
Technische Universität München
TUM School of Engineering and Design
Photogrammetrie und Fernerkundung
Prof. Dr.-Ing. U. Stilla

Vehicle detection in aerial images using
neural networks with synthetic training data

Shuangyi Liu

Master’s Thesis

Submission: 01.05.2022 - 01.11.2022

Study Course: Earth Oriented Space Science and Technology (Master)

Supervisors: Olaf Wysocki

Corentin Henry (DLR)

Dr. Nina Merkle (DLR)

Dr. Seyed Majid Azimi (DLR)

Manuel Mühlhaus (DLR)

In Cooperation with: Deutsches Zentrum für Luft- und Raumfahr

Institut für Methodik der Fernerkundung

Photogrammetrie und Bildanalyse

2022

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, Submission date Shuangyi Liu

Acknowledgments

First and foremost, I would like to thank you to my Master’s thesis supervisors,
Olaf Wysocki, Corentin Henry, Dr. Nina Merkle, and Dr. Seyed Majid Azimi. I
feel extremely lucky to have so many supervisors from both institutes of Technische
Universität München (TUM) and Deutsches Zentrum für Luft- und Raumfahrt (DLR)
to guide and assist me throughout my whole thesis journey. Due to your support and
dedicated involvement in every step of my thesis, I am able to achieve this research.
I learned so much from you in terms of both academic knowledge and the scientific
spirits of being dedicated, patient and detailed. Thanks to Manuel Mühlhaus for
sharing data and his knowledge in object detection. Thank you to Yuxing Xie for being
so supportive and helpful.

It is very much appreciated for having this wonderful opportunity to write my master
thesis at Photogrammetry and Image Analysis department at DLR. Thanks to everyone
I worked with and met during the short six months of working there: your friendship
and support have added a lot to my life.

Thanks of course to my family and dear friends, Ruchen Tian and Ge Shi, for making
my life full of laughter even during hard times.

Abstract

Deep learning approaches have made great strides in pattern recognition due to their
superior performance. Such approaches require a large amount of ground-truth data.
However, it is a challenge to collect enough real training data and label them manually
due to cost and time consumption. To overcome this problem, an alternative approach
is to use synthetic data with automatically generated ground truth. By means of
synthetic data generation, large amount of images can be extracted directly from a
virtual scene. These simulated images can be customized according to the specific
needs of the use-case. Therefore, this thesis focuses on the use of synthetic data in
vehicle detection.

A pipeline for generating synthetic data is based on the real-time 3D creation tool
Unreal Engine and the drone simulator AirSim. Unreal Engine provides a simulation
environment that allows one to simulate complex situations in a virtual world, such
as data acquisition with drones. AirSim on the other hand, is a simulator for drones
and cars, which works as a plugin for the Unreal Engine. By accessing the AirSim
Application Programming Interfaces (APIs), we can retrieve images from a virtual
scene at desired camera locations. An existing virtual scene, City Park Environment
Collection, and multiple vehicle assets are downloaded and used. The main focus for
this thesis is vehicle placement in the virtual scene with the goal of creating realistic
scenarios. The scenarios include generating various traffic situations, such as traffic
jam, normal traffic flow, and sparsely placed vehicles.

The object detector used in this thesis is the Faster R-CNN detector (ReDet) The
detection performance of experiments trained with a variety of training and testing
datasets are compared and evaluated quantitatively and qualitatively. The evaluation
metrics used are true positive rate, false negative rate, average precision, and precision
recall curves. Furthermore, we provide insights about the domain similarity of each of
these datasets and the effects of having a limited amount of real-world data for training.

The results indicate that a domain gap exists between the synthetic and real-world
data, yet with an increasing ratio of real-world data for training, the detection perfor-
mance can be comparable to which trained with only real-world images. The synthetic

iii

images generation pipeline can be a guidance or implemented directly for future
synthetic image generation. The experimental results of this thesis can be used as a
reference when researching on the detection performance using mixed synthetic and
real training data.

iv

Contents

Acknowledgments ii

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 2
1.3 Contributions . 3
1.4 Thesis outline . 3

2 State of the Art 4
2.1 Traditional detection methods . 4

2.1.1 Haar wavelets . 4
2.1.2 HOG Detector . 4
2.1.3 Deformable part-based models (DPM) 4

2.2 Machine learning based detection methods 5
2.2.1 Bag-of-words (BoW) . 6
2.2.2 Support vector machine (SVM) . 6
2.2.3 AdaBoost . 6

2.3 Deep learning based detection methods 6
2.3.1 Convolutional Neural Networks (CNNs) 7
2.3.2 Two-stage CNN . 8
2.3.3 Single-stage CNN . 10

2.4 Real-world datasets for vehicle detection 10
2.4.1 VEDAI . 11
2.4.2 DOTA . 12
2.4.3 EAGLE . 13

2.5 Synthetic training data for vehicle detection 14
2.5.1 Methods of generating synthetic data 14
2.5.2 Synthetic datasets generated from game engines 15

2.6 Virtual scene and drone/car simulator . 16
2.6.1 Simulation platforms . 16
2.6.2 Available 3D city models for simulation 18

v

Contents

2.6.3 Drone/car simulator . 19

3 Methodology 22
3.1 Vehicle assets . 23

3.1.1 Creating vehicles with various colors 23
3.2 Vehicle placement . 24

3.2.1 Obtain initial vehicle position . 24
3.2.2 Extract orientation information . 25
3.2.3 Traffic scene generation . 29

3.3 Segmented images generation . 33
3.3.1 AirSim set up . 33
3.3.2 Instance segmentation . 33

3.4 Bounding boxes generation . 34
3.5 Training using ReDet detector . 36

3.5.1 ReDet detector . 36

4 Evaluation and Analysis 38
4.1 Experiment set up . 38

4.1.1 Synthetic datasets . 38
4.1.2 EAGLE dataset used for training and testing 38
4.1.3 Training with ReDet . 39
4.1.4 Experiments design . 39

4.2 Vehicle detection metrics . 42
4.2.1 True Positive Rate and False Negative Rate 42
4.2.2 Precision and Recall . 42
4.2.3 Precision-Recall curve . 43
4.2.4 Intersection over Union (IoU) . 43
4.2.5 Average Precision (AP) . 43

4.3 Realistic scenario setting . 44
4.4 Domain Gap . 45
4.5 Synthetic and real-world data mixing . 49

5 Discussion 53

6 Conclusions and Outlook 56

List of Figures 58

List of Tables 61

vi

Contents

Bibliography 62

vii

1 Introduction

Artificial intelligence (AI) is defined in the field of AI research as the computer that
perceives its environment and takes actions that maximize its chance of success at some
goals [1]. Machine learning is a subfield of AI technology, and involves research into how
the computer simulates or realizes human behavior to gain new knowledge or skills,
and then continually improves its own performance [2]. Deep learning is a necessary
tool to achieve machine learning for artificial intelligence. Based on the machine’s
increased calculation ability and the emergence of big data era, deep learning enables
the computer to learn by increasing the number of layers of networks [2]. In recent
years, deep learning is one of the most effective methods in the field of computer vision
such as automatic driving, face recognition, object detection, object tracking, etc [2].

Object detection is an important computer vision task that deals with detecting
instances of visual objects of a certain class (vehicle in our case) in digital images [3].
Vehicle detection from aerial images is becoming an increasingly important research
topic in surveillance, traffic monitoring and military applications [4]. In this thesis, we
focus on using simulated data to train neural networks to detect vehicles.

1.1 Motivation

Vehicle detection based on aerial imagery is crucial for a variety of applications such as
large-scale traffic monitoring, parking lot utilization, urban planning, disaster manage-
ment as well as search and rescue missions [5]. The wide field of view of aerial images
provides valuable information over large open areas in a short time [6].

Vehicle detection benefits greatly from deep neural networks. The major success
of these models can be attributed to the availability of required computational power
to perform massive calculations, and to the availability of large datasets to learn the
transformation functions [7]. However, the collection of raw data, annotation and
verification of these large datasets is an expensive and time-consuming task. On
the contrary, simulated data can be automatically generated in large quantity and
customized in terms of resolution, image sizes, camera parameters, etc. based on the

1

1.2. CHALLENGES

specific use-case. When building a high quality dataset, generating simulated data can
be a promising method to introduce cost saving measures.

1.2 Challenges

Synthetic data can be generated by using modern video games [8] or 3D game engines
[9–12]. These approaches allow extracting a large amount of accurate ground truth
data, such as bounding boxes, segmentation maps, depth maps or camera poses, as
this information is already available in the virtual world from which data is rendered.

A few challenges for creating simulated data can be as follows:

• Realistic scenario settings

In order to generate synthetic dataset that is comparable to real-world dataset, it
must be qualified with measuring factors that could impact the effectiveness of
the dataset. To create realistic settings of vehicle placement, observations should
be made in the real world and the scenarios in the virtual world should imitate
which in the real world.

• Occlusions problem

Occlusion of vehicles by other objects in the camera’s viewpoint results in partial
visibility in rendered images. This leads to the scenario of partially visible cars
with the detection algorithm.

• Parametric simulation environment

Synthetic datasets contain images with different orientation of cameras, light
conditions, camera positions and parameters, such as exposure and field of view.
These variables have an important impact on how objects are depicted in the
image and consequently on the object detection accuracy. However, it requires a
large amount of experiments to discover the best-suiting variables.

• Synthetic image realism

Another challenge is to make the synthetic images look as realistic as possible in
terms of the details of the texture, shape, color of the objects in the simulation
environment. This objective involves the virtual world design and the image
noises.

• Vehicle placement

2

1.3. CONTRIBUTIONS

Based on the City Park Environment Collection, there is limited semantic infor-
mation of road system. The position and orientation of the road are not provided
directly from the virtual world. An algorithm must be designed to extract the
semantic information needed for placing vehicles on the road.

1.3 Contributions

This study focuses on the generation of synthetic training data, training a predefined
model, and evaluating the performance based on different training datasets. The
contributions can be listed as follows:

• Automatically placing vehicles in a simulated environment to imitate realistic
scenarios.

• Presenting a pipeline of synthetic image generation with adjustable image size,
camera parameters (i.e., exposure, field of view), camera position and orientation.

• Providing a detailed insight into the performance of a deep learning-based vehicle
detection method on synthetic images.

• Studying how different ratios of real to synthetic images in the training dataset
can achieve comparable results with respect to only real-world images.

1.4 Thesis outline

Chapter 2 reviews the state of the art in the field of related work. Chapter 3 explains
the method used in this thesis, such as creating the virtual scene, generating synthetic
data, and training with neural networks. The results of vehicle detection with different
training datasets are evaluated and analysed in Chapter 4 and discussed in Chapter 5.
The conclusion and future work of this thesis are presented in Chapter 6.

3

2 State of the Art

2.1 Traditional detection methods

Most of the early object detection algorithms were built based on the features extracted
from the object. Handcrafted features are used to determine the performance of
methods.

2.1.1 Haar wavelets

Haar wavelets identify local, oriented intensity-difference features at different scales
[13]. With Haar wavelets, the relationship between average intensities of neighboring
regions can be captured for an image representation [13]. A Haar-like feature is the
result of integrating a wavelet with a patch [14], which has become an increasingly
indispensible tool for extracting information in the field of object detection [15]. Haar-
like features have been widely used in face detection [14], pedestrian detection [16],
vehicle detection [17], etc.

2.1.2 HOG Detector

Histogram of Oriented Gradient (HOG) was introduced in 2005 by N. Dalal and B.
Triggs [18]. To balance the feature invariance (including translation, scale, illumination,
etc) and the nonlinearity (on discriminating different objects categories), the HOG
descriptor is designed to be computed on a dense grid of uniformly spaces cells and
use overlapping local contrast normalization for improving accuracy [3]. To detect
objects of different sizes, the HOG detector rescales the input image for multiple times
while keeping the size of a detection window unchanged [3]. The HOG detector has
been an important foundation of many object detectors [19, 20] and a large variety of
computer vision applications for many years [3].

2.1.3 Deformable part-based models (DPM)

DPM was originally proposed by P. Felzenszwalb [21] in 2008 as an extension of the
HOG detector. The idea of DPM is to learn the proper way of decomposing an object.
For example, the detection of a vehicle can be considered as the detection of its window,

4

2.2. MACHINE LEARNING BASED DETECTION METHODS

body, and wheels. A typical DPM detector consists of a root-filter and a number of
part-filters [3]. The configurations of part filters (e.g., size and location) can be learned
automatically as latent variables under a weakly supervised leaning method [3]. The
detection is later sped up with the implementation of a cascade architecture developed
by R. Girshick [22, 23].

