is not bounded because it will move its head past its input by

one step to the right.

Abstractions are PSpace-hard for Vsiphon

For this section, we fix a Turing machineM = ⟨Q, q0,Γ, B, δ⟩, and an input x on which

it is bounded. In the following, we construct a RTS which captures the run ofM on x.

For this construction, we add for all arrangements one leading and one trailing B. We

do so to avoid some edge cases later.

Since any instance of a RTS is of one fixed size, we cannot represent the infinite run

in one single instance. However, we can represent the infinite run via the collection of

49

2. Inductive statements for regular transition systems

all instances by letting every instance represent a finite prefix of the run.

A single step of the run is a pair of arrangements α↣ β. In our construction, we do

not model this step in a single transition in the RTS. Instead, we exploit the fact that

the arrangements α and β look, for the most part, the same and only differ in at most

two adjacent positions. Roughly speaking9, the letters of the RTS we want to construct,

are the same as the letters we use to represent arrangements; that is, Γ ∪ Q × Γ. But,

additionally, we introduce one more letter ⊥. Intuitively, this new letter represents some

uninitialized position. To encode the step from α to β directly, we want to build β letter

by letter. That is, if α = x1 . . . xi−1 ⟨q, xi⟩ xi+1 . . . xn, we obtain β gradually from a

sequence ⊥ . . . ⊥ of n uninitialized positions. More specifically, β is constructed in n

individual transitions – each of which updates one ⊥ to the correct letter from Γ∪Q×Γ.

Let us strengthen this intuition with an example.

Example 2.12: Micro steps that form a macro step.

Recall the machine of Example 2.10. The first step of the run of this machine on

the input # 0 1 0 # is B ⟨q0,#⟩ 0 1 0 # B ↣ B # ⟨q→, 0⟩ 1 0 # B. In the

RTS that we construct B # ⟨q→, 0⟩ 1 0 # B is obtained from ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
in seven individual steps:

• From ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ to B ⊥ ⊥ ⊥ ⊥ ⊥ ⊥.

• From B ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ to B # ⊥ ⊥ ⊥ ⊥ ⊥.

• From B # ⊥ ⊥ ⊥ ⊥ ⊥ to B # ⟨q→, 0⟩ ⊥ ⊥ ⊥ ⊥.

• From B # ⟨q→, 0⟩ ⊥ ⊥ ⊥ ⊥ to B # ⟨q→, 0⟩ 1 ⊥ ⊥ ⊥.

• From B # ⟨q→, 0⟩ 1 ⊥ ⊥ ⊥ to B # ⟨q→, 0⟩ 1 0 ⊥ ⊥.

• From B # ⟨q→, 0⟩ 1 0 ⊥ ⊥ to B # ⟨q→, 0⟩ 1 0 # ⊥.

• From B # ⟨q→, 0⟩ 1 0 # ⊥ to B # ⟨q→, 0⟩ 1 0 # B.

This means, intuitively, the constructed RTS starts on a configuration α0

(
⊥|x|+2

)k
.

Every ⊥|x|+2 block of this initial configuration will become one arrangement of the run

of the machine on its input. The value k corresponds to the number of steps of the run

9In fact, the letters of the RTS will add a little bit of bookkeeping which we omit for the moment.

50

2.5. Abstractions are (PSpace-)hard

that are considered.

Example 2.13: The construction of the prefix of a run.

Picking up the previous example again, we want our RTS to (deterministically)

move through the following configurations.

• B ⟨q0,#⟩ 0 1 0 # B ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

• B ⟨q0,#⟩ 0 1 0 # B B ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

• B ⟨q0,#⟩ 0 1 0 # B B # ⊥ ⊥ ⊥ ⊥ ⊥

• B ⟨q0,#⟩ 0 1 0 # B B # ⟨q→, 0⟩ ⊥ ⊥ ⊥ ⊥

• B ⟨q0,#⟩ 0 1 0 # B B # ⟨q→, 0⟩ 1 ⊥ ⊥ ⊥

• B ⟨q0,#⟩ 0 1 0 # B B # ⟨q→, 0⟩ 1 0 ⊥ ⊥

• B ⟨q0,#⟩ 0 1 0 # B B # ⟨q→, 0⟩ 1 0 # ⊥

• B ⟨q0,#⟩ 0 1 0 # B B # ⟨q→, 0⟩ 1 0 # B

Recall that the arrangement of a Turing machineM changes in one step in at most

two positions: only the cell where the head currently is can change its content and the

head can change its position to the right or to the left. Therefore, to decide what the

letter of an arrangement at some position i is, it suffices to know

• what the content of the i-th cell in this arrangement is,

• whether the head position in this arrangement is i,

• and, if so, what the current state is.

All our arrangements have length |x| + 2 since we only consider machines that are

bounded on the given input. Therefore, the content of the i-th cell in some arrangement

can be deduced from the i-th letter of the previous arrangement because this letter

encodes whether the head position of that previous arrangement is at exactly that cell

and its content. Moreover, it suffices to inspect the letters of the previous arrangement

at positions i− 1, i, and i+1 to know whether the head position in this arrangement is

i and, if so, what the state should be.

51

2. Inductive statements for regular transition systems

Example 2.14: Local information in arrangements.

Consider now the second step of the run of the machine of Example 2.10 on the

input # 0 1 0 #: # ⟨q→, 0⟩ 1 0 # ↣ # 1 ⟨q→, 1⟩ 0 #. Again, the second

arrangement is constructed letter by letter from five ⊥.

• The first ⊥ becomes # since the first three lettersa of the previous configura-

tion are B # ⟨q→, 0⟩. In particular, the content of the cell does not change

since the head position is on the second letter. Moreover, δ for q→ and 0

indicates that the head moves to the right and not back on the first letter.

• One can easily see that the second ⊥ becomes 1 by inspecting the first three

letters of the previous configuration # ⟨q→, 0⟩ 1. This time, we consult

δ for q→ and 0 to see that 1 is the content of the cell after the previous

arrangement. Additionally, we see that the head position moves one step to

the right and, thus, does not remain on the second letter.

In this fashion, one can obtain from the letters in the positions i− 1, i, and i+ 1

of the previous arrangement the i-th letter of the next arrangement.

aHere we see the introduction of a leading and a trailing B pay off since we can consider three
letters although the leading B will never contribute.

Note that the configurations of the RTS are a seamless enumeration of the arrange-

ments of the run. For arrangements we referred to positions ; that is, values between 1

and |x|+2. For the configurations, we also want to talk about individual letters but for

clarity, we use the word index here instead.

Example 2.15: Positions and indices.

In this configuration, we annotate the positions above and the indices below.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

B ⟨q0,#⟩ 0 1 0 # B B # ⟨q→, 0⟩ ⊥ ⊥ ⊥ ⊥
1 2 3 4 5 6 7 8 9 10 11 12 13 14

We need to introduce one last idea before defining the actual RTS. In fact, this idea is

closely related to the previous observation. As illustrated in Example 2.13, the individual

52

2.5. Abstractions are (PSpace-)hard

transitions of RTS should change the first non-initialized symbol ⊥ of the configuration,

say at index i, to the correct letter of the run ofM on x. For this, the transducer for

the transitions consults the letters at the indices (i− (|x|+ 2))− 1, (i− (|x|+ 2)), and

(i − (|x| + 2)) + 1 of the configuration and updates the ⊥ at index i accordingly. This

illustrates a subtle but important notion: in this sequence of arrangements two letters at

indices i−(|x|+2) and i are the same position in two arrangements α↣ β, respectively.

From now on we set n = |x|+ 2.

To obtain a deterministic automaton for these transitions, we mark the index i−n in

every configuration such that i is the index of the first ⊥ of the configuration. Intuitively,

the indices i − n and i are the same position j of two arrangements α ↣ β. In this

way, i− n and i separate the configuration into three sections: a section up to position

j in the arrangement before the one we are currently constructing, a section from j the

previous arrangement up to j of the current arrangement, and a trailing sequence of ⊥.

Example 2.16: The three sections of a configuration.

In the previous example, we considered the configuration

B ⟨q0,#⟩ 0 1 0 # B B # ⟨q→, 0⟩ 1 ⊥ ⊥ ⊥ ⊥. In this configuration, the

next position that is set in the second arrangement is j = 5. This corre-

sponds to index twelve in the configuration. Thus, the configuration up to

position j of the first arrangement is B ⟨q0,#⟩ 0 1. The section in between is

0 # B B # ⟨q→, 0⟩ 1. Naturally, the sequence of trailing ⊥ is ⊥ ⊥ ⊥ ⊥.

For our construction, we want to make these three sections explicit. Therefore, we

annotate the letters of the alphabet with two values: f to indicate that they are part of

the first section and s for the second section. With this, we conclude our preparation

and, finally, give the construction.

The construction to capture a Turing machine as a regular transition system

We still use a Turing machineM = ⟨Q, q0,Γ, B, δ⟩, an input x = x1 . . . xm on which it

is bounded, and n = |x|+2. The alphabet of our RTS is Σ = {f, s}×(Γ ∪Q× Γ)∪{⊥}.
For the initial language, we give an automaton that recognizes

⟨f,B⟩ ⟨s, ⟨q0, x1⟩⟩ ⟨s, x2⟩ . . . ⟨s, xm⟩ ⟨s, B⟩︸ ︷︷ ︸
First arrangement

⟨s, B⟩ ⊥|x|+1︸ ︷︷ ︸
Second arrangement

(⊥n)∗︸ ︷︷ ︸
Other arrangements

.

53

2. Inductive statements for regular transition systems

We already give the leading B of the second configuration because the transitions expect

a non-empty first section.

The transducer for the transitions executes the following steps:

1. Scan for the first letter in the second section while storing the last read letter.

2. Store the first letter in the second section and expand the first section to this letter.

3. Check that the next letter is part of the second section and determine how to

update the first ⊥.

4. Move n steps checking that all letters are part of the second section and update

the first ⊥ accordingly.

One can construct a DFA that can recognize the initial language with 3 · (n− 1) + 1

and a transducer that recognizes the transitions with

1︸︷︷︸
initial state

+(|Q|+ 1) · |Γ|︸ ︷︷ ︸
remember the

previously read

letter until the

second section is

found

+((|Q|+ 1) · |Γ|)2︸ ︷︷ ︸
remember letter

before and first

letter in second

section

+(|Q|+ 1) · |Γ| · (n− 1)︸ ︷︷ ︸
carry letter n−2 steps

and update ⊥

+ 1︸︷︷︸
final state

+ 1︸︷︷︸
sink state

states. Instead of a formal definition, we give principled automata for the running

example:

Example 2.17: The initial and transducer language for the Vtrap reduction.

In the following automata every transition that is not explicitly given leads to a

non-accepting sink state.

54

2.5. Abstractions are (PSpace-)hard

The initial language

⟨f,B⟩ ⟨s,⟨q0,#⟩⟩ ⟨s,0⟩ ⟨s,1⟩ ⟨s,0⟩ ⟨s,#⟩

⟨s,B⟩

⟨s,B⟩ ⊥

⊥ ⊥ ⊥ ⊥

⊥

⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥

The transition language

We present the transducer of the transitions for the states q→ and q←, and the

letters 0 and 1 in Figure 2.12. The restriction to two states and two letters helps

to keep the picture readable. In this picture, the transducer can be separated

into an upper and lower part. The upper part of the transducer implements a

memory structure for two adjacent letters. On the other hand, the lower part of

the transducer is responsible for updating the correct index to the correct letter.

The labels of all (orange) transitions to states in the inner circle are
[
⟨f, x⟩
⟨f, x⟩

]
where

x is the label of the target state. Similarly, the labels of all (green) transitions

in the outer circle are
[
⟨s, x⟩
⟨f, x⟩

]
where x is the second component of the label of the

target state. There the labels on the (blue) transitions in the matrix of nodes are[
⟨s, x⟩
⟨s, x⟩

]
for all x ∈ Σ ∪ (Q× Σ). Every column of the matrix is responsible for one

of the possible letters (from left to right): 0, 1, ⟨q←, 0⟩ , ⟨q←, 1⟩ , ⟨q→, 0⟩ , ⟨q→, 1⟩.
We only give for every column one transition that connects the memory structure

above (which looks like a circle) and the update structure below (which resembles

a matrix) to not clutter the picture.

55

2. Inductive statements for regular transition systems

Figure 2.12: The transducer of the reduction.

The transducer described in Example 2.17.

⟨⟨q→,0⟩,0⟩

⟨⟨q→,0⟩,1⟩

⟨⟨q→,1⟩,0⟩

⟨⟨q→,1⟩,1⟩⟨⟨q←,0⟩,0⟩

⟨⟨q←,0⟩,1⟩

⟨⟨q←,1⟩,0⟩

⟨⟨q←,1⟩,1⟩

⟨0,⟨q←,0⟩⟩

⟨0,⟨q←,1⟩⟩

⟨0,⟨q→,0⟩⟩

⟨0,⟨q→,1⟩⟩

⟨0,0⟩

⟨0,1⟩ ⟨1,0⟩

⟨1,1⟩

⟨1,⟨q←,0⟩⟩

⟨1,⟨q←,1⟩⟩

⟨1,⟨q→,0⟩⟩

⟨0,⟨q→,1⟩⟩⟨q→,0⟩

⟨q→,1⟩⟨q←,0⟩

⟨q←,1⟩

0 1

[
⊥
⟨s, 0⟩

] [
⊥
⟨s, 1⟩

] [⊥
⟨s, ⟨q←, 0⟩⟩

] [
⊥

⟨s, ⟨q←, 1⟩⟩

] [
⊥

⟨s, ⟨q→, 0⟩⟩

] [
⊥

⟨s, ⟨q→, 1⟩⟩

][
⊥
⊥

]

[
⟨s, 0⟩
⟨s, 0⟩

]
[
⟨s, 1⟩
⟨s, 1⟩

]

[
⟨s, ⟨q←, 1⟩⟩
⟨s, ⟨q←, 1⟩⟩

][
⟨s, ⟨q←, 0⟩⟩
⟨s, ⟨q←, 0⟩⟩

]

[
⟨s, 0⟩
⟨s, 0⟩

]

[
⟨s, 1⟩
⟨s, 1⟩

]

56

2.5. Abstractions are (PSpace-)hard

The behavior of this RTS is, in a strong sense, deterministic: Since every transition

deterministically updates the first ⊥ while expanding the first section by one step, there

is exactly one sequence of configurations possible from every initial configuration. More-

over, every instance has exactly one possible initial configuration. Consequently, every

index in every instance changes at most twice; once from ⊥ into the first section where

the letter of the arrangement that this index displays is determined, and from the first

to the second section. For instance, consider the run (for simplicity we assume a leading

and trailing B for every arrangement here as well) ofM on x:

α0
1 . . . α

0
n↣ α1

1 . . . α
1
n↣ α2

1 . . . α
2
n↣ . . .

This means, in the instance of size 2 · n, the letter at index n + 2 changes from ⊥
to ⟨f, α1

2⟩ and, later, from there to ⟨s, α1
2⟩. In the following, we prove that there is a

siphon which enforces that, for every index, only one of these three letters is possible. A

siphon encodes this statement by disallowing every other letter than those three at that

position.

Definition 2.13: Divergence in a run.

For every α ∈ Γ ∪ (Γ×Q), we define the divergence of α (denoted with
×
α) as the

set

({f, s} × (Γ ∪ (Γ×Q)) ∪ {⊥}) \ {⟨f, α⟩ , ⟨s, α⟩ ,⊥} .

Intuitively, if we assume the i-th position of the k-th arrangement of the run to be α,

then
×
α at index (k− 1) ·n+ i in a statement for Vsiphon , only allows any of ⟨f, α⟩, ⟨s, α⟩,

or ⊥ at index (k− 1) ·n+ i. Moreover, the index (k− 1) ·n+ i corresponds to the letter

of the i-th position of the k-th arrangement of the run in the constructed RTS. This

observation, combined with the strong determinism of the constructed RTS, allows the

abstraction of inductive statements of Vsiphon to be very precise.

Lemma 2.11. For any m = k · n we have

×
α0
1 . . .

×
α0
n . . .

×
αk−1
1 . . .

×
αk−1
n ∈ InductiveVsiphon (R).

Before the proof let us give an example.

57

2. Inductive statements for regular transition systems

Example 2.18: Siphons for Example 2.10.

We fix m = 2 · n. Recall that, B ⟨q0,#⟩ 0 1 0 # B ↣ B # ⟨q→, 0⟩ 1 0 # B

are the first two arrangements of the run of our example machine on the input

0 1 0 #. Consequently, we expect

×
B

×
⟨q0,#⟩

×
0
×
1
×
0
×
#
×
B
×
B
×
#

×
⟨q→, 0⟩

×
1
×
0
×
#
×
B

to be a siphon.

Proof of Lemma 2.11. Pick one arbitrary

I =
×
α0
1 . . .

×
α0
n . . .

×
αk−1
1 . . .

×
αk−1
n .

Pick some transition v ⇝T u such that v |=Vsiphon I. By the definition of the transitions

v can be split into three parts v = F S R such that F ∈ {f} × (Γ ∪ (Γ×Q))+,
S ∈ {s} × (Γ ∪ (Γ×Q))n−1, and R ∈ ⊥∗. This, however, entails

• F = ⟨f, α0
1⟩ . . . ⟨f, α0

n⟩ . . .
〈
f, αk′−1

1

〉
. . .

〈
f, αk′−1

i

〉
for some 1 ≤ i < n− 1 and

k′ < k, and

• S =
〈
s, αk′−1

i+1

〉
. . .

〈
s, αk′−1

n

〉
. . .

〈
s, αk′

1

〉
. . .

〈
s, αk′

j

〉
for some 1 ≤ j < n.

The choice that i < n− 1 and j < n is made for notational convenience. Since the other

cases only require slightly different choices for some indices below, they are omitted. In

particular, using the strong determinism of the constructed RTS, u is fully determined

by the structure of v. Notably, the first ⊥ is deterministically changed to
〈
s, αk′

j+1

〉
and

the first section is expanded by one step. Consequently, u can be split similarly into

u = F ′ S ′ R′ such that

• F ′ = ⟨f, α0
1⟩ . . . ⟨f, α0

n⟩ . . .
〈
f, αk′−1

1

〉
. . .

〈
f, αk′−1

i+1

〉
,

• S ′ =
〈
s, αk′−1

i+2

〉
. . .

〈
s, αk′−1

n

〉
. . .

〈
s, αk′

1

〉
. . .

〈
s, αk′

j

〉 〈
s, αk′

j+1

〉
, and

• R′ ∈ ⊥∗.

Immediately, one can conclude that u |=Vsiphon I.

58

2.5. Abstractions are (PSpace-)hard

On this basis, proving the actual PSpace-hardness of the abstraction via inductive

invariants of Vsiphon is straightforward. Essentially, it suffices to find some configuration

in this abstraction that contains the state qf ; that is, any letter from {f, s} × {qf} × Γ,

and no occurrence of ⊥. Note here, that this language can be captured with a DFA B of

constant size. Any configuration of this form describes an encoded prefix of a run ofM
on x which contains an arrangement with state qf and, thus, corresponds to a positive

instance of the original problem. On the other hand, this constructed RTS faithfully

encodes prefixes of runs ofM on x. Therefore, if an arrangement with state qf is reached

in the run, this RTS allows to encode precisely this run. Consequently, no matter which

interpretation is used for the abstraction, the encoding of this run is part of it since it

is actually reachable.

Theorem 2.4. Problem 2.2 is PSpace-hard for Vsiphon .

Remark 2.3. In Remark 2.2 we argue that, for the practical application of this paradigm,

one should fix some interpretations that perform well experimentally and do not require

the user to provide the interpretations alongside the regular model checking problem.

However, one can, of course, consider Problem 2.2 in such a way that the interpre-

tation is part of the input. The constructions in this thesis still show that the prob-

lem is in ExpSpace for this variant. It was recently established that this variant is

ExpSpace-complete [Kra23]. At this moment in time, we are unable to prove Prob-

lem 2.2 ExpSpace-complete for any fixed interpretation.

Answering safety questions via Vflow

In the following, we prove that Problem 2.2 is PSpace-hard for Vflow . The construc-

tion is almost the same as for Vsiphon . The only thing we change is the language B.
First, however, we explore the abstraction of the reachable configurations with inductive

statements for Vflow .
Recall the observation, illustrated in Example 2.14, that we can obtain the content of

the i-th cell in an arrangement from the i-th letter of the previous arrangement. We want

to stress that the i-th letter of the previous arrangement encodes multiple information;

that is, the content of the cell and whether the head position is i and, if so, what the

state of the arrangement is. However, the content of the i-th cell does not suffice to

determine the i-th letter of the arrangement: Since we do not have the information on

what the head position is or what state the arrangement is in, we only know, if the

59

2. Inductive statements for regular transition systems

content of the i-th cell is x, that the letter is any of {x} ∪ Q × {x}. We introduce

nextContent : Γ ∪ (Q× Γ)→ Γ with

nextContent(x) =

x if x ∈ Γ

y if x ∈ Q× Γ such that δ(x) = ⟨q, y,m⟩

to formalize this notion.

This observation can be encoded as inductive statements for Vflow . Roughly speaking,

these statements state:

“If the i-th letter of an arrangement is x, then the content of the i-th cell in

the following arrangement is nextContent(x).”

We capture this via inductive statements for Vflow which encode, if we fix some x ∈ Γ

and index i, that exactly one of the following is true:

• the i-th letter of the configuration is ⊥,

• the i-th letter of the configuration is in {s} × (Γ ∪Q× Γ),

• the i-th letter of the configuration is in {f} ×
(
(Γ ∪Q× Γ) \ nextContent−1(x)

)
,

or

• the i+ n-th letter of the configuration is in {f, s} × ({x} ∪Q× {x}).

This leads to the following formalization:

Lemma 2.12. For every x ∈ Γ holds ∅∗ A ∅n−1 B ∅∗ ⊆ InductiveVflow (R) where

• A = {⊥} ∪ {s} × (Γ ∪Q× Γ) ∪ {f} ×
(
(Γ ∪Q× Γ) \ nextContent−1(x)

)
, and

• B = {f, s} × ({x} ∪Q× {x}).

Proof. Fix one statement I = ∅i−1 A ∅n−1 B ∅j and one transition v ⇝T u such that

v |=Vflow I. By the definition of T , one can separate v = F S R such that

• F = ⟨f, α1⟩ . . . ⟨f, αj⟩,

• S = ⟨s, αj+1⟩ . . . ⟨s, αj+n⟩, and

• R = ⊥k

60

2.5. Abstractions are (PSpace-)hard

and u = F ′ S ′ R′ such that

• F ′ = ⟨f, α1⟩ . . . ⟨f, αj⟩ ⟨f, αj+1⟩,

• S ′ = ⟨s, αj+2⟩ . . . ⟨s, αj+n+1⟩ ⟨s, αj+n+1⟩, and

• R′ = ⊥k−1.

Exactly two indices change in every transition: j+1 and j+n+1. If neither i nor i+n

is any of these indices u |=Vflow I immediately because then the i-th and i+ n-th letters

do not differ between v and u.

Case i+ n = j + 1: In this case, by definition of B, either ⟨s, αj+1⟩ ∈ B and ⟨f, αj+1⟩ ∈ B
or ⟨s, αj+1⟩ ̸∈ B and ⟨f, αj+1⟩ ̸∈ B holds. Because v |=Vflow I, ⟨f, αj+1−n⟩ ∈ A follows

in the first case. Therefore, u |=Vflow I because the letter at index j + 1 − n does not

differ between v and u. For the same reason, u |=Vflow I in the second case because there

⟨f, αj+1−n⟩ ̸∈ A.

Case i = j + 1 and i+ n = j + 1 + n: ⟨s, αj+1⟩ ∈ A since v |=Vflow I and ⊥ ̸∈ B. If

⟨s, αj+n+1⟩ ∈ B, then, by the definition of the transitions, αj+1 ∈ nextContent−1(x).

Consequently, u |=Vflow I since ⟨f, αj+1⟩ ̸∈ A and ⟨s, αj+n+1⟩ ∈ B. If, on the other

hand, ⟨s, αj+n+1⟩ ̸∈ B, then, using, again, the definition of the transitions, αj+1 ̸∈
nextContent−1(x). Therefore, ⟨f, αj+1⟩ ∈ A and, thus, u |=Vflow I.

Case i = j + 1 + n: In this case, because ⊥ ∈ A, ⟨s, αj+n+1⟩ ∈ A, and ⊥ ̸∈ B one can

immediately see that u |=Vflow I.

Relying on the intuition for these inductive statements for a moment, we know that in

the configurations of our RTS a correct letter at position i in some arrangement enforces

the correct content of the i-th cell in the next arrangement. But, again, an arrangement

is not only the content of the tape but also the head position and the state. In this

reduction, we use B to make sure these aspects of the run are correct. The idea behind

the construction of B is as follows: if there is some letter x ∈ Q×Γ, say at index i, such

that δ(x) = ⟨q, y,m⟩, then ⟨q, y⟩ is the letter in the next arrangement that encodes the

head position. Moreover, the index of this letter is either i+ n− 1, i+ n, and i+ n+ 1

in case of m =←, m =↓, and m =→, respectively.

B is also used to establish that all arrangements but the last are part of the first

section. Moreover, the last arrangement is one with state qf . That is, B only recognizes

61

2. Inductive statements for regular transition systems

words from the universe U = ({f} × (Γ×Q× Γ))∗ · ({s} × (Γ× {qf} × Γ))n. To define

the language of B completely we introduce two notions:

• nextQ : Q × Γ → Q maps the letter of one arrangement that encodes the head

position to the state of the next arrangement: nextQ(q, x) = p if δ(q, x) = ⟨p, y,m⟩.

• nextM : Q× Γ→ {n− 1, n, n+ 1} which encodes the distance between two head

positions of two arrangements α ↣ β if they are written as one seamless word

α β:

nextM(q, x) =


n− 1 if δ(q, x) = ⟨p, y,←⟩

n if δ(q, x) = ⟨p, y, ↓⟩

n+ 1 if δ(q, x) = ⟨p, y,→⟩

.

Now, B is chosen such that it recognizes the language
α1 . . . αm ∈ U

∣∣∣∣∣∣∣∣∣∣∣∣

α1 = ⟨s, B⟩ ∧ α2 ∈ {f, s} × {q0} × Γ

∧for all αi = ⟨s, ⟨p, x⟩⟩ :


αj ∈ {f, s} × Γ for all i < j < k

and αk ∈ {f, s} × nextQ(q, x)× Γ

where k = i+ nextM(q, x)




First, observe that we can recognize U with a DFA with n+2 many states. For the other

conditions of the words in the language B, one needs at most |Q| · n+ 3 states. Again,

we rely on a principled example instead of a formal definition to demonstrate this.

Example 2.19: The language of undesired words for the reduction for Vflow .

Let us demonstrate how to recognize U with n+2 states with our running example;

that is, the Turing machine described in Example 2.11 on the input # 0 1 0 #. For

this, we introduce two short hands: we write F for all words in {f}×(Γ ∪ (Q× Γ))

and S for all words in {s} × (Γ ∪ ({qf} × Γ)). All transitions that are not men-

tioned lead to a non-accepting sink state. Essentially, this automaton stays in

the initial state until the final arrangement starts. For this final arrangement, it

counts down the correct length; that is, n = |x|+ 2 which, in this case, is 7.

F

S S S S S S S

62

2.5. Abstractions are (PSpace-)hard

A DFA which checks the remaining conditions on the language of B is presented in

Figure 2.13. Conceptionally, this automaton can be separated into three columns –

each of which is responsible for one state. In our example the first column ensures

the occurrence of q0 in an appropriate distance, the second column is responsible

for q→, and the last column for q←. Each column can be used to skip up to n

many steps. In this way, the appropriate amount of steps can be chosen by an

appropriate initial offset. For instance, a head movement to the right executes all

n steps and, thus, starts in the first state of the column. If the head does not move

one can start in the second state of the column. Naturally, a movement to the left

starts in the third state of the column. Again, we assume that all transitions that

are not explicitly stated lead to a non-accepting sink.

63

2. Inductive statements for regular transition systems

Figure 2.13: Automaton for undesired words of reduction for Vflow .

The DFA described in Example 2.19. We introduce the following shorthands:

Letter G = {f, s} × Γ

State q0: “q0 → q0” = {f, s} × {q0} × {0, 1, B} and “q0 → q→” = {f, s} × {q0} ×
{#}

State q→: “q→ → q→” = {f, s}×{q→}×{0, 1} and “q→ → q←” = {f, s}×{q→}×
{#, B}

State q←: “q← → q←” = {f, s}×{q←}×{0, 1} and “q← → q→” = {f, s}×{q←}×
{#, B}

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

“q0→q0”

“q0→q→”

“q→→q→”

“q→→q←”

“q←→q←”

“q←→q→”

{s}×{B}

64

2.5. Abstractions are (PSpace-)hard

It remains to give a final small observation. Namely, we need to maintain that the

initial arrangement cannot change after it is initially set. We rely on inductive statements

of Vflow to do so.

Lemma 2.13.

First B: {⟨f,B⟩ , ⟨s, B⟩} ∅∗ ⊆ InductiveVflow (R)

Second Letter: ∅ {⟨f, q0, x1⟩ , ⟨s, q0, x1⟩} ∅∗ ⊆ InductiveVflow (R)

Remaining Input: ∅i {⟨f, xi⟩ , ⟨s, xi⟩} ∅∗ ⊆ InductiveVflow (R) for all 2 ≤ i ≤ m

Last B: ∅m+1 {⟨f,B⟩ , ⟨s, B⟩} ∅∗ ⊆ InductiveVflow (R)

Proof. These are immediate consequences of the fact that the transitions of the RTS

can only advance letters from the first section to the second.

Finally, we can prove the correctness of this reduction.

Lemma 2.14. Id(I)◦ ⇒V ◦Id(B) ̸= ∅ if and only if the Turing machine has a run on

x in which an arrangement with state qf occurs.

Proof. For this argument assume that every arrangement has a leading and trailing B.

Let the Turing machine have a run

α0
1 . . . α

0
n↣ . . .↣ αk

1 . . . αk
n

on x which reaches an arrangement with state qf . As argued before the constructed RTS

faithfully models executions ofM. Therefore,

〈
f, α0

1

〉
. . .

〈
f, α0

n

〉
. . .

〈
s, αk

1

〉
. . .

〈
s, αk

n

〉
is actually reachable from the initial configuration

〈
f, α0

1

〉
. . .

〈
s, α0

n

〉
⊥n−1+k·n.

Thus, the pair of this initial configuration and the last configuration is part of the

abstraction of Vflow . Moreover, the final configuration is accepted by B.

65

2. Inductive statements for regular transition systems

Assume, on the other hand, that ⇒Vflow contains a pair of

〈
s, α0

1

〉
. . .

〈
s, α0

n

〉
⊥n−1+k·n

and 〈
f, α0

1

〉
. . .

〈
f, α0

n

〉
. . .

〈
s, αk

1

〉
. . .

〈
s, αk

n

〉
.

From this final configuration, we extract the sequence

α0
1 . . . α

0
n, . . . , α

k
1 . . . αk

n.

With Lemma 2.13 it is straightforward to argue that α0
1 . . . α

0
n is the initial configuration

ofM on x by the choice of I. Intuitively, the initial arrangement is enforced in the initial

configuration and must never change again. Assume that this sequence, up to some

arrangements α1 . . . αn, is a prefix of the run of M on x. Consider β1 . . . βn which

follows α1 . . . αn in the sequence. Using the construction of B one can immediately

verify that the head position and movement from α1 . . . αn to β1 . . . βn is consistent

with δ. Pick now one position i. The letter of the final configuration that corresponds to

αi is ⟨f, αi⟩, say at index j. Let y ∈ Γ be the content of the i-th cell in the arrangement

that follows α1 . . . αn which is identified by αi. Lemma 2.12 gives an inductive statement

for Vflow and y where the index j of the statement is the letter A while the index j + n

is the letter B. Note that the index j + n corresponds to the letter ⟨z, βi⟩ for some

z ∈ {f, s}. We argue βi ∈ {y} ∪ Q × {y} because otherwise the inductive statement is

not satisfied. The reason for this is that

⟨f, αi⟩ ̸∈ {⊥} ,

⟨f, αi⟩ ̸∈ {s} × (Γ ∪Q× Γ) , and

⟨f, αi⟩ ̸∈ {f} ×
(
(Γ ∪Q× Γ) \ nextContent−1(y)

)
.

Since the statement is satisfied in the initial configuration (either because the letter

at index j is ⊥ or in {s} × (Γ ∪Q× Γ)) we have indeed βi ∈ {y} ∪ Q × {y}. This

means, by arbitrary choice of i, that the tape content of β1 . . . βn is consistent with

the arrangement that follows α1 . . . αn. Therefore, α1 . . . αn↣ β1 . . . βn. Using this

argument inductively, one can establish that the word accepted by B encodes the actual

66

2.6. Trap in PSpace

run of the Turing machine on x which reaches qf .

Theorem 2.5. Problem 2.2 is PSpace-hard for Vflow .

2.6 Trap in PSpace

This section is based on [ERW22b]. We fix R = ⟨Σ, I, T ⟩. We also introduce a running

example on which we illustrate the concepts introduced in this section.

Example 2.20: Circular token passing.

We consider a modified version of Example 2.2. In this version, we introduce

a transition which allows the token to move from the very last to the very first

position. The initial language still is t n∗ and the language of transitions be-

comes
([

n

n

]∗ [
t

n

] [
n

t

] [
n

n

]∗)
|
([

n

t

] [
n

n

]∗ [
t

n

])
. We introduce the transducer of this

language now:

q0

q1 q2 q3

q4 q5

[
n

n

]
[

t

n

]
[

t

n

]
[
n

t

]
[
n

n

] [
n

n

]

[
n

n

][
n

t

]
[

t

n

]

Without going into detail, we want to note that, in this example, Id(I)◦ ⇒Vtrap
coincides with Id(I)◦⇝∗T because of the following language of traps:

At least one token: {t}∗ ⊆ InductiveVtrap(R)

At most one token: ∅∗ {n} ∅∗ {n} ∅∗ ⊆ InductiveVtrap(R)

Preliminaries

Let us introduce a few notations for statements for Vtrap :

67

2. Inductive statements for regular transition systems

Union For two statements I1 . . . In and T1 . . . Tn we refer to (I1 ∪ T1) . . . (In ∪ Tn)
as I1 . . . In ⊔ T1 . . . Tn.

Subset For two statements I1 . . . In and T1 . . . Tn such that Ii ⊆ Ti for all 1 ≤ p ≤ n

we write I1 . . . In ⊑ T1 . . . Tn.

Strict subset For two statements I1 . . . In and T1 . . . Tn such that Ii ⊆ Ti for all 1 ≤
i ≤ n and there exists 1 ≤ j ≤ n such that Ij ⊊ Tj we write I1 . . . In ⊏ T1 . . . Tn.

Recall from before, that u1 . . . un |=Vtrap I1 . . . In if and only if there is 1 ≤ i ≤ n such

that ui ∈ Ii.

Traps in PSpace

The rough outline of this section is as follows:

• We introduce the concept of a separator for two configurations v and u. The

separator S is one statement from InductiveVtrap(R), that is uniquely defined by u,

such that v ⇒Vtrap u if and only if v ̸|=Vtrap S.

• We present how one can compute a separator for some configuration u. The rela-

tion ⇒Vtrap can then be decided by computing the separator S for u and checking

whether v does not satisfy S.

• Finally, we show how one can construct a non-deterministic Σ-Σ-transducer which

captures ⇒Vtrap by guessing S on the fly and verifying that it is the separator for

u and that v does not satisfy it. The states of this transducer are all permutations

of the states of T . The argument concludes by observing that checking emptiness

of the transducer Id(I)◦ ⇒Vtrap ◦Id(B) can then be achieved in polynomial space.

Lemma 2.15. If I1 . . . In, T1 . . . Tn ∈ InductiveVtrap(R), then I1 . . . In ⊔ T1 . . . Tn ∈
InductiveVtrap(R).

Proof. Pick any v1 . . . vn ⇝T u1 . . . un such that v1 . . . vn |=Vtrap I1 . . . In⊔T1 . . . Tn.
Then there is 1 ≤ i ≤ n such that vi ∈ Ii∪Ti and, therefore, (without loss of generality)
vi ∈ Ii. Thus, v1 . . . vn |=Vtrap I1 . . . In. Pick 1 ≤ j ≤ n such that uj ∈ Ij which

exists because I1 . . . In ∈ InductiveVtrap(R). Consequently, u1 . . . un |=Vtrap I1 . . . In ⊔
T1 . . . Tn because uj ∈ Ij ∪ Tj.

