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Zusammenfassung

Das Forschungsfeld der Post-Quanten-Kryptografie (PQC) beschäftigt sich mit kryp-
tografischen Verfahren, die auf klassischen binären Computern laufen und als resistent
gegen Angriffe von Quantencomputern gelten. In der vorliegenden Dissertation werden
Optimierungen und Angriffe auf das asymmetrische kryptografische Verfahren Classic
McEliece, welches auf das McEliece kryptografische Verfahren und ihrer Variante dem
Niederreiter Verfahren aufbaut und auf Fehlerkorrekturverfahren basiert, untersucht.
Die grundlegenden mathematischen Aspekte, sowie auch die implementierungsspezi-
fischen Details sind Schwerpunkte dieser Arbeit.

Generalisierte Goppa Codes (GGC), die auch (L,g)-Codes genannt werden, werden
auf ihre Eigenschaften erforscht und ihr Einsatz in einem Niederreiter-basierten Ver-
fahren evaluiert. Eine Anleitung zum Aufstellen der Paritätsprüfmatrix für Stützstel-
len jeglichen Grades wird konstruiert, sowie auch ein effizienter Decoder vorgestellt.
Bei binären generalisierten Goppa Codes kann die Körpergröße viel kleiner gewählt
werden, als bei binären klassischen Goppa Codes und trotzdem dieselbe Codelän-
ge erreicht werden. Es wird gezeigt, dass die untere Schranke des Minimalabstandes
verbessert werden kann und dass ein Decoder, welcher den erweiterten euklidischen
Algorithmus benutzt, bis zur Hälfte des Minimalabstandes decodieren kann. Ein Ein-
satz der binären generalisierten Goppa Codes in einem Niederreiter Verfahren hat
keine Reduzierung des öffentlichen Schlüssels, bei gleichbleibenden Sicherheitslevel
bezüglich Information Set Decoding (ISD), im Vergleich zu den klassischen Goppa
Codes hervorgebracht.

Implementierungen kryptografischer Verfahren können durch die Nutzung dedizier-
ter Hardware für Vektoroperationen, die in Prozessoren integriert ist, beschleunigt
werden. In dieser Arbeit wird gezeigt, wie das Gausseliminationsverfahren anhand
der freien RISC-V Befehlssatzarchitektur (ISA) und ihrer zugehörigen Erweiterung
für Vektoroperationen, beschleunigt wird. Simulationen auf einem angepassten Be-
fehlssatzsimulator demonstrieren eine Reduktion der Speicherzugriffe und eine Lauf-
zeitbeschleunigung um das 6 bis 18-fache für eine Speicherschnittstellenbreite von 64
bit bis 256 bits, im Vergleich zu einer nicht-vektorisierten Implementierung.

Es wird ein Fehlerangriff auf das Classic McEliece Verfahren entwickelt. Durch
die freie Wahl von Ciphertexten und spezifischen Fehlerinjektionen auf das Fehler-
lokalisierungspolynom und die Validitätsprüfungen beim Entschlüsseln kann der pri-
vate Schlüssel rekonstruiert werden, vorausgesetzt man hat Zugriff auf die Ein- und
Ausgänge der Entschlüsselungsfunktion. Bei jedem Entschlüsselungsvorgang wird ei-
ne Gleichung in den Unbekannten der geheimen Stützstellen aufgestellt und in einem
Gleichungssystem zusammengefasst. Dessen Lösung wird dazu benutzt ein dazuge-
höriges Goppapolynom aufzustellen und damit einen alternativen privaten Schlüssel
zu generieren. Die Fehlerinjektionen werden für zwei RISC-V Prozessoren auf Regis-
tertransferebene (RTL) simuliert und die Fehlerpunkte, die zu einem erfolgreichen
Angriff führen, identifiziert.
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Abstract

Post-quantum cryptography (PQC) refers to cryptographic systems that run on
classical binary computers but are considered to be resistant against attacks from
quantum computers. This thesis studies optimizations and attacks for public-key post-
quantum cryptosystems based on error correcting codes. The focus is on the McEliece
cryptosystem and its Niederreiter variation, in particular the Classic McEliece key-
encapsulation mechanism that is built on it. General mathematical aspects as well as
implementation details on hardware are examined.

Generalized Goppa Codes (GGC), also called generalized (L,g)-codes, are researched
and evaluated for use in a Niederreiter cryptosystem. The properties of binary GGC
as well as an efficient decoder are presented. The field size can be much smaller than
for binary classical Goppa codes to achieve the same code length. A construction of
parity-check matrices for any degree of code locators is given. It is shown that the
lower bound on the minimum distance is improved and a decoding algorithm using
the Extended Euclidean Algorithm (EEA) can decode errors up to half of the mini-
mum distance. Code parameters for binary GGC that reduce the public key size for
given security level based on Information Set Decoding (ISD) could not be found and
classical Goppa codes still show the best public key size.

Implementations of Classic McEliece can be accelerated on processors having dedi-
cated hardware for vector operations. The RISC-V open source Instruction Set Archi-
tecture (ISA) and its vector extension are used to optimize the Gaussian elimination
algorithm needed in the cryptosystem. Simulations on a dedicated instruction set
simulator show the reduction of memory accesses and an acceleration by a factor of 6
to 18 depending on the size of the memory port width from 64 to 256 bits, respectively.

A chosen-ciphertext fault attack on Classic McEliece is developed. Having full con-
trol of the input and output of the decryption function, fault injections on the error
locator polynomial of the Goppa code and on the validity checks of the cryptosys-
tem can lead to recovery of the secret key. Faulty decryption outputs are utilized
to generate a system of polynomial equations in the secret support elements of the
Goppa code. Solving the system of equations and determining a suitable correspond-
ing Goppa polynomial results in an alternative secret key that can be used to encrypt
and decrypt in place of the original secret key. The fault injections are simulated at
the Register Transfer Level (RTL) of two RISC-V processors, finding viable injection
points.
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Chapter 1
Motivation & Overview
The history of cryptography goes back to ancient times, where people used vari-
ous techniques to hide sensitive information. In earlier times the understanding of
cryptography was in the sense of encryption, meaning that readable information was
concealed to an unintelligible form. Only with the knowledge of some special se-
cret a legitimate receiver could restore the original information. This corresponds to
today’s security requirement of confidentiality, the protection against unauthorized
information retrieval. Modern cryptography does not only refer to securely exchang-
ing sensitive information. It makes also sure that sensitive information is protected
against unauthorized and unnoticed modification (data integrity). Furthermore, cryp-
tography is used to ensure the authenticity of an identity (authenticity) and to protect
against the denial of performed actions (non-repudiation).