2.2 Machine learning based detection methods

The progress of using handcrafted features has slowed down after 2010 [3], because
traditional methods cannot reach an optimal balance between the discriminability and
the robustness without considering the details of real-world data [24] Machine learning
has gained popularity in the photogrammetry and computer vision community. With
the powerful feature representations and classifiers, machine learning techniques has
made significant improvement in object detection. Figure 2.1 gives the flowchart of
machine learning-based object detection, in which object detection can be performed
by learning a classifier that captures the variation in object appearances and views
form a set of training data in a supervised or semi-supervised or weakly supervised
framework [25]. The input of the classifier is a set of regions (sliding windows or object
proposals) with their corresponding feature representations and the output is their
corresponding predicted labels, i.e., object or not [25]. As seen in Figure 2.1, feature
extraction, feature fusion and dimension reduction, and classifier training play the most
important roles in the performance of object detection [25].

Figure 2.1: The flowchart of machine learning-based object detection [25].

5

2.3. DEEP LEARNING BASED DETECTION METHODS

2.2.1 Bag-of-words (BoW)

Bag-of-words (BoW) [26] quantize local descriptors into "visual words", in which way,
each image can be viewed as a long and sparse vector of words [27]. By applying
scalable indexing and fast search on this vector space, text-retrieval system can be
imitated [27]. Zhou et al. [28] apply a Bag-of-words (BoW) model and a local steering
kernel with the sliding window strategy to detect vehicles in arbitrary orientations.
They utilize a collection of representative features associated with various entities,
including windshield, roof, and hood [28].

The main advantages of the method are the simplicity, efficiency and invariance
even under viewpoint changes and background clutter [25]. One major concern is that
BoW model could not support spatial properties of local descriptors of images [27].
Another disadvantage is that key points are extracted from the grey level images and
local descriptors do no contain any color information [29]. Moreover, they only grasp
the local information, losing the overall distribution of visual information [27].

2.2.2 Support vector machine (SVM)

Support vector machine (SVM) [30] is one of the most popular and effective machine
learning algorithms for solving classification problems [25]. In its simplest form, SVMs
are linear binary classifiers that assign a given test sample a class from one of the
two possible labels [31]. Furthermore, SVM can also be used as a non-linear classifier
(called kernel SVM) to further improve the separation between classes by projecting the
samples onto a higher dimensional feature space [25].

2.2.3 AdaBoost

Tha Adaboost algorithm [32, 33] is a widely used machine learning algorithm that
combines many weak classifiers to form a strong classifier by adjusting the weights of
training samples [25]. The AdaBoost classifier has shown good performance in many
object detection applications such as vehicle detection [17, 19].

2.3 Deep learning based detection methods

Deep learning techniques refer to a cluster of machine learning methods that construct
a multilayered representation of the input data [34]. There are several deep learning
methods. Object detection started to evolve at an unprecedented pace, since deep
convolutional neural network (CNN) has been brought in.

6

2.3. DEEP LEARNING BASED DETECTION METHODS

2.3.1 Convolutional Neural Networks (CNNs)

CNNs are a region proposal deep learning object detection technique. CNNs are
the base for other common object detection models like R-CNN, Fast R-CNN, Faster
R-CNN. The structure of a general CNN architecture is shown in Figure 2.2.

Figure 2.2: The pipeline of general CNN architecture [35]

The three main aspects of CNN are: convolutional layer, pooling layer, and fully
connected (FC) layer. Filters are made up of pre-defined kernels of a certain matrix
size. They run across a matrix of image pixels, which is referred to as the input feature
map. The multiplication of the kernel and input feature map form an output matrix.
For each convolution, each neuron in a hidden layer will compute the weighted sum of
its inputs and apply bias and activate with a local non-linearity. Each neuron in the
hidden layer is only seeing a patch from the original input image.

The CNN forms intermediate feature maps as well as feature maps per whole image
throughout the process. The pooling layer computation reduces the size of the feature
map via average pooling and max pooling. They are a strategy used to learn higher
order features like shapes or specific objects within the layers of the model. The FC
layers convert 2D feature maps into 1D feature vectors. This is the step where the
model uses the vector to identify the object.

The combination of convolutional layers and other layering techniques defines a
model. Deep learning is to used the layer of operations to learn the hierarchy of features.
Common CNNs for object detection are Alexnet, ResNet and VGG.

Several CNN methods in deep learning have been proposed for vehicle detection.
In the following subsections, we discuss two directions of CNN methods: single-stage
and two-stage.

7

2.3. DEEP LEARNING BASED DETECTION METHODS

2.3.2 Two-stage CNN

For two-stage vehicle detector, the first stage is to extract features from raw image data
and second stage is to make final predictions.

Region-based convolutional neural network (R-CNN)

The first method is called R-CNN [22], which achieved good performance in vehicle
detection. R-CNN combines region proposal network with CNN, achieving better
performance compared to HOG features [20] with a SVM classifier. The architecture of
R-CNN models is shown in Figure 2.3.

Figure 2.3: R-CNN architecture [22].

A R-CNN takes raw image data as an input through a selective search and extracts
region proposals. Each proposal is rescaled to a fixed size image. Then, the region
proposals are fed into a CNN to extract features, and a SVM is used to make predictions
[36]. The primitive R-CNN achieved 53% mean average precision in the Pascal VOC
2010 competition. Although R-CNN has made great progress, its drawback is that
extracting a large amount of features leads to an extremely slow detection speed [3].
Spatial Pyramid Pooling (SPP) [37] applies a convolution layer to the entire image and
extracts features using SPP-net, which addresses the expensive computational cost of
R-CNN.

Fast R-CNN

Fast R-CNN, presented in [23], is built like an R-CNN model, but the main difference
is that instead of extracting features independently for each region proposal, the model
aggregates them into one CNN forward pass over the entire image and the region
proposals share this feature matrix. The architecture of Fast R-CNN model is depicted
in Figure 2.4.

The benefit of this model is that the training can update all network layers including
the convolutional layers before the Region of Interest (RoI) pooling layers. The RoI

8

2.3. DEEP LEARNING BASED DETECTION METHODS

Figure 2.4: Fast R-CNN architecture [23].

pooling layer replaces the last max pooling layer of the pre-trained CNN. The pooling
layer outputs a fixed length feature vectors that is fed through the last fully connected
layer to a bounding box regression model to predict classes.

Faster R-CNN

Shortly after Fast R-CNN was proposed, faster R-CNN was proposed [38]. This model
composed of the region proposal network (RPN) and Fast R-CNN meshed into one
model with shared convolutional feature layers. The architecture of Faster R-CNN
model is depicted in Figure 2.5.

Figure 2.5: Faster R-CNN architecture and RPN [38]

The model pre-trained a CNN network on image classification task and fine tunes
the region proposal network by sliding a n x n matrix window over the convolution
feature map of the entire image. The number of region proposals for each location is
denoted as k anchor boxes. These proposals are then used to train the Fast R-CNN

9

2.4. REAL-WORLD DATASETS FOR VEHICLE DETECTION

object detection model. Then, the network uses the Fast R-CNN network to initialize
RPN training process and fine tunes the unique layers of the Fast R-CNN. Then it is
fed through the last fully connected layer to a SoftMax estimator and a bounding box
regression model to predict classes.

2.3.3 Single-stage CNN

In order to improve the vehicle detection speed, single-stage methods have been
proposed. Single-shot detector (SSD) [39] is one of the state-of-the-art single-stage
detectors, which make predictions by utilizing different resolutions of feature maps.
You Only Look Once (YOLO) [40] is another type of single-stage detector (Figure 2.6).
YOLO regards raw image data as a 7 x 7 grid and passes it only once in a fully
convolutional neural network (F-CNN), which makes it quite fast and real-time. This
network splits the image into regions and predicts bounding boxes and probabilities
for each region simultaneously.

Figure 2.6: The YOLO detection system [40]

Later, Redmon et al. made a series of improvements on the basis of YOLO and
proposed its v2 and v3 editions [41, 42], which further improves the detection accuracy
while keeping a very high detection speed. Benjedira et al. [36] presented a performance
evaluation of Faster R-CNN and YOLOv3 algorithms on car detection from aerial
images, in terms of accuracy and processing time. Their study revealed that YOLOv3
outperforms Faster R-CNN in both car extraction with 99.07 % accuracy and processing
time for one image detection [36].

2.4 Real-world datasets for vehicle detection

Datasets have played an important role in data-driven research in recent years. Large
datasets like MSCOCO [43] are instrumental in promoting object detection and image
captioning research [44]. ImageNet [45] () is popular for classification and scene

10

2.4. REAL-WORLD DATASETS FOR VEHICLE DETECTION

recognition task. For the purpose of remote object tracking and unmanned driving,
datasets like VEDAI [46], DOTA [44], EAGLE [5] can be used for aerial object detection.

2.4.1 VEDAI

VEDAI (Vehicle Detection in Aerial Imagery) is a dataset designed to address the task
of small vehicle detection in aerial images within a realistic industrial framework [46].
This dataset was made to help the development of new algorithms for aerial multi-class
vehicle detection in unconstrained environment [46].

A total of 1210 images with a resolution of 1024x1024 pixels have been manually
selected and included into 4 different sub-sets: large-size color images, small-size
(downscaled) color images, large-size infrared images, and small-size (downscaled)
infrared images [46]. The dataset contains many different types of backgrounds (e.e.,
fields, grass, mountains, urban area, etc.) and isolated vehicles to avoid false alarms
[46].

Figure 2.7: Images illustrating the different categories of the dataset. From left to right:
car, truck, camping car, tractor, plane, boat, other, pickup and van [46].

There are nine different classes of vehicles contained in the dataset, namely ’plane’,
’boat’, ’camping car’, ’car’, ’pick-up’, ’tractor’, ’truck’, ’van’, and the ’other’ category
[46]. Figure 2.7 illustrates these classes.

11

2.4. REAL-WORLD DATASETS FOR VEHICLE DETECTION

2.4.2 DOTA

DOTA is a large-scale Dataset for Object deTection in Aerial images [44]. The dataset
consists of 2806 aerial images from different sensors and platforms [44]. Each image
is of the size about 4000 x 4000 pixels and contains objects exhibiting a wide variety
of scales, orientations, and shapes [44]. These DOTA images are annotated using 15
common object categories, containing 188,282 instances [44]. Some samples of annotated
patches are shown in Figure 2.8.

Figure 2.8: Samples of annotated images in DOTA. There are three samples for each
category, except six for large-vehicle. [44]

12

2.4. REAL-WORLD DATASETS FOR VEHICLE DETECTION

2.4.3 EAGLE

EAGLE (oriEnted vehicle detection using Aerial imaGery in real-world scEnarios) is a
large-scale dataset for multi-class vehicle detection with object orientation information
in aerial imagery [5].

EAGLE dataset contains approximately 200 thousands annotated vehicles, ranging
from 1 to 3.5 thousand annotations per image in all possible orientations (Figure 2.9).
There are 345 original sized images of 5616 x 3722px size, which are tiled up to 8000
images with the size of 1024 x 1024px.

The GSDs of EAGLE dataset range from 5 cm to 45 cm per pixel. The images were
taken from early in the morning until the evening in various weather conditions (e.g.,
sunny, snowy, rainy, and foggy) with different illumination levels [5]. Altogether, the
variability in image parameters and scenes allows the dataset to cover a wide range of
real-world situations involving vehicles.

Figure 2.9: Examples of annotated images [5]

13

2.5. SYNTHETIC TRAINING DATA FOR VEHICLE DETECTION

2.5 Synthetic training data for vehicle detection

Due to the possibility of having diversified samples with automatically generated
annotations, the use of realistic synthetic images has increased considerably in recent
years within the photogrammetry and computer vision community.

2.5.1 Methods of generating synthetic data

Domain randomization

Domain randomization is an effective technique for data augmentation [47]. It is
commonly done by generating new data that can simulate complex environments based
on the limited training samples [47]. Manual transformations are usually implemented,
such as: altering the location and texture of objects, changing the number and shape
of objects, modifying the illumination and camera view, and adding different types of
random noise to the data [47]. Many studies use real scenes and augments them with
the synthetic objects [12, 48, 49].

GAN-based synthetic image generation

One approach inspired by game theory for training a model that synthesizes images is
known as Generative Adversarial Networks (GANs) [50]. The model consists of two
networks that are trained in an adversarial process where one network generates fake
images and the other network discriminates between the real and fake images repeatedly
[51]. As the generator improves with training, the discriminator performance gets worse
because the discriminator cannot easily tell the difference between real and fake [52]. If
the generator succeeds perfectly, then the discriminator has a 50% accuracy, reaching
the convergence [52]. GANs have been used for generating remote sensing images
[52, 53] for training deep neural networks for surveillance and scene understanding
purposes.

