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Abstract

Database systems and SQL have been the cornerstone of data processing for
over 50 years. They are relevant to this day since they continue to evolve along
with changing hardware setups and workload requirements. This work focuses
on the challenges of e昀케cient data processing in high-performance database
systems. We follow the path data takes from 昀椀ltered ingestion to combining data
and 昀椀nally take a holistic view of the query processing system.

First, we look at the implementation of database operators by evaluating
approximate 昀椀lters and joins in-depth to identify the best variant depending
on workload characteristics. We pick up the ongoing debate on the best main-
memory join implementation and answer it with an in-system comparison.
Combining the analysis of both operators, we compile a list of factors determining
whether partitioning pays o昀昀 and is worth integrating.

Second, this thesis addresses the challenge of devising a concept for a more
昀氀exible data 昀氀ow architecture. This work splits up the existing operators and
shows how the resulting sub-operators can form more generic data 昀氀ows. Sub-
operators furthermore enable the database system to target more di昀昀erent ar-
chitectures and raise the question of how to approach resource heterogeneity,
which has become omnipresent in the cloud.

We conclude with a discussion of future research directions that arise from
the contributions made in this dissertation. These contributions include multi-
dimensional analyses of 昀椀lters and joins and a conceptual architecture for low-
ering diverse workloads into sub-operators. We highlight the potential of com-
piling database systems to hide both the underlying complexity of the ongoing
disaggregation and the continuous advent of new hardware platforms.





Zusammenfassung

Datenbanksysteme und SQL sind seit über 50 Jahren die Eckpfeiler der Daten-
verarbeitung. Sie sind auch heute noch relevant, da sie sich mit den sich stetig
ändernden Hardwarekon昀椀gurationen und Workloads weiterentwickeln. Diese
Arbeit konzentriert sich auf die Herausforderungen von e昀케zienter Datenverar-
beitung in hochperformanten Datenbanksystemen. Wir verfolgen den Weg, den
die Daten von der ge昀椀lterten Aufnahme bis zur Kombination der Daten nehmen,
und betrachten schließlich holistisch das Verhalten des Gesamtsystems.

Zunächst befassen wir uns mit der Implementierung von Datenbankopera-
toren, indem wir Bit昀椀lter und Joins eingehend evaluieren, um die beste Variante
in Abhängigkeit von den gegebenen Anforderungen zu ermitteln. Wir greifen
die laufende Debatte über die beste Join-Implementierung in Hauptspeicher-
Datenbanken auf und beantworten sie mit einem Vergleich im System. Indem
wir die Analyse beider Operatoren kombinieren, stellen wir eine Liste von Fak-
toren zusammen, die bestimmen, ob sich Partitionierung auszahlt und ob es die
Integration rechtfertigt.

Zweitens befasst sich diese Arbeit mit der Herausforderung, ein Konzept für
eine 昀氀exiblere Daten昀氀ussarchitektur zu entwickeln. In dieser Arbeit werden die
vorhandenen Operatoren zerlegt und wir zeigen, wie sich die entstehenden Sub-
Operatoren zu vielfältigeren Daten昀氀üssen kombinieren lassen. Sub-Operatoren
ermöglichen es dem Datenbanksystem außerdem, verschiedene Architekturen zu
unterstützen, undwerfen die Frage auf, wiemit der in der Cloud allgegenwärtigen
Heterogenität der Systeme umgegangen werden kann.

Wir schließen mit einer Diskussion über zukün昀琀ige Forschungsrichtun-
gen, die sich aus den Beiträgen dieser Dissertation ergeben. Zu diesen Beiträ-
gen gehören mehrdimensionale Analysen von Filtern und Joins, sowie eine
konzeptionelle Architektur zur Au昀琀eilung der Datenbank-Operatoren in Sub-
Operatoren. Wir zeigen das Potenzial der Kompilierung von Datenbanksystemen
auf, um sowohl die zugrunde liegende Komplexität der fortschreitenden Disag-
gregierung als auch das kontinuierliche Au昀欀ommen neuer Hardwareplattformen
vor Anwendern zu verbergen.
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CHAPTER 1
Introduction

Data processing involves systematically converting raw data from multiple sources
and transforming them into meaningful insights. It is a foundational application area
for computing because it automates the data retrieval and transformation process. This
automation allows data processing to work in real-time and scale with the demands.
Scalability is crucial here since along with data volume growing exponentially as
shown in Figure 1.1a, the required processing power has to keep up. The stagnating
raw processing power, visualized in Figure 1.1b, cannot keep up with the growing data
processing demand. This gap between the actual processing power and the demand
necessitates streamlined and more performant data processing.

Database systems o昀昀er the demanded high performance to the user while also
o昀昀ering consistency guarantees when storing and retrieving data. This makes them
a central piece of data processing. To achieve high performance, database systems
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Figure 1.1: Statistics about Data Processed and Processing Power show an increased
gap between the rapid growth of processed data and the stagnating processor perfor-
mance.



2 CHAPTER 1. INTRODUCTION

are closely interlinked to modern hardware, which introduces both opportunities
and complexities. Current hardware architecture has shi昀琀ed away from pursuing
higher clock speeds to multicore CPUs and now also tailored on-chip accelerators or
distributed cloud infrastructures. This evolution increased the raw processing power
by orders of magnitudes. However, due to higher complexity, it also raised the need
for understanding the new hardware to utilize their performance in data processing.

This dissertation delves into the combination of database systems and the evolving
hardware landscape. By following the fundamental steps in a data processing pipeline
and examining how they interact with modern hardware, we contribute to more
e昀케cient database design and operation. Through systematic analysis and thoroughly
benchmarked implementations, this dissertation’s goal is to advance data processing
and enhance our understanding of how modern hardware can be e昀昀ectively utilized
to optimize the performance of database systems.

1.1 Background andMotivation
Databases have been one of the building blocks for electronic data processing since the
1950s and provide e昀케cient access to individual data chunks instead of batch-processing
whole tapes. They furthermore o昀昀er strong guarantees, commonly referred to as
ACID, for transactional workloads and kept the same relational storage model for over
50 years [45]. The ubiquity of SQL as lingua franca for data access [38] across various
computing platforms, including mainframes [44], cloud databases [11, 50, 170], and
mobile phones [188, 193], further demonstrates the enduring signi昀椀cance of databases.

While SQL and the relational model o昀昀er a user-oriented perspective on data
access and structure, database systems retain the 昀氀exibility to determine the actual
implementation of features and data storage on physical media [45]. This 昀氀exibility,
initially perceived as a potential obstacle to standardization, has in fact contributed to
the continued relevance of SQL and the relational model. Modern Database Systems
have embraced novel techniques such as massively-parallel join algorithms [4, 17,
108], vectorized or compiled execution methods [95, 181], and distributed query
processing [170], while still relying on the relational model as their foundation.

Independent of the described advancements, a substantial portion of database
tasks involves 昀椀ltering [179] and connecting stored data through joins [143]. Users
commonly engage with aggregated data through dashboards and automated pro-
cesses [173], building upon the foundational capabilities of databases [204]. In our
research, we focus on database engineering using our system Umbra [140]. Utilizing a
SQL frontend, Umbra is designed around a state-of-the-art optimizer [23, 58, 70, 144],
code-generation [65, 75, 96], and implements a wide range of specialized relational
and physical operators [17, 57, 66, 69, 104, 143, 168, 171, 180, 184, 190, 209]. Umbra is
under constant development and allows us to directly integrate and test our research
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in a state-of-the-art database system [56] with industry-standard benchmarks [26, 116,
198, 199].

Nearly every database query involves accessing data from storage media, either
by directly loading frequently accessed data from memory or retrieving it from disk
for larger datasets [5, 79, 114]. To optimize query performance, database systems com-
monly employ index structures like B-Trees [19, 47] or Log-Structured-Merge (LSM)
Trees [120, 148], reducing data traversal during queries. Even before accessing the
actual data, e昀케cient pre-昀椀ltering mechanisms are crucial for query optimization [65].
Approximate bit 昀椀lters, including bloom [25] or 昀椀ngerprint 昀椀lters [62, 74, 203], are
key to accelerating data retrieval. These 昀椀lters o昀昀er the advantage of signi昀椀cant space
savings and high throughput at the expense of potential false positives, which are
subsequently 昀椀ltered out [179]. This approach is seamlessly integrated into various
stages of the database system, including join processing [17, 113], data distribution
between nodes [34], and data loading from disk [51].

With the data now appropriately 昀椀ltered, the next step involves connecting datasets
or relational tables. The relational model builds upon connecting information from
multiple tables, o昀昀ering a robust foundation for structured data storage [45]. As SQL
does not specify the join algorithm [38], there is a multitude of alternatives available
ranging from nested loop joins that iterate through both tables to sort-merge joins [4]
or hash joins [108, 113, 143]. Sort-Merge joins, which leverage sorted data, were
prevalent until the 70s and were replaced by hash joins for e昀케ciency reasons in the
1980s [153]. Around 2000, Boncz et al. [28, 125, 126] predicted that memory access
would be the future bottleneck. Back then processor throughput limited the processing
speed. They worked on multi-pass radix-partitioning to overcome the Translation
Lookaside Bu昀昀er (TLB) thrashing problem of the original hardware-conscious join by
Shatdal et al. [187] and investigated optimized materialization strategies [127]. Several
authors have since then compared join implementations [4, 13, 14, 15, 24, 99, 108, 178,
207] and came to di昀昀erent conclusions about which hash join variant to use. The
昀椀ndings range from using non-partitioned or partitioned as the main implementation
to combining both approaches and using the radix-partitioned join as a booster with
昀椀lters attached like semi-join reducers [17, 56].

Considering both 昀椀lter and join operator, we notice synergies, as certain compo-
nents, such as the bloom 昀椀lter in the semi-join reducer, occur multiple times and thus
can be re-used [16, 17]. With a growing number of specialized operators [66, 168,
171, 209] and accelerators [146, 149, 162, 163, 202], this aspect becomes increasingly
pertinent. Most database operators use similar re-con昀椀gurable sub-operators to scan,
materialize, or process data. These sub-operators have a common notion of data input
or output, whether in the form of data streams for in-place processing like the join’s
probe side or bu昀昀ers for processing the data as a whole, e.g., the join’s build side [16,
103, 106, 210]. Splitting operators into sub-parts makes it reusable and simpli昀椀es the
construction or embedding of non-SQL data 昀氀ows by recombining sub-operators.
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Having such a sub-operator representation o昀昀ers future possibilities with the
trend going towards distributed computing [11, 50, 170]. Depending on how we
can de昀椀ne the operator boundaries, certain sub-tasks can be o昀툀oaded to dedicated
hardware targets, which are tailored for decompression or 昀椀ltering [162, 163, 202].
The increasing complexity of modern hardware heavily in昀氀uences the architecture
and implementation of today’s highly e昀케cient data 昀氀ow engines, including database
systems. Cloud providers already adopt heterogeneous hardware to accelerate data
processing. Machine learning workloads utilize these accelerators, primarily GPUs,
which diversify how and where data is processed. Thus, database systems must
tackle the workload diversi昀椀cation on heterogeneous hardware to keep the data in
the database system and assist the data analytics pipelines.

1.2 Research Questions
This dissertation 昀椀rst looks into two key aspects of e昀케cient data processing, 昀椀lter-
ing and joining, and then continues with an outlook on how data processing will
change with the general availability of heterogeneous resources. Some of the research
questions this dissertation addresses are:

R1: Approximate Filters Given the plethora of approximate 昀椀lter variants, what
are the best-昀椀tting 昀椀lters for di昀昀erent data processing scenarios?

R2: Radix-Partitioned Joins Given the ongoing debate on architecting main-
memory joins, how can we fairly compare partitioned and non-partitioned joins?

R3: Partitioning When if at all does partitioning pay o昀昀 for synthetical and real-
world workloads, and is partitioning worth integrating?

R4: Data Flow Architecture Given a notion of data 昀氀ow and certain target archi-
tectures, how can we best interface between them?

R5: Resource Heterogeneity How can the database engine handle machine and
workload diversity?

1.3 Challenges andMethodology
In light of a constantly changing hardware landscape and processing demands, the
presented research questions are imperative for developing database engines. More
precisely, database engines must continuously overcome challenges to decide on the
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best-昀椀tting implementation on a case-by-case basis to cater to the individual require-
ments of each data 昀氀ow pipeline. One challenge is the increasing heterogeneity in
hardware, which enlarges the options when implementing algorithms. This includes
considerations on e昀케cient multi-threading, the usage of vector instruction, or special-
ized accelerators which are on the rise. With CPU performance slowly stagnating, the
time is right to research how database components can use resources most e昀케ciently.

Furthermore, the resources cannot simply scale with the processing demands
since, e.g., available hardware and power are naturally limited. So, the so昀琀ware has
to get more sustainable together with the hardware it is running on. Sustainability
for the so昀琀ware goes in two directions. On the one hand, of course, more e昀케cient
so昀琀ware uses the available resources better and thus leads to more energy-e昀케cient
computation. On the other hand, the architecture can be designed to be more reusable
thereby improving sustainability. By having an overview ofwhich parts and algorithms
to focus your engineering on, database development in itself becomes more e昀케cient.

We tackle the aforementioned challenges through an in-depth analysis of several
major parts of the database system. We use microbenchmarks to highlight the problem
from all sides and understand how the hardware behaves under certain tasks and
loads. Since it is a challenge in itself to 昀椀nd representative workloads, we also perform
benchmarks inside of our database system. This allows us to see how a component
performs non-isolated and, for example, identify the factors that in昀氀uence when
partitioning pays o昀昀. Based on these learnings from building operators and porting
the DBMS to another architecture, we break down typical relational operators into a
concept of sub-operators. We provide a nuanced analysis including related work on
how the proposed operator set can perform arbitrary data 昀氀ow operations. This leads
to a discussion of how to engineer the future DMBS with modern hardware in mind.

1.4 Contributions and Outline
The thesis structure follows the structure of a data processing pipeline. First, we
focus on improving and understanding performance in real database systems. We
implement and analyze joins and 昀椀lters, focusing on when partitioning pays o昀昀.

Second, we look at the implications of adapting database systems to hardware
disaggregation and specialized accelerators. We propose the sub-operators framework
that allows full exploitation of the heterogeneous hardware capabilities and describe
how it changes the whole stack based on our experience.

C1: Optimized partitioned multi-threaded 昀椀lters (addresses R1, R3) The pre-
sented 昀椀lter variations adopt the idea of partitioning to approximate 昀椀lters. This leads
to a parallelized build phase for all 昀椀lter variants at the cost of a slightly increased
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false-positive rate. We present the optimizations and how they a昀昀ect the four most
relevant approximate 昀椀lters (Bloom, Cuckoo, Morton, and Xor) in Section 2.4.

C2: Four-dimensional analysis of approximate 昀椀lters (addresses R1) We com-
pare the approximate 昀椀lters in four key dimensions, false-positive rate, space consump-
tion, build/lookup throughput, to recommend the best 昀椀lter for di昀昀erent scenarios.
The comparison includes bloom and 昀椀ngerprint 昀椀lters and looks into optimizations
like partitioning and vectorization. Section 2.5 helps to 昀椀nd the most suitable 昀椀lter
and its con昀椀guration parameters by analyzing the key dimensions in-depth.

C3: Fully integrated Radix-Partitioned Join (addresses R2) We fully integrate
a radix-partitioned hash join into our main-memory centric DBMS Umbra [140] as
explained in Section 3.4. To the best of our knowledge, this is the 昀椀rst implementation
of a radix join in a DBMS, using data-centric code generation [96]. Additionally, we
embed a Bloom-昀椀ltered semi-join reducer that signi昀椀cantly reduces materialization
overhead for certain queries. The join integrated into Umbra is on par or even
outperforms stand-alone related work implementations and can thus be used to
compare both variants inside of a system.

C4: In-depth hash join comparison (addresses R2, R3) We compare the bloom-
昀椀ltered radix join implementation within Umbra [140] against a state-of-the-art hash
join [108, 113, 132] using extensive microbenchmarks and the full TPC-H benchmark.
Section 3.5 presents experimentally validated values for workload characteristics
needed to observe any performance bene昀椀ts when using radix-partitioned joins and
answers the question of whether implementing partitioning pays o昀昀.

C5: Sub-Operators as Building Blocks (addresses R4, R5) Sub-operators provide a
holistic system architecture to split up and optimize data processing tasks on di昀昀erent
hardware targets. They are recon昀椀gurable and can be composed into relational
and iterative data昀氀ows while being future-proof for resource disaggregation and
heterogeneous hardware. Chapter 4 introduces a notion of data 昀氀ows using a sample
set of sub-operators, which can serve as a basis for building a recon昀椀gurable general-
purpose query engine. The 昀椀ndings of this chapter also help the ongoing transition of
database engines to heterogeneous cloud systems or non-x86 compute platforms.

Conclusion and Outlook Finally, we conclude the dissertation in Chapter 5 with a
summary of the 昀椀ndings and an outlook on how the presented results will change the
upcoming research and how they already in昀氀uenced the community.



CHAPTER 2
Partitioned Approximate Filters

Excerpts of this chapter have been published in [179].
With contributions from Tobias Schmidt.

With today’s data deluge, approximate 昀椀lters are particularly attractive to avoid
expensive operations like remote data/disk accesses. Among the many 昀椀lter variants
available, it is non-trivial to 昀椀nd the most suitable one and its optimal con昀椀guration
for a speci昀椀c use-case. We evaluate our open-source implementations for the most
relevant 昀椀lters (Bloom, Cuckoo, Morton, and Xor 昀椀lters) and compare them in four key
dimensions: the false-positive rate, space consumption, and build/lookup throughput.
Each 昀椀lter can switch on and o昀昀 the same tuning knobs to allow an apples-to-apples
comparison, e.g., choose di昀昀erent hash functions or vectorize the implementation.

We improve upon existing state-of-the-art implementations with a new optimiza-
tion, radix partitioning, which boosts the build and lookup throughput for large 昀椀lters
by up to 9x and 5x. Our in-depth evaluation 昀椀rst studies the impact of all vectorization
and partitioning separately before combining them with optimizations like addressing
to determine the optimal 昀椀lter for speci昀椀c use-cases. While register-blocked Bloom
昀椀lters o昀昀er the highest throughput, 昀椀ngerprint 昀椀lters, especially the Xor 昀椀lters, are
best suited when optimizing for small 昀椀lter sizes or low false-positive rates. For more
dynamic workloads that delete keys, Cuckoo 昀椀lters o昀昀er the best performance.
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Figure 2.1: Speedup gained by optimizing insert and lookup operations for 100M keys.

2.1 Motivation
As the volume of generated and processed data increases [169], e昀케cient access to only
the relevant items is necessary. The goal is both to achieve good performance for the
executing workload and to reduce overall pressure on data movement channels by
only loading necessary data from storage or over the network.

In this context, approximate 昀椀lters are particularly useful as they compactly repre-
sent the membership of elements in a set, however, at the cost of having false positives.
More speci昀椀cally, the 昀椀lter always reports contained items as members, i.e., there are
no false negatives. For items that are not in the set, the 昀椀lter returns incorrect results
with a certain probability, the false-positive rate 𝜀. Small 昀椀lters can 昀椀t in a higher level
of the storage (memory) hierarchy, leading to faster access times and lower bandwidth
consumption, putting less pressure on the rest of the system’s resources.

It is therefore not a surprise that 昀椀lters are o昀琀en used to speed up applications.
Log-structured merge (LSM) trees, for instance, check the 昀椀lter before fetching a page
from disk [120]. In databases, 昀椀lters improve query execution through selective join
pushdown, which drops tuples not needed for probing early in the pipeline [109].
Other applications include distributed joins or network applications, where 昀椀lters
reduce the amount of transferred data [34, 105].

We distinguish between two 昀椀lter families: Bloom 昀椀lter variants and 昀椀ngerprint
昀椀lters. The Bloom 昀椀lter accesses several bits in a bitmap on lookup or insert [25] and is
the most popular 昀椀lter today [121]. However, 昀椀ngerprint 昀椀lters have recently emerged,
which store small signatures of the key in a hash table-like structure. They are smaller
in size and have lower false-positive rates than Bloom 昀椀lters, at the cost of higher
access latencies. Some of the more notable 昀椀ngerprint 昀椀lters are the Quotient [22],
the Cuckoo [62], the Morton 昀椀lter [33], and more recently, the Xor 昀椀lter [74].
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Figure 2.2: Performance with 100M elements (10 threads).

With this plethora of available alternatives, it is unclear which 昀椀lter to use when.
Very o昀琀en, one has to consider multiple dimensions that are relevant to the use-case
in mind. Thus, in this chapter, we evaluate the four most promising 昀椀lters — Bloom,
Cuckoo, Morton, and Xor 昀椀lters — on the following four key dimensions:

False-positive rate (FPR): it a昀昀ects the application’s performance and hints at
the extra bandwidth overhead on shared I/O resources.

Space consumption: we want to minimize the precious space in caches/DRAM
to store auxiliary data structures.

Lookup performance: it directly a昀昀ects the performance of the application.

Build performance: the time it takes to construct the 昀椀lter.

All four aspects are closely interlinked, and improving one dimension may result in
a decline in another (e.g., reducing the FPR may necessitate an increase in size). Which
dimension to prioritize when choosing the most suitable 昀椀lter is application-speci昀椀c.
On the one hand, LSM-Trees primarily aim to reduce the FPR to avoid unnecessary
expensive I/O operations while limiting the memory assigned to the 昀椀lters [51]. On
the other hand, an in-memory join cares more about lookup performance than 昀椀lter
size.

Unfortunately, a fair comparison between the 昀椀lters is not possible today, as most
authors introduced di昀昀erent optimizations in their implementations, like vectorization
or specialized addressing schemes [74, 109, 205]. We therefore evaluate the open-source
implementations which integrate all relevant optimizations we provide in [179] for all
昀椀lters. Furthermore, we apply a new optimization, radix partitioning [28, 181], that
considerably increases build/lookup performance for all 昀椀lters when their size exceeds
the last-level cache. Figure 2.1 shows the performance of state-of-the-art baselines



10 CHAPTER 2. PARTITIONED APPROXIMATE FILTERS

compared to the acceleration we get with vectorization and partitioning. In addition
to the signi昀椀cant boost of build/lookup throughput, partitioning also allows us to
easily parallelize the construction of all 昀椀lter types, bringing further performance
improvements. However, as not all optimizations are always applicable and usually
entail tradeo昀昀s, we also investigate when to apply which optimization.

In the second part of the chapter, we compare the performance of several Bloom
昀椀lter variants and the three 昀椀ngerprint 昀椀lters. Figure 2.2 (le昀琀) shows which 昀椀lter
performs best for a given FPR and 昀椀lter size. Figure 2.2 (right) shows how each 昀椀lter
performs for a 昀椀xed size. Here, an LSM-Tree would prefer one of the 昀椀ngerprint
昀椀lters (e.g., Cuckoo or Xor) as they o昀昀er low FPRs with good performance under a
strict memory budget. In contrast, in-memory joins would favor the Bloom 昀椀lter, as
it achieves twice the performance and the cost of a false positive is rather inexpen-
sive [109]. Cuckoo and Xor 昀椀lters use the given memory best and achieve signi昀椀cantly
lower FPRs than Bloom 昀椀lters.

The rest of this chapter is organized as follows. We 昀椀rst give a brief overview of
prior work before giving a practical database example while introducing the 昀椀lters
in Section 2.3. In Section 2.4, we describe vectorization and radix-partitioning we
applied and evaluate the impact of each optimization on the baseline. Finally, in
Section 2.5, we evaluate the 昀椀lters for the four key dimensions and propose guidelines
for choosing the right 昀椀lter and which optimizations to enable. We summarize the
昀椀ndings in Section 2.6 and conclude in Section 2.7.

2.2 RelatedWork
The Bloom 昀椀lter dates back to 1970 [25], and since then, more than 60 variants have
emerged [121]. A substantial portion of these variations extends functionality to
add features like key deletion [46, 63, 177], 昀椀lter resizing [6, 78], or they tailor the
Bloom 昀椀lter to speci昀椀c applications, such as network scenarios [67, 133, 176]. Never-
theless, augmenting functionality o昀琀en leads to trade-o昀昀s, like reduced throughput,
increased 昀椀lter size, or higher false positive rates. This chapter instead focuses on
variants that improve performance through optimizations, including blocking [165]
or sectorization [119].