68

2.6. Trap in PSpace

This means that InductiveVtrap(R) ∩
(
2Σ
)n

is closed under the operation ⊔ for all n.

Moreover, w ̸|=Vtrap P and w ̸|=Vtrap Q implies w ̸|=Vtrap P ⊔Q.

Corollary 2.1. For every configuration v ∈ Σn exists a unique maximal (w. r. t. ⊑)
S ∈ InductiveVtrap(R) ∩

(
2Σ
)n

such that v ̸|=Vtrap S.

Proof. The set Q =
{
Q ∈ InductiveVtrap(R) ∩

(
2Σ
)n | w ̸|= Q

}
is finite but not empty

because ∅n ∈ Q. Since Q is closed under ⊔ and Q ⊑ Q⊔P for all Q,P ∈
(
2Σ
)n
, S = ⊔Q

has the desired properties.

In the following, we call the unique S of Corollary 2.1 the separator of the configuration

v. This name is motivated by the following observation:

Lemma 2.16. v ⇒Vtrap u if and only if v ̸|=Vtrap S where S is the separator of u.

Proof. Observe that v |=Vtrap Q implies v |=Vtrap Q ⊔ Q′ for all Q′. Thus, if v ̸⇒Vtrap u,
then there exists some Q ∈ InductiveVtrap(R) such that u ̸|=Vtrap Q and v |=Vtrap Q. That
means Q ⊑ S and, therefore, v |=Vtrap S.
On the other hand, assume v ⇒Vtrap u. Thus, for all Q ∈ InductiveVtrap(R) with

v |=Vtrap Q also u |=Vtrap Q. v ̸|=Vtrap S follows by contraposition since u ̸|=Vtrap S by the

definition of separator.

We proceed now by presenting a process to compute the separator of any given word

w = w1 . . . wn. The idea of this process is as follows: initially, we consider the

largest (w. r. t. ⊑) statement for which w is not a model. Then, we gradually refine

this statement until it becomes inductive. By the nature of this refinement process,

we can show that it ends in the separator of w. The refinement process works as

follows: let P1 . . . Pn be the current statement. Find some transition
[
u1

v1

]
. . .

[
un

vn

]
with u1 . . . u |=Vtrap P1 . . . Pn while v1 . . . vn ̸|=Vtrap P1 . . . Pn. Refine the statement

to P1 \ {u1} . . . Pn \ {un}. Let us illustrate this process by an example first, and,

afterwards, we formalize it.

Example 2.21: Computing a separator.

Consider the (reachable) configuration n t n n n n for our running ex-

ample. The largest statement that is not satisfied by this configuration is

{t} {n} {t} {t} {t} {t} since it contains at every position all letters but the

one that is at the same position in the original configuration. We now show how

69

2. Inductive statements for regular transition systems

this statement is refined to become inductive. For this, we show below a series of

statements and transitions such that the transition refines the previous statement

to the next. In the following table we mark statements with • and the refining

transitions with ▷.
• {t} {n} {t} {t} {t} {t}
▷
[

t

n

] [
n

t

] [
n

n

] [
n

n

] [
n

n

] [
n

n

]
• ∅ ∅ {t} {t} {t} {t}
▷
[
n

t

] [
n

n

] [
n

n

] [
n

n

] [
n

n

] [
t

n

]
• ∅ ∅ {t} {t} {t} ∅
▷
[
n

n

] [
n

n

] [
n

n

] [
n

n

] [
t

n

] [
n

t

]
• ∅ ∅ {t} {t} ∅ ∅
▷
[
n

n

] [
n

n

] [
n

n

] [
t

n

] [
n

t

] [
n

n

]
• ∅ ∅ {t} ∅ ∅ ∅
▷
[
n

n

] [
n

n

] [
t

n

] [
n

t

] [
n

n

] [
n

n

]
• ∅ ∅ ∅ ∅ ∅ ∅

The refinement process ends here. As we show now this means ∅ ∅ ∅ ∅ ∅ ∅ is

indeed the separator for the configuration n t n n n n.

Definition 2.14: Separator sequence.

For any w1 . . . wn ∈ Σ∗ we call a sequence of statements〈
S0
1 . . . S0

n, . . . , S
k
1 . . . Sk

n

〉
a separator sequence of w if

• S0
i = Σ \ {wi}, for all 1 ≤ i ≤ n,

• for every 0 ≤ i < k exists v1 . . . vn ⇝T u1 . . . un such that u1 . . . un ̸|=Vtrap
Pi, and

• Si+1
j = Si

j \ {vj}.

We prove that every separator sequence converges to the same statement; namely, the

separator of w.

Lemma 2.17. Let S1 . . . Sn be the separator of w and
〈
S0
1 . . . S0

n, . . . , S
k
1 . . . Sk

n

〉
a

separator sequence for w. Then,

70

2.6. Trap in PSpace

1. Si
1 . . . S

i
n ⊒ Si+1

1 . . . Si+1
n for all 0 ≤ i < k, and

2. Si
1 . . . S

i
n ⊒ S1 . . . Sn for all 0 ≤ i ≤ k.

Proof. Prove the properties by induction. The first property is immediate from the

definition of separator sequences.

It remains to prove the second property. First, observe that S1 . . . Sn ⊑ S0
1 . . . S0

n

since S0
1 . . . S0

n is chosen to include all statements for which w is not a model. Let

v1 . . . vn ⇝T u1 . . . un with u1 . . . un ̸|=Vtrap Si
1 . . . Si

n and Si+1
j = Si

j \ {vj} for all

1 ≤ j ≤ n. By induction hypothesis Si
1 . . . Si

n ⊒ S1 . . . Sn. Since u1 . . . un ̸|=Vtrap
Si
1 . . . Si

n also u1 . . . un ̸|=Vtrap S1 . . . Sn. Consequently, v1 . . . vn ̸|=Vtrap S1 . . . Sn

either, because S1 . . . Sn ∈ InductiveVtrap(R). Therefore, vj ̸∈ Sj for all 1 ≤ j ≤ n.

Hence, S1 . . . Sn ⊑ Si+1
1 . . . Si+1

n .

We can draw two interesting consequences from this observation:

Corollary 2.2. Let ⟨S0, . . . , Sk⟩ be a separator sequence for some word w. If Sk ∈
InductiveVtrap(R), then Sk is the separator of w.

Proof. This is an immediate consequence of the fact that, otherwise, Sk is a counterex-

ample to the maximality of the separator of w by Lemma 2.17.

Corollary 2.3. Let ⟨S0, . . . , Sk⟩ be a separator sequence for some word w. If there is

some v ∈ Σ∗ with u ̸|=Vtrap Si, then v ̸|=Vtrap Sj for all j > i.

Proof. We know that a separator sequence is decreasing w. r. t. ⊑. Also, v1 . . . vn ̸|=Vtrap
S1 . . . Sn is equivalent to vm /∈ Sm for all 1 ≤ m ≤ n. This implies, however, that

vm /∈ Qm for all 1 ≤ m ≤ n if Qm ⊆ Sm. Thus, v1 . . . vn ̸|=Vtrap Q1 . . . Qm for all

Q1 . . . Qm ⊑ S1 . . . Sm.

These observations, in combination with Lemma 2.16, imply another interesting prop-

erty of separator sequences:

Corollary 2.4. v ⇒Vtrap u if and only if there exists some separator sequence ⟨S0, . . . , Sk⟩
for u such that v ̸|=Vtrap Si for some 0 ≤ i ≤ k.

Thus, we know that we can prove v ⇒Vtrap u by computing some separator sequence

for u and checking whether v does not satisfy some element of that sequence. In every

separator sequence, every step is “justified” via some transition. Therefore, computing a

71

2. Inductive statements for regular transition systems

separator sequence relies on finding transitions ofR. The set of all transitions is encoded
by T . That means, the transitions that “justify” some step in the separator sequence

exist because there are excepting runs for them in T .

Example 2.22: A tableau for Example 2.21.

Note that the transitions that we used for obtaining a separator sequence in Ex-

ample 2.21 were

▷
[

t

n

] [
n

t

] [
n

n

] [
n

n

] [
n

n

] [
n

n

]
▷
[
n

t

] [
n

n

] [
n

n

] [
n

n

] [
n

n

] [
t

n

]
▷
[
n

n

] [
n

n

] [
n

n

] [
n

n

] [
t

n

] [
n

t

]
▷
[
n

n

] [
n

n

] [
n

n

] [
t

n

] [
n

t

] [
n

n

]
▷
[
n

n

] [
n

n

] [
t

n

] [
n

t

] [
n

n

] [
n

n

]
We know that these are transitions of the RTS because for every transition there

is an accepting run of the transducer that encodes the transitions. These runs are

▷ q0 q2 q3 q3 q3 q3 q3

▷ q0 q4 q4 q4 q4 q4 q5

▷ q0 q1 q1 q1 q1 q2 q3

▷ q0 q1 q1 q1 q2 q3 q3

▷ q0 q1 q1 q2 q3 q3 q3
We introduce a notation to represent the runs of refining transitions for a separator

sequence. Essentially, this is a matrix of states of T which we call a tableau:

q0 q2 q3 q3 q3 q3 q3

q0 q4 q4 q4 q4 q4 q5

q0 q1 q1 q1 q1 q2 q3

q0 q1 q1 q1 q2 q3 q3

q0 q1 q1 q2 q3 q3 q3


Additionally, this tableau can be used as a witness that there is a separator se-

quence for the configuration n t n n n n which ends in ∅ ∅ ∅ ∅ ∅ ∅. We say this

tableau computes ∅ ∅ ∅ ∅ ∅ ∅ for n t n n n n.

72

2.6. Trap in PSpace

Definition 2.15: Tableau.

Let QT denote the states of T . We call matrices M = [qi,j]0≤i≤n,1≤j≤k ∈ Q
k×n+1
T

tableaux of T . Let v1 . . . vn ∈ Σn be some configuration and Sk
1 . . . Sk

n ∈
(
2Σ
)n
.

We say M computes Sk
1 . . . Sk

n ∈
(
2Σ
)n

for v1 . . . vn if:

• there is a separator sequence
〈
S0
1 . . . S0

n, . . . , S
k
1 . . . Sk

n

〉
for v1 . . . vn such

that

• there are transitions u11 . . . u
1
n ⇝T w

1
1 . . . w

1
n, . . . , u

k
1 . . . u

k
n ⇝T w

k
1 . . . wk

n

with

– q0,i . . . qn,i is an accepting run for ui1 . . . uin ⇝T wi
1 . . . wi

n for all

1 ≤ i ≤ k,

– wi
1 . . . w

i
n ̸|=Vtrap Si−1

0 . . . Si−1
n for all 1 ≤ i ≤ k, and

– Si
j \
{
uij
}
= Si+1

j for all 0 ≤ i < k and 1 ≤ j ≤ n.

In other words, a tableau M computes some statement S for some configuration v if

the lines of M are accepting runs for transitions that induce a separator sequence for v

which ends in S. Therefore, it is natural to read tableaux line by line to follow along the

separator sequence. However, tableaux can also be read “vertically”; that is, column by

column.

Example 2.23: Columns in a tableau.

Consider the tableau from Example 2.22 again, but focus only on the last two

columns: 

q3 q3

q4 q5

q2 q3

q3 q3

q3 q3


Every line of these two columns is the last step of accepting runs in T for transi-

tions. Moreover, these transitions compute, for a word that ends in n, a statement

73

2. Inductive statements for regular transition systems

that ends in ∅. The refining process of the separator sequence for the last position

is captured by these columns:

• {t} is refined by
〈
q3,
[
n

n

]
, q3

〉
to {t}.

• {t} is refined by
〈
q4,
[

t

n

]
, q5

〉
to ∅.

• ∅ is refined by
〈
q2,
[
n

t

]
, q3

〉
to ∅.

• ∅ is refined by
〈
q3,
[
n

n

]
, q3

〉
to ∅.

• ∅ is refined by
〈
q3,
[
n

n

]
, q3

〉
to ∅.

We want to draw attention to two things in particular. First, the first step〈
q3,
[
n

n

]
, q3

〉
does not have t as target of the letter. This is important because

otherwise the target of the transition already satisfies the statement which ren-

ders the transition inappropriate for the separator sequence. Second, the same

holds for the second step
〈
q4,
[

t

n

]
, q5

〉
but this step also shows that t is removed

from this letter of the statement.

More generally, we see that adjacent columns of a tableau present a similar refine-

ment process as the complete tableau but only use one single step of T instead of

a complete run. For this reason, we transfer notions from tableaux to columns.

For example, we say that these columns compute ∅ for n.

Definition 2.16: Columns.

Let QT denote the states of T , and let Q0 ⊆ QT and F ⊆ QT the initial and

accepting states, respectively. We call words from Q∗T columns. Additionally, we

call a column c:

initial if c ∈ Q∗0, and

accepting if c ∈ F ∗.

We say two columns c1 . . . ck and d1 . . . dk compute S ∈ 2Σ for v ∈ Σ if there

are
〈
c1,
[

u1

w1

]
, d1

〉
, . . . ,

〈
ck,
[

uk

wk

]
, dk

〉
∈ ∆T such that

• w1 = v,

74

2.6. Trap in PSpace

• wi+1 ∈ {u1, . . . , ui} for all 1 ≤ i < k, and

• S = Σ \ {u1, . . . , uk}.

In this case, we also call u1, . . . , uk the removal sequence.

From the definition of columns, one can see that they are just a different perspective

on a tableau:

Lemma 2.18. There is a tableau M that computes S1 . . . Sn for v1 . . . vn if and only

if there are columns c0, . . . , cn ∈ Qk
T such that c0 is initial, cn is accepting, and ci−1 and

ci compute Si for vi for all 1 ≤ i ≤ n.

Proof. Observe that the columns of a tableau have the desired properties. Show that

the given sequence of columns forms a tableau. For this, fix, for every 0 ≤ i < n,

the removal sequence as ui1, . . . , u
i
k. By induction to j construct a matrix of the first j

elements of C0, . . . , Cn. This gives a tableau for w that computes Σ\
{
u11, . . . , u

1
j

}
. . . Σ\{

un1 , . . . , u
n
j

}
. The statement of the lemma follows once j reaches k.

Although the following observation might seem trivial, it is important later on.

Example 2.24: Expanding columns.

In Example 2.23, we considered the columns

q3 q3

q4 q5

q2 q3

q3 q3

q3 q3


The last two lines are the same. In fact, one can add the same lines over and over

again after their first occurrence without changing the value the columns compute.

Intuitively, one can simply repeat a previous step without changing the letter of

the statement these columns compute. This is because, since the step was already

used before, it is possible to be used and it does not add any new letter to the

75

2. Inductive statements for regular transition systems

removal sequence. For instance, the following columns all compute ∅ for n:



q3 q3

q4 q5

q2 q3

q3 q3

q3 q3


,



q3 q3

q4 q5

q2 q3

q3 q3

q4 q5

q3 q3


,



q3 q3

q3 q3

q4 q5

q2 q3

q3 q3

q3 q3


,



q3 q3

q4 q5

q2 q3

q3 q3

q3 q3

q2 q3


,



q3 q3

q4 q5

q2 q3

q3 q3

q3 q3

q4 q5

q3 q3


.

Lemma 2.19. Let c1 . . . ck and d1 . . . dk be two columns that compute S for v. For any

1 ≤ i ≤ k and i ≤ j ≤ k, the columns c1 . . . cj ci cj+1 . . . ck and d1 . . . dj di dj+1 . . . dk

compute S for v.

Proof. In the names of Definition 2.16, the original columns use the step
〈
ci,
[

ui

wi

]
, di

〉
from T . Thus, wi ∈ {u1, . . . , ui−1}. Therefore, one can just repeat this step in the mod-

ified columns. If the removal sequence was u1, . . . , uk from c1 . . . ck to d1 . . . dk, then

it is u1, . . . , uj, ui, uj+1, . . . , uk from c1 . . . cj ci cj+1 . . . ck to d1 . . . dj di dj+1 . . . dk.

Regardless, both pairs of columns compute S.

Repeating rows at later points again changes the individual columns by inserting states

that occurred at some point at a later point again. We introduce an order on columns

c ⪯ c′ if c′ can be obtained from c by any number of these repetitions.

Definition 2.17: Column order.

Let c1 . . . cn be a column. For all 1 ≤ i ≤ j ≤ n we write c1 . . . cn ≺
c1 . . . ci−1 ci ci+1 . . . cj ci cj+1 . . . cn. We denote with ⪯ the reflexive transitive

closure of ≺.

76

2.6. Trap in PSpace

Example 2.25: An order on columns.


q3

q4

q2

 ⪯

q3

q4

q2

 ⪯

q3

q4

q2

q3

 ⪯



q3

q4

q2

q4

q2

q4

q3


̸⪯



q2

q3

q2

q4

q4

q2

q4

q3



⪯ forms a partial order on Q∗T . The minimal elements of this order are columns in

which each letter occurs at most once. For every column c, there exists a unique minimal

element reduce(c) in {c′ | c′ ⪯ c}. Essentially, one obtains reduce(c) by removing every

letter from c but its first occurrence. Therefore, every column c in which every letter

occurs at most once satisfies reduce(c) = c. We call these columns base columns and

denote the set of all base columns as bases(T) = {reduce(c) : c ∈ Q∗T }.

Example 2.26: Base columns.

reduce



q3

q4

q2


 =


q3

q4

q2

 and reduce





q2

q3

q2

q4

q4

q2

q4

q3




=


q2

q3

q4



We introduce a technical observation. Specifically, we show that any two columns c

and d that have the same base ancestor b can be merged into a common child.

Lemma 2.20. There exists, for every columns c and d such that reduce(c) = reduce(d),

a column e with c ⪯ e and d ⪯ e.

77

2. Inductive statements for regular transition systems

Proof. Fix c = c1 . . . cn and d = d1 . . . dm. Now, we inductively construct an

(increasing) sequence of pairs ⟨ℓ, r⟩ such that there exists, for every pair, a column e′

with

• c1 . . . cℓ ⪯ e′ and d1 . . . dr ⪯ e′, and

• reduce(c1 . . . cℓ) = reduce(d1 . . . dr) = reduce(e′).

Initially, fix ε for ⟨0, 0⟩ and observe reduce(ε) = ε ⪯ ε.

On the other hand, for any ⟨ℓ, r⟩ and the corresponding column e′1 . . . e
′
k, distinguish

three cases:

There is i < ℓ+ 1 such that ci = cℓ+1: Because reduce(c1 . . . cℓ) = reduce(e′1 . . . e′k)

there is some j ≤ r such that ej = ci. Consequently,

• c1 . . . cℓ+1 ⪯ e′1 . . . e
′
k cℓ+1 since c1 . . . cℓ ⪯ e′1 . . . e

′
k,

• d1 . . . dr ⪯ e′1 . . . e
′
k cℓ+1 since d1 . . . dr ⪯ e′1 . . . e

′
k ≺ e′1 . . . e

′
k cℓ+1, and

• reduce(c1 . . . cℓ+1) = reduce(e′1 . . . e
′
k cℓ+1) = reduce(d1 . . . dr).

Thus, construct the pair ⟨ℓ+ 1, r⟩ with e′1 . . . e′k cℓ+1.

There is i < r + 1 such that di = dr+1: With analog reasoning as in the case before con-

struct ⟨ℓ, r + 1⟩ with e′1 . . . e′k dr+1.

Otherwise: cℓ+1 = dr+1 = e′k+1 because reduce(c1 . . . cn) = reduce(d1 . . . dm) and

reduce(c1 . . . cℓ) = reduce(d1 . . . dr) = reduce(e′). Thus,

• c1 . . . cℓ+1 ⪯ e′1 . . . e
′
k e
′
k+1 since c1 . . . cℓ ⪯ e′1 . . . e

′
k,

• d1 . . . dr+1 ⪯ e′1 . . . e
′
k e
′
k+1 since d1 . . . dr ⪯ e′1 . . . e

′
k, and

• reduce(c1 . . . cℓ+1) = reduce(e′1 . . . e′k e′k+1) = reduce(d1 . . . dr dr+1) =

reduce(e′1 . . . e
′
k) e

′
k+1.

Consequently, constructing the pair ⟨ℓ+ 1, r + 1⟩ with e′1 . . . e′k e′k+1 is valid.

Finally, this construction gives e with the property of the statements once the induc-

tion reaches the pair ⟨n,m⟩.

Let us illustrate the construction of this lemma with an example.

78

2.6. Trap in PSpace

Example 2.27: Constructing a common child for two columns.

We consider two columns q2 q2 q3 q4 q3 q2 and q2 q3 q3 q4 q3. The base column

for both of these is q2 q3 q4. In the diagram below we give the first column on

the left-hand side, the second column on the right-hand side, and the resulting

column in the middle. Moreover, we draw arrows to indicate which element of

which column motivates the presence of the element in the middle. Roughly,

these arrows correspond to the case distinction in the proof of the lemma above:

An arrow from the left indicates the first case, an arrow from the right the second

case, and arrows from both sides the last case (which occurs exactly thrice – once

for each element of the base column).

q2

q2

q3

q3

q4

q3

q2

q3

q2

q3

q3

q4

q3

q2

q2

q3

q4

q3

q2

A transducer to find a separator

Based on the concept of columns, we construct now an (infinitely large) Σ-2Σ-transducer

S which captures how to compute separator sequences for configurations.

Definition 2.18: Separator transducer.

LetQT denote the states of T , and letQ0 ⊆ QT and F ⊆ QT the initial and accept-

ing states, respectively. We call the Σ-2Σ-transducer S =
〈
Q∗T , Q

∗
0,Σ× 2Σ,∆, F ∗

〉

79

2. Inductive statements for regular transition systems

with 〈
c,
[

v

S

]
, d
〉
∈ ∆ if and only if c and d compute S for v

the separator transducer for T .

Lemma 2.21. ⟨v1 . . . vn, S1 . . . Sn⟩ ∈ JSK if and only if there exists a tableau M which

computes S1 . . . Sn for v1 . . . vn.

Proof. This is an immediate consequence from Lemma 2.18.

Due to its infinite size, this transducer does not have immediate use. However, the

steps of this transducer are “upwards closed” with respect to ⪯; that is, if there is a step

for some letter between columns c and d, then there is, for every c′ with c ⪯ c′, some d′

such that d ⪯ d′ and there is a step with the same letter between c′ and d′. Moreover,

this reasoning can also be applied “backward”: for every step
〈
c,
[

v

S

]
, d
〉

and d ⪯ d′

there exists c ⪯ c′ such that
〈
c′,
[

v

S

]
, d′
〉
is a step as well. We exploit this to construct

a finite transducer for the same relation.

Lemma 2.22 (Monotonicity lemma). Let c and d be columns which compute S for v.

Forwards: For all c′ with c ⪯ c′ there exists d′ such that d ⪯ d′ and c′ and d′ also

compute S for v.

Backwards: For all d′ with d ⪯ d′ there exists c′ such that c ⪯ c′ and c′ and d′ also

compute S for v.

Proof. Both directions of the statement can be proven in the same way. Therefore, it

suffices to only consider the forward case. Because c ⪯ c′ either c = c′ in which case the

statement is trivial or there are c11 . . . c
1
m1
≺ . . . ≺ ck1 . . . c

k
mk

such that

• c = c11 . . . cm1 , and

• c′ = ck1 . . . c
k
mk

.

Construct inductively a sequence d11 . . . d
1
m1
≺ . . . ≺ dk1 . . . d

k
mk

such that

• d = d11 . . . d
1
m1

, and

• ci1 . . . c
i
mi

and di1 . . . d
i
mi

compute S for v for all 1 ≤ i ≤ k.

80

2.6. Trap in PSpace

Initially, the choice for d11 . . . d
1
m1

is valid since c and d compute S for v. For every step

one can rely on Lemma 2.19 to construct di+1
1 . . . di+1

mi+1
. In particular, if ci+1

1 . . . ci+1
mi+1

is obtained from ci1 . . . c
i
mi

by repeating the ℓ-th letter at some position j, then one can

construct di+1
1 . . . di+1

mi+1
from di1 . . . dimi

by repeating the ℓ-th letter at position j as

well.

Let us now shrink the separator transducer into a finite one.

Definition 2.19: Reduced separator transducer.

Let QT denote the states of T , and let Q0 ⊆ QT and F ⊆ QT the ini-

tial and accepting states, respectively. We call the Σ-2Σ-transducer S =〈
bases(T), bases(T) ∩Q∗0,Σ× 2Σ,∆, bases(T) ∩ F ∗

〉
with〈

c,
[

v

S

]
, d
〉
∈ ∆ if and only if

there are c′ and d′ such that c ⪯ c′ and d ⪯ d′ which compute S for v

the reduced separator transducer for T .

Lemma 2.23. The separator transducer and the reduced separator transducer accept the

same language.

Proof. By the definition of the transition relation of the reduced separator transducer,

it is immediate that every run c1 . . . cn in the separator transducer has a corresponding

run reduce(c1) . . . reduce(cn) in the reduced separator transducer on the same word.

Therefore, the reduced separator transducer accepts all words that the separator trans-

ducer accepts.

Let ∆ denote the steps from the separator transducer and ∆r the steps from the re-

duced separator transducer. Pick any word v1 . . . vn accepted by the reduced separator

transducer. Thus, there is an accepting run b0 . . . bn of the reduced separator trans-

ducer on v1 . . . vn. Proceed by induction to n to obtain a run c0 . . . cn of the separator

transducer on v1 . . . vn such that reduce(c0) . . . reduce(cn) = b0 . . . bn:

n = 0: Because b0 is a column this case is immediate.

n > 0: Let c0 . . . cn−1 be a run in the separator transducer on v1 . . . vn−1 with the

desired properties. Since ⟨bn−1, vn, bn⟩ ∈ ∆r there are d and e with bn−1 ⪯ d and b ⪯ e

such that ⟨d, vn, e⟩ ∈ ∆. Because bn−1 ⪯ cn−1 as well, there is, by Lemma 2.20, c′n−1

81

2. Inductive statements for regular transition systems

with cn−1 ⪯ c′n−1 and d ⪯ c′n−1. Applying the backwards direction of Lemma 2.22

repeatedly, we obtain a run c′0 . . . c
′
n−1 in the separator transducer on v1 . . . vn−1 such

that reduce(c′0) . . . reduce(c′n−1) = b0 . . . bn−1 because ci ⪯ c′i for all 1 ≤ i ≤ n − 1.

Relying on the definition of ∆r and the forwards direction of Lemma 2.22, we get some

c′n with bn ⪯ e ⪯ c′n such that
〈
c′n−1, vn, c

′
n

〉
∈ ∆. In conclusion, c′0 . . . c

′
n has the desired

properties.

Based on Lemma 2.16, one can modify the reduced separator transducer to obtain a

Σ-Σ-transducer that captures ⇒Vtrap . The idea is to replace every step
〈
c,
[
u

S

]
, d
〉
with

steps
〈
c,
[
v

u

]
, d
〉
for all v ̸∈ S. In this way, we combine the computation of a separator

and the check that the origin does not satisfy it into one transducer.

However, it remains to show that the steps of the reduced separator transducer can

be computed effectively. For this, we introduce a single-player game that can be won if

and only if the input is a transition of the reduced separator transducer.

Definition 2.20: Step game.

For
〈
b11 . . . b

1
n,
[
u

S

]
, b21 . . . b

2
m

〉
where b11 . . . b1n, b

2
1 . . . b2m ∈ bases(T), u ∈ Σ,

and S ∈ 2Σ we consider the following game: The current state of the game is

represented by a triple ⟨ℓ, I, r⟩ where

• 1 ≤ ℓ ≤ n,

• I ⊇ S, and

• 1 ≤ r ≤ m.

In every turn, the player can play any step
〈
q,
[
x

y

]
, p
〉
from T . The player loses

immediately if

• y ∈ I,

• q /∈ {b11 . . . b1ℓ} and, if ℓ < n, q ̸= b1ℓ+1, or

• p /∈ {b21 . . . b2r} and, if r < m, p ̸= b1ℓ+1.

Otherwise the game moves to a new state ⟨ℓ′, I ′, r′⟩ such that

• ℓ′ = ℓ if q ∈ {b11 . . . b1ℓ} and, otherwise, ℓ′ = ℓ+ 1,

82

2.6. Trap in PSpace

• r′ = r if p ∈ {b21 . . . b1r} and, otherwise, r′ = r + 1, and

• I ′ = I \ {x}.

Initially, the state is ⟨0,Σ \ {u} , 0⟩. The player wins the game if the state becomes

⟨n, S,m⟩.

Essentially, the player in this game constructs with a winning strategy two columns

c1 and c2 with reduce(c1) = b11 . . . b
1
n and reduce(c2) = b21 . . . b

2
m which compute S for

u.

Lemma 2.24. There is a winning strategy in the step game for〈
b11 . . . b

1
n,
[
u

S

]
, b21 . . . b

2
m

〉
if and only if 〈

b11 . . . b
1
n,
[
u

S

]
, b21 . . . b

2
m

〉
is a step in the reduced separator transducer.

Proof. Assume a winning strategy
〈
q1,
[
x1

y1

]
, p1

〉
, . . . ,

〈
qk,
[
xk

yk

]
, pk

〉
for the step game.

This strategy implies a removal sequence x1, . . . , xk for the columns q1 . . . qk and

p1 . . . pk for u. From the rules of the game, reduce(q1 . . . qk) = b11 . . . b1n and

reduce(p1 . . . pk) = b21 . . . b
2
m is immediate. Consequently,

〈
q1 . . . qk,

[
u

S

]
, p1 . . . pk

〉
is

a step in the separator transducer and, therefore,
〈
b11 . . . b

1
n,
[
u

S

]
, b21 . . . b

2
m

〉
is a step in

the reduced separator transducer.

On the other hand, assume
〈
b11 . . . b

1
n,
[
u

S

]
, b21 . . . b

2
m

〉
is a step in reduced separator

transducer. Thus, there exists a step
〈
q1 . . . qk,

[
u

S

]
, p1 . . . pk

〉
in the separator trans-

ducer. Hence, q1 . . . qk and p1 . . . pk compute S for u. This means, there exists〈
q1,
[
x1

y1

]
, p1

〉
, . . . ,

〈
qk,
[
xk

yk

]
, pk

〉
such that

• y1 = u,

• yi+1 ∈ {x1, . . . , xi} for all 1 ≤ i < k, and

• S = Σ \ {x1, . . . , xk}.

This sequence of steps is a winning strategy for the step game.

83

2. Inductive statements for regular transition systems

Example 2.28: Steps in a reduced separator transducer.

For the running example, we give here some steps that originate in the unique

initial state q0. Moreover, we present a winning strategy in the step game to

justify the step. In this winning strategy, we color those steps that contribute a

new element to the removal sequence.

Step Winning strategy

〈
q0,
[

n

{t}

]
, q1

〉 〈
q0,
[
n

n

]
, q1

〉
〈
q0,
[
n

∅

]
, q2

〉 〈
q0,
[

t

n

]
, q2

〉
〈
q0,
[
n

∅

]
, q2 q4

〉 〈
q0,
[

t

n

]
, q2

〉
〈
q0,
[
n

t

]
, q4

〉
〈
q0,
[
n

∅

]
, q2 q1

〉 〈
q0,
[

t

n

]
, q2

〉
〈
q0,
[
n

n

]
, q1

〉

〈
q0,
[
n

∅

]
, q2 q1 q4

〉
〈
q0,
[

t

n

]
, q2

〉
〈
q0,
[
n

n

]
, q1

〉
〈
q0,
[
n

t

]
, q4

〉

〈
q0,
[
n

∅

]
, q2 q4 q1

〉
〈
q0,
[

t

n

]
, q2

〉
〈
q0,
[
n

t

]
, q4

〉
〈
q0,
[
n

n

]
, q1

〉
〈
q0,
[

t

∅

]
, q4

〉 〈
q0,
[

t

n

]
, q4

〉
〈
q0,
[

t

∅

]
, q4 q1

〉 〈
q0,
[

t

n

]
, q4

〉
〈
q0,
[
n

n

]
, q1

〉
〈
q0,
[

t

∅

]
, q4 q2

〉 〈
q0,
[

t

n

]
, q4

〉
〈
q0,
[

t

n

]
, q2

〉

〈
q0,
[

t

∅

]
, q4 q1 q2

〉
〈
q0,
[

t

n

]
, q4

〉
〈
q0,
[
n

n

]
, q1

〉
〈
q0,
[

t

n

]
, q2

〉

〈
q0,
[

t

∅

]
, q4 q2 q1

〉
〈
q0,
[

t

n

]
, q4

〉
〈
q0,
[

t

n

]
, q2

〉
〈
q0,
[
n

n

]
, q1

〉

Any play in the step game has a clear notion of “making progress”. In particular,

84

2.7. Topologies

any move that does not advance the state ⟨ℓ, I, r⟩ of the game; that is, leads to a state

⟨ℓ′, I ′, r′⟩ where either ℓ < ℓ′, |I| > |I ′|, or r < r′, can be omitted without changing the

outcome of the game. Consequently, one can bound the length of a winning strategy.

Lemma 2.25. If there is a winning strategy in the step game for〈
b11 . . . b

1
n,
[
u

S

]
, b21 . . . b

2
m

〉
then there is one of length n+m+ (|Σ \ S| − 1).

We can now put all these results together to obtain that Problem 2.2 for Vtrap can be

solved in PSpace (which, by Theorem 2.3, also holds for Vsiphon).

Theorem 2.6 ([ERW22b]). Problem 2.2 for Vtrap is in PSpace.

Proof. Let S be the reduced separator transducer. Observed that
⇋⇒Vtrap is equivalent

to

JSK ◦
⇋q
Vtrap

y

because of Lemma 2.21 and Lemma 2.23. Note that any state of this transducer for⇒Vtrap
can be stored in polynomial space of the input to Problem 2.2 for Vtrap . Moreover, due

to Lemma 2.24 and Lemma 2.25, the steps of this transducer can also be computed in

polynomial space. Therefore, one can look for an accepted word in a transducer that

captures JIK ◦ ⇒Vtrap ◦ JBK in polynomial space.

2.7 Topologies

RMC captures a large class of parameterized systems. However, many parameterized

systems can be described in simpler terms because there are natural restrictions for how

they behave [FO97; WL89; KM95; Del00a; Lin+16]. We say groups of systems that can

be captured by common restrictions share a topology.

The interest in these topologies is motivated by results from [ERW22a] and [Lin+16].

In particular, we want to introduce generalization procedures which, given one inductive

statement, return a family of inductive statement. This can be used to inform a learning

procedure on its own. Here, however, we introduce a learning procedure in Chapter 3 and

use the observations of this section to obtain, in a similar way, generalization procedures

which aide the learning process that we describe later.

85

2. Inductive statements for regular transition systems

For instance, we consider the ring topology. Roughly speaking, a parameterized system

that adheres to the ring topology, or, for short, is a ring, is a system in which all agents

form a ring and only two adjacent agents (in this ring) can interact. Moreover, all

adjacent agents interact in the same way; that is, if there is some interaction possible

between the first and the second agent the same interaction is possible between the

second and third agent and the third and the fourth agent and so on.

Example 2.29: Circular token passing as a ring.

The RTS from Example 2.20 that models circular token passing is, almost, a ring.

Specifically, we do not consider it a ring yet because, for every transition, only

two adjacent agents interact but there is a restriction on the state of all the other

agents: they only can be in state n. Thus, every transition enforces the invariant

that there is exactly one token. We modify the language of all transitions to

remove this invariant:([
n

n

]
|
[
t

t

])∗ ([
t

n

] [
n

t

]) ([
n

n

]
|
[
t

t

])∗
|
[
n

t

] ([
n

n

]
|
[
t

t

])∗ [
t

n

]
.

In this way, all adjacent agents share one common interaction: the first agent

moves from t to n while the adjacent agent moves from n to t. Therefore, we

consider this example a ring now.

In this section, we consider three topologies:

• The aforementioned rings.

• A slight variant of rings, called bows, where we allow one distinguished agent

to behave differently from all others. For instance, consider Example 2.2 in the

version where every transition does not enforce that there only is a single token

(cp. Example 2.9). In this system, the first agent behaves differently from all

others: this agent does not accept a token from the last agent.