Synthetic data generation through simulation

Synthetic data can be generated as frames from sophisticated environmental modeling
[54–56] or as pictures taken from camera viewpoints in a simulation environment [57,
58]. Johnson-Roberson et al. [59] directly capture frames from the video games GTA
5 along with auxillary information that allows them to compute the label. Ros et al.
[60] use computer graphics to generate urban scene images with perfect label. Richter
et al. [8] produced dense pixel-level semantic annotations for 25 thousand images
synthesized by a photo-realistic open-world computer game.

14

2.5. SYNTHETIC TRAINING DATA FOR VEHICLE DETECTION

2.5.2 Synthetic datasets generated from game engines

Most works addressing synthetic data generation focus on driving, simulating con-
strained traffic situations, such as Synscapes (7D) [55], and Virtual KITTI [61]. Few
works consider the generation of synthetic data captured from Unmanned Aerial
Vehicles (UAVs). The following synthetic datasets address aerial images.

SYNTHIA

SYNTHIA is a synthetic collection of diverse urban images, with automatically gen-
erated class annotations [60]. This dataset consists of photo-realistic frames rendered
from a virtual city using the Unity Engine and comes with precise pixel-level semantic
annotations for 13 classes, i.e., sky, building, road, sidewalk, fence, vegetation, lane-
marking, pole, car, traffic signs, pedestrians, cyclists and miscellaneous (Figure 2.10)
[60].

Figure 2.10: The SYNTHIA Dataset. A sample frame (left) with its semantic labels
(center) and a general view of the city (right) [60].

Synthinel-1

The Synthinel-1 dataset features synthetic data showing building footprints with seg-
mentation masks. The generation of Synthinel-1 is based on CityEngine, which is a
tool for efficiently generating large-scale virtual worlds. 2,108 synthetic images with
corresponding ground truth are extracted by Kong et al. [62]. Each synthetic images
is 572 x 572 pixels in size with a resolution 0.3m/pixel [62]. All ground truth object
classes are treated as one single background class, except for the building class. There
are nine building styles identified in Synthinel-1 (Figure 2.11).

VALID

Chen et al. [63] build a variety of realistic environment in Unreal Engine 4 and create
a virtual aerial benchmark suite to enable access to more abundant annotations. A
comprehensive Virtual Aerial Image Dataset (VALID) is collected, which consists of

15

2.6. VIRTUAL SCENE AND DRONE/CAR SIMULATOR

Figure 2.11: An illustration of the nine different virtual city styles used in Synthinel-1.
(a) Red roof style; (b) Paris’ building sytle; (c) ancient building syle; (d)
sci-fi city stle; (e) Chinese palace style; (f) Damaged city style; (g) Austin
city style; (h) Venice style; (i) modern city stle. [62]

6690 high-resolution images with a resolution of 1024 x 1024 [63]. The images are
captured in six virtual scenes with five different ambient conditions: sunny, dusk, night,
snow and fog as illustrated in Figure 2.12. The VALID dataset labels up to 30 categories,
such as tree, plant, road, pavement, land, water, ice, vehicle, building, etc. [63].

2.6 Virtual scene and drone/car simulator

Generally, free semantic labels such as segmentation masks, depth images, optic flows,
and surface normal images can be rendered by game engine or generated by simulators
[64].

2.6.1 Simulation platforms

Given models of various objects and layouts of environments, game engines are able to
render realistic images and provide large-scale datasets with negligible cost.

16

2.6. VIRTUAL SCENE AND DRONE/CAR SIMULATOR

Figure 2.12: Six virtual scenes in VALID dataset. There are neighborhood, downtown,
airport, night street, snow mountain, and seaside town. [63]

Gazebo

Gazebo [65] has been one of the most popular simulation platforms used in robotics
and related research area. It has a modular design that allows to use different physics
engines, sensor models and to create 3D worlds. Gazebo goes beyond monolithic rigid
body vehicles and can be used to simulate more general robots. While Gazebo is fairly
feature rich it has been difficult to create large scale complex visually rich environments
that are closer to the real world.

The Unity Platform

Unity is a real-time 3D development platform that consists of a rendering and physics
engine as well as a graphical user interface called the Unity Editor [66]. Unity is
focused on developing a general-purpose engine to support a variety of platforms,
developer experience levels, and game types makes the Unity engine an ideal candidate
simulation platform for AI research [66]. The flexibility of the underlying engine
enables the creation of tasks ranging from simple 2D gridworld problems to complex
3D strategy games, physics-based puzzle, or multi-agent competitive games possible
[66]. Furthermore, the Unity Editor enables rapid prototyping and development of
games and simulated environments [66].

Unreal Engine

Unreal Engine [67] enables game developers and creators to realize real-time 3D content
and experiences with greater fidelity and flexibility. It brings some of the cutting

17

2.6. VIRTUAL SCENE AND DRONE/CAR SIMULATOR

edge graphics features such as physically based materials, photometric lights, planar
reflections, ray traced distance field shadows, lit translucency etc [11].

2.6.2 Available 3D city models for simulation

3D city models are required as input in simulation platforms for providing semantic
information.

LoD3 Road Space Models

LoD3 Road Space Models [68] are contained in CityGML [69] dataset in the area of
Ingostadt (Figure 2.13). The dataset is manually modeled based on the mobile laser
scannings (MLS) with relative accuracy in the range of 1-3cm. A complementary
OpenDRIVE [70] dataset is also available, which includes the road network, traffic
lights, fences, vegetation and so on.

(a) Overview of LoD3 models. (b) LoD3 models from a driving view.

Figure 2.13: Illustration of LoD3 models. [68]

Berlin 3D

Wu et al. [71] simulated UAV images from Google Earth Studio and generated ground-
truth annotations from an open CityGML model [69]. 15 scenes distributed over the
area of Berlin are randomly sampled, which show diversity in building styles and
density (Figure 2.14) [71]. In total, 144,000 images together with ground-truth geometry
(i.e., depth, surface model, and edges), and semantics are generated.

City Park Environment Collection

City Park Environment Collection [72] is a large rectangular virtual world available in
Unreal Engine Marketplace [73]. The model includes a demo scene of a city park of

18

2.6. VIRTUAL SCENE AND DRONE/CAR SIMULATOR

Figure 2.14: 15 areas distributed over the city of Berlin. [71]

over 200 acres. In the scene, there are playgrounds, green areas, lakes, cafes, roads, etc.
(Figure 2.15).

Figure 2.15: A snapshot of the city park 3d model. [72]

2.6.3 Drone/car simulator

Open source drone/car simulators are widely available, such as CARLA [9], DeepDrive,
AirSim [11], etc. These simulators have been used to generate large-scale synthetic
datasets with high-level semantic labels including depth, contours, surface normal,
segmentation mask, and optical flow for training deep networks [64].

19

2.6. VIRTUAL SCENE AND DRONE/CAR SIMULATOR

CARLA

CARLA (CAR Learning to Act) [9] is an open-source driving simulator implemented
using Unreal Engine 4. It contains two professionally designed towns with buildings,
vegetation, and traffic signs, as well as vehicular and pedestrian traffic. A wide range
of environmental conditions can be specified, including weather and time of day. A
number of such environmental conditions are illustrated in Figure 2.16.

Figure 2.16: Simulated urban environments [9].

DeepDrive

DeepDrive [74] is a simulator designed for training self-driving AI models, developed
as an Unreal Engine plugin. It provides 8 RGB cameras with 512 x 512 resolution
at close to real-time rates (20Hz), as well as a generated 8.2-hour video dataset. An
example of the camera viewpoint when simulating driving in DeepDrive is shown in
Figure 2.17

20

2.6. VIRTUAL SCENE AND DRONE/CAR SIMULATOR

Figure 2.17: A snapshot from DeepDrive

AirSim

AirSim [11] can simulate both driving and flying rendered with Unreal Engine 4.
AirSim provide images data generators for RGB images, depth maps, semantic and
instance segmentations (Figure 2.18). The images can be generated by simulating a car
drive or a drone flight in bird’s eye perspective in Unreal simulator. Data such as image
size, camera parameters (i.e., exposure, field of view), camera position and orientation
can be configured.

Figure 2.18: A snapshot from AirSim shows an aerial vehicle flying in an urban envi-
ronment [11].

21

3 Methodology

In our study, synthetic data is generated based on the Unreal Engine v4.27 [10] and
AirSim [11]. Unreal Python API [75] and the associated Python Script Plugin [76] are
used to script to automate the Unreal Editor using Python. Therefore, it is possible to
construct large-scale asset management pipelines or workflow for the purpose of our
study.

This chapter presents an approach that allows generating synthetic datasets in a
simulated environment to support computer vision tasks (Figure 3.1). In section 3.2,
vehicle assets are placed in the virtual world with certain constraints. Then segmented
aerial images of the vehicles are generated in section 3.3. The next step is to create
bounding boxes of the segmented images, and then feed the annotation information to
ReDet detector to detect vehicles, which is described in section 3.4.

Figure 3.1: Overview of the method

Virtual scenes are artificial scenes created from game engines to simulate the real
world with a high level of fidelity. The virtual scenes created in Unreal Engine can be

22

3.1. VEHICLE ASSETS

filled with objects that are downloaded from Unreal Engine marketplace. The number
of objects placed and the specific area to be placed on in the virtual world can be
configured at the beginning of the data generation. In this study, the object to be placed
in the virtual scene is vehicle and the specific area to be placed on is road.

3.1 Vehicle assets

The vehicle assets used in this study are Vehicle Variety Pack [77] and Vehicle Variety
Pack Volume 2 [78] (Figure 3.2), which are downloaded directly from the Unreal Engine
marketplace. Vehicle Variety Pack includes five unique vehicles: sport car, hatchback,
pickup-truck, SUV, and box truck. Vehicle Variety Pack Volume 2 includes four models
of vehicles: Sedan, box truck, SUV and campervan. All vehicles are designed to have
enough details such as the body, undercarriage, interior and window.

(a) Vehicle Variety Pack
(b) Vehicle Variety Pack Volume 2

Figure 3.2: Vehicle assets used in the study.

3.1.1 Creating vehicles with various colors

For the purpose of increasing the diversity of the vehicle colors, it is desired to increase
the number of colors for each vehicle type. For each vehicle color, a new Dynamic
Material Instance must be created. In the blueprint [79] of each vehicle instance, the
original color is desaturated and a new customized color is parameterized and applied
to the vehicle. Commonly added colors are white, grey, black, blue, and silver. In the
end, the vehicle assets expand from nine vehicles to approximately 50 vehicles of nine
models but various colours.

23

3.2. VEHICLE PLACEMENT

3.2 Vehicle placement

It is part of the thesis objectives to create realistic scenarios in the virtual world for
vehicle placement. Since the semantic information of the position and orientation of the
road in City Park Environment Collection is missing, it is necessary to create constraints
for the realistic vehicle placement approach. The corresponding constraints are listed
as follows:

• Vehicles must be placed only on roads

• Vehicles must be placed with a distance away from the edge of the road

• Vehicles must be oriented as the road direction

• Vehicles must not overlap each other nor any other objects in the scene

The workflow of vehicle placement is illustrated in Figure 3.3.

3.2.1 Obtain initial vehicle position

The challenge for obtaining the vehicle position under the constraints is that the
semantic information for road in the virtual world is missing. The road system is
merged as one road Actor in City Park Environment Collection [72]. In this case, the
position of the road cannot be simply obtained via accessing the bounding box.´ This
is because each bounding box provides four points with the coordinates of Xmax, Ymax,
Xmin and Ymin of the merged road segments. However, what is required is the points
the enclose the shape of the road. Due to this situation, alternative approach with the
use of line trace [80] is used to extract semantic information of the roads.

line trace

The line trace offers a method for getting feedback on what is present along a line
segment [80]. It is used by providing two end points (Start and end locations) and the
physics system "traces" a line segment between those points, reporting any Actors (with
collision) that it hits (Figure 3.4). When tracing, it returns the first Object hit by the
trace. Then we can retrieve the Object Label to identify whether the hit object is road.

The line traces are generated randomly in the virtual scene. When the hit Object is
road, we keep the hit location for further computation; when the hit Object is not road,
we ignore the location Figure 3.5.

24

3.2. VEHICLE PLACEMENT

Figure 3.3: Workflow of vehicle placement method. Step (1) is to obtain initial vehicle
position; step (2) is to be repeated to generate traffic scenarios.