Fingerprint 昀椀lters improved the space e昀케ciency of the counting Bloom 昀椀lter [63],
which supports deletions but required twice the size of the vanilla Bloom 昀椀lter [30,
203]. Recently, 昀椀ngerprint 昀椀lters resurfaced with Quotient and Cuckoo 昀椀lters, which
improve the existing idea using cuckoo hashing which leads to increased throughput
compared to the original Bloom 昀椀lters. Based on this work, the Morton 昀椀lter [33]
improves the space e昀케ciency by compressing the values in the buckets. Our analysis
of 昀椀ngerprint 昀椀lters omits the Qutiont 昀椀lter since several publications came to the
conclusion that it is suboptimal compared to Cuckoo and Morton 昀椀lters [62, 152, 205].
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The Xor 昀椀lter is a di昀昀erent variation of 昀椀ngerprint 昀椀lters [74]. It promises a very small
昀椀lter size with high lookup performance and low false-positive rate but is immutable
a昀琀er construction.

Given the plethora of 昀椀lter alternatives, the discourse has fueled extensive research
over the years The key parameters of interest are versatility (e.g., deletions), false-
positive rate (FPR), space consumption, build, and lookup performance.

The 昀椀lter variants mentioned before each improve against their alternatives in
at least one parameter. However, when introducing a new 昀椀lter, the comparisons
naturally tend to spotlight the advantages of newly introduced data structures and their
optimizations. For instance, Breslow et al. [33] focussed on how batching enhances
the Morton 昀椀lter’s performance but did not extend this approach to the Cuckoo
昀椀lter. Graf et al. [74] highlighted the FPR and lookup performance of their Xor 昀椀lter
without looking in detail at the build performance. Lang et al. [109] perform an
extensive Bloom and Cuckoo 昀椀lter comparison, though their performance-oriented
analysis predominantly focused on FPR and lookup throughput, neglecting aspects like
memory footprint or excessive I/O bandwidth utilization. In contrast, the following
comprehensive analysis includes all relevant optimizations and 昀椀lter families for an
apples-to-apples comparison.

2.3 Approximate Filters
This chapter gives a brief background of approximative 昀椀lters by putting them in the
context of a database system. We start with a concrete use-case of approximative
昀椀lters in Umbra [140], which is similar to the semi-join reduces from our work on
bloom-昀椀ltered radix-partitioned joins [17].

Next, we introduce all tuning knobs we considered [179] and give an intuition of
how the 昀椀lters work to lay the foundation for the extensive evaluation in the following
chapter.

2.3.1 Filters in DBMS
Umbra uses approximate 昀椀lters in the critical path during join processing, as outlined
in Section 3.4.7. Figure 2.3 shows a simpli昀椀ed query plan for joining three tables
and zooms into a hash join. It visualizes all pipelines where the data is processed
chunk by chunk using morsel-driven parallelism as described in Section 3.4.5. Since
the pipelines, which make up the data-centric code-generating system, do no have
intermediate materialization, we can process each tuple only once. Thus, the build
side 昀椀rst collects all tuples and materializes them pre-sorted in result-collectors. A昀琀er
the whole build side is processed, the number of tuples is known, and an appropriately
sized hash table is generated and 昀椀lled with the collected tuples.
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Figure 2.3: Hash Joins in Umbra

The probe side performs lookups without intermediate materialization and directly
accesses the hash table in a tight loop. Thus, we can perform multiple hash joins in a
row without intermediate bu昀昀ers, which improves code locality, keeping the tuple
values in processor registers. However, the random access introduced by the hash
join (c.f. Section 3.4.7) is costly.

Storing Approximate Filters in Pointers

Pointer tagging is a technique to store additional information in the unused bits of
the pointer, thereby increasing locality and keeping alignment constraints. In itself,
tagging dates back to early IBM computers and is o昀琀en used in bu昀昀er managers,
loosely typed languages, or databases [113, 117]. A pointer has two locations to store
the tagged bits: In the back, e.g., the last three bits for 8-byte aligned pointers or the
昀椀rst 16 bit when using four-level page tables, which are su昀케cient to allocate 64 TiB of
main memory.1

We use pointer tags in the main directory of Umbra’s chaining hash table to store
a 16-bit bloom 昀椀lter in the tag, as shown in red in Section 3.4.5. This saves space and
allows us to update the pointer, including the tag, with a single atomic compare and
swap operation. Thus, before we follow the pointer in the chain, we 昀椀rst check the
pointer tag to determine whether the bit for the corresponding element is set, which
avoids costly random access [113].

1 void* tagPointer(void* ptr, uint16_t tag) {
2 auto taggedPtr = reinterpret_cast<uint64_t>(ptr);
3 taggedPtr = (taggedPtr << 16) | tag;
4 return reinterpret_cast<void*>(taggedPtr);
5 }

Listing 2.1: Tagging the lower bits of a pointer

1While the Linux kernel already has support for 5 levels, it is mostly disabled https://lwn.net/
Articles/717293/

https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
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Figure 2.4: False-Positive Rate of for Bloom Filters with 𝑚 = 16
Our implementation tags the least signi昀椀cant bits of the register by shi昀琀ing the

actual pointer 16 bits to the right to accommodate the tagged bits. Thus, to use the
pointer, we must shi昀琀 it to the right, which moves and cancels out all tagged bits. We
prefer tagging the rightmost bits a昀琀er shi昀琀ing since this allows us to check the tag
directly without further shi昀琀ing operations.

During the probe phase, Umbra checks the tag 昀椀rst for every tuple, as shown
in Figure 2.3. This inexpensive check signi昀椀cantly reduces the number of unnecessary
random access operations because it avoids further random access in most cases. The
original implementation features a bloom 昀椀lter that only sets one bit, which leads to a
false-positive rate of 116 when having two elements since the bits are set individually
from each other.

Beyond using the bloom 昀椀lter for speeding up only this instance of the hash join,
we can also introduce an early probe operator [17, 113] lower in the query plan. This
approximative 昀椀lter may reduce the build side of another hash join and thus speed
up the overall query processing. In that case, the bloom 昀椀lter check for the hash
table may be omitted depending on the selectivity. Thus, we can further push down
approximative selective predicates in the query tree.

Number of set bits

The false-positive rate 𝜀 of naïve bloom 昀椀lters [25] can be estimated based on 昀椀lter
size 𝑚, the number of set bits 𝑘, also called hash functions, and the number of inserted
elements 𝑛 [31, 179].𝜀(𝑘, 𝑛, 𝑚) = (1 − (1 − 1𝑚)𝑘⋅𝑛)𝑘 ≈ (1 − 𝑒− 𝑘⋅𝑛𝑚 )𝑘 . (2.1)
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Figure 2.4 shows the estimated false-positive-rate of di昀昀erent set bits 𝑘. When
setting fewer bits, on the one hand, the bloom factor performs worse for a low number
of inserted elements, but as fewer bits are set, it still is selective for a higher number
of tuples. On the other hand, when setting more bits, the bloom 昀椀lter is very selective
for small 𝑛 and saturates fast, as plenty of bits are set. In our context, with adaptively
sized hash tables and an expected load factor strictly lower than 1, we can set multiple
bits since short chains are prevalent. Using the known 昀椀lter size and the number of
inserted elements, we can minimize the false-positive rate 𝜀 by 𝑘 = ln 2 ⋅ (𝑚/𝑛).

1 // 16 available bits for tagging
2 static constexpr unsigned tagBits = 1u << 4; // 16
3 // set 3 bits for each entry
4 uint64_t computeTag(uint64_t hash) {
5 uint64_t tag = 1ull << ( hash & (HT::tagBits - 1));
6 tag |= 1ull << ((hash >> 4) & (HT::tagBits - 1));
7 tag |= 1ull << ((hash >> 8) & (HT::tagBits - 1));
8 return tag;
9 }

Listing 2.2: Naïvely generating 3 Bit tag

Setting more bits, however, does not only have advantages since it improves the
昀椀lter quality at the cost of more assembly instructions and more bits from our hash
value needed, as shown in Listing 2.2. For each bit, we need to take 4 bits from the
hash value and use them to set a bit in the tag. Since this is a non-trivial tradeo昀昀,
we investigate in the following how this 昀椀lter variant and other approximate 昀椀lter
variants perform. The following section describes the variants 昀椀rst to give an intuition
for how approximate 昀椀lters work.

Table 2.1: Common con昀椀guration parameters for approximate 昀椀lters (cited from [179])

Symbol Description𝑛 Number of elements to insert into 昀椀lter.𝑘 Number of bits to check / set (Bloom 昀椀lter);
Fingerprint size in bits (Cuckoo, Morton, Xor 昀椀lter)𝑠 Memory scale factor: 𝑚 = 𝑘 ⋅ 𝑛 ⋅ 𝑠.𝐵 Block size in bits (Bloom 昀椀lter).𝑊 Sector/word size in bits (Bloom 昀椀lter).𝑧 Number of groups per block (Bloom 昀椀lter).𝑏 Fingerprints per bucket (Cuckoo, Morton 昀椀lter).
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2.3.2 Configuration Parameters

We use a set of similar con昀椀guration parameters for all 昀椀lter families to make the
comparison as simple as possible. Both families use 𝑘 for the number of bits stored in
the 昀椀lter, called the number of hash functions for bloom 昀椀lters and 昀椀ngerprint size for
昀椀ngerprint 昀椀lters. Furthermore, we use 𝑛 to denote the number of elements to insert
and calculate the minimum number of bits 𝑀 = 𝑘 ⋅ 𝑛. To accommodate that inserts
into a 昀椀ngerprint 昀椀lter can fail, we over-allocate memory by a factor of 𝑠 and use 𝑘 ⋅ 𝑠
bits per key.

Table 2.1 summarizes all common parameters and lists the most important param-
eters for bloom and 昀椀ngerprint 昀椀lters. One of the biggest di昀昀erences between the two
昀椀lter families is the in昀氀uence of the parameters on the false-positive rate. In Bloom
昀椀lters, the false-positive rate decreases with a size factor 𝑠, which has a negligible
impact on the 昀椀ngerprint 昀椀lters FPR. The size factor 𝑠 instead mainly determines
whether the 昀椀ngerprint 昀椀lter can be built and the 昀椀ngerprint size 𝑘 in昀氀uences the
false-positive rate.

The following sections provide a brief overview of the two 昀椀lter families. A more
extensive description and evaluation of their implementation and integration into our
library can be found in the corresponding paper [179].

2.3.3 Bloom Filters

Bloom Filters revolve around setting bits in a large bit vector depending on the hash
value of the tuple. The number of set bits called 𝑘 in this chapter, is also known as
number of hash functions. We achieve di昀昀erent false-positive rates depending on the
number of set bits, as shown in Figure 2.4.

Thus, the con昀椀guration is always a trade-o昀昀 between space consumption, the
number of inserted elements, and the false-positive rate. In general, the bloom 昀椀lter’s
false-positive rate degrades the smaller the 昀椀lter is, or the more elements are inserted.
Setting more bits makes the 昀椀lter more selective for a few inserted elements but
saturates the 昀椀lter faster, leading to worse false-positive rates with more elements
contained in the 昀椀lter. The optimal 𝑠 (set bits per key) is 1.44 (1/ ln(2)) for a naïve
bloom 昀椀lter [133].

In the following, we describe three bloom 昀椀lter variants we analyzed. While they
still set 𝑘 bits per element, they di昀昀er in how they distribute the bits in the 昀椀lter. Some
of the variants put the bits closer together in memory to optimize for faster build and
lookup time at the cost of worse space e昀케ciency.
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Figure 2.5: Overview of Bloom Filter variants

Naive

In the naïve bloom 昀椀lter, all bits are statistically decoupled from all other set bits. Thus,
it has the best space e昀케ciency of the variants. This complete decoupling, however,
impacts performance, as each additional set bit leads to more computational e昀昀ort
and consumed hash bits, and for large 昀椀lters, to cache or even TLB misses.

Figure 2.5a shows the inserts of four color-coded bits into the 昀椀lter. Each set bit
consumes log2(𝑚) bits from the hash function to determine its absolute position in
the 昀椀lter. Thus, the naïve variant needs 𝑘 ⋅ log2(𝑚) bits per inserted element, which
is the highest amount for all variants but also maximizes the false-positive rate at a
given 昀椀lter size.

Blocked

Blocked Bloom 昀椀lters operate on blocks, sized 𝐵 bits each [165], as shown in purple in
Figure 2.5b. The block size has to be a power of two for performance reasons. The
blocked 昀椀lter 昀椀rst selects the block to operate in and then only relatively addresses
the remaining bits in the selected block.

Two di昀昀erent 昀氀avors of this 昀椀lter are prevalent, register-sized (mostly 64 Bit)
and cache-line-sized (512 Bit) blocked 昀椀lters. Both concentrate all lookup and insert
operations on a single cache line introducing only one random access. The set bits for
the register-blocked and cache-line-blocked 昀椀lters can be pre-generated in a normal
or AVX512 register. This reduces the memory operations when accessing or altering
the 昀椀lter to one since we can change all bits at the same time.

The false-positive rate is coupled to the block size and worsens with smaller blocks
since they reduce the number of possible positions for the individual bits [179]. The
smaller the block, the more likely bits overlap, and thus the false-positive rate degrades.
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Sectorized

Sectorized Filters operate similarly to blocked bloom 昀椀lters and introduce another
constraint [100, 105]. They separate each block of size 𝐵 in sectors of size 𝑊 and
ensure that one bit is set in each sector, as illustrated in Figure 2.5c.

This restriction ensures that all bits are distributed evenly across the sectors and
simpli昀椀es probing and setting the bits in parallel using SIMD instructions. Sectorized
昀椀lters perform slightly worse in terms of false-positive rate than blocked 昀椀lters of the
same size since the sectors further restrict the bit placement [179]. However, they
need fewer bits from the hash function, and all bits can be set individually from each
other.

Cache-Sectorized 昀椀lters loosen the restriction by adding groups between the block
and the sector [109]. A昀琀er 昀椀nding the block, we select a block in each of the 𝑧 groups
to set the bits in. This additional grouping ensures that the number of set bits 𝑘 can
now be a multiple of 𝑧 instead of 𝑊 for the normal sectorized variant.

2.3.4 Fingerprint Filters
Fingerprint 昀椀lters are hash sets where only 昀椀ngerprints of size 𝑘 are stored instead
of the complete hash value. Thus, we accept more collisions due to these non-exact
hash matches to reduce space consumption. In contrast to bloom 昀椀lters, the 昀椀lter size
has a minor in昀氀uence on the false-positive rate. It’s in昀氀uenced by the 昀椀ngerprint size𝑘 instead. If the 昀椀lter size is too small, the 昀椀ngerprint 昀椀lter build may be unsuccess-
ful. Cuckoo and Morton 昀椀lters can be updated like hash sets, while Xor 昀椀lters are
constructed beforehand and thus static.

Cuckoo Filter

Cuckoo Filters share great similarities with cuckoo hash tables [150]. For each tuple,
we compute two candidate buckets, each holding up to 𝑏 elements. Each lookup then
needs to check both buckets to 昀椀nd the key. During insert, when there is still space in
one of the buckets, we insert the key. Otherwise, we will relocate the occupying items
to their alternative buckets until we make space for our new tuple. One can generate
the alternative bucket address from the current bucket address and the contained
昀椀ngerprint. In case relocating is unsuccessful, the insert fails.

Instead of the complete hash and a pointer to the payload, the cuckoo 昀椀lter stores
only 昀椀ngerprints of size 𝑘, which are generated from the hash values [62]. Like in the
cuckoo hash table, the insert to the cuckoo 昀椀lter can also fail. Increasing the number
of 昀椀ngerprints per bucket 𝑏 or the 昀椀lter size increases the likelihood that the 昀椀lter
can be built successfully. Thus, the false-positive rate is mainly in昀氀uenced by the
昀椀ngerprint size 𝑘 and the number of 昀椀ngerprints per bucket 𝑏. Naturally, the FPR
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increases with longer 昀椀ngerprints and decreases with more 昀椀ngerprints stored per
bucket [179].

Morton Filter

Morton 昀椀lters [33] apply rank-based compression on the buckets of the Cuckoo 昀椀lter,
combining multiple buckets into a block. All bucket’s tuples are stored densely a昀琀er
each other along with a counter array, storing how many tuples each block contained.
Using the pre昀椀x sum of the counter array, we can compute the o昀昀set for the lookup.
An additional over昀氀ow tracking array logs whether one of the tuples was remapped
to the alternative bucket. In case there is no bit set for the current bucket, the lookup
only needs to test one bucket instead of two in the cuckoo 昀椀lter.

Xor Filter

Xor Filters [74] also 昀椀ngerprint 昀椀lters but are not based on hash sets. The core idea
behind Xor 昀椀lters is to combine 𝑙, typically three, values using bitwise XOR operations
to store information about element membership. In case, the 昀椀ngerprint is contained
in the 昀椀lter, the result equals the 昀椀ngerprint. Otherwise, the result is unde昀椀ned, and
the likelihood of a random match (false-positive) is 2−𝑘. In this chapter, we look at
two di昀昀erent construction algorithms integrated in the library [179]: The original Xor
Filter [32] and a new fuse graph algorithm [54].

2.4 Implementation and Optimizations
We evaluate the 昀椀lters presented in the previous section using a C++ implementation,
which exploits compile-time optimization where possible [179]. Most parameters,
like 昀椀ngerprint size 𝑘, the number of 昀椀ngerprints per bucket 𝑏, or the parameters for
sectorization are realized as compile-time constants to avoid runtime-overhead by
specialization. The 昀椀lter’s size 𝑚, determined by the scale factor 𝑠 and the number of
elements 𝑛, is passed at runtime.

Prior work analyzes di昀昀erent hash functions for addressing [62, 109] or use SIMD-
operations to vectorize their 昀椀lter implementation [33, 109]. Our C++ implementation
integrates all these optimizations [179] and combines them with partitioning. This
novel variant improves build and lookup performance for large 昀椀lters, maintaining
nearly the same false-positive rate and space consumption.

We choose representatives for each 昀椀lter to evaluate the di昀昀erent optimizations.
We use the following con昀椀gurations [179]:

Bloom: 512-bit blocked Bloom 昀椀lter (𝑠 = 1.5).
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Cuckoo: the Cuckoo 昀椀lter with 4 昀椀ngerprints per bucket (𝑠 = 1.06).
Morton: the Morton 昀椀lter with 3 昀椀ngerprints per bucket and an 8-bit OTA

(𝑠 = 1.38).
Xor: the original Xor 昀椀lter (𝑠 = 1.23).

All 昀椀lters use the optimal values for scale factor 𝑠 [179] and 𝑘 = 8 for set bits,
respectively, 昀椀ngerprint size. We perform all benchmarks using an Intel i9-9900X CPU
(Skylake-X, 3.5-4.4 GHz) with 10 cores and 64GB of main memory, running Ubuntu
20.10 (Kernel 5.8, gcc 10.2), and repeat all measurements 昀椀ve times. For scalability
measurements, we use an Xeon Gold 6212U (Kaby Lake, 2.4-3.9 GHz) with 24 cores
and an AMD Ryzen 3950X (Zen2, 3.5-4.7 GHz) with 16 cores.

2.4.1 Partitioning
The performance of all 昀椀lters deteriorates as the number of elements increases. For
昀椀lters that do not 昀椀t into the last-level cache (LLC), lookups are up to one order of
magnitude slower than in 昀椀lters that 昀椀t into the L1 cache due to random memory
accesses that miss the cache. Prior implementations reduced the number of accessed
cache lines by blocking, but even that requires at least one random memory access
per operation. We propose, instead, to partition the 昀椀lters.

Inspired by radix joins [181], we use radix partitioning to divide the set of keys
before building the 昀椀lter or performing lookups. For construction, one 昀椀lter is built
for each partition. Lookups 昀椀rst determine which 昀椀lter to use before testing the keys
in the respective partition. If the 昀椀lter 昀椀ts in the caches, fewer TLB and cache misses
occur. We optimize our single-pass radix partitioning implementation using so昀琀ware
write-combine bu昀昀ers and non-temporal streaming stores [207].

Figure 2.6a shows the time per key needed to build the 昀椀lter and perform a lookup.
The partitioned 昀椀lters (solid lines) include the partitioning time. The partitioned vari-
ants outperform the baseline (dashed lines) by around 1 MiB. The Xor 昀椀lter bene昀椀ts
earlier from partitioning due to its memory-consuming construction algorithm. With-
out partitioning, the runtime deteriorates due to TLB and cache misses; partitioning
keeps the time needed to insert and lookup a key almost constant. The Cuckoo and
Xor 昀椀lters, in particular, bene昀椀t from this optimization. Their build times are nearly
10x faster for 昀椀lters that exceed the LLC. They perform more random accesses than
the Bloom and Morton 昀椀lters and bene昀椀t more from the increased spatial locality.

For all four 昀椀lters, partitioning reduces the overall number of TLB misses by three
orders of magnitude, and the number of last-level cache misses by almost one order.
Figure 2.6b shows that almost no data TLB misses occur for partitioned 昀椀lters. At 昀椀rst,
partitioning increases the number of LLC misses (cf. Figure 2.6c), but in exchange, the
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Figure 2.6: Build and lookup performance for partitioned (solid lines) and non-
partitioned (dashed lines) 昀椀lters.

number remains constant even for 昀椀lters exceeding the L3 cache. Unoptimized 昀椀lters
incur several misses per key as soon as the 昀椀lter exceeds the LLC.2

While applying radix partitioning in Bloom 昀椀lters is straightforward, we experi-
enced di昀케culties with 昀椀ngerprint 昀椀lters. More speci昀椀cally, constructing the Cuckoo or
the Morton 昀椀lters tends to fail for more than 512 partitions. We, therefore, also use the
Xor 昀椀lter’s seed-based retry technique for hash table-based 昀椀lters with partitioning. If
building the 昀椀lter fails, we xor the keys with a seed and try again.

In Figure 2.7, we show the optimal number of partition bits to use. The Bloom
昀椀lter shows a clear picture. As soon as the 昀椀lter size exceeds the L2 cache, partitioning
pays o昀昀 for both building and probing the 昀椀lter. As anticipated, the optimal number
of partitions grows with increasing 昀椀lter size. Partitioning even improves the per-
formance of 昀椀ngerprint 昀椀lters with smaller 昀椀lter sizes. The Xor 昀椀lter bene昀椀ts much

2The hardware prefetcher causes additional cache misses for the blocked Bloom 昀椀lter and the
Morton 昀椀lter.
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Figure 2.7: Throughput-optimal number of partitions. The colored area shows through-
put deviations of less than 5%.

sooner from a partitioned build process. For lookups, all 昀椀ngerprint 昀椀lters perform
similarly, thus we only show the Cuckoo 昀椀lter. Figure 2.7 also shows that the precise
number of partitioning bits does not have a signi昀椀cant impact on the performance.
All 昀椀lters get within 5% of the optimal performance even when choosing a partition
size that di昀昀ers by an order of magnitude.

However, it is important to note that partitioning the 昀椀lters introduces an additional
requirement, namely batching the keys before performing insert or lookup operations.
Without partitioning, all 昀椀lters except the Xor 昀椀lter support inserting single keys.
Although lookups for single elements are still possible, the performance drops by 10%.
The reason for this is the additional work needed to determine the correct 昀椀lter for
the key. Nevertheless, partitioning is the most e昀昀ective technique to guarantee stable
performance for 昀椀lters that exceed the caches, if we can batch the operations. One
particular advantage of partitioning is that it does not a昀昀ect the FPR, unlike other
optimizations that minimize the number of cache misses. RocksDB uses partitioning
to split its Bloom 昀椀lters and store them on disk rather than in memory [60]. An
additional top-level index loads the correct partition from disk when needed.

2.4.2 Vectorization
As the number of cache lines accessed per lookup cannot be reduced further for blocked
Bloom 昀椀lters, several authors optimize the computations using SIMD instructions [105,
109, 161]. We found two techniques for vectorizing approximate 昀椀lter structures:
parallelizing the computations for one key (vertical vectorization) or performing
multiple lookups in parallel by assigning one key to each SIMD lane (horizontal
vectorization). While horizontal vectorization can be used with all 昀椀lters, vertical
vectorization only works with the Impala library’s sectorized Bloom 昀椀lter [105]. We
implement horizontal vectorized lookups for all four 昀椀lters and their variants. In
contrast to existing vectorized implementations for 昀椀ngerprint 昀椀lters, we support
arbitrary 昀椀ngerprint sizes.
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Figure 2.8: Speedup using vectorized 昀椀lters (AVX512); the baseline are scalar 昀椀lters
(partitioning is enabled).