• A topology we call crowds. In a crowd all agents are anonymous; that is, they

do not have an identity but are interchangeable. More formally, the language of

the transitions is closed under the permutation of the letters of words; e. g. if[
a1

b1

] [
a2

b2

] [
a3

b3

]
is a transition, so are

[
a1

b1

] [
a3

b3

] [
a2

b2

]
,
[
a2

b2

] [
a1

b1

] [
a3

b3

]
,
[
a2

b2

] [
a3

b3

] [
a1

b1

]
,

86

2.7. Topologies[
a3

b3

] [
a1

b1

] [
a2

b2

]
, and

[
a3

b3

] [
a2

b2

] [
a1

b1

]
. In this topology, interaction is restricted to a

set of agents of some constant size k meeting to change their states. Any such

meeting, however, can only occur if some global condition on all other agents is

met and, if it is possible, all other agents might react to the meeting.

The ring topology

Let us first take a look at rings. In a ring, the last and the first agent are adjacent to

each other. We introduce some simplifying notation for this; that is, we write vi⊕1 to

refer to vi+1 if i < n and, otherwise, v1 in any word v1 . . . vn. Symmetrically, we refer

to the position before i as i⊖ 1.

A ring is fully specified by all the possible interactions that two adjacent agents can

do (cp. Example 2.29).

Definition 2.21: Ring topology.

We call any R = ⟨Σ, I, T ⟩ a ring if there is a set P ⊆ (Σ× Σ) × (Σ× Σ) such

that

L(T) =
⋃

[
v

v′

]
,

[
u

u′

]
∈P

I∗
[

v

v′

] [
u

u′

]
I∗ ∪

[
u

u′

]
I∗
[

v

v′

]

where I =
{[

v

v

]
: v ∈ Σ

}
. We say P is the set of patterns of R. Moreover, we call

the transition x1 . . . xn ⇝T y1 . . . yn where
[
xi

yi

] [
xi⊕1

yi⊕1

]
∈ P and xj = yj for all

j /∈ {i, i⊕ 1} a realization of
[
xi

yi

] [
xi⊕1

yi⊕1

]
at i.

Example 2.30: Ring definition of circular token passing.

The RTS from Example 2.29 is a ring because the set

P =
{[

t

n

] [
n

t

]}
yields exactly the transitions of the system.

The transitions
[

t

n

] [
n

t

]
,
[

t

n

] [
n

t

] [
t

t

]
, and

[
t

n

] [
n

t

] [
n

n

]
are realizations of

[
t

n

] [
n

t

]
at

1.

87

2. Inductive statements for regular transition systems

Based on the ring topology of a regular transition system R one can characterize

InductiveVtrap(R), InductiveVsiphon (R), InductiveVflow (R) in an alternative way. For this,

recall that v1 . . . vn |=V I1 . . . In for

V = Vtrap if there exists 1 ≤ i ≤ n such that vi ∈ Ii,

V = Vsiphon if there exists no 1 ≤ i ≤ n such that vi ∈ Ii, and

V = Vflow if there exists exactly one 1 ≤ i ≤ n such that vi ∈ Ii.

In other words, all these interpretations can be described in terms of the size of the

set hit = {i ∈ {1, . . . , n} | vi ∈ Ii}: v1 . . . vn |=Vtrap I1 . . . In if and only if |hit | > 0,

v1 . . . vn |=Vsiphon I1 . . . In if and only if |hit | = 0, and v1 . . . vn |=Vflow I1 . . . In if and

only if |hit | = 1.

In a ring, transitions can only make two adjacent agents change their states. Conse-

quently, the size of the set hit can change by at most 2. Moreover, assume x1 . . . xn ⇝T

y1 . . . yn is a realization of
[
xi

yi

] [
xi⊕1

yi⊕1

]
at i. We can observe that

{i ∈ {1, . . . , n} \ {i, i⊕ 1} | xi ∈ Ii} = {i ∈ {1, . . . , n} \ {i, i⊕ 1} | yi ∈ Ii}

because xj = yj for all j /∈ {i, i⊕ 1}. In other words, there is some crucial interaction

between the pattern
[
xi

yi

] [
xi⊕1

yi⊕1

]
and the letters Ii and Ii⊕1 of the statement which renders

the statement non-inductive.

Roughly speaking, for the interpretations Vtrap and Vsiphon and every non-inductive

statement I1 . . . In for this interpretation, there are two adjacent letters Ii Ii⊕1 and

a pattern
[

v

v′

] [
u

u′

]
such that v u satisfies Ii Ii⊕1 and v′ u′ does not. This intuition

translates to rigorous proofs.

For the interpretation Vflow , the construction is more involved. This is because Vflow
needs the size of the set hit to be exactly 1. Thus, whether a configuration v1 . . . vn

satisfies a statement I1 . . . In is a combination of two queries:

∃i . vi ∈ Ii: “Is there at least one index where the configuration letter is part of the

letter of the statement?”

∀j ∈ {1, . . . , n} \ {i} . vj /∈ Ij: “Is there no other index where the configuration letter

is part of the letter of the statement?”

This leads to a more nuanced characterization for InductiveVflow (R).

88

2.7. Topologies

Non-inductive statements for Vtrap and Vsiphon in rings

Definition 2.22: Non-inductive pairs in rings.

Let P be the patterns of a ring R and V some interpretation. We call a pair

⟨A,B⟩ ∈ 2Σ × 2Σ non-inductive for V if there exists
[

v

v′

] [
u

u′

]
∈ P such that

v u |=V A B and v′ u′ ̸|=V A B.

Additionally, to simplify the following statements, we introduce a syntax to refer

to adjacent letters of some statement I1 . . . In ∈
(
2Σ
)∗
; namely, adj(I1 . . . In) =

{⟨In, I1⟩} ∪ {⟨Ii, Ii+1⟩ : i ∈ {1, . . . , n− 1}}. We proceed by describing InductiveVtrap(R)
and InductiveVsiphon (R) for a ring R, specifically. Let us, first, focus on InductiveVtrap(R).
Essentially, any statement that contains a non-inductive pair for Vtrap is part of this set –
with the exception of universally true statements. However, universally true statements

can be identified syntactically since they contain at least one letter that is Σ.

Lemma 2.26. Let P be the patterns of the ring R = ⟨Σ, I, T ⟩. Then

InductiveVtrap(R) =

I ∈ (2Σ \ {Σ})∗
∣∣∣∣∣∣there is ⟨A,B⟩ ∈ adj(I)

that is non-inductive for Vtrap

 . (2.2)

Proof.

“⊆”:
Pick I1 . . . In ∈ InductiveVtrap . There is a transition x1 . . . xn ⇝T y1 . . . yn such that

x1 . . . xn |=Vtrap I1 . . . In and y1 . . . yn ̸|=Vtrap I1 . . . In. In other words, yj /∈ Ij for all
1 ≤ j ≤ n and, therefore, Ij ̸= Σ. Moreover,

[
x1

y1

]
. . .

[
xn

yn

]
is a realization of

[
xi

yi

] [
xi⊕1

yi⊕1

]
at i. From xj = yj for all j ∈ {1, . . . , n}\{i, i⊕ 1} and y1 . . . yn ̸|=Vtrap I1 . . . In follows

that xy /∈ Ij for all j ∈ {1, . . . , n} \ {i, i⊕ 1}. Therefore, either xi ∈ Ii or xi⊕1 ∈ Ii⊕1,
and yi /∈ Ii and yi⊕1 /∈ Ii⊕1. Consequently, the pattern

[
xi

yi

] [
xi⊕1

yi⊕1

]
proves that ⟨Ii, Ii⊕1⟩ is

non-inductive. Thus, I1 . . . In ∈

I ∈ (2Σ \ {Σ})∗
∣∣∣∣∣∣there is ⟨A,B⟩ ∈ adj(I)

that is non-inductive for Vtrap

.

“⊇”:

Pick I1 . . . In ∈

I ∈ (2Σ \ {Σ})∗
∣∣∣∣∣∣there is ⟨A,B⟩ ∈ adj(I)

that is non-inductive for Vtrap

. There is i such

89

2. Inductive statements for regular transition systems

that ⟨Ii, Ii⊕1⟩ is non-inductive for Vtrap . Therefore, there exists
[
xi

yi

] [
xi⊕1

yi⊕1

]
∈ P such

that xi ∈ Ii or xi⊕1 ∈ Ii⊕1, and yi /∈ Ii and yi⊕1 /∈ Ii⊕1. Choose xj, for all j ∈
{1, . . . , n} \ {i, i⊕ 1}, such that xj /∈ Ij. Based on these choices, construct the real-

ization x1 . . . xn ⇝T x1 . . . xi−1 yi yi+1 xi+2 . . . xn (or, if i = n, x1 . . . xn ⇝T

yi⊕1 x2 . . . xn−1 yi) of
[
xi

yi

] [
xi⊕1

yi⊕1

]
at i. This transition proves that I1 . . . In ∈

InductiveVtrap(R) because, by construction, the origin of this transition satisfies the state-

ment and the target does not.

Example 2.31: A non-trap in circular token passing.

Recall the circular token passing system from Example 2.30. In order to capture

this system as a ring, we changed the transitions in such a way that every single

transition does not enforce any more that there is only one unique token. Recall

that, for the interpretation Vtrap , the language ∅∗ {n} ∅∗ {n} ∅∗ is a language

of inductive statements – but only if all transitions enforce the invariant of a

single token (cp. Example 2.9). Specifically, the statement {n} ∅ {n} is not

inductive without this invariant in every transition. According to Lemma 2.26

this means there is one non-inductive pair in adj({n} ∅ {n}) (w. r. t. to the

patterns
{[

t

n

] [
n

t

]}
). For instance, ∅ {n} is non-inductive because of

[
t

n

] [
n

t

]
:

t n |=Vtrap ∅ {n} and n t ̸|=Vtrap ∅ {n}.
Note here that the pairs {n} {n} and {n} ∅ both are not non-inductivea. For the

former, observe that n t |=Vtrap {n} {n}, and, for the latter, t n ̸|=Vtrap {n} ∅.
aOr, in other words, these two pairs are inductive.

For the interpretation Vsiphon , the proof works in the same way. Here, however, any

statement where one letter is Σ is unsatisfiable instead of universally true. We get a

result of the same kind.

Lemma 2.27. Let P be the patterns of the ring R = ⟨Σ, I, T ⟩. Then

InductiveVsiphon (R) =

I ∈ (2Σ \ {Σ})∗
∣∣∣∣∣∣there is ⟨A,B⟩ ∈ adj(I)

that is non-inductive for Vsiphon

 . (2.3)

Proof. The proof works analogously as for Lemma 2.26.

From this observation, it is straightforward to construct DFAs for the languages

90

2.7. Topologies

InductiveVtrap(R) and InductiveVsiphon (R): On the one hand, one can construct a DFA

for the language
(
2Σ \ {Σ}

)∗
with two states. On the other hand, one can construct a

DFA which remembers the first symbol it reads, and, at any moment, the last symbol

it read. If this DFA encounters a non-inductive pair, then it moves into an accept-

ing sink. Otherwise, it may also accept if the last symbol and the first symbol form

a non-inductive pair. Because this automaton needs to remember two symbols at any

moment, it can be constructed with O(
∣∣2Σ∣∣2) states. Since the intersection of these lan-

guages is

I ∈ (2Σ \ {Σ})∗
∣∣∣∣∣∣there is ⟨A,B⟩ ∈ adj(I)

that is non-inductive for Vsiphon

, one can obtain a DFA

for the language itself via the product construction for DFAs.

Corollary 2.5. Let R = ⟨Σ, I, T ⟩ be a ring. One can effectively construct two DFAs,

each of them with O(
∣∣2Σ∣∣2) states, recognizing InductiveVtrap(R) and InductiveVsiphon (R),

respectively.

Corollary 2.6. Let R = ⟨Σ, I, T ⟩ be a ring. One can effectively construct two DFAs,

each of them with O(
∣∣2Σ∣∣2) states, recognizing InductiveVtrap(R) and InductiveVsiphon (R),

respectively.

Inductive statements for Vflow in rings

For the interpretation Vflow the construction is more elaborate. Recall that

v1 . . . vn |=Vflow I1 . . . In if and only if | {i ∈ {1, . . . , n} | vi ∈ Ii}︸ ︷︷ ︸
hit

| = 1.

In a ring, only two adjacent agents can change their state in any transition. Therefore,

for an inductive statement, these state changes must not change the size of the set hit .

Let us illustrate this with an example.

Example 2.32: Flows in circular token passing.

We consider, again, the ring with patterns
{[

t

n

] [
n

t

]}
. Observed that, for the

pairs {n} {n} and {t} {t}, changes according to the pattern of this ring does not

change the size of the set hit . For this, we chart these sets for the pairs, and the

configurations t n and n t:

91

2. Inductive statements for regular transition systems

Pair t n n t

{n} {n} {2} {1}
{t} {t} {1} {2}

For this reason, all statements from the languages {n}∗ and {t}∗ are inductive for
the interpretation Vflow .
There are cases where there is no realization of a pattern such that the origin of

the resulting transition can satisfy the statement. For instance, consider the pair

{t} {n} and the configuration t n. Here the set hit is {1, 2}. Thus, any realization

of the pattern
[

t

n

] [
n

t

]
at some index i cannot render a statement non-inductive if

the i-th and i ⊕ 1-th letters of the statement are {t} {n}. Therefore, {t} {n} is
an inductive statement for the interpretation Vflow since t n ̸|=Vflow {t} {n}.

Based on these observations, we introduce a notion to characterize pairs of letters in

statements which

• do not change the size of the set hit in realizations of the patterns of the ring, or

• already enforce the set hit to have at least two elements for any realization of the

pattern.

Definition 2.23: Compatible patterns for Vflow .

Let P be the patterns of a ring R. We call ⟨A1, A2⟩ compatible with
[

v1

u1

] [
v2

u2

]
for Vflow if either |{i ∈ {1, 2} | vi ∈ Ai}| = |{i ∈ {1, 2} | ui ∈ Ai}| ∈ {0, 1} or

|{i ∈ {1, 2} | vi ∈ Ai}| = 2. Moreover, we call the pair ⟨A1, A2⟩ compatible with P

if ⟨A1, A2⟩ is compatible with
[

v1

u1

] [
v2

u2

]
for Vflow for all

[
v1

u1

] [
v2

u2

]
∈ P .

Based on the results for the interpretations Vtrap and Vsiphon , one would expect that all

inductive statements are those where every adjacent pair is compatible with the patterns

for Vflow . Although all statements where every adjacent pair is compatible are inductive,

there are more. For this, consider the following example.

92

2.7. Topologies

Example 2.33: Flows with incompatible pairs.

Consider a ring R = ⟨{a, b} , I, T ⟩ with patterns P =
{[

a

b

] [
a

b

]}
. We demonstrate

that, in this ring, the statement ∅ {a} ∅ {a, b} is inductive, although the pairs

∅ {a} and {a} ∅ are not compatible with P for Vflow . For this, we give in the

following table all transitions of length 4 and the sets hit for the origin and the

target of these transitions.

hit before Transition hit after

{2, 4} a a a a⇝T b b a a {4}
{2, 4} a a a b⇝T b b a b {4}
{2, 4} a a b a⇝T b b b a {4}
{2, 4} a a b b⇝T b b b b {4}
{2, 4} a a a a⇝T a b b a {4}
{2, 4} b a a a⇝T b b b a {4}
{2, 4} a a a b⇝T a b b b {4}
{2, 4} b a a b⇝T b b b b {4}
{2, 4} a a a a⇝T a a b b {2, 4}
{4} a b a a⇝T a b b b {4}
{2, 4} b a a a⇝T b a b b {2, 4}
{4} b b a a⇝T b b b b {4}
{2, 4} a a a a⇝T b a a b {2, 4}
{2, 4} a a b a⇝T b a b b {2, 4}
{4} a b a a⇝T b b a b {4}
{4} a b b a⇝T b b b b {4}

One letter of this statement is Σ. This counteracts the occurrence of the not

compatible pairs ∅ {a} and {a} ∅. Specifically, any realization of the pattern at

the position of these pairs yields a transition where the origin does not satisfy

this statement. This is because the pattern itself contributes one index to the

set hit and the letter Σ contributes another. Roughly speaking, the index of the

letter Σ is part of every set hit and, for this reason, although there are patterns

that are not compatible with the pair, their realizations at the position of the pair

does not render this statement non-inductive because the patterns necessarily also

93

2. Inductive statements for regular transition systems

contribute a index to the set hit . We call pairs hitting if every pattern is either

compatible with it or contributes at least one index to the set hit .

Definition 2.24: Hitting and missing pairs.

Let P be the patterns of a ring R. We call ⟨A1, A2⟩ hitting for
[

v1

u1

] [
v2

u2

]
∈

P if |{i ∈ {1, 2} | vi ∈ Ai}| > 0 and missing for
[

v1

u1

] [
v2

u2

]
∈ P if

|{i ∈ {1, 2} | vi ∈ Ai}| = 0. Moreover, we call the pair ⟨A1, A2⟩ hitting for P

if ⟨A1, A2⟩ is compatible with or hitting for
[

v1

u1

] [
v2

u2

]
for Vflow for all

[
v1

u1

] [
v2

u2

]
∈ P .

Analogously, we call the pair ⟨A1, A2⟩ missing for P if ⟨A1, A2⟩ is compatible with

or missing for
[

v1

u1

] [
v2

u2

]
for Vflow for all

[
v1

u1

] [
v2

u2

]
∈ P .

Lemma 2.28. Let R be any ring with patterns P . The set
I1 . . . In ∈

(
2Σ
)∗
∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ for exactly one 1 ≤ i ≤ n,

⟨Ij, Ij⊕1⟩ are hitting for all 1 ≤ j ≤ n with j /∈ {i⊖ 1, i} ,

⟨Ii⊖1, Ii⟩ are compatible with P for Vflow , and

⟨Ii, Ii⊕1⟩ are compatible with P for Vflow


only contains inductive statements for Vflow .

Proof. Pick any I1 . . . In from this set. Consider the realization u1 . . . un ⇝T v1 . . . vn

of
[

vj

uj

] [
vj⊕1

uj⊕1

]
at j such that u1 . . . un |=Vflow I1 . . . In. There is exactly one 1 ≤ i ≤ n

such that ui ∈ Ii. Hence, Ii = Σ. If j ∈ {i⊖ 1, i} then v1 . . . vn |=Vflow I1 . . . In

since ⟨Ii⊖1, Ii⟩ and ⟨Ii, Ii⊕1⟩ are compatible with
[

vj

uj

] [
vj⊕1

uj⊕1

]
. Otherwise uj /∈ Ij and

uj⊕1 /∈ Ij⊕1 and, therefore, vj /∈ Ij and vj⊕1 /∈ Ij⊕1 because ⟨Ij, Ij⊕1⟩ must be compatible

with
[

vj

uj

] [
vj⊕1

uj⊕1

]
.

There is an analogous special case for a missing pair which is only surrounded by ∅:

94

2.7. Topologies

Lemma 2.29. Let R be any ring with patterns P . The setI ∈ L(∅+ A B ∅∗|∅∗ A B ∅+|B ∅+ A)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing,

⟨A, ∅⟩ is compatible with P for Vflow ,

⟨∅, B⟩ is compatible with P for Vflow


∪{A B|⟨A,B⟩ and ⟨B,A⟩ are missing}

only contains inductive statements for Vflow .

Proof. Pick any I1 . . . In from this set. Consider the realization u1 . . . un ⇝T v1 . . . vn

of
[

vj

uj

] [
vj⊕1

uj⊕1

]
at j such that u1 . . . un |=Vflow I1 . . . In. If Ij = ∅ and Ij⊕1 = ∅, then

vj /∈ Ij and vj⊕1 /∈ Ij⊕1 and, thus, v1 . . . vn |=Vflow I1 . . . In because uk = vk for all

k /∈ {j, j ⊕ 1}.

Otherwise, Ij ̸= ∅ or Ij⊕1 ̸= ∅. There is exactly one 1 ≤ i ≤ n such that ui ∈ Ii.

Consequently, Ii is either A or B. Therefore,
[

vj

uj

] [
vj⊕1

uj⊕1

]
is compatible with ⟨Ij, Ij⊕1⟩

because ⟨Ij, Ij⊕1⟩ cannot be a missing pair for
[

vj

uj

] [
vj⊕1

uj⊕1

]
since, then, ⟨Ij, Ij⊕1⟩ = ⟨A,B⟩

or ⟨Ij, Ij⊕1⟩ = ⟨B,A⟩ but either vj ∈ Ij or vj⊕1 ∈ Ij⊕1. Again, v1 . . . vn |=Vflow I1 . . . In
follows because the size of the hit set does not change.

Based on this, we can characterize InductiveVflow (R).

Lemma 2.30. Let P be the patterns of a ring R = ⟨Σ, I, T ⟩. Then, the set of all

95

2. Inductive statements for regular transition systems

inductive statements for Vflow is

{ε} ∪ 2Σ

∪
{
I ∈

(
2Σ
)∗ | all ⟨A,B⟩ ∈ adj(I) are compatible with P

}

∪


I1 . . . In ∈

(
2Σ
)∗
∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ for exactly one 1 ≤ i ≤ n,

⟨Ij, Ij⊕1⟩ are hitting for all 1 ≤ j ≤ n with j /∈ {i⊖ 1, i} ,

⟨Ii⊖1, Ii⟩ are compatible with P for Vflow , and

⟨Ii, Ii⊕1⟩ are compatible with P for Vflow


∪

I ∈ L(∅+ A B ∅∗|∅∗ A B ∅+|B ∅+ A)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing,

⟨A, ∅⟩ is compatible with P for Vflow ,

⟨∅, B⟩ is compatible with P for Vflow ,


∪{A B|⟨A,B⟩ and ⟨B,A⟩ are missing}

∪
(
2Σ
)∗

Σ
(
2Σ
)∗

Σ
(
2Σ
)∗
.

(2.4)

Proof.

“⊆” Observe that

{ε} ∪ 2Σ ⊆ InductiveVflow (R) and
(
2Σ
)∗

Σ
(
2Σ
)∗

Σ
(
2Σ
)∗ ⊆ InductiveVflow (R).

The latter follows immediately from the observation that, for any

I1 . . . In ∈
(
2Σ
)∗

Σ
(
2Σ
)∗

Σ
(
2Σ
)∗
,

there is no w ∈ Σn such that w |=Vflow I1 . . . In.
Lemma 2.28 shows that

I1 . . . In ∈
(
2Σ
)∗
∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ for exactly one 1 ≤ i ≤ n,

⟨Ij, Ij⊕1⟩ are hitting for all 1 ≤ j ≤ n with j /∈ {i⊖ 1, i} ,

⟨Ii⊖1, Ii⟩ are compatible with P for Vflow , and

⟨Ii, Ii⊕1⟩ are compatible with P for Vflow


only contains words from InductiveVflow (R).

96

2.7. Topologies

Similarly, Lemma 2.29 shows thatI ∈ L(∅+ A B ∅∗|∅∗ A B ∅+|B ∅+ A)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing,

⟨A, ∅⟩ is compatible with P for Vflow ,

⟨∅, B⟩ is compatible with P for Vflow ,


∪{A B|⟨A,B⟩ and ⟨B,A⟩ are missing}

only contains words from InductiveVflow (R).
Pick now any I1 . . . In from

{
I ∈

(
2Σ
)∗ | all ⟨A,B⟩ ∈ adj(I) is compatible with P for Vflow

}
and any realization u1 . . . un ⇝T v1 . . . vn of

[
vj

uj

] [
vj⊕1

uj⊕1

]
at j such that u1 . . . un |=Vflow

I1 . . . In. This means that there is exactly one 1 ≤ i ≤ n such that ui ∈ Ii. Distinguish
two cases:

i /∈ {j ⊖ 1, j}: Thus, uj /∈ Ij and uj⊕1 /∈ Ij⊕1 and, because Ij Ij⊕1 is compatible with[
vj

uj

] [
vj⊕1

uj⊕1

]
and vj /∈ Ij and vj⊕1 /∈ Ij⊕1. v1 . . . vn |=Vflow I1 . . . In follows by

vi = ui ∈ Ii and vk = uk for all 1 ≤ k ≤ n such that k /∈ {j, j ⊕ 1}.

i ∈ {j ⊖ 1, j}: Now either vj ∈ Ij and vj⊕1 ∈ Ij⊕1 (but not both), because Ij Ij⊕1 is

compatible with
[

vj

uj

] [
vj⊕1

uj⊕1

]
. Again, because vk = uk for all 1 ≤ k ≤ n such that

k /∈ {j, j ⊕ 1}, it follows that v1 . . . vn |=Vflow I1 . . . In.

“⊇” It remains to show that (2.4) contains all words of InductiveVflow (R). For the sake

of contradiction, assume there is some I1 . . . In ∈ InductiveVflow (R) that is not part of
the set (2.4). Again, distinguish two cases:

With Σ: There is exactly one 1 ≤ j ≤ n such that Ij = Σ. Since I1 . . . In must not be

part of
I1 . . . In ∈

(
2Σ
)∗
∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ for exactly one 1 ≤ i ≤ n,

⟨Ij, Ij⊕1⟩ are hitting for all 1 ≤ j ≤ n with j /∈ {i⊖ 1, i} ,

⟨Ii⊖1, Ii⟩ are compatible with P for Vflow , and

⟨Ii, Ii⊕1⟩ are compatible with P for Vflow



97

2. Inductive statements for regular transition systems

distinguish two more cases:

If ⟨Ij, Ij⊕1⟩ (⟨Ij⊖1, Ij⟩) is not compatible with
[
uj

vj

] [
uj ⊕ 1

vj⊕1

]
(
[
uj⊖1

vj⊖1

] [
uj

vj

]
), then one can

pick, for any 1 ≤ k ≤ n such that k /∈ {j, j ⊕ 1} (k /∈ {j, j ⊖ 1}), some uk /∈ Σ \ Ik.
This gives the transition u1 . . . un ⇝T v1 . . . vn such that u1 . . . un |=Vflow
I1 . . . In and v1 . . . vn ̸|=Vflow I1 . . . In because vj ∈ Ij and vj⊕1 ∈ Ij⊕1 (vj ∈ Ij
and vj⊖1 ∈ Ij⊖1).

Otherwise, there is 1 ≤ k ≤ n with k /∈ {j ⊖ 1, j} such that ⟨Ik, Ik⊕1⟩ is not hitting.
Thus, there is a pattern

[
uk

vk

] [
uk⊕1

vk⊕1

]
such that uk /∈ Ik and uk⊕1 /∈ Ik⊕1 but either

vk ∈ Ik or vk⊕1 ∈ Ik⊕1 (or both). Choose an arbitrary uj and, as before, for any

1 ≤ x ≤ n such that x /∈ {i, k ⊕ 1, k} some ux /∈ Σ \ Ix. This gives u1 . . . un ⇝T
v1 . . . vn such that u1 . . . un |=Vflow I1 . . . In and v1 . . . vn ̸|=Vflow I1 . . . In.

Without Σ: Since I1 . . . In must not be part of

{
I ∈

(
2Σ
)∗ | all ⟨A,B⟩ ∈ adj(I) are compatible with P

}
,

there is ⟨Ii, Ii⊕1⟩ that is not compatible with P . Thus, there is
[
ui

vi

] [
ui⊕1

vi⊕1

]
∈ P

such that ⟨Ii, Ii⊕1⟩ is not compatible with
[
ui

vi

] [
ui⊕1

vi⊕1

]
. Here, distinguish, again, two

more cases.

If |{j {i, i⊕ 1} | uj ∈ Ij}| = 1 but |{j {i, i⊕ 1} | vj ∈ Ij}| ≠ 1, then, as before, one

can construct a transition u1 . . . un ⇝T v1 . . . vn as an instance of this pattern

which disproves that I1 . . . In is an inductive statement for Vflow . Specifically, one
can choose ux = vx /∈ Ix for all x ∈ {1, . . . , n} \ {i, i⊕ 1} because there is no letter

that is Σ.

Otherwise, ⟨Ii, Ii⊕1⟩ is missing. Thus, because the pattern
[
ui

vi

] [
ui⊕1

vi⊕1

]
is not compat-

ible with this pair, |{j ∈ {i, i⊕ 1} | uj ∈ Ij}| = 0 and |{j ∈ {i, i⊕ 1} | vj ∈ Ij}| >
0. However, I1 . . . In must not be part ofI ∈ L(∅+ A B ∅∗|∅∗ A B ∅+|B ∅+ A)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing,

⟨A, ∅⟩ is compatible with P for Vflow ,

⟨∅, B⟩ is compatible with P for Vflow ,


∪{A B|⟨A,B⟩ and ⟨B,A⟩ are missing} .

98

2.7. Topologies

Thus, there is at least one j ∈ {1, . . . , n} \ {i, i⊕ 1} such that Ij ̸= ∅. Choose

uj = vj ∈ Ij and uk = vk /∈ Ik for all 1 ≤ k ≤ n with k /∈ {i, i⊕ 1, j}. This

yields a transition u1 . . . un ⇝T v1 . . . vn such that u1 . . . un |=Vflow I1 . . . In

and v1 . . . vn ̸|=Vflow I1 . . . In. Specifically, |{m ∈ {i, i⊕ 1} | um ∈ Im}| > 0 and

vj ∈ Ij.

We can use this characterization to construct an automaton that recognizes all in-

ductive statements for Vflow . Conceptually, the automaton stores the first letter of the

statement and the last letter that was read. Based on this information, all of the dif-

ferent sets from Lemma 2.30 can be recognized with a constant amount of additional

information.

Corollary 2.7. One can effectively construct a DFA that recognizes InductiveVflow (R)
with O(

∣∣2Σ∣∣2) states.
Proof. Consider Q = 2Σ ×

(
2Σ ∪ {□}

)
∪ {q0} and δ which is defined as follows:

• δ(q0, I) = ⟨I,□⟩,

• δ(⟨I,□⟩ , A) = ⟨I, A⟩, and

• δ(⟨I, B⟩ , A) = ⟨I, A⟩.

Consider the different sets from Lemma 2.30:

• For the statements of
{
I ∈

(
2Σ
)∗ | all ⟨A,B⟩ ∈ adj(I) are compatible with P

}
, fix

Qα = {⊤,⊥} and α : (Q×Qα)× 2Σ → Qα with

– α(⟨q0,⊤⟩ , A) = ⊤

– α(⟨⟨B,□⟩ ,⊤⟩ , A) =

⊤ if ⟨B,A⟩ is compatible with P for Vflow

⊥ otherwise

– α(⟨⟨S,B⟩ ,⊤⟩ , A) =

⊤ if ⟨B,A⟩ is compatible with P for Vflow

⊥ otherwise

– α(⟨q,⊥⟩ , A) = ⊥.

99

2. Inductive statements for regular transition systems

Additionally, set Fα =

⟨q,⊤⟩ ∈ Q× {⊤}
∣∣∣∣∣∣q = ⟨A,B⟩ and ⟨B,A⟩

is compatible with P for Vflow

 and

qα0 = ⊤.

• For the statements of
I1 . . . In ∈

(
2Σ
)∗
∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ for exactly one 1 ≤ i ≤ n,

⟨Ij, Ij⊕1⟩ are hitting for all 1 ≤ j ≤ n with j /∈ {i⊖ 1, i} ,

⟨Ii⊖1, Ii⟩ are compatible with P for Vflow , and

⟨Ii, Ii⊕1⟩ are compatible with P for Vflow


,

fix Qβ = {0, 1,⊥} and β : (Q×Qβ)× 2Σ → Qβ with

– β(⟨q0, 0⟩ , A) =

0 if A ̸= Σ

1 otherwise

– β(⟨⟨B,□⟩ , 0⟩ , A) = 0 if A ̸= Σ and B ̸= Σ and ⟨B,A⟩ hitting

– β(⟨⟨Σ,□⟩ , 1⟩ , A) = 1 if A ̸= Σ and ⟨Σ, A⟩ is compatible with P for Vflow

– β(⟨⟨B,□⟩ , 0⟩ ,Σ) = 1 if B ̸= Σ and ⟨B,Σ⟩ is compatible with P for Vflow

– β(⟨⟨S,B⟩ , 0⟩ , A) = 0 if A ̸= Σ and B ̸= Σ and ⟨B,A⟩ hitting

– β(⟨⟨S,B⟩ , 0⟩ ,Σ) = 0 if B ̸= Σ and ⟨B,Σ⟩ is compatible with P for Vflow

– β(⟨⟨S,B⟩ , 1⟩ , A) = 1 if A ̸= Σ and B ̸= Σ and ⟨B,A⟩ hitting

– β(⟨⟨S,B⟩ , 1⟩ ,Σ) = 1 if B ̸= Σ and ⟨B,Σ⟩ is compatible with P for Vflow

– β(⟨⟨S,Σ⟩ , 1⟩ , B) = 1 if B ̸= Σ and ⟨Σ, B⟩ is compatible with P for Vflow

– β(⟨q, qβ⟩ , A) = ⊥ in all other cases

Additionally, set qβ0 = 0 and

Fβ =

⟨q, 1⟩ ∈ Q× {1}
∣∣∣∣∣∣∣∣

q = ⟨Σ, A⟩ , ⟨A,Σ⟩ is compatible with P for Vflow
or q = ⟨B,Σ⟩ , ⟨Σ, B⟩ is compatible with P for Vflow
or q = ⟨A,B⟩ , B ̸= Σ, A ̸= Σ, ⟨B,A⟩ is hitting

 .

100

2.7. Topologies

• For the statements ofI ∈ L(∅+ A B ∅∗|∅∗ A B ∅+|B ∅+ A)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing,

⟨A, ∅⟩ is compatible with P for Vflow ,

⟨∅, B⟩ is compatible with P for Vflow ,


∪{A B|⟨A,B⟩ and ⟨B,A⟩ are missing} ,

define adequate10 Qγ, γ, Fγ, and q
γ
0 .

• For the statements of (
2Σ
)∗

Σ
(
2Σ
)∗

Σ
(
2Σ
)∗
,

define adequate Qϵ, ϵ, Fϵ, and q
ϵ
0.

Then, the DFA is 〈
Q×Qα ×Qβ ×Qγ ×Qϵ, q

′
0, 2

Σ, δ′, F
〉

where q′0 =
〈
q0, q

α
0 , q

β
0 , q

γ
0 , q

ϵ
0

〉
,

δ′(⟨q, qα, qβ, qγ, qϵ⟩ , A)

= ⟨δ(q, A), α((q, qα) , A), β((q, qβ) , A), γ((q, qγ) , A), ϵ((q, qϵ) , A)⟩ ,

and

F ′ =


⟨q, qα, qβ, qγ, qϵ⟩ ∈ Q×Qα ×Qβ ×Qγ ×Qϵ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q ∈ {q0} ∪
(
2Σ × {□}

)
or ⟨q, qα⟩ ∈ Fα

or ⟨q, qβ⟩ ∈ Fβ

or ⟨q, qγ⟩ ∈ Fγ

or ⟨q, qϵ⟩ ∈ Fϵ


.

The correctness of the construction is an immediate consequence of Lemma 2.30.

10It is only necessary to observe here that a constant amount of information (in addition to the infor-
mation from Q) suffices to recognize this language – for instance, whether the word started with a
non-empty sequence of ∅, whether one encountered two (adjacent) letters different than ∅, and so
on.

101

2. Inductive statements for regular transition systems

The bow topology

We consider a slight variation of the ring topology – bows. While a ring is a continuous,

seamless band of agents, a bow allows for a seam: one single index that is allowed to

interact differently with its neighbors than all the others.

Example 2.2 without the invariant of a single token in every transition is a bow. The

reason for this is that the first agent does not accept a token from the last agent. This

behavior distinguishes the first agent, which, thus, becomes the seam of this bow. We

(arbitrarily) chose the first agent as the seam for all bows.

Roughly speaking, a bow is specified with three sets of patterns: PL, PR, and PM .

Here, PR captures the interactions of the first index with its right neighbor, PL models

the interaction with the last agent (which is on the left of the first agent), and the

patterns in PM can be realized for all other positions.

Definition 2.25: Bow topology.

We call any R = ⟨Σ, I, T ⟩ a bow if there are finite sets PL, PR, PM ⊆ (Σ× Σ) ×
(Σ× Σ) such that

⋃
〈[

v

v′

]
,

[
u

u′

]〉
∈PM

I
[

v

v′

] [
u

u′

]
I∗ ∪

⋃
〈[

v

v′

]
,

[
u

u′

]〉
∈PL

[
u

u′

]
I∗
[

v

v′

]
∪

⋃
〈[

v

v′

]
,

[
u

u′

]〉
∈PR

[
v

v′

] [
u

u′

]
I∗

where I =
{[

v

v

]
: v ∈ Σ

}
is the set of all transitions.

Example 2.34: Token passing as a bow.