Today, there exist two different fundamental types of cryptographic schemes: sym-
metric and asymmetric. In symmetric cryptography both sender and legitimate re-
ceivers of a message have the same secret key. A copy of this secret key needs to
have been exchanged a-priori over a secure channel, e.g. physically. In asymmetric
cryptography sender and receivers possess different keys. In encryption systems each
receiver generates a public-secret keypair and sends the public key to the sender that
uses it to encrypt the message. In digital signatures, a message is signed using the
secret key of the signer and everyone can verify the integrity and authenticity of the
message using the corresponding public key of the signer. Thus, asymmetric cryp-
tography is also called public-key cryptography. Additionally, hash functions are an
important part of today’s cryptography. Hash functions map a variable size input to
a fixed size output. This mapping is unique and cannot be inverted. Thus, these are
one-way functions.
Current cryptographic schemes are internationally standardized by the International
Organization for Standardization (ISO) and the International Electrotechnical Com-
mission (IEC) in the joint technical committee ISO/IEC JTC 1/SC 27 [ISO]. Individ-
ual countries also set their own recommendations, guidelines and/or national standard
specifications.

For symmetric encryption schemes one of the famous and widely implemented cryp-
tosystem is Advanced Encryption Standard (AES) [DBN+01; ISO10], which is based
on the Rijndael algorithm. For asymmetric cryptosystems the Rivest, Shamir, Adle-
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1 Motivation & Overview

man (RSA) [MKJR16; ISO06] algorithm and Elliptic Curve Cryptography (ECC)
[ISO16; ISO22] mechanisms are widely adopted and implemented. The main security
of cryptosystems relies on mathematical problems that are mathematically proven to
be hard so solve. Current standardized cryptosystems are designed to be hard for
classical (binary) computers that calculate using transistors that represent two states
(0 and 1). The security of RSA is based on the mathematical hardness of finding
the prime factors of an integer while the security of ECC depends on the difficulty of
determining discrete logarithms. The parameters of these algorithms (e.g. key length)
are chosen such that the cryptosystem meets a desired security level against attacks
running on classical computers.

The advent of quantum computers challenges widely used cryptography. Quantum
computers work on qbits that can represent many states in parallel. They operate dif-
ferently from classical computers, allowing them to solve some specific mathematical
problems more quickly. Quantum computers are well suited for solving optimiza-
tion problems, data analysis and simulations. Therefore, the most relevant potential
attacks on the current deployed cryptosystems will change once capable quantum com-
puters are available. Current standardized cryptosystems need to be updated and/or
replaced accordingly to meet also the security levels for attacks from quantum com-
puters. In 1996, Grover published a special search algorithm for quantum computers
[Gro96; Gro97]. He showed that in an unsorted database that contains N records, one
specific record can be found in only O(

√
N) evaluation steps. For classical computers

this problem cannot be solved in fewer than O(N) evaluation steps. This means the
quantum mechanical algorithm for searching is polynomially faster than any classi-
cal algorithm. For symmetric cryptography Grover’s algorithm allows to speed-up
brute-force attacks such as an exhaustive key search on AES [GLRS16]. Therefore,
the security level of AES needs to be reassessed, finding that the current key lengths
need to roughly be doubled to ensure security in the future. In 1994, Shor developed
a quantum mechanical algorithm for factorization that brings exponential speed-up
compared to classical algorithms [Sho94]. Using this algorithm, cryptosystems based
on integer factorizations and discrete logarithms will be broken in polynomial time.
Hence, all current cryptosystems based on these mathematical problems (e.g. RSA,
DSA, ECC) are no longer secure enough once capable quantum computers are avail-
able and must therefore be exchanged with new ones.

New asymmetric cryptosystems designed to be secure enough against attacks per-
formed with quantum computers are urgently needed. Cryptography, including sym-
metric encryption schemes, that withstands attacks from quantum computers and is
executed on classical computers is called Post-Quantum Cryptography (PQC). PQC
relies on the hardness of solving mathematical problems with both classical and quan-
tum computers, e.g. lattice problems, decoding error correcting codes, solving mul-
tivariate equations or zero-knowledge proofs. In 2016, the U.S. National Institute of
Standards and Technology (NIST) started a competition for post-quantum Key En-
capsulation Mechanism (KEM) and digital signature systems to standardize one or
more algorithms and to replace their current national standard and recommendations
(e.g. FIPS 186 and SP 800-56A/B/C) [Nat17]. Some of the evaluation criteria are
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a well established security analysis, performance analysis on x86 machines and key
sizes.

The submitted schemes changed and improved over the competition rounds. By
the end of Round 3 the KEM CRYSTALS-Kyber, a cryptosystem based on lattice
problems, was chosen as the encryption scheme to be standardized. For digital sig-
natures, CRYSTALS-Dilithium and Falcon, which are also based on lattice problems,
and SPHINCS+, which is based on hash functions, were chosen to be standardized
by NIST. As it is desirable to standardize schemes based on different mathemati-
cal problems, NIST opened up a new competition for digital signatures, and for the
already running competition they introduced an additional Round 4 consisting of
3 code-based cryptosystems and one isogeny-based cryptosystem. The isogeny-based
cryptosystem Supersingular Isogeny Key Encapsulation (SIKE) was broken in 2022
as it has been surprisingly shown that it is attackable by a classical computer in
[CD22]. The other code-based cryptosystems are Classic McEliece, Hamming Quasi-
Cyclic (HQC)[MAB+21] and Bit Flipping Key Encapsulation (BIKE) [ABB+22].

The work presented in this thesis focuses on Classic McEliece, the cryptosystem
submitted to NIST [BCL+19; BCL+20]. Classic McEliece is a McEliece cryptosys-
tem [McE78] implementing the Niederreiter variant [Nie86]. McEliece is an old (from
1978) and well researched cryptosystem. It is based on error-correcting codes and the
hardness of decoding a random code (NP-completeness of the Syndrome Decoding
Problem (SDP)). The code class that is used in Classic McEliece is Goppa codes,
which still today shows resistance against structural attacks. The advantage of Clas-
sic McEliece is the efficient encoding and decoding and its reliable decryption. A
drawback is the large public key size compared to other cryptosystems in the NIST
competition. The German Bundesamt für Sicherheit in der Informationstechnik (BSI)
supports the international standardization of Classic McEliece at current standard-
ization efforts of ISO for PQC [Ste22].