Our implementations target processors that support the AVX512F and AVX512VL
instruction sets.3 We use gather and scatter instructions to implement horizontal
vectorization and use masking to avoid branches. Our vectorized 昀椀lters share most of
the code with the scalar implementation. The SIMD instructions are inserted through
compiler intrinsics during compilation. In a few cases, such as unaligned memory
accesses, the implementations di昀昀er: the gather instruction only supports aligned
accesses, thus, we have to perform two aligned loads instead of one unaligned load.

Although the number of executed instructions decreases almost eightfold, the
vectorized 昀椀lters are at most twice as fast (cf. Figure 2.8). The vectorized 昀椀lters
spend most of the time fetching data from memory as gather scales only modestly
compared to scalar loads. As soon as the 昀椀lters exceed the L2 cache, the performance
of vectorized 昀椀lters deteriorates due to TLB and cache misses. Partitioning mitigates
this e昀昀ect, but the speedup decreases, as both versions use the same radix partitioning
implementation. We also vectorized the construction of the Bloom, Cuckoo, and Xor
昀椀lter using scatter instructions. However, only the sectorized Bloom 昀椀lter using
vertical vectorization bene昀椀ts from this optimization.

2.4.3 Multi-Threading
An additional bene昀椀t of partitioning is that it simpli昀椀es the implementation of task-
level parallelism: each thread builds the 昀椀lters for di昀昀erent partitions and avoids
synchronization during construction. We parallelize the radix partitioning as proposed
by Balkesen et al. [15] and use the single-threaded algorithms to build each 昀椀lter. This
approach is particularly suitable for 昀椀ngerprint 昀椀lters, since synchronizing their
construction algorithms is non-trivial. Although it is easier to parallelize the Bloom
昀椀lters using atomic instructions, partitioning results in less overhead.

3We emulate missing instructions on older platforms and thus expect no performance gain there.
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Table 2.2: Throughput on Skylake-X [Keys/s (scale-up)].

Bloom Cuckoo Morton Xor

BuildPart+MT 381M (6.0x) 341M (6.9x) 235M (7.2x) 197M (6.9x)
LookupMT 165M (9.2x) 255M (9.5x) 113M (9.6x) 287M (9.4x)
LookupPart+MT 480M (7.1x) 574M (6.6x) 368M (7.6x) 657M (6.3x)
LookupMT+Part 565M (8.4x) 662M (7.7x) 342M (7.1x) 725M (7.0x)

Lookups, in contrast to insertions, require no synchronization. Once the 昀椀lter is
built, multiple threads can read it simultaneously. In combination with partitioning,
two di昀昀erent parallelization schemes are possible: partition the data before assigning
one partition to each thread (LookupPart+MT) or 昀椀rst split the keys into jobs and then
partition them separately (LookupMT+Part). The second option has the advantage that
no synchronization between the threads is required. However, the spatial locality
decreases, since each job accesses the entire 昀椀lter. The 昀椀rst scheme, in contrast, reads
only the part of the 昀椀lter relevant for the current partition.

Figure 2.9 shows the speedup when building the 昀椀lters and performing lookups
with multiple threads. For construction and lookups with partitioning, we report
the numbers relative to the partitioned 昀椀lter versions. For non-partitioned lookups
(LookupMT), we use the 昀椀lter without partitioning as the baseline. The non-partitioned
昀椀lters scale almost linearly on all three machines. The partitioned 昀椀lters, on the other
hand, scale sub-linearly due to the radix partitioning. The second partitioned lookup
variant (LookupMT+Part) scales on all three machines better than the 昀椀rst variant
(LookupPart+MT). Table 2.2 lists the throughput for all four 昀椀lters using the available
hardware threads. Although partitioned 昀椀lters achieve only sublinear speedup, they
are still at least twice as fast as the non-partitioned versions and o昀昀er a considerable
scale-up for construction.
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2.5 Evaluation
We now present an experimental evaluation of our 昀椀lter implementations, in which
we vary all the parameters relevant to the 昀椀lters. The goal is to identify which 昀椀lter
to use when optimizing for space consumption, throughput, or false-positive rate.

2.5.1 Experimental Setup
We ran all experiments on the Skylake-X machine and used the following 昀椀lter con-
昀椀gurations.∘ Bloom: All experiments evaluate the naïve, register-blocked, cache-blocked,

sectorized, and cache-sectorized variants of our Bloom 昀椀lter implementation.∨ Cuckoo: We use a performance-optimized con昀椀guration that chooses the 昀椀n-
gerprints per bucket 𝑏 depending on 𝑘.∧Morton: The number of buckets per block bpb and the OTA size 𝑜 are powers
of two whenever possible and correspond to the con昀椀gurations from [179].× Xor: We include both the original and the fuse graph-based method to build the
Xor 昀椀lter.

Table 2.3: Experiments

Elements Partitions

10 K 8
1M 128

100M 1024

Parameters & Methodology We benchmark the 昀椀l-
ter implementations for three di昀昀erent dataset sizes, as
shown in Table 2.3, on random data generated by the
Mersenne Twister engine from the C++ Standard Tem-
plate Library. We measure the build and lookup perfor-
mance on all hardware threads without SMT and use all
valid combinations of partitioning and vectorization en-
abled or disabled. We also varied the memory scale factor𝑠 from 4–26 and the 昀椀ngerprint size 𝑘 from 1–25. The
sectorized and cache-sectorized Bloom 昀椀lter variants restrict the parameter 𝑘 and
thus have fewer data points respectively. For building the 昀椀lters, we always enable
partitioning to parallelize the construction. To ensure stable results, we report the
average performance from 昀椀ve repetitions.

Our in-depth analysis of the 昀椀lters’ lookup and build performance uses 10 K, 1M,
and 100M keys by clustering the data by 昀椀lter size 𝑚 and false-positive rate. This
benchmark 昀椀nds the 昀椀lter with the highest throughput for a given FPR and 昀椀lter size
and examines the e昀昀ects of tailoring one parameter. Besides scaling the parameters𝑠 and 𝑘, we used all valid combinations of vectorization and partitioning enabled or
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disabled and varied the number of partitions (2𝑖 partitions, 5 ≤ 𝑖 ≤ 12). For every
cluster, we report the 昀椀lter variant with the maximum throughput.

Our experiments resulted in approximately 1 300 data points for each measured
昀椀lter and size class. In total, we performed about 50 000 measurements for lookups
and an additional 35 000 measurements for construct, which cannot use vectorization
for unpartitioned builds in the general case.

2.5.2 Lookup Performance
The comparison plot in Figure 2.10 shows how much the best performing of the two
昀椀lter families di昀昀er in lookup time — blue indicates that the bloom 昀椀lter is faster, red
that a 昀椀ngerprint 昀椀lter is faster. The gray line divides the measurements into two
parts, separating which 昀椀lter dominates. This line is included in all future plots in this
section for reference. Since no 昀椀lter can reach arbitrarily low FPRs, there are no data
points in the graphs’ lower-le昀琀 halves. In contrast to the other plots, we show fewer
data points because the bloom 昀椀lter cannot reach very low false positive rates, which
makes a comparison impossible.

Our results show strong similarities to those of Lang et al. [109]. If higher false
positives are acceptable, Bloom 昀椀lters dominate. Otherwise, if the time penalty for
a false-positive is larger, low false-positive rates are more important than the 昀椀lter
lookup time. Thus, 昀椀ngerprint 昀椀lters perform better workloads that bene昀椀t from low
false-positive rates.

In the remainder of this section, we analyze the 昀椀lters’ false-positive rate and
throughput in more detail for 10 K, 1M, and 100M elements and evaluate the impact
of partitioning. We choose the 昀椀lter sizes to see how big the di昀昀erence in performance
is when the 昀椀lter resides in di昀昀erent levels of the cache hierarchy.
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Figure 2.10: Bloom vs. 昀椀ngerprint 昀椀lters.
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Figure 2.11: Lookup performance for 100M elements.

Optimal filter variant

Figure 2.11 and Figure 2.12 show the 昀椀lter with the highest throughput for the given
memory budget and the measured false-positive rate. The white line separates Bloom
and 昀椀ngerprint 昀椀lters with both partitioning and vectorization enabled. Mostly, there is
no Bloom 昀椀lter counterpart reaching a similar FPR as the 昀椀ngerprint 昀椀lter, making the
昀椀ngerprint 昀椀lter the only option for 昀椀lters with very low FPRs, as visible in Figure 2.10.

As expected, the overall performance degrades with more indexed elements re-
sulting in increased 昀椀lter size for a constant false-positive rate. The 昀椀lters with 10 K
elements are smaller than the L1 cache, so we obtain the highest throughput. For 1M
elements, the 昀椀lters only 昀椀t into the last-level cache, except for the smallest ones in
the top le昀琀 corner, which still operate in the L2 cache.

We investigate the 昀椀lters in more detail in a horizontal and vertical slice from the
lookup measurements in Figure 2.12 (1M elements). In the FPR slice (Figure 2.13a), the
Bloom 昀椀lter dominates the performance except for small sizes, where the (partitioned)
Xor 昀椀lter performs best. Only the naïve Bloom 昀椀lter can attain the false-positive rate
using the given space but su昀昀ers substantial L1 cache misses even for small sizes due to
high 𝑘. For a higher memory budget, 昀椀rst the sectorized and then the register-blocked
variants take over. In conclusion, larger 昀椀lters can improve the throughput by using
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Figure 2.12: Lookup performance and best-performing 昀椀lter. The white line separates
Bloom from 昀椀ngerprint variants.

optimized variants that increase locality. However, the performance deteriorates for
larger sizes as cache misses increase again. Thus, the Xor 昀椀lter performs best because
its random memory accesses are limited to three. The throughput decreases slightly
for more than 1.5MB as the cache misses increase.

When looking at a constant 昀椀lter size (e.g., 3.0MB in Figure 2.13b), we see that the
昀椀ngerprint and Bloom 昀椀lters perform di昀昀erently. While Bloom 昀椀lters can trade a worse
FPR for performance, the 昀椀ngerprint 昀椀lters’ throughput does not improve for high
FPRs. Bloom 昀椀lters o昀昀er more possibilities for performance optimization by clustering
the memory loads or reducing the number of hash functions 𝑘 and, thereby, the
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Figure 2.13: Slice from 1M elements for constant size or FPR.
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computational e昀昀ort at the cost of signi昀椀cantly increasing the FPR. Fingerprint 昀椀lters,
in contrast, can only scale the 昀椀ngerprint size, which slightly improves performance if
a higher FPR is acceptable. Nonetheless, 昀椀ngerprint 昀椀lters achieve lower false-positive
rates for the given memory budget than the Bloom 昀椀lters at a modest throughput
reduction. This is an attractive trade-o昀昀 if false positives are expensive, like accessing
data over the network or unnecessary disk access in LSM trees, and matches the
昀椀ndings of Lang et al. [109].

For the Bloom 昀椀lter. partitioning mostly does not pay o昀昀. The Xor 昀椀lter’s through-
put signi昀椀cantly decreases if partitioning is unavailable and falls behind the Cuckoo
昀椀lter. Thus, non-partitioned Xor 昀椀lters are only optimal once very low FPRs are
required that the Cuckoo 昀椀lter cannot attain.

We do not evaluate 昀椀lters with 10 K elements further as partitioning does not pay
o昀昀, and the outcomes are similar to 1M elements.
Recap — Bloom 昀椀lters o昀昀er the highest throughputs but cannot reach low FPRs on
a size budget. Fingerprint 昀椀lters, most notably Cuckoo and Xor, can reach very low
FPRs while being a bit slower.

Optimal Bloom filter variant

If opting for high throughput, we next break downwhich Bloom 昀椀lter variant performs
best in Figure 2.14. Register-blocked 昀椀lters dominate most of the areas where the
Bloom 昀椀lter performs better than 昀椀ngerprint 昀椀lters, as shown in Figure 2.12. Register-
blocking trades FPR and size for maximum throughput by reducingmemory accesses to
a minimum. Consequently, they are the 昀椀lter of choice for high throughput scenarios
like semi-join reducers where false-positives are inexpensive, as shown in Chapter 3.
However, blocked bloom 昀椀lters cannot reach low enough false positive rates, and thus,
the other variants dominate the lower part of the 昀椀gure.

Sectorized and cache-sectorized 昀椀lters perform second best as they use the entire
cache line to reduce the FPR and specialized access patterns to improve performance.
The cache-blocked 昀椀lter o昀昀ers a slightly better FPR since it does not restrict the set
bits’ placement. Naïve bloom 昀椀lters are not competitive in performance but o昀昀er by
far the lowest possible FPRs at the cost of having a complete random access pattern.
For this reason, partitioning improves the naïve 昀椀lter most as it limits its LLC misses.
Recap — Bloom 昀椀lters gradually trade high throughput for better FPRs by decreasing
the spatial locality. The range goes from the register-blocked 昀椀lters that o昀昀er the
highest throughput to the naïve Bloom 昀椀lter with the lowest FPR.

Optimal 𝑘
Although all 昀椀lters support arbitrary 𝑘 for the 昀椀ngerprint size or the number of hash
functions, this 昀氀exibility mostly bene昀椀ts the Bloom 昀椀lter variants. It directly improves
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the performance as fewer memory loads occur and the hash function is evaluated
less o昀琀en. The register-blocked 昀椀lter typically uses very low 𝑘 (≤ 4) for maximum
performance throughout most of our measurements, as shown in Figure 2.15. Bloom
昀椀lters mainly regulate their achieved FPR by increasing the number of hash functions𝑘. Thus one can see 𝑘 increasing from top to bottom, resulting in larger 昀椀lter sizes as
a direct consequence of storing more values to reach a better false-positive rate. For
the naïve Bloom 昀椀lter, this number can increase to 20 when aiming for very low FPRs,
resulting in approximately 20 cache misses (without partitioning). However, this is
not visible in the 昀椀gure, as 昀椀ngerprint 昀椀lters dominate the lower area.

Fingerprint 昀椀lters, on the contrary, have an almost constant FPR, and so the value
of 𝑘 does not change that much inside of a column, and we can clearly see blocks
of the same 𝑘. When scaling up the 昀椀lter size, we also need to increase the size of
the stored 昀椀ngerprints, which correlates with the 𝑥-axis. When using the Xor or
Cuckoo 昀椀lters, powers of two for 𝑘 perform best and 16-bit 昀椀ngerprints, in particular,
o昀昀er a good trade-o昀昀. These sizes simplify 昀椀ngerprint comparison in the vectorized
implementations and allow for aligned loads, reducing LLC misses.
Recap — The fewer the number of set bits in a bloom 昀椀lter, the higher the performance
for Bloom 昀椀lters. In 昀椀ngerprint 昀椀lters, choose a power of two as 昀椀ngerprint size for
memory alignment.

Vectorization

The vectorized lookup implementations improve the performance of all 昀椀lters, as
shown in Figure 2.16, which compares the best-performing vectorized and non-
vectorized 昀椀lters. We included the same dividing line as in Figure 2.11 for reference.
As expected, we observe the biggest performance boost for small 昀椀lter sizes that 昀椀t
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Figure 2.14: Best-performing Bloom 昀椀lter variant for lookup.
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into the L2 cache (cf. Section 2.4.2).
Generally, the register-blocked Bloom 昀椀lter (cf. Figure 2.14) bene昀椀ts the most from

vectorized lookups. It performs all computations in SIMD registers and loads the
required data with a single gather instruction from memory. Although the other
blocked and sectorized Bloom variants access only words on the same cache line, they
still perform multiple memory loads and therefore bene昀椀t less from this optimization.

The Xor 昀椀lter performs the most random memory accesses and, thus, is at most
50 % faster. The performance of the Cuckoo 昀椀lter, which accesses at most two random
memory words, almost doubles. Without vectorization, the Xor 昀椀lters dominate large
areas for 100M (cf. Figure 2.11). However, the di昀昀erence in throughput is mostly less
than 20%, and vectorized Bloom and Cuckoo 昀椀lters take over.
Recap — Vectorization pays o昀昀 without impacting the FPR. It boosts all 昀椀lter imple-
mentations and should be applied in any setting that allows concurrent probing of
multiple elements.

Partitioning

Since we observed substantial performance improvements with partitioning in Sec-
tion 2.4.1, we now compare the lookup performance of the fastest partitioned and
non-partitioned 昀椀lters, as shown in Figure 2.17. However, this time the baseline has
vectorization and multi-threading enabled, which partly amortizes the achieved speed-
up. The two right-hand plots in Figure 2.11 show the fastest 昀椀lter implementation for
100M keys. We included the same dividing line for reference.

The tipping point at which partitioning begins to provide bene昀椀ts is at 1M elements.
The 昀椀lter that dominates performance in most cases — the register-blocked Bloom
昀椀lter (cf. Figure 2.14) — bene昀椀ts the least from partitioning since it already minimizes
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Figure 2.15: 𝑘 of best-performing 昀椀lter
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memory accesses. Furthermore, we hide the cache miss latencies by building a mask
for set bits in the (SIMD) registers while loading the block from memory. When
昀椀ngerprint 昀椀lters dominate the performance, they can get up to a third faster, and in a
sense, partitioning narrows the gap between the two 昀椀lter families.4

For 100M elements, partitioning can almost triple the maximum performance of
some 昀椀ngerprint 昀椀lters, while the peak Bloom performance remains about the same.
Even though not visible in the 昀椀gure, the naïve Bloom 昀椀lter’s throughput improves,
as partitioning reduces the number of cache misses, closing the performance gap to
register-blocked and sectorized variants. Overall, partitioning closes the performance
gap between the 昀椀ngerprint 昀椀lters and the (register-blocked) Bloom 昀椀lter. In particular,
the Xor 昀椀lter bene昀椀ts from the optimization and even closes in on the Cuckoo 昀椀lter
(cf. Figure 2.11).
Recap — The larger the number of elements gets, the more partitioning pays o昀昀. Most
notably, the optimization boosts the Xor 昀椀lter, narrowing the gap to the Bloom and
Cuckoo 昀椀lters.

2.5.3 Build Performance
The only e昀昀ective way to parallelize the 昀椀lter’s construction process is 昀椀rst to par-
tition and then to build one 昀椀lter per partition. Hence, we always use partitioning,
which scales well, as shown in Table 2.2. We omit the results for 10 K elements since
partitioning and parallelizing the build does not pay o昀昀 for small data sets.

4In some cases, small partitions hinder the Xor 昀椀lter from being built, which is the reason for the
missing data points in the lower right corner.

1.0 1.5 2.0 2.5 3.0
Filter size 𝑚 [MB]

10-110-210-310-410-510-6Fa
ls
e-
po

si
tiv

e
ra
te

𝜀

1M Elements

100 150 200 250 300
Filter size 𝑚 [MB]

100M Elements

0%
+5

0%
+1

00
%

Sp
ee

du
p
[%

]

Figure 2.16: Vectorized vs. non-vectorized 昀椀lters.
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Figure 2.18 shows the 昀椀lter with the best construction time. We include the
white line from Figure 2.12 to compare how the divider changes from lookup to build
performance. Since the lookup and insert operation on a key is almost the same in
Bloom 昀椀lters, they perform similarly well for construct. While, once again, register-
blocking dominates most of the upper area, the sectorized Bloom 昀椀lter bene昀椀ts from
vectorized inserts and is now the optimal choice for FPRs smaller than 1 %. For small
FPRs, even the naïve Bloom 昀椀lter overtakes some of the 昀椀ngerprint 昀椀lters.

The Cuckoo 昀椀lter builds slightly more slowly than the Bloom 昀椀lters. For small
load factors, relocations are rare and insert operations ideally access only the primary
and alternate buckets. The Xor 昀椀lter achieves higher load factors and lower FPRs,
but its construction is more involved and thus takes longer. It only outperforms the
Cuckoo 昀椀lter for very low FPRs that hash table-based 昀椀lters cannot attain or for high
load factors. The fuse graph-based algorithm constructs the smallest 昀椀lters and is
the only option for extremely low FPRs. Since it is the slowest of all construction
algorithms, we recommend the Xor 昀椀lter for workloads that require small 昀椀lters and
FPRs and do not o昀琀en change, like LSM trees.

Recap — If the focus lies on performance, the register-blocked Bloom 昀椀lter builds the
fastest. Other Bloom variants or the Cuckoo 昀椀lter also o昀昀er lower FPRs for the same
space consumption at the cost of slightly lower build and lookup throughputs. If the
昀椀lter is not rebuilt regularly, the Xor 昀椀lter is an option. It builds the slowest and does
not support updates but o昀昀ers even higher lookup performance and lower FPRs.
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Figure 2.17: Partitioned vs. Non-Partitioned variant.
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2.6 Lessons Learned
Each 昀椀lter variant and optimization o昀昀ers di昀昀erent performance characteristics that
lead to di昀昀erent use cases.
Optimizations Vectorization improves the lookup performance of all four 昀椀lters
irrespective of their size when batching the operations, most notably the (blocked)
Bloom 昀椀lter and the Cuckoo 昀椀lter. Although it is also possible to vectorize the inserts,
we only noticed a stable performance boost for the sectorized Bloom 昀椀lter. Partitioned
昀椀lters need to compensate for the radix partitioning and are thus of bene昀椀t when
the 昀椀lters exceed the LLC. Even though unpartitioned 昀椀lters scale better in multi-
threaded lookups, partitioning still provides a signi昀椀cant performance boost and decent
scalability. Furthermore, it allows for trivial multi-threaded construction of all variants
by building a 昀椀lter per partition. The Xor 昀椀lter pro昀椀ts the most from partitioning,
which narrows the gap between Bloom and 昀椀ngerprinting 昀椀lters. Where batching is
possible, both optimizations improve the throughput manifold (cf. Figure 2.1).
Filter Variants As expected, Bloom 昀椀lters dominate both build and lookup perfor-
mance when high FPRs are acceptable. Most variants, like register-blocking, optimize
for higher throughput at the cost of increased FPRs. Other variants are not as fast but
o昀昀er better FPRs for the same memory budget.

When focusing on space consumption and low false-positive rates, the Xor 昀椀lter
using our new construction algorithm achieves the lowest FPR for the given space
and still provides decent lookup throughput. However, the 昀椀lter has the longest
construction time and is immutable. The Cuckoo 昀椀lter cannot compete with the Xor
昀椀lter’s FPR but instead o昀昀ers more functionality with similar lookup performance.
This 昀椀lter should be considered particularly with workloads that insert or delete keys
a昀琀er construction. Morton 昀椀lters e昀昀ectively improve the Cuckoo 昀椀lters’ space usage
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Figure 2.18: Best-performing 昀椀lter for construction.
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and false-positive rate at the cost of decreased lookup and build throughput.

Ultimately, tuning the performance of each 昀椀lter is still a tradeo昀昀. By spending
more time on the 昀椀lter’s construction, we can use the space more e昀케ciently and reach
lower FPRs for the same memory budget. Similarly, when granting slightly more
time for lookups, 昀椀ngerprint 昀椀lters like the Xor 昀椀lter pay o昀昀 because their FPR is
lower. When increasing the 昀椀lter size, preference can be given to either lower false-
positive rates or higher performance, using locality-optimized Bloom 昀椀lter variants or
register-friendly 昀椀ngerprint sizes.

2.7 Discussion
Our work focuses on optimizing the four most promising approximate 昀椀lters (Bloom,
Cuckoo, Morton, and Xor) and identifying the optimal 昀椀lter for the four key dimensions:
false-positive rate, memory footprint, and build/lookup throughput.

To allow for a fair comparison, we use the same implementation for all 昀椀lters with
a wide variety of existing optimizations applied [179]. On top of that, we presented a
new optimization — radix partitioning — which signi昀椀cantly boosts the performance
for large 昀椀lters without a昀昀ecting the false-positive rate.

Our analysis shows that of all optimizations, vectorization and partitioning have
the most signi昀椀cant impact on all 昀椀lters. Vectorization is, in particular, bene昀椀cial for
the compute-bound register-block Bloom 昀椀lters. Partitioning not only improves the
throughput but also makes constructing (even 昀椀ngerprint) 昀椀lters trivial to parallelize.