Recall Example 2.2 in the variant where the transitions do not enforce a single

token. Remember that the initial language of this system is t n∗ and the transitions

of the system are
([

t

t

]
|
[
n

n

])∗ [
t

n

] [
n

t

] ([
t

t

]
|
[
n

n

])∗
. Thus, this system is a bow with

PM = PR =
{〈[

t

n

]
,
[
n

t

]〉}
and PL = ∅.

As before for rings, we can now capture the set of all inductive statements for the

concrete interpretations in terms of neighboring letters in the statement. Due to the

special structure of a bow, the first agent and its neighbors are treated separately.

102

2.7. Topologies

Regardless, the same arguments as for rings apply to bows. Therefore, we omit proofs

for the following results since these are straightforward adaptations of the proofs before.

Non-inductive statements for Vtrap and Vsiphon in bows

Definition 2.26: Non-inductive pairs in bows.

Let PL, PR, PM be the patterns of the bow R = ⟨Σ, I, T ⟩ and V some interpreta-

tion. We call a pair ⟨A,B⟩ ∈ 2Σ × 2Σ a

• non-inductive left pair for V if there exists
[

v

v′

] [
u

u′

]
∈ PL such that v u |=V

A B and v′ u′ ̸|=V A B,

• non-inductive right pair for V if there exists
[

v

v′

] [
u

u′

]
∈ PR such that v u |=V

A B and v′ u′ ̸|=V A B, and

• non-inductive middle pair for V if there exists
[

v

v′

] [
u

u′

]
∈ PM such that

v u |=V A B and v′ u′ ̸|=V A B.

To formulate the results we introduce slight variations of the concept of adjacent

indices. Namely, we distinguish the pair that is the first and second letter as well

as the last and first letter (and all other adjacent pairs as well). This leads to the

definitions adjL(I1 . . . In) = ⟨In, I1⟩, adjM(I1 . . . In) = {⟨I2, I3⟩ , . . . , ⟨In−1, In⟩}, and
adjR(I1 . . . In) = ⟨I1, I2⟩. In the same fashion as for rings before, we obtain now the

following results:

Lemma 2.31. Let PL, PR, PM be the patterns of the bow R = ⟨Σ, I, T ⟩ and V be either

Vtrap or Vsiphon . Then, the set of non-inductive statements for V isI ∈ (2Σ \ {Σ})∗
∣∣∣∣∣∣there is ⟨A,B⟩ ∈ adjM(I)

that is a non-inductive middle pair for V


∪
{
I ∈

(
2Σ \ {Σ}

)∗∣∣adjL(I)is a non-inductive left pair for V
}

∪
{
I ∈

(
2Σ \ {Σ}

)∗∣∣adjR(I)is a non-inductive right pair for V
}
.

(2.5)

103

2. Inductive statements for regular transition systems

Inductive statements for Vflow in bows

To present a result akin to Lemma 2.30, we introduce some additional notation. Specifi-

cally, we consider the statements that contain the letter Σ. For these, we distinguish four

individual sets of statements – all of which contain the letter Σ at different positions:

First letter:

F =


I1 . . . In ∈

(
2Σ
)∗
∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ if and only if i = 1,

⟨Ij, Ij+1⟩ are hitting for PM for all 1 < j < n,

⟨In, I1⟩ is compatible with PL for Vflow ,

⟨I1, I2⟩ is compatible with PR for Vflow



Second letter:

S =


I1 . . . In ∈

(
2Σ
)∗
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ if and only if i = 2,

⟨Ij, Ij+1⟩ are hitting for PM for all 2 < j < n,

⟨In, I1⟩ is hitting for PL,

⟨I1, I2⟩ is compatible with PR for Vflow ,

⟨I2, I3⟩ is compatible with PM for Vflow



In the middle:

M =



I1 . . . In ∈
(
2Σ
)∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ for exactly one 2 < i < n,

⟨Ij, Ij+1⟩ are hitting for PM for all 1 < j < i− 2,

⟨Ij, Ij+1⟩ are hitting for PM for all i+ 1 < j < n,

⟨Ii−1, Ii⟩ is compatible with PM for Vflow ,

⟨Ii, Ii+1⟩ is compatible with PM for Vflow ,

⟨In, I1⟩ is hitting for PL,

⟨I1, I2⟩ is hitting for PR


104

2.7. Topologies

Last letter:

L =


I1 . . . In ∈

(
2Σ
)∗
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ii = Σ if and only if i = n,

⟨Ij, Ij+1⟩ are hitting for PM for all 1 < j < n− 1,

⟨In−1, In⟩ is compatible with PM for Vflow ,

⟨In, I1⟩ is compatible with PL for Vflow ,

⟨I1, I2⟩ is hitting for PR


Similar to the statements of Lemma 2.29, we consider statements that have a single

adjacent pair of non-empty letters. For these, we also have to consider the various

positions in which this single adjacent pair of non-empty letters can be:

First:

F ′ =

I ∈ L(A B ∅+)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing for PR

⟨B, ∅⟩ is compatible with PM for Vflow
⟨∅, A⟩ is compatible with PL for Vflow


Second:

S ′ =

I ∈ L(∅ A B ∅+)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing for PM

⟨B, ∅⟩ is compatible with PM for Vflow
⟨∅, A⟩ is compatible with PR for Vflow


Middle:

M ′ =

I ∈ L(∅ ∅+ A B ∅+)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing for PM

⟨B, ∅⟩ is compatible with PM for Vflow
⟨∅, A⟩ is compatible with PM for Vflow


End:

E ′ =

I ∈ L(∅+ A B)

∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing for PM

⟨B, ∅⟩ is compatible with PL for Vflow
⟨∅, A⟩ is compatible with PM for Vflow



105

2. Inductive statements for regular transition systems

Broken:

B′ =

I ∈ L(B ∅+ A)
∣∣∣∣∣∣∣∣
⟨A,B⟩ is missing for PL

⟨B, ∅⟩ is compatible with PR for Vflow
⟨∅, A⟩ is compatible with PM for Vflow


Alone:

A′ =

A B ∈
(
2Σ
)2∣∣∣∣∣∣ ⟨A,B⟩ is missing for PR

⟨B,A⟩ is missing for PL


Lemma 2.32. Let PL, PM , PR be the patterns of a bow R = ⟨Σ, I, T ⟩. Then, the set of

all inductive statements for Vflow is

{ε} ∪ 2Σ

∪

I ∈
(
2Σ
)∗ | all ⟨A,B⟩ ∈ adjM(I) are compatible with PM for Vflow

and adjL(I) is compatible with PL for Vflow
and adjR(I) is compatible with PR for Vflow


∪F ∪ S ∪M ∪ L

∪F ′ ∪ S ′ ∪M ′ ∪ E ′ ∪B′ ∪ A′

∪
(
2Σ
)∗

Σ
(
2Σ
)∗

Σ
(
2Σ
)∗
.

(2.6)

By the same construction as for rings, these observations lead to automata that rec-

ognize inductive statements for the interpretations Vtrap , Vsiphon , and Vflow .

Corollary 2.8. Let R = ⟨Σ, I, T ⟩ be a bow. For V ∈ {Vtrap ,Vsiphon ,Vflow}, one can

effectively construct a DFA with O(
∣∣2Σ∣∣2) states for InductiveV(R).

Crowd

A crowd represents a collection of anonymous agents. Every transition of this topology

consists of two parts: one part is an interaction of a fixed number of agents, and the

other part is a collection of state updates for all other agents. One can understand such

a transition as a small number of agents proposing some change to which all other agents

have to react to. However, if there is one agent that cannot react to this change, it must

not be done.

Let us start with a rough introduction of the model and two examples. To this end,

106

2.7. Topologies

we only consider transitions in which a single agent proposes some change
[
u

v

]
. All

other agents react by performing one change in
{[

u1

v1

]
, . . . ,

[
uk

vk

]}
. In this way, a pair〈[

u

v

]
,
{[

u1

v1

]
, . . . ,

[
uk

vk

]}〉
corresponds to the transitions

([
u1

v1

]
| . . . |

[
uk

vk

])∗ [
u

v

] ([
u1

v1

]
| . . . |

[
uk

vk

])∗
.

Note here that one single agent is changing its state from u to v and all other agents

pick any change in
{[

u1

v1

]
, . . . ,

[
uk

vk

]}
.

We start with two examples. The first one is a basic mutual exclusion algorithm. In

this algorithm, we allow an atomic global check of the state of all other agents and, if

none of them is in a designated critical section, the checking agent may advance into

this critical section. This example illustrates that the reaction of all other agents is more

than a broadcast because it can be used to check global conditions: in this case, we use

the reaction to check that no agent is currently in the critical section.

Example 2.35: Mutual Exclusion.

Consider a set of agents where each agent is in one of two states; either the agent is

idling (i) or the agent is in a critical section (c). Initially, all agents are idling and at

any moment in time if no other agent is in the critical state an agent may advance

into it. Any agent in the critical state might return to the idle state at any moment

in time. The regular transition system to model this algorithm is straightforward.

Choose {i, c} as the alphabet, the initial language to be i∗, and the set of all

transitions as the regular language
[
i

i

]∗ [
i

c

] [
i

i

]∗
|
([

i

i

]
|
[
c

c

])∗ [
c

i

] ([
i

i

]
|
[
c

c

])∗
. This

example can be modeled as a crowd. It suffices to consider two pairs to obtain the

same transitions: 〈[
i

c

]
,
{[

i

i

]}〉
and

〈[
c

i

]
,
{[

i

i

]
,
[
c

c

]}〉
.

Note that in this example the first pair models an atomic global check of some

condition on all other agents. The second pattern only sends an informative

broadcast of the state change – to which no agent reacts.

Our second example is taken from the world of cache protocols. Namely, we model

the MESI protocol as it is described in [Del00b]. In this example, the transitions work as

local changes that emit broadcasts: particularly, the reaction of the other agents never

107

2. Inductive statements for regular transition systems

restricts a local agent from executing some transition.

Example 2.36: MESI.

In the MESI cache coherence protocol, there are four distinct states for each cache

cell. These states represent a cell that does not hold any value for the considered

memory address (denoted by i for invalid), a cell that holds an exclusive value

among all cache cells which agrees with the value for that memory location in the

permanent memory (denoted by e), a cell that holds an exclusive value among all

cache cells which disagrees with the value of the memory location in the permanent

memory (denoted by m), and, finally, a cell that does hold value for some memory

location but this value might also be recorded in a different cell (denoted by

s). Initially, no cell holds a value of the memory address. Therefore, the initial

language is i∗. The protocol allows for five different operations for a single cached

address. These operations are two reading operations, distinguished by the fact

that the cache cell holds some value for the address or not. In the first case, this

means the cell is observed to be in one of the three states e,m, s while no cell

changes its value. We call this a hit because the value of the address is in the

cache. In the latter case, no other cell changes its value but the cell that is read

now holds the value of the memory address; thus, it moves into state s. This case

is called a miss because the value must be read from the memory address and was

not present in the cache. The languages that capture these behaviors are

Read Hit:
([

i

i

]
|
[
e

e

]
|
[
m

m

]
|
[
s

s

])∗ ([
e

e

]
|
[
m

m

]
|
[
s

s

]) ([
i

i

]
|
[
e

e

]
|
[
m

m

]
|
[
s

s

])∗
Read Miss:

([
i

i

]
|
[
e

s

]
|
[
m

s

]
|
[
s

s

])∗ [
i

s

] ([
i

i

]
|
[
e

s

]
|
[
m

s

]
|
[
s

s

])∗
Additionally, there are two writing operations, again distinguished by the fact that

the cache cell already holds some value for that address or not. Here, the first

case moves the cache cell into the state m if it was the only cell to hold the value

of the address; that is if the cell was in either state m or e. If, however, the value

was shared among multiple cells it is written into the actual memory and all but

the addressed cache cell invalidate their value. In consequence, the addressed cell

moves into state e while all others move into state i. The same behavior can be

observed if the addressed cell does not hold a value for the memory; i.e., is in state

i. Again, let us give the languages that model these situations here:

108

2.7. Topologies

Write Hit:

([
i

i

]
|
[
e

e

]
|
[
m

m

]
|
[
s

s

])∗ [
m

m

] ([
i

i

]
|
[
e

e

]
|
[
m

m

]
|
[
s

s

])∗
∪
([

i

i

]
|
[
e

e

]
|
[
m

m

]
|
[
s

s

])∗ [
e

m

] ([
i

i

]
|
[
e

e

]
|
[
m

m

]
|
[
s

s

])∗
∪
([

i

i

]
|
[
e

i

]
|
[
m

i

]
|
[
s

i

])∗ [
s

e

] ([
i

i

]
|
[
e

i

]
|
[
m

i

]
|
[
s

i

])∗
Write Miss:

([
i

i

]
|
[
e

i

]
|
[
m

i

]
|
[
s

i

])∗ [
i

e

] ([
i

i

]
|
[
e

i

]
|
[
m

i

]
|
[
s

i

])∗
Finally, we also allow for the fact that the cache cell is written with some value of

a different address. This simply means the cell moves from any stage to the state

i while all other cells maintain their current state:

Replacement:
([

i

i

]
|
[
e

e

]
|
[
m

m

]
|
[
s

s

])∗ ([
e

i

]
|
[
m

i

]
|
[
s

i

]) ([
i

i

]
|
[
e

e

]
|
[
m

m

]
|
[
s

s

])∗
This system can now equally be represented as a crowd. To this end, let us give

the patterns that produce the same languages as described above.

Read Hit:

〈[
e

e

]
,
{[

i

i

]
,
[
e

e

]
,
[
m

m

]
,
[
s

s

]}〉
〈[

m

m

]
,
{[

i

i

]
,
[
e

e

]
,
[
m

m

]
,
[
s

s

]}〉
〈[

s

s

]
,
{[

i

i

]
,
[
e

e

]
,
[
m

m

]
,
[
s

s

]}〉
Read Miss:

〈[
i

s

]
,
{[

i

i

]
,
[
e

s

]
,
[
m

s

]
,
[
s

s

]}〉

Write Hit:

〈[
m

m

]
,
{[

i

i

]
,
[
e

e

]
,
[
m

m

]
,
[
s

s

]}〉
〈[

e

m

]
,
{[

i

i

]
,
[
e

e

]
,
[
m

m

]
,
[
s

s

]}〉
〈[

s

e

]
,
{[

i

i

]
,
[
e

i

]
,
[
m

i

]
,
[
s

i

]}〉
Write Miss:

〈[
i

e

]
,
{[

i

i

]
,
[
e

i

]
,
[
m

i

]
,
[
s

i

]}〉

Replacement:

〈[
m

i

]
,
{[

i

i

]
,
[
e

e

]
,
[
m

m

]
,
[
s

s

]}〉
〈[

e

i

]
,
{[

i

i

]
,
[
e

e

]
,
[
m

m

]
,
[
s

s

]}〉
〈[

s

i

]
,
{[

i

i

]
,
[
e

e

]
,
[
m

m

]
,
[
s

s

]}〉

In the following, we give a broader definition of this topology than these examples

need. The idea of the general definition is that not only a single agent can execute a

109

2. Inductive statements for regular transition systems

local change, but also a finite set of agents.

Definition 2.27: Crowd topology.

Let Πk describe the set of all permutations of the set {1, . . . , k}. We call p =〈[
u1

v1

]
, . . . ,

[
uk

vk

]
,
{[

s1

t1

]
, . . . ,

[
sm

tm

]}〉
a k-ary pattern. We define the language of p as

L(p) =
⋃

π∈Πk

R∗
[
uπ(1)

vπ(1)

]
R∗
[
uπ(2)

vπ(2)

]
R∗ . . . R∗

[
uπ(k)

vπ(k)

]
R∗

where R =
([

s1

t1

]
| . . . |

[
sm

tm

])
.

We call any R = ⟨Σ, I, T ⟩ a k-crowd if L(T) =
⋃

p∈P L(p) for some finite set P

of k-ary patterns.

Recall that for rings one only needed to check adjacent letters of any statement. This

is different for crowds where agents are anonymous. This means, that for any transition

we obtain other transitions of the system by permuting the letters of the transition.

More formally, we observe that[
u1

v1

]
. . .

[
un

vn

]
∈ L(T) if and only if

[
uπ(1)

vπ(1)

]
. . .

[
uπ(n)

vπ(n)

]
∈ L(T) for all π ∈ Πn. (2.7)

Hence, with respect to crowds, any statement for the interpretations Vtrap , Vsiphon ,
and Vflow can be reordered arbitrarily while maintaining whether it is a member of

InductiveV(R).

Lemma 2.33. Let ⟨Σ, I, T ⟩ be a k-crowd and I1 . . . In ∈ InductiveV(R) for any

V ∈ {Vtrap ,Vsiphon ,Vflow}. Then Iπ(1) . . . Iπ(n) ∈ InductiveV(R) for all π ∈ Πn.

Proof. Assume, for the sake of contradiction, that there exists a counterexample to

the statement of the lemma. That means, we have I1 . . . In ∈ InductiveV(R) and

π ∈ Πn such that Iπ(1) . . . Iπ(n) /∈ InductiveV(R). Hence, there exists u1 . . . un ⇝T

v1 . . . vn with u1 . . . un |=V Iπ(1) . . . Iπ(n) but v1 . . . vn ̸|=V Iπ(1) . . . Iπ(n).

uπ(1) . . . uπ(n) ⇝T vπ(1) . . . vπ(n) is also a transition because π−1 ∈ Πn is a per-

mutation and (2.7). The words accepted by the interpretations Vtrap ,Vsiphon ,Vflow are

closed under permutations. Thus, uπ−1(1) . . . uπ−1(n) |=V Iπ−1(π(1)) . . . Iπ−1(π(n)) and

vπ−1(1) . . . vπ−1(n) ̸|=V Iπ−1(π(1)) . . . Iπ−1(π(n)). This contradicts the assumption that

I1 . . . In = Iπ−1(π(1)) . . . Iπ−1(π(n)) ∈ InductiveV(R).

110

2.7. Topologies

This means InductiveV(R) is closed under reordering of the letters of any statement

for the interpretations that we consider. In other words, for every statement, the order of

its letters is not important but only their occurrence. Specifically, we can establish that,

for crowds, there is a cut-off point such that more occurrences of the same letter do not

invalidate membership in InductiveV(R) for the interpretations V ∈ {Vtrap ,Vsiphon ,Vflow}.
Namely, this cut-off point for any k-crowd is k+1 for Vtrap or Vsiphon and k+3 for Vflow .
Intuitively, the idea is that every interaction between a statement and transition can

already be observed if letters in the statement occur fewer than k + 1 (k + 3) times. To

make this idea more precise we introduce notation that describes counting letters up to

some threshold.

Definition 2.28: Counting occurrences.

We let occA(I1 . . . In) denote the set |{i ∈ {1, . . . , n} | Ii = A}| and occ≤tA (I)

the set min {occA(I), t}. Moreover, we generalize this to occ(I) : 2Σ → N with

occ(I)(A) = occA(I) and occ≤t(I) : 2Σ → {0, . . . , t} where occ≤t(I)(A) = occ≤tA (I)

for all A ∈ 2Σ.

Now, we characterize sets of inductive statements based on this notion.

Lemma 2.34. For all k-crowds R = ⟨Σ, I, T ⟩ and V ∈ {Vtrap ,Vsiphon}, the set of all

inductive statements for V is

{
I ∈

(
2Σ
)∗ | ∃I ′ ∈ InductiveV(R) . occ(I ′) = occ≤k+1(I ′) = occ≤k+1(I)

}
.

This result can be obtained from the observation that adding one letter that already

occurs at least k + 1 times to any statement does not change whether a statement for

the interpretations Vtrap or Vsiphon is inductive or not.

Lemma 2.35. For all k-crowds R = ⟨Σ, I, T ⟩, V ∈ {Vtrap ,Vsiphon}, and statements I, I ′

such that there exists A ∈ 2Σ with k+1 < occA(I) = occA(I
′)+1 and occB(I) = occB(I

′)

for all B ∈ 2Σ \ {A}, we have

I ∈ InductiveV(R) if and only if I ′ ∈ InductiveV(R).

Proof. Consider the interpretation Vtrap and fix I = I1 . . . In+1 and I ′ = I ′1 . . . I
′
n.

111

2. Inductive statements for regular transition systems

Assume, for now, I /∈ InductiveV(R). Thus, there is u1 . . . un+1 ⇝T v1 . . . vn+1 such

that u1 . . . un+1 |=Vtrap I1 . . . In+1 and v1 . . . vn+1 ̸|=Vtrap I1 . . . In+1. Additionally,

there exists a k-ary pattern
〈[

x1

y1

]
, . . . ,

[
xk

yk

]
, B
〉
such that

• there are p1, . . . , pk with upi = xi and vpi = yi for all 1 ≤ i ≤ k and

•
[
uj

vj

]
∈ B for all 1 ≤ j ≤ n+ 1 with j /∈ {p1, . . . , pk}.

Because there are k+2 occurrences of the letter A in I, there are i, j /∈ {p1, . . . , pk} such
that Ii = Ij = A. This means vi /∈ A and vj /∈ A. Without loss of generality ui /∈ A
or uj ∈ A. There is a transition u1 . . . ui−1 ui+1 . . . un ⇝T v1 . . . vi−1 vi+1 . . . vn

because
[
ui

vi

]
∈ B. Moreover, by choice of i and j, u1 . . . ui−1 ui+1 . . . un |=Vtrap

I1 . . . Ii−1 Ii+1 . . . In and v1 . . . vi−1 vi+1 . . . vn |=Vtrap I1 . . . Ii−1 Ii+1 . . . In. With

one application of Lemma 2.33 one concludes I ′ /∈ InductiveV(R).
On the other hand, assume I ′ /∈ InductiveV(R). Thus, there is u1 . . . un+1 ⇝T

v1 . . . vn such that u1 . . . un |=Vtrap I1 . . . I ′n and v1 . . . vn ̸|=Vtrap I1 . . . I ′n. Addition-
ally, there exists a k-ary pattern

〈[
x1

y1

]
, . . . ,

[
xk

yk

]
, B
〉
such that

• there are p1, . . . , pk with upi = xi and vpi = yi for all 1 ≤ i ≤ k and

•
[
uj

vj

]
∈ B for all 1 ≤ j ≤ n with j /∈ {p1, . . . , pk}.

Because there are k + 1 occurrences of the letter A in I ′, there is i /∈ {p1, . . . , pk} such
that Ii = A. Therefore, vi /∈ A and, thus, for the transition u1 . . . un ui ⇝T v1 . . . vn vi

(which exists because
[
ui

vi

]
∈ B) u1 . . . un ui |=Vtrap I ′1 . . . I ′n A and v1 . . . vn vi ̸|=Vtrap

I ′1 . . . I
′
n A holds. Another application of Lemma 2.33 gives I /∈ InductiveV(R).

The proof for Vsiphon is analogous.

Repeatedly applying Lemma 2.35 can be used to grow or shrink any statement of

InductiveV(R) for V ∈ {Vtrap ,Vsiphon} by adding or removing letter that exceeds the

threshold. One final application of Lemma 2.33 gives Lemma 2.34.

On this basis we can capture InductiveV(R) via the finite automaton withO((k + 2)2
Σ

)

states.

Corollary 2.9. Let R = ⟨Σ, I, T ⟩ be a k-crowd and V either Vtrap or Vsiphon . One can

effectively construct a DFA with O((k + 2)2
Σ

) states for InductiveV(R).

112

2.7. Topologies

Proof. The states of the automaton can be identified with all functions from 2Σ to

{0, . . . , k + 1}. While reading a statement the automaton updates its state to the func-

tion that represents occ≤k+1 if applied to the statement. For every state there is a

canonical statement A
occ≤k+1(A1)
1 . . . A

occ≤k+1(Am)
m that corresponds to occ≤k+1 where

A1, . . . , Am is some enumeration of 2Σ. Making those states accepting for which the

canonical statement is part of InductiveV(R) concludes the construction. The correct-

ness is an immediate consequence of Lemma 2.34.

We prove similar results for the interpretation Vflow . Here, however, the cut-off point

for repeating letters is k + 3.

Lemma 2.36. For all k-crowds R = ⟨Σ, I, T ⟩, and statements I, I ′ such that there

exists A ∈ 2Σ with k + 3 < occA(I) = occA(I
′) + 1 and occB(I) = occB(I

′) for all

B ∈ 2Σ \ {A} holds

I ∈ InductiveVflow (R) if and only if I ′ ∈ InductiveVflow (R).

Proof. For the remainder of the proof fix I = I1 . . . In+1 and I ′ = I ′1 . . . I
′
n.

Assume, for now, I /∈ InductiveVflow (R). Thus, there is u1 . . . un+1 ⇝T v1 . . . vn+1

such that u1 . . . un+1 |=Vflow I1 . . . In+1 and v1 . . . vn+1 ̸|=Vflow I1 . . . In+1. Addition-

ally, there exists a k-ary pattern
〈[

x1

y1

]
, . . . ,

[
xk

yk

]
, B
〉
such that

• there are p1, . . . , pk with upi = xi and vpi = yi for all 1 ≤ i ≤ k and

•
[
uj

vj

]
∈ B for all 1 ≤ j ≤ n+ 1 with j /∈ {p1, . . . , pk}.

Because there are k+4 occurrences of the letter A in I, there are i1, i2, i3, i4 /∈ {p1, . . . , pk}
such that Ii1 = Ii2 = Ii3 = Ii4 = A.

Since u1 . . . un+1 |=Vflow I1 . . . In+1 there is at most one i ∈ {i1, i2, i3, i4} such

that ui ∈ A. Therefore, ui /∈ A holds for, say, i ∈ {i1, i2, i3}. Moreover, because

v1 . . . vn+1 ̸|=Vflow I1 . . . In+1, there is either i ∈ {i1, i2, i3} such that vi /∈ A or vi ∈ A
holds for i ∈ {i1, i2, i3}. Let j ∈ {i1, i2, i3} such that vj /∈ A or vi ∈ A holds for

i ∈ {i1, i2, i3} \ {j}. In either case, there is a transition u1 . . . uj−1 uj+1 . . . un ⇝T

v1 . . . vj−1 vj+1 . . . vn because
[
uj

vj

]
∈ B and u1 . . . uj−1 uj+1 . . . un |=Vflow

I1 . . . Ij−1 Ij+1 . . . In and v1 . . . vj−1 vj+1 . . . vn |=Vflow I1 . . . Ij−1 Ij+1 . . . In.

With one application of Lemma 2.33, one concludes I ′ /∈ InductiveVflow (R).

113

2. Inductive statements for regular transition systems

On the other hand, assume I ′ /∈ InductiveVflow (R). Thus, there is u1 . . . un+1 ⇝T

v1 . . . vn such that u1 . . . un |=Vtrap I1 . . . I ′n and v1 . . . vn ̸|=Vtrap I1 . . . I ′n. Addition-
ally, there exists a k-ary pattern

〈[
x1

y1

]
, . . . ,

[
xk

yk

]
, B
〉
such that

• there are p1, . . . , pk with upi = xi and vpi = yi for all 1 ≤ i ≤ k and

•
[
uj

vj

]
∈ B for all 1 ≤ j ≤ n with j /∈ {p1, . . . , pk}.

Because there are k+3 occurrences of the letter A in I ′, there are i1, i2, i3 /∈ {p1, . . . , pk}
such that Ii1 = Ii2 = Ii3 = A. Again, ui /∈ A holds for, say, i ∈ {i1, i2}. Therefore,

the transition u1 . . . un uj ⇝T v1 . . . vn vj exists because
[
uj

vj

]
∈ B. Moreover,

u1 . . . un uj |=Vflow I ′1 . . . I ′n A and v1 . . . vn vj ̸|=Vflow I ′1 . . . I ′n A holds since uj /∈ A
and

• either vj ∈ A which implies |Hv1 . . . vn vjI ∩ HI ′1 . . . I ′n AI| ≥ 2,

• or vj /∈ A which implies

|Hv1 . . . vn vjI ∩ HI ′1 . . . I
′
n AI| = |Hv1 . . . vnI ∩ HI ′1 . . . I

′
nI|︸ ︷︷ ︸

̸=1

.

Another application of Lemma 2.33 gives I /∈ InductiveVflow (R).

With this result, we obtain, as before, a characterization of InductiveVflow (R) via a

finite count of letters.

Corollary 2.10. For all k-crowds R = ⟨Σ, I, T ⟩ the set InductiveVflow coincides with

{
I ∈

(
2Σ
)∗ | ∃I ′ ∈ InductiveVflow (R) . occ(I ′) = occ≤k+3(I ′) = occ≤k+3(I)

}
.

With the same idea as before we can translate this characterization into an automaton.

Corollary 2.11. Let R = ⟨Σ, I, T ⟩ be a k-crowd. One can effectively construct a DFA

with O((k + 4)2
Σ

) states for InductiveVflow (R).

114

3 Learning inductive invariants

Until now, we have always used all inductive statements to over-approximate the reach-

ability relation. For some questions, however, not all inductive statements are necessary.

We want to illustrate this with an example first.

Example 3.1: Explanation for safety conditions in Example 2.2.

Recall the token passing algorithm from Example 2.2. We showed that one can

prove two safety conditions:

• there always exists at least one token, and

• there never is more than one token.

In particular, Example 2.5 illustrated that

• “0 < ” = {t}+ ⊆ InductiveVtrap(R) proves that no configuration in n+ can

be reached in R from any configuration that contains at least one t. In other

words, “there is at least one t” is an inductive statement.

• Similarly, “ < 2” = ∅∗ {n} ∅∗ {n} ∅∗ ⊆ InductiveVtrap(R) proves that no

configuration in Σ∗ t Σ∗ t Σ∗ can be reached in R from any configuration

which has at most one t. Again, in other words, “there is at most one t” is

an inductive statement.

Consequently, Id(I)◦ ⇒Vtrap is exactly Id(I)◦ ⇝∗T in this case. But the same

is already true for Id(I)◦ “0<”∪“<2”
=======⇒Vtrap . This abstraction relies on “eas-

ier” sets of inductive statements. For this, see Figure 3.1 where we give a

DFA for InductiveVtrap(R) and Figure 3.2 where we give a DFA for {t}+ ∪
∅∗ {n} ∅∗ {n} ∅∗ ⊆ InductiveVtrap(R).

115

3. Learning inductive invariants

Figure 3.1: An automaton for InductiveVtrap(R).

This is the minimal DFA that recognizes InductiveVtrap(R) forR from Example 2.2.

{t} ∅

{n} ∅
Σ {n}

{t}
{t}

∅ {n}

Σ

Σ

{n}
{t} , ∅ {t} , ∅

{n} ,Σ

∅, {t} , {n} ,Σ

Figure 3.2: Automata for useful subsets of InductiveVtrap(R).

This DFA recognizes {t}+ ∪ ∅∗ {n} ∅∗ {n} ∅∗ which is a sufficient subset of

inductive statements to capture the reachability relation fromR from Example 2.2.

All omitted transitions lead to a non-accepting sink.

{t}

{t}

∅
{n}

{n} {n}
∅

∅ ∅

Motivated by this example, we explore in this section how to compute a sufficient

set of inductive statements that already establish a safety property. We use automata

learning for this – a formalism to compute a regular language if one is only allowed to

ask two kinds of questions:

116

Membership: Should the word w be part of the language?

Equivalence: Does this DFA H already accept the language?

The first question is answered with “yes” or “no” and the second question with either

“yes” or with a word v that is accepted by H but should not, or that should be accepted

by H but is not. In other words, v is picked from the symmetric difference of the

language of H and the language that we try to learn. With access to only these two

questions, it is possible to learn every regular language [Ang87].

The concept of automata learning has been applied to RMC before [Nei14; Var06;

Che+17; Var+04; NJ13]. Specifically, these approaches formulate a learning scenario

to obtain a regular set R ⊆ Σ∗ that is inductive; i. e. target(Id(R)◦ ⇝T) ⊆ R. If,

additionally, L(I) ⊆ R and L(B) ∩ R ̸= ∅ then one can give a positive answer for

this instance of Problem 2.1 since R contains all reachable configurations. Since many

examples have such a regular over-approximation R, these approaches perform well on

classical benchmarks of parametrized verification. If, on the other hand, no such regular

over-approximation exists, then these approaches either run indefinitely or they stop

due to some computational limit to the learning process. These limits are, for example,

the size of the automaton that should recognize R [Nei14] or the running time of the

learning algorithm [Che+17].

The approach that we propose is to learn, for any interpretation V , a sufficient subset

S of inductive statements such that the abstraction induced by
S
=⇒V already proves the

safety condition. Since the learning procedure for S has a target InductiveV(R) that is a
regular set itself, we can guarantee that it halts at some point1. Moreover, if no S exists

to establish the safety condition, this approach terminates with the guarantee that the

safety condition cannot be established with inductive statements of V . For instance, for
the variant of Example 2.2 in which the transitions do not enforce a unique token, this

leads to the definite statement:

“In the RTS
〈
t n∗,

([
n

n

]
|
[
t

t

])∗ [
t

n

] [
n

t

] ([
n

n

]
|
[
t

t

])∗〉
there exists no trap that

shows that t n t cannot be reached from t n n.”

1In particular, because we design oracles to answer the two possible questions in such a way that they
form a “minimally adequate teacher” [Ang87].

117

3. Learning inductive invariants

3.1 Learning inductive statements

Conceptionally, we try to solve Problem 2.2 by answering the following question:

Does a DFA H exist such that

• L(H) ⊆ InductiveV(R) and

• Id(I)◦ L(H)
===⇒V ◦Id(B) = ∅?

The design of our learning algorithm is as follows.

Context: A fixed interpretation ⟨Γ,V⟩.

Input: An RTS R = ⟨Σ, I, T ⟩, and a NFA B.

Target Concept: DFA H such that L(H) ⊆ InductiveV(R) and L(I)◦
L(H)
===⇒V ◦L(B) =

∅.

Membership Oracle O∈:

O∈(w) =

× if w /∈ InductiveV(R)

✓ if w ∈ InductiveV(R)

Equivalence Oracle O=: First, the oracle checks L(H) ⊆ InductiveV(R) by returning

I ∈ L(H) \ InductiveV(R) if it exists. The other cases are:

O=(H) =



I if ∃u ∈ L(I), w ∈ L(B) . u L(H)
===⇒ w but u

�
����L(H)∪{I}

======⇒w

×
if ∃u ∈L(I), w ∈ L(B) . u L(H)

===⇒ w

and u
L(H)∪{I}
======⇒ w for all I ∈ InductiveV(R)

✓ if L(I)◦ L(H)
===⇒ ∩L(B) = ∅

That means, four cases are distinguished:

• The hypothesis includes a non-inductive statement.

• The hypothesis is not yet strong enough, but there is some inductive state-

ment that can disprove one of the current faults.

• The hypothesis is not yet strong enough, but there exists a counterexample

that cannot be removed with any inductive statement.

118

3.1. Learning inductive statements

• The hypothesis is strong enough and proves the desired safety condition.

Note here, that these cases are not mutually exclusive. For example, the second and

third cases might be true at the same time. In this case, the answer of the oracle

depends on the counterexample to the current hypothesis which is considered.

However, eventually, the third case occurs – for instance, if all the fixable cases are

exhausted. Regardless, if the oracle returns either × or ✓ we are absolutely sure

that we failed or succeeded, respectively.

Remark 3.1. Essentially, these two oracles form, in the terminology of [Ang87], a

“minimally adequate teacher” for InductiveV(R), because membership queries return

exactly whether a statement is a member of InductiveV(R) and equivalence queries al-

ways return a statement from the symmetric difference of the language of the hypoth-

esis and InductiveV(R). Because of [Ang87, Theorem 6] the hypothesis is a DFA for

InductiveV(R) after finitely many steps.

Implementing the Oracles

Let us first look at the implementation of a Membership Oracle. One can utilize

Lemma 2.2 to obtain a NFA M for InductiveV(R) which is roughly of the size of the

transducer T of RTS R (if we assume the interpretation to be of constant size). There-

fore, one can simply implement the Membership Oracle by checking acceptance of M
and negate the answer. Thus, this operation can be implemented in polynomial time for

the input R.
For the implementation of the Equivalence Oracle, we can use previous results. First,

we need to check that the hypothesis H does not accept any non-inductive statement.

To this end, one can compute whether there is a word that is accepted by H and M
at the same time. This is possible by checking the product construction of these two

automata for emptiness. Again, this can be implemented in polynomial time for the

inputs H andM.