3.2.2 Extract orientation information

The next step is to find the closest edge of the road and obtain the position and
orientation of the vehicle. The position of the vehicle must be at a certain distance away
from the edge of the road.

As discussed in the previous section, a line trace is generated at a random location in
the virtual scene. After identify the Object hit by the trace as road, a second line trace
is generated with 0.05 m apart. If the Object hit by the second line trace is also road,
a third line trace is generated in the same direction with 0.05 m apart. This process
repeats until the Object hit by the Nth line trace is no longer road, the number of line
traces that hit the road is recorded for this direction. The same process is repeated for
every 10 degrees in a circle centered by the initial random location.

Afterwards, the number of line traces that hit the road at every 10 degrees centered

25

3.2. VEHICLE PLACEMENT

Figure 3.4: Illustration of how line trace works. The line traces start above the landscape
(START1, START2) and trace a vertical line down to beneath the landscape
(END1, END2). The first Object that the line trace encounters will be
returned (HIT1, HIT2). In this diagram, line trace 1 hits a tree; line trace 2
hits road.

(a) The hit locations on the land-
scape are randomly distributed
and indicated by black circles.

(b) The locations indicated by green
circles are kept (on road); the
ones indicated by red circles are
ignored.

Figure 3.5: Example of how line trace helps to identify road Objects.

by the initial random location is recorded together with the direction on a list. The
direction with the minimum number of line traces that hit the road is the direction
perpendicular to the road edge (Figure 3.6), based on which information, the orientation

26

3.2. VEHICLE PLACEMENT

of the road can be computed. Along that direction, the last point that is not on road is
identified as the edge of the road. A distance d is configured to place the vehicle away
form the road edge and the orientation of the vehicle is configured to be the same as
the orientation of the road. Figure 3.7 illustrated the approach in detail.

Figure 3.6: Approach to find the orientation of the road. Green dots indicate the hit
location on the road, red dots indicates the hit location outside of the road
border. The number of green dots is counted along each radius line.

Actors to ignore

There are some exceptional scenarios that need to be considered. Figure 3.8a shows
two examples when the current criteria for the line trace method would fail. In the
scenario when there is a tree growing near the road. The tree crown might cover the
road partially in bird’s eye view (Figure 3.8b). In this case, the line trace would return
the tree as the first Object encountered (HIT1 in Figure 3.8a), yet the location should
still be regarded as road. We need to configure additional criteria for the line trace
method in order to obtain the correct result.

27

3.2. VEHICLE PLACEMENT

Figure 3.7: Illustration of the approach to find the edge of the road. Green dots indicate
on road and red dots indicate not on road. (a) a random point hit by line
trace; (b) a second point hit by a line trace with 0.05 m apart; (c) the second
point is on road; (d) a third point hit by a line trace along the same direction;
(e) the third point is not on road; (f) the same process is repeated along
another direction; (g) the same process is repeated for a whole circle; (h) the
edge of the road is known based on the break points; (i) a vehicle is placed
based on the road edge information.

(a) Graphical illustration. (b) Example in the virtual scene.

Figure 3.8: Illustration of the exceptional scenarios.

Avoiding overlaps

The vehicle location is recorded every time after the vehicle is placed in the virtual
scene. In order to avoid vehicles overlapping each other, before placing a new vehicle,
it is checked that the new location is at a distance (i.e., 8 m) away from the rest of the

28

3.2. VEHICLE PLACEMENT

vehicles.

3.2.3 Traffic scene generation

In order to generate a more realistic virtual world for vehicle detection, traffic scenarios
must be taken into consideration. Figure 3.9 illustrates three different traffic scenarios
generated in the virtual world.

(a) Traffic jam (b) Normal traffic flow

(c) Few vehicles

Figure 3.9: Illustration of the three traffic scenarios.

Following the previous section, with known position (hx, hy) and orientation θ of
the placed vehicle, the next possible position for vehicle placement is computed. If
the distance in between vehicles is defined as s, the next possible position (h1

x, h1
y) is

computed as:
h1

x = hx±abs(s ∗ cos(θ)) (3.1)

h1
y = hy±abs(s ∗ sin(θ)) (3.2)

Since all the vehicles are placed to the right side of the road, the plus or minus sign
depends on the orientation θ. Figure 3.10 illustrates this step.

29

3.2. VEHICLE PLACEMENT

Figure 3.10: Step of finding the possible position for vehicle placement. S1 and S2
are two examples of the initially placed vehicles. V1 and V2 are the two
possible locations in the front. Red indicates the new position is not on the
road; green indicated the new position is on the road.

After acquiring the position in front of the placed vehicle (h1
x, h1

y), a line trace is
generated again to check whether the position is on the road. In the case when the
position is on the road, a second line trace is generated with 0.05 m apart. This step
is the same as the step introduced in subsection 3.2.2, yet instead of generating line
traces every 10 degrees, now only line traces along two directions are generated. One
direction is the direction perpendicular to the orientation of the placed vehicle. The
other direction is 10 degrees apart. Since prior knowledge of the road orientation is
known, with only two directions, the road orientation next to the new position can be
obtained. Figure 3.11 illustrates this step.

The two red points in Figure 3.11 indicates the edge of the road, when connected, the
direction is the orientation of the road. A distance d away from the center of the two
points is the location of the second vehicle. Figure 3.12 illustrates the traffic generation
approach step by step. These steps are repeated until either the new position is not
on the road, or the number of the placed vehicle along the traffic line reaches the
configured number.

30

3.2. VEHICLE PLACEMENT

Figure 3.11: Step of finding the orientation at new location V2. Green dots indicates
that the line trace encounters road; red crosses indicates the line trace
doesn’t encounter road.

Figure 3.12: Illustration of the traffic generation approach. Green dots indicate on road;
red dots indicate not on road. (a) the new position with a distance s in
front of the placed vehicle; (b) the new position is on the road; (c) find the
edge of the road; (d) compute the new position and orientation; (e) place
the new vehicle

31

3.2. VEHICLE PLACEMENT

Double lanes

One further implementation of creating a realistic virtual scene is to generate two
lanes of vehicles driving in the opposite directions. Since a single traffic line is created
and the position of each placed vehicle is recorded, a random vehicles from the list is
selected and rotated by 180 degrees. With known position and orientation, the steps of
(c)-(e) from Figure 3.12 are repeated to place a new vehicle of the opposite lane. An
example of the generated scene is shown in Figure 3.9b.

Parameters

Figure 3.13 shows the parameters used to generate the distribution of distance in
between vehicles. The distance is measured from the center of each vehicle. For each
traffic scenario, skewed and normal distributions are used. The parameters for each
scenario is shown in Table 3.1.

Figure 3.13: Three traffic scenarios and their corresponding distribution of the distance
in between vehicles.

For traffic jam scenario, F1, it consists of five parameters that define the structure:

F1 = {skewness1, µ1, σ1, d1, d1
min, d1

max, N1} (3.3)

The mode of distance in between vehicles is between 8 m to 10 m. The reason why the
distance can not be shorter than 8 m is because that is the minimum space needed when
there are two vans placed in a row. Normal traffic flow, F2, consists of four parameters:

F2 = {skewness2, µ2, σ2, d2
min, d2

max, N2} (3.4)

32

3.3. SEGMENTED IMAGES GENERATION

Parameters Traffic jam Normal traffic Sparse traffic

skewness 30 0 -30

mean (µ) 10.4 m 24 m 36 m

standard deviation (σ) 0.8 m 1.6 m 1.6 m

fixed distance (d) 8 m - -

minimum distance (dmin) 7.5 m 11.5 m 25 m

maximum distance (dmax) 23.5 m 37.9 m 40 m

number of vehicles (N) µ = 30m; σ = 8m

Table 3.1: Parameters used for traffic scenario generation.

The mean distance in between vehicles is set to 24 m. Sparsely placed vehciles, F3,
consists of four parameters:

F3 = {skewness3, µ3, σ3, d3
min, d3

max, N3} (3.5)

The mode of distance in between vehicles is 36 m. For each scenario, the number of the
vehicles along a traffic line is selected from a normal distribution (Table 3.1).

3.3 Segmented images generation

3.3.1 AirSim set up

"Computer Vision" is an AirSim simulation mode, which is selected so that there is no
vehicles and physics to simulate, and cameras can be positioned in any arbitrary pose
to collect images. The position (x, y, z) of the vehicles in the virtual world coordinates
is extracted from Unreal Engine. With known vehicle positions, the positions of the
camera is configured accordingly, so that the generated images are guaranteed to
include vehicles. To ensure a similar ground sampling distance (GSD) as the EAGLE
dataset (1̃2 cm), an altitude of 60 m is configured based on the size of the images (i.e.,
1024 x 1024px). The camera angle and twist vary randomly between -15◦ and 15◦ and
between 0◦ and 360◦ respectively. All images generated are under the same sunny
weather condition.

3.3.2 Instance segmentation

When generating the ground truth segmentation of the scene, the parameter ImageType
is specified as Segmentation in ImageRequest. AirSim assigns value 0 to 255 to each

33

3.4. BOUNDING BOXES GENERATION

(a) Scene to be segmented (zoomed in) (b) Instance segmentation (zoomed in)

Figure 3.14: Illustration of the instance segmentation.

mesh available in the environment. This value is then mapped to a specific color in the
pallet defined by AirSim. In another word, each value from 0 to 255 has corresponding
different RGB values.

For each vehicle captured in the segmentation image, a different color is assigned
(Figure 3.14). The reason for this is to distinguish vehicles close to each other when
creating bounding boxes.

3.4 Bounding boxes generation

Each RGB color (except the background color (0,0,0)) in the segmented image is
extracted individually in order to generate the bounding box (Figure 3.15).

Then a dilation morphological transformation is applied with a kernel size of (3, 3).
Afterwards, each extracted RGB image is converted to grey scale to find the contour of
the vehicle segmentation. In case of occlusion (Figure 3.16), the contour of one vehicle
segmentation can return multiple regions. The region with the largest area is used as
the basis for the bounding box, because it is the most identifiable part. Each boxing
box records four values: the center of the width in x coordinate (cx), the center of the
height in y coordinate (cy), the length of the width (w), and the length of the height
(h). The computation of each value is shown in the following equations, based on the
coordinates of a bounding box in Figure 3.17.

34

3.4. BOUNDING BOXES GENERATION

Figure 3.15: An illustration of extracting individual RGB color for the preparation of
bounding box generation.

(a) A scene of an occluded
vehicle.

(b) The segmentation of the
occluded vehicle.

Figure 3.16: An illustration of occluded vehicles.

Figure 3.17: The four coordinates of a bounding box.

35

3.5. TRAINING USING REDET DETECTOR

cx = (xmin + xmax)/2 (3.6)

cy = (ymin + ymax)/2 (3.7)

w = sqrt((x1 − x2)2 + (y1 − y2)2) (3.8)

h = sqrt((x3 − x2)2 + (y3 − y2)2) (3.9)

3.5 Training using ReDet detector

For training the detector, transfer learning technique is used in this thesis. Transfer
learning is a powerful deep learning technique in which pre-trained models can be used
for feature extraction and fine tuning. This technique can be used in object detection.
The advantage of using this technique is that it saves time to train the network from
the start and less data is required [81]. The training can also be done using a central
processing unit (CPU) even without the computational power of graphics processing
unit (GPU). Instead of creating new model from-scratch, pre-trained models can be
used. ReDet [82] is one of these models.

3.5.1 ReDet detector

The object detector used in our study is a Rotation-equivariant Detector (ReDet), because it
models the orientation variation. ReDet is a Faster R-CNN, which consists of two parts,
the rotation equivariant feature extraction and the rotation invariant feature extraction
(Figure 3.18) [82].

The first stage is to adopt the rotation-equivariant backbone to extract rotation-
equivariant features, followed by RPN and RoI Transformer (RT) to generate Rotated
RoIs (RRoIs) (Figure 3.18) [82]. In the second stage in Figure 3.18, a Rotation-invariant
RoI Align (RiRoI Align) is used [82]. RiRoI Align includes both spatial alignment and
orientation alignment. Its task is to transform the rotation equivariant features to obtain
rotation-invariant features (instance level). The so-called rotation-invariant means that,
no matter how the input changes (rotation), the output is always the same. RiRoI
Align generates rotation invariant features for RoI-wise classification and bounding box
(bbox) regression [82].