Each of the 昀椀lter variants has performance characteristics that are attractive to
di昀昀erent use-cases as described in Section 2.6. Bloom 昀椀lters dominate when fast
building and probing of the 昀椀lter is needed and high FPRs are acceptable, making
them the most reasonable choice for in-memory query processing. Fingerprint 昀椀lters
o昀昀er a better trade-o昀昀 when focusing on space consumption and achieving low FPRs.
Most notably, the Xor 昀椀lter achieves the best lookup performance for small 昀椀lters
with minimal FPR, making it particularly attractive for applications like LSM-trees,
which mostly rely on sub-optimal Bloom 昀椀lters [51]. However, if applications need
more functionality with comparable FPR, the Cuckoo 昀椀lter is the next best choice, as
the Xor 昀椀lter is immutable.

In summary, the 昀椀ngerprint 昀椀lters (Xor and Cuckoo) provide better performance
for space-critical or false-positive sensitive workloads like LSM trees or distributed
joins. Bloom 昀椀lters reach the highest throughput and are best suited for applications
where the false positives are inexpensive, like in-memory query processing.



CHAPTER 3
Partitioned Joins in a DBMS

Excerpts of this chapter have been published in [17].

An e昀케cient implementation of a hash join has been a highly researched problem for
decades. Recently, the radix join has been shown to have superior performance over the
alternatives (e.g., the non-partitioned hash join), albeit on synthetic microbenchmarks.
Therefore, it is unclear whether one can simply replace the hash join in an RDBMS or
use the radix join as a performance booster for selected queries. If the latter, it is still
unknown when one should rely on the radix join to improve performance.

In this chapter, we address these questions, show how to integrate the radix join
in Umbra, a code-generating DBMS, and make it competitive for selective queries by
introducing a Bloom-昀椀lter based semi-join reducer. We have evaluated howwell it runs
when used in queries from more representative workloads like TPC-H. Surprisingly,
the radix join brings a noticeable improvement in only one out of all 59 joins in
TPC-H. Thus, with an extensive range of microbenchmarks, we have isolated the
e昀昀ects of the most important workload factors and synthesized the range of values
where partitioning the data for the radix join pays o昀昀. Our analysis shows that
the bene昀椀t of data partitioning quickly diminishes as soon as we deviate from the
optimal parameters, and even late materialization rarely helps in real workloads.
We thus, conclude that integrating the radix join within a code-generating database
rarely justi昀椀es the increase in code and optimizer complexity and advise against it for
processing real-world workloads.



36 CHAPTER 3. PARTITIONED JOINS IN A DBMS

105 106 107 108 109

Build Side Size [Byte]

106

107

108

109

1010

P
ro
b
e
S
id
e
S
iz
e
[B

y
te
]

Q2-J6

Q5-J4
Q8-J2

Q11-J2
Q11-J4

Q17-J1

Q20-J3

Q22-J1

LLC

0%

20%

40%

60%

60%

40%

20%

Figure 3.1: Relative performance of Bloom-昀椀ltered partitioned and non-partitioned
hash join for every join of TPC-H SF 100 labeled as Q⟨𝑖𝑑⟩-J⟨𝑜𝑟𝑑𝑒𝑟⟩
3.1 Motivation
Architectural changes in modern processors have inspired a signi昀椀cant amount of
research on 昀椀nding the optimal join implementation. Over the years, the community
has reached the conclusion that hash joins are better than sort-merge joins [13, 99],
and that in general algorithm implementations should be tuned to the underlying
hardware (i.e., be hardware conscious rather than oblivious) [15, 132, 142, 181].

Recent comprehensive studies have advised that the partitioned radix join performs
better than the non-partitioned hash join [15, 181]. What is unclear, however, is if the
radix join should completely replace the hash join as a major workhorse in the database
engine, or if it should be used as a performance booster. The former is unlikely, as
the radix-partitioning phase is only needed when the build side does not naturally
昀椀t into the caches; otherwise, the extra pass over the data and the necessary data
materialization comes with a non-negligible overhead. The latter is a more di昀케cult
question. Using the radix-join as a booster implies that we should know when to use
it. Unfortunately, existing research has only evaluated the performance of the two on
synthetic microbenchmarks, which are not representative of what we typically get in
real workloads.

In this work, we investigate how to best integrate the state-of-the-art radix join
algorithm in a compiling main-memory DBMS and when to use it instead of the
non-partitioned hash join. Our radix join performance is comparable to prior work’s
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stand-alone implementations while also supporting all variants of equi-joins, including
outer-, mark-, semi-, and anti-joins [143]. All query plans can use it as a drop-in
replacement for the non-partitioned hash join used otherwise. Our system does data-
centric query compilation [142] and applies relaxed operator fusion, which enables
so昀琀ware-based prefetching [132]. This allows us to make a comprehensive comparison
between the two join implementations in a much broader scope of workloads and
factors than the analysis done by prior work.
More speci昀椀cally, we do the following:

Compare the hash joins in a system-wide setup: All joins under testing are inte-
grated and tested within a compiling in-memory DBMS. Both the partitioned and the
non-partitioned join are state of the art and hardware-conscious, using optimizations
such as so昀琀ware-prefetching, so昀琀ware-write combining, and non-temporal stores
[14].

Evaluate the holistic impact of the join on query execution: Existing work com-
pares the joins in isolation and simpli昀椀es the settings by relying on materialized input
data or omitting result materialization by merely counting the matching tuples [15, 98,
181]. Unfortunately, these simpli昀椀cations cannot always be applied as joins appear in
many stages of query execution. By integrating the joins within a full DBMS, we also
investigate their implicit e昀昀ects on the entire execution of a query.

Use representative datasets: In contrast to prior work that only considered narrow
tuples (8–16 bytes) [218] and dense data-distributions [98, 181], we use the TPC-H
benchmark for our performance evaluation (c.f., Figure 3.1). As shown in Figure 3.2,
the TPC-H queries operate on a more extensive range of selectivities and tuple sizes.

To our surprise, despite the encouraging microbenchmark results from prior work,
the optimized radix join [15, 181] was not competitive in the TPC-H benchmark. When
analyzing the joins, we noticed that for most queries the majority of the shu昀툀ed tuples
in the partitioning phase might not even be present in the 昀椀nal result (cf. Figure 3.2).
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Therefore, we introduced a 昀椀lter for the probe phase that drops tuples as early as
possible to save computation time and reduce unnecessary materialization overhead.

While this optimization makes the radix join more competitive, it provides mea-
surable bene昀椀ts in merely one of 59 equi-joins contained in the TPC-H workload
(cf. Figure 3.1). By further investigation through a series of microbenchmarks we
discovered that the bene昀椀ts of the radix join diminish quickly when one of the work-
load’s characteristics (e.g., payload size, data distribution, materialization strategy,
join selectivity, etc.) deviates from the optimum. In fact, we can barely achieve any
bene昀椀t for non-optimal cases.

This chapter contains the following key contributions:

• We fully integrate the radix join into a main-memory DBMS. To the best of our
knowledge, this is the 昀椀rst implementation of a radix join in a DBMS, using data-
centric code generation [96].

• We reproduce the measurements from prior work [15, 181] and show that our
implementation is on par with the state-of-the-art.

• We embed a Bloom-昀椀ltered semi-join reducer that signi昀椀cantly reduces materializa-
tion overhead for queries with medium and high selectivity.

• We compare our radix join implementation and the Bloom-昀椀ltered version within
Umbra [140] against a state-of-the-art hash join [108, 113, 132] using the TPC-H
benchmark.

• With extensive microbenchmarks, we synthesize the range of values for the work-
load characteristics needed to observe any performance bene昀椀ts when using the
radix join.

Following on the insights from our extensive evaluation, we express serious reservations
to implementing the radix join. Its usage as a booster is limited to a small set of
workloads and thus rarely justi昀椀es the increase in code- and optimizer-complexity.

The remainder of this chapter is organized as follows. In the next section, we give
a brief overview of previous work. Section 3.3 explains the two implementations we
base ours on in detail. In Section 3.4, we describe our integration of a partitioned join
into a full-昀氀edged RDMBS. Section 3.5 presents the experimental results. We discuss
the insights and conclude in Section 3.6.

3.2 RelatedWork
Themajority of papers agree that in-memory hash joins are faster than sort-merge joins
[13, 108]. There is further agreement that hardware-conscious joins are superior [14,
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132]. However, it is unclear whether partitioning or prefetching for non-partitioning
joins, makes the best use of the hardware resources. Balkesen et al., and Schuh et
al. claim that radix partitioned joins are superior [13, 14, 181], while Lang et al. state
the opposite [108].

Much attention has been given to parallel implementations of in-memory radix
joins by our community in the last two decades. Here, we give an overview.

In 1999, Boncz, Kersten, and Manegold [28, 125] predicted that memory access
would be the future bottleneck. Back then, the processor throughput was still a
limiting factor, but it was already increasing faster than memory performance for
the last ten years. Thus optimizing memory usage does pay o昀昀 quickly. Based on
these 昀椀ndings, they proposed the 昀椀rst memory-e昀케cient parallel hash join approach.
(cf. Section 3.3.1) This approach summarized most of the core ideas and proposed
a hash-based split phase to allow for high-performant memory accesses. In their
following work [127] they re昀椀ned the parallel hash join approach into the radix join
so that it is also cache-aware to avoid the original TLB thrashing problem by Shatdal
et al.[187]. The resulting partitioned join provides superior cache friendliness. The
theory is that these small chunks can be partitioned by using blockwise nested loop
processing. Later, the same group introduced Best E昀昀ort Partitioning (BEP) which
interleaves probe side materialization and hash table probing in order to reduce the
memory footprint and use the CPU resources more e昀케ciently [219].

Kim et al. [99] evaluated partitioned radix joins onmulticore systems by comparing
them against sort-merge joins. They showed that parallel radix hash joins could
outperform sort-merge joins in a multicore setup by a factor of two. Furthermore,
they tried to predict how future hardware trends in昀氀uence the speed of sort-merge
joins. Their assumption was that SIMD Instructions lead to a near scalar speed-up of
sort-merge joins while radix joins negligibly pro昀椀t from that development. By the time
of writing, the size of maximum SIMD instructions on AMD chipsets is still 256 Byte.
Blanas et al. [24] compared their multicore partitioned join algorithms against non-
partitioning hash joins. They implemented the non-partitioning hash-joins using
a lock-based concurrent chaining hash table and compared against three di昀昀erent
partitioned-based algorithms, namely shared, independent, and radix partitioning
from Kim et al. [99]. Their experiments show that non-partitioning performs best for
nearly all workloads, which leaves the cue that partitioning is more e昀昀ort than the
achieved time savings by better cache locality. Only for uniformly distributed datasets
parallel radix distribution pays o昀昀.

Albutiu et al. [4] provide a new facet in database join research by focussing on
multicore NUMA systems. Their Massively Parallel Sort Merge Join uses a speci昀椀cally
tuned memory access pattern and avoids inter-thread synchronization. In their exper-
iments, this join proves to be faster than the comparable join techniques. Balkesen et
al. [13, 15] revisited partitioned and non-partitioned joins and optimized the imple-
mentation of Blanas [24]. They did use a much more optimal layout in memory, saving
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two-thirds of all memory accesses and making it more cache e昀케cient. Furthermore,
the skew handling is more robust. We implemented a comparable algorithm into our
main-memory DBMS and will describe the approach in Section 3.3.2. Their optimized
radix hash joins outperform the non-partition code and thus contradict the measure-
ments of Blanas et al. [24]. Later, they revisit the comparison against sort-merge joins.
Their implementation speeds up 2-3 times over the previous sort-merge joins. But still,
the hash join outperforms the sort-merge approach. Hence, they argue to continue
using hash joins [13].

Lang et al. [108] focused again on massive parallel hash joins. They present
a NUMA-aware non-partitioning hash join, which is capable of outperforming the
parallel radix hash join. Some of these ideaswere then adopted in the non-materializing
morsel-driven parallelism framework by Leis et al. [113], which focuses on a full
DBMS rather than microbenchmarks. We implemented Umbra’s hash join as described
in this approach.

Dittrich et al. [172, 181, 182] provided several papers comparing di昀昀erent state-
of-the-art joins and hashing methods and also proposing their algorithms. Based on
the work by Balkesen [15], and Lang [108], they came up with altered algorithms and
compared them with di昀昀erent NUMA-optimized approaches using so昀琀ware-managed
bu昀昀ers and non-temporal streaming. Their 昀椀ndings again contradict the 昀椀ndings of
Lang because it is stated that using hardware-conscious algorithms generally pays
o昀昀. Among their other contributions, the authors also evaluated the radix joins in a
stand-alone TPC-HQuery 19 variation, where the size of the relations was signi昀椀cantly
reduced by partitioning the reference to the original tuple and cutting all strings to
one byte. Due to the lack of complete system integration, their analysis is based on the
isolated join time without considering the cost of tuple reconstruction, which biases
the conclusions [136].

Fang et al. and Makreshanski et al. [64, 123] focused on the still open problem
of estimating the performance of hash joins and identi昀椀ed the access granularity,
respectively, and the tuple size as the most critical factor. The larger the tuple size
is, the better non-partitioning approaches perform. The reason is that larger tuples
tend to destroy the necessary cache locality for partitioned joins. This again makes
the tuple size the most critical performance factor, saturating the memory bandwidth.

Khattab et al. [98] are proposing another di昀昀erent approach to solve the problem
of deciding whether to use radix-partitioning or not. They developed a hybrid solution
called PolyHJ based on the contributions of Dittrich [181] and Lang [108] and compared
it to the respective papers. However, they based their implementation on array-based
joins, which limits its use to densely 昀椀lled array columns. Recently, Zhang et al.
provided an extensive evaluation of di昀昀erent data partitioning schemes for in-memory
systems [218]. They compared a simple implementation with the multiway approach
of Boncz [28] and streaming bu昀昀er approaches for di昀昀erent tuple widths and row or
column store formats. They conclude that each technique performs best for a di昀昀erent
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workload and the size of the tuples has a big impact on the performance.
Further, we note that there is a lot of related research linked to join processing and

radix partitioning: Polychroniou et al. [159] have investigated SIMD partitioning and
provide an overview of partition variants [160], which is revisited for radix-partitioning
by Schuhknecht et al. [182] and Zhang et al. [218]. Richter et al. [172] compare di昀昀erent
hash table implementations, while Barber et al. [18] focus on memory-e昀케cient hash
joins. Pirk et al. [157] analyze hash joins in-depth and Shrinivas et al. [189] and
Abadi et al. [1] compare materialization strategies in column-store database systems.
Dreseler et al. [56] analyze the performance of their system by turning on and o昀昀
di昀昀erent optimizations including semi-join reducers.

Partitioning also applies to non-CPU-centered data processing. For example,
GPU- [158] or FPGA-accelerated [92] approaches have similar goals and use compara-
ble algorithms to distribute the workload better.

3.3 Partitioned Radix Joins
Existing in-memory hash join algorithms can be divided into two camps [181]. On
the one hand, we have the non-partitioning variants using a global hash table, which
is accessed in parallel. They rely on so昀琀ware-based prefetching to avoid expensive
cache misses and random memory accesses when the hash table does not 昀椀t in the
caches [14, 132]. On the other hand, the radix joins directly reduce cache misses by
joining the data partition-wise, where each partition is sized so that the hash table 昀椀ts
in the cache [187]. In this chapter, we assume that both probe and build side reside in
already materialized form to be comparable with prior work [15, 181].

3.3.1 Basic Partitioned Join
On a high level, a partitioned join splits both input relations into partitions that are
then joined individually.

A basic partitioned join implementation consists of two phases: First, in the
partitioning phase, both the build and the probe side are partitioned by using a hashed
value of the join condition as key. As a result, both sides are now split into partitions
containing their respective join partners. In the second phase, the join is executed per
partition. A union of all partitions’ results yields the 昀椀nal outcome.

The partitioning algorithm operates in three steps [218]: The 昀椀rst step scans the
input and builds a histogram, counting how many elements the partition will consist
of. The second step uses the histogram to calculate the total number of tuples and the
exact partition boundaries. We allocate an output bu昀昀er large enough to 昀椀t all tuples
and assign each partition a region based on the partition boundaries. Finally, in the
third step we scan the data again and materialize each tuple to the correct position
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Figure 3.3: Radix-Partitioning in prior work

in the output bu昀昀er. Each partition keeps track of the number of written tuples to
determine the correct output position.

3.3.2 Parallel Radix Join by Balkesen et al.
Balkesen et al. [15] proposed an e昀케cient, publically available1 implementation of a
radix join. Their join is a re昀椀ned version of the one by Blanas et al. [24]. Figure 3.3a
depicts an overview of their approach.

Two-pass Partitioning: Boncz et al. [28] observed that a single-split partitioned join
has a performance problem. It occurs when writing to more partitions in-parallel than
the translation lookaside bu昀昀er (TLB) has entries, which trashes the TLB. Boncz et
al. mitigate the problem by applying multi-pass partitioning, called radix-partitioning,
which performs multiple splits subsequently. This limits the number of partitions
created in each pass so that it does not exceed the number of TLB entries. Each
partitioning pass uses a di昀昀erent subset of bits from the hashed key. Balkesen et al.
use two partitioning passes, as shown in Figure 3.3a.

Parallel Partitioning: Running the basic implementation in parallel is challenging
because each worker writes to all partitions, leading to high congestion. Kim et al. [99]
propose to split the input relation so that each slice can be processed in parallel. All
equally sized slices are stored in a task queue. From there, each worker picks a task
and performs the steps listed under Section 3.3.1. Following the histogram creation of
all tasks, the pre昀椀x sums are computed by combining all histograms 1 . Based on the
pre昀椀x sums, each task calculates a dedicated output location and scatters the tuples
into partitions without any synchronization 2 . The second pass takes the partitions
from pass one and splits them again 3 .

The 昀椀nal join is done in parallel, using task-based parallelism that also helps with
skew.

1https://www.systems.ethz.ch/node/334

https://www.systems.ethz.ch/node/334
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3.3.3 Optimized Radix Join:

Balkesen et al. further re昀椀ned their radix join with so昀琀ware write-combine bu昀昀ers
(SWWCBs) and streaming instructions [13]. We compare our implementations against
their optimized radix join in Section 3.5.2. Schuh et al. [181] further optimized the
radix join by adding NUMA-awareness (cf. Figure 3.3b).

So昀琀ware Write-Combine Bu昀昀ers: Wassenberg et al. [207] propose SWWCBs to
speed up radix sorting, which is also bene昀椀cial for radix-partitioning [13]. SWWCBs
are so昀琀ware-managed data bu昀昀ers residing in the cache, combining multiple writes.
Each bu昀昀er is at least one cache line in size and stores the partitioned tuples instead
of writing them to their destination directly A . The bu昀昀er is 昀氀ushed to its destination
when it is full, which e昀昀ectively reduces the pressure on the TLB, and the number of
memory writes.

Non-temporal Streaming: Non-temporal streaming instructions mitigate the po-
tential doubled number of writes introduced due to SWWCBs by writing full SWWCBs
directly to DRAM. The write bypasses all caches and avoids their pollution B . How-
ever, the data now needs to be aligned at cache line boundaries. This makes combined
use of both optimizations sensible. The maximum width of the SIMD registers limits
the size a single instruction can write at maximum. In 2016, this was half a cache line,
or respectively 256B using AVX2. With AVX512 instructions, modern Intel processors
can store a full cache line at once.

NUMA-awareness: Currently, the radix join is not NUMA-aware because each task
writes to multiple partitions, which are located all over the output bu昀昀er. Thus, each
worker potentially has to access di昀昀erent memory regions to store its tuples. Schuh et
al. [181] keep the writes local by adding an output chunk per task, which stores the
tuples in local partitions. However, now the 昀椀nal partitioning result is not located in
one contiguous memory region but in one chunk per task. Hence, the join may have
to read from di昀昀erent NUMA nodes C . Their experimental evaluation shows that the
advantages prevail, since only reads may be on di昀昀erent NUMA-nodes. Furthermore,
NUMA access is much more balanced, and overall performance increases.

Array-Join Storing the tuples in arrays is another option for densely packed data.
Rather than using a hash function to map all keys to speci昀椀c positions, Dittrich et
al. directly use the key to specify the position in an array [172]. Then, a simple
array lookup is su昀케cient to fetch the tuple as long as no duplicates occur. While the
data domain is small and densely packed, the size overhead is not signi昀椀cant. Thus,
this approach only works for a small data domain, and if we know the value range
beforehand.
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3.4 Joins inmain-memory DBMS
Prior to this dissertation, all work on partitioned joins was evaluated with the join
in isolation using microbenchmarks. To take the next step from a stand-alone radix
join to a real database system, we integrated radix-partitioned joins into Umbra [140],
whose performance is comparable to HyPer or MonetDB [56].

Umbra uses data-centric code-generation [142], relaxed operator fusion [132],
arbitrary query unnesting [141], morsel-driven parallelism [113], and accepts the
queries using a SQL frontend. We 昀椀rst describe how data-centric code generation
works in general, and then how it works for both of our hash join implementations.
Following these explanations, we focus on our novel radix-join implementation, which
partitions two input data昀氀ows.

3.4.1 Data-Centric Code-Generation
The main di昀昀erence between a stand-alone join implementation and one integrated
into a full-featured RDBMS system is the environment. In the former, the whole
system focuses on the join. In the latter, the join is a part of operator pipelines that
organize the data昀氀ow, as shown in Figure 3.4. First, a pipeline’s source operator loads
the tuple from a materialized state into the CPU. Then, the tuple traverses the pipeline
operators and it is 昀椀nally materialized in the next pipeline breaker [138].

Umbra compiles each pipeline, in particular the data昀氀ow from one source operator
to the materialization point, in a bottom-up manner using the produce/consume model
[142]. Each operator has to call produce on its inputs to delegate the responsibilityΓ

hash

𝐵1 hash

𝐵2 𝑃

Pipeline Break
Pipelining

(a) Hash Join

Γ
radix

𝐵1 radix

𝐵2 𝑃
(b) Radix Join

Figure 3.4: Pipelining in radix and hash joins. Hash joins can pass the probe tuples
through multiple joins while radix joins have to materialize both inputs every time.
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for starting the pipeline. Eventually, the pipeline starter is reached, which cannot
delegate further. It begins pushing tuples to its consumer up the pipeline. Once a
pipeline breaker is reached, it generates code to materialize all incoming tuples. We
use this abstraction to compile data-centric code for arbitrary SQL queries.

3.4.2 Materialization Strategy
Umbra stores relations column-wise in main memory [140]. We use early materi-
alization to reduce random access during pipeline evaluation. Thus, the table scan
only reads necessary columns, 昀椀lters them using SIMD instructions, and stitches them
together in tuples passed to the consumer. To avoid materialization overhead, we use
sideways information passing [189]. The build side of our hash join, e.g., tells the
probe pipeline the required tuples to 昀椀lter them out early.

To compare e昀昀ects of the chosen materialization strategy, we integrated Late
Materialization. We traverse the query tree from top to 昀椀nd the earliest access to
each column. If that does not happen immediately a昀琀er a table scan, we introduce a
late-load operator that retrieves columns based on their tuple id when needed.

3.4.3 Non-Partitioned Hash Join
The non-partitioned hash join does not have to write out the probe side, as shown
in Figure 3.4. Each hash join passes the tuples on and performs the join within the
pipeline [113]. This so-called operator fusion keeps the tuples in registers for as
long as possible. Sadly, it might also hinder inter-tuple parallelism since the code
structure is more involved. Relaxed Operator Fusion (ROF) counteracts this problem
by loosening the original idea of data-centric code-generation in favor of intermediate
materialization. It allows the DBMS to introduce staging points in the query plan,
bu昀昀ering the probe side in cache and trading pipelined tuples with cache-locality
[132]. Reading from these bu昀昀ers enables vectorization optimizations, e.g., branch-free
primitives, and so昀琀ware-based prefetching to avoid cache misses. ROF e昀昀ectively
combines the advantages of data-centric code generation with vectorization.

3.4.4 Partitioned Hash Join
In contrast, writing to memory is not optional for the radix join because it builds
upon the radix-partitioning phase. These frequent writes loosen the original idea of
data-centric code generation, and they also counteract it. So when multiple radix joins
are executed a昀琀er one another, each join has to break the pipeline.2

2When two subsequent joins use the same partition key, we could combine them in a pipeline to
avoid the pipeline break and the resulting partitioning overhead.
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Figure 3.5: Schematic Overview of our Partitioned Join.