In this thesis, research towards an efficient and secure implementation of the code-
based cryptosystem Classic McEliece was done, considering the research questions
below.

Research questions

• Which optimizations in terms of computational complexity (time and resource
consumption) can be done for the cryptosystem?

• How can the size of the public key be reduced from the mathematical point of
view? How does this impact the security level?

• Which algorithmic aspects support hardware fault attacks?

Chapter 2 gives an introduction to coding theory and reviews the mathematical
basics. In Chapter 3 the Classic McEliece cryptosystem is presented and its security
discussed.

In Chapter 4, the code class of Generalized Goppa Codes (GGC) is researched
and investigated for use in the Classic McEliece cryptosystem. For binary GGC,

3



1 Motivation & Overview

a construction of parity-check matrices is developed and bounds for the minimum
distance, dimension and unique decoding radius are derived. A discussion on Classic
McEliece with binary GGC with focus on public key size, security level and field size
is given.

Chapter 5 presents an optimization of Classic McEliece at the implementation level,
by using the RISC-V vector extension. Profiling the implementation revealed the most
time and resource intensive computations of the cryptosystem. A rapid prototyping
approach based on an Instruction Set Simulation (ISS) is presented to accelerate a
Gaussian Elimination Algorithm (GEA) with the instructions of the RISC-V vector
extension.

In Chapter 6, a fault-attack on the Classic McEliece cryptosystem is presented.
The developed method recovers the secret key using fault injections on the Error
Locator Polynomial (ELP). A description of the attack that finds the support of the
Goppa code by setting up a system of polynomial equations is given. The system of
polynomial equations is solved in the finite extension field using Gröbner basis and
Buchberger’s algorithm. If part of the secret key is revealed, the complete secret key
can be reconstructed. The attack is simulated on software level in C-code and solved
in SageMath. A simulation and feasibility study for RISC-V on RTL level via Virtual
Prototype (VP) is established.

A conclusion and summary is given in the last Chapter 7.
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Chapter 2
Background of Coding Theory
This chapter introduces the coding theory background used throughout this thesis.
It is intended to provide readers with the tools to understand the body of this thesis
and to introduce the notation used in the following chapters. The content presented
in this chapter can be found in textbooks (e.g. [LN97; Rot06; MS83; HP03]).

First, the algebraic structure of finite fields is introduced. Especially extension fields
and polynomials over these fields are described and some important properties used
in this thesis are given. Based on this, linear error correcting codes are introduced.
These concepts are then particularised to the case of Goppa codes. Syndrome-based
unique decoding is explained specifically for Goppa codes.

Furthermore, Section 2.2 discusses the Extended Euclidean Algorithm (EEA) in
detail, as it is used several times in the remainder of this work. The final part of this
chapter concerns the Syndrome Decoding Problem (SDP), the mathematically hard
problem on which code-based cryptography relies.

2.1 Error Correcting Codes
Traditionally, error correcting codes are used to efficiently encode and decode mes-
sages containing information, as well as redundancy so that the information can be
reconstructed in case the message gets corrupted on its way to the receiver. Common
applications are in digital radio communication or data storage media.

Conceptually, one can think of an error-correcting code as a mapping between some
information and a message, that will be sent over a channel. Usually, the information u
is represented as a vector of k elements (e.g. information bits) and is mapped to a
codeword c, represented as a vector of n elements, see Eq. (2.1). The codeword is
sent as a message over the channel. All possible codewords together form the code.

u = (u1, u2, . . . , uk) 7−→ (c1, c2, . . . , cn) = c n ⩾ k (2.1)

In the following, we introduce Goppa codes, a family of error-correcting codes in-
troduced by Goppa in 1970 [Gop70]. They are a class of linear codes acting on finite
fields. The final part of this section introduces syndrome-based unique decoding at
the example of Goppa codes.
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2 Background of Coding Theory

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

(a) Addition

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(b) Multiplication

Table 2.1: Operation tables for F5

2.1.1 Finite Fields

Finite fields are an algebraic structure investigated in mathematical group theory.
They were first described by Galois in 1830. A finite field, as the name suggests, is a
field that consists of a finite number of elements. That is in contrast to real numbers
or integer numbers which are fields that consist of an infinite number of elements.

In general, a field is represented as a set of elements, on which the operations of
addition and multiplication are defined. These operations follow the law of commu-
tativity, distributivity, associativity and closure. There exists a neutral element for
both an additive and multiplicative operation. For every element of a field there ex-
ists an additive inverse element and except for the additive neutral element also a
multiplicative inverse element. For a, b, c ∈ F we have:

Associativity: a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c
Distributivity: a(b+ c) = ab+ ac

Commutativity: a+ b = b+ a, ab = ba

For closure, the result of an operation on two elements is again an element of the
field F. Common finite fields are prime fields whose elements are represented by a
finite set of integers. Addition and multiplication on prime fields work the same way
as on integers, only that their result is taken modulo a prime number p. For example,
the addition and multiplication tables for < F5 = {0, 1, 2, 3, 4},+ mod 5, · mod 5 >
are given in Table 2.1. As, for a binary field F2 are given in Table 2.2. An addition
in F2 can be executed by classical computers via a logical XOR and a multiplication
in F2 via a logical AND.

A finite field Fpm is an extension field of Fp, if there exist a subset Fp ⊂ Fpm that
is itself a field under the operations of Fpm . Finite extension fields are constructed
using operations modulo a prime power and are denoted by Fpm = Fq of prime p and
extension degree m. Every finite field is of prime-power order [LN97, Chap. 2]. It has
pm elements, where p is called the characteristic of Fpm and m its degree of its prime
subfield. Elements of an extension field can be represented as a polynomial of degree
m− 1 with coefficients in the base field Fp, e.g.