At this point, we are assured that the language of the hypothesis only contains induc-

tive statements. We need to check whether these inductive statements are sufficient to

establish the safety condition. Recall that, due to Lemma 2.6, one can compute, from

the automaton H, the potential reachability relation
L(H)
===⇒V which is induced by the

inductive statements L(H). With this and the fact that the composition of relations

of transducers can be obtained by a product construction (Lemma 2.1), one can check

119

3. Learning inductive invariants

whether Id(I)◦ H=⇒V ◦Id(B) = ∅ using O(log(|I|) · |H| · log(|B|)) space. If this is true

the oracle returns ✓. Otherwise we obtain a counterexample ⟨u1 . . . un, v1 . . . vn⟩ ∈
Id(I)◦ H=⇒V ◦Id(B). This leads to the question whether I ∈ InductiveV(R) exists such
that u1 . . . un |=V I and v1 . . . vn ̸|=V I.

Problem 3.1 (Word problem). For a given interpretation V:

Given: u1 . . . un, v1 . . . vn and RTS R = ⟨Σ, I, T ⟩
Compute: Does I ∈ InductiveV(R) exist such that

u1 . . . un |=V I and v1 . . . vn ̸|=V I?

This problem is in the complexity class NP. This observation is immediate if one

considers the statement I as a certificate. Since I is a word of length n it is of polynomial

length of the instance of Problem 3.1; namely, of the same length as u1 . . . un and

v1 . . . vn. This certificate must not accepted byM, the automaton that recognizes all

non-inductive statements that can be constructed in polynomial time from T . Moreover,

whether u1 . . . un |=V I and v1 . . . vn ̸|=V I can be checked with two membership queries

to V .

Lemma 3.1. Problem 3.1 is in NP.

Later, we present a polynomial time reduction to SAT – the problem of whether a given

propositional formula in conjunctive normal form has a satisfying assignment. This re-

duction also proves this result but, additionally, has practical application: Because there

are heavily optimized solvers for SAT, we can compute separating inductive statements

by reducing the instance to SAT, finding a satisfying assignment for the propositional

formula, and extracting, from the assignment, the separating statement.

First, though, we prove that, for the interpretation Vflow , Problem 3.1 is NP-hard.

We establish this result via a polynomial time reduction from a variant of SAT (3-SAT)

which restricts each clause to only have three literals:

Problem 3.2 (3-SAT).

Given: {C1, . . . , Cn} with Ci =
{
L3·(i−1)+1, L3·(i−1)+2, L3·(i−1)+3

}
for each

1 ≤ i ≤ n where each L ∈ Ci is an element from {x, x : x ∈ X} for
some X .

Compute: Exists J : X → {0, 1} such that for each 1 ≤ i ≤ n there is at least

one literal in Ci satisfied?

120

3.1. Learning inductive statements

Roughly speaking, the proof goes as follows: We use an alphabet of three letters

s, h,#. Then, we encode a given instance of the 3-SAT problem into Problem 3.1 such

that every literal of the formula corresponds to one position of words u1 . . . u3·n and

v1 . . . v3·n. More specifically, the literals of the first clause are represented by the first

three positions, the literals of the second clause by the next three positions, and so on.

In other words, every clause is represented by one triplet of positions. We choose the

transitions of the RTS such that any flow I1 . . . I3·n that separates u1 . . . u3·n and

v1 . . . v3·n satisfies the following properties:

• For every clause C, exactly one of Ii, Ii+1, and Ii+2 contains the letter h where

Ii Ii+1 Ii+2 is the triplet that represents C.

• For any two distinct positions i and j which represent a literal and its negation,

at most one of Ii and Ij contains h.

In this way, any separating flow encodes a satisfying assignment for the propositional

formula by satisfying those literals for which one position exists that contains h. Sim-

ilarly, any satisfying assignment for the propositional formula can be used to obtain a

separating flow. Roughly speaking, one can add the letter h to the position of exactly

one literal of every clause that is satisfied by the assignment.

Lemma 3.2. For Vflow , Problem 3.1 is NP-hard.

Proof. Reduce from Problem 3.2. In the following, any assignment J : X → {0, 1} is

implicitly expanded to the domain {x, x : x ∈ X} with J(x) = 1 − J(x) for all x ∈ X .
For technical reasons, which do not restrict the problem, assume that there are always

more than two clauses in the instances of Problem 3.2.

For the reduction, fix an alphabet of three elements {s, h,#}. Set the word s3·n as

the initial word u and #3·n as the final word v. For the definition of the transitions,

consider first

Xi,j =


[
#

#

]i−1 [
h

h

] [
#

#

]j−i−1 [
#

h

] [
#

#

]3·n−j
if i < j[

#

#

]j−1 [
#

h

] [
#

#

]i−j−1 [
h

h

] [
#

#

]3·n−i
if j < i

In other words, the transition Xi,j has the letter
[
h

h

]
at the i-th position and the letter[

#

h

]
at the j-th position. Everywhere else the word of this transition has the letter

[
#

#

]
.

The set of all Xi,j for all i ̸= j such that Li = Lj can be recognized with a DFA with

121

3. Learning inductive invariants

(3 · n + 1) · ((3 · n+ 1) · 2 + 2) states (not counting a non-accepting sink state ⊥). The
automaton moves through three phases while reading a transition:

1. No letter in
{[

#

h

]
,
[
h

h

]}
has occurred.

2. One letter in
{[

#

h

]
,
[
h

h

]}
has occurred at position i.

3. Two letters in
{[

#

h

]
,
[
h

h

]}
at matching positions i and j have occurred.

For all these phases the automaton keeps a running count (between 0 and 3 · n) of the
steps it has already taken. For the second phase the automaton stores in its state the

index i and which of the three letters occurred. Consequently, the automaton can be

constructed with the states

{1} × {0, . . . , 3 · n}

∪ {2} × {0, . . . , 3 · n} × {0, . . . , 3 · n} ×
{[

#

h

]
,
[
h

h

]}
∪{3} × {0, . . . , 3 · n} .

The transition function δ follows

δ(⟨1, p⟩ ,
[
#

#

]
) = ⟨1, p+ 1⟩ for all 0 ≤ p < n

δ(⟨1, p⟩ ,
[
#

h

]
) =

〈
2, p+ 1, p,

[
#

h

]〉
for all 0 ≤ p < n

δ(⟨1, p⟩ ,
[
h

h

]
) =

〈
2, p+ 1, p,

[
h

h

]〉
for all 0 ≤ p < n

δ(⟨2, p, i, ℓ⟩ ,
[
#

#

]
) = ⟨2, p+ 1, i, ℓ⟩ for all 0 ≤ p < n

δ(
〈
2, p, i,

[
h

h

]〉
,
[
#

h

]
) = ⟨3, p+ 1⟩ for all 0 ≤ p < n s. t. Li = Lp+1

δ(
〈
2, p, i,

[
#

h

]〉
,
[
h

h

]
) = ⟨3, p+ 1⟩ for all 0 ≤ p < n s. t. Li = Lp+1

δ(⟨3, p⟩ ,
[
#

#

]
) = ⟨3, p+ 1⟩ for all 0 ≤ p < n

while all other transitions lead to ⊥. The final unique final state is ⟨3, n⟩.
Additionally, we add the transitions([

s

#

] [
s

#

] [
s

#

])∗ [
s

h

] [
s

h

] [
s

h

] ([
s

#

] [
s

#

] [
s

#

])∗
. (3.1)

This set of transitions can be recognized by a DFA with 9 states (not counting a non-

accepting sink state). Because the first letter of every accepted transition uniquely

122

3.1. Learning inductive statements

determines whether the transition is some Xi,j or part of (3.1), a DFA for all transitions

can be constructed with O(9 + (3 · n + 1) · ((3 · n+ 1) · 2 + 2)) states. This concludes

the reduction.

For the correctness proof of the reduction, assume, first, that an assignment J : X →
{0, 1} exists which makes at least one literal in every clause true. For every clause Ci

let pi ∈ {1, . . . , 3 · n} be an index such that J satisfies the literal Lpi ∈ Ci. Choose

I1 . . . I3·n such that Ipi = {h} for all 1 ≤ i ≤ n and Ik = ∅ for all 1 ≤ k ≤ 3 · n with

k /∈ {p1, . . . , pn}. The statement I = (I1 ∪ {s}) I2 . . . I3·n

• is satisfied by u because only the first letter of this statement contains s,

• is not satisfied by v because no letter of this statement contains #, and

• is inductive because:

– Pick any 1 ≤ i ≤ n. Consider any position j of the triplet that corresponds

to the i-th clause; that is, j ∈ {3 · (i− 1) + 1, 3 · (i− 1) + 2, 3 · (i− 1) + 3}.
Then, h ∈ Ij if and only if j = pi. Thus, w |=Vflow I for all transitions u⇝T w
from (3.1) because no letter in I contains #.

– J(Li) = 1 holds for all ⟨x, y⟩ = Xi,j with x |= I. Therefore, the letter Ij does

not contain h since Li = Lj and, thus, J(Lj) = 0.

This concludes the first direction of the correctness proof.

On the other hand, assume there is an inductive statement I1 . . . I3·n such that

u |=Vflow I1 . . . I3·n and v ̸|=Vflow I1 . . . I3·n. Because u |=Vflow I1 . . . I3·n also w |=Vflow
I1 . . . I3·n for all u⇝T w from (3.1). Consequently, there are no i ̸= j such that # ∈ Ii
and # ∈ Ij because, otherwise, there is u ⇝T w from (3.1) such that the i-th and j-th

letters of w are # since n > 2. Moreover, there is no unique 1 ≤ i ≤ n such that

∈ Ii because v ̸|=Vflow I1 . . . I3·n. Therefore, # ̸∈ Ii for all 1 ≤ i ≤ n. From this

and w |=Vflow I1 . . . I3·n for all u⇝T w from (3.1), it follows immediately that there are

pi ∈ {(i− 1) · 3 + 1, (i− 1) · 3 + 2, (i− 1) · 3 + 3} such that h ∈ Ipi for all 1 ≤ i ≤ n.

Secondly, pick i ̸= j such that Lpi = Lpj and h ∈ Ipi . Establish now that h /∈ Ipj . For
this, consider ⟨x, y⟩ = Xpi,pj . Then, x |=Vflow I1 . . . I3·n because h ∈ Ipi but # ̸∈ Ik for

all 1 ≤ k ≤ n. Since the pi-th and pj-th letters of y are h and h ∈ Ipi , h /∈ Ipj follows

from y |=Vflow I1 . . . I3·n.

123

3. Learning inductive invariants

In conclusion, one can construct J : X → {0, 1} such that J(Lpi) = 1 for all 1 ≤ i ≤ n.

Moreover, by choice of p1, . . . , pn, the assignment J is a model of the propositional

formula.

Consequently, this problem is, in general and for the case of Vflow , NP-complete.

Remark 3.2. Since Problem 3.1 is NP-hard for Vflow , the variant of Problem 3.1 in

which the interpretation is part of the input also is NP-hard. Moreover, the argument

of using a separating inductive statement as a certificate also applies to this variant.

Therefore, Problem 3.1 in the variant where the interpretation is part of the input is

NP-complete.

Because Problem 3.1 is in NP, it can be reduced, in polynomial time, to SAT (since

SAT is NP-hard). As we demonstrate now, this reduction is straightforward. Moreover,

one can extract separating inductive statements from satisfying assignments for the

constructed propositional formula. This allows us to leverage solvers for SAT to solve

Problem 3.1 and compute separating inductive statements. We separate the design of

the propositional formula into four parts:

Form of the Certificate: Here we will introduce and restrict propositional variables

such that they eventually encode the word I.

Compatibility with u1 . . . un: Here we will encode the run of V on u1 . . . un and I

and make sure it is accepting.

Non-Compatibility with v1 . . . vn: Here we will encode the run of V on v1 . . . vn and

I and make sure it is not accepting.

Inductivity of I: This is the most complex part of the formula. Here we have to make

sure that I is not accepted by any run ofM, the NFA that is roughly of the size

of the transducer and recognizes this set of all non-inductive statements.

Form of the Certificate

Initially, let us consider how to encode the word I. This word is chosen from the set Γn.

We fix Γ = {γ1, . . . , γm} and use the variables

{γ1(1), γ2(1), . . . , γm(1), γ1(2), . . . , γm(n)} = Γ× {1, . . . , n} .

124

3.1. Learning inductive statements

The intended semantics of these variables is that γj(i) represents whether the i-th letter

of I is γj. To ensure that any solution to our propositional formula corresponds to

exactly one word I ∈ Γn any model of the formula must not satisfy γ(i) and γ′(i) for

any 1 ≤ i ≤ n and two distinct γ, γ′ ∈ Γ at the same time. Thus, we introduce the

macro

ExactlyOne(V) =
∨
v∈V

v ∧
∧

v,v′∈V :v ̸=v′

¬ (v ∧ v′)

and add ∧
1≤i≤n

ExactlyOne(Γ× {i}) (3.2)

to the formula. One can now verify that any model of the formula in (3.2) satisfies, for

every 1 ≤ i ≤ n, exactly one propositional variable in Γ × {i}. Consequently, we can

identify with any model the unique word I1 . . . In such that the model satisfies Ii(i) for

every 1 ≤ i ≤ n.

Compatibility with u1 . . . un

Since we assume that V is a DFA there is exactly one sequence q0 . . . qn of states from

V that is compatible with reading ⟨u1, I1⟩ . . . ⟨un, In⟩. We capture this sequence with

propositional variables QV × {0, . . . , n} where QV is the set of states of V . Again, we

want to ensure that every model represents this unique sequence accurately. For this we

need to encode the transition function of V , make sure that the first letter is the initial

state qV0 of V , and, finally, that the last state is an accepting one; that is, in FV . We

capture this via the following formula:∧
0≤i≤n

ExactlyOne(QV × {i})

∧qV0 (0) ∧
∧

0 ≤ i < n

q ∈ QV , γ ∈ Γ

q(i) ∧ γ(i+ 1)→ δV(q, γ)(i+ 1) ∧
∨
q∈FV

q(n) (3.3)

125

3. Learning inductive invariants

Non-Compatibility with v1 . . . vn

This formula is very similar to (3.3). However, this time we make sure that the run does

not end in an accepting state but a rejecting one.∧
0≤i≤n

ExactlyOne(QV × {i})

∧qV0 (0) ∧
∧

0 ≤ i < n

q ∈ QV , γ ∈ Γ

q(i) ∧ γ(i+ 1)→ δV(q, γ)(i+ 1) ∧ ¬
∨
q∈FV

q(n) (3.4)

Inductivity of I

Finally, we have to make sure that I is rejected by M. To this end, we axiomatize a

reachability analysis on the graph ofM for I. More precisely, we try to find all states

that are reachable inM while reading I. This is similar to the two parts before. This

time, however, there is not one unique run but we need to compute all states that are

reachable while reading I to make sure that there is not any accepting run. Let us

fix the automaton M as
〈
QM, Q

M
0 ,Γ,∆M, FM

〉
, first. As before, we use the atomic

propositions QM × {0, . . . , n}. This time, the intended meaning of any proposition q(i)

is that one can reach state q inM while reading I1 . . . Ii. The structure of the following

formula mirrors the structure of the previous ones. One of the differences is that we do

not enforce a single state per position. Also, we now have multiple initial states. We

obtain:

∧
q∈QM0

q(0) ∧
∧

0 ≤ i < n

⟨q, γ, p⟩ ∈ ∆M

q(i) ∧ γ(i+ 1)→ p(i+ 1) ∧ ¬
∨

q∈FM

q(n) (3.5)

Assembling the final formula

Because of the way we have created these formulas we obtained for the conjunction φ

of (3.2), (3.3), (3.4), and (3.5) the crucial result:

Lemma 3.3. There is a model J for φ if and only if Problem 3.1 can be answered with

yes. Moreover, one can effectively obtain a separating inductive statement for Prob-

126

3.1. Learning inductive statements

lem 3.1 from any model J for φ.

Proof. I1 . . . In where J(Ii) = 1 for all 1 ≤ i ≤ n is a separating inductive statement

for Problem 3.1 for the interpretation V with u1 . . . un, v1 . . . vn and R = ⟨Σ, I, T ⟩:

• The unique run of V on ⟨u1, I1⟩ . . . ⟨un, In⟩ is accepting because J is a model of

(3.3).

• The unique run of V on ⟨v1, I1⟩ . . . ⟨vn, In⟩ is not accepting because J is a model

of (3.4).

• There is no accepting run ofM on I1 . . . In because J is a model of (3.5).

With this, we construct the equivalence oracle in Algorithm 1.

Data: RTS R = ⟨Σ, I, T ⟩ and NFA B
Input: Hypothesis H
Output: ✓,×, or I ∈ Γ∗

begin

M← getAutomatonFor(InductiveV(R));
if L(H) ∩ L(M) ̸= ∅ then

return I ∈ L(H) ∩ L(M);
end

D ← getAutomatonFor(L(I)◦ L(H)
===⇒ ◦L(B));

if L(D) = ∅ then
return ✓;

end[
u1
v1

]
. . .

[
un
vn

]
← getWordFrom(L(D));

I ← disprove(
[
u1
v1

]
. . .

[
un
vn

]
);

if I = null then
return ×;

end
return I;

end
Algorithm 1: The implementation of an equivalence oracle for an interpretation V .

127

3. Learning inductive invariants

3.2 The word problem for concrete interpretations

In the following, we consider Problem 3.1 for the three interpretations Vtrap , Vsiphon , and
Vflow . In particular, we discuss a reduction of Problem 3.1 for the interpretation Vflow
that yields a simpler propositional formula. Additionally, we show that Problem 3.1 can

be solved in PTime for the interpretations Vtrap and Vsiphon .

The interpretation Vflow

For the interpretation Vflow , statements are encoded in the alphabet Γ = 2Σ. Moreover,

the steps of Vflow distinguish pairs ⟨v, I⟩ by the fact whether v ∈ I or v /∈ I. This allows
us to slightly change the encoding of the separating statement I1 . . . In. In particular,

we can now fix for the encoding of I1 . . . In the propositional variables Σ× {1, . . . , n}.
Then, we can relate any assignment J : (Σ× {1, . . . , n})→ {0, 1} to I1 . . . In by setting

Ii = {σ ∈ Σ | J(⟨σ, i⟩) = 1} and vice versa. One can observe here that any assignment

encodes a statement and we do not need to restrict it further. Therefore, the part of

the propositional formula for the generic case that encoded that we necessarily obtain

a word from Γn (that is, Equation (3.2)) can be removed entirely. Additionally, recall

that u1 . . . un |=Vflow I1 . . . In if and only if there is exactly one 1 ≤ i ≤ n such that

ui ∈ Ii. That, however, means that we can replace the formulas from Equation (3.3)

and Equation (3.4) with

ExactlyOne(
⋃

1≤i≤n

{⟨ui, i⟩}) and ¬ExactlyOne(
⋃

1≤i≤n

{⟨vi, i⟩}),

respectively. Equation (3.5) remains mostly the same. However, we can construct a

propositional formula to test that the considered statement I1 . . . In is inductive directly

from the transducer T 2 of the RTS. To this end, recall that a statement is not inductive

if there exists one transition
[
x1

y1

]
. . .

[
xn

yn

]
that is accepted by T for which holds that

x1 . . . xn |=Vflow I1 . . . In and y1 . . . yn ̸|=Vflow I1 . . . In. Effectively, it suffices to guess

this transition and verify, first, that there is exactly one index i exists such that xi ∈ Ii
and, second, that either there is no index j such that yj ∈ Ij or more than one. An

NFA that performs this test can be constructed with the states {0, 1} ×QT × {0, 1, 2}.
Semantically speaking, a state ⟨k, q, ℓ⟩ corresponds to the observation that one can reach

2To construct this formula it is sufficient to iterate once over all steps in ∆T . Additionally, this removes
the need to compute all letters from 2Σ for the formula which has practical benefits.

128

3.2. The word problem for concrete interpretations

the state q of T with a word
[
x1

y1

]
. . .

[
xm

ym

]
such that there are k many indices i where

xi ∈ Ii3 while, on the other hand, there are ℓ many indices (or more than 2 if ℓ = 2) j

where yj ∈ Ij. Consequently, the initial and accepting states are {0} × QT0 × {0} and
{1} × FT × {0, 2}, respectively. With this in mind, one can translate Equation (3.5) for

this specific use case to∨
q0∈QT0

⟨⟨0, q0, 0⟩ , 0⟩ ∧ ¬
∨

f∈FT

⟨⟨1, f, 0⟩ , n⟩ ∨ ⟨⟨1, f, 2⟩ , n⟩

∧
∧

0≤i<n〈
q,

[
x

y

]
,p

〉
∈∆T



⟨⟨0, q, 0⟩ , i⟩ ∧ ⟨x, i+ 1⟩ ∧ ⟨y, i+ 1⟩ → ⟨⟨1, p, 1⟩ , i+ 1⟩

∧ ⟨⟨0, q, 1⟩ , i⟩ ∧ ⟨x, i+ 1⟩ ∧ ⟨y, i+ 1⟩ → ⟨⟨1, p, 2⟩ , i+ 1⟩

∧ ⟨⟨0, q, 2⟩ , i⟩ ∧ ⟨x, i+ 1⟩ ∧ ⟨y, i+ 1⟩ → ⟨⟨1, p, 2⟩ , i+ 1⟩

∧
∧

k∈{0,1}


⟨⟨k, q, 0⟩ , i⟩ ∧ ¬ ⟨x, i+ 1⟩ ∧ ⟨y, i+ 1⟩ → ⟨⟨k, p, 1⟩ , i+ 1⟩

∧ ⟨⟨k, q, 1⟩ , i⟩ ∧ ¬ ⟨x, i+ 1⟩ ∧ ⟨y, i+ 1⟩ → ⟨⟨k, p, 2⟩ , i+ 1⟩

∧ ⟨⟨k, q, 2⟩ , i⟩ ∧ ¬ ⟨x, i+ 1⟩ ∧ ⟨y, i+ 1⟩ → ⟨⟨k, p, 2⟩ , i+ 1⟩


∧

∧
ℓ∈{0,1,2}

(
⟨⟨0, q, ℓ⟩ , i⟩ ∧ ⟨x, i+ 1⟩ ∧ ¬ ⟨y, i+ 1⟩ → ⟨⟨1, p, ℓ⟩ , i+ 1⟩

∧ ⟨⟨0, q, ℓ⟩ , i⟩ ∧ ⟨x, i+ 1⟩ ∧ ¬ ⟨y, i+ 1⟩ → ⟨⟨1, p, ℓ⟩ , i+ 1⟩

)
∧

∧
k∈{0,1}
ℓ∈{0,1,2}

⟨⟨k, q, ℓ⟩ , i⟩ ∧ ¬ ⟨x, i+ 1⟩ ∧ ¬ ⟨y, i+ 1⟩ → ⟨⟨k, q, ℓ⟩ , i+ 1⟩


Naturally, a similar approach works for the interpretations Vtrap and Vsiphon . However,

we show in the following that for these interpretations Problem 3.1 can be solved in

polynomial time.

A polynomial time algorithm for the word problem for Vtrap and Vsiphon

Again, we focus on Vtrap since the arguments for Vsiphon are analogous. Central to our

argument is Corollary 2.4. We use this observation (and the idea of computing separators

in general) to obtain an algorithm for Problem 3.1 that runs in polynomial time. Recall

that one can compute the separator for a word v1 . . . vn by starting with the statement

Σ \ {v1} . . . Σ \ {vn}. This statement is repeatedly refined. Specifically, if a transition[
x1

y1

]
. . .

[
xn

yn

]
exists such that x1 . . . xn satisfies the current statement and y1 . . . yn

does not, then one removes xi from the i-th letter of the statement for all 1 ≤ i ≤ n. In

3The case that k > 1 is not considered because the origin of any transition where there is more than
one index i such that xi ∈ Ii does not satisfy the statement.

129

3. Learning inductive invariants

this way, there is a separator sequence for two words of length n with at most n·(|Σ| − 1)

steps since we remove at least one letter from one index at every step. We show now that

finding a refining transition in T for every step is possible in polynomial time. Thus, we

can compute the separator for v1 . . . vn in polynomial time because one can do so by

running a polynomial time algorithm at most n · (|Σ| − 1) times.

We find a refining transition by constructing a graph (of size polynomial in n and

T) such that any path from a set of initial states to a set of final states is annotated

with one. Essentially we are looking for a transition accepted by T where the origin

of the transition satisfies the current element I = I1 . . . In of the separator sequence

(in the sense of Vtrap); that is, there is at least one index where the first element of the

letter of the transition is part of the letter of I at the same index, while the same is

not true for the target of the transition. To this end, we explore the graph of T for n

steps. While doing this, we make sure to use in the i-th step only a step
〈
q,
[
x

y

]
, p
〉
of

T such that y /∈ Ii. This guarantees that the target of the transition does not satisfy I.

If after n steps we can reach an accepting state of T and in at least one of these steps,

say i, we used a step
〈
q,
[
x

y

]
, p
〉
such that x ∈ Ii, then the path to this accepting state

is annotated with a refining transition. Formally, we annotate the states of T with a

number from {0, . . . , n} to indicate in which step we are, and a bit to indicate whether

we already used a step
〈
q,
[
x

y

]
, p
〉
such that x ∈ Ii. This leads us to the graph ⟨V,E⟩

with

• V = {0, . . . , n} ×QT × {0, 1}, and

• E =

{〈
⟨i, q, b⟩ ,

[
x

y

]
, ⟨i+ 1, p, b′⟩

〉
:

〈
q,
[
x

y

]
, p
〉
∈ ∆T , 0 ≤ i < n, y /∈ Ii+1,

b′ = 0 iff b = 0 and x /∈ Ii+1

}
.

We sketch this graph in Figure 3.3. In this graph, we are computing now whether there is

a path from any element in {0}×QT0 ×{0} to any element in {n}×FT ×{1}; e. g. with
a depth-first search. From the construction of the graph the following observation is

immediate:

Lemma 3.4. The annotations of any path which starts in {0} ×QT0 × {0} and ends in

{n} × FT × {1} form a word
[
x1

y1

]
. . .

[
xn

yn

]
which strictly refines I and is accepted by T .

Since computing reachability in graphs is possible in polynomial time and the graphs

are of polynomial size with respect to n and |T | we obtain the following corollary.

Corollary 3.1. [Ras22; Kra23] Problem 3.1 for Vtrap can be solved in polynomial time.

130

3.2. The word problem for concrete interpretations

Figure 3.3: A graph to find a refining transition.

Here we sketch the graph which we can use to find a refining transition for

I1 . . . In. The columns of states correspond to the n + 1 copies of the states

of the automaton T . The lower half of states (in orange) are those in which the

bit is not set, while the upper half of states (in green) illustrate those copies in

which the bit is set. Conceptionally, in each half, every column is connected with

the next via the steps of T . However, a step is not present if its target is part of

the corresponding letter of the statement that is currently refined; e. g. y1 /∈ I1,
y2 /∈ I2, and yn /∈ In. Moreover, if the origin of a step is part of the corresponding

letter of the statement that is currently refined, then the step leads from the lower

half to the upper half. Thus, x2 ∈ I2. Otherwise, steps only relate states from

their respective halves. Therefore, x1 /∈ I1. Whether xn occurs in In is immaterial

for the transition because it already is in the upper half.

I1 I2 . . . In

q0 q0 q0 . . . q0 q0

q1 q1 q1 . . . q1 q1

...
...

...
.

...

qk qk qk . . . qk qk

q0 q0 q0 . . . q0 q0

q1 q1 q1 . . . q1 q1

...
...

...
.

...

qk qk qk . . . qk qk

[
x1

y1

] [
x2

y2

]

[
xn

yn

]

131

3. Learning inductive invariants

3.3 Accelerate learning via topologies

Having established a general methodology to learn inductive statements for a regular

transition system, we consider now how one can exploit the fact that we know the

topology of the system to improve the learning procedure. Let us illustrate our idea

with the ring topology first: Imagine the teacher provides one statement I1 . . . In ∈
InductiveVtrap(R) to disprove a counterexample for some regular transition system which

follows a ring topology. Consider the situation where n > 1. Because this statement

must not be satisfied by the bad word of the counterexample, it must not contain the

letter Σ. Because Lemma 2.26 shows that InductiveVtrap(R) coincides withI ∈ (2Σ \ {Σ})∗
∣∣∣∣∣∣there is ⟨A,B⟩ ∈ adj(I)

that is non-inductive for Vtrap


there is no ⟨A,B⟩ ∈ adj(I1 . . . In) that is non-inductive for Vtrap . Moreover, the set{
I ′ ∈

(
2Σ
)∗ | adj(I ′) ⊆ adj(I1 . . . In)

}
only contains inductive statements because we

do not introduce any new pairs and, thus, no non-inductive ones. Consequently, we can

generalize a single inductive statement to a language of inductive statements. Let us

illustrate this in a concrete example next:

Example 3.2: A generalization example for a flow statement.

Recall the bow topology formulation of the running example from Example 2.2;

that is, the regular transition system with initial language t n∗, and the transition

language
([

t

t

]
|
[
n

n

])∗ [
t

n

] [
n

t

] ([
t

t

]
|
[
n

n

])∗
. Imagine we try to disprove that there

can be more than one token; i.e., we must not reach any word in Σ∗ t Σ∗ t Σ∗.

Consider that, during the learning process, the counterexample
[

t

n

] [
n

t

] [
n

t

]
is

disproven with the flow {t} {t} {t}. Consequently, we know that {t} {t} {t} ∈
InductiveVflow (R) and, by virtue of Lemma 2.32 we see that, with respect to Vflow ,
⟨{t} , {t}⟩ is compatible with PR, PL, and PM for this bow. Invoking Lemma 2.32

once again, we may conclude that {t}+ ⊆ InductiveVflow (R). In this fashion, we

generalize a language of useful inductive statements from a single statement.

With the help of the characterizations of the language of all inductive statements

from Section 2.7, we can formulate generalization procedures for all these topolo-

132

3.3. Accelerate learning via topologies

gies.

We will now formulate how to obtain from a single inductive statement in some

topology a language of inductive statements. To ease presentation, we only general-

ize inductive statements that do not contain Σ as a letter. Lifting this restriction is

straightforward.

Lemma 3.5. Let R be a regular transition system and I = I1 . . . In ∈ InductiveV(R)
such that Ii ̸= Σ for all 1 ≤ i ≤ n. The following table contains, for a combination of a

topology and an interpretation, languages that only contain inductive statements.

Topology V Language

Vtrap
{
I ′ ∈

(
2Σ
)∗ | adj(I ′) ⊆ adj(I)

}
Ring Vsiphon

{
I ′ ∈

(
2Σ
)∗ | adj(I ′) ⊆ adj(I)

}
Vflow

{
I ′ ∈

(
2Σ
)∗ | adj(I ′) ⊆ adj(I)

}
Vtrap

I ′ ∈
(
2Σ
)∗
∣∣∣∣∣∣∣∣
adjL(I

′) = adjL(I),

adjR(I
′) = adjR(I),

adjM(I ′) ⊆ adjM(I)


Bow Vsiphon

I ′ ∈
(
2Σ
)∗
∣∣∣∣∣∣∣∣
adjL(I

′) = adjL(I),

adjR(I
′) = adjR(I),

adjM(I ′) ⊆ adjM(I)


Vflow

I ′ ∈
(
2Σ
)∗
∣∣∣∣∣∣∣∣
adjL(I

′) = adjL(I),

adjR(I
′) = adjR(I),

adjM(I ′) ⊆ adjM(I)


Vtrap

{
I ′ ∈

(
2Σ
)∗ | occ≤k+1(I ′) = occ≤k+1(I)

}
k-Crowd Vsiphon

{
I ′ ∈

(
2Σ
)∗ | occ≤k+1(I ′) = occ≤k+1(I)

}
Vflow

{
I ′ ∈

(
2Σ
)∗ | occ≤k+3(I ′) = occ≤k+3(I)

}
Proof. These results follow immediately from the characterizations of (non-)inductive

statements presented in Section 2.7.

Moreover, we present in Section 2.7 how to construct automata for these languages

of inductive statements. Consequently, one can immediately refine the abstraction with

all inductive statements of these languages after having encountered a single inductive

statement.

133

4 Implementation & Experiments

We have implemented the previously described verification methods in a prototype tool,

called dodo [Wel23a; Wel23b]. In the following, we describe, first, which examples we

consider, second, which verification procedures dodo supports and, third, the results of

the procedures on the examples.

4.1 Case studies

To evaluate our prototype we consider a collection of 22 systems.

Dijkstra’s algorithm for mutual exclusion

This example is based on a very early solution [Dij02] to the problem of mutual exclusion.

Roughly speaking, we consider a group of agents which compete for a critical section.

Every agent maintains a bit variable. With the help of one global pointer, this algorithm

ensures mutual exclusion and a progress guarantee. We only check for the mutual

exclusion property and whether the protocol can deadlock. Notably, the latter property

is not equivalent to the progress guarantee. Also, the version we consider performs one

atomic check over all other participants. This is a simplification of the original algorithm

which includes an iterative check. Due to the restrictions of modeling the protocol as a

regular transition system, this simplification is necessary.

Dijkstra’s algorithm for mutual exclusion with a token

This example is based on [FO97] and models a mutual exclusion algorithm for agents

that form a ring and pass around a single token as a semaphore for a critical region.

135

4. Implementation & Experiments

Other mutual exclusion algorithms

Additionally, we also consider the mutual exclusion algorithms of Burns [JL98] and

Szymanski [AHH16]. Also, we consider the standard bakery algorithm (as formalized in

[Che+17]).

Dining philosophers

We consider three variants of the dining philosophers. First, the atomic version that we

already illustrated in Example 2.3. Second, the version in which one philosopher grabs

their forks in a different order than all the others. And, lastly, a version that allows

philosophers to put down their fork again if they only grabbed the first one [LR81]. For

all these versions we only prove that they cannot deadlock.

Cache coherence protocols

The central property to check for cache coherence protocols is that there are no two

different versions of the same data point present in the cache. We consider the protocols

MESI, MOESI, Illinois, Berkeley, Synapse, FutureBus+, Dragon, and Firefly. For all

these protocols we consider various custom safety properties. The models are based on

[Del00a].

Termination detection

Based on [DS80], we consider a linear host of agents where a token moves down and up

the line again to check whether all the agents have finished some computation. Here we

check whether at most one token moves up or down the line.

Dining cryptographers

In this model (which follows [Che+17]), we consider a group of cryptographers sitting

around a circular table. They just shared a meal that was paid for by an anonymous

person. This person might be one of the cryptographers or not. Now, they try to figure

out whether one of them paid without revealing the actual person. To this end, they run

the following protocol: each of them throws a coin, compares their coin with the coin of

their right-hand neighbor, and announces whether both coins show the same side or a

136

4.2. Verification procedures

difference. However, a cryptographer who paid for the meal will lie in their announce-

ment. It turns out that an even number of announcements that state that the coins

show different sites imply that none of the cryptographers paid while an odd number of

these announcements give away that one of them paid the meal but does not reveal who.

We verify that this protocol cannot yield an even number of disagreeing announcements

with a paying cryptography and, on the other hand, we also check that there is not an

odd number of disagreeing announcements without a paying cryptographer.

Leader election

We also include two leader election algorithms, attributed to Herman, and Israeli and

Jafon. The formalizations are taken from [Che+17].

Token passing

Finally, we include the running examples of this thesis that model token passing algo-

rithms. That is, Example 2.2 and, its variant from Example 2.9.

4.2 Verification procedures

dodo supports the three concrete interpretations we have considered throughout the

thesis; namely, Vtrap , Vsiphon , and Vflow . Because all approaches are compositional; that

is, one can intersect the over-approximations of different interpretations to obtain one

refined over-approximation, dodo allows to specify any subset V ⊆ {Vtrap ,Vsiphon ,Vflow}
of interpretations to use. Based on the chosen interpretations dodo can be operated

in three different modes: oneshot, learn, and adaptive. Roughly speaking, oneshot

constructs the abstraction of all inductive statements for the given RTS and checks, on

that basis, whether any undesired state can be reached. For Vtrap and Vsiphon , the con-

struction of Section 2.6 is used while for Vflow the generic construction (cp. Section 2.3)

is used. On the other hand, learn and adaptive employ the methodology described in

Chapter 3. The difference between the two modes is that the latter generalizes state-

ments based on the topology of the system while the former does not. Therefore, one

would expect better performance from the latter because it identifies more inductive

statements from the same information.

The experiments are run on openjdk 19.0.2 with a maximum heap size of 10 GiB.