Algorithm 1: Full Pipeline Breaker

1 Function Radixjoin::produce(requiredColumns):
2 condition ← analyzeJoin(requiredColumns);
3 build ← prepareBuild();
4 le昀琀.produce(condition.le昀琀.requiredColumns);
5 build.partition();
6 probe ← prepareProbe();
7 right.produce(condition.right.requiredColumns);
8 probe.partition();
9 joinTuples(build, probe);

Thus, the radix join is both a full pipeline breaker and a pipeline starter, as shown
in Figure 3.4. Algorithm 1 follows along the three phases described in Section 3.3.1.
The code 昀椀rst partitions the build side and then the probe side, which breaks both
pipelines because all data is now materialized. A昀琀er both sides are partitioned, the
new pipeline is started, which joins the tuples.

The join code of Algorithm 2 mainly consists of tight loops, which is characteristic
for the produce/consume model [138]. These tight loops are advantageous for modern
CPUs because they maximize data locality by keeping the data in CPU registers as
long as possible. The algorithm has to loop over the partitions, build the hashtable,
and check whether each tuple is contained. All matching tuples are passed to the
consumer in the pipeline.

Because the majority of the work is done during or a昀琀er materialization, tuple
collection is simple. Depending on the current input pipeline, the tuple has to be
partitioned either on the build or on the probe side.

3.4.5 Morsel-Driven Partitioning
The pipeline execution is based on morsels, which divide the total workload into
smaller blocks, enabling work-stealing [113]. Every source operator has to emit the
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Algorithm 2: Starting a New Pipeline

1 Function Radixjoin::joinTuples(build, probe):
2 for 𝑝build, 𝑝probe ← {𝑏𝑢𝑖𝑙𝑑, 𝑝𝑟𝑜𝑏𝑒} do
3 hashtable = buildHashtable(𝑝build);
4 for 𝑡probe ∈ 𝑝probe do
5 for 𝑡build ∈ hashtable.probe(𝑡probe) do
6 consumer.consume(𝑡build ∘ 𝑡probe)
Algorithm 3: Consume from both input streams

1 Function Radixjoin::consume(tuple):
2 if isBuildPipeline() then build.addEntry(𝑡𝑢𝑝𝑙𝑒) ;
3 else probe.addEntry(𝑡𝑢𝑝𝑙𝑒) ;

data into the pipeline morsel-wise. Figure 3.6 shows a detailed overview of the tuple
昀氀ow inside our partition step, which is used for both build and probe side.

The 昀椀rst pass consumes all morsels of the current source pipeline by picking
them from the morsel stream once they 昀椀nish their previous work 1 . This technique
allows 昀椀ne-grained load balancing, even with skewed data. The worker determines
the output partition based on the least signi昀椀cant bits of the hash value, which is then
paired with the tuple. This is 昀椀rst materialized in the worker’s own worker-local set of
SWWCBs 2 . As soon as a bu昀昀er is full, we use non-temporal streaming instructions
to move the tuples to their temporary partition without polluting the caches.

One challenge lies in working with data昀氀ow inputs. This means that we need to
materialize the input 昀椀rst without relying on histograms, which is also the reason for
using two passes. Hence, each temporary partition is implemented as a linked list of
pages. Whenever a page is full, a larger page is prepended and used instead.

A昀琀erward, each worker traverses the linked list and builds a local histogram for
the next partition pass 3 . Currently, there is no need for communication between
the workers.

In the exchange phase, we do two things: First, 4 we compute the exact size
of the output partitions based on the pre昀椀x sums of the worker-local histograms.
Second, 5 all workers’ linked lists are combined by concatenating the lists in so-called
pre-partitions.

Hence, the database system does not need synchronization between the work
packages in the second partitioning pass as each has its dedicated range.

We perform the second partitioning pass morsel-wise as well. The radix join
generates its morsels based on the pre-partitions 6 . We use the same worker to
process the entire linked list of one pre-partition. Once again, we use SWWCBs to
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combine the writes and then scatter the tuple bu昀昀er to its 昀椀nal position 7 . Further,
we implement work-stealing to achieve proper load balancing among the workers,
even under the presence of skew 8 .

During the whole partition process, all workers are writing to either local or
dedicated memory areas. Hence, there is no need for synchronization or writing to
non-worker-local memory regions, which ensures scalability with di昀昀erent numbers
of worker threads and on systems with multiple sockets. The resulting partitions of
build and probe side are handed over to the 昀椀nal join phase.

3.4.6 Final Join Phase
Each morsel builds the hash table on the 昀氀y using robin-hood hashing, which provides
the most robust performance for thread-local workloads [172]. Since moving tuples is
expensive, we only store pointers. We avoid costly resizing of the hash table because
we know its size in advance. In addition to that, we reuse the hash table’s memory
segment to avoid costly memory allocation. Thus, we only have to reallocate memory
in case the partition size has signi昀椀cant skew.

Robin-Hood hashing [36] reduces the variance of the displacement between the
desired and the actual location.

Schuhknecht et al. analyzed di昀昀erent hash table implementations with respect to
their performance on speci昀椀c workloads [172]. They found that robin-hood hashing
is ideal for thread-local hash tables providing the most robust performance for various
datasets, especially when they are never updated. Conveniently, radix joins construct
hash tables thread-local without synchronization. We avoid the costly resize of the
hash table because we know precisely how many tuples are inserted and choose the
昀椀ll-factor accordingly.

Since Robin-Hood hashing minimizes the displacement, we store the maximum
displacement to limit the number of probed entries. For non-skewed workloads, we
昀椀nd most tuples instantly and immediately stop retrieving more entries.

Because moving tuples is expensive, we use the hash table only as an index to our
tuples instead of copying them. In addition to that, each worker has to join multiple
partitions. Thus, we reuse the hash table’s memory segment for the next partition as
well to avoid costly memory allocation. Ultimately, we only have to allocate memory
once in the beginning, and in case the partition size has signi昀椀cant skew.

3.4.7 Bloom Filters
We are now at the point where the join operates on cache-resident partitions, with
the cost of partitioning dominating the execution time of the radix join [15, 181].
Materializing the probe side partitions can o昀琀en become unnecessarily expensive in
selective queries. One optimization is to reduce the number of stored tuples for the
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Figure 3.7: Bloom 昀椀lters with selective joins. Tuples without a join partner are 昀椀ltered
early and are not materialized.

probe side. This is possible because most queries apply selections on the build side
before joining the data [29].

Fuzzy semi-join reducers are an established technique for non-partitioned hash
joins [110]. They improve the performance of selective joins, as already implemented
in our non-partitioned join using tagged pointers [113]. The optimizer pushes the
reducers down in the pipeline to prune tuples early (cf. Figure 3.7).

We introduce a Bloom-昀椀lter based reducer in our radix join to minimize the cost
of materialization. The second pass over the build side generates the 昀椀lter while
partitioning. The 昀椀lter is probed in the pipeline before partitioning the probe side and
is also pushed down when possible.

Following the guidelines from Chapter 2 and by Lang et al. [109], we implemented
register-blocked Bloom 昀椀lters. These 昀椀lters partition the Bloom 昀椀lter into register-
sized blocks. We have to access exactly one block for each probe, which reduces the
number of cache misses to at most one per check. Consequently, the writes to the
Bloom 昀椀lter can be done in parallel without synchronizing as two partitions cannot
share blocks. The Bloom-昀椀ltered radix join performs around 40% faster for 5% foreign
key join partners (cf. Section 3.5.4).

3.5 Evaluation

In the following, we present an experimental evaluation of our radix join against our
non-partitioned hash join within Umbra, a full-昀氀edged RDBMS. We answer when and
whether partitioning pays o昀昀.
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3.5.1 Experimental Setup
We brie昀氀y give an overview of our setup, including our workloads and the main
questions we plan to investigate.

Joins under test

We have compared the following three joins inside Umbra [140]:

Radix-Partitioned Join (RJ): Our radix join implementation with SWWCBs, non-
temporal streaming, two-pass partitioning, and thread-local output bu昀昀ers. It imple-
ments all optimizations presented in Section 3.3.

BloomRadix-Partitioned Join (BRJ): Our Bloom-昀椀ltered radix join implementation.
It reduces materialization overhead by 昀椀ltering the probe side (cf. Section 3.4.7).

Bu昀昀ered Non-Partitioned Hash Join (BHJ): Our non-partitioned join implementa-
tion, using a global chaining hashtable with relaxed operator fusion [132]. It features
a semi-join reducer based on tagged pointers [113]. Its performance is comparable to
HyPer’s hash join [56, 140].

We have validated our joins against state-of-the-art prior work:

Joins from Balkesen et al. (PRJ & NPJ): We have evaluated the aforementioned
joins against the partitioned (PRJ) and non-partitioned join (NPJ) of Balkesen et al. [15],
which they provide as stand-alone implementations. To allow for a fair comparison,
we enabled all optimizations like SWWCBs and non-temporal storing for the PRJ and
so昀琀ware-based prefetching for the NPJ.

Workloads

The major part of the evaluation was performed on the TPC-H benchmark [199],
which we analyzed on a query and individual join level. It features 22 queries with
di昀昀erent workload characteristics (c.f. Figure 3.2).

To compare against related work and re昀椀ne the TPC-H analysis by isolating
certain workload factors, we used microbenchmarks. As a base for these, we reused
the workloads of Balkesen et al. [15], whose properties are listed in Table 3.1. We alter
the workload for each microbenchmark to isolate particular workload factors that are
of interest, e.g., di昀昀erent selectivities or payload sizes.

In our system, we reproduced the setup by generating the build and probe tables
using the following SQL statement. We did not preprocess the data and particularly
did not generate indexes.

CREATE TABLE build(key BIGINT NOT NULL, pay BIGINT NOT NULL);
CREATE TABLE probe(key BIGINT NOT NULL, pay BIGINT NOT NULL);

For workload B, we used INT instead of BIGINT to generate 4 B sized columns.
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workload size [B] tuple count size [MiB]

used in key/payload build probe build probe

A [15, 24] 8/8 16 ⋅ 220 256 ⋅ 220 256 4096
B [13, 15, 99] 4/4 128 ⋅ 106 128 ⋅ 106 977 977

Table 3.1: Workloads from Prior Work

Skylake-X Ryzen 9 Sandy Bridge

vendor Intel AMD Intel
model i9-9900x 3950X E5-2660v2
sockets 1 1 2
cores (SMT) 10 (x2) 16 (x2) 20 (x2)
clock rate [GHz] 3.5-4.4 3.5-4.7 2.2-3.0
L1 data cache [KiB] 32 32 16
L2 cache [KiB] 1024 512 256
LLC cache [MiB] 19 16 (x4) 25
DRAM size [GB] 64 64 256
DRAM type DDR4 DDR4 DDR3
DRAM speed [GiB/s] 79.4 47.8 59.9
launch Q4’18 Q4’19 Q3’13

Table 3.2: Hardware Platforms

Hardware

Unless otherwise noted, we used an Intel i9-9900X (Skylake-X) CPU with 10 cores and
64GB RAM. By default, we used all available threads, including hyper-threads. Other
experiments were conducted on a dual-socket Intel E5-2660v2 (Sandy Bridge) with 10
cores and 256GB of RAM, and on an AMD 3950X (Ryzen 9) with 16 cores and 64GB of
RAM. Both systems show NUMA e昀昀ects. The Ryzen chipset is split into four chiplets
à four cores with separated L3 cache. Detailed speci昀椀cations can be found in 3.2. We
compiled the code with GCC 9 using the march=native 昀氀ag to enable the AVX512
instruction set, if possible. The RDBMS uses LLVM and clang 9 to compile the queries
themselves. CPU counters were obtained using Linux perf and the Processor Counter
Monitor, formerly known as Intel PCM.

To have a sound comparison, we omitted query compilation time3 because the
other implementations were hand-coded and pre-compiled. Before taking any mea-
surements, we warmed up the system and ensured that all data is in memory. We ran

3Query compilation takes negligible time, even for optimized settings as shown in Section 4.4.
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all benchmarks at least 昀椀ve times and reported median performance.

Key Questions

We separate the evaluation into three parts:
First, we ran experiments to ensure that our join implementations are competitive

to related work (Section 3.5.2), to check howwell they scale with the number of threads
(Section 3.5.2) and in a NUMA system (Section 3.5.2), and to see how e昀케ciently they
use the memory subsystem (Section 3.5.2).

Second, we ran the TPC-Hworkload to checkwhether the radix join can completely
replace the non-partitioned hash join in our database engine (Section 3.5.3). Since
our hypothesis assumes no, we evaluate whether the radix join could be used as a
performance booster by analyzing the TPC-H workload on a join-level (Section 3.5.3).

Finally, with an extensive series of microbenchmarks (Section 3.5.4) we searched for
ideal range values of workload properties (e.g., selectivity, payload size, pipeline depth,
etc.) that emphasize performance advantages of the radix join over the non-partitioned
hash join.

3.5.2 Performance characterization and comparison to related
work

We have aimed to evaluate the bene昀椀ts and drawbacks of partitioning within a DBMS
objectively. At the same time, this evaluation is only insightful if our implementation
o昀昀ers reasonable performance.

We used PRJ and NPJ by Balkesen et al. [14, 15] with all optimizations enabled to
compare its performance against our join implementations. To match the workloads
used in the original paper, we have used the following query to join build and probe
table and count the resulting tuples.

SELECT count(*) FROM probe r, build s WHERE r.k = s.k;

One key di昀昀erence is that Balkesen et al. directly use the key for partitioning,
while we create an equally sized hash value and store it with each tuple. This is
compensated as we do not store the payload, which is not required for the tuple count.

Scalability

In this experiment, we 昀椀rst compared the performance of our implementations to
that of the state-of-the-art. The results are shown in Figure 3.8, which indicates that
both the RJ and the BHJ are competitive with PRJ and NPJ. On the one hand, our RJ
outperforms the PRJ for workload A, while on the other hand, our BHJ is not as fast
as the optimized NPJ on both workloads.
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Figure 3.8: Scalability and comparison to Balkesen et al.

Another observation is that all implementations scale well with the number of
hardware contexts, although radix joins experience a bigger speed-up than non-
partitioned joins. For 10 threads, our RJ implementation speeds up by a factor of7.5 to 9.5 for workloads A and B, respectively. For workload A, the RJ does not fully
scale to 10 threads because the system already reaches the memory bandwidth limit
(as we will show in Section 3.5.2). For workload B, the hyper-threads give us about
10% additional performance, since the smaller tuples do not entirely saturate the
memory bandwidth. As expected, both non-partitioned hash join implementations
bene昀椀t more from hyperthreading because it hides their memory access latencies.
The NPJ implementation, unlike the BHJ, is optimized for the given workload and
performs better. For instance, the NPJ knows the exact hash table size and distribution
beforehand.

NUMA e昀昀ects

In this experiment, we evaluated how well algorithm implementations utilized avail-
able hardware resources by scaling the number of cores from one to the maximum
number of logical threads available.

We used the other two machines, the dual-socket Intel Sandy Bridge and the AMD
Ryzen 9, whose chip has four chiplets (cf. Table 3.2) to show the performance with
NUMA.
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Figure 3.9: Scalability on di昀昀erent machines

The results in Figure 3.9 show that RJ scales well on the Sandy Bridge machine. Its
performance increases by a factor of 10 to 16, depending on the workload. The smaller
tuples put less pressure on the memory bandwidth, resulting in better scalability. As
before, hyper-threads marginally sped up the performance.

On the Ryzen 9, however, we observed a di昀昀erent pattern and the RJs no longer
exhibited the linear scalability beyond a certain point. The comparably small memory
bandwidth is the key factor as the bandwidth per core is 60 % of the Skylake-X’s. Thus,
the RJ scaled well initially, but reached the memory bandwidth limit much faster for
workload A. As we increased the number of threads further, the RJ slowed down
because of memory bandwidth contention. As before, the BHJ performed similarly on
all machines and workloads and scaled more independently of the workload.

Memory bandwidth usage

As identi昀椀ed by the two previous experiments, the performance of RJ is signi昀椀cantly
a昀昀ected by its pressure on the memory subsystem. Both when increasing the payload
size and when scaling the number of hardware contexts, the performance bene昀椀ts
diminish as we approach the bandwidth limits. Thus, in this experiment, we analyzed
the memory bandwidth usage (read and write) for the individual stages of the RJ as
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measured using the PCM Tools.4

Figure 3.10 shows the read, write, and total memory bandwidth while performing
the RJ for the SQL query stated in Section 3.5.4. The x-axis shows the time spent to
highlight how expensive each phase of the join is. The build pipeline takes a fraction
of the execution time, given that it is 30 times smaller in size than the probe side.
The probe pipeline dominates the execution time, mainly due to the materialization
phase during the two partitioning passes. We deliberately chose this query since it
demonstrates the e昀昀ects introduced by padding. It is required to use SWWCBs and
non-temporal streaming instructions, which outweigh the negative e昀昀ect of padding.
We notice that both the partitioning steps and the join are bandwidth-bound, which
con昀椀rms the futility of adding more hardware contexts and why increasing the payload
size hurts the performance.

The prior three experiments veri昀椀ed the competitiveness of our implementation.
It can fully utilize the memory bandwidth and is bound by it, leaving minor room for
improvement.

The 昀椀rst pass is not entirely memory-bound because the DBMS additionally reads
the tuples out of the table storage and has to select the correct columns. We note that
the join writes twice the amount of data it reads as we only need to read 16 B, and add
8 B padding and 8 B hash value for writing out the tuples.

Following this 昀椀rst partition, we scan the relation once to build the histograms
for our output partition sizes. In this pass, we are memory bound. A昀琀erward, the
second partitioning pass takes place, which is also almost memory-bound, followed
by the join, which once again is memory bound. The short drop between the second
partition and the 昀椀nal join is caused by freeing the results of our 昀椀rst partitioning as
early as possible.

4https://github.com/opcm/pcm

https://github.com/opcm/pcm
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Figure 3.11: Throughput of all TPC-H queries containing joins with every join replaced
by the one under testing8
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3.5.3 TPC-H Evaluation
The TPC-H benchmark o昀昀ers a variety of queries that put pressure on di昀昀erent parts
of the RDBMS at varying scaling factors (SFs): i.e., string comparisons, large base
table scans, or joins with di昀昀erent selectivities [29]. To address whether the RDBMS
should use a radix join as the sole workhorse, we have compared the performance of
our join implementations by replacing all joins in the query tree with the join under
testing for di昀昀erent scaling factors.

Figure 3.11 shows the results of our experiments for relevant TPC-H queries as
we vary the dataset size (i.e., scaling factor). We used processed tuples per second as a
metric with the number of tuples being the sum of all tuples counted at the pipeline
sources. For example, the number of tuples in “SELECT count(*) FROM a, b WHERE
a.key = b.key;” is tablescan + tablescan + groupby scan = size(𝑎) + size(𝑏) + 1.
Queries 1, 6, and 13 were not included in our measurements since they do not use joins.
Our system uses a groupjoin for Query 13, which combines join and group by [66,
134]. Deactivating group joins does not make a di昀昀erence since aggregation wholly
dominates the query.

We make the following key observations. First, the BHJ delivers the best overall
performance, especially apparent for SFs under 30. Second, BRJ is faster than RJ for
all queries because foreign keys mainly use 昀椀ltered build sides (cf. Figure 3.2, [29]).
Third, the BRJ outperforms the BHJ only in Query 22 for SF 30 and 100. Fourth, Late
Materialization appears to be orthogonal to the question of whether to partition or not.
Therefore, if one needs to choose to implement only one hash join in their system, the
BHJ is the apparent implementation choice.

This conclusion con昀椀rms our hypothesis that replacing all joins is not desired
because the radix join is most promising for selected workloads [14, 15, 181]. We
continue our analysis in more detail for individual query plans to explain why BRJ
and RJ cannot always replace the BHJ as the primary join.

End-to-End Query Performance

In this section, we analyze the selected TPC-H queries based on their query plan.5

Since the queries in TPC-H have di昀昀erent characteristics, we have split them into
several groups and discuss the performance di昀昀erence between BHJ, BRJ, and RJ based
on the join sizes in SF 100.

Small Build Size (Q2, Q11): These queries contain only joins with a small build
side, which 昀椀ts in the caches. This is advantageous for the BHJ because there are no
cache misses. Query 2 contains nine di昀昀erent joins, whose build sides, even for SF 100,

5All generated query plans are similar to the ones reported by the Umbra Webinterface umbra-db.
com/interface .

umbra-db.com/interface
umbra-db.com/interface
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are smaller than the LLC. The 2GB probe side causes materialization overhead, which
is more signi昀椀cant for the RJ than for the BRJ.

In Query 11, the largest build side is 480 KB, so the global hash table 昀椀ts in the L2
cache, making the partitioning phase redundant. The BRJ performs better than the
RJ in both queries because it can avoid most partition overhead by pre-昀椀ltering the
tuples.

Single Join Queries (Q4, Q12, Q14, Q19): For these queries, the number of pipelines
is overseeable, and the join mostly dominates the query runtime. Query 4 contains
one join of orders and lineitem that clearly dominates the query. The Bloom 昀椀lter
pays o昀昀 since the join’s build is pre-昀椀ltered. It can discard around 80% of unjoined
tuples, for a predicate with 3% selectivity, and thus reduces the partitioning overhead.
Even though its build side does not 昀椀t in the LLC for SFs larger than 10, the BHJ’s
performance remains constant, thanks to the bu昀昀ers introduced by relaxed operator
fusion. Query 12 spends most of its time scanning the lineitem relation using it
as the build side for a join with the orders relation. Once again, the bottom-most
selection discards the majority (99.5%) of the tuples, but the resulting build side is
87MB for SF 100, which is four times the LLC size. As before, the prefetching keeps
the BHJ’s performance stable, and the RJ cannot keep up with the BRJ. Query 14
joins 1% of the tuples from lineitem with part which are 209MB and 560MB in size,
respectively. As both sides are roughly equal in size, both BRJ and RJ perform well
for a high enough SF. Query 19 divides its runtime between 昀椀ltering and joining the
lineitem relation. The build side is only 2MB in size, and 昀椀ts in the LLC. The BHJ
cannot signi昀椀cantly outperform the BRJ because the Bloom 昀椀lter drops 90% of tuples
before the partitioning phase.

Otherwise dominated Queries (Q3, Q10, Q15, Q16, Q17, Q18): In these queries,
joins account for less than 40% of the total runtime, which limits the e昀昀ect that the
join implementation has on the overall performance. Queries 15, 16, 17, and 18 are
dominated by grouping of tuples. Query 10 is dominated by scanning and selecting
the base table, while Query 3 is dominated by a group join. As a result, the di昀昀erences
in the join performance are minor for large SFs, as other operators dominate the query
runtime. For small scale factors, however, the BHJ is superior.

Complex Queries (Q5, Q7, Q8, Q9, Q21, Q22): These queries contain various
joins with di昀昀erent build and probe side sizes. We cannot explain the e昀昀ect of the
join performance solely based on the query plan and the total execution time. In the
following sections we check if there might be a case to use the BRJ as a performance
booster for each join.

Materialization Strategies: Late Materialization (LM) only helps when we substan-
tially reduce the tuple width at selective joins. For example, in Query 8, LM reduces
the build side in four out of seven joins. Or Query 20, where the result consists of two
text columns, which are only present in the output. Materializing them late pays o昀昀,
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reducing the probe side size by two-thirds. When using LM in Query 14, however, we
only reduce the build size by 8 B. The random access for all build side tuples outweighs
the positive e昀昀ect.

Individual Join Comparison

The analysis in the previous section shows that most TPC-H queries perform multiple
joins. Using just one join implementation for the whole query can lead to suboptimal
performance. However, analyzing the impact for each join in a query plan in our
system is challenging because all joins are part of pipelines (cf. Section 3.4.1), where all
operators of a pipeline are fused to pass the tuples in registers and e昀케ciently organize
the code in tight loops.

Thus, we have examined all possible permutations of the join plan to compare BRJ
and BHJ with TPC-H SF 100. To evaluate each join in the query plan (e.g., the second
join), we computed the pairwise di昀昀erence in performance when all other joins were
昀椀xed with one implementation, and we only varied the hash join algorithm used for
that join. We show results for selected queries in Figure 3.12, where the x-axis denotes
the join number within the query plan, and give an overview for all the joins in TPC-H
in Figure 3.1, where we break down the measurements in build and probe side sizes.