F22 = GF(4) = {0z1 + 0z0, 0z1 + 1z0, 1z1 + 0z0, 1z1 + 1z0} = {0, 1, z, z + 1} .
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2.1 Error Correcting Codes

+ 0 1
0 0 1
1 1 0

(a) Addition (XOR)

· 0 1
0 0 0
1 0 1

(b) Multiplication (AND)

Table 2.2: Operation tables for F2

Operations on the elements are conducted on the polynomials. The coefficients follow
the operations of their base field, e.g. F5 or F2 as given in Table 2.1 and Table 2.2.
Multiplicative operations are conducted via polynomial multiplication and division
modulo a suitable irreducible polynomial a(z) (defined below) for the finite field.
The irreducible polynomial a(z) defines the field and the extension field can also
be denoted by Fpm [z]/a(z). For storing elements of an extension field in bits on a
classical computer, a representation as array of size m with suitable datatype to store
the coefficients as elements on the base field Fp can be chosen.

One can also consider polynomials whose coefficients are elements of an extension
field Fq. Univariate polynomials with indeterminate x are denoted by Fq[x] and mul-
tivariate polynomials with indeterminates x1, . . . , xn are denoted by Fq[x1, . . . , xn]. In
the following, we introduce some properties of polynomials in extension fields.

Theorem 2.1 (Roots of Polynomials [LN97, Thm. 1.64]).
An element b ∈ Fq is a root of the polynomial f(x) ∈ Fq[x] if and only if x− b divides
f(x).

Definition 2.2 (Irreducible Polynomial [LN97, Def. 1.57]).
A polynomial f(x) ∈ Fq[x] is irreducible over Fq if f(x) has positive degree and f(x) =
a(x) · b(x) with a(x), b(x) ∈ Fq[x] and either a(x) or b(x) is a constant polynomial.

In other words, if a polynomial f(x) ∈ Fq[x] has no divisors in Fq[x] except scalars in
Fq and scalar multiples of itself, then f(x) is an irreducible polynomial in Fq[x].

Definition 2.3 (Splitting Field [Rot06, Prop. 3.14]).
Let f(x) be a polynomial of degree n ⩾ 0 over a field Fpm. Then, there exists an
extension field Fps of Fpm in which f(x) has n roots, with s a positive integer and
s ⩾ m.

The extension field Fps to which all roots of the polynomial f(x) ∈ Fqm [x] belong is
the splitting field of f(x).

The following relation holds for any q a prime power and f(x) a polynomial of Fq[x]
using Exercise 2.17 and Lemma 2.3 in [LN97] .

Lemma 2.4 ([LN97, Lemma 2.3, Ex. 2.17]).
Let Fq be a finite field with q elements, then for every f(x) ∈ Fq[x] applies

f(xq) = f(x)q (2.2)
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2 Background of Coding Theory

The splitting roots of a polynomial are defined in the next theorem.

Theorem 2.5 (Splitting Roots [LN97, Thm. 2.14]).
Any irreducible polynomial f(x) ∈ Fq[x] of degree τ can be represented as

f(x) = (x+ β)(x+ βq) · · · (x+ βqτ−1), (2.3)

where β ∈ Fqτ and Fqτ is the splitting field of f(x).

2.1.2 Linear Codes
A linear (block) code C is a k-dimensional linear subspace of Fn

q and thus consists of a
set of codewords c of length n. The elements of a codeword are from a finite field Fq

such that c ∈ Fn
q . The information is represented with k information elements also

from the finite field Fq with u ∈ Fk
q . The maximum number of different information

vectors is qk and all are one-to-one mapped to a corresponding codeword that consists
of the information and redundancy. Therefore, the number of codewords is also qk

and specifies the size of the code. The overhead number of redundancy elements in a
codeword is n− k. Thus, a rate

R = k

n
(2.4)

of the code can be achieved. To encode an information vector to a codeword vector
in linear codes a generator matrix G of size k × n uniquely defines the map

c = uG (2.5)

for all possible information vectors u. The generator matrix contains k basis vectors
that span the code C. Hence, a linear block code is a k-dimensional subspace of the
vector space Fn

q , where 1 ⩽ k < n,

C = {uG | u ∈ F1×k
q }. (2.6)

The value k is also called the dimension of the code. As there exists many bases
to span a vector space, there exist many different generator matrices that define the
same set of codewords. Only, the encoding mapping changes among the different
generator matrices. A generator matrix is called systematic, if it can be written in
the form Gsys = [Ik | A] with A ∈ Fq

(n−k)×k and Ik ∈ Fq
k×k an identity matrix of size

k × k. Then, the first k elements of the systematic codewords csys correspond to the
information vector u and the last n− k elements are redundancy.

u = (u1, u2, . . . , uk) 7−→ (u1, u2, . . . , uk, q1, . . . , qn−k) = csys n ⩾ k (2.7)

The all-zero codeword is always part of the code.
In order to study and construct codes with specific properties, e.g. the number of

errors that can uniquely be corrected, it is useful to consider a specific dual space of the
code that maps each codeword to a scalar product equal to zero. This is represented
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2.1 Error Correcting Codes

by the dual code
C⊥ = {c⊥ ∈ Fq

n |
〈
c, c⊥

〉
= 0,∀c ∈ C}, (2.8)

where ⟨·, ·⟩ denotes the scalar product of two vectors. Each codeword of the code and
each codeword of the dual code are orthogonal to each other. The basis vectors that
span the dual code are represented by H and can be constructed using the property
G · H⊤ = 0 that follows from the definition of the dual code. Therefore, it follows
that cH⊤ = 0 and it can be easily checked if a received message is a valid codeword c
of the code C. The matrix H is called parity-check matrix. A parity-check matrix
can be constructed from the generator matrix in systematic form Gsys = [Ik | A] such
that H = [−A⊤ | In-k] and vice versa from the parity-check matrix to the generator
matrix.

To quantify the utility of linear codes as error-correcting codes, we introduce the
Hamming metric. The Hamming distance between two words is calculated by counting
the number of elements that differ,

d(x,y) := |{i : xi ̸= yi, i = 0, . . . , n− 1}| (2.9)

with x,y vectors of length n. The Hamming weight of a word is then the number of
elements that differ from zero,

wtH(x) = |{i : xi ̸= 0, i = 0, . . . , n− 1}|. (2.10)

The minimum distance of a linear code is defined as the minimal weight of any code-
word of the code,

d = min
x∈C
x ̸=0

{wt(x)} (2.11)

Consider a codeword that is transmitted over a noisy channel (discrete memoryless
channels). A received word r is a noisy version of c and can be written as r = c + e
with e denoting the error produced by the noisy channel. The maximum number of
corrupted elements of a codeword that can be detected are d−1, with d the minimum
distance of the code.