Unlike most general object detectors that uses Horizontal Bounding Boxes (HBBs)
[22, 83], ReDet locate and classify objects with Oriented Bounding Boxes (OBBs), which

36

3.5. TRAINING USING REDET DETECTOR

Figure 3.18: Overview of ReDet. (a) Overall architecture of ReDet. (b) Rotation-
equivariant feature maps. (c) Rotation-invariant RoI Align. [82]

provide more accurate orientation information of objects [82]. ReDet can accurately
predict the orientation and reduce the complexity of modeling orientation variations
[82].

37

4 Evaluation and Analysis

This chapter evaluates the vehicle detection results from nine different experiments
(EXPs) using a collection of diverse datasets. The main goal is to analyze the per-
formance of vehicle detection using a larger amount of synthetic data and a limited
amount of real-world data.

The results of the experiments are reported in terms of True Positive Rate (TPR),
False Negative rate (FNR) , Precision Recall curve, and Average Precision (AP). The
experimental analysis is performed in nine categories (Table 4.2). There are three
different groups of training sets: real-world images, synthetic images, and hybrid
images with different proportions of each. There are two sets of testing data: synthetic
data from aerial view with the realistic scenarios and real-world data taken with aircraft.

4.1 Experiment set up

4.1.1 Synthetic datasets

There are two synthetic datasets used for the thesis, in order to compare the detection
performance when trained with the same and different vehicle placement. One is the
synthetic dataset with aligned vehicles, as described in chapter 3, The other is the
synthetic dataset with randomly oriented vehicles. It is ensured that the number of
vehicles in each image is approximately the same as which in the images with aligned
vehicles. The number of annotation for both training datasets is listed in Table 4.3. An
example of the randomly oriented vehicles in the scene is shown in Figure 4.1.

4.1.2 EAGLE dataset used for training and testing

Half of the EAGLE dataset is used for training; 8 original sized images (5616 x 3722px)
are selected for testing, based on their GSD and the similarity of the scene to the virtual
world. The GSD for the majority of the EAGLE images is around 12 cm, according to
which the GSD of the synthetic images is configured. For the scene selection, images
with more green area, such as in the countryside regions, are selected. A comparison
of the EAGLE image and the synthetic image for both zoom in and zoom out view is
shown in Figure 4.2.

38

4.1. EXPERIMENT SET UP

(a) Scene of randomly placed vehicles. (b) Scene of aligned vehicles.

Figure 4.1: Comparison of scenes with randomly placed vehicles and aligned vehicles.

4.1.3 Training with ReDet

The parameters used for training is configured as in Table 4.1. Stochastic Gradient
Descent (SGD) is used as the optimization algorithm.

4.1.4 Experiments design

There are in total nine categories of experiments designed (Table 4.2). The sample
size of each training and testing dataset is listed in Table 4.3. Image size for each
dataset is either tiled or configured to be 1024 x 1024px. The experiments are crafted
to evaluate the performance of vehicle detection with our generated synthetic data in
three purposes:

1. Evaluation of detection when trained with the same vs. different vehicle place-
ment patterns

2. Evaluation of the domain gap between real and synthetic datasets

3. Evaluation of how much real-world data is needed to have a good performance

39

4.1. EXPERIMENT SET UP

(a) Real-world images from Eagle (tiled) (b) Synthetic images (zoomed in)

(c) Real-world images from Eagle (zoomed
out)

(d) Synthetic images (zoomed out)

Figure 4.2: Visual comparison between real and synthetic images

40

4.1. EXPERIMENT SET UP

PARAMETER VALUE

learning rate 0.01

weight decay 0.0001

momentum 0.9

epochs 12

batch size 150

images per batch 7

number of classes 2 (vehicle and non-vehicle)

Table 4.1: Parameters used for traffic scenario generation.

EXPERIMENT TRAINING DATA TESTING DATA

EXP1 synthetic images (aligned) synthetic images (aligned)

EXP2 synthetic images (random) synthetic images (aligned)

EXP3 synthetic images (aligned) real-world images

EXP4 real-world images synthetic images (aligned)

EXP5 synthetic images + 9% real-world images real-world images

EXP6 synthetic images + 12% real-world images real-world images

EXP7 synthetic images + 22% real-world images real-world images

EXP8 synthetic images + 49% real-world images real-world images

EXP9 real-world images real-world images

Table 4.2: Training and testing datasets. Ratios of real-world images are based on the
number of synthetic images in the dataset.

Dataset Images Annotations

TRAINING DATASET
synthetic (aligned) 419 (1024 x 1024px) 11k

synthetic (random) 469 (1024 x 1024px) 10k

real 4k (1024 x 1024px) 100k

TESTING DATASET
synthetic (aligned) 166 (1024 x 1024px) 6k

real 178 (1024 x 1024px) 5k

Table 4.3: Size of each dataset.

41

4.2. VEHICLE DETECTION METRICS

4.2 Vehicle detection metrics

It is difficult to evaluate the effectiveness of an object detector without metrics. One
metric usually used in the early research of object detection [18] are the "miss rate vs.
false positives per-window (FPPW)". However, the FPPW measurement can be flawed
and fails to predict full image performance in certain cases [84].

4.2.1 True Positive Rate and False Negative Rate

The True Positive Rate (TPR), also known as sensitivity or recall in machine learning,
measures the percentage of actual positives that are accurately identified [85]. More
information of TPR (i.e., recall) is introduced in the following subsection.

The False Negative Rate (FNR), also known as the miss rate, is the probability that
the model incorrectively predicts the negative class [86]. It is calculated as

FNR =
FN

TP + FN
(4.1)

FNR ranges from zero to one. The closer the FNR is to zero, the better the prediction.

4.2.2 Precision and Recall

Precision is defined as the number of true positives (TP) over the number of true
positives plus the number of false positives (FP).

Precision =
TP

TP + FP
(4.2)

Recall is defined as the number of true positives (TP) over the number of true positives
plus the number of false negatives (FN).

Recall =
TP

TP + FN
(4.3)

Precision measures how accurate your predictions are, indicating the percentage of
correct positive predictions. The best possible precision is one, while the lowest possible
is zero. Recall measures how good our detector is at finding all the positives, indicating
the percentage of the positive ground-truth objects that our detector finds. The best
possible recall is one, while the lowest possible is zero.

42

4.2. VEHICLE DETECTION METRICS

4.2.3 Precision-Recall curve

Precision-Recall is a useful measure of success of prediction when the classes are very
imbalanced [87]. In information retrieval, precision is a measure of result relevancy.
while recall is a measure of how many truly relevant results are returned [87].

In circumstances where recall is critical, decision threshold is an essential parameter
playing a major role. A decision threshold is set to 0.5 by default. This means that if the
model believes an observation has a 50% or greater chance of being a member of the
positive class, it is projected to be a member of the positive class. When the decision
threshold is reduced, more true affirmative cases can be caught and precision decreases
while recall increases.

The precision-recall curve shows the trade-off between precision and recall for
different threshold. A high area under the curve represents both high recall and high
precision, where high precision relates to a low false positive rate, and high recall
relates to a low false negative rate. High scores for both show that the classifier is
returning accurate results (high precision), as well as returning a majority of all positive
results (high recall).

A system with high recall but low precision returns many results, but most of its
predicted labels are incorrect when compared to the training labels. A system with
high precision but low recall is just the opposite, returning very few results, but most of
its predicted labels are correct when compared to the training labels. An ideal system
with high precision and high recall will return many results, with all results labeled
correctly.

4.2.4 Intersection over Union (IoU)

To measure the object localization accuracy, the Intersection over Union (IoU) is used to
check whether the IoU between the predicted box and the ground truth box is grater
than a predefined threshold, by default, 0.5 [3]. If yes, the object will be identified as
"successfully detected", otherwise will be identified as "missed". The 0.5-IoU based
mAP has then became the de facto metric for object detection problems. The definition
is illustrated in Figure 4.3.

4.2.5 Average Precision (AP)

In recent years, the most frequently used evaluation for object detection is "Average
Precision (AP)". AP summarizes the shape of the precision-recall curve into a single

43

4.3. REALISTIC SCENARIO SETTING

Figure 4.3: Illustration of the definition of IoU [88]

value representing the average of all precisions [89]. AP is defined as the mean precision
at a set of eleven equally spaced recall levels [0,0.1,...,1]:

AP =
1
11 ∑

n∈{0,0.1,...,1}
Pinterplated(r) (4.4)

In other words, AP is the weighted sum of precisions at each threshold where the
weight is the increase in recall.

4.3 Realistic scenario setting

In this section, the effects of vehicle placement in the synthetic training datasets on the
model’s performance will be evaluated. To compare the realistic scenario setting in two
synthetic datasets, one training dataset is images of vehicles in various traffic scenarios,
which are lined up and aligned with road directions as described in section 3.2. The
other training dataset is images of vehicles placed randomly on roads. In both datasets,
the number of samples is approximately 10K. The testing dataset is kept the same,
which is synthetic images with aligned vehicle placement.

Figure 4.4 shows the comparison of the corresponding Precision Recall curves. Both
experiments are with high precision but low recall. Training with realistic synthetic
data has a better detection performance due to the similar patter of vehicles as in the
testing dataset. The visualization of the detection results is shown in Figure 4.6. It
can be seen that there are more predicted labels when trained with synthetic dataset
consisting aligned vehicles.

The average precision is listed in Table 4.4. With random placed vehicles in training
dataset, the detection performance is reduced. Qualitative results of the detector trained
on synthetic data are shown in Figure 4.5. Predictions are shown via pink bounding
boxes, where the confident score is labeled next to them.

44

4.4. DOMAIN GAP

Figure 4.4: Comparison of Precision-Recall curves for training with two synthetic
datasets.

EXPERIMENT TRAINING DATA TPR FNR AP

EXP1 synthetic images (aligned) 58% 42% 54%

EXP2 synthetic images (random) 53% 47% 48%

Table 4.4: Evaluation metrics of experiments 1 (EXP1) and 2 (EXP2).

4.4 Domain Gap

Discrepancy between physical simulators and the real world makes it challenging to
adapt synthetic data in training. In terms of vehicles in the real world, there can be
physical effect variations, such as object texture, traffic scenarios, road construction,
weather conditions etc., that creates the reality gap between the real world and physics
simulators.

To compare training using synthetic versus real-world data, one experiment is to
train with synthetic data and test on real-world data (i.e., EXP3), the other is vice versa
(i.e., EXP4), as shown in Table 4.5. For experiment 3, 419 images are used for training
and 178 tiled images from the EAGLE dataset are selected for testing, based on their
GSD and the similarity of the scene compared with synthetic images. For experiment
4, 159 original-sized images from EAGLE dataset are tiled and used for training. 166

45

4.4. DOMAIN GAP

(a) Annotation (b) Trained with dataset consisting of
aligned vehicles.

(c) Trained with dataset consisting of
random-placed vehicles.

Figure 4.5: Visualization of the detection performance with different synthetic training
datasets

46

4.4. DOMAIN GAP

(a) Good prediction result of
EXP1.

(b) Good prediction result of
EXP2.

(c) Medium detection result of
EXP1.

(d) Medium detection result of
EXP2.

(e) Poor detection result of EXP1. (f) Poor detection result of EXP2.

Figure 4.6: Examples of detection results from both EXP1 and EXP2.

47

4.4. DOMAIN GAP

synthetic images are used for testing. The whole EAGLE dataset consists of 345 images
of 5616 x 3744px size, and more than 1 million annotated vehicles [5]. The dataset also
includes a variety of scenes in aerial photography such as different time, weather, and
places ([5]), which means it is challenging for a network trained only on synthetic data
to compete. The Precision Recall curves are shown in Figure 4.7.

EXPERIMENT TRAINING DATA TESTING DATA TPR FNR AP

EXP3
synthetic images

(aligned)
real-world images 12% 88% 5%

EXP4 real-world images
synthetic images

(aligned)
44% 56% 24%

Table 4.5: Evaluation metrics of experiments 3 (EXP3) and 4 (EXP4).

Figure 4.7: Precision Recall curve for Experiments 3 & 4.

Average precision for the network trained on real-world images is higher than the one
trained on synthetic images by 0.19. The precision for both experiment results decreases
considerably with fluctuations as the threshold of classifier decreases (Figure 4.7). At
precision of 1, the threshold is set very high, which makes the results all true positive.
Lowering the threshold increases the denominator of precision (Tp

Tp+Fp
), by increasing

the number of results returned, which may lead to an increase in precision. The highest

48

4.5. SYNTHETIC AND REAL-WORLD DATA MIXING

recall only reaches 0.12 for training with synthetic images and 0.45 for training with
real-world images, which is low in both cases.