One key observation is that most joins are not relevant for the total execution
time. However, for some of the expensive joins, choosing the optimal implementation
makes a big di昀昀erence. For example, the execution time can be up to 60% slower or up
to 30% faster when selecting the BRJ instead of the BHJ. Therefore, we focus the rest
of our analysis on queries with multiple joins, where the join implementation choice
has the most signi昀椀cant impact.

In Query 5, a single join dominates the runtime di昀昀erence between the BRJ and
BHJ. This join uses the un昀椀ltered lineitem relation as the probe side and has a much
smaller build side. Even though the build side does not 昀椀t in the LLC, the size di昀昀erence
between build and probe side is 1:117 and too big for the BRJ to pay o昀昀 (cf. Figure 3.12).
Query 8 also uses the un昀椀ltered lineitem as the probe side, which is 20GB in size in
the di昀昀erentiating join. The build side is a 1MB 昀椀ltered relation. As a result, the hash
table 昀椀ts in the cache, and the BHJ is 60% faster in total execution time.

In Queries 7 and 9, the topmost two joins dominate the runtime di昀昀erence. Each
has a large build and probe side. RJ and BRJ still cannot outperform the BRJ, because
the build tuple sizes are over 48 B, making partitioning too expensive to pay o昀昀.
Prefetching in the BHJ also reduces cache misses more e昀昀ectively.

Query 21 is dominated solely by joins, and each join has di昀昀erent characteristics,
as shown in Figure 3.13. The query has a le昀琀-deep join tree, which prevents long
pipelines.

8Due to the materialization overhead, the RJ cannot 昀椀nish processing Q8, Q9, and Q21 for SF100
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1 is negligible because of its size. For 2 , the build side 昀椀ts in the LLC. The Bloom
昀椀lter can reduce the materialization overhead, so the BHJ is only 10% faster. 3 has
narrow tuples and comparable sizes, so BRJ and BHJ perform equally. In 4 and 5 ,
multiple factors lead to a suboptimal performance. The build side tuples are 33 B in
size and the di昀昀erence between build and probe size is not optimal. While Figure 3.12
shows that 3 is on average faster with BRJ, using BHJ for all leads to the overall
fastest runtime.

Query 22 consists of two joins. One is a non-equi join, which cannot be handled by
the hash join, so we do not enlist it in Figure 3.12. The anti-join reads the customer
relation which is 155MB in size as its build side and the un昀椀ltered orders relation
which is 1.8 GB as its probe side to evaluate a not exists predicate. Thus, each probe
tuple is only 12 byte in size, including the hash value. Since small tuples work well
for the BRJ, using the BRJ for this join improves the total query performance by 30%
over the BHJ.

3.5.4 Isolating the e昀昀ects of di昀昀erent factors
The analysis done so far has focused on the TPC-H benchmark, where join performance
is concurrently a昀昀ected by di昀昀erent factors. The combination of these factors leads to
a completely di昀昀erent view on the RJ than in prior work (c.f. Section 3.5.2, [181]). In
order to pin down the individual e昀昀ects of each factor, we ran an extensive series of
microbenchmarks. Combining all, we could isolate the cases where BRJ and RJ are
superior to non-partitioned joins.

E昀昀ect of foreign key selectivity

One common pattern in all queries is that the BRJ outperformed the RJ due to selective
foreign key joins (cf. Figure 3.2). In this experiment, we analyzed how varying
selectivity a昀昀ects each join’s performance.

Our workload was based on workload A by Balkesen et al. [15], on which the radix
join generally performs well (cf. Section 3.5.2). The build side remained unchanged
for all selectivities. We modi昀椀ed the foreign key selectivity in the probe side while
preserving its size to ensure that the number of processed tuples remained constant.

The results of the experiment are shown in Figure 3.14. We observe that both the
BRJ and the BHJ are signi昀椀cantly a昀昀ected by the varying selectivity. The BRJ is up
to 50% faster than the RJ for low selectivities. However, when more than 50% of the
foreign keys 昀椀nd a join partner, the RJ overtakes the BRJ because the computation
time required to perform the 昀椀lter lookup does not pay o昀昀 — as it introduces up to one
cache miss per lookup. We overcome this problem by sampling the probe side tuple

within our memory budget.
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Figure 3.14: Impact of pre-昀椀ltering the probe side using a Bloom-昀椀lter based early
probe

while probing the Bloom 昀椀lter. This allows us to switch o昀昀 the 昀椀lter adaptively in case
almost all tuples pass the 昀椀lter, which introduces a minor overhead, mostly below 10%.
We note, however, that TPC-H and real-world queries usually have selectivities below
25% (cf. Figure 3.2, [29]). This experiment shows why the BRJ performs better than
the RJ in TPC-H. We further note that the RJ is 10 to 40% faster than the BHJ for low
selectivities, when all other parameters are near-optimal.

E昀昀ect of payload size

The payload size also in昀氀uences join performance. Some joins have small payloads, but
that is not always the case since the columns, e.g., may contain strings (cf. Figure 3.2).
To isolate the e昀昀ects that the payload size has on the performance of the RJ and BHJ,
we set the foreign key selectivity to 100%.

Once again, we based our workload on the unskewed workload A by Balkesen et
al. [15], where the radix join generally performs well (cf. Section 3.5.4). The build
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Table 3.3: Throughput [T/s] with and without Late Materialization

LM no LM bene昀椀t

BHJ 452M 453M ±0 %
BRJ 656M 487M +35%
RJ 341M 153M +122%

side remained unchanged. We modi昀椀ed the probe tuple size by adding multiple 8 B
wide columns with randomized integers. We used up to 8 payload columns, leading
to a maximum payload size of 64 B. Together with the join key and its hash value, our
tuples were at most 80 B wide.

Our queries are similar to the following with one payload:

SELECT sum(s.p1) FROM build r, probe s WHERE r.k = s.k;

This query materializes 32 B per tuple: 8 B for the payload, 8 B for the key, 8 B for
its hash value, and 8 B padding. We show the results in Figure 3.15 and notice that
the performance of the RJ is more a昀昀ected by the payload size than the BHJ. The RJ
performance degrades by a factor of 7, while the BHJ remains constant for 昀椀ve times
larger tuples. Also, the use of SWWCBs is visible as the tuple sizes are padded to the
next power of two. We do not use bu昀昀ers for tuples larger than 64 B because padding
would lead to higher performance losses than the bene昀椀ts of non-temporal streaming.

LM lowers the performance, since the selectivity is at 100% and we have to addi-
tionally store the tuple id, leading to 24 B wide tuples. The RJ performs strictly worse
due to cache misses introduced by random access a昀琀er the join phase which could be
addressed by radix decluster [127]. The BHJ is not a昀昀ected by LM because there are
no intermediate results.

The performance of the BHJ is memory-bound (i.e., a昀昀ected primarily by the
latency of random memory accesses). Hence the tuple size does not a昀昀ect its per-
formance signi昀椀cantly. The RJ, however, is bandwidth-bound. The materialization
costs heavily in昀氀uence its performance in the partitioning phase, which is directly
dependent on the payload size (cf. Section 3.5.2). The RJ is up to three times faster
than the BHJ for small tuples, but it completely loses the advantage once the tuple
size exceeds 32 B.

Combined e昀昀ect of payload size and selectivity

Both our previous benchmarks cannot individually show the bene昀椀ts of LM. However,
if we vary and analyze selectivity and payload size, we can see its bene昀椀ts. Wemodi昀椀ed
the workload with 5 % selectivity from Section 3.5.4 by adding columns to the probe
side, like in Section 3.5.4. We used four 8 B columns which total 40 B including the
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hash value. Using LM, we only had to materialize 24 B before and could fetch the
remaining 24 B a昀琀er the join.

Analyzing the results from Table 3.3, LM doubles RJ’s performance because it
halves the necessary materialization. The thereby introduced random access has no
negative consequences since only 5% of the tuples require it. Yet, it is still slower than
the BRJ without LM, which follows the idea of sideways information passing [189] to
prune most rows even before partitioning. However, LM gives the BRJ a signi昀椀cant
boost by reducing the materialization, making it almost 50% faster than the BHJ. The
BHJ does not materialize the intermediate result, so there is no bene昀椀t.

E昀昀ect of pipelining

When lining up multiple joins in a pipeline, the e昀昀ects of both factors (selectivity
and payload size) amplify each other. This is particularly bad for chaining RJs. Each
RJ in the pipeline requires materialization and adds its column to the payload size,
e昀昀ectively enlarging the tuple size as the pipeline depth increases. This workload is a
typical case for queries operating on a star schema where the central table connects
various fact tables for additional information.

To evaluate the e昀昀ects of the pipeline depth, we used the same workload as before,
but instead of summing up the payloads, we used them as keys for fact tables, which
resulted in a star-schema benchmark. Thus, we added multiple copies of our build side
table containing randomly permutated rows. So we still achieved 100 % selectivity and
could investigate the pipelining e昀昀ect isolated. The optimizer had to use the central
table every time because its keys connect the fact tables, 昀椀nally resulting in a query
plan with a single long pipeline (cf. BHJ in Figure 3.4).

We show the results in Figure 3.16, where we observe the throughput for each
join in the pipeline. In the ideal case, the throughput is constant, which means that
pipeline depth and join execution time
do not correlate. This is indeed almost the case with the BHJ.
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The performance of the RJ, however, decreases proportionally to the length of
the pipeline. Materialization overhead and memory bandwidth limitations add up,
ultimately slowing down the join.

E昀昀ect of skew

To evaluate the e昀昀ect of skew, we populated the foreign column in the probe relation
with Zipf distributed data and varied the Zipf factor between a uniform distribution
and 𝑧 = 2, which resembles high skew. The same set-up was used by Balkesen et al. to
evaluate the implementation of their PRJ (cf. Section 3.3.2) and their NPJ. The results
of the experiment are shown in Figure 3.17.

We note that both the NPJ and BHJ bene昀椀t from an increase in skew as theworkload
exhibits better temporal cache locality and incurs less randommemory accesses during
the probe phase. Blanas et al. [24] already reported similar observations. For both
radix joins, however, the skew has adverse e昀昀ects. The partitioning of skewed data
leads to heterogeneous partition sizes, which complicates the partition scheduling.
This is especially visible when 𝑧 > 1, meaning more than 50% of the tuples 昀椀nd their
join partner in the 昀椀rst 20% of the build relation.

For workload A, BHJ outperforms RJ once the skew is higher than 𝑧 = 1, and is
more than 昀椀ve times faster for 𝑧 = 2. For workload B, the intersection happens later
for the NPJ and not at all for the BHJ since both relations are equally sized and have
narrower tuples, both of which are more favorable to the radix joins. Comparing PRJ
and our RJ, both show similar runtime characteristics. Our implementation is up to
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50 % faster because it parallelizes better, as we have already seen in Section 3.5.2. The
BHJ pro昀椀ts from increased skew because it improves the cache locality. In contrast,
the RJ loses performance for 𝑧 ≥ 1 since it throws partition sizes and scheduling out
of balance.

E昀昀ect of build size

Prior work extensively studied this e昀昀ect [13, 15, 24, 181]. As long as the build side
昀椀ts into the LLC, the global hashtable does not su昀昀er from cache misses, rendering
partitioning useless. For larger hashtable sizes, prefetching reduces the cache misses
for BHJ, while partitioning shows its strength for the BRJ.

We observed this behavior in the TPC-H measurements (c.f. Figure 3.11), where
the BRJ only began to pay o昀昀 in larger SFs. The in-depth join analysis presented in
Figure 3.1 also shows that the LLC size is crucial: having a build side smaller than the
LLC means there is no need for partitioning.

E昀昀ect of size di昀昀erence

The di昀昀erence in size between the build and the probe side has also been analyzed in
prior work as we can see from the chosen datasets A and B, with size di昀昀erences of 1:1
and 1:22. Schuh et al. also used a maximum di昀昀erence of 1:10 [15, 181]. The reason is
that a limited size di昀昀erence ensures that the cost of materializing the partitions is in
the same order of magnitude for both the build and the probe side.

We already observed the negative e昀昀ect of a too-large size di昀昀erence in the TPC-H
measurements (c.f. Figure 3.1). When build and probe side are in the same order of
magnitude, the RJ performs well and might outperform the BHJ (depending on the
values of the other factors). The BRJ can operate on a broader range of workloads since
pre-昀椀ltering decreases the materialization overhead. For example, the size di昀昀erence
in Query 22 is 1:11 and the BRJ leads to a speed-up of 30%. In contrast, for Join 4 in
Query 5 the size di昀昀erence is 1:100 and the BHJ is 40% faster.

3.6 Discussion
In this chapter, we have addressed one of the most important join questions of the last
decade: When does radix partitioning pay o昀昀? To do that, we integrated a state-of-the-
art radix partitioned hash join into a main-memory DBMS and compared it against an
optimized non-partitioned hash join implementation. Given the results from prior
work, our expectation was to use it to boost some expensive analytical queries (e.g.,
from the TPC-H workload).

Surprisingly, the bene昀椀ts of the optimized radix join (with NUMA-awareness,
SWWCBs, and non-temporal streaming instructions) are barely noticeable for any
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Figure 3.18: Speedup of di昀昀erent join implementations over the optimized radix join

join in TPC-H. A昀琀er an in-depth inspection, we identi昀椀ed that partitioning (and
materializing) tuples —which are not present in the join result — dominates its runtime,
especially for selective joins. We tried Late Materialization to reduce tuple width,
which sped up the RJ in some microbenchmarks but did not make a big di昀昀erence in
TPC-H. Lastly, we addressed this issue by implementing a Bloom 昀椀lter in the probe
side (BRJ). While this slightly slows down the join in the microbenchmarks, it is
signi昀椀cantly faster for the TPC-H queries, as shown in Figure 3.18.

However, the non-partitioned hash join (BHJ) achieved comparable speed and a
more stable performance than the BRJ for all queries, even with the BRJ optimized by
Bloom 昀椀lters. In fact, the BRJ is faster than the BHJ for SF 100 only for one join in
TPC-H, and even then only by 30%. This shows a severe discrepancy with the insights
obtained by prior work when the analysis was done only on microbenchmarks.

The second major contribution of our work comprises an extensive analysis of the
performance of each individual TPC-H join (c.f. Figure 3.1) and isolating the e昀昀ects
of di昀昀erent workload factors with a series of microbenchmarks. The end goal was to
synthesize the range of values for the key workload properties when using the radix
join (and partitioning the data) actually brings bene昀椀ts. Our 昀椀ndings are summarized
in Table 3.4.

One key observation is that the RJ is very sensitive to any deviation from the near-
optimal workload characteristics. While the BRJ delivers competitive performance for

9Late Materialization can handle large payloads when they occur with selectivity.

Factors Workable Bene昀椀cial

Selectivity handled by Bloom 昀椀lter
Payload Size9 ≤ 32B ≤ 16B
Pipeline Depth < 8 Joins < 2 Joins
Skew (Zipf) ≤ 1 ≤ 0.5
Build Size > 𝐿𝐿𝐶 ≫𝐿𝐿𝐶
Size Di昀昀erence < ×50 < ×10

Table 3.4: Workload Characteristics for Partitioned Joins
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Factors Prior Work TPC-H Real World [204]

Skew (Zipf) 0 − 2 none10 yes
Payload Size 8 − 16B ≈ 32 B large (strings)
Pipeline Depth 1 Join 1 − 5 Joins various
Selectivity 100% low selectivity low selectivity
Size Di昀昀erence 1 − 25 mostly high mostly high
Build Size ≫𝐿𝐿𝐶 mostly small mostly small

Table 3.5: Workloads for Join Processing

a large range of queries (c.f. Figure 3.1), it seldom can reveal its full potential and bring
performance improvements over the non-partitioned alternative. Theoretically, we
can expect up to a 300% improvement by choosing the radix join. In reality, for some
cases we even observe a performance drop because the required workload conditions
are not met, e.g., the payload is not narrow enough. This makes it di昀케cult for the
optimizer to reliably predict the expected improvement from choosing the radix join
over the hash join.

Putting the previously researched datasets and TPC-H into perspective, it becomes
clear that past research took place on a relatively narrow range of data. We extended
the applicability of the RJ to varying payload sizes and selectivities. While this makes it
easier for practitioners to use it, it is still di昀케cult to judge if the insights obtained from
that evaluation are also applicable to their workloads. Although, TPC-H is synthetic,
it still provides a broader range of queries and data properties (Table 3.5). TPC-DS did
lead to similar insights. In the Join Order Benchmark [116], the RJ performed worse
because it is string-processing heavy. Actual real-world data is even less suitable
for the radix joins with its non-negligible data skew and high emphasis on string
processing (and wider payloads).

We have shown that integrating the optimized radix join in an RDBMS is a non-
trivial process and requires additional modi昀椀cations tomake it competitive for selective
queries. Even then, choosing when to use it to gain a performance advantage requires
many parameters to be satis昀椀ed and be accurately known by the optimizer at runtime.
So unless the radix join is bene昀椀cial for other reasons, e.g., larger than main-memory
working sets, we express reservations that implementing the radix join in a general-
purpose production system justi昀椀es the added complexity.

10JCC-H [26] provides a more realistic drop-in replacement for TPC-H with skew. It puts even more
pressure on the radix join.





CHAPTER 4
Sub-Operators as First-Class Entities

Excerpts of this chapter have been published in [16].
With contributions from Jana Giceva.

A wealth of technology has evolved around relational databases over decades that has
been successfully tried and tested in many settings and use cases. Yet, the majority of
it remains overlooked in the pursuit of performance (e.g., NoSQL) or new functionality
(e.g., graph data or machine learning). In this chapter, we argue that a wide range of
techniques readily available in databases are crucial to tackling the challenges the IT
industry faces in terms of hardware trends management, growing workloads, and the
overall complexity of a rapidly changing application and platform landscape.

However, to be truly useful, these techniques must be freed from the legacy
component of database engines: relational operators. Therefore, we argue that to
make databases more 昀氀exible as platforms and to extend their functionality to new
data types and operations requires exposing a lower level of abstraction: instead of
working with SQL it would be desirable for database engines to compile, optimize, and
run a collection of sub-operators for manipulating and managing data, o昀昀ering them
as an external interface. In this chapter, we discuss the advantages of this, provide an
initial list of such sub-operators, and show how they can be used in practice.
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Figure 4.1: Sub-operators 1 build more complex data operations 2 or data昀氀ows 3 ,
where each sub-operator can be implemented on multiple hardware platforms 4 .

4.1 Motivation
Databases have been a cornerstone of enterprise computing for decades. As is o昀琀en
pointed out, they o昀昀er what very few other systems, if any, provide: a powerful declar-
ative language, a model and algebra to enable reasoning about programs, sophisticated
compilation and optimization technologies, and a wealth of fundamental techniques to
support very high throughput rates. All this while providing consistency, availability,
and strong recoverability guarantees. Nevertheless, more and more users have been
turning their backs on databases in the pursuit of 昀氀exibility and performance, willingly
giving up the enumerated guarantees. For example, building directly upon intermedi-
ate formats like Apache Arrow has grown in popularity, o昀昀ering more 昀氀exibility for
storing and processing data. While this simpli昀椀es things in the short run, it makes
management more complicated in the long run, for instance, when synchronizing
data. The same holds for big data frameworks like Spark, which demonstrate the
expressivity of o昀昀ering 昀椀ner granular operations for constructing various data昀氀ows.
This supports many use cases but lacks some advanced features, such as an optimizer.
While this simpli昀椀es ingesting data, it increases the risk that your data lake evolves
into a data swamp if not taken care of. We argue that there is no reason why traditional
databases cannot support more 昀氀exible ways of accessing and working with data.

Currently, both big data processing and hardware advancements are driving the
community to develop various techniques. These include domain-speci昀椀c languages
(DSLs) tailored to particular applications [37, 84], cross-compilation techniques to
enable execution on di昀昀erent platforms [183, 195], automatic parallelization plat-
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forms for running at large scale [88, 208], and connecting di昀昀erent frameworks for
cross-optimization [151]. Some of these mirror developments in the database world:
new compilation techniques [96, 111], new data types and languages for dealing
with them [131], optimizations for multicore [216], designs for GPUs [80, 157] and
FPGAs [147].

In this chapter, we argue that themost concrete starting points for such innovations
are the concepts developed around database engines. Moreover, a great deal of existing
technology can be reused, such as operator models [124], compilation techniques [101,
107, 137], composability and orthogonality of operators [55, 103], optimization and
scheduling techniques [113], etc. However, the only way to enable more 昀氀exibility is to
change the explicit abstraction level of the database engine interface. Thus, the system
should also expose sub-operators and provide them as an intermediate representation
to other applications and compilers (Figure 4.1).

By sub-operators, we mean logical functions that perform fundamental data trans-
formations and management tasks. We call them sub-operators because instead of
implementing a full relational operation (e.g., a join), they implement relatively ba-
sic functions, for example, hashing, 昀椀ltering, sorting, scattering, or gathering data.
Obviously, some of these are already used within database engines (for optimiza-
tion or compilation [27, 52, 96, 103, 175]), and the literature is full of new ideas for
sub-operators tailored to new hardware (from data exchange operators tailored to
RDMA [106, 174] to FPGA-based partitioning [92]). By exposing an interface at the
level of sub-operators, we can transform the database into a language runtime engine
capable of processing much more than just SQL. This includes di昀昀erent data昀氀ows, like
machine learning, graph processing, or easier mapping of the operators onto hardware.

Our proposal produces clear bene昀椀ts and provides a more elegant and more
e昀케cient solution to existing challenges than current ad-hoc proposals. For example, by
building complex data昀氀ows using sub-operators, we can reason about the work昀氀ow’s
logic decoupled from the hardware implementation details. Using sub-operators as
common building blocks for di昀昀erent data昀氀ows would simplify the maintenance of
large codebases, especially when addressing the challenges of a diverse and rapidly
evolving hardware landscape, as well as resource disaggregation in the cloud. Cross-
compilation of hybrid programs to heterogeneous hardware platforms (CPU, GPU,
FPGA) will be made easier by enabling alternative sub-operator implementations.
Additionally, small as they are, computationally expensive but frequently used sub-
operators can be integrated into the hardware circuit logic, thereby in昀氀uencing the
design of future hardware architectures. This especially pays o昀昀 in cloud settings,
where a holistic approach to hardware/so昀琀ware co-design is of particular interest.

Furthermore, databases can become extensible in a way they currently are not.
While UDFs still need to be parts of an SQL query or table functions that mimic
database functionality to customize the query freely, sub-operators o昀昀er more degrees
of freedom, while reusing as much of the system as possible. They can be modeled
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and analyzed more e昀케ciently and thus incorporated into a query optimizer without
compromising performance. This also makes them a more natural 昀椀t than UDFs,
which are out of the optimizer’s scope [48]. In such a setting, sub-operators resemble
instructions in a processor, available for both the optimizer to re-arrange and the
compiler to combine as needed. They transform the database engine from a virtual
machine for SQL programs to a language runtime executing a complex Instruction Set
Architecture (ISA) made up of sub-operators, catering to a heterogeneous range of
data昀氀ow workloads.

If needed, sub-operators make it also easy to interface common runtimes like
Weld [151], which o昀昀ers a runtime to cross-optimize between di昀昀erent frameworks.
Each sub-operator can also be lowered to WeldIR a昀琀er performing all optimizations
in the database context. Also, integrating UDFs is trivial, as they can be integrated
as sub-operator that performs the de昀椀ned task on the data昀氀ow. However, with sub-
operators, more di昀昀erent tasks can be expressed inside the database system, making it
super昀氀uous in some cases to combine di昀昀erent libraries.

Finally, many of the ideas and concepts developed for conventional operators are
directly applicable to sub-operators. This makes the database a compelling platform
capable of optimized compilation, extensibility, concurrency on top of non-functional
properties such as consistency, persistence, and recoverability.

4.2 Sub-operators as first class entities
Figure 4.2 presents an overview of the solution we propose. We envision a database
engine that exposes a set of sub-operators as an interface and combines them into more
complex data昀氀ows. Example languages that can run on top are SQL operators and
data昀氀ow models used by graph processing and machine learning systems.

Using the sub-operators as an ISA, the database engine becomes more like a
language runtime, executing a rich set of alternative sub-operator implementations
(as instructions) on heterogeneous hardware platforms. The goal is to support not
only relational (column and row) data stores but also graphs, key-value stores, and
extensions for complex data types currently stored as blobs.