To find d from H, every possible number of columns needs to be checked for linear
independence. If any d − 1 columns of H are linearly independent, the minimum
distance of the code is found. Then, there exist d columns of H that are linearly
dependent. Thus, any two codewords differ in at least d− 1 elements. So, the code C
can detect d− 1 errors and uniquely correct

⌊
d−1

2

⌋
errors. In communication systems

it is desired to transmit as little redundancy as possible. Therefore, linear codes can
be designed to have a high rate R = k

n
. The most famous code classes based on

the Hamming metric are (Generalized) Reed-Solomon codes, Bose-Ray-Chaudhuri-
Hocquenghem (BCH)-codes, Hamming codes, Alternant codes, Goppa codes.
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2 Background of Coding Theory

Properties of Goppa codes:

Minimum distance: d ⩾ deg(g(x)) + 1
Length: n ⩽ pm

Dimension: k = n− rank(HGC) ⩾ n−m · deg(g(x))

2.1.3 Goppa Codes

Goppa codes [Gop70; Ber73] are codes that belong to the family of Alternant codes.
Alternant codes are subfield subcodes of Generalized Reed-Solomon (GRS) codes.
So, are Goppa codes. Goppa codes are specified by a Goppa polynomial g(x) with
coefficients in Fpm for a positive integer m, and a set L = (α1, . . . , αn) of n distinct
elements chosen such that αi ∈ Fpm and g(αi) ̸= 0 for all i = 1, . . . , n. Then, the
Goppa code Γ(L, g) can be defined as follows.

Definition 2.6 (Goppa code).
Let L = {α1, . . . , αn} with αi ∈ Fpm and g(x) ∈ Fpm [x] a polynomial with g(αi) ̸= 0
for all i = 1, . . . , n. The Goppa code is then

Γ(L, g) :=
{

c ∈ Fn
p |

n∑
i=1

ci

x− αi

≡ 0 mod g(x)
}
. (2.12)

Goppa codes are also called (L, g)-codes. The set L is referred to as the support and
its elements αi are called code locators, because their values and ordering define the
code.

The degree of the Goppa polynomial is denoted by t = deg(g(x)). The minimum
distance d is at least deg(g(x)) + 1 and thus at least

⌊
deg(g(x))

2

⌋
errors can uniquely

be corrected. Based on the definition of L, the length n of the code is restricted
to n ⩽ pm. Goppa codes can be constructed via their parity-check matrix. The
matrix H ∈ Ft×n

pm with

H =



1
g(α1)

1
g(α2) · · ·

1
g(αn)

α1
g(α1)

α2
g(α2) . . . αn

g(αn)
... ... . . . ...

αt−1
1

g(α1)
αt−1

2
g(α2) · · ·

αt−1
n

g(αn)

 (2.13)

is used to generate a parity-check matrix HGC of a Goppa code. The parity-check
matrix HGC ∈ Fmt×n

p is obtained by replacing each entry hij ∈ Fpm , i = 1, . . . , t, j =
1, . . . , n of H by the corresponding column vector hij ∈ Fm

p of length m in Fp. For this,
a unique mapping of each element of the extension field Fpm to a vector of length m
in the base field Fp needs to be chosen. Remember that Fp ⊂ Fpm for m > 1 and it
applies that cH⊤

GC = 0 and cH⊤ = 0 [MS83, Chap.7 §7]. The true dimension k of
the code is

k = n− rank(HGC) . (2.14)
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2.1 Error Correcting Codes

If HGC has full rank, then k = n−mt and mt− 1 = n− k − 1.
Several subtypes of Goppa codes are of interest. A Goppa code is called irreducible,

if its Goppa polynomial is irreducible over Fpm . A Goppa code is cyclic if and only
if g(x) = xt. In that case the minimum distance is d ⩽ t + 1 and corresponds to
the minimum distance dBCH of a primitive BCH code [Gop70; Gop71]. Primitive
BCH codes are the only subclass of Goppa codes that are cyclic with g(x) = xt and
L ⊆ Fqm\{0}.

For binary Goppa codes the extension field is based on the prime p = 2 such that
Fpm = F2m . The elements αi of L and the coefficients of g(x) are in F2m . Binary
Goppa codes can also be written [MS83, p. 341] as

Γbin(L, g) :=
{

c ∈ Fn
2 |

n∑
i=1

ci
f ′(x)
f(x) ≡ 0 mod g(x)

}
(2.15)

where
f(x) =

∏
i∈supp(c)

(x− αi) (2.16)

and f ′(x) the formal derivative of f(x) with

f ′(x) =
∑

i∈supp(c)

∏
j∈supp(c),

j ̸=i

(x− αj) (2.17)

such that
n∑

i=1
ci
f ′(x)
f(x) =

n∑
i=1

ci
1

x− αi

. (2.18)

We call a binary Goppa code separable, if the binary Goppa polynomial g(x) is
separable, meaning g(x) has no multiple zeros and has only distinct roots. Then, the
minimum distance of the code is at least 2 · deg(g(x)) + 1. A proof can be found in
[Gop70] and [MS83, p.341-342]. The parity-check matrix of separable Goppa codes is
a Cauchy matrix, where the elements are hij = 1

xi−αj
for i = 1, . . . , t and j = 1, . . . , n

with xi the distinct roots of g(x) = (x − x1)(x − x2) · · · (x − xt) [MS83, p.345-346].
Binary irreducible Goppa codes also share the property of binary separable Goppa
codes, with d ⩾ 2 · deg(g(x)) + 1 [MS83, p.345, eq.21].

2.1.4 Syndrome-Based Unique Decoding
Every error pattern that has Hamming weight less than half of the minimum distance
of the code can uniquely be decoded. All unique decoders follow the same main idea
in uniquely correcting an erroneous received word r ∈ Fqn with up to

⌊
d−1

2

⌋
errors to

a valid codeword c.
Goppa codes are Alternant codes that are subfield subcodes of GRS codes. There-

fore, decoders that decode GRS codes and codes of the family can also be used to
decode Goppa codes. However, that might not fully use the capability of the Goppa
code, as the minimum distance of the Goppa code might be larger than the minimum
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2 Background of Coding Theory

Syndrome-based unique decoding (wtH(e) ⩽
⌊

d−1
2

⌋
):

1. Syndrome computation: s = rH⊤

2. Find error locator polynomial (ELP) σe(x) = ∏
i∈E (x− αi) and

error evaluator polynomial (EEP) η(x) := ∑
i∈E ei

∏
κ∈E\{i} (x− ακ)

3. Find error locations E and error values ei

distance of the GRS code.
The main property of syndrome-based decoders are, that they are solving a key

equation that will be introduced in Eq. (2.28). A simple algorithm to solve the
key equation is based on Peterson [Pet60] and Gorenstein, Zierler [GZ61]. More
efficient decoders are for example the Sugiyama algorithm based on Euclid’s algorithm
[SKST75] or the Patterson algorithm [Pat75]. The probably fastest syndrome-based
decoder is the Berlekamp-Massey algorithm that works on shift registers [Mas69a].

An alternative approach to syndrome-based unique decoders, are interpolation-
based unique decoders, e.g. the Welch-Berlekamp decoder, that directly calculate the
information vector u by solving a linear system of equations and subsequent factorising
to receive u. Usually, interpolation-based decoder are slower in terms of computation
time as syndrome-based decoders, because the linear system of equations is usually
bigger than for syndrome-based decoders.

For syndrome-based decoders, the goal is to find the error vector e ∈ Fqn with error
positions and error values using only the received word and a parity-check matrix.
It is handy to define an Error Locator Polynomial (ELP) and an Error Evaluator
Polynomial (EEP) that can be constructed from the received word r and a parity-
check matrix. First, the syndrome s of the code is calculated by multiplying the
received word r with a parity-check matrix H of the code, such that

s = rH⊤ = (c + e)H⊤ = eH⊤. (2.19)

Second, the ELP and EEP are obtained using the syndrome. Third, the locations and
values of the errors are calculated and the errors are corrected.

Suppose, that wt(e) = we. Let us denote the error vector e = (e1, . . . , en) with
ei the error value at position i for i = 1, . . . , n and the error locations with E :=
supp(e) = {i : ei ̸= 0, i = 0, . . . , n} and |E| = we. The syndrome s = (s1, s2, . . . , sd−1)
can be represented as a polynomial s(x) of degree d− 2 with

s(x) :=
d−1∑
j=1

sjx
j−1 (2.20)

and
sj =

n∑
i=1

ri
αj−1

i

g(αi)
=

n∑
i=1

ei
αj−1

i

g(αi)
=
∑
i∈E

ei
αj−1

i

g(αi)
. (2.21)
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Using the definition of a Goppa code in Eq. (2.12) a syndrome polynomial can also
be written as

s(x) ≡
n∑

i=1

ei

x− αi

mod g(x) (2.22)

in the ring of residues of the polynomials Fpm [x] modulo g(x). The goal is to use the
syndrome to obtain an ELP and an EEP. By defining the Error Locator Polynomial
(ELP) as

σ(x) :=
∏
i∈E

(x− αi) ∈ Fpm [x] , (2.23)

the roots of σ(x) gives us the error locations. Thus, if

σ(αµ) = 0 , (2.24)

then µ ∈ E . All elements of L can be checked if they are a root of the ELP. If there
is a root among L, the index µ is an error position. An efficient method to find the
roots of the ELP is called “Chien search” [Rot06, Sec. 6.3].
By defining the Error Evaluator Polynomial (EEP) as

η(x) :=
∑
i∈E

ei

∏
κ∈E\{i}

(x− ακ) ∈ Fpm [x] , (2.25)

then η(αµ) ̸= 0 if µ ∈ E . From the definitions it follows that σ(x) and η(x) have no
common factors and

gcd(σ(x), η(x)) = 1. (2.26)
If η(x) = 0 and σ(x) = 1, no error has occurred in r and s(x) = 0. The degree of
σ(x) is exactly we and the degree of η(x) is less than we. Since we ⩽

⌊
d−1

2

⌋
we have

deg η(x) < deg σ(x) ⩽
⌊
d− 1

2

⌋
. (2.27)

The ELP and EEP are defined such that they are related to the syndrome. The
following relation holds

σ(x)s(x) ≡ η(x) mod g(x) (2.28)
and is used to find the polynomials knowing only the syndrome. Together with equa-
tions (2.26) and (2.27) this forms a key equation to be solved for decoding. Solving the
key equation in (2.28) is the core calculation of decoding. There exist many different
algorithms that solve the key equation, essentially transforming it into a system of
linear equations [Rot06, Chap.6.3.1].

2.2 Extended Euclidean Algorithm (EEA)
This section introduces the polynomial Extended Euclidean Algorithm (EEA) which
is used in Chapter 4 to derive a parity-check matrix and to solve the key equation for
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generalized Goppa codes. The EEA is an extension of the Euclidean algorithm which
can be found in many textbooks e.g. [Rot06, p.192] or [HP03, p.102]. It is an efficient
method for computing the greatest common divisor of two numbers or polynomials
and the coefficients of Bézout’s identity (see below).

The polynomial EEA calculates the polynomial greatest common divisor (gcd) d(x)
of two univariate polynomials a(x), b(x) ∈ Fq[x] where deg a(x) > deg b(x). Addition-
ally, it calculates besides d(x) also the polynomials w(x) and v(x) satisfying Bèzout’s
identity

d(x) = gcd(a(x), b(x)) = a(x)w(x) + b(x)v(x). (2.29)
The polynomial greatest common divisor is generally defined up to the multiplication
by a non-zero constant. Therefore, multiple polynomial greatest common dividers
exist for the same polynomials a(x), b(x). In Algorithm 1 we define the polynomial
greatest common divider output as a monic polynomial. This makes the output well-
defined and unique. In Algorithm 2, uniqueness is ensured by a requirement on the
last computed remainder.

A call to Algorithm 1 is denoted as (d(x), w(x), v(x)) = EEA (a(x), b(x)) with
inputs and outputs order. We assume a(x) ̸= 0 (the dividend). The initial values of
the algorithm are set to r0(x) = a(x) and r1(x) = b(x). The algorithm starts at i = 2
and stops at step ν + 1 with ν the largest index for which ri(x) ̸= 0. The polynomial
ri(x) denotes the remainder and qi(x) denotes the quotient of the polynomial division
in step i. For every i we have

ri(x) = a(x)wi(x) + b(x)vi(x).

It applies that
deg(ri(x)) < deg(ri−1(x)) (2.30)

and
deg vi(x) + deg ri−1(x) = deg a(x) (2.31)

for i = 1, . . . , ν+ 1. From these two relations it follows that deg(vi(x)) + deg(ri(x)) <
deg(a(x)) and from (2.30) it follows that deg(ri) < deg(a(x)) for i = 1, . . . , ν + 1.
Additionally,

gcd(r0, r1) = gcd(r1, r2) = · · · = gcd(rν , 0) = rν .

In the special case of gcd(a(x), b(x)) = 1 the multiplicative inverse b(x)−1 mod a(x)
is v(x) since

1 = a(x)w(x) + b(x)v(x)
1 ≡ b(x)v(x) mod a(x) (2.32)
1 ≡ b(x)b(x)−1 mod a(x)

and thus the multiplicative inverse can be found by the EEA. The EEA can also be
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Algorithm 1 Extended Euclidean Algorithm (EEA)
Input: polynomial a(x), b(x)

1: r0(x)← a(x), r1(x)← b(x)
2: w0(x)← 1, w1(x)← 0
3: v0(x)← 0, v1(x)← 1
4: i← 2
5: while ri−1(x) ̸= 0 do
6: qi(x)← quotient of ri−2(x)/ri−1(x)
7: ri(x)← remainder of ri−2(x)/ri−1(x) = ri−2(x)− qi(x)ri−1(x)
8: wi(x)← wi−2(x)− qi(x)wi−1(x)
9: vi(x)← vi−2(x)− qi(x)vi−1(x)

10: i← i+ 1
11: c← the leading coefficient of ri−2(x)
12: d(x)← monic polynomial ri−2(x)/c
13: w(x)← wi−2(x)/c
14: v(x) = vi−2(x)/c
Output: d(x), w(x), v(x)

used to calculate values v(x) and d(x) for known polynomials a(x), b(x) satisfying

d(x) ≡ b(x)v(x) mod a(x) (2.33)

which is needed for decoding Goppa codes (see Eq. (2.28)) and Generalized Goppa
Codes (GGC) in Section 4.1.2.

The EEA can also be used for solving the key equation as described in [Rot06,
Sec. 6.4]. Algorithm 2 reflects the steps necessary to determine the ELP σ(x) and the
EEP η(x) knowing the syndrome polynomial s(x) and the Goppa polynomial g(x) of
an Γ(L, g))-code. In contrast to Algorithm 1, Algorithm 2 stops at Line 5 when the
degree of ri−1(x) falls below deg(g(x))

2 such that

deg(ri−1(x)) < deg g(x)
2 ⩽ deg(ri−2(x)). (2.34)

We denote the value of i− 1 when the algorithm stopped, with µ. Then the outputs
rµ(x) and vµ(x) are unique [Rot06, Prop. 6.4] and σ(x) = rµ(x)/c and ν(x) = vµ(x)/c.
The outputs satisfy the properties for the key equation (2.26)-(2.28) with [Rot06,
Prop. 6.3]

gcd(c−1vµ(x), c−1rµ(x)) = 1 (2.35)
deg(c−1vµ(x)) + deg(c−1rµ(x)) < deg(g(x)) (2.36)

c−1vµ(x)s(x) ≡ c−1rµ(x) mod g(x). (2.37)
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Algorithm 2 Extended Euclidean Algorithm (EEA) for Solving the Key Equation
Input: polynomial g(x), s(x)

1: r0(x)← g(x), r1(x)← s(x)
2: w0(x)← 1, w1(x)← 0
3: v0(x)← 0, v1(x)← 1
4: i← 2
5: while ri−1(x) ̸= 0 and deg(ri−1(x)) ⩾ deg(g(x))/2 do
6: qi(x)← quotient of ri−2(x)/ri−1(x)
7: ri(x)← remainder of ri−2(x)/ri−1(x) = ri−2(x)− qi(x)ri−1(x)
8: wi(x)← wi−2(x)− qi(x)wi−1(x)
9: vi(x)← vi−2(x)− qi(x)vi−1(x)

10: i← i+ 1
11: c← the constant coefficient of ri−1(x), if it exists
12: rµ(x)← ri−1(x)/c
13: wµ(x)← wi−1(x)/c
14: vµ(x)← vi−1(x)/c
Output: rµ(x), wµ(x), vµ(x)

2.3 Syndrome Decoding Problem (SDP)
In decoding, the goal is to find the closest codeword c to a given noisy received word r.
In other words for r = c + e and c a codeword, the goal is to find the error e with
wt(e) = we. This problem is equivalent to the problem of syndrome decoding in
Definition 2.7.

Definition 2.7 (Syndrome Decoding Problem).
For a given parity-check matrix H ∈ F(n−k)×n

q with rank n−k and syndrome s ∈ Fn−k
q ,

find a vector e with Hamming weight wt(e) = we such that s = eH⊤.

Basically, the SDP is like solving a linear system of equations with a non-linear
constraint for the solution. Were it not for the constraint of the Hamming weight
wt(e) = we, then the task would be easily solved by matrix inversion and thus Gaus-
sian elimination. There exist some codes and decoding distances we for which the
problem is easy to solve (e.g. the constraint of we = 1 is easy to solve). For well-
chosen codes and we the problem is hard to solve.

For estimating the complexity of the SDP Definition 2.7 is rephrased in a decisional
problem in Definition 2.8 (yes-no question).

Definition 2.8 (Decisional Syndrome Decoding Problem).
For inputs H ∈ F(n−k)×n

q and s ∈ F1×n−k
q where n, k, we are positive integers with

k ⩽ n and integer we ⩽ n, decide whether there exists an e ∈ Fn
q of Hamming weight

we such that s = eH⊤.

In 1978, Berlekamp [BMT78] showed that the Decisional Syndrome Decoding Prob-
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lem for q = 2 is in the complexity class of NP-complete. And in 1994, Barg [Bar94;
Bar97] showed the NP-completeness over all finite fields. NP-complete is a term from
computational complexity theory meaning that for a Turing machine (mathematical
model of a general classical computer) the complexity for solving the task lies in the
class of NP (Non-Deterministic Polynomial) and is the hardest problem in this class.
The NP-complete class belongs to the EXP (Exponential) class without the P (Polyno-
mial) class (assuming P̸=NP), meaning that the syndrome decoding problem cannot be
solved in polynomial time by a Turing machine for all inputs. Generally speaking, it
is hard to solve a problem that lies in NP-complete. The syndrome decoding problem
is also hard to solve for quantum computers, although there exist quantum algorithms
that bring speed-ups [CDE21; BR22].