The visualization of the predicted labels for both experiments is shown in Figure 4.8.
Figure 4.8a indicates the true positive and false negative predictions from experiment
3, where most vehicles aligned with the road are detected, yet the ones parked in the
parking lot are not detected. Figure 4.8e shows the false positive predictions from
experiment 3, where the rooftop air outlets are detected as vehicles. Both false positive
and false negative predictions might be due to the fact that the neural network was
not trained with rooftop structures and parking lot images. Figure 4.8f shows the
predictions from experiment 4. A lot of false negative detection exists in the image,
which might be due to the fact that the vehicles in synthetic images are not realistic
enough as in the real-world images.

This result indicates that there is a significant domain gap between real and synthetic
data, yet training with real-world data outperforms training with synthetic data. The
difference in performance can be deduced from the difference in the domain coverage
and amount in training data. The real-world data covers a large variety of domains
(i.e., time of the day, season of the year) and uses a much larger amount of images (159
images (5616 x 3744px)), yet the synthetic data covers only the same scene and uses 419
images (1024 x 1024px).

4.5 Synthetic and real-world data mixing

In an attempt to achieve the full real-world data performance with only using a fraction
of it, a mixed set of synthetic and real-world data with various ratios are studied. The
average precision of each experiment is shown in Table 4.6. The mixed dataset is used
in training, while the tests are performed only on real-world data. The synthetic images
in experiment 5-8 remain the same both in terms of images themselves and the amount.
The variable is the number of real-world images added in the training dataset.

The Precision Recall curve for each experiment is shown in Figure 4.9. As more
real-world data are added in the training dataset, both precision and recall increase.
For real-world data ratio of 12%, 22%, and 49%, there is a sudden drop of precision at
a recall score of 65%. This sudden drop of precision may be because a sudden increase
of false positive detection. From Figure 4.8e, we can see that there are a large number
of rooftop air outlets in the real-world images. When the detection threshold lowers
down, maybe almost all air outlets and similar structure objects are detected as vehicles,
which decrease the precision dramatically.

49

4.5. SYNTHETIC AND REAL-WORLD DATA MIXING

(a) Good detection result of EXP3. (b) Good detection result of
EXP4.

(c) Medium detection result of
EXP3.

(d) Medium detection result of
EXP4.

(e) Poor detection result of EXP3. (f) Poor detection result of EXP4.

Figure 4.8: Visualization of the detection performance of experiments 3 and 4.

50

4.5. SYNTHETIC AND REAL-WORLD DATA MIXING

The real-world images used in the mixed dataset are selected from EAGLE dataset
based on similar GSD and scenes as synthetic images, which are 8 original-sized images
in the EAGLE dataset. Compared to the average precision (i.e., 0.77) of training with
22% of the EAGLE dataset, a mixture of 50% synthetic and 50% real-world data achieves
a relatively good average precision of 0.63. Since the amount of the training dataset
is different, the results of experiment 8 and 9 are not comparable, but can be used
for reference. With an increase of 3% of real-world images from experiment 5 to 6,
the vehicle detection performance is considerably improved from 0.32 to 0.53 average
precision (Figure 4.10). An increase in the real-world data ratio from 9% to 49% results
in a logarithmic increase in the performance. With this result, the hypothesis to observe
a performance increase by adding a small amount of real-world data compared to the
synthetic only training is confirmed.

EXPERIMENT SYNTHETIC RATIO REAL RATIO TPR FNR AP

EXP3 100% 0% 12% 88% 5%

EXP5 91% 9% 52% 48% 32%

EXP6 88% 12% 65% 35% 53%

EXP7 78% 22% 69% 31% 60%

EXP8 51% 49% 72% 28% 63%

EXP9 0% 100% 82% 18% 77%

Table 4.6: Evaluation metrics of experiments with mixed synthetic and real-world
images for training.

51

4.5. SYNTHETIC AND REAL-WORLD DATA MIXING

Figure 4.9: Precision Recall curve for Experiments 3 and 6-9, all experiments used
real-world data for testing.

Figure 4.10: Average precision of detection performance with percentage of real-world
images in the total training data.

52

5 Discussion

The first task of this thesis is to generate vehicles in a virtual world and to place them
with limited semantic information. The constraints for vehicle placement have been
satisfied so that various traffic scenarios in the virtual scene are created to imitate the
real world.

Since the information such as the width of the road and the position of the road
lane markings are missing, based on the approach in section 3.2, the vehicles are not
necessarily placed in between the lane markings but rather a fixed distance from the
edge of the road. This can be problematic when more complex circumstances are
involved, such as when pedestrians and bikers are in the scene. However, the design of
this thesis simplifies the scenarios and only focuses on vehicles while lane markings
are ignored.

A pipeline for vehicle placement and synthetic image generation using Unreal Python
API is created with configured parameters for traffic scenarios and camera settings,
etc. The ground truth labeling is automatically generated using AirSim via instance
segmentation. In the situation with an inclined camera angle up to 15 degrees, semantic
segmentation would incorrectly label the overlapping vehicles in the camera’s view
as one category, yet instance segmentation separates individual vehicles to avoid the
mistake.

There are three goals for the designing of the training experiments. The first is
to evaluate the detection performances trained with the same or different vehicle
placement patterns. In Table 4.4, the average precision for the detection trained with
dataset of randomly placed vehicles (48%) is 6% lower than the detection trained with
dataset of aligned vehicles (54%). This difference is mainly due to a lower recall for the
former detection. In other words, the neural network trained with randomly placed
vehicles has more difficulties to obtain positive predictions. In the visualization of both
predictions (Figure 4.5), it can be identified that the detector trained with randomly
placed vehicles makes less positive predictions than the other. Therefore, using the
same vehicle placement patterns in the training and testing datasets increases the
detection performance.

53

The second goal is to evaluate the domain gap between real and synthetic datasets.
Training with synthetic images and testing on real-world images (EXP3) reflects how
well the real-world images resemble the synthetic images; while training with real-
world images and testing on synthetic images (EXP4) reflects the opposite. In Table 4.5,
the average precision for EXP3 is much lower than that for EXP4. The very low average
precision for EXP3 (5%) might be due to the fact that there are more varieties of vehicles
and the background in the real-world images compared to the synthetic images. In
other words, the synthetic images have less domain variations than the real-world
images, which leads to a large domain gap in between. The average precision for EXP4
is 24%, which also indicates a poor detection performance. By visualizing the predicted
labels in Figure 4.8, it can be observed that the color contrast and saturation in the
synthetic images are not as strong as in the real-world images. Therefore, one reason for
the poor detection performance is that the image qualities of synthetic images, in terms
of textures, shapes, colors, etc., do not resemble that of real-world images. Overall, it is
indicated that the domain gap between synthetic and real-world images is large.

The third goal is to evaluate the ratio of real-world data needed for having a good
detection performance. The experimental results demonstrate that the performance
based on a mixture of synthetic and real-world data is comparable to the performance
based on only real-world data. The average precision for the experiment trained with
only real-world data reaches 77%. Considering the large amount of real-world data
from half of EAGLE dataset, experiment 8 trained with half synthetic (51%) and half
real-world images (49%) has reached a adequate performance of 63%. It is definitely
possible to continue increase the performance by adding more real-world images in
the training dataset. However, the trend of the increase of average precision shown in
Figure 4.10 indicates a logarithmic growth, which means a large ratio of real-world
images are needed to achieve a small increase in the average precision. The concept
of these experiments is to use less real-world images to achieve maximum detection
performance, because synthetic images can be generated with much less efforts and
in great amount, yet real annotated images demands much more time and labour
costs. Therefore, continue increasing the ratio of real-world images is not part of
the experiment scope. The results of the experiments can be summarized as follows.
By adding a small ratio of real-world images in the training dataset, the detection
performance improved dramatically, as can be verified in Figure 4.9 and Figure 4.10. As
the ratio of real-world images increases, the performance improvement is slowed down
and reaches a plateau. Based on the experiments, 20% to 50% of real-world images are
able to rise the detection performance to an adequate level (i.e., more than 60%).

To summarize, synthetic data introduces a cost saving measure for data annotation.

54

Training with realistic synthetic data in terms of imitating real world scenarios and
optimizing image qualities improves the detection performance. An increase of the
real-world image ratio in the training dataset also improves the detection performance
dramatically until a certain threshold is reached, where the performance can not be
improved even with a great amount of real-world images.

55

6 Conclusions and Outlook

After simulating the virtual world where the vehicles are placed according to the
constraints, images can be taken with configured camera settings such as the position
and camera parameters. Numerous synthetic images can therefore be generated with
accurate ground truth automatically via the generation pipeline presented in the thesis.

It is desired that synthetic images can not only be generated automatically, but also
resemble the real world images. For the latter perspective, some further improvements
can be investigated. Four factors affect how well synthetic images resemble the real
world. One is the quality of the objects in the virtual world in terms of the texture,
shape, and color. In this thesis, both the virtual world and the vehicle assets are
downloaded directly from Unreal Engine Marketplace. Therefore it is not possible
to configure the realism of objects in the virtual world. If a higher quality is desired,
virtual worlds from other resources must be investigated.

Another factor is the quality of the images in terms of brightness, contrast and
saturation. Compared with the image quality of the real world images, experimental
research can be further conducted to acquire the image parameters that generate the
most resembling synthetic images.

A third factor is the scenario settings in the virtual world compared with the real
world. Different traffic scenarios are generated in this thesis to imitate the real world
traffic scenarios. However, there can still be future improvement in the vehicle place-
ment, such as creating parking lot scenarios, dense parking along both sides of the
road, driving on multiple lanes, etc.

Last but not the least, the variety of the domains in synthetic images compared to the
real world images also affects the resemblance. In this thesis, only one virtual world,
City Park Environment Collection, is investigated. In future researches, multiple virtual
world with different road situations can be utilized for synthetic images generation,
which would increase the domain variety and reduce the domain gap between synthetic
and real-world images.

56

When the above factors are considered and investigated, synthetic images for vehicle
detection can be improved. In addition, with an increasing ratio of real-world images
used in training dataset, the domain gap between training and testing datasets is
reduced and therefore, the detection performance increases as shown in Figure 4.9.
The amount of synthetic images used for training could also play a role in detection
performance. In this thesis, only 419 synthetic images of 1024 x 1024 px are used
for training. Further experiments can be done by increasing the number of synthetic
images in the training dataset.

Overall, using synthetic images for training is an promising approach for reduction
of labour and time-consumption. This thesis provides an approach for automatic
synthetic data generation using Unreal Engine and AirSim. The synthetic images
generation pipeline can be a guidance or implemented directly for future synthetic
image generation. Experiments with different research interests are conducted, which
provides an insight of how to investigate the resemblance of synthetic images to real
world images. The logarithmic growth of detection performance with an increase of
real-world image ratios also provides inspiration for further research on training with
mixed synthetic and real-world images.

57

List of Figures

2.1 The flowchart of machine learning-based object detection [25]. 5
2.2 The pipeline of general CNN architecture [35] 7
2.3 R-CNN architecture [22]. 8
2.4 Fast R-CNN architecture [23]. 9
2.5 Faster R-CNN architecture and RPN [38] 9
2.6 The YOLO detection system [40] . 10
2.7 Images illustrating the different categories of the dataset. From left to

right: car, truck, camping car, tractor, plane, boat, other, pickup and van
[46]. 11

2.8 Samples of annotated images in DOTA. There are three samples for each
category, except six for large-vehicle. [44] 12

2.9 Examples of annotated images [5] . 13
2.10 The SYNTHIA Dataset. A sample frame (left) with its semantic labels

(center) and a general view of the city (right) [60]. 15
2.11 An illustration of the nine different virtual city styles used in Synthinel-1.

(a) Red roof style; (b) Paris’ building sytle; (c) ancient building syle; (d)
sci-fi city stle; (e) Chinese palace style; (f) Damaged city style; (g) Austin
city style; (h) Venice style; (i) modern city stle. [62] 16

2.12 Six virtual scenes in VALID dataset. There are neighborhood, downtown,
airport, night street, snow mountain, and seaside town. [63] 17

2.13 Illustration of LoD3 models. [68] . 18
2.14 15 areas distributed over the city of Berlin. [71] 19
2.15 A snapshot of the city park 3d model. [72] 19
2.16 Simulated urban environments [9]. 20
2.17 A snapshot from DeepDrive . 21
2.18 A snapshot from AirSim shows an aerial vehicle flying in an urban

environment [11]. 21

3.1 Overview of the method . 22
3.2 Vehicle assets used in the study. 23
3.3 Workflow of vehicle placement method. Step (1) is to obtain initial vehicle

position; step (2) is to be repeated to generate traffic scenarios. 25

58

List of Figures

3.4 Illustration of how line trace works. The line traces start above the land-
scape (START1, START2) and trace a vertical line down to beneath the
landscape (END1, END2). The first Object that the line trace encounters
will be returned (HIT1, HIT2). In this diagram, line trace 1 hits a tree;
line trace 2 hits road. 26

3.5 Example of how line trace helps to identify road Objects. 26
3.6 Approach to find the orientation of the road. Green dots indicate the hit

location on the road, red dots indicates the hit location outside of the
road border. The number of green dots is counted along each radius line. 27

3.7 Illustration of the approach to find the edge of the road. Green dots
indicate on road and red dots indicate not on road. (a) a random point
hit by line trace; (b) a second point hit by a line trace with 0.05 m apart;
(c) the second point is on road; (d) a third point hit by a line trace along
the same direction; (e) the third point is not on road; (f) the same process
is repeated along another direction; (g) the same process is repeated for
a whole circle; (h) the edge of the road is known based on the break
points; (i) a vehicle is placed based on the road edge information. . . . 28

3.8 Illustration of the exceptional scenarios. 28
3.9 Illustration of the three traffic scenarios. 29
3.10 Step of finding the possible position for vehicle placement. S1 and S2

are two examples of the initially placed vehicles. V1 and V2 are the two
possible locations in the front. Red indicates the new position is not on
the road; green indicated the new position is on the road. 30

3.11 Step of finding the orientation at new location V2. Green dots indicates
that the line trace encounters road; red crosses indicates the line trace
doesn’t encounter road. 31

3.12 Illustration of the traffic generation approach. Green dots indicate on
road; red dots indicate not on road. (a) the new position with a distance
s in front of the placed vehicle; (b) the new position is on the road; (c)
find the edge of the road; (d) compute the new position and orientation;
(e) place the new vehicle . 31

3.13 Three traffic scenarios and their corresponding distribution of the dis-
tance in between vehicles. 32

3.14 Illustration of the instance segmentation. 34
3.15 An illustration of extracting individual RGB color for the preparation of

bounding box generation. 35
3.16 An illustration of occluded vehicles. 35
3.17 The four coordinates of a bounding box. 35

59

List of Figures

3.18 Overview of ReDet. (a) Overall architecture of ReDet. (b) Rotation-
equivariant feature maps. (c) Rotation-invariant RoI Align. [82] 37

4.1 Comparison of scenes with randomly placed vehicles and aligned vehi-
cles. 39

4.2 Visual comparison between real and synthetic images 40
4.3 Illustration of the definition of IoU [88] 44
4.4 Comparison of Precision-Recall curves for training with two synthetic

datasets. 45
4.5 Visualization of the detection performance with different synthetic train-

ing datasets . 46
4.6 Examples of detection results from both EXP1 and EXP2. 47
4.7 Precision Recall curve for Experiments 3 & 4. 48
4.8 Visualization of the detection performance of experiments 3 and 4. . . . 50
4.9 Precision Recall curve for Experiments 3 and 6-9, all experiments used

real-world data for testing. 52
4.10 Average precision of detection performance with percentage of real-world

images in the total training data. 52

60

List of Tables

3.1 Parameters used for traffic scenario generation. 33

4.1 Parameters used for traffic scenario generation. 41
4.2 Training and testing datasets. Ratios of real-world images are based on

the number of synthetic images in the dataset. 41
4.3 Size of each dataset. 41
4.4 Evaluation metrics of experiments 1 (EXP1) and 2 (EXP2). 45
4.5 Evaluation metrics of experiments 3 (EXP3) and 4 (EXP4). 48
4.6 Evaluation metrics of experiments with mixed synthetic and real-world

images for training. 51

61

Bibliography

[1] P. Ongsulee. “Artificial intelligence, machine learning and deep learning.” In:
2017 15th international conference on ICT and knowledge engineering (ICT&KE). IEEE.
2017, pp. 1–6.

[2] Q. Wu, Y. Liu, Q. Li, S. Jin, and F. Li. “The application of deep learning in computer
vision.” In: 2017 Chinese Automation Congress (CAC). IEEE. 2017, pp. 6522–6527.

[3] Z. Zou, Z. Shi, Y. Guo, and J. Ye. “Object Detection in 20 Years: A Survey.” In:
CoRR abs/1905.05055 (2019). arXiv: 1905.05055. url: http://arxiv.org/abs/
1905.05055.

[4] J. Gleason, A. V. Nefian, X. Bouyssounousse, T. Fong, and G. Bebis. “Vehicle
detection from aerial imagery.” In: 2011 IEEE International Conference on Robotics
and Automation. 2011, pp. 2065–2070. doi: 10.1109/ICRA.2011.5979853.

[5] S. M. Azimi, R. Bahmanyar, C. Henry, and F. Kurz. “EAGLE: Large-Scale Vehicle
Detection Dataset in Real-World Scenarios using Aerial Imagery.” In: 2020 25th
International Conference on Pattern Recognition (ICPR). 2021, pp. 6920–6927. doi:
10.1109/ICPR48806.2021.9412353.

[6] A. Ajay, V. Sowmya, and K. Soman. “Vehicle detection in aerial imagery using
eigen features.” In: 2017 International Conference on Communication and Signal
Processing (ICCSP). IEEE. 2017, pp. 1620–1624.

[7] F. E. Nowruzi, P. Kapoor, D. Kolhatkar, F. A. Hassanat, R. Laganiere, and J.
Rebut. “How much real data do we actually need: Analyzing object detection
performance using synthetic and real data.” In: CoRR abs/1907.07061 (2019).
arXiv: 1907.07061. url: http://arxiv.org/abs/1907.07061.

[8] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. “Playing for Data: Ground Truth
from Computer Games.” In: Computer Vision – ECCV 2016. Ed. by B. Leibe, J.
Matas, N. Sebe, and M. Welling. Cham: Springer International Publishing, 2016,
pp. 102–118. isbn: 978-3-319-46475-6.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. “CARLA: An open
urban driving simulator.” In: Conference on robot learning. PMLR. 2017, pp. 1–16.

[10] W. Qiu and A. Yuille. “Unrealcv: Connecting computer vision to unreal engine.”
In: European Conference on Computer Vision. Springer. 2016, pp. 909–916.

62

https://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1905.05055
https://doi.org/10.1109/ICRA.2011.5979853
https://doi.org/10.1109/ICPR48806.2021.9412353
https://arxiv.org/abs/1907.07061
http://arxiv.org/abs/1907.07061

Bibliography

[11] S. Shah, D. Dey, C. Lovett, and A. Kapoor. “AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles.” In: CoRR abs/1705.05065 (2017).
arXiv: 1705.05065. url: http://arxiv.org/abs/1705.05065.

[12] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E.
Cameracci, S. Boochoon, and S. Birchfield. “Training deep networks with synthetic
data: Bridging the reality gap by domain randomization.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition workshops. 2018, pp. 969–
977.

[13] C. Papageorgiou and T. Poggio. “A trainable system for object detection.” In:
International journal of computer vision 38.1 (2000), pp. 15–33.

[14] P. Viola and M. Jones. “Rapid object detection using a boosted cascade of simple
features.” In: Proceedings of the 2001 IEEE computer society conference on computer
vision and pattern recognition. CVPR 2001. Vol. 1. Ieee. 2001, pp. I–I.

[15] M. Oualla, A. Sadiq, and S. Mbarki. “A survey of Haar-Like feature represen-
tation.” In: 2014 International Conference on Multimedia Computing and Systems
(ICMCS). 2014, pp. 1101–1106. doi: 10.1109/ICMCS.2014.6911186.

[16] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio. “Pedestrian detec-
tion using wavelet templates.” In: Proceedings of IEEE computer society conference
on computer vision and pattern recognition. IEEE. 1997, pp. 193–199.

[17] J. Leitloff, S. Hinz, and U. Stilla. “Vehicle Detection in Very High Resolution
Satellite Images of City Areas.” In: IEEE Transactions on Geoscience and Remote
Sensing 48.7 (2010), pp. 2795–2806. doi: 10.1109/TGRS.2010.2043109.

[18] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection.”
In: 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05). Vol. 1. Ieee. 2005, pp. 886–893.

[19] S. Tuermer, F. Kurz, P. Reinartz, and U. Stilla. “Airborne vehicle detection in dense
urban areas using HoG features and disparity maps.” In: IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 6.6 (2013), pp. 2327–2337.

[20] A. Kembhavi, D. Harwood, and L. S. Davis. “Vehicle detection using partial least
squares.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 33.6
(2010), pp. 1250–1265.

[21] P. Felzenszwalb, D. McAllester, and D. Ramanan. “A discriminatively trained,
multiscale, deformable part model.” In: 2008 IEEE conference on computer vision
and pattern recognition. Ieee. 2008, pp. 1–8.

63

https://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
https://doi.org/10.1109/ICMCS.2014.6911186
https://doi.org/10.1109/TGRS.2010.2043109

Bibliography

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for
accurate object detection and semantic segmentation.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2014, pp. 580–587.

[23] R. Girshick. “Fast R-CNN.” In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1440–1448.

[24] X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan. “Vehicle detection in satellite images
by hybrid deep convolutional neural networks.” In: IEEE Geoscience and remote
sensing letters 11.10 (2014), pp. 1797–1801.

[25] G. Cheng and J. Han. “A survey on object detection in optical remote sensing
images.” In: ISPRS Journal of Photogrammetry and Remote sensing 117 (2016), pp. 11–
28.

[26] J. Sivic and A. Zisserman. “Video Google: Efficient visual search of videos.” In:
Toward category-level object recognition. Springer, 2006, pp. 127–144.

[27] J. Liu. “Image retrieval based on bag-of-words model.” In: arXiv preprint arXiv:1304.5168
(2013).

[28] H. Zhou, L. Wei, C. Lim, D. Creighton, and S. Nahavandi. “Robust Vehicle Detec-
tion in Aerial Images Using Bag-of-Words and Orientation Aware Scanning.” In:
IEEE Transactions on Geoscience and Remote Sensing PP (July 2018), pp. 1–12. doi:
10.1109/TGRS.2018.2848243.

[29] Y.-G. Jiang, C.-W. Ngo, and J. Yang. “Towards optimal bag-of-features for object
categorization and semantic video retrieval.” In: Proceedings of the 6th ACM
international conference on Image and video retrieval. 2007, pp. 494–501.

[30] C. Cortes and V. Vapnik. “Support-vector networks.” In: Machine learning 20.3
(1995), pp. 273–297.

[31] G. Mountrakis, J. Im, and C. Ogole. “Support vector machines in remote sensing:
A review.” In: ISPRS Journal of Photogrammetry and Remote Sensing 66.3 (2011),
pp. 247–259.

[32] Y. Freund. “Boosting a weak learning algorithm by majority.” In: Information and
computation 121.2 (1995), pp. 256–285.

[33] Y. Freund, R. E. Schapire, et al. “Experiments with a new boosting algorithm.” In:
icml. Vol. 96. Citeseer. 1996, pp. 148–156.

[34] T. Georgiou, Y. Liu, W. Chen, and M. Lew. “A survey of traditional and deep
learning-based feature descriptors for high dimensional data in computer vision.”
In: International Journal of Multimedia Information Retrieval 9.3 (2020), pp. 135–170.

64

https://doi.org/10.1109/TGRS.2018.2848243

Bibliography

[35] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew. “Deep learning for
visual understanding: A review.” In: Neurocomputing 187 (2016), pp. 27–48.

[36] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni. “Car detection
using unmanned aerial vehicles: Comparison between faster r-cnn and yolov3.”
In: 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS).
IEEE. 2019, pp. 1–6.

[37] K. He, X. Zhang, S. Ren, and J. Sun. “Spatial pyramid pooling in deep convolu-
tional networks for visual recognition.” In: IEEE transactions on pattern analysis
and machine intelligence 37.9 (2015), pp. 1904–1916.

[38] S. Ren, K. He, R. Girshick, and J. Sun. “Faster r-cnn: Towards real-time object
detection with region proposal networks.” In: Advances in neural information
processing systems 28 (2015).

[39] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
“Ssd: Single shot multibox detector.” In: European conference on computer vision.
Springer. 2016, pp. 21–37.

[40] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You only look once: Unified,
real-time object detection.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 779–788.

[41] J. Redmon and A. Farhadi. “YOLO9000: better, faster, stronger.” In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 7263–7271.

[42] J. Redmon and A. Farhadi. “Yolov3: An incremental improvement.” In: arXiv
preprint arXiv:1804.02767 (2018).

[43] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. “Microsoft coco: Common objects in context.” In: European conference
on computer vision. Springer. 2014, pp. 740–755.

[44] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo, and
L. Zhang. “DOTA: A large-scale dataset for object detection in aerial images.” In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 3974–3983.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A large-
scale hierarchical image database.” In: 2009 IEEE conference on computer vision and
pattern recognition. Ieee. 2009, pp. 248–255.

65

Bibliography

[46] S. Razakarivony and F. Jurie. “Vehicle detection in aerial imagery : A small target
detection benchmark.” In: Journal of Visual Communication and Image Representation
34 (2016), pp. 187–203. issn: 1047-3203. doi: https://doi.org/10.1016/j.jvcir.
2015.11.002. url: https://www.sciencedirect.com/science/article/pii/
S1047320315002187.

[47] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and P. Yu.
“Generalizing to unseen domains: A survey on domain generalization.” In: IEEE
Transactions on Knowledge and Data Engineering (2022).

[48] H. Abu Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother.
“Augmented reality meets computer vision: Efficient data generation for urban
driving scenes.” In: International Journal of Computer Vision 126.9 (2018), pp. 961–
972.

[49] W. Liu, J. Liu, and B. Luo. “Can Synthetic Data Improve Object Detection Results
for Remote Sensing Images?” In: CoRR abs/2006.05015 (2020). arXiv: 2006.05015.
url: https://arxiv.org/abs/2006.05015.

[50] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. “Generative adversarial networks.” In: Communications
of the ACM 63.11 (2020), pp. 139–144.

[51] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan.
“GAN-based synthetic medical image augmentation for increased CNN perfor-
mance in liver lesion classification.” In: Neurocomputing 321 (2018), pp. 321–331.

[52] L. Abady, M. Barni, A. Garzelli, and B. Tondi. “GAN generation of synthetic
multispectral satellite images.” In: Image and Signal Processing for Remote Sensing
XXVI. Vol. 11533. SPIE. 2020, pp. 122–133.

[53] S. Sharafi, B. Majidi, and A. Movaghar. “Low altitude aerial scene synthesis using
generative adversarial networks for autonomous natural resource management.”
In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). IEEE.
2019, pp. 322–326.

[54] A. Tsirikoglou, J. Kronander, M. Wrenninge, and J. Unger. “Procedural modeling
and physically based rendering for synthetic data generation in automotive
applications.” In: arXiv preprint arXiv:1710.06270 (2017).

[55] M. Wrenninge and J. Unger. “Synscapes: A photorealistic synthetic dataset for
street scene parsing.” In: arXiv preprint arXiv:1810.08705 (2018).

[56] S. R. Richter, Z. Hayder, and V. Koltun. “Playing for benchmarks.” In: Proceedings
of the IEEE International Conference on Computer Vision. 2017, pp. 2213–2222.

66

https://doi.org/https://doi.org/10.1016/j.jvcir.2015.11.002
https://doi.org/https://doi.org/10.1016/j.jvcir.2015.11.002
https://www.sciencedirect.com/science/article/pii/S1047320315002187
https://www.sciencedirect.com/science/article/pii/S1047320315002187
https://arxiv.org/abs/2006.05015
https://arxiv.org/abs/2006.05015

Bibliography

[57] L. Laux, S. Schirmer, S. Schopferer, and J. Dauer. “Build Your Own Training Data
- Synthetic Data for Object Detection in Aerial Images.” In: Software Engineering
2022 Workshops. Ed. by J. Michael, J. Pfeiffer, and A. Wortmann. Bonn: Gesellschaft
für Informatik e.V., 2022, pp. 182–190. doi: 10.18420/se2022-ws-18.

[58] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira,
and S. Birchfield. “Structured domain randomization: Bridging the reality gap
by context-aware synthetic data.” In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 7249–7255.

[59] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R.
Vasudevan. “Driving in the matrix: Can virtual worlds replace human-generated
annotations for real world tasks?” In: arXiv preprint arXiv:1610.01983 (2016).

[60] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez. “The synthia
dataset: A large collection of synthetic images for semantic segmentation of
urban scenes.” In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 3234–3243.

[61] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. “Virtual worlds as proxy for multi-
object tracking analysis.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 4340–4349.

[62] F. Kong, B. Huang, K. Bradbury, and J. Malof. “The Synthinel-1 dataset: A collec-
tion of high resolution synthetic overhead imagery for building segmentation.”
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
2020, pp. 1814–1823.

[63] L. Chen, F. Liu, Y. Zhao, W. Wang, X. Yuan, and J. Zhu. “Valid: A comprehensive
virtual aerial image dataset.” In: 2020 IEEE international conference on robotics and
automation (ICRA). IEEE. 2020, pp. 2009–2016.

[64] L. Jing and Y. Tian. “Self-Supervised Visual Feature Learning With Deep Neu-
ral Networks: A Survey.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 43.11 (2021), pp. 4037–4058. doi: 10.1109/TPAMI.2020.2992393.

[65] N. Koenig and A. Howard. “Design and use paradigms for gazebo, an open-
source multi-robot simulator.” In: 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. IEEE. 2004,
pp. 2149–2154.

[66] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y. Gao,
H. Henry, M. Mattar, et al. “Unity: A general platform for intelligent agents.” In:
arXiv preprint arXiv:1809.02627 (2018).

67

https://doi.org/10.18420/se2022-ws-18
https://doi.org/10.1109/TPAMI.2020.2992393

Bibliography

[67] Unreal Engine. Retrieved October 10, 2022. url: https://www.unrealengine.com/
en-US/unreal-engine-5.

[68] LoD3 Road Space Models. Retrieved October 14, 2022. url: https://github.com/
savenow/lod3-road-space-models.

[69] CityGML. Retrieved October 15, 2022. url: https://www.ogc.org/standards/
citygml.

[70] ASAM OpenDRIVE. Retrieved October 15, 2022. url: https://www.asam.net/
standards/detail/opendrive/.

[71] S. Wu, L. Liebel, and M. Körner. “Derivation of Geometrically and Semantically
Annotated UAV Datasets at Large Scales from 3D City Models.” In: 2020 25th
International Conference on Pattern Recognition (ICPR). 2021, pp. 4712–4719. doi:
10.1109/ICPR48806.2021.9412256.

[72] City Park Environment Collection. Retrieved October 10, 2022. url: https://www.
unrealengine.com/marketplace/en- US/product/city- park- environment-
collection.

[73] Unreal Engine Marketplace. Retrieved October 14, 2022. url: https://unrealengine.
com/marketplace/en-US/store.

[74] C. Quiter and M. Ernst. deepdrive/deepdrive: 2.0. Retrieved October 10, 2022. url:
https://doi.org/10.5281/zenodo.1248998.

[75] Unreal Python API DOcumentation. Retrieved October 17, 2022. url: https://
docs.unrealengine.com/5.0/en-US/PythonAPI/.

[76] Python Script Plugin. Retrieved October 17, 2022. url: https://docs.unrealengine.
com/5.0/en-US/API/Plugins/PythonScriptPlugin/.

[77] Vehicle Variety Pack. Retrieved October 17, 2022. url: https://www.unrealengine.
com/marketplace/en-US/product/bbcb90a03f844edbb20c8b89ee16ea32.

[78] Vehicle Variety Pack Volume 2. Retrieved October 18, 2022. url: https://www.
unrealengine.com/marketplace/en-US/product/9a705589d1994c6e8757fdbedaf698af.

[79] Blueprint Overview. Retrieved October 17, 2022. url: https://docs.unrealengine.
com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview/.

[80] Collision Overview. Retrieved October 17, 2022. url: https://docs.unrealengine.
com/5.0/en-US/collision-in-unreal-engine---overview/.

[81] R. L. Galvez, A. A. Bandala, E. P. Dadios, R. R. P. Vicerra, and J. M. Z. Maningo.
“Object detection using convolutional neural networks.” In: TENCON 2018-2018
IEEE Region 10 Conference. IEEE. 2018, pp. 2023–2027.

68

https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://github.com/savenow/lod3-road-space-models
https://github.com/savenow/lod3-road-space-models
https://www.ogc.org/standards/citygml
https://www.ogc.org/standards/citygml
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://doi.org/10.1109/ICPR48806.2021.9412256
https://www.unrealengine.com/marketplace/en-US/product/city-park-environment-collection
https://www.unrealengine.com/marketplace/en-US/product/city-park-environment-collection
https://www.unrealengine.com/marketplace/en-US/product/city-park-environment-collection
https://unrealengine.com/marketplace/en-US/store
https://unrealengine.com/marketplace/en-US/store
https://doi.org/10.5281/zenodo.1248998
https://docs.unrealengine.com/5.0/en-US/PythonAPI/
https://docs.unrealengine.com/5.0/en-US/PythonAPI/
https://docs.unrealengine.com/5.0/en-US/API/Plugins/PythonScriptPlugin/
https://docs.unrealengine.com/5.0/en-US/API/Plugins/PythonScriptPlugin/
https://www.unrealengine.com/marketplace/en-US/product/bbcb90a03f844edbb20c8b89ee16ea32
https://www.unrealengine.com/marketplace/en-US/product/bbcb90a03f844edbb20c8b89ee16ea32
https://www.unrealengine.com/marketplace/en-US/product/9a705589d1994c6e8757fdbedaf698af
https://www.unrealengine.com/marketplace/en-US/product/9a705589d1994c6e8757fdbedaf698af
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview/
https://docs.unrealengine.com/5.0/en-US/collision-in-unreal-engine---overview/
https://docs.unrealengine.com/5.0/en-US/collision-in-unreal-engine---overview/

Bibliography

[82] J. Han, J. Ding, N. Xue, and G.-S. Xia. “Redet: A rotation-equivariant detector for
aerial object detection.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 2786–2795.

[83] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. “Focal loss for dense object
detection.” In: Proceedings of the IEEE international conference on computer vision.
2017, pp. 2980–2988.

[84] P. Dollár, C. Wojek, B. Schiele, and P. Perona. “Pedestrian detection: A bench-
mark.” In: 2009 IEEE conference on computer vision and pattern recognition. IEEE.
2009, pp. 304–311.

[85] True Positive Rate. Retrieved October 14, 2022. url: https://deepchecks.com/
glossary/true-positive-rate/.

[86] False Positive Rate. Retrieved October 14, 2022. url: https://deepchecks.com/
glossary/false-positive-rate/.

[87] Precision-Recall. Retrieved October 14, 2022. url: https://scikit-learn.org/
stable/auto_examples/model_selection/plot_precision_recall.html.

[88] PyImageSearch. https://pyimagesearch.com/2016/11/07/intersection-over-
union-iou-for-object-detection/. Retrieved October 10, 2022.

[89] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. “The
pascal visual object classes (voc) challenge.” In: International journal of computer
vision 88.2 (2010), pp. 303–338.

69

https://deepchecks.com/glossary/true-positive-rate/
https://deepchecks.com/glossary/true-positive-rate/
https://deepchecks.com/glossary/false-positive-rate/
https://deepchecks.com/glossary/false-positive-rate/
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Challenges
	Contributions
	Thesis outline

	State of the Art
	Traditional detection methods
	Haar wavelets
	HOG Detector
	Deformable part-based models (DPM)

	Machine learning based detection methods
	Bag-of-words (BoW)
	Support vector machine (SVM)
	AdaBoost

	Deep learning based detection methods
	Convolutional Neural Networks (CNNs)
	Two-stage CNN
	Single-stage CNN

	Real-world datasets for vehicle detection
	VEDAI
	DOTA
	EAGLE

	Synthetic training data for vehicle detection
	Methods of generating synthetic data
	Synthetic datasets generated from game engines

	Virtual scene and drone/car simulator
	Simulation platforms
	Available 3D city models for simulation
	Drone/car simulator

	Methodology
	Vehicle assets
	Creating vehicles with various colors

	Vehicle placement
	Obtain initial vehicle position
	Extract orientation information
	Traffic scene generation

	Segmented images generation
	AirSim set up
	Instance segmentation

	Bounding boxes generation
	Training using ReDet detector
	ReDet detector

	Evaluation and Analysis
	Experiment set up
	Synthetic datasets
	EAGLE dataset used for training and testing
	Training with ReDet
	Experiments design

	Vehicle detection metrics
	True Positive Rate and False Negative Rate
	Precision and Recall
	Precision-Recall curve
	Intersection over Union (IoU)
	Average Precision (AP)

	Realistic scenario setting
	Domain Gap
	Synthetic and real-world data mixing

	Discussion
	Conclusions and Outlook
	List of Figures
	List of Tables
	Bibliography