4.2.1 Sub-operators and interfaces
At present, our choice of sub-operators is based on analyzing prior work that captures
basic data access and compute patterns of data昀氀ows that can be mapped to modern
hardware. We consider a sub-operator to be included in the ISA if it denotes an
important management task or if it operates at the right level of data granularity.
When an operator is too 昀椀ne-grained, it becomes di昀케cult to optimize, while if is
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Name Type Category Description Examples

Scan Sequential Access Scan materialized data into stream Tablescan, Bu昀昀er scan

Materialize Sequential Access Materialize data into bu昀昀er Output, Print

Scatter Random Access Write to di昀昀erent memory locations Build hash table

Gather Random Access Read from di昀昀erent memory locations Probe hash table

Map Compute Process stream with mapping function Hash, UDFs, Filter

Fold Compute Reduce streamed elements by combining Accumulate, Pre昀椀x sum

Sort Compute Materialize and sort data steam Sort, Join

Loop Control Flow Pass data or state to next iteration K-means, Gradient descent

Table 4.1: Example of possible sub-operators
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Figure 4.2: Overview of a sub-operator-based database engine

too coarse (e.g., an SQL join), it limits expressivity and the 昀氀exibility to bene昀椀t from
hardware accelerators.

Table 4.1 shows and categorizes an example set of sub-operator types, which are
su昀케cient to implement various data昀氀ows. The set can be easily extended with other
sub-operator types and concrete instances inspired either by prior work in relational
databases (e.g., the exchange operator, range partitioning, string and bit manipulations,
fuzzy string matching) or other forms of data processing like machine learning and
graph-based analytics (e.g., complex statistical operations over array data).
Sequential Access Scan and Materialize ensure that the system can switch between
streamed and bu昀昀ered execution. It is crucial for working with materialized inter-
mediate states or when distributing the compute pipelines to di昀昀erent hardware
targets.
Random Access Scatter and Gather handle memory access to various locations.
Combined, they can implement a join. Scatter takes a tuple stream and materializes
it based on the scatter function, e.g., the tuple’s hash value. Gather fetches tuples
from di昀昀erent memory locations based on an input stream and forwards the combined
stream for further processing.
Compute Map and Fold provide support for functional programming primitives and
typical Map-Reduce workloads. Map, for instance, processes a stream of tuples and
applies a mapping function 𝑓 to every element in the stream. It can return a varying
amount of return values per tuple, including zero. One example function is predicate
evaluation, but several di昀昀erent operations can be implemented, serving as building
blocks for more complex data昀氀ows. Sort is a handy sub-operator, which adds sorting
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functionality to Materialize. It adds the property to the bu昀昀er that the data is sorted,
which can be used in subsequent operators.

Control Flow Loop is di昀昀erent, as it is not part of a data昀氀ow pipeline. It is necessary
for controlling 昀氀ow and to formulate iterative queries, o昀琀en typical of incremental
and converging workloads.

Depending on the use pattern, there may be compositions of sub-operators that are
frequently used by a variety of data昀氀ows and, thus, can be constructed as additional
building blocks. For example, an e昀케cient implementation of radix partitioning is o昀琀en
an integral part of relational operators (e.g., radix-join or aggregation).

Composing sub-operators

We use partitioning to explain how to combine sub-operators into a single, more
complex operator. Partitioning consists of several phases, o昀琀en involving two passes
over the input data to enable e昀케cient parallelization in a pipelined system [17]. The
le昀琀-hand part of Figure 4.3 illustrates this. Phase 1 performs the 昀椀rst scan and computes
the histogram of how the input tuples hash into the partitioning buckets. This phase
is constructed using map (hash) and scatter (build histogram). In Phase 2, each thread
calculates the pre昀椀x sum to determine each partition’s span. To do this, it uses scan to
read the partitions and gather to retrieve the histograms. Then, the fold sub-operator
computes the pre昀椀x sums to determine the o昀昀set where each thread needs to write
its share of tuples. The 昀椀nal phase performs the second pass over the input data and
scatters the tuples to the precomputed locations.

Once constructed, the new partition sub-operator can be used as a building block
for other relational operators or more complex data昀氀ows. All existing e昀昀orts regarding
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hardware tuning and optimizing the implementation of various relational operators [99,
160], can be immediately applied to the sub-operators, automatically rendering them
available to a wider set of operations. For instance, the bene昀椀ts of so昀琀ware write
combining, used to implement the radix-partitioning [207], can now be used for
implementing one type of a scatter sub-operator. As a result, fast data scattering for
many operations is available both in the relational domain and beyond.

Even more, sub-operators provide more intuitive mapping to data processing
pipelines and are a natural way to begin automating the introduction of materialization
points. We can use them to introduce mini-bu昀昀ers, as demonstrated with relaxed
operator fusion [132]. They also make it very easy to reason about distributing
compute functions of a data pipeline to di昀昀erent targets. As shown on the right
side of Figure 4.3, the data 昀氀ow gradually transforms from reading from storage to
compute, which is typical of data processing workloads. Close-to-storage workloads
can be accelerated by smart storage, like computational storage [41, 61, 145], while
partitioning is a good candidate for FPGA acceleration, and the 昀椀nal join logic works
best on the CPU. This distributed use case is particularly attractive to every data
system in a cloud context.

Also, the hash-join can be further augmented, as shown in Figure 4.3. For example,
a semi-join reducer can be added to avoid materialization overhead in the join [17,
113] by plugging a 昀椀lter just before partitioning the probe side to drop non-matching
tuples early. Such 昀氀exibility also allows the database to react gracefully to changes in
selectivity and adapt to the workload [55].

Finally, working with sub-operators, also enables us to e昀케ciently compose hybrid
relational operators. One example is the hash teams operator [94], which merges a
hash-join and group-by aggregation to improve performance by performing several
hash-based operations without repartitioning the intermediate results.

Interfacing sub-operators

More complex data昀氀ows can be constructed using sub-operators as graph vertices.
The edges of the data昀氀ow represent data dependencies or how data moves from one
sub-operator to another. When composing, it needs to be ensured that the input
and output of the sub-operators are compatible. The input-output properties can be
roughly classi昀椀ed as bu昀昀ered or streamed. A streaming sub-operator ( ) directly
accepts the input of its predecessor to further process each tuple immediately. A
bu昀昀ered operator ( ) needs to process all tuples before further advancing, like
fold and, thus, splits the data昀氀ow at the materialization points into pipelines. The
materialized bu昀昀ers are stateful and encapsulate valuable data properties, such as
sortedness, partitioned bu昀昀ers, min/max statistics for pruning, and data distribution,
which can help with additional logical optimizations.
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All operators in a pipeline (A B C) can be compiled into a single function,
which may be o昀툀oaded (run) as a compute kernel. This process is referred to as
operator fusion and enables performant execution of query pipelines by keeping data
in registers or hot caches. To increase performance, the optimizer can introduce
minibu昀昀ers, for example to improve locality. Together with the aforementioned data
properties, this exploits synergies to choose a faster implementation or avoid extra
work, such as sorting data twice.

Common formats like Apache Parquet [9] or Arrow [8] can be used to ensure
compatibility with other systems. The scan operator, for example, can use Parquet
both for reading base tables and for in-memory communication. We can use Apache
Arrow as an intermediate format for bu昀昀ers to store data passed between the pipelines.
The materialize operator serializes the data stream to allow e昀케cient and convenient
processing with existing libraries or user-de昀椀ned code, similar to user-de昀椀ned table
functions.

4.2.2 Dataflows beyond standard SQL
Sub-operators o昀昀er a more expressive interface for constructing non-conventional
operators and generic data昀氀ow systems. One example would be shared operators,
like a shared scan [201, 220] or a shared join [35], which combine reads of input
relations, for example. They are thus e昀昀ective at performing multiple queries at the
same time [128]. It is also possible to combine subsequent relational operators, for
example aggregation (group by) and join into a group join [66, 134]. This reuses the
hash table for both probing and aggregating if join and aggregation operate on the
same predicate.

However, most importantly, we aim to support all other complex data昀氀ows, gen-
erated by higher-level declarative or domain-speci昀椀c languages like HiveQL, LINQ,
or Spark. Raven, for example, has previously demonstrated that in-DBMS machine
learning can outperform dedicated frameworks [93]. Their system relies on a custom
intermediate representation consisting of relational and linear algebra that allows
for valuable cross-optimizations. Yet, they still need support for generating code for
di昀昀erent hardware platforms and hence explore TVM [40] and Tensor昀氀ow [129].

It is along these lines that we propose lowering the data operations for various
neighboring data processing domains (e.g., pagerank, k-means, connected components,
graph connectivity) onto the sub-operator types: map, reduce, scatter and gather (to
name only a few), or adding new ones (e.g., support for iterative and incremental
computation).

To make things more concrete, Figure 4.4 shows how to compose one iteration
of standard k-means using sub-operators. We 昀椀rst scan all points and hand them
over to the map operator, which also accepts the current centroids as parameters. It
processes each tuple and determines the closest centroid. The following aggregation
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is composed of sub-operators and materializes the mapped point stream based on
whichever centroid is closest. It restarts streaming the data once everything has been
mapped and uses fold to calculate the new cluster centroids. If the centroids have
changed since the previous iteration, loop passes the new ones as an argument to
map, and the data昀氀ow starts again by scanning the points. Otherwise, k-means has
converged, and loop returns the centroids.

Upon closer examination of this idea, we notice that there are many key optimiza-
tions in these data昀氀ow frameworks that can already bene昀椀t from existing techniques
used in database engines.

Support for desired features such as di昀昀erential computing has already been ad-
dressed by database systems. For example, memoization (caching and materializing
intermediate results) within a program and even across concurrent programs can be
implemented easily in a database engine, as the required techniques are already in use
for queries. Prior work has explored their bene昀椀ts when implementing memoization
for streaming engines [53], or for data lineage and provenance [82]. Similar e昀昀ort
allows e昀케cient algorithm re-computation when the input changes, needed by frame-
works like Noria [73] and Naiad [130]. Finally, by allowing alternative sub-operator
implementations, we can bene昀椀t from existing techniques for processing complex
data types, such as images or documents.

4.2.3 Cross-platform compilation and execution
An important feature for modern systems is that they simplify maintenance of complex
data processing code-bases for evolving hardware architectures and enabling easy
cross-platform portability.

O昀昀ering alternative implementations tailored for di昀昀erent architectures allows
platform-speci昀椀c implementations of the sub-operators to be decoupled from the
design of higher-level operations and data-processing algorithms. While this allows
us to abstract from the speci昀椀cs of hardware implementation, which simpli昀椀es rea-
soning when designing optimal data昀氀ows, it also provides freedom for implementing
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various 昀氀avors of sub-operators, each exploiting the full potential of the underlying
architecture [91, 178, 197], deploying it to the cloud [88, 135], or even pushing the
implementation down to the hardware circuit logic.

Furthermore, it can simplify reasoning for hybrid platform co-execution. Having
multiple implementations of the same sub-operator allows us to execute portions of
a data昀氀ow computation on di昀昀erent platforms as shown in Figure 4.3. The actual
deployment may depend on speci昀椀c properties of the underlying resources, the data
location, the sub-operator’s requirements, and many other factors.

TVM [40] already demonstrates the potential of such an approach. It is an end-to-
end ML compiler that picks up ideas from Halide for image processing to separate
compute and schedule [167]. Thus, it can optimize the required computations, like
tensor operations, and schedule them to run on various hardware targets. Similarly, our
sub-operators primarily describe the data昀氀ow, allowing it to be 昀氀exible in scheduling
the concrete implementation.

This idea extends beyond the compute resources of a single machine. With today’s
trend for resource disaggregation and compute-capable devices (e.g., smart-NICs,
programmable switches, computational storage), certain sub-operators (昀椀ltering, pro-
jection, partial sorting, partial aggregation) can be o昀툀oaded, either down to where the
data sits [211], or the data can be processed as it moves (statistics, regular expression
evaluation, partial aggregation, partitioning).

4.2.4 Hardware integration
Using sub-operators as common application kernels can also increase the in昀氀uence
that data-processing systems have on hardware design and implementation. Provided
that the selected sub-operator instances are simple enough, the majority of them can
be integrated into the hardware circuit logic. A昀琀er all, specialization is one of the most
e昀昀ective ways of increasing performance, as successfully demonstrated by the SIMD
instructions present in virtually all CPUs. SIMD instructions o昀昀er various primitives,
for example, scatter/gather, for vectorized random memory access, which match the
proposed sub-operators.

FPGAs have been shown to be an excellent platform for o昀툀oading data operations
onto hardware logic, as well as for prototyping potential ASICs. Several enterprise
systems are already using them accelerate data processing [164, 191] or encrypt it [10].

Following recent trends towards building heterogeneous architectures, more pow-
erful co-processors (e.g., GPUs) are being placed the interconnect, to enable more
e昀昀ortless data transfer and co-processing. Intel’s research-oriented Xeon+FPGA ar-
chitecture, in particular, has made the exploration and prototyping of costly data
processing primitives on the FPGA even more appealing. For example, the work on
FPGA-based histograms [87], while currently used to maintain accurate database
statistics, can be repurposed as a sub-operator for data mining algorithms (e.g., for
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cluster analysis). Similarly, approximated computations and various types of pre-
computations (partial sorting or partial aggregation) implemented on an accelerator
(FPGA, GPU, or programmable switches) can be used not only in SQL queries, but also
for traditional so昀琀 computing algorithms, which are by design tolerant of imprecision,
like in ML.

Such e昀昀orts will complement some of thework done by the architecture community
on the design and implementation of various accelerators suitable for data-processing
(e.g., Q100 [213], DRAM support for gather-scatter [185], processing-in-memory (PIM)
architecture for graph analysis [2], or Oracle’s DAX [155]).

Another take is Plasticine with Gorgon, which aims at having a coarse-grained
accelerator (CGRA) for machine learning and database workloads in hardware [163,
202]. Their proposed checkerboard layout of recon昀椀gurable materialization and
computation units maps data 昀氀ows in hardware to execute di昀昀erent 昀氀ows in parallel
batches. The materialization units have double bu昀昀ers to ensure that they can ingest
data while pushing out the data to the next 昀氀ow in parallel.

Ideally, we can use the generality of the common sub-operators to in昀氀uence future
industry-scale architecture platforms. For instance, many operators can leverage
on-chip circuits for automatic (hash and/or range) partitioning and routing of data
across parallel entities (hardware threads or machines) [160]. One example of an
enterprise chip design in which such a hardware-based partitioner could be integrated
is Oracle’s SPARC M8. It re昀椀ned the DAX (data analytics accelerators) introduced by
M7, which are specialized circuits on the memory controller used for the basic data
processing operations of selection, scanning, and decompression as data moves between
the DRAM and the LLC of the invoking core [3]. Rather than hiding such features
behind a faster implementation of SQL, a database engine can encapsulate them as
sub-operators and o昀昀er them as row primitives.

4.2.5 Impact on system design
Making sub-operators 昀椀rst-class entities of a data processing system also a昀昀ects the
design and implementation of the system stack. Figure 4.5 illustrates the a昀昀ected
components we discuss in the following sections.

The query optimizer receives the data昀氀ow graph in a domain speci昀椀c-language,
usually derived from a SQL query or generated by the user-facing front-end of a
data昀氀ow engine. To make sure the optimizer can choose from the correct set of
available sub-operators, they are passed along with their respective cost models to
decide which of the sub-operators to o昀툀oad. The Query Optimizer has to analyze the
query at di昀昀erent granularities ahead of time and dynamically during runtime to 昀椀nd
the best execution strategy as explained in Section 4.3.

The query optimizer passes a physical execution plan, which may consist of
di昀昀erent alternative programs to the query compiler. It also knows all possible imple-
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Figure 4.5: Overview of the sub-operator system stack.

mentations, e.g., for di昀昀erent accelerators or ISAs to run the sub-operators on, and
combines the plan into executable chunks naturally formed by the data dependencies
as pipelines. The compiler furthermore has to decide between di昀昀erent compilation
strategies which, among others trade o昀昀 throughput vs. latency. Section 4.4 gives an
overview including a the challenges of generating code with di昀昀erent compilation
strategies and architectures.

The execution engine keeps track of the runtime information to feed it back and
optimize further executions. Thus, it can orchestrate where to o昀툀oad compute and also
change how the data昀氀ow is shaped depending on the current workload as explained
in Section 4.5.

4.3 Multi-Level Query Optimizer
One immediate challenge is that query optimization becomes more involved the more
choices we have for executing a query. By adding sub-operators, we add a whole
new level of customization to each query plan, which is why we propose optimizing
statically in layers and dynamically during runtime.

High-Level Optimization: The 昀椀rst layer acts on higher-level operations before low-
ering to sub-operators. For example, by the time the database processes a SQL query,
it has already parsed and optimized the query, e.g., decorrelating subqueries [141],
and given hints, which physical operator to use [143]. This demonstrates how we still
bene昀椀t from existing techniques.

Mid-Level Optimization: Our optimizer then receives a data昀氀ow graph as in-
put. Each relational operator is deconstructed into sub-operators, as outlined in
Section 4.2.1. This opens up more optimization opportunities at the sub-operator layer,
such as reasoning about which physical implementation to choose. This means that
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we have to decide whether and where to o昀툀oad computation, and as a direct result,
how to split the data昀氀ow between all available hardware resources. Relatively small
sub-operators considerably simplify the analysis and derivation of their individual
cost models compared to the cost functions for full SQL operators or UDFs.

Since sub-operators typically have a clear data access pattern and mostly consist of
a single iteration over the data, building the costmodels for each implementation can re-
use a signi昀椀cant amount of prior work that has identi昀椀ed how to model the costs of the
access patterns for di昀昀erent hardware platforms. We can target, for example, modern
multicore machines [124], GPUs [81], or other heterogeneous architectures [206].
Low-Level Optimizations: Meta-frameworks like MLIR are used to lower the
data昀氀ow to target architectures [112]. Another alternative is to use a tailored emitter
[75], which leads to di昀昀erent tradeo昀昀s as detailed in Section 4.4. The optimizations can
be applied a昀琀er the sub-operators are assigned to a hardware target, consider the whole
data昀氀ow, and o昀昀er their own speci昀椀c optimizations, such as constant propagation or
auto-vectorization.
Dynamic Optimization: However, the opportunities of having so many compatible
variants of the same sub-operator still poses a lot of challenges, Depending on where
the data sits and how busy each of the disaggregated hardware resources is at the
moment, o昀툀oading might be bene昀椀cial or not. Since we cannot foresee all these
parameters while preparing the query, we also need runtime adaptivity. The idea is
that, each sub-operator implementation alternative can be augmented with auxiliary
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information, such as the cost of its execution on the particular hardware platform,
or its resource footprint (i.e., the resource requirements for e昀케cient execution). The
latter is in particular useful for multi-query, parallel executions in a noisy environment
(e.g., in the cloud) or microadaptivity, as we discuss in Section 4.5.

4.4 Query Compiler
The compiler takes the output from the optimizer and generates a program executable.
In doing so, modern compilers already blur the boundaries between relational operators
and operate on pipelines of sub-operators until a pipeline breaker is reached [96, 132].
Generating pipelines and pipeline breakers follows on naturally from our discussion
on streaming vs. bu昀昀ering sub-operators in Section 4.2.1.

Relational operators are already split into smaller units in the query compiler. For
example, even if an operator consists of multiple stages that logically belong together
(e.g., build and probe in a hash join), it is o昀琀en physically separated into units as parts
of di昀昀erent execution pipelines. Occasionally, even introducing extra-bu昀昀ers, e.g., for
cache locality, can speed up processing. [132] As a result, both compiler and execution
engine do not operate internally with relational operators, but with their building
components [113].

To further enhance the 昀氀exibility of data processing engines, a compiler could
use ready-generated sub-operator implementations, either with di昀昀erent resource
footprint(s) [20] or variants that match the desired hardware platform, as suggested
by the optimizer. Ideally, the compiler directly uses the sub-operator implementations
as a processor typically uses the ISA instructions.

These alternative sub-operator implementations can be either hand-cra昀琀ed us-
ing existing optimization techniques for SQL operators or automatically generated.
Frameworks like LLVM [111, 112, 183], Voila [77] or Lightweight Modular Staging
(LMS) [175] support specialization and are already in use in systems like Tuple-
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ware [49], HyPer [95], Umbra [140], and LingoDB [89, 90].
Finally, the mere idea of using sub-operators as an IR and explicitly exposing them

as an external interface is highly compatible with recent proposals for meta-compiler
frameworks like MLIR [112]. Combined with sub-operators as an intermediate rep-
resentation, we consider this to be the only systematic way of developing database
systems for heterogeneous hardware. A common intermediate representation enables
our community to rely on proposals like MLIR for low-level optimizations or o昀툀oad-
ing to accelerators like FPGAs [183]. This intensi昀椀es the connection to the compiler
community, and we can bene昀椀t from their progress and vice versa.

Umbra, for example, consists of a low-level instruction set called Umbra IR, which
connects the di昀昀erent compilation backends with the SQL frontend and optimizer [96,
140]. Recently we looked into how to architect a query compiler to adapt to di昀昀erent
hardware ISAs like moving from x86-64 to ARM64 or in general RISC architectures [75].
In the following, we look into how sub-operators can deal with both heterogeneity and
HTAPworkloads, which are omnipresent [75, 95, 140] by o昀昀ering di昀昀erent compilation
backends based on individual query characteristics and hardware.

4.4.1 CPU Heterogeneity: RISC on the rise
Heterogeneity is no longer only a matter when dealing with accelerators since CPUs
with a RISC-ISA, mostly ARM-based (AARCH64), are on the rise. This momentum
is fueled by the stagnating performance increase of CISC x86-64 chips, while the
application areas for ARM-based chips grow fast, which leads to the biggest disruptions
in the processor market for two decades. Ten years ago, ARM-based chips were merely
prevalent in mobile and low-end segments, while now successfully set foot into the
consumer and server market [118, 192, 194].

This leads to the prognosis of rapidly increasing market shares in this decade,
as shown in Figure 4.8b. RISC chips are furthermore increasing the weakening of
traditional compute and data separation. The trend is going from a centralized high-
performance machine to heterogeneous compute components, where ARM, and other
RISC architectures, are already in use. Using this momentum, they plan to grow their
revenue in traditional workloads and matrix workloads, characterized as real-time
tasks, including AI inferencing (referred to as matrix workloads in Figure 4.8a).

While x86-64 was the only relevant architecture in the server and consumer
market a decade ago, the ongoing development indicates that heterogeneity already
increases at data centers giving a choice between ARM or x86 chips. Since x86-64 is a
CISC instruction set, it o昀昀ers many instructions with a simple memory model, which
eases code generation. The developer can o昀툀oad most responsibility of optimizing
the IR instruction implementation to the processor because the CISC instructions
o昀琀en directly map to tasks described in the IR. ARM chips, however, o昀昀er a lot more
昀氀exibility in code generation, which makes the switch from x86-64 more signi昀椀cant
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Figure 4.8: Prognosis of ARM usage in the server market.

than it sounds in the 昀椀rst place since both follow di昀昀erent IR design philosophies.
A core philosophy of RISC chips is to have instructions more small-scoped so that
they have to be combined. This on the one hand makes instruction selection more
involved, but on the other makes code generation more nuanced and tunable. Thus,
instead of mapping each higher-level IR instruction to a counterpart, multiple RISC
instructions are combined to achieve the same [83].

While this sounds like a disadvantage initially, it does not have to be. The increased
昀氀exibility o昀昀ers more room to tune the performance, especially when handling mem-
ory accesses that are more 昀椀ne-granular [75]. However, the data processing system
must use freedom with responsibility to avoid performance penalties. Furthermore,
the situation gets more challenging since big cloud vendors like AWS (Graviton [12]),
Alibaba (Yitian [217]), and Google (Ampere Altra [39]) use custom ARM-based proces-
sor designs. While these designs share most of their IR based on the ARM standard,
each vendor can add custom instructions, e.g., accelerators or specialized vector in-
structions.