The security of code-based cryptography is build on the hardness of solving the
SDP when, for example, parity-check matrices H and error vectors e are uniformly
chosen at random. The security of such a cryptosystem relies then on the hardness
of the decoding problem when the input is a random linear code.

Definition 2.9 (Cryptographic Decoding Problem).
For inputs H and s with H a uniformly at random chosen parity-check matrix H $←
F(n−k)×n

q and vector x $← F1×n
q such that s = xH⊤ with wt(x) = we, find an error

e ∈ F1×n
q of Hamming weight wt(e) = we such that s = eH⊤.

The task of finding a vector e does not necessarily mean to recover exactly x. For
cryptography it is enough to find an e satisfying the conditions in Definition 2.9.
However, if we is smaller than half of the minimum distance of the chosen code, the
solution is unique.

The hardness of the SDP can be used to construct public-key cryptosystems. The
best known algorithms to solve the SDP are based on Information Set Decoding (ISD)
(see also Section 3.5.2).

17





Chapter 3
Introduction to the McEliece
Cryptosystem and its Variations
The Classic McEliece cryptosystem [BCL+20] is an asymmetric (public-key) Key En-
capsulation Mechanism (KEM) based on the McEliece and Niederreiter cryptosystem
[McE78; Nie86] using Goppa codes as the underlying linear code. It is believed to be
resistant against attacks from quantum computers.

The McEliece and Niederreiter cryptosystem have been adopted by Bernstein et
al. [BCL+20] to design the Classic McEliece cryptosystem for submission to the
NIST post-quantum cryptography competition as a KEM meeting the requirements
set by NIST (see [Nat16]). A KEM is a cryptographic protocol that uses asymmet-
ric algorithms to transmit symmetric keys for further communication via symmetric
cryptography. The symmetric keys can be randomly generated by the asymmetric
algorithm. Thus, the secret message in Classic McEliece is randomly chosen. As
a requirement for KEMs, these cryptosystems need to be designed to meet the re-
sistance requirements against adaptive chosen ciphertext attacks (IND-CCA2) and
chosen plaintext attacks (IND-CPA) (more in Section 3.4). Compared to other NIST
candidates Classic McEliece is very efficient in encoding and decoding. Its drawback
is that it needs very large public keys to achieve the desired security levels.

The underlying McEliece Public-Key Encryption (PKE) is the oldest known and
well-researched cryptosystems among the PQC systems submitted to NIST. It was
first described by McEliece in 1978 [McE78] using classical Goppa codes. The security
of the system is based on the hardness of the syndrome decoding problem (SDP)
for error-correcting codes, which is discussed in Section 2.3. It corresponds to the
hardness of decoding a random linear code. Without the secret key, the linear code
looks like a random code and thus one would need to solve the hard SDP. Only if the
algebraic structure of an error-correcting code is known, then there exist fast decoders
for decoding. A legitimate user knows the algebraic structure using its secret key and
has therefore access to an efficient decoder. The original cryptosystem of McEliece
consists of a scrambled public key that is left multiplied by an invertible matrix
and right multiplied by a permutation matrix, but in Classic McEliece scrambling is
achieved by calculating the systematic form using Gaussian elimination.

In 1986, Niederreiter [Nie86] introduced a new version of the McEliece public-key
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3 Introduction to the McEliece Cryptosystem and its Variations

cryptosystem. The main difference between McEliece and Niederreiter is, that in
McEliece’s cryptosystem the public key consists of a generator matrix of a code and
in Niederreiter’s cryptosystem the public key consists of a parity-check matrix. The
McEliece cryptosystem and the Niederreiter cryptosystem based on Goppa codes
have the same security when set up with the same parameters [LDW94]. In Clas-
sic McEliece, the Niederreiter cryptosystem is implemented because it gives better
efficiency in computations, e.g. the parity-check matrix of the Goppa code can be
directly set up at construction and there is no need to compute a generator matrix
and reverse to a parity-check matrix for decoding. Therefore, in Classic McEliece the
public key is represented with the parity-check matrix.

The secret key of Classic McEliece consists of the Goppa polynomial and the code
locators of a Goppa code (see also Section 2.1.3). The chosen Goppa code needs
to be kept secret. The public key is a scrambled version of the parity-check matrix
constructed using the secret key and Gaussian elimination that destroys the structure
in the matrix. For encryption, a random vector x with Hamming weight wt(x) = we

is chosen and multiplied with the public key. The ciphertext is then a syndrome. For
decryption, the syndrome can be efficiently decoded using the secret key (see also
Section 2.1.4).

Several authors proposed to replace the binary Goppa codes in the McEliece cryp-
tosystem with other linear codes from different families, e.g. GRS codes [Nie86], Reed-
Muller codes [Sid94], Quasi-Cylic Low Density Parity Check (QC-LDPC) [BCGM07]
often with the goal of reducing the public key size. However, many of them turned
out to be broken and insecure due to structural attacks that recover the secret key
from the public key by distinguishing the code from a random code. For example,
McEliece with GRS codes was proposed in 1986 by Niederreiter [Nie86] and broken by
Sidelnikov & Shestakov in 1992 [SS92]. More details can be found in Section 3.5.1. So
far, the McEliece cryptosystem using Goppa codes remains and keeps still its security
and is assumed to be resistant against structural attacks if parameters are chosen
accordingly.

In summary, the key strength of Classic McEliece is its long history of research on
its security. It is very efficient in encoding and decoding, but it has a large public key
size compared to other KEMs, which is a drawback in computation time and storage
space.

In the following sections, the Classic McEliece cryptosystem is described. In Chap-
ter 5 the work depends on the Classic McEliece implementation submitted for NIST
competition Round 2 [BCL+19], and in Chapter 6 on the implementation submitted
for Round 3 [BCL+20].

3.1 McEliece Cryptosystem
The McEliece cryptosystem first described by McEliece in 1978 [McE78] uses classical
Goppa codes. It is a Public-Key Encryption (PKE) system. The secret key consists of
a generator matrix G, a scrambling marix S and a permutation matrix P. The public
key is a scrambled and permuted version of the generator matrix