137

4. Implementation & Experiments

The central processing unit identifies itself as Intel(R) Core(TM) i5-9500TE CPU @

2.20GHz. For every combination of RTS and property, we call dodo (in the considered

mode) with all possible V ⊆ {Vtrap ,Vsiphon ,Vflow}. However, we do so gradually. That

is, we start with V = {Vtrap}, V = {Vsiphon}, and, then, V = {Vflow}. Afterward,

we proceed to all possible sets with two elements and, finally, to the whole set V =

{Vtrap ,Vsiphon ,Vflow}. If dodo already succeeded in establishing the property with some

subset V (or failed to do so because it exhausted computational limits) we do not

consider supersets of V anymore. For every call to dodo we set a timeout of 20 minutes.

oneshot

In this mode, dodo constructs a transducer for the relation

Id(I) ◦

(⋂
V∈V

⇒V

)
◦ Id(B)

and checks whether this transducer accepts any word. This transducer is explored lazily.

Specifically, the elements of the step relation of the transducer are only computed if nec-

essary. dodo uses the automata library AutomataLib [IHS15] to represent the automata

it constructs.

If the interpretations Vtrap and Vsiphon are chosen, then dodo relies on the step game

to compute the step relation. In this game, when systematically exploring the winning

strategies1, it is possible to consider the same game state ⟨ℓ, S, r⟩ via two different

histories because the order in which the elements of S are removed might differ. Because,

in both cases, the same strategies can be used for the game, we implemented a caching

mechanism for these situations. The idea of this caching mechanism is to trade memory

for time. We report results for experiments using it and results for not using it.

The complete data can be found in Appendix A. In the following, we only present

statistics on this dataset.

Effectiveness: 178 calls to dodo using the mode oneshot failed either to timeouts (122)

or memory issues (56). Of the remaining 165 calls 58 were successful while 107

could not establish the property but provided counterexamples which witness that

1dodo does not solve the step game for all possible steps but computes, for any given base column b

and letter
[
u
v

]
, all base columns b′ for which the step game can be won. The argument, however,

translates to the actual implementation.

138

4.2. Verification procedures

the abstraction is not sufficient to establish the property at all. Overall, 31 prop-

erties out of 62 could be established. Unfortunately, for 11 properties, no answer

could be given because all calls either timed out or ran into memory issues.

Interpretations: In the successful 58 instances, 12 were using Vtrap without the caching

mechanism and 26 with the caching mechanism. Only 1 successful instance was

obtained using Vsiphon without the caching mechanism and 4 with caching. The

interpretation Vflow was used in 15 successful calls. In general, using the caching

mechanism made 34 calls return an answer which did not return one without it.

In only one case it was the other way around. Moreover, in 16 cases using the

caching mechanism sped up the process by more than half a second. There are

no cases where not using the caching mechanism shortened the time until a result

was found by more than half a second.

Efficiency: Using the oneshot mode, a counterexample or the definite absence of one

was reported, on average, in 20 seconds. The longest dodo took in this mode was

7 minutes and 13 seconds. This call returns a negative result using the interpreta-

tions Vsiphon and Vflow . Anecdotally, the same call can be executed in 4.4 seconds

if one activates the caching mechanism for the abstraction of inductive statements

for Vsiphon .

Overall, the oneshot mode is not competitive. Only half the properties can be estab-

lished and more than half of the executions run out of resources. However, the caching

mechanism seems to have an overall positive effect. Since the learning approaches are

specifically designed to use less memory, we hope to achieve better results with them.

learn

Based on the library LearnLib [IHS15] we employ an off-the-shelf learning algorithm

(specifically L∗ [Ang87]) using the oracles from Chapter 3. The alphabet of the lan-

guage that we learn is considerably large; i. e. exponentially larger than the alphabet

of the RTS. LearnLib supports starting a learning process with some alphabet which

can be expanded later if necessary. Therefore, we start the learning process with an

empty alphabet and gradually add those letters from 2Σ which occur in solutions for

Problem 3.1. We illustrate in Algorithm 2 how dodo uses all interpretations in V simul-

taneously. Roughly speaking, in this mode dodo maintains a transducer A for the cur-

139

4. Implementation & Experiments

rent over-approximation of the reachability relation. Every time this over-approximation

proves not sufficient, dodo iterates over all interpretations until it finds V for which an

inductive statement I exists that disproves the counterexample. The learner P for V is

refined by teaching it that I should be part of its language. This prompts P to update

its hypothesis. Then, P is presented with all non-inductive statements its new hypothe-

sis contains until it only accepts inductive statements. For this updated hypothesis the

induced over-approximation H is computed and A is updated to accept the intersection

of the languages of H and itself.

Input: RTS R = ⟨Σ, I, T ⟩, NFA B and interpretations V .
Output: ✓ or ×
begin
A ← getAutomatonFor(Id(I) ◦ Id(B));
while L(A) ̸= ∅ do

counterExample ← getWordFrom(L(A));
foreach V ∈ V do

I ← disproveWithInterpretation(counterExample, V);
if I ̸= null then
P ←getLearnerForInterpretation(V);
teach(P, I);
removeNonInductive(P);
A ← getAutomatonFor(L(A)∩getAbstraction(P));
continue outer loop;

end

end
return ×;

end
return ✓;

end
Algorithm 2: dodo’s learning algorithm for multiple interpretations.

We use SAT4j [BP10] as SAT solver to solve Problem 3.1 for Vflow . For Vtrap and

Vsiphon , we implemented the algorithm for Problem 3.1 that runs in polynomial time.

dodo can also solve Problem 3.1 for Vtrap and Vsiphon via SAT4j using a similar encoding

as for Vflow .
Again, the complete data is reported in Appendix B and we only report the statistics

of it here.

Effectiveness: In this mode we did not encounter any memory issues and only 4 calls

timed out. All of the remaining 461 instances return definite answers of which 137

140

4.2. Verification procedures

were positive ones. In this way, 50 of 62 properties could be established.

Interpretations: From the successful 137 calls, 48 used Vtrap (both in the version where

Problem 3.1 is solved with a polynomial time algorithm and by formulating it as

a propositional formula), 11 used Vsiphon (again, in both versions), and 21 used

Vflow . Surprisingly, in exactly one case formulating Problem 3.1 as a propositional

formula led to a (negative) result where the version that uses the polynomial time

algorithm timed out. This happened for the system with the largest alphabet

of 50 symbols and the interpretation Vtrap . In the polynomial time algorithm for

Problem 3.1 a depth-first search in a graph is executed, in the worst case, n·(|Σ|−1)
times where n is the length of the words that need to be separated. Moreover,

the number of edges in the graph is, potentially, quadratic in |Σ|. Therefore, the

polynomial time algorithm for Problem 3.1 is, in the worst case, bounded by |Σ|3.
Also, by its definition, it always computes the weakest inductive statement for

Vtrap2. For this particular case, it is checked whether one can reach a state in

which no transition can be executed anymore. The NFA which captures these bad

configurations has 281 states.

We believe the reason that dodo times out here is a combination of these factors:

The individual letters that are used for the learned hypotheses are insufficient

to formulate inductive statements that dismiss many bad configurations at once

because only the weakest inductive statements are considered as solutions for Prob-

lem 3.1. Hence, Problem 3.1 is solved many times which takes, due to the large

alphabet size, too long.

On the other hand, formulating Problem 3.1 as a propositional formula leads to any

(not necessarily the weakest) inductive statement that separates the counterexam-

ple. The letters of this inductive statement potentially allow for more expressive

inductive statements in the hypotheses which leads to the counterexample which

cannot be dismissed faster.

The opposite case; that is, using the polynomial time algorithm to solve Prob-

lem 3.1 allowed to compute a result while using the reduction to SAT timed out,

did not occur. However, for the cases where both methods compute a result, using

2In particular, the definition of a separator renders it the weakest inductive statement for the inter-
pretation Vtrap because it is the union of all inductive statements that the bad configuration does
not satisfy.

141

4. Implementation & Experiments

the polynomial time algorithm sped up the computation time by more than half

a second in 14 cases. On the other hand, in 15 cases it was the other way around.

Efficiency: The average computing time in this mode was 12.9 seconds. The longest

computation took 19 minutes and 10 seconds – just shy of the timeout of 20 min-

utes.

Comparison of oneshot and learn

For this comparison, we only consider, for dodo’s mode oneshot, calls that use the

caching mechanism because it performs better. Similarly, we restrict ourselves to calls

that solve Problem 3.1 with polynomial-time algorithms (if possible) for the mode learn.

This leaves 175 cases for the same instance of RMC and used interpretations that

differ only in the mode. For 94 of these cases, the mode oneshot did not return a result

but the mode learn did. There is no case where learn did not return a result but

oneshot did.

There are 77 cases where both modes returned a result. For these, there are 46

cases where the explored states of the transducer that capture the potential reachability

relation were fewer in the mode oneshot than in the mode learn. On average, in these

cases, the number of states of the transducer that are explored in the mode oneshot

to determine a result is only half of the number of states of the transducer that is

constructed in the mode learn. It was the other way around in 30 cases. Here, the

number of explored states in the transducer that is constructed in learn is around a

third of the number of states that are explored in oneshot. If we consider one mode

to be faster than the other if it improves the running time by more than half a second,

then learn outperforms oneshot in 47 cases. There is no case where it is the other way

around.

One significant difference between the two modes is that oneshot constructs its (po-

tentially nondeterministic) transducer lazily while learn not only constructs the whole

transducer but also constructs a deterministic one. Moreover, learn does not look for

a minimal transducer to capture its over-approximation. In fact, every time this over-

approximation is refined dodo does so by intersecting its language with another over-

approximation – an operation that requires a product construction. Therefore, we expect

the abstractions of oneshot to be smaller in cases where a negative result is returned be-

cause these cases only require constructing a part of the transducer. For positive results,

142

4.2. Verification procedures

both modes construct complete transducers for the respective over-approximations. Al-

though learn does not optimize for a small transducer of its over-approximation, it,

generally, performs well. Thus, we are interested in whether its abstraction is smaller

than for the mode oneshot in these cases.

There are 51 cases where both modes returned a negative result. For these, the

explored states of the over-approximation are fewer in oneshot than in learn in 40

cases. On average, in these 40 cases, the number of explored states is halved in the

mode oneshot. learn explored fewer states in 11 cases; that is, on average, only 42%

the number of states as oneshot. Regardless, the mode learn produces a result faster

than the mode oneshot in 33 cases. Recall from before that oneshot never outperforms

learn.

There are 26 cases where both modes returned a positive result. For these, the states

of the transducer that captures the over-approximation are fewer in oneshot than in

learn in 6 cases. On average, in these 6 cases, the number of states is only 69% of the

states in learn. learn explored fewer states in 19 cases; that is, on average, only 31%

the number of states as oneshot. The mode learn produces a result faster than the

mode oneshot in 14 cases.

This data suggests that the size of the transducer of the over-approximation does not

seem to be the crucial factor for the runtime of the tool. In particular, oneshot can half

the number of states that it explores of its over-approximation (for negative results) but is

not significantly faster in any of these cases. However, learn requires only, on average,

8% of the possible alphabet for its inductive statements across these 175 cases. The

alphabets that encode all possible inductive statements grow exponentially in the size

of the alphabet for the considered RTS. oneshot uses these alphabets either explicitly

(for Vflow) or implicitly (for Vtrap and Vsiphon). Thus, significantly reducing the sizes of

the alphabets might also contribute to the good performance of learn.

In conclusion, learning only some sufficient part of all inductive statements mitigates

most of the memory issues and, also, improves the computation time. Moreover, in

this mode dodo can be considered a useful tool for RMC because the provided generic

interpretations already suffice to establish many properties. Although the run time in

this mode is not prohibitive, we still strive for improvements with the remaining mode

adaptive.

143

4. Implementation & Experiments

adaptive

This final mode is essentially the same as learn. The only difference is, that statements

which are used to discharge a counterexample are also generalized, if possible. These

generalizations are regular languages of inductive statements. These languages induce

a potential reachability relation on their own. Therefore, instead of teaching these

languages to the learner, one can immediately refine the over-approximation with this

induced potential reachability relation and not update the learner. In this way, the

learner is only responsible for those inductive statements that cannot be generalized.

The data for adaptive is also given in Appendix B.

Effectiveness: Complementing the learning algorithm with generalizations led to 1 call

(out of 388) which runs out of memory and 15 which run out of time. The re-

maining 72 instances can be separated into 95 successful ones and 277 failing ones.

Because this mode is only applicable to RTSs with specific topologies, we consider

50 properties. Of these, 36 can be established. For 2 properties no call returned

any answer.

Interpretations: In the 95 successful calls, 33 used Vtrap and solved Problem 3.1 with

the polynomial time algorithm, 33 used Vtrap and solved Problem 3.1 with the

reduction to SAT, 8 used Vsiphon and solved Problem 3.1 with the polynomial time

algorithm, 8 used Vsiphon and solved Problem 3.1 with the reduction to SAT, and

13 used Vflow . In 1 case using the polynomial time algorithm for Problem 3.1 made

computing an answer possible over the embedding into a propositional formula.

However, in 1 case it was the other way around. Embedding into a propositional

formula sped up the computation by more than half a second in 2 cases. The

polynomial time algorithm led to a speedup of more than half a second in 3 cases.

Efficiency: The average computing time in this mode was 1.5 seconds. The longest

computation took 2 minutes and 3 seconds.

Comparison of adaptive and learn

Overall, adaptive speeds up the computation of answers in some cases. However, the

effect is less than expected. In fact, in 26 cases this mode performs significantly3 better

3Again, that means a speedup of more than half a second.

144

4.3. Qualitative comparison with other approaches

than learn. On average, in these 26 cases, using adaptive sped up the computation by

73 seconds. On the other hand, it is the other way around in 5 cases where adaptive

was, on average, 50 seconds slower and both modes show roughly the same behavior in

343 cases. Moreover, there are 4 properties that can be established using learn but not

with adaptive. Notably, the systems in these 4 cases are all rings or bows. Thus, an

adaptive learning approach does not seem particularly suited for these topologies.

In conclusion, learn seems to be the best approach, because oneshot struggles with

memory and time issues and adaptive needs, for every combination of interpretation

and topology, a generalization result – which also not necessarily aides the performance.

In particular, learn is agnostic to the used interpretation but offers the most robust

behavior of all three modes with only 4 failed calls overall.

4.3 Qualitative comparison with other approaches

In the following, we compare our approach with others from the literature. In particular,

we are interested in its expressiveness; that is, whether the over-approximation induced

by inductive statements for the generic interpretations Vtrap , Vsiphon , and Vflow suffices to

establish interesting properties. Some tools from the literature are not publicly available

(anymore). This poses the problem that one can consider various safety properties for

some RTS and it is not precisely reported which properties are checked. Therefore,

we say an RTS is “positive” for our approach if we can establish at least half of the

properties that we consider for it4.

In the following, we report, for every approach, how many RTSs are considered there

which we also consider in this thesis and for how many of those we report positive

results. Since there are no negative results reported in the literature, all approaches

yield a positive result for all RTSs that are checked with them.

[Nei14] For the 4 RTSs both approaches consider, we can report positive results in 4

cases.

[Che+17] For the 10 RTSs both approaches consider, we report positive results in 9

cases.

[Var06] For the 8 RTSs both approaches consider, we report positive results in 6 cases.

4This is only relevant for the cache coherence protocols Dragon, FutureBus, and Berkeley.

145

4. Implementation & Experiments

[Abd+07] For the 11 RTSs both approaches consider, we report positive results in 8

cases.

We only report data on the three generic interpretations that we introduced. There-

fore, if we do not report a positive result for some RTS, then it is not impossible to

obtain a positive result with our methodology because one can consider other interpre-

tations. Regardless, since these generic interpretations (Vtrap in particular) already seem

to perform reasonably well in comparison, we are confident to state that our approach

is a competitive paradigm for RMC.

146

5 Conclusion

In this thesis, we have introduced a new paradigm for regular model checking in the form

of logical statements that are encoded using interpretations. This paradigm streamlines

(and extends) previous work on parameterized systems [Boz+20; ERW21b; ERW22b].

Moreover, it is the basis for a useful analysis tool for regular model checking.

Additionally, it raises many interesting theoretical questions. We provide answers to

some of the questions that are relevant to the immediate application of this paradigm.

In particular, we show that Problem 2.2 is PSpace-complete for Vtrap and Vsiphon . For

the interpretation Vflow , we show that the problem is PSpace-hard and in ExpSpace.

In the context of learning a sufficient set of inductive statements, we have considered

the naturally occurring word problem (Problem 3.1). Here, the problem is in PTime

for Vtrap and Vsiphon and NP-complete for Vflow .
In Remark 2.3, we note that Problem 2.2 is, if the interpretation is part of the input,

ExpSpace-complete. However, Chapter 3 formulates a learning approach with con-

structions that do not rely on a specific interpretation. Moreover, the implementation of

this learning approach which only uses generic constructions performs well, experimen-

tally (cp. Chapter 4). Therefore, we do not believe the (theoretically) high complexity

to be prohibitive for further research on the application of this approach. As is often

the case, pathological cases might be rare in practice.

5.1 Future work

We want to conclude this thesis with a list of open problems.

Complexity gap for Vflow Problem 2.2 is PSpace-hard for Vflow and solvable in Ex-

pSpace. The exact complexity, however, is still an open question. Solving Prob-

lem 2.2 for Vtrap and Vsiphon in PSpace crucially depends on two factors:

147

5. Conclusion

• the inductive statements for these abstractions can be merged to produce a

canonical weakest statement which is used to compute the separator for any

configuration, and

• how to compute the letters of the separator can be formulated as a transfor-

mation on permutations of the states of the transducer.

For the interpretation Vflow , the first factor already is not true anymore (and,

consequently, the second one is immaterial). Thus, solving Problem 2.2 for Vflow
in PSpace, if possible at all, probably requires a different approach than for Vtrap
and Vsiphon .

Complexity jump for Vflow The word problem (Problem 3.1) for Vflow has a higher com-

plexity than for Vtrap and Vsiphon . The interpretations Vtrap and Vsiphon are reacha-

bility and safety automata, respectively. Vflow , on the other hand, is neither. Thus,

we ask whether there are structural properties of the interpretation that determine

the complexity of the word problem. Moreover, solving the word problem for Vtrap
and Vsiphon in PTime relies on the construction for the parameterized case. Can

we establish a general connection between the complexity of the parameterized

case and the word case (or the other way around)?

Improving tooling In [Boz+20] a tool ostrich is built on top of the WS1S solver MONA

[Hen+95] which is effectively equivalent with dodo’s mode oneshot. Although the

specification language for the parameterized systems does not match the whole

expressiveness of RMC, the performance is significantly better. This raises the

question of whether the difference in performance is due to the restricted specifi-

cation language or the refined engineering of MONA. In particular, [Hen+95] argues

that encoding the step function of MONA’s automata with binary decision diagrams

is a crucial part of the design since it allows to deal with large alphabets for the

automata.

The defining factor for the size of the alphabet of the automaton that recognizes

the inductive statements is the size of the alphabet Σ of the analyzed RTS R.
On the other hand, the number of states of the automaton that recognizes the

inductive statements (or, respectively, the transducer of the over-approximation

for Vtrap or Vsiphon) is determined by the size of the transducer T of R. Previously,
we hypothesized that the size of the alphabets that encode the inductive statements

148

5.1. Future work

is a limiting factor for the mode oneshot (rather than the size of the transducer

that captures the over-approximation of the reachability relation). In Figure 5.1,

we plot calls to the mode oneshot that are successful, unsuccessful, or exceed the

time limit, against the size of Σ and T . Based on this rough visualization, neither

factor can be identified as the primary restriction.

Therefore, an in-depth comparison of both tools should be considered in the future

to identify and (possibly) remove limiting factors for the mode oneshot. Addi-

tionally, there are more avenues to consider for the further development of dodo:

• For instance, one should evaluate whether regularly minimizing A, the over-

approximation induced by all learned inductive statements, in Algorithm 2

improves the performance of the approach (and, if so, in what frequency one

should minimize A).

• The mode oneshot can be run by only considering inductive statements that

can be encoded by some Γ′ ⊆ Γ instead of using all of Γ. For the case,

Γ = 2Σ one could gradually increase a value k = 1, 2, . . . and only consider

the corresponding alphabets
{
I ∈ 2Σ | |I| ≤ k

}
. On the other hand, one could

separate some randomly selected initial and bad configurations via inductive

statements of the interpretation and take the letters from these statements

to perform the mode oneshot.

• Experimentally, the interpretation Vflow seems to be primarily useful in sys-

tems that operate with some sort of unique access token and the interpre-

tation Vsiphon does not perform well at all. If one wanted to translate this

paradigm into a tool that goes beyond a prototype, then one should evaluate

more interpretations to identify the top-performing ones. There might even

be a notion of interpretations that “fit” the transducer of the interpretations

which are then selected by the tool to analyze the given RTS.

Learn more There are various other automata learning algorithms than L∗ [HS18]. This

means one can consider other algorithms for the mode learn of dodo. In particular,

the learned language of inductive statements is a certificate of the correctness of

the property. Keeping this certificate as small as possible allows us to present it

to a user. If this certificate is small enough, a user might be able to verify it by

hand which vastly improves confidence in the result. Moreover, it may contain

149

5. Conclusion

non-inductive statements, which hint at an incorrect formalization of the system.

Figure 5.1: Qualitative analysis of results in oneshot.

In these scatterplots, we consider calls to the mode oneshot for a single interpre-

tation. In particular, we plot the number of states of the transducer and the size

of the alphabet for the considered RTS. Here, Vtrap∗ and Vsiphon∗ denote using the

interpretations Vtrap and Vsiphon , respectively, with the caching mechanism.

Positive results

0 5 10 15 20 25
0

10

20

30

40

50

|T |

|Σ|

Vtrap
Vtrap∗
Vsiphon
Vsiphon∗
Vflow

Negative results

0 5 10 15 20 25
0

10

20

30

40

50

|T |

|Σ|

Vtrap
Vtrap∗
Vsiphon
Vsiphon∗
Vflow

Calls that exceeded the time limit

0 5 10 15 20 25
0

10

20

30

40

50

|T |

|Σ|

Vtrap
Vtrap∗
Vsiphon
Vsiphon∗
Vflow

150

Bibliography

[Abd+02] Parosh Aziz Abdulla et al. “Regular Model Checking Made Simple and

Efficient”. In: CONCUR. Vol. 2421. Lecture Notes in Computer Science.

Springer, 2002, pp. 116–130 (cit. on p. 1).

[Abd+04] Parosh Aziz Abdulla et al. “A Survey of Regular Model Checking”. In:

CONCUR. Vol. 3170. Lecture Notes in Computer Science. Springer, 2004,

pp. 35–48 (cit. on pp. 1, 2, 15, 16, 18).

[Abd+07] Parosh Aziz Abdulla et al. “Regular Model Checking Without Transducers

(On Efficient Verification of Parameterized Systems)”. In: TACAS. Vol. 4424.

Lecture Notes in Computer Science. Springer, 2007, pp. 721–736 (cit. on

p. 146).

[Abd+12] Parosh Aziz Abdulla et al. “Regular model checking for LTL(MSO)”. In:

Int. J. Softw. Tools Technol. Transf. 14.2 (2012), pp. 223–241 (cit. on p. 1).

[Abd12] Parosh Aziz Abdulla. “Regular model checking”. In: Int. J. Softw. Tools

Technol. Transf. 14.2 (2012), pp. 109–118 (cit. on pp. 1, 2, 15, 16, 18).

[AHH16] Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Hoĺık. “Parameterized ver-

ification through view abstraction”. In: Int. J. Softw. Tools Technol. Transf.

18.5 (2016), pp. 495–516 (cit. on p. 136).

[Ang87] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”.

In: Inf. Comput. 75.2 (1987), pp. 87–106 (cit. on pp. 117, 119, 139).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT

Press, 2008 (cit. on p. 1).

[Blo+16] Roderick Bloem et al. “Decidability in Parameterized Verification”. In:

SIGACT News 47.2 (2016), pp. 53–64 (cit. on pp. 6, 24).

151

Bibliography

[Boi12] Bernard Boigelot. “Domain-specific regular acceleration”. In: Int. J. Softw.

Tools Technol. Transf. 14.2 (2012), pp. 193–206 (cit. on p. 1).

[Bou+12] Ahmed Bouajjani et al. “Abstract regular (tree) model checking”. In: Int.

J. Softw. Tools Technol. Transf. 14.2 (2012), pp. 167–191 (cit. on p. 1).

[Boz+20] Marius Bozga et al. “Structural Invariants for the Verification of Systems

with Parameterized Architectures”. In: TACAS (1). Vol. 12078. Lecture

Notes in Computer Science. Springer, 2020, pp. 228–246 (cit. on pp. 9, 10,

37, 147, 148).

[BP10] Daniel Le Berre and Anne Parrain. “The Sat4j library, release 2.2”. In: J.

Satisf. Boolean Model. Comput. 7.2-3 (2010), pp. 59–6 (cit. on p. 140).

[BT12] Ahmed Bouajjani and Tayssir Touili. “Widening techniques for regular

tree model checking”. In: Int. J. Softw. Tools Technol. Transf. 14.2 (2012),

pp. 145–165 (cit. on p. 1).

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. “Model checking:

algorithmic verification and debugging”. In: Commun. ACM 52.11 (2009),

pp. 74–84 (cit. on p. 1).

[Che+17] Yu-Fang Chen et al. “Learning to prove safety over parameterised concur-

rent systems”. In: FMCAD. IEEE, 2017, pp. 76–83 (cit. on pp. 4, 117, 136,

137, 145).

[Del00a] Giorgio Delzanno. “Automatic Verification of Parameterized Cache Coher-

ence Protocols”. In: CAV. Vol. 1855. Lecture Notes in Computer Science.

Springer, 2000, pp. 53–68 (cit. on pp. 85, 136).

[Del00b] Giorgio Delzanno. “Automatic Verification of Parameterized Cache Coher-

ence Protocols”. In: CAV. Vol. 1855. Lecture Notes in Computer Science.

Springer, 2000, pp. 53–68 (cit. on p. 107).

[Dij02] Edsger W. Dijkstra. “Cooperating Sequential Processes”. In: The Origin

of Concurrent Programming: From Semaphores to Remote Procedure Calls.

Ed. by Per Brinch Hansen. New York, NY: Springer New York, 2002, pp. 65–

138. isbn: 978-1-4757-3472-0. doi: 10.1007/978-1-4757-3472-0_2. url:

https://doi.org/10.1007/978-1-4757-3472-0_2 (cit. on p. 135).

152

https://doi.org/10.1007/978-1-4757-3472-0_2
https://doi.org/10.1007/978-1-4757-3472-0_2

Bibliography

[DR12] Giorgio Delzanno and Ahmed Rezine. “A lightweight regular model check-

ing approach for parameterized systems”. In: Int. J. Softw. Tools Technol.

Transf. 14.2 (2012), pp. 207–222 (cit. on p. 1).

[DS80] Edsger W. Dijkstra and Carel S. Scholten. “Termination Detection for Dif-

fusing Computations”. In: Inf. Process. Lett. 11.1 (1980), pp. 1–4 (cit. on

p. 136).

[EGK12] Javier Esparza, Andreas Gaiser, and Stefan Kiefer. “Proving Termination of

Probabilistic Programs Using Patterns”. In: CAV. Vol. 7358. Lecture Notes

in Computer Science. Springer, 2012, pp. 123–138 (cit. on p. 20).

[EM00] Javier Esparza and Stephan Melzer. “Verification of Safety Properties Using

Integer Programming: Beyond the State Equation”. In: Formal Methods

Syst. Des. 16.2 (2000), pp. 159–189 (cit. on p. 37).

[ERW21a] Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. “Abduction of

trap invariants in parameterized systems”. In: GandALF. Vol. 346. EPTCS.

2021, pp. 1–17 (cit. on pp. 9, 10).

[ERW21b] Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. “Computing Pa-

rameterized Invariants of Parameterized Petri Nets”. In: Petri Nets. Vol. 12734.

Lecture Notes in Computer Science. Springer, 2021, pp. 141–163 (cit. on

pp. 9–11, 37, 147).

[ERW22a] Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. “Computing Pa-

rameterized Invariants of Parameterized Petri Nets”. In: Fundam. Informat-

icae 187.2-4 (2022), pp. 197–243 (cit. on pp. 10, 85).

[ERW22b] Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. “Regular Model

Checking Upside-Down: An Invariant-Based Approach”. In: CONCUR. Vol. 243.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 23:1–23:19

(cit. on pp. 10, 37, 67, 85, 147).

[ERW22c] Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. “Regular Model

Checking Upside-Down: An Invariant-Based Approach”. In: CoRR abs/2205.03060

(2022) (cit. on pp. 10, 11).

[Esp+14] Javier Esparza et al. “An SMT-Based Approach to Coverability Analysis”.

In: CAV. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014,

pp. 603–619 (cit. on p. 37).

153

Bibliography

[FO97] Laurent Fribourg and Hans Olsén. “Reachability sets of parameterized rings

as regular languages”. In: INFINITY. Vol. 9. Electronic Notes in Theoretical

Computer Science. Elsevier, 1997, p. 40 (cit. on pp. 85, 135).

[Grä20] Erich Grädel. “Automatic Structures: Twenty Years Later”. In: LICS. ACM,

2020, pp. 21–34 (cit. on p. 5).

[Hen+95] J.G. Henriksen et al. “Mona: Monadic Second-order logic in practice”. In:

Tools and Algorithms for the Construction and Analysis of Systems, First

International Workshop, TACAS ’95, LNCS 1019. 1995 (cit. on p. 148).

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to

automata theory, languages, and computation, 3rd Edition. Pearson inter-

national edition. Addison-Wesley, 2007 (cit. on p. 14).

[Hon+19] Chih-Duo Hong et al. “Probabilistic Bisimulation for Parameterized Sys-

tems - (with Applications to Verifying Anonymous Protocols)”. In: CAV (1).

Vol. 11561. Lecture Notes in Computer Science. Springer, 2019, pp. 455–474

(cit. on p. 1).

[HS18] Falk Howar and Bernhard Steffen. “Active Automata Learning in Practice -

An Annotated Bibliography of the Years 2011 to 2016”. In: Machine Learn-

ing for Dynamic Software Analysis. Vol. 11026. Lecture Notes in Computer

Science. Springer, 2018, pp. 123–148 (cit. on p. 149).

[IHS15] Malte Isberner, Falk Howar, and Bernhard Steffen. “The Open-Source Learn-

Lib - A Framework for Active Automata Learning”. In: CAV (1). Vol. 9206.

Lecture Notes in Computer Science. Springer, 2015, pp. 487–495 (cit. on

pp. 138, 139).

[JL98] Henrik Ejersbo Jensen and Nancy A. Lynch. “A Proof of Burns N -Process

Mutual Exclusion Algorithm Using Abstraction”. In: TACAS. Vol. 1384.

Lecture Notes in Computer Science. Springer, 1998, pp. 409–423 (cit. on

p. 136).

[Kes+01] Yonit Kesten et al. “Symbolic model checking with rich assertional lan-

guages”. In: Theor. Comput. Sci. 256.1-2 (2001), pp. 93–112 (cit. on pp. 1,

15).

154

Bibliography

[KM95] Robert P. Kurshan and Kenneth L. McMillan. “A Structural Induction

Theorem for Processes”. In: Inf. Comput. 117.1 (1995), pp. 1–11 (cit. on

p. 85).

[Kra23] Valentin Krasotin. “An invariant-based approach to Regular Model Check-

ing”. MA thesis. Technical University of Munich, 2023 (cit. on pp. 11, 59,

130).

[Leg12] Axel Legay. “Extrapolating (omega-)regular model checking”. In: Int. J.

Softw. Tools Technol. Transf. 14.2 (2012), pp. 119–143 (cit. on p. 1).

[Len+17] Ondrej Lengál et al. “Fair Termination for Parameterized Probabilistic Con-

current Systems”. In: TACAS (1). Vol. 10205. Lecture Notes in Computer

Science. 2017, pp. 499–517 (cit. on p. 1).

[Lin+16] AnthonyW. Lin et al. “Regular Symmetry Patterns”. In:VMCAI. Vol. 9583.

Lecture Notes in Computer Science. Springer, 2016, pp. 455–475 (cit. on

p. 85).

[LR16] Anthony W. Lin and Philipp Rümmer. “Liveness of Randomised Parame-

terised Systems under Arbitrary Schedulers”. In: CAV (2). Vol. 9780. Lec-

ture Notes in Computer Science. Springer, 2016, pp. 112–133 (cit. on p. 1).

[LR21] Anthony W. Lin and Philipp Rümmer. “Regular Model Checking Revis-

ited”. In: Model Checking, Synthesis, and Learning. Vol. 13030. Lecture

Notes in Computer Science. Springer, 2021, pp. 97–114 (cit. on pp. 1, 4–6).

[LR81] Daniel Lehmann and Michael O. Rabin. “On the Advantages of Free Choice:

A Symmetric and Fully Distributed Solution to the Dining Philosophers

Problem”. In: POPL. ACM Press, 1981, pp. 133–138 (cit. on p. 136).

[Nei14] Daniel Neider. “Applications of automata learning in verification and syn-

thesis”. PhD thesis. RWTH Aachen University, 2014 (cit. on pp. 4, 117,

145).

[NJ13] Daniel Neider and Nils Jansen. “Regular Model Checking Using Solver Tech-

nologies and Automata Learning”. In: NASA Formal Methods. Vol. 7871.

Lecture Notes in Computer Science. Springer, 2013, pp. 16–31 (cit. on pp. 4,

117).

155

Bibliography

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994

(cit. on p. 48).

[Ras22] Mikhail Raskin. personal communication. 2022 (cit. on pp. 11, 130).

[Var+04] Abhay Vardhan et al. “Learning to Verify Safety Properties”. In: ICFEM.

Vol. 3308. Lecture Notes in Computer Science. Springer, 2004, pp. 274–289

(cit. on pp. 4, 117).

[Var06] Abhay Vardhan. “Learning To Verify Systems”. PhD thesis. University of

Illinois, 2006 (cit. on pp. 4, 117, 145).

[WB98] Pierre Wolper and Bernard Boigelot. “Verifying Systems with Infinite but

Regular State Spaces”. In: CAV. Vol. 1427. Lecture Notes in Computer

Science. Springer, 1998, pp. 88–97 (cit. on pp. 1, 15).

[Wel23a] Christoph Welzel-Mohr. dodo. Sept. 2023. doi: 10.5281/zenodo.8354894.

url: https://doi.org/10.5281/zenodo.8354894 (cit. on p. 135).

[Wel23b] Christoph Welzel-Mohr. dodo. https://gitlab.lrz.de/i7/dodo. 2023

(cit. on p. 135).

[WL89] Pierre Wolper and Vinciane Lovinfosse. “Verifying Properties of Large Sets

of Processes with Network Invariants”. In: Automatic Verification Methods

for Finite State Systems. Vol. 407. Lecture Notes in Computer Science.

Springer, 1989, pp. 68–80 (cit. on p. 85).

156

https://doi.org/10.5281/zenodo.8354894
https://doi.org/10.5281/zenodo.8354894
https://gitlab.lrz.de/i7/dodo

A Experimental results for oneshot

All tables in this appendix consist of nine columns which contain the following informa-
tion:

Name: This is the name of the example.

|I|: This is the number of states for the automaton that describes the initial language
of the system.

|T |: This is the number of states for the automaton that describes the language of the
transitions of the system.

|Σ|: This is the number of elements in the alphabet of the system.

Property: This is a description of the property that all undesired configurations have.

|B|: This is the number of states for the automaton that describes the language of
undesired configurations of the system.

Interpretations: Here we report which interpretations are used. Vtrap∗ and Vsiphon∗ are
used if the cashing mechanism for the steps of the transducer for⇒Vtrap and⇒Vsiphon
is activated.

Result: This column indicates with either ✓ or × whether the property could be estab-
lished or not. Alternatively, we indicate here with oom and oot that dodo ran out
of memory or time while computing the result. The timeout is set to 20 minutes.

Time: Here we report the time it took to establish the result.

expl. abs.: This column reports how many states of the abstraction were explored to
establish the result. Note that this coincides with the number of reachable states
of the complete automaton of the abstraction if the result is positive.

We do not report on executions with more than one interpretation if any of the inter-
pretations already suffice to establish the property, or dodo ran out of space or time for
any of the interpretations before.

157

A. Experimental results for oneshot

Contents

A.1. Dijkstra’s algorithm for mutual exclusion 159

A.2. Dijkstra’s algorithm for mutual exclusion with a token . . . 159

A.3. Other mutual exclusion algorithms 160

A.4. Dining philosophers . 160

A.5. Cache coherence protocols . 161

A.6. Termination detection . 166

A.7. Dining cryptographers . 166

A.8. Leader election . 166

A.9. Token passing . 167

158

A.1. Dijkstra’s algorithm for mutual exclusion

A.1 Dijkstra’s algorithm for mutual exclusion

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Dijkstra 2 17 24

Two agents are
in the mutual
exclusive region
simultaneously

3

Vtrap oot 20 (min) ×
Vtrap∗ oot 20 (min) ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oot 20 (min) ×
Vflow oom × ×

No transition

can be executed
142

Vtrap oot 20 (min) ×
Vtrap∗ oot 20 (min) ×
Vsiphon oot 2 (min) ×
Vsiphon∗ oot 20 (min) ×
Vflow oom × ×

A.2 Dijkstra’s algorithm for mutual exclusion with a token

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Dijkstra ring 2 12 12

Two agents are
in the mutual
exclusive region
simultaneously

3

Vtrap oot 20 (min) ×
Vtrap∗ oot 20 (min) ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oot 20 (min) ×
Vflow oot 20 (min) ×

No transition

can be executed
24

Vtrap oot 20 (min) ×
Vtrap∗ oot 20 (min) ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oot 20 (min) ×
Vflow oot 20 (min) ×

159

A. Experimental results for oneshot

A.3 Other mutual exclusion algorithms

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Burns 1 6 6

Two agents are
in the mutual
exclusive region
simultaneously

3

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 6.2 (s) 316

Vsiphon oot 20 (min) ×
Vsiphon∗ × 2.9 (s) 105

Vflow × 726 (ms) 4

Vsiphon∗,Vflow × 2.3 (s) 123

No transition

can be executed
6

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 6.1 (s) 542

Vsiphon oot 20 (min) ×
Vsiphon∗ ✓ 4.5 (s) 638

Vflow ✓ 728 (ms) 13

Szymanski 1 13 50

Two agents are
in the mutual
exclusive region
simultaneously

3

Vtrap oot 20 (min) ×
Vtrap∗ oot 20 (min) ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oot 20 (min) ×
Vflow oom × ×

No transition

can be executed
281

Vtrap oot 20 (min) ×
Vtrap∗ oot 20 (min) ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oot 20 (min) ×
Vflow oom × ×

bakery 2 4 3

Two agents are
in the mutual
exclusive region
simultaneously

3

Vtrap ✓ 145 (ms) 66

Vtrap∗ ✓ 109 (ms) 66

Vsiphon × 84 (ms) 15

Vsiphon∗ × 87 (ms) 15

Vflow × 188 (ms) 3

Vsiphon ,Vflow × 222 (ms) 29

Vsiphon∗,Vflow × 214 (ms) 29

A.4 Dining philosophers

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Atomic 1 8 4
No transition

can be executed
17

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 137 (s) 47293

Vsiphon × 128 (ms) 4

Vsiphon∗ × 115 (ms) 4

Vflow × 415 (ms) 4

Vsiphon ,Vflow × 443 (s) 107

Vsiphon∗,Vflow × 4.4 (s) 107

Lefty 1 11 6
No transition

can be executed
20

Vtrap oot 20 (min) ×
Vtrap∗ × 15 (s) 73

Vsiphon oot 20 (min) ×
Vsiphon∗ × 3.0 (s) 4

Vflow × 7.0 (s) 4

Vtrap∗,Vsiphon∗ oot 20 (min) ×
Vtrap ,Vflow oot 20 (min) ×
Vtrap∗,Vflow oom × ×
Vsiphon∗,Vflow × 8.9 (s) 5

Return 1 7 6
No transition

can be executed
20

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ × 31 (s) 12

Vflow × 2.8 (s) 3

Vsiphon∗,Vflow × 70 (s) 35

160

A.5. Cache coherence protocols

A.5 Cache coherence protocols

MESI

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

MESI 1 7 4

Two cells are
modified at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 16 (s) 1743

Vsiphon oot 20 (min) ×
Vsiphon∗ × 2.4 (s) 180

Vflow × 284 (ms) 4

Vsiphon∗,Vflow × 495 (ms) 22

One cell falsely
claims
ownership

4

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 16 (s) 2460

Vsiphon × 109 (s) 10

Vsiphon∗ × 316 (ms) 10

Vflow × 286 (ms) 2

Vsiphon ,Vflow oot 20 (min) ×
Vsiphon∗,Vflow × 533 (ms) 5

No transition

can be executed
6

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 17 (s) 2963

Vsiphon oot 20 (min) ×
Vsiphon∗ ✓ 17 (s) 2963

Vflow ✓ 470 (ms) 11

Illinois

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Illinois 1 16 4

Two cells are
dirty at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 4.6 (s) 16

One cell is dirty
and another is
shared

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 4.5 (s) 4

No transition

can be executed
12

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow ✓ 4.6 (s) 4

161

A. Experimental results for oneshot

MOESI

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

MOESI 1 7 5

Two cells are
modified at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 73 (s) 2055

Vsiphon oot 20 (min) ×
Vsiphon∗ × 9.8 (s) 163

Vflow × 708 (ms) 4

Vsiphon∗,Vflow × 2.2 (s) 67

Two cells are
exclusive at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 71 (s) 2446

Vsiphon oot 20 (min) ×
Vsiphon∗ × 1.1 (s) 17

Vflow × 668 (ms) 4

Vsiphon∗,Vflow × 975 (ms) 3

One cell falsely
claims exclusive
access (other
cell shared)

4

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 70 (s) 3252

Vsiphon oot 20 (min) ×
Vsiphon∗ × 1.1 (s) 17

Vflow × 683 (ms) 4

Vsiphon∗,Vflow × 1 (s) 3

One cell falsely
claims exclusive
access (other
cell claims
ownership)

4

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 71 (s) 2648

Vsiphon oot 20 (min) ×
Vsiphon∗ × 1.1 (s) 19

Vflow × 685 (ms) 4

Vsiphon∗,Vflow × 1.6 (s) 27

One cell falsely
claims exclusive
access (other
cell modified)

4

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 70 (s) 2543

Vsiphon oot 20 (min) ×
Vsiphon∗ × 1.1 (s) 19

Vflow × 682 (ms) 4

Vsiphon∗,Vflow × 2.1 (s) 35

One cell falsely
claims
ownership
(other cell
modified)

4

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 71 (s) 2257

Vsiphon oot 20 (min) ×
Vsiphon∗ × 8 (s) 138

Vflow × 706 (ms) 4

Vsiphon∗,Vflow × 1.4 (s) 13

One cell falsely
claims modified
content (other
cell shared)

4

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 71 (s) 2861

Vsiphon oot 20 (min) ×
Vsiphon∗ × 6.7 (s) 113

Vflow × 695 (ms) 4

Vsiphon∗,Vflow × 2 (s) 20

No transition

can be executed
5

Vtrap oot 20 (min) ×
Vtrap∗ ✓ 72 (s) 3633

Vsiphon oot 20 (min) ×
Vsiphon∗ ✓ 70 (s) 5009

Vflow ✓ 702 (ms) 10

162

A.5. Cache coherence protocols

Berkeley

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Berkeley 1 9 4

Two cells are
exclusive at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ × 11 (s) 177

Vsiphon oot 20 (min) ×
Vsiphon∗ × 3.7 (s) 10

Vflow × 768 (ms) 3

Vtrap∗,Vflow × 5.2 (s) 57

Vsiphon∗,Vflow × 5.7 (s) 9

Vtrap∗,Vsiphon∗ oom × ×

One cell falsely
claims exclusive
access (other
cell claims
shared
ownership)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ × 4 (s) 7

Vflow × 685 (ms) 4

Vsiphon∗,Vflow × 4.7 (s) 6

One cell falsely
claims exclusive
access (other
cell claims
unexclusive
access)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ × 4 (s) 7

Vflow × 705 (ms) 4

Vsiphon∗,Vflow × 5 (s) 3

No transition

can be executed
10

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow ✓ 660 (ms) 17

Synapse

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Synapse 1 5 3

Two cells are
dirty at the
same time

3

Vtrap ✓ 12 (s) 96

Vtrap∗ ✓ 219 (ms) 96

Vsiphon × 3.1 (s) 18

Vsiphon∗ × 156 (ms) 18

Vflow × 132 (ms) 4

Vsiphon ,Vflow × 3.4 (s) 8

Vsiphon∗,Vflow × 171 (ms) 8

One cell falsely
claims exclusive
access (other
cell claims
unexclusive
access)

4

Vtrap ✓ 15 (s) 126

Vtrap∗ ✓ 219 (ms) 126

Vsiphon × 4 (s) 21

Vsiphon∗ × 165 (ms) 21

Vflow × 130 (ms) 2

Vsiphon ,Vflow × 347 (ms) 1

Vsiphon∗,Vflow × 163 (ms) 1

No transition

can be executed
4

Vtrap ✓ 11 (s) 106

Vtrap∗ ✓ 202 (ms) 106

Vsiphon ✓ 11 (s) 97

Vsiphon∗ ✓ 202 (ms) 97

Vflow ✓ 16 (ms) 8

163

A. Experimental results for oneshot

FutureBus+

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

FutureBus+ 1 21 9

Two cells have
pending (right)
changes at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow oot 20 (min) ×

One cell falsely
claims exclusive
access (other
cell claims
shared
ownership)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow oot 20 (min) ×

Two cells have
pending
changes at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow oot 20 (min) ×

Two cells are
exclusive at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow oot 20 (min) ×

No transition

can be executed
144

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow oot 20 (min) ×

Firefly

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Firefly 1 16 4

Two cells are
dirty at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 1.7 (s) 4

Two cells are
exclusive at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 1.7 (s) 4

One cell falsely
claims exclusive
access (other
cell is shared)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 1.6 (s) 4

One cell falsely
claims exclusive
access (other
cell claims dirty
access)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 1.7 (s) 4

No transition

can be executed
16

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow ✓ 1.7 (s) 23

164

A.5. Cache coherence protocols

Dragon

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Dragon 1 23 3

Two cells are
dirty at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 102 (s) 4

Two cells are
exclusive at the
same time

3

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 103 (s) 5

One cell falsely
claims exclusive
access (other
cell claims dirty
and shared
access)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 103 (s) 3

One cell falsely
claims exclusive
access (other
cell claims
shared access)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 111 (s) 5

One cell falsely
claims exclusive
access (other
cell claims dirty
access)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 102 (s) 5

One cell falsely
claims dirty
access (other
cell claims
shared access)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 104 (s) 4

One cell falsely
claims dirty
access (other
cell claims dirty
and shared
access)

4

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon × 109 (s) 10

Vsiphon∗ oom × ×
Vflow × 105 (s) 3

No transition

can be executed
16

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow ✓ 103 (s) 25

165

A. Experimental results for oneshot

A.6 Termination detection

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Termination
detection

1 6 4

Two tokens

moving down
3

Vtrap ✓ 1 (s) 244

Vtrap∗ ✓ 234 (ms) 244

Vsiphon × 272 (ms) 77

Vsiphon∗ × 159 (ms) 77

Vflow ✓ 389 (ms) 498

Two tokens

moving up
3

Vtrap ✓ 1.4 (s) 331

Vtrap∗ ✓ 241 (ms) 331

Vsiphon × 372 (ms) 83

Vsiphon∗ × 162 (ms) 83

Vflow ✓ 377 (ms) 393

No transition

can be executed
7

Vtrap ✓ 1 (s) 282

Vtrap∗ ✓ 239 (ms) 282

Vsiphon × 142 (ms) 36

Vsiphon∗ × 205 (ms) 36

Vflow ✓ 350 (ms) 327

A.7 Dining cryptographers

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Dining
cryptographers

2 8 12

Paying

cryptographer
4

Vtrap ✓ 295 (s) 1226

Vtrap∗ ✓ 75 (s) 1226

Vsiphon oot 20 (min) ×
Vsiphon∗ oot 20 (min) ×
Vflow oot 20 (min) ×

No paying

cryptographer
2

Vtrap ✓ 102 (s) 614

Vtrap∗ ✓ 36 (s) 614

Vsiphon oot 20 (min) ×
Vsiphon∗ oot 20 (min) ×
Vflow oot 20 (min) ×

A.8 Leader election

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

Herman 2 11 2 Only followers 1

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon oot 20 (min) ×
Vsiphon∗ oom × ×
Vflow × 145 (ms) 2

Israeli-Jafon 2 10 2 Only followers 1

Vtrap oot 20 (min) ×
Vtrap∗ oom × ×
Vsiphon × 111 (s) 4

Vsiphon∗ × 1 (s) 4

Vflow × 130 (ms) 2

Vsiphon ,Vflow × 5.5 (s) 4

Vsiphon∗,Vflow × 543 (ms) 4

166

A.9. Token passing

A.9 Token passing

Name |I| |T | |Σ| Property |B| Interpretations Result Time # expl. abs.

With invariant 2 3 2

There is no

token
2

Vtrap ✓ 77 (ms) 15

Vtrap∗ ✓ 81 (ms) 15

Vsiphon × 73 (ms) 6

Vsiphon∗ × 77 (ms) 6

Vflow ✓ 130 (ms) 35

There are many

tokens
3

Vtrap ✓ 76 (ms) 15

Vtrap∗ ✓ 82 (ms) 15

Vsiphon × 69 (ms) 3

Vsiphon∗ × 74 (ms) 3

Vflow ✓ 133 (ms) 35

Without
invariant

2 3 2

There is no

token
2

Vtrap ✓ 85 (ms) 25

Vtrap∗ ✓ 88 (ms) 25

Vsiphon × 75 (ms) 8

Vsiphon∗ × 78 (ms) 8

Vflow ✓ 130 (ms) 23

There are many

tokens
3

Vtrap × 75 (ms) 10

Vtrap∗ × 79 (ms) 10

Vsiphon × 71 (ms) 3

Vsiphon∗ × 75 (ms) 3

Vflow ✓ 127 (ms) 23

Vtrap ,Vsiphon × 93 (ms) 28

Vtrap∗,Vsiphon∗ × 94 (ms) 28

167

B Experimental results for learn and
adaptive

All tables in this appendix consist of fourteen columns which contain the following
information:

Name: This is the name of the example.

|I|: This is the number of states for the automaton that describes the initial language
of the system.

|T |: This is the number of states for the automaton that describes the language of the
transitions of the system.

|Σ|: This is the number of elements in the alphabet of the system.

Topology: This is the name of the topology of this example (or × if this example does
not follow any of the considered topologies).

Property: This is a description of the property that all undesired configurations have.

|B|: This is the number of states for the automaton that describes the language of
undesired configurations of the system.

Interpretations: Here we report which interpretations are used. Vtrap∗ and Vsiphon∗ are
used if instances of Problem 3.1 for Vtrap and Vsiphon are solved with an embedding
into a propositional formula.

Mode: This is either learn or adaptive depending on which mode is used.

Result: This column indicates with either ✓ or × whether the property could be estab-
lished or not. Alternatively, we indicate here with oom and oot that dodo ran out
of memory or time while computing the result. The timeout is set to 20 minutes.

Time: Here we report the time it took to establish the result.

expl. abs.: This column reports two values x and y in the form (x/y). Here x is the
number of states of the automata that recognize all inductive statements that are
learned. y, on the other hand, is the number of states of the transducer which

169

B. Experimental results for learn and adaptive

captures the abstraction of the learned inductive statements until the result is
established.

2Σ: In this column the number of letters for the learned inductive statements of all
interpretations is given.

instances: For the mode learn, this column reports how often Problem 3.1 is solved
until the result is established. For the mode adaptive, this column reports, again,
two values x and y in the form (x/y). Here, x is how often Problem 3.1 is solved
until the result is established and y reports how many of the solutions for Prob-
lem 3.1 could be generalized with the help of Lemma 3.5.

We do not report on executions with more than one interpretation if any of the inter-
pretations already suffice to establish the property, or dodo ran out of space or time for
any of the interpretations before.

Contents

B.1. Dijkstra’s algorithm for mutual exclusion 171

B.2. Dijkstra’s algorithm for mutual exclusion with a token . . . 171

B.3. Other mutual exclusion algorithms 172

B.4. Dining philosophers . 173

B.5. Cache coherence protocols . 174

B.6. Termination detection . 186

B.7. Dining cryptographers . 186

B.8. Leader election . 187

B.9. Token passing . 187

170

B.1. Dijkstra’s algorithm for mutual exclusion

B.1 Dijkstra’s algorithm for mutual exclusion

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Dijkstra 2 17 24 crowd

Two agents are
in the mutually
exclusive region
simultaneously

3

Vtrap
learn ✓ 385 (s) (12/157) 12 8

adaptive ✓ 123 (s) (128/988) 18 (26/26)

Vtrap∗
learn ✓ 750 (s) (11/278) 12 7

adaptive ✓ 27 (s) (32/507) 12 (7/7)

Vsiphon
learn × 844 (ms) (1/16) 1 1

adaptive × 826 (ms) (3/16) 1 (2/2)

Vsiphon∗ learn × 665 (ms) (1/13) 2 1

adaptive × 841 (ms) (5/17) 2 (2/1)

Vflow
learn × 20 (s) (5/100) 3 3

adaptive × 6 (s) (21/49) 3 (3/2)

Vsiphon ,Vflow
learn × 1.9 (s) (2/82) 2 5

adaptive × 1.8 (s) (8/63) 2 (5/2)

Vsiphon∗,Vflow
learn × 1.5 (s) (2/61) 3 5

adaptive × 1.8 (s) (10/49) 3 (5/2)

No transition

can be executed
142

Vtrap
learn ✓ 5 (s) (4/42) 6 6

adaptive ✓ 45 (s) (101/111) 6 (20/20)

Vtrap∗
learn ✓ 58 (s) (4/58) 6 6

adaptive ✓ 98 (s) (50/1510) 11 (13/13)

Vsiphon
learn × 2.6 (s) (4/37) 2 3

adaptive × 1.3 (s) (5/39) 2 (3/2)

Vsiphon∗ learn × 4.4 (s) (4/39) 4 4

adaptive × 1.2 (s) (5/46) 2 (3/2)

Vflow
learn ✓ 20 (s) (7/471) 7 6

adaptive ✓ 97 (s) (50/524) 8 (9/7)

B.2 Dijkstra’s algorithm for mutual exclusion with a token

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Dijkstra ring 2 12 12 ring

Two agents are
in the mutually
exclusive region
simultaneously

3

Vtrap
learn × 327 (s) (14/750) 8 7

adaptive × 1.5 (s) (58/394) 8 (10/9)

Vtrap∗
learn × 70 (s) (13/1230) 8 6

adaptive × 2.4 (s) (38/4742) 8 (6/5)

Vsiphon
learn × 95 (ms) (1/7) 0 1

adaptive × 92 (ms) (1/7) 0 (1/0)

Vsiphon∗ learn × 106 (ms) (1/7) 0 1

adaptive × 102 (ms) (1/7) 0 (1/0)

Vflow
learn ✓ 2.4 (s) (9/235) 5 3

adaptive ✓ 6.9 (s) (26/7345) 7 (4/3)

Vtrap ,Vsiphon
learn × 329 (s) (15/750) 8 8

adaptive × 879 (ms) (59/394) 8 (11/9)

Vtrap∗,Vsiphon∗ learn × 100 (s) (14/1230) 8 7

adaptive × 3.3 (s) (39/4742) 8 (7/5)

No transition

can be executed
24

Vtrap
learn ✓ 1.4 (s) (7/4055) 5 4

adaptive ✓ 700 (ms) (15/139) 5 (5/2)

Vtrap∗
learn ✓ 2.8 (s) (9/81) 7 5

adaptive ✓ 561 (ms) (20/167) 7 (6/3)

Vsiphon
learn × 125 (ms) (1/18) 1 2

adaptive × 123 (ms) (1/18) 1 (2/0)

Vsiphon∗ learn × 141 (ms) (1/18) 1 2

adaptive × 137 (ms) (1/18) 1 (2/0)

Vflow
learn ✓ 2.1 (s) (8/95) 5 4

adaptive ✓ 910 (ms) (18/357) 5 (5/3)

171

B. Experimental results for learn and adaptive

B.3 Other mutual exclusion algorithms

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Burns’ 1 6 6 ×

Two agents are
in the mutually
exclusive region
simultaneously

3

Vtrap learn ✓ 552 (ms) (6/74) 7 6

Vtrap∗ learn ✓ 335 (ms) (5/38) 4 3

Vsiphon learn × 77 (ms) (1/6) 0 1

Vsiphon∗ learn × 86 (ms) (1/6) 0 1

Vflow learn × 101 (ms) (1/6) 0 1

Vsiphon ,Vflow learn × 111 (ms) (2/6) 0 2

Vsiphon∗,Vflow learn × 106 (ms) (2/6) 0 2

No transition

can be executed
5

Vtrap learn ✓ 67 (ms) (1/2) 0 0

Vtrap∗ learn ✓ 68 (ms) (1/2) 0 0

Vsiphon learn ✓ 68 (ms) (1/2) 0 0

Vsiphon∗ learn ✓ 69 (ms) (1/0) 0 0

Vflow learn ✓ 69 (ms) (1/2) 0 0

Szymanski 1 13 50 ×

Two agents are
in the mutually
exclusive region
simultaneously

3

Vtrap learn × 115 (s) (7/95) 6 6

Vtrap∗ learn × 81 (s) (3/30) 2 2

Vsiphon learn × 10 (s) (1/15) 1 2

Vsiphon∗ learn × 28 (s) (1/33) 5 5

Vflow learn × 93 (s) (2/158) 7 6

Vtrap ,Vsiphon learn × 112 (s) (8/95) 6 7

Vtrap∗,Vsiphon∗ learn × 79 (s) (4/30) 2 3

Vtrap ,Vflow learn × 114 (s) (8/95) 6 7

Vtrap∗,Vflow learn × 81 (s) (4/30) 2 3

Vsiphon ,Vflow learn × 12 (s) (2/15) 1 3

Vsiphon∗,Vflow learn × 30 (s) (2/33) 5 6

Vtrap ,Vsiphon ,Vflow learn × 1150 (s) (9/95) 6 8

Vtrap∗,Vsiphon∗,Vflow learn × 80 (s) (5/30) 2 4

No transition

can be executed
281

Vtrap learn oot 20 (min) (×/×) × ×
Vtrap∗ learn × 441 (s) (4/317) 6 5

Vsiphon learn × 63 (s) (4/127) 2 3

Vsiphon∗ learn × 204 (s) (4/159) 7 7

Vflow learn oot 20 (min) (×/×) × ×
Vtrap∗,Vsiphon∗ learn × 443 (s) (5/317) 6 6

bakery 2 4 3 ×

Two agents are
in the mutually
exclusive region
simultaneously

3

Vtrap learn ✓ 157 (ms) (6/36) 3 2

Vtrap∗ learn ✓ 170 (ms) (6/36) 3 2

Vsiphon learn × 68 (ms) (1/7) 0 1

Vsiphon∗ learn × 77 (ms) (1/7) 0 1

Vflow learn × 85 (ms) (1/7) 0 1

Vsiphon ,Vflow learn × 94 (ms) (2/7) 0 2

Vsiphon∗,Vflow learn × 92 (ms) (2/7) 0 2

172

B.4. Dining philosophers

B.4 Dining philosophers

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Atomic 1 8 4 ring
No transition

can be executed
17

Vtrap
learn ✓ 166 (ms) (10/59) 4 5

adaptive ✓ 92 (s) (9004/37397) 4 (457/457)

Vtrap∗
learn ✓ 784 (ms) (13/156) 6 6

adaptive oom × (×/×) × (×/×)

Vsiphon
learn × 74 (ms) (1/19) 0 1

adaptive × 71 (ms) (1/19) 0 (1/0)

Vsiphon∗ learn × 84 (ms) (1/19) 0 1

adaptive × 83 (ms) (1/19) 0 (1/0)

Vflow
learn × 97 (ms) (1/19) 0 1

adaptive × 95 (ms) (1/19) 0 (1/0)

Vsiphon ,Vflow
learn × 107 (ms) (2/19) 0 2

adaptive × 103 (ms) (2/19) 2 (2/0)

Vsiphon∗,Vflow
learn × 105 (ms) (2/19) 0 2

adaptive × 101 (ms) (2/19) 0 (2/0)

Lefty 1 11 6 bow
No transition

can be executed
20

Vtrap
learn × 5.5 (s) (20/244) 9 8

adaptive × 143 (ms) (29/64) 9 (10/9)

Vtrap∗
learn × 2.7 (s) (13/185) 9 6

adaptive × 149 (ms) (17/69) 9 (6/5)

Vsiphon
learn × 81 (ms) (1/19) 0 1

adaptive × 79 (ms) (1/19) 0 (1/0)

Vsiphon∗ learn × 92 (ms) (1/19) 0 1

adaptive × 90 (ms) (1/19) 0 (1/0)

Vflow
learn × 106 (ms) (1/19) 0 1

adaptive × 104 (ms) (1/19) 0 (1/0)

Vsiphon ,Vflow
learn × 120 (ms) (2/19) 0 2

adaptive × 116 (ms) (2/19) 0 (2/0)

Vsiphon∗,Vflow
learn × 115 (ms) (2/19) 0 2

adaptive × 113 (ms) (2/19) 0 (2/0)

Vtrap ,Vflow
learn ✓ 148 (s) (43/9461) 23 18

adaptive oot 20 (min) (×/×) × (×/×)

Vtrap∗,Vflow
learn ✓ 94 (s) (34/7352) 18 13

adaptive oot 20 (min) (×/×) × (×/×)

Vtrap ,Vsiphon
learn × 5.6 (s) (21/244) 9 9

adaptive × 151 (ms) (30/64) 9 (11/9)

Vtrap∗,Vsiphon∗ learn × 2.8 (s) (14/185) 9 7

adaptive × 154 (ms) (18/69) 9 (7/5)

Return 1 7 6 ring
No transition

can be executed
20

Vtrap
learn ✓ 193 (ms) (5/45) 4 6

adaptive oot 20 (min) (×/×) × (×/×)

Vtrap∗
learn ✓ 721 (ms) (5/43) 3 4

adaptive oot 20 (min) (×/×) × (×/×)

Vsiphon
learn × 79 (ms) (1/15) 0 1

adaptive × 78 (ms) (1/15) 0 (1/0)

Vsiphon∗ learn × 90 (ms) (1/15) 0 1

adaptive × 88 (ms) (1/15) 0 (1/0)

Vflow
learn × 103 (ms) (1/15) 0 1

adaptive × 99 (ms) (1/15) 0 (1/0)

Vsiphon ,Vflow
learn × 116 (ms) (2/15) 0 2

adaptive × 114 (ms) (2/15) 0 (2/0)

Vsiphon∗,Vflow
learn × 111 (ms) (2/15) 0 2

adaptive × 110 (ms) (2/15) 0 (2/0)

173

B. Experimental results for learn and adaptive

B.5 Cache coherence protocols

MESI

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

MESI 1 7 4 crowd

Two cells are
modified at the
same time

3

Vtrap
learn ✓ 140 (ms) (4/53) 3 3

adaptive ✓ 102 (ms) (12/39) 3 (3/3)

Vtrap∗
learn ✓ 121 (ms) (2/43) 3 2

adaptive ✓ 148 (ms) (14/45) 3 (2/2)

Vsiphon
learn × 68 (ms) (1/6) 0 1

adaptive × 68 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 80 (ms) (1/6) 0 1

adaptive × 77 (ms) (1/6) 0 (1/0)

Vflow
learn × 95 (ms) (1/6) 0 1

adaptive × 91 (ms) (1/6) 0 (1/0)

Vsiphon ,Vflow
learn × 105 (ms) (2/6) 0 2

adaptive × 101 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 100 (ms) (2/6) 0 2

adaptive × 97 (ms) (2/6) 0 (2/0)

One cell falsely
claims
ownership

4

Vtrap
learn ✓ 149 (ms) (4/53) 4 3

adaptive ✓ 134 (ms) (14/46) 3 (2/2)

Vtrap∗
learn ✓ 149 (ms) (4/53) 4 3

adaptive ✓ 151 (ms) (14/46) 3 (2/2)

Vsiphon
learn × 71 (ms) (1/8) 0 1

adaptive × 68 (ms) (1/1) 0 (1/0)

Vsiphon∗ learn × 80 (ms) (1/8) 0 1

adaptive × 79 (ms) (1/8) 0 (1/0)

Vflow
learn × 94 (ms) (1/8) 0 1

adaptive × 92 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 105 (ms) (2/8) 0 2

adaptive × 101 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 101 (ms) (2/8) 0 2

adaptive × 99 (ms) (2/8) 0 (2/0)

No transition

can be executed
6

Vtrap
learn ✓ 622 (ms) (1/2) 0 0

adaptive ✓ 59 (ms) (1/2) 0 (0/0)

Vtrap∗
learn ✓ 62 (ms) (1/2) 0 0

adaptive ✓ 61 (ms) (1/2) 0 (0/0)

Vsiphon
learn ✓ 62 (ms) (1/2) 0 0

adaptive ✓ 61 (ms) (1/2) 0 (0/0)

Vsiphon∗ learn ✓ 63 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

Vflow
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

174

B.5. Cache coherence protocols

Illinois

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Illinois 1 16 4 crowd

Two cells are
dirty at the
same time

3

Vtrap
learn × 70 (ms) (1/6) 0 1

adaptive × 66 (ms) (1/6) 0 (1/0)

Vtrap∗
learn × 83 (ms) (1/6) 0 1

adaptive × 79 (ms) (1/6) 0 (1/0)

Vsiphon
learn × 70 (ms) (1/6) 0 1

adaptive × 67 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 82 (ms) (1/6) 0 1

adaptive × 80 (ms) (1/6) 0 (1/0)

Vflow
learn × 101 (ms) (1/6) 0 1

adaptive × 99 (ms) (1/6) 0 (1/0)

Vtrap ,Vflow
learn × 109 (ms) (2/6) 0 2

adaptive × 108 (ms) (2/6) 0 (2/0)

Vtrap∗,Vflow
learn × 105 (ms) (2/6) 0 2

adaptive × 103 (ms) (2/6) 0 (2/0)

Vsiphon ,Vflow
learn × 108 (ms) (2/6) 0 2

adaptive × 107 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 106 (ms) (2/6) 0 2

adaptive × 103 (ms) (2/6) 0 (2/0)

Vtrap ,Vsiphon
learn × 76 (ms) (2/6) 0 2

adaptive × 74 (ms) (2/6) 0 (2/0)

Vtrap∗,Vsiphon∗ learn × 89 (ms) (2/6) 0 2

adaptive × 86 (ms) (2/6) 0 (2/0)

Vtrap ,Vsiphon ,Vflow
learn × 115 (ms) (3/6) 0 3

adaptive × 110 (ms) (3/6) 0 (3/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 110 (ms) (3/6) 0 3

adaptive × 106 (ms) (3/6) 0 (3/0)

One cell is dirty
and another is
shared

4

Vtrap
learn × 98 (ms) (4/21) 4 2

adaptive × 90 (ms) (6/24) 2 (2/1)

Vtrap∗
learn × 116 (ms) (4/21) 2 2

adaptive × 108 (ms) (6/24) 2 (2/1)

Vsiphon
learn × 71 (ms) (1/8) 0 1

adaptive × 68 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 81 (ms) (1/8) 0 1

adaptive × 82 (ms) (1/8) 0 (1/0)

Vflow
learn × 101 (ms) (1/8) 0 1

adaptive × 99 (ms) (1/8) 0 (1/0)

Vtrap ,Vflow
learn × 143 (ms) (5/21) 2 2

adaptive × 135 (ms) (7/24) 2 (3/1)

Vtrap∗,Vflow
learn × 142 (ms) (5/21) 2 2

adaptive × 133 (ms) (7/24) 2 (3/1)

Vsiphon ,Vflow
learn × 109 (ms) (2/8) 0 2

adaptive × 108 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 106 (ms) (2/8) 0 2

adaptive × 102 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon
learn × 103 (ms) (5/21) 2 3

adaptive × 97 (ms) (7/24) 2 (3/1)

Vtrap∗,Vsiphon∗ learn × 121 (ms) (5/21) 2 3

adaptive × 115 (ms) (7/24) 2 (3/1)

Vtrap ,Vsiphon ,Vflow
learn × 149 (ms) (6/21) 2 4

adaptive × 137 (ms) (8/24) 2 (4/1)

Vtrap∗,Vsiphon∗,Vflow
learn × 146 (ms) (6/21) 2 4

adaptive × 135 (ms) (8/24) 2 (4/1)

No transition

can be executed
12

Vtrap
learn ✓ 65 (ms) (1/2) 0 0

adaptive ✓ 63 (ms) (1/2) 0 (0/0)

Vtrap∗
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 61 (ms) (1/2) 0 (0/0)

Vsiphon
learn ✓ 65 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

Vsiphon∗ learn ✓ 65 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

Vflow
learn ✓ 66 (ms) (1/2) 0 0

adaptive ✓ 65 (ms) (1/2) 0 (0/0)

175

B. Experimental results for learn and adaptive

MOESI

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

MOESI 1 7 5 crowd

Two cells are
modified at the
same time

3

Vtrap
learn ✓ 159 (ms) (4/53) 3 3

adaptive ✓ 110 (ms) (12/39) 3 (3/3)

Vtrap∗
learn ✓ 170 (ms) (4/47) 3 2

adaptive ✓ 165 (ms) (14/45) 3 (2/2)

Vsiphon
learn × 72 (ms) (1/6) 0 1

adaptive × 68 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 83 (ms) (1/6) 0 1

adaptive × 80 (ms) (1/6) 0 (1/0)

Vflow
learn × 97 (ms) (1/6) 0 1

adaptive × 94 (ms) (1/6) 0 (1/0)

Vsiphon ,Vflow
learn × 106 (ms) (2/6) 0 2

adaptive × 102 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 103 (ms) (2/6) 0 2

adaptive × 100 (ms) (2/6) 0 (2/0)

Two cells are
exclusive at the
same time

3

Vtrap
learn ✓ 155 (ms) (4/32) 3 3

adaptive ✓ 109 (ms) (12/26) 3 (3/3)

Vtrap∗
learn ✓ 133 (ms) (2/43) 2 2

adaptive ✓ 164 (ms) (14/45) 3 (2/2)

Vsiphon
learn × 72 (ms) (1/6) 0 1

adaptive × 68 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 81 (ms) (1/6) 0 1

adaptive × 178 (ms) (1/6) 0 (1/0)

Vflow
learn × 97 (ms) (1/6) 0 1

adaptive × 94 (ms) (1/6) 0 (1/0)

Vsiphon ,Vflow
learn × 105 (ms) (2/6) 0 2

adaptive × 104 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 102 (ms) (2/6) 0 2

adaptive × 100 (ms) (2/6) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell shared)

4

Vtrap
learn ✓ 158 (ms) (4/31) 3 3

adaptive ✓ 153 (ms) (14/29) 3 (2/2)

Vtrap∗
learn ✓ 165 (ms) (4/59) 4 3

adaptive ✓ 169 (ms) (14/71) 3 (2/2)

Vsiphon
learn × 72 (ms) (1/8) 0 1

adaptive × 71 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 84 (ms) (1/8) 0 1

adaptive × 80 (ms) (1/8) 0 (1/0)

Vflow
learn × 98 (ms) (1/8) 0 1

adaptive × 96 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 108 (ms) (2/8) 0 2

adaptive × 103 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 105 (ms) (2/8) 0 2

adaptive × 103 (ms) (2/8) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell claims
ownership)

4

Vtrap
learn ✓ 180 (ms) (6/46) 4 4

adaptive ✓ 180 (ms) (22/44) 4 (3/3)

Vtrap∗
learn ✓ 170 (ms) (4/47) 3 2

adaptive ✓ 166 (ms) (14/61) 3 (2/2)

Vsiphon
learn × 71 (ms) (1/8) 0 1

adaptive × 68 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 83 (ms) (1/8) 0 1

adaptive × 81 (ms) (1/8) 0 (1/0)

Vflow
learn × 97 (ms) (1/8) 0 1

adaptive × 94 (ms) (1/8) 0 (1/0)

Vtrap ,Vsiphon ,Vflow
learn × 109 (ms) (2/8) 0 2

adaptive × 105 (ms) (2/8) 0 (2/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 106 (ms) (2/8) 0 2

adaptive × 101 (ms) (2/8) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell modified)

4

Vtrap
learn ✓ 171 (ms) (4/53) 4 3

adaptive ✓ 180 (ms) (22/52) 4 (3/3)

Vtrap∗
learn ✓ 132 (ms) (2/49) 3 2

adaptive ✓ 166 (ms) (14/45) 3 (2/2)

Vsiphon
learn × 70 (ms) (1/8) 0 1

adaptive × 68 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 82 (ms) (1/8) 0 1

adaptive × 81 (ms) (1/8) 0 (1/0)

Vflow
learn × 98 (ms) (1/8) 0 1

adaptive × 94 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 106 (ms) (2/8) 0 2

adaptive × 104 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 104 (ms) (2/8) 0 2

adaptive × 101 (ms) (2/8) 0 (2/0)

176

B.5. Cache coherence protocols

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

MOESI contd. 1 7 5 crowd

One cell falsely
claims
ownership
(other cell
modified)

4

Vtrap
learn ✓ 181 (ms) (6/74) 4 4

adaptive ✓ 178 (ms) (22/69) 4 (3/3)

Vtrap∗
learn ✓ 169 (ms) (4/47) 3 2

adaptive ✓ 165 (ms) (14/61) 3 (2/2)

Vsiphon
learn × 71 (ms) (1/8) 0 1

adaptive × 69 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 83 (ms) (1/8) 0 1

adaptive × 80 (ms) (1/8) 0 (1/0)

Vflow
learn × 97 (ms) (1/8) 0 1

adaptive × 96 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 107 (ms) (2/8) 0 2

adaptive × 104 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 105 (ms) (2/8) 0 2

adaptive × 103 (ms) (2/8) 0 (2/0)

One cell falsely
claims modified
content (other
cell shared)

4

Vtrap
learn ✓ 156 (ms) (4/53) 3 3

adaptive ✓ 152 (ms) (14/46) 3 (2/2)

Vtrap∗
learn ✓ 167 (ms) (4/59) 4 3

adaptive ✓ 169 (ms) (14/71) 3 (2/2)

Vsiphon
learn × 71 (ms) (1/8) 0 1

adaptive × 69 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 82 (ms) (1/8) 0 1

adaptive × 80 (ms) (1/8) 0 (1/0)

Vflow
learn × 97 (ms) (1/8) 0 1

adaptive × 95 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 108 (ms) (2/8) 0 2

adaptive × 105 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 105 (ms) (2/8) 0 2

adaptive × 103 (ms) (2/8) 0 (2/0)

No transition

can be executed
5

Vtrap
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

Vtrap∗
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 61 (ms) (1/2) 0 (0/0)

Vsiphon
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 61 (ms) (1/2) 0 (0/0)

Vsiphon∗ learn ✓ 63 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

Vflow
learn ✓ 66 (ms) (1/2) 0 0

adaptive ✓ 63 (ms) (1/2) 0 (0/0)

177

B. Experimental results for learn and adaptive

Berkeley

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Berkeley 1 9 4 crowd

Two cells are
exclusive at the
same time

3

Vtrap
learn × 340 (ms) (1/6) 0 1

adaptive × 95 (ms) (1/6) 0 (1/0)

Vtrap∗
learn × 85 (ms) (1/6) 0 1

adaptive × 77 (ms) (1/6) 0 (1/0)

Vsiphon
learn × 69 (ms) (1/6) 0 1

adaptive × 67 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 81 (ms) (1/6) 0 1

adaptive × 77 (ms) (1/6) 0 (1/0)

Vflow
learn × 106 (ms) (1/6) 0 1

adaptive × 94 (ms) (1/6) 0 (1/0)

Vtrap ,Vflow
learn × 107 (ms) (2/6) 0 2

adaptive × 100 (ms) (2/6) 0 (2/0)

Vtrap∗,Vflow
learn × 104 (ms) (2/6) 0 2

adaptive × 98 (ms) (2/6) 0 (2/0)

Vsiphon ,Vflow
learn × 104 (ms) (2/6) 0 2

adaptive × 100 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 103 (ms) (2/6) 0 2

adaptive × 98 (ms) (2/6) 0 (2/0)

Vtrap ,Vsiphon
learn × 75 (ms) (2/6) 0 2

adaptive × 73 (ms) (2/6) 0 (2/0)

Vtrap∗,Vsiphon∗ learn × 88 (ms) (2/6) 0 2

adaptive × 82 (ms) (2/6) 0 (2/0)

Vtrap ,Vsiphon ,Vflow
learn × 110 (ms) (3/6) 0 3

adaptive × 105 (ms) (3/6) 0 (3/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 105 (ms) (3/6) 0 3

adaptive × 102 (ms) (3/6) 0 (3/0)

One cell falsely
claims exclusive
access (other
cell claims
shared
ownership)

4

Vtrap
learn ✓ 190 (ms) (4/21) 3 2

adaptive ✓ 266 (ms) (14/29) 3 (2/2)

Vtrap∗
learn ✓ 144 (ms) (4/21) 3 2

adaptive ✓ 150 (ms) (14/29) 3 (2/2)

Vsiphon
learn × 85 (ms) (1/8) 0 1

adaptive × 67 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 86 (ms) (1/8) 0 1

adaptive × 77 (ms) (1/8) 0 (1/0)

Vflow
learn × 96 (ms) (1/8) 0 1

adaptive × 93 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 105 (ms) (2/8) 0 2

adaptive × 100 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 102 (ms) (2/8) 0 2

adaptive × 100 (ms) (2/8) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell claims
unexclusive
access)

4

Vtrap
learn ✓ 150 (ms) (6/41) 4 4

adaptive ✓ 150 (ms) (22/44) 4 (3/3)

Vtrap∗
learn ✓ 145 (ms) (4/33) 3 2

adaptive ✓ 151 (ms) (14/46) 3 (2/2)

Vsiphon
learn × 69 (ms) (1/8) 0 1

adaptive × 67 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 82 (ms) (1/8) 0 1

adaptive × 78 (ms) (1/8) 0 (1/0)

Vflow
learn × 96 (ms) (1/8) 0 1

adaptive × 93 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 105 (ms) (2/8) 0 2

adaptive × 103 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 101 (ms) (2/8) 0 2

adaptive × 99 (ms) (2/8) 0 (2/0)

No transition

can be executed
10

Vtrap
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 61 (ms) (1/2) 0 (0/0)

Vtrap∗
learn ✓ 62 (ms) (1/2) 0 0

adaptive ✓ 60 (ms) (1/2) 0 (0/0)

Vsiphon
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

Vsiphon∗ learn ✓ 65 (ms) (1/2) 0 0

adaptive ✓ 61 (ms) (1/2) 0 (0/0)

Vflow
learn ✓ 65 (ms) (1/2) 0 0

adaptive ✓ 63 (ms) (1/2) 0 (0/0)

178

B.5. Cache coherence protocols

Synapse

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Synapse 1 5 3 crowd

Two cells are
dirty at the
same time

3

Vtrap
learn ✓ 96 (ms) (3/36) 3 4

adaptive ✓ 92 (ms) (12/26) 3 (3/3)

Vtrap∗
learn ✓ 104 (ms) (2/37) 3 2

adaptive ✓ 127 (ms) (14/32) 3 (2/2)

Vsiphon
learn × 67 (ms) (1/6) 0 1

adaptive × 65 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 77 (ms) (1/6) 0 1

adaptive × 78 (ms) (1/6) 0 (1/0)

Vflow
learn × 89 (ms) (1/6) 0 1

adaptive × 88 (ms) (1/6) 0 (1/0)

Vsiphon ,Vflow
learn × 96 (ms) (2/6) 0 2

adaptive × 96 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 94 (ms) (2/6) 0 2

adaptive × 93 (ms) (2/6) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell claims
unexclusive
access)

4

Vtrap
learn ✓ 94 (ms) (3/38) 3 3

adaptive ✓ 116 (ms) (14/29) 3 (2/2)

Vtrap∗
learn ✓ 105 (ms) (2/37) 3 2

adaptive ✓ 126 (ms) (14/32) 3 (2/2)

Vsiphon
learn × 67 (ms) (1/8) 0 1

adaptive × 65 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 77 (ms) (1/8) 0 1

adaptive × 77 (ms) (1/8) 0 (1/0)

Vflow
learn × 89 (ms) (1/8) 0 1

adaptive × 89 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 98 (ms) (2/8) 0 2

adaptive × 96 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 97 (ms) (2/8) 0 2

adaptive × 94 (ms) (2/8) 0 (2/0)

No transition

can be executed
4

Vtrap
learn ✓ 61 (ms) (1/2) 0 0

adaptive ✓ 59 (ms) (1/2) 0 (0/0)

Vtrap∗
learn ✓ 62 (ms) (1/2) 0 0

adaptive ✓ 59 (ms) (1/2) 0 (0/0)

Vsiphon
learn ✓ 61 (ms) (1/2) 0 0

adaptive ✓ 58 (ms) (1/2) 0 (0/0)

Vsiphon∗ learn ✓ 61 (ms) (1/2) 0 0

adaptive ✓ 58 (ms) (1/2) 0 (0/0)

Vflow
learn ✓ 63 (ms) (1/2) 0 0

adaptive ✓ 60 (ms) (1/2) 0 (0/0)

179

B. Experimental results for learn and adaptive

FutureBus+

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

FutureBus+ 1 22 9 crowd

Two cells have
pending (right)
changes at the
same time

3

Vtrap
learn ✓ 12 (s) (17/268) 7 7

adaptive ✓ 4 (s) (2/349) 7 (16/16)

Vtrap∗
learn ✓ 1 (s) (5/61) 5 3

adaptive ✓ 731 (ms) (22/108) 5 (3/3)

Vsiphon
learn × 82 (ms) (1/6) 0 1

adaptive × 83 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 96 (ms) (1/6) 0 1

adaptive × 97 (ms) (1/6) 0 (1/0)

Vflow
learn × 128 (ms) (1/6) 0 1

adaptive × 125 (ms) (1/6) 0 (1/0)

Vsiphon ,Vflow
learn × 142 (ms) (2/6) 0 2

adaptive × 136 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 140 (ms) (2/6) 0 2

adaptive × 135 (ms) (2/6) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell claims
shared
ownership)

4

Vtrap
learn × 85 (ms) (1/8) 0 1

adaptive × 82 (ms) (1/8) 0 (1/0)

Vtrap∗
learn × 102 (ms) (1/8) 0 1

adaptive × 100 (ms) (1/8) 0 (1/0)

Vsiphon
learn × 91 (ms) (1/8) 0 1

adaptive × 87 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 107 (ms) (1/8) 0 1

adaptive × 96 (ms) (1/8) 0 (1/0)

Vflow
learn × 123 (ms) (1/8) 0 1

adaptive × 119 (ms) (1/8) 0 (1/0)

Vtrap ,Vflow
learn × 143 (ms) (2/8) 0 2

adaptive × 136 (ms) (2/8) 0 (2/0)

Vtrap∗,Vflow
learn × 145 (ms) (2/8) 0 2

adaptive × 113 (ms) (2/8) 0 (2/0)

Vsiphon ,Vflow
learn × 148 (ms) (2/8) 0 2

adaptive × 143 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 139 (ms) (2/8) 0 2

adaptive × 140 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon
learn × 103 (ms) (2/8) 0 2

adaptive × 98 (ms) (2/8) 0 (2/0)

Vtrap∗,Vsiphon∗ learn × 109 (ms) (2/8) 0 2

adaptive × 108 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon ,Vflow
learn × 157 (ms) (3/8) 0 3

adaptive × 148 (ms) (3/8) 0 (3/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 145 (ms) (3/8) 0 3

adaptive × 153 (ms) (3/8) 0 (3/0)

180

B.5. Cache coherence protocols

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

FutureBus+
contd.

1 22 9 crowd

Two cells have
pending
changes at the
same time

3

Vtrap
learn ✓ 136 (s) (53/402) 10 10

adaptive oot 20 (min) (×/×) × (×/×)

Vtrap∗
learn ✓ 17 (s) (16/100) 6 4

adaptive ✓ 451 (ms) (22/75) 4 (3/3)

Vsiphon
learn × 89 (ms) (1/8) 0 1

adaptive × 82 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 102 (ms) (1/8) 0 1

adaptive × 94 (ms) (1/8) 0 (1/0)

Vflow
learn × 123 (ms) (1/8) 0 1

adaptive × 121 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 137 (ms) (2/8) 0 2

adaptive × 137 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 143 (ms) (2/8) 0 2

adaptive × 134 (ms) (2/8) 0 (2/0)

Two cells are
exclusive at the
same time

3

Vtrap
learn × 89 (ms) (1/8) 0 1

adaptive × 86 (ms) (1/8) 0 (1/0)

Vtrap∗
learn × 97 (ms) (1/8) 0 1

adaptive × 97 (ms) (1/8) 0 (1/0)

Vsiphon
learn × 87 (ms) (1/8) 0 1

adaptive × 89 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 97 (ms) (1/8) 0 1

adaptive × 99 (ms) (1/8) 0 (1/0)

Vflow
learn × 127 (ms) (1/8) 0 1

adaptive × 119 (ms) (1/8) 0 (1/0)

Vtrap ,Vflow
learn × 143 (ms) (2/8) 0 2

adaptive × 144 (ms) (2/8) 0 (2/0)

Vtrap∗,Vflow
learn × 142 (ms) (2/8) 0 2

adaptive × 136 (ms) (2/8) 0 (2/0)

Vsiphon ,Vflow
learn × 148 (ms) (2/8) 0 2

adaptive × 144 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 141 (ms) (2/8) 0 2

adaptive × 131 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon
learn × 100 (ms) (2/8) 0 2

adaptive × 95 (ms) (2/8) 0 (2/0)

Vtrap∗,Vsiphon∗ learn × 110 (ms) (2/8) 0 2

adaptive × 107 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon ,Vflow
learn × 149 (ms) (3/8) 0 3

adaptive × 146 (ms) (3/8) 0 (3/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 154 (ms) (3/8) 0 3

adaptive × 148 (ms) (3/8) 0 (3/0)

No transition

can be executed
108

Vtrap
learn ✓ 87 (ms) (1/2) 0 0

adaptive ✓ 88 (ms) (1/2) 0 (0/0)

Vtrap∗
learn ✓ 89 (ms) (1/2) 0 0

adaptive ✓ 82 (ms) (1/2) 0 (0/0)

Vsiphon
learn ✓ 85 (ms) (1/2) 0 0

adaptive ✓ 83 (ms) (1/2) 0 (0/0)

Vsiphon∗ learn ✓ 88 (ms) (1/2) 0 0

adaptive ✓ 86 (ms) (1/2) 0 (0/0)

Vflow
learn ✓ 92 (ms) (1/2) 0 0

adaptive ✓ 87 (ms) (1/2) 0 (0/0)

181

B. Experimental results for learn and adaptive

Firefly

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Firefly 1 16 4 crowd

Two cells are
dirty at the
same time

3

Vtrap
learn × 69 (ms) (1/6) 0 1

adaptive × 67 (ms) (1/6) 0 (1/0)

Vtrap∗
learn × 82 (ms) (1/6) 0 1

adaptive × 79 (ms) (1/6) 0 (1/0)

Vsiphon
learn × 69 (ms) (1/6) 0 1

adaptive × 67 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 81 (ms) (1/6) 0 1

adaptive × 79 (ms) (1/6) 0 (1/0)

Vflow
learn × 98 (ms) (1/6) 0 1

adaptive × 96 (ms) (1/6) 0 (1/0)

Vtrap ,Vflow
learn × 107 (ms) (2/6) 0 2

adaptive × 104 (ms) (2/6) 0 (2/0)

Vtrap∗,Vflow
learn × 104 (ms) (2/6) 0 2

adaptive × 100 (ms) (2/6) 0 (2/0)

Vsiphon ,Vflow
learn × 106 (ms) (2/6) 0 2

adaptive × 102 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 105 (ms) (2/6) 0 2

adaptive × 98 (ms) (2/6) 0 (2/0)

Vtrap ,Vsiphon
learn × 76 (ms) (2/6) 0 2

adaptive × 72 (ms) (2/6) 0 (2/0)

Vtrap∗,Vsiphon∗ learn × 87 (ms) (2/6) 0 2

adaptive × 82 (ms) (2/6) 0 (2/0)

Vtrap ,Vsiphon ,Vflow
learn × 110 (ms) (3/6) 0 3

adaptive × 108 (ms) (3/6) 0 (3/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 107 (ms) (3/6) 0 3

adaptive × 104 (ms) (3/6) 0 (3/0)

Two cells are
exclusive at the
same time

3

Vtrap
learn × 69 (ms) (1/6) 0 1

adaptive × 66 (ms) (1/6) 0 (1/0)

Vtrap∗
learn × 80 (ms) (1/6) 0 1

adaptive × 79 (ms) (1/6) 0 (1/0)

Vsiphon
learn × 69 (ms) (1/6) 0 1

adaptive × 67 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 82 (ms) (1/6) 0 1

adaptive × 79 (ms) (1/6) 0 (1/0)

Vflow
learn × 100 (ms) (1/6) 0 1

adaptive × 96 (ms) (1/6) 0 (1/0)

Vtrap ,Vflow
learn × 107 (ms) (2/6) 0 2

adaptive × 103 (ms) (2/6) 0 (2/0)

Vtrap∗,Vflow
learn × 103 (ms) (2/6) 0 2

adaptive × 99 (ms) (2/6) 0 (2/0)

Vsiphon ,Vflow
learn × 108 (ms) (2/6) 0 2

adaptive × 104 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 102 (ms) (2/6) 0 2

adaptive × 99 (ms) (2/6) 0 (2/0)

Vtrap ,Vsiphon
learn × 76 (ms) (2/6) 0 2

adaptive × 69 (ms) (2/6) 0 (2/0)

Vtrap∗,Vsiphon∗ learn × 87 (ms) (2/6) 0 2

adaptive × 82 (ms) (2/6) 0 (2/0)

Vtrap ,Vsiphon ,Vflow
learn × 110 (ms) (3/6) 0 3

adaptive × 110 (ms) (3/6) 0 (3/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 106 (ms) (3/6) 0 3

adaptive × 104 (ms) (3/6) 0 (3/0)

182

B.5. Cache coherence protocols

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Firefly contd. 1 16 4 crowd

One cell falsely
claims exclusive
access (other
cell is shared)

4

Vtrap
learn × 95 (ms) (4/21) 2 2

adaptive × 90 (ms) (6/24) 2 (2/1)

Vtrap∗
learn × 112 (ms) (4/21) 2 2

adaptive × 108 (ms) (6/24) 2 (2/1)

Vsiphon
learn × 17 (ms) (1/8) 0 1

adaptive × 68 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 83 (ms) (1/8) 0 1

adaptive × 80 (ms) (1/8) 0 (1/0)

Vflow
learn × 99 (ms) (1/8) 0 1

adaptive × 97 (ms) (1/8) 0 (1/0)

Vtrap ,Vflow
learn × 139 (ms) (5/21) 2 2

adaptive × 131 (ms) (7/24) 2 (3/1)

Vtrap∗,Vflow
learn × 138 (ms) (5/21) 2 3

adaptive × 132 (ms) (7/24) 2 (3/1)

Vsiphon ,Vflow
learn × 107 (ms) (2/8) 0 2

adaptive × 103 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 103 (ms) (2/8) 0 2

adaptive × 99 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon
learn × 100 (ms) (5/21) 2 2

adaptive × 93 (ms) (7/24) 2 (3/1)

Vtrap∗,Vsiphon∗ learn × 120 (ms) (5/21) 2 3

adaptive × 112 (ms) (7/24) 2 (3/1)

Vtrap ,Vsiphon ,Vflow
learn × 143 (ms) (6/21) 2 4

adaptive × 138 (ms) (8/24) 2 (4/1)

Vtrap∗,Vsiphon∗,Vflow
learn × 141 (ms) (6/21) 2 4

adaptive × 133 (ms) (8/24) 2 (4/1)

One cell falsely
claims exclusive
access (other
cell claims dirty
access)

4

Vtrap
learn × 81 (ms) (1/8) 0 1

adaptive × 69 (ms) (1/8) 0 (1/0)

Vtrap∗
learn × 81 (ms) (1/8) 0 1

adaptive × 78 (ms) (1/8) 0 (1/0)

Vsiphon
learn × 17 (ms) (1/8) 0 1

adaptive × 67 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 81 (ms) (1/8) 0 1

adaptive × 80 (ms) (1/8) 0 (1/0)

Vflow
learn × 100 (ms) (1/8) 0 1

adaptive × 96 (ms) (1/8) 0 (1/0)

Vtrap ,Vflow
learn × 109 (ms) (2/8) 0 2

adaptive × 103 (ms) (2/8) 0 (2/0)

Vtrap∗,Vflow
learn × 104 (ms) (2/8) 0 2

adaptive × 101 (ms) (2/8) 0 (2/0)

Vsiphon ,Vflow
learn × 109 (ms) (2/8) 0 2

adaptive × 104 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 105 (ms) (2/8) 0 2

adaptive × 101 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon
learn × 76 (ms) (2/8) 0 2

adaptive × 71 (ms) (2/8) 0 (2/0)

Vtrap∗,Vsiphon∗ learn × 88 (ms) (2/8) 0 2

adaptive × 83 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon ,Vflow
learn × 111 (ms) (3/8) 0 3

adaptive × 111 (ms) (3/8) 0 (3/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 109 (ms) (3/8) 0 3

adaptive × 106 (ms) (3/8) 0 (3/0)

No transition

can be executed
16

Vtrap
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 63 (ms) (1/2) 0 (0/0)

Vtrap∗
learn ✓ 65 (ms) (1/2) 0 0

adaptive ✓ 63 (ms) (1/2) 0 (0/0)

Vsiphon
learn ✓ 65 (ms) (1/2) 0 0

adaptive ✓ 63 (ms) (1/2) 0 (0/0)

Vsiphon∗ learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 63 (ms) (1/2) 0 (0/0)

Vflow
learn ✓ 67 (ms) (1/2) 0 0

adaptive ✓ 64 (ms) (1/2) 0 (0/0)

183

B. Experimental results for learn and adaptive

Dragon

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Dragon 1 23 5 crowd

Two cells are
dirty at the
same time

3

Vtrap
learn ✓ 177 (ms) (4/33) 3 2

adaptive ✓ 144 (ms) (14/45) 3 (2/2)

Vtrap∗
learn ✓ 190 (ms) (4/33) 3 2

adaptive ✓ 162 (ms) (14/45) 3 (2/2)

Vsiphon
learn × 67 (ms) (1/6) 0 1

adaptive × 66 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 81 (ms) (1/6) 0 1

adaptive × 79 (ms) (1/6) 0 (1/0)

Vflow
learn × 102 (ms) (1/6) 0 1

adaptive × 100 (ms) (1/6) 0 (1/0)

Vsiphon ,Vflow
learn × 113 (ms) (2/6) 0 2

adaptive × 111 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 110 (ms) (2/6) 0 2

adaptive × 105 (ms) (2/6) 0 (2/0)

Two cells are
exclusive at the
same time

3

Vtrap
learn ✓ 882 (ms) (13/73) 4 5

adaptive ✓ 118 (ms) (16/40) 4 (4/4)

Vtrap∗
learn ✓ 1.4 (s) (12/106) 5 3

adaptive ✓ 242 (ms) (14/70) 4 (2/2)

Vsiphon
learn × 68 (ms) (1/6) 0 1

adaptive × 67 (ms) (1/6) 0 (1/0)

Vsiphon∗ learn × 81 (ms) (1/6) 0 1

adaptive × 78 (ms) (1/6) 0 (1/0)

Vflow
learn × 103 (ms) (1/6) 0 1

adaptive × 102 (ms) (1/6) 0 (1/0)

Vsiphon ,Vflow
learn × 111 (ms) (2/6) 0 2

adaptive × 111 (ms) (2/6) 0 (2/0)

Vsiphon∗,Vflow
learn × 110 (ms) (2/6) 0 2

adaptive × 106 (ms) (2/6) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell claims dirty
and shared
access)

4

Vtrap
learn ✓ 40 (s) (25/236) 6 6

adaptive ✓ 210 (ms) (30/83) 6 (4/4)

Vtrap∗
learn ✓ 302 (ms) (7/76) 5 3

adaptive ✓ 189 (ms) (22/87) 5 (3/3)

Vsiphon
learn × 70 (ms) (1/8) 0 1

adaptive × 67 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 84 (ms) (1/8) 0 1

adaptive × 80 (ms) (1/8) 0 (1/0)

Vflow
learn × 104 (ms) (1/8) 0 1

adaptive × 102 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 113 (ms) (2/8) 0 2

adaptive × 113 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 111 (ms) (2/8) 0 2

adaptive × 109 (ms) (2/8) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell claims
shared access)

4

Vtrap
learn ✓ 4.6 (s) (16/138) 5 4

adaptive ✓ 181 (ms) (22/47) 4 (3/3)

Vtrap∗
learn ✓ 2 (s) (15/73) 4 2

adaptive ✓ 169 (ms) (14/66) 4 (2/2)

Vsiphon
learn × 69 (ms) (1/8) 0 1

adaptive × 68 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 82 (ms) (1/8) 0 1

adaptive × 80 (ms) (1/8) 0 (1/0)

Vflow
learn × 105 (ms) (1/8) 0 1

adaptive × 102 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 114 (ms) (2/8) 0 2

adaptive × 113 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 111 (ms) (2/8) 0 2

adaptive × 108 (ms) (2/8) 0 (2/0)

One cell falsely
claims exclusive
access (other
cell claims dirty
access)

4

Vtrap
learn ✓ 184 (ms) (4/50) 4 3

adaptive ✓ 143 (ms) (14/40) 3 (2/2)

Vtrap∗
learn ✓ 193 (ms) (4/39) 3 2

adaptive ✓ 163 (ms) (14/45) 3 (2/2)

Vsiphon
learn × 69 (ms) (1/8) 0 1

adaptive × 68 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 83 (ms) (1/8) 0 1

adaptive × 79 (ms) (1/8) 0 (1/0)

Vflow
learn × 105 (ms) (1/8) 0 1

adaptive × 103 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 113 (ms) (2/8) 0 2

adaptive × 114 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 111 (ms) (2/8) 0 2

adaptive × 110 (ms) (2/8) 0 (2/0)

184

B.5. Cache coherence protocols

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Dragon contd. 1 23 5 crowd

One cell falsely
claims dirty
access (other
cell claims
shared access)

4

Vtrap
learn ✓ 3.3 (s) (15/176) 4 4

adaptive ✓ 149 (ms) (14/46) 3 (2/2)

Vtrap∗
learn ✓ 2.1 (s) (15/73) 4 2

adaptive ✓ 172 (ms) (14/66) 4 (2/2)

Vsiphon
learn × 71 (ms) (1/8) 0 1

adaptive × 68 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 82 (ms) (1/8) 0 1

adaptive × 78 (ms) (1/8) 0 (1/0)

Vflow
learn × 104 (ms) (1/8) 0 1

adaptive × 102 (ms) (1/8) 0 (1/0)

Vsiphon ,Vflow
learn × 114 (ms) (2/8) 0 2

adaptive × 112 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 110 (ms) (2/8) 0 2

adaptive × 108 (ms) (2/8) 0 (2/0)

One cell falsely
claims dirty
access (other
cell claims dirty
and shared
access)

4

Vtrap
learn × 72 (ms) (1/8) 0 1

adaptive × 174 (ms) (1/8) 0 (1/0)

Vtrap∗
learn × 84 (ms) (1/8) 0 1

adaptive × 85 (ms) (1/8) 0 (1/0)

Vsiphon
learn × 73 (ms) (1/8) 0 1

adaptive × 70 (ms) (1/8) 0 (1/0)

Vsiphon∗ learn × 86 (ms) (1/8) 0 1

adaptive × 83 (ms) (1/8) 0 (1/0)

Vflow
learn × 107 (ms) (1/8) 0 1

adaptive × 106 (ms) (1/8) 0 (1/0)

Vtrap ,Vflow
learn × 116 (ms) (2/8) 0 2

adaptive × 114 (ms) (2/8) 0 (2/0)

Vtrap∗,Vflow
learn × 113 (ms) (2/8) 0 2

adaptive × 111 (ms) (2/8) 0 (2/0)

Vsiphon ,Vflow
learn × 117 (ms) (2/8) 0 2

adaptive × 116 (ms) (2/8) 0 (2/0)

Vsiphon∗,Vflow
learn × 100 (ms) (2/8) 0 2

adaptive × 113 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon
learn × 80 (ms) (2/8) 0 2

adaptive × 78 (ms) (2/8) 0 (2/0)

Vtrap∗,Vsiphon∗ learn × 90 (ms) (2/8) 0 2

adaptive × 93 (ms) (2/8) 0 (2/0)

Vtrap ,Vsiphon ,Vflow
learn × 124 (ms) (3/8) 0 3

adaptive × 123 (ms) (3/8) 0 (3/0)

Vtrap∗,Vsiphon∗,Vflow
learn × 119 (ms) (3/8) 0 3

adaptive × 118 (ms) (3/8) 0 (3/0)

No transition

can be executed
16

Vtrap
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 61 (ms) (1/2) 0 (0/0)

Vtrap∗
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

Vsiphon
learn ✓ 64 (ms) (1/2) 0 0

adaptive ✓ 60 (ms) (1/2) 0 (0/0)

Vsiphon∗ learn ✓ 63 (ms) (1/2) 0 0

adaptive ✓ 62 (ms) (1/2) 0 (0/0)

Vflow
learn ✓ 65 (ms) (1/2) 0 0

adaptive ✓ 63 (ms) (1/2) 0 (0/0)

185

B. Experimental results for learn and adaptive

B.6 Termination detection

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Termination
detection

1 6 4 ×

Two tokens

moving down
3

Vtrap learn ✓ 249 (ms) (5/76) 6 3

Vtrap∗ learn ✓ 243 (ms) (5/63) 5 3

Vsiphon learn × 69 (ms) (1/6) 0 1

Vsiphon∗ learn × 82 (ms) (1/6) 0 1

Vflow learn ✓ 294 (ms) (3/364) 3 2

Two tokens

moving up
3

Vtrap learn ✓ 402 (ms) (5/787) 9 7

Vtrap∗ learn ✓ 170 (ms) (3/111) 4 3

Vsiphon learn × 72 (ms) (1/6) 0 1

Vsiphon∗ learn × 82 (ms) (1/6) 0 1

Vflow learn ✓ 301 (ms) (3/364) 3 2

No transition

can be executed
7

Vtrap learn ✓ 291 (ms) (5/495) 6 4

Vtrap∗ learn ✓ 229 (ms) (5/220) 6 3

Vsiphon learn × 73 (ms) (1/9) 0 1

Vsiphon∗ learn × 82 (ms) (1/9) 0 1

Vflow learn ✓ 303 (ms) (3/360) 3 2

B.7 Dining cryptographers

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Dining
cryptographers

2 8 12 ring

Paying

cryptographer
4

Vtrap
learn ✓ 9.6 (s) (10/1249) 16 13

adaptive oot 20 (min) (×/×) × (×/×)

Vtrap∗
learn ✓ 30 (s) (13/1996) 16 11

adaptive oot 20 (min) (×/×) × (×/×)

Vsiphon
learn ✓ 5.1 (s) (9/742) 12 11

adaptive oot 20 (min) (×/×) × (×/×)

Vsiphon∗ learn ✓ 54 (s) (16/2355) 21 15

adaptive oot 20 (min) (×/×) × (×/×)

Vflow
learn oot 20 (min) (×/×) × ×
adaptive oot 20 (min) (×/×) × (×/×)

No paying

cryptographer
2

Vtrap
learn ✓ 2.1 (s) (10/235) 8 7

adaptive oot 20 (min) (×/×) × (×/×)

Vtrap∗
learn ✓ 18 (s) (11/536) 11 9

adaptive oot 20 (min) (×/×) × (×/×)

Vsiphon
learn ✓ 3.1 (s) (9/428) 12 11

adaptive oot 20 (min) (×/×) × (×/×)

Vsiphon∗ learn ✓ 54 (s) (16/702) 18 14

adaptive oot 20 (min) (×/×) × (×/×)

Vflow
learn oot 20 (min) (×/×) × ×
adaptive oot 20 (min) (×/×) × (×/×)

186

B.8. Leader election

B.8 Leader election

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

Herman 2 11 2 × Only followers 1

Vtrap learn ✓ 69 (ms) (1/4) 1 1

Vtrap∗ learn ✓ 81 (ms) (1/4) 1 1

Vsiphon learn × 74 (ms) (3/6) 1 2

Vsiphon∗ learn × 89 (ms) (3/6) 1 2

Vflow learn × 98 (ms) (1/8) 1 2

Vsiphon ,Vflow learn × 105 (ms) (4/6) 1 3

Vsiphon∗,Vflow learn × 102 (ms) (4/6) 1 3

Israeli-Jafon 2 10 2 × Only followers 1

Vtrap learn ✓ 69 (ms) (1/4) 1 1

Vtrap∗ learn ✓ 82 (ms) (1/4) 1 1

Vsiphon learn × 75 (ms) (3/6) 1 2

Vsiphon∗ learn × 88 (ms) (3/6) 1 2

Vflow learn × 98 (ms) (1/8) 1 2

Vsiphon ,Vflow learn × 104 (ms) (4/6) 1 3

Vsiphon∗,Vflow learn × 102 (ms) (4/6) 1 3

B.9 Token passing

Name |I| |T | |Σ| Topology Property |B| Interpretations Mode Result Time # expl. abs. # 2Σ # instances

With invariant 2 3 2 ×

There is no

token
2

Vtrap learn ✓ 69 (ms) (1/6) 1 1

Vtrap∗ learn ✓ 81 (ms) (1/6) 1 1

Vsiphon learn × 70 (ms) (1/10) 1 2

Vsiphon∗ learn × 81 (ms) (1/10) 1 2

Vflow learn ✓ 89 (ms) (1/12) 1 1

There are many

tokens
3

Vtrap learn ✓ 86 (ms) (4/23) 2 3

Vtrap∗ learn ✓ 110 (ms) (4/19) 2 3

Vsiphon learn × 65 (ms) (1/7) 0 1

Vsiphon∗ learn × 76 (ms) (1/7) 0 1

Vflow learn ✓ 90 (ms) (1/35) 2 2

Without
invariant

2 3 2 bow

There is no

token
2

Vtrap
learn ✓ 68 (ms) (1/6) 1 1

adaptive ✓ 190 (ms) (1/6) 1 (1/0)

Vtrap∗
learn ✓ 11 (ms) (1/6) 1 1

adaptive ✓ 100 (ms) (1/6) 1 (1/0)

Vsiphon
learn × 70 (ms) (1/10) 1 2

adaptive × 69 (ms) (1/10) 1 (2/0)

Vsiphon∗ learn × 83 (ms) (1/10) 1 2

adaptive × 83 (ms) (1/10) 1 (2/1)

Vflow
learn ✓ 88 (ms) (1/12) 1 1

adaptive ✓ 104 (ms) (1/12) 1 (1/0)

There are many

tokens
3

Vtrap
learn × 80 (ms) (3/18) 2 3

adaptive × 77 (ms) (11/17) 2 (4/3)

Vtrap∗
learn × 94 (ms) (3/18) 2 3

adaptive × 92 (ms) (11/17) 2 (4/3)

Vsiphon
learn × 65 (ms) (1/7) 0 1

adaptive × 65 (ms) (1/7) 0 (1/0)

Vsiphon∗ learn × 76 (ms) (1/7) 0 1

adaptive × 76 (ms) (1/7) 0 (1/0)

Vflow
learn ✓ 99 (ms) (1/35) 2 2

adaptive ✓ 99 (ms) (7/21) 2 (2/2)

Vtrap ,Vsiphon
learn × 87 (ms) (4/18) 2 4

adaptive × 82 (ms) (12/17) 2 (5/3)

Vtrap∗,Vsiphon∗ learn × 100 (ms) (4/18) 2 4

adaptive × 95 (ms) (12/17) 2 (5/3)

187

	Introduction
	Contribution

	Inductive statements for regular transition systems
	Preliminaries
	Inductive statements for regular transition system
	A generic approach to statements
	Concrete interpretations
	Abstractions are (PSpace-)hard
	Trap in PSpace
	Topologies

	Learning inductive invariants
	Learning inductive statements
	The word problem for concrete interpretations
	Accelerate learning via topologies

	Implementation & Experiments
	Case studies
	Verification procedures
	Qualitative comparison with other approaches

	Conclusion
	Future work

	Experimental results for oneshot
	Dijkstra's algorithm for mutual exclusion
	Dijkstra's algorithm for mutual exclusion with a token
	Other mutual exclusion algorithms
	Dining philosophers
	Cache coherence protocols
	Termination detection
	Dining cryptographers
	Leader election
	Token passing

	Experimental results for learn and adaptive
	Dijkstra's algorithm for mutual exclusion
	Dijkstra's algorithm for mutual exclusion with a token
	Other mutual exclusion algorithms
	Dining philosophers
	Cache coherence protocols
	Termination detection
	Dining cryptographers
	Leader election
	Token passing