Having both x86 and di昀昀erent ARM cores readily available in the cloud makes
considering heterogeneity important even when designing a CPU-centric data昀氀ow
system. This section outlines our proposal of designing a sub-operator-based database
system from scratch and transfers the 昀椀ndings of porting our full-昀氀edged DBMS Umbra
to ARM [75] to sub-operators. It outlines design principles for compiling queries to
utilize speci昀椀c hardware properties like ARM’s 昀椀ne-granular memory handling. The
full experimental background can be found in [75]. Ultimately, combining domain
knowledge, like the choice of sub-operators, and architecture awareness, like the
processor’s ISA, is necessary to use the available resources best.
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4.4.2 Compilation Strategies
When transforming the sub-operator plan to machine code as shown in Figure 4.7,
the DMBS can use di昀昀erent strategies for code-generation [96]. Data昀氀ow systems,
e.g., Umbra [140], combine multiple strategies to choose the best-昀椀tting approach
depending on each query [102]. We use a similar set of properties as Gruber et al. [75]
to evaluate and categorize these approaches. Based on the results, we recommend the
most promising compilation techniques when implementing a sub-operator-centric
data昀氀ow system.

Properties

We rank the IR generation strategies based on three core properties focusing on the
resulting performance, the development e昀昀ort, and the speci昀椀city of the generated
code.

Performance is one of the central metrics for code-generating data昀氀ow systems
and is directly visible to the end user. Code generation is mainly associated with the
ahead-of-time compilation of programming languages like C or C++. In this case,
compilation only takes place once. Thus translation and optimization are allowed
to take longer because they are non-recurring and the time amortizes. In contrast,
Just-In-Time (JIT) compilation focuses on continuous translation, scheduled by the
remainder of the application [76].

While both techniques generate machine code, they are tuned for di昀昀erent proper-
ties. Generally, traditional compilers optimize for high throughput, while JIT compilers
aim for low latency code generation. Thus, the quality of optimizations, the internally
used IR, and the generation of machine code di昀昀er, which makes the performance
relative to the actual use case. Data昀氀ow systems need to set the focus both on high
throughput and low latency. Otherwise, when focussing on throughput, compilation
time will dominate short queries, like inserts or point lookups. Or vice versa, focusing
on latency is not reasonable for long-running or recurring analytical queries since
optimizations will quickly amortize.

Speci昀椀city expresses how well a data昀氀ow engine can represent the algorithmic
parts of a query. It focuses on the ability of code generation to utilize heterogeneous
systems, not only stressing ARM support or 昀椀ne-graded tuning like vectorization.
Thus, it also covers co-processors or FPGA-based solutions like computational storage
devices that are controlled by ARM processors. These require additional support for
the speci昀椀c architecture as well as hardware-speci昀椀c control.

Domain Speci昀椀city describes how a particular strategy allows representing impor-
tant algorithmic constructs for database systems (e.g., algorithmic operator details,
memory accesses, etc.). Concretely, we rate the general possibility of expressing a
given algorithm or construct in a given intermediate language. Architecture Speci昀椀city
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Figure 4.9: Qualitative overview of di昀昀erent query-compilation strategies’ properties

assesses how well a given approach handles architecture-speci昀椀c information (e.g.,
memory models, architectural constraints). The simplicity of such a representation
allows a more straightforward description of algorithms, easing later code generation
in contrast to unmaintainable constructs. Both sub-properties assess how tailored
the optimized code is respecting the domain (data昀氀ow) speci昀椀cs and the underlying
hardware architecture.

Simplicity rates the complexity of integrating a certain compilation strategy in a
given data昀氀ow system. Depending on the chosen approach, the required knowledge of
the developer and the integration complexity vastly di昀昀ers. A high amount of required
knowledge may be a hurdle in initially integrating the compilation strategy. Optimiz-
ing for speci昀椀c hardware properties is a complex, low-level task. Hence, simplicity
combines the e昀昀ort of integrating a strategy into the system and the architecture-
related knowledge required for implementation.
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Programming Languages

This category summarizes database systems that base their compilation on compiling
programming languages to generate code for each query, mostly in C or C++ [52, 77,
215]. Using the same programming language for code generation and the generated
code gives a clear advantage in simplicity, as it only requires profound knowledge
of one programming language. In the end, only a call to an external compiler is
required to transform the generated code into an optimized executable. Internal
transformations are still part of the database system, but the 昀椀nal code generation,
including instruction selection, is delegated to an external toolchain. While this allows
the database developer to focus on algorithmics, not all domain-speci昀椀c knowledge
can be conveyed on the programming language level, like the higher-level construct
of a query plan. The same holds for architecture awareness which is handled by the
expressiveness of the language and the di昀昀erent compiler backends for the di昀昀erent
architectures.

As the compiler toolchain takes on the heavy li昀琀ing in code generation, we get high
throughput due to many 昀椀ne-tuned optimization passes. However, this comes at the
cost of high latency in query execution, making it well suited for either OLAP or stream-
ing scenarios where the individual query compilation time becomes irrelevant [214,
215]. AWS Redshi昀琀 combined programming languages with a high-performance
compilation cache [11] to compile short-running queries e昀케ciently by re-using cached
fragments of the queries.

If simplicity and long-running queries are in focus, programming languages are
the best choice for code generation in database systems since they relay most work to
existing compiler infrastructure.

Compiler IRs

Building query programs with compiler IRs usually requires building the database
engine around the compiler IR. This is more complex than an external call to compiled
code but requires interaction with an already-developed module. The database system
directly generates IR code, usually in SSA form, which it hands over to the compiler
framework. HyPer is based on this idea by combining a C++ engine to generate and
run LLVM code [137]. The generated LLVM code can then also call into pre-compiled
C++ routines to tightly couple runtime and execution systems.

Generating IR based on a general-purpose IR reduces the simplicity since the
developers have to know the underlying IR, which is usually closer to Assembly than
a systems programming language. While this allows for more 昀椀ne-granular control of
the chosen instructions, it also increases the developer’s responsibility. Due to the
use of a general-purpose IR, it is not tailored to the domain-speci昀椀c requirements
of a data 昀氀ow system. However, as a full-featured lowering, all algorithms can still
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be expressed. Furthermore, the intermediate representation is mostly architecture
agnostic and uses the compiler to tailor it to di昀昀erent architectures. Depending on
how many optimization passes are selected for generating the code, latency, and
performance vary.

Compared to programming languages, compiler IRs o昀昀er a better, more 昀椀ne-
granular, latency-throughput tradeo昀昀 at the cost of more implementation complexity.
Compiler IRs o昀昀er a good balance and still o昀툀oad most heavy li昀琀ing to existing
toolchains.

Domain-Specific IR

In contrast to the previous strategies, domain-speci昀椀c IRs also require the implemen-
tation of code generation and machine code backend. This needs in-depth knowledge
about compiler construction and is more complex to integrate into the rest of the
system, which reduces the simplicity. However, due to the in-depth knowledge, the
domain-speci昀椀c IRs with code generators can map data昀氀ow operations best since they
are designed around them.

Furthermore, by storing annotations for architecture-speci昀椀c compilation, this
approach generates the most architecture-aware code and can also hint at specialized
instructions. Similar hints also help for high throughputs by compiling speci昀椀cally
for the data昀氀ow use case. The direct emission of assembly instructions also leads to
very low latencies, comparable to virtual machines.

Domain-speci昀椀c IRs must be weighed against the e昀昀ort of maintainability since
they need to be designed, architected, and implemented. They give a good balance of
the feature set leaning towards both performance and speci昀椀city, which makes them
a great deal if the complexity is worth implementing them.

Virtual Machine

A virtual machine for data昀氀ow execution implements all calls, usually in the same
programming language as the remainder of the system is written. Thus, programmers
only pro昀椀cient in one programming language do not have to learn new abstractions,
which makes them fairly easy to use in their simplest form. However, considerable
work and knowledge are necessary to tune them, e.g., the register assignment.

The instruction set is by design tailored to the domain, but usually not aware
of the architecture since the IR is not lowered to machine code. Still, specialized
instructions for implementations can be called when executing the code on di昀昀erent
architectures. Due to the co-design of IR and VM, latency is normally very low as few
extra passes are necessary. This comes at the cost of runtime overhead since the code
is not executed directly but in the VM. Thus, VMs a good starting point or especially



92 CHAPTER 4. SUB-OPERATORS AS FIRST-CLASS ENTITIES

for short-running queries, as demonstrated by HyPer to mitigate lengthy compile
times [102].

Conclusion

All approaches for query compilation have their strength and weaknesses and thus
cater to di昀昀erent needs. So all approaches are integrated both into di昀昀erent research
and industry data processing systems [52, 71, 75, 77, 95, 101, 132, 139, 140]. Figure 4.9
shows an overview of our de昀椀ned properties for the query-translation strategies
according to our analysis above.

When developing a purely analytical or stream-based database engine, latency
is not the most important factor. Thus, emphasizing simplicity or throughput can
be equally important, which makes programming languages a viable choice. On the
other hand, when building a system with short to almost no transactions and a high
volume of queries, latency is key. So, here virtual machines can shine with their almost
negligible latency.

However, when combining the workloads into a single system, which can ideally
run on di昀昀erent architectures, we need a more balanced approach. Tahboub et al.
suggested that database developers use programming languages or existing compiler
infrastructure (e.g., LLVM) for query compilation in database systems [196]. We do
not fully agree with that since, compared to programming languages, compiler IRs
are a step in the right direction but do not solve all challenges. They add complexity
without fully mitigating issues like compilation latency or low expressiveness. We
identi昀椀ed domain-speci昀椀c IRs are the best choice for modern HTAP database systems,
and Gruber et al. describe how domain-speci昀椀c IRs should be designed for modern
database systems [75]. It allows to address problems like latency and domain as well as
architecture expressiveness. Toolchains like LLVMare a great blueprint and supporting
technology for compiling databases, as Umbra shows [96]. The 昀椀ndings for the
compilation backend also generalize to the whole sub-operator pipeline, as architecture
awareness is an important factor in the overall system design (c.f., Section 4.4.4).

4.4.3 Performance Tradeo昀昀s: Latency vs. Throughput
To support our claims with experiments, we use Umbra [140], which integrates all four
backends [75, 96, 102]. This means we ensure that the intermediate representation
for all backends is the same, e.g., uses the same query plan and UmbraIR code. To
evaluate how well the system adapts to other hardware architectures, we test on an
ARM device (Apple Mac Mini with M1 processor, 16GB uni昀椀ed main memory, Arch
Linux ARM ) and an x86 machine (AMD Ryzen Pro 4750U, 16 GB main memory running
Ubuntu 20.04.04). We use GCC 11.1 for compilation, and respectively LLVM 13.0.1 for
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Figure 4.10: Comparision of di昀昀erent execution strategies in a database system.

JIT compilation in Compiler IR Backend. The benchmark is TPC-H, with a scale factor
of 5. All tests are run single-threaded.

When comparing Figure 4.10 the di昀昀erent architectures, we see the same patterns
emerging for latency and throughput. For latency, there are three di昀昀erent groups
in the log-scale plot. The virtual machine and domain-speci昀椀c backend, which do
not have external dependencies and do not invoke a compiler, are the fastest and
compile the queries in the milliseconds time range. Our compiler backend, which
relies on parts of the LLVM compiler toolchain, comes in second place. The latency
varies depending on how many optimizations are active but does not come close to
using programming languages for code generation. Programming languages take the
longest compile time since they have the additional overhead of parsing the textural
program representation back into an AST and use more optimization passes.

However, the additional passes, which lead to an extensive compile time, pay o昀昀 in
throughput. Here, using a programming language as input is bene昀椀cial, since it uses
the complete compiler toolchain which can 昀椀nd most optimization opportunities and,
thus, results in the fastest code. However, using LLVM IR as input for compilation
comes to a close second place. Thus, using a representation based on LLVM with
an optimized set of 昀氀ags is most promising when both throughput and latency are
important, but there is a focus on throughput. The next-slower approach in terms of
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throughput are domain-speci昀椀c IRs or LLVM based compilation without optimization
passes enables. Both roughly tie in throughput because disabling optimization passes
resembles the approach taken by a domain-speci昀椀c background with an emitter [75].
The emitter cannot perform overly involved code restructuring tasks in a single task
and yields similar code as a compiler with most optimization passes disabled. However,
due to extensive domain knowledge, the domain-speci昀椀c emitter can outperform the
compiler as it does on x86 [96].

Apart from that di昀昀erence in performance, x86 and ARM show comparable perfor-
mance numbers in our evaluation. Compilation on x86 is usually faster since each
core’s individual performance is higher and there is no di昀昀erentiation between high-
performance and energy-e昀케cient cores. On Arm, we noticeably lose performance
when compiling on an energy-e昀케cient core. We also noticed similar performance
behavior for both architectures in terms of throughput. The M1 performs better in
general throughput, also partly because of its higher memory bandwidth, but the
relative performance patterns stay the same.

Running on the virtual machine comes last with considerable distance on both
architectures, making it unattractive for long-running queries. However, other factors
like simplicity can still be a reason to focus on VMs, especially when only focusing on
small, short-running transactions.

4.4.4 Architecture Conscious Sub-Operator Design
When developing the compiler for a new type of IR and focusing on performance,
designing a domain-speci昀椀c IR or using a compiler IR like LLVM are the most promis-
ing choices. With a compiler IR, you can build upon the foundation of an existing
toolkit and leverage its potential for optimization without compromising too much
on latency [102]. When deciding on a domain-speci昀椀c IR, you can bene昀椀t from the
architecture awareness and latency improvements, which provide fast execution times
and low latency. Thus, domain-speci昀椀c IR and compiler IRs o昀昀er the best tradeo昀昀s for
building a new query compiler. Toolchains like MLIR [112] o昀昀er a good foundation
that is situated between both solutions since they build upon the shoulders of LLVM
while o昀昀ering the 昀氀exibility to de昀椀ne their own dialects and lowerings. Jungmair et al.
use MLIR to develop their LingoDB System [89, 90], which combines MLIR lowerings
with sub-operators.

The 昀椀ndings for the compilation backend generalize to the architecture of a sub-
operator-based data昀氀ow system, which has to be looked at as a holistic design in
itself. Figure 4.11a shows the current design process of data昀氀ow systems and their
intermediate representations. The system design is based on the requirements of
the data昀氀ow plans and the constraints of the run-time system. The system’s IRs
primarily aim to o昀昀er the required feature set for translating the plans, which makes
the implementation of the whole system principally top-down. This approach results
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for data昀氀ow systems.

in high domain expressiveness, as for Umbra, but leads to issues when porting code
generation to di昀昀erent ISAs.

Re-thinking the expressibility principle stated by Shaikhha et al. [186], we want
to design a data昀氀ow system architecture-aware. As shown in Figure 4.11b, the
design process of the system has to be bottom-up and top-down simultaneously. The
instructions sets of the target architectures are as important as the requirements of
incoming data processing tasks since the target ISA is the lowest possible domain-
speci昀椀c language. Examining its feature and identifying potential restrictions results
in a better system design. It allows adding information that bene昀椀ts one architecture
and does not hinder code generation for another.

Thus, the sub-operators form a translation layer between the high-level data昀氀ow
plans and multiple low-level execution targets. The additionally stored information
bene昀椀ts the multi-level optimizer that can both decide where to execute the operator
and use the extensive knowledge for micro-adaptivity. Nonetheless, architectural
constraints should not restrict the system design over a certain limit, e.g., by overly
tieing together the target ISA and the designed IR, since this would result in a non-
portable design.

4.5 Execution engine
The query executor caches alternative implementations of the same sub-operator, and
choose one of them dynamically during query execution, based on the preferences
suggested by the optimizer.

If integrated within an (operating) system runtime, the query execution engine can
also leverage information about current queue lengths and the utilization of various
resources on heterogeneous hardware platforms (such as current GPU or FPGA use).
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Such information is particularly important when executing concurrent workloads,
and, hence, multiple data昀氀ows. This, together with auxiliary information about the
resource footprint and the requirements attached to the sub-operators can enable the
execution engine to react better to runtime noise [72]. Similar to the microadaptivity
technique, used by Vectorwise [166], this 昀氀exibility enables the system to adapt better
to changing environments, which can result in both improved performance and better
resource utilization.

Microadaptivity as well is crucial for choosing the optimal tradeo昀昀 when perform-
ing a query or also multiple queries at a time. Sub-operators ensure, that we have
consistent interfaces as described in Section 4.2.1. Together with a runtime system
that ensures that we can pick up execution a昀琀er alternating the query plan [93, 200],
this allows us to adapt to hardware utilization and improve the query plan by learning.

4.6 Related work
The bene昀椀ts of working with sub-operators (or fragmenting traditional SQL operators
into smaller components) are already known to our community; it is just that we have
never properly formalized them or exposed the sub-operators as an interface.

For example, Dittrich et al. [55] propose splitting relational operators, like joins,
into smaller fragments that allow 昀椀ner, more granular performance tuning in the
optimizer. Voila [77] uses a custom IR to chart the design space between vectorization
and compilation, while Voodoo [157] shows that we can use an intermediate IR
of database kernels to generate more e昀케cient parallel executables for a variety of
hardware platforms. Unsurprisingly, the ideas are also explored in other contexts. For
instance, Love et al. [59] identify the most common shu昀툀e kernels that can be used
as building blocks for various graph algorithms. It is also an attractive approach for
engines that support cross-platform execution. He et al. based their design of a hybrid
CPU/GPU co-processing systemGDB [81] on a set of data-parallel primitives, later used
to implement common SQL operators. PyWren further demonstrates the elasticity and
simplicity of serverless lambda functions as building blocks for maps [88]. Prior work
also explored alternative methods of o昀툀oading parts of the operator computation
onto a co-processor or accelerator [91, 156]. From an optimization perspective, our
proposal shares a lot of challenges with work昀氀ow management systems that build
data昀氀ows from sub-operators that are backed by di昀昀erent variations, even though our
focus is much closer to the hardware.

Novel framework proposals from the compiler community, such as TVM [40],
LLHD [183], and MLIR [112] outline a more generic approach of lowering data昀氀ow
systems in a multi-level process of graph transformation and optimization through
di昀昀erent granularities of intermediate representations before generating executables
for various hardware targets, including accelerators. Jungmair et al. use MLIR to
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build LingoDB, a database system with compiled performance based on di昀昀erent MLIR
dialects as intermediate representations [89, 90].

Regarding the domain of hardware specialization, we have already referred to
the DAX engines introduced in Oracle’s SPARC M7 [155] and re昀椀ned in M8. Also,
computational storage drives are having a revival [61]. Other examples are Google’s
TPU, the Q100 data processing unit [213], the energy-e昀케cient hardware partitioner
[212], and Baidu’s data-processing accelerators [146, 149]. Recon昀椀gurable hardware,
like FPGAs, is an immediate choice for exploring operations that can be o昀툀oaded down
to hardware. However, coarse-grained recon昀椀gurable architectures (CGRA) [163, 202]
are even closer to our concept of sub-operators. They are not only faster to re-program,
but work at a coarser granularity with so-called parallel hardware primitives, which
are powerful enough to express a variety of data昀氀ows [162]. Templated-based FPGA
framework designs customized for data-processing [122] are also worth considering.

We would like to emphasize that we propose building a language runtime using
sub-operators as an ISA rather than locally extending the database to run programs, as
was the case with stored procedures. An ISA, allowing execution of complex data昀氀ows
composed of sub-operators, can be used to augment existing e昀昀orts that revisit the
interface between applications and databases [42]. In particular, if extended, the
QBS [43] optimizer can use sub-operators to execute the application converted code
beyond SQL-only queries. Along those lines, Weld [151] proposes a framework for
jointly executing database workloads and machine learning tasks. However, instead
of building on top of a database system, all systems lower to WeldIR which compiles
them using LLVM.

4.7 Discussion
In this chapter, we present the bene昀椀ts of lowering the explicit level of abstraction
on which database engines traditionally operate by making sub-operators 昀椀rst-class
entities. This enables a database engine to overcome the current limitations of the
relational model and SQL and serves as a language runtime that executes an ISA of
sub-operators. Such a change makes database engines more 昀氀exible platforms which
execute various complex data昀氀ows from a range of applications, so that they bene昀椀t
from existing database technologies and non-functional properties, like consistency
or recoverability.

Looking ahead, we believe that the proposed sub-operators are especially attractive
in the context of today’s trends towards increased hardware specialization and resource
disaggregation. In addition to accelerators, pushing compute functions either down
to where the data sits (in smart storage) or as the data moves over the network (via
smart NICs) is a promising way to address the widening gap of data deluge and the
bandwidth capacities of today’s hardware. Thinking in terms of sub-operators is an
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elegant and intuitive way of e昀케ciently approaching the problem of executing data昀氀ow
pipelines in such deployment environments.



CHAPTER 5
Conclusion

The continuous increase in data processing workload and the growing heterogeneity
of hardware have presented both challenges and opportunities for data processing
engines. This thesis o昀昀ers a comprehensive perspective on recent developments
and devises strategies to address the challenges posed by the raised demand for
data processing. We follow the path data takes through the data processing system,
beginning with 昀椀ltering during ingestion or retrieval, followed by data combination,
and conclude with processing and compilation across di昀昀erent machines.

Initially, we tackle data ingestion and retrieval by presenting an extensive detailed
benchmark for 昀椀lters, including bloom and 昀椀ngerprint 昀椀lters. This benchmark identi-
昀椀es the optimal parameters for their performance and ideal optimization strategies
every programmer should consider. We also explore use cases for both build and
probe performance, enabling us to select the most suitable 昀椀lter based on workload
and algorithmic requirements.

Moving along the pipeline, we delve into join processing within the Umbra
Database Management System. Given Umbra’s e昀케cient non-partitioned join, we ex-
amine its performance characteristics while integrating a 昀椀ne-tuned radix-partitioned
join. While this radix-partitioned join demonstrates competitive microbenchmark
performance and the ability to handle generic SQL workloads, it falls short in standard
benchmarks and most real-world applications.

Based on the initial results, we optimize the join with bloom 昀椀lters in semi-join
reducers and provide a comprehensive analysis of scenarios where partitioning is
advantageous. By combining insights from our work on 昀椀lters and partitioned joins,
we 昀椀nd that on a single machine, partitioning o昀琀en does not yield substantial bene-
昀椀ts due to modern hardware’s capacity to mitigate cache misses and stalls through
simultaneous multithreading (SMT). This emphasizes the signi昀椀cance of runtime
performance measurements instead of solely relying on performance counters for
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optimization, where partitioning usually shows better memory bandwidth utilization
and higher instruction-per-cycle measurements. So, combining microbenchmarks
with close-to-real-world benchmarks and wallclock time with performance counters
is the best combination to explore an algorithm’s characteristics fully.

Finally, to harness the full potential of modern hardware, we propose sub-operators
and look into heterogeneous execution. Our concept involves recombining the building
blocks of diverse SQL and iterative operators into a new internal representation
(IR) used within the DBMS. This chapter furthermore examines Umbra IR and how
it gets transformed using various compilation backends. Ultimately, we advocate
for systematic lowerings and a multi-level optimizer, enhancing both debugging
capabilities and overall system understanding.

Outlook While this thesis greatly enhances the e昀케ciency of data exploration and
provides valuable insights for DBMS implementation, there is still untapped potential.

Working on and especially debugging and performance tuning code-generating
systems inherently challenges the developer due to an extra layer of indirection
compared to vectorizing systems. We performed benchmarks in various abstraction
levels and with di昀昀erent tools to understand the impact of partitioning as detailed
as possible inside the system. However, having a code-generating system can be
exploited for our bene昀椀ts in debugging by tooling that collects additional pro昀椀ling
data on the 昀氀y during the abstraction [21, 97]. This data presents an opportunity to
tailor debugging experiences or explicitly show how queries are lowered to machine
code using MLIR. This opportunity will pave the way for new tools that facilitate a
deeper comprehension of the system and the benchmarks, ultimately improving its
performance [29, 56].

The advancement of modern hardware and the evolving challenges posed by data
processing will also continue to drive system design. With emerging technologies like
CXL, interlink performance is high enough to consider disaggregated memory [7].
Collaborative e昀昀orts between hardware and so昀琀ware developers are crucial to achiev-
ing high throughput and cost-e昀케cient data processing, especially in the context of
environmental concerns. Standing on the shoulders of giants, with MLIR and clang,
LingoDB proves that the proposal of sub-operators can be brought to life. [89, 90]

In conclusion, this thesis o昀昀ers valuable insights for database development through
a comprehensive exploration of data processing operators. As the data processing
landscape evolves and technology advances, hardware and so昀琀ware developers must
work closely together to achieve high performance while having an intuitive architec-
ture. This will enable a more sustainable development by utilizing available resources
best [115, 154] and re-using components wherever possible [16, 85] which leads to
more cost-e昀케cient data processing.
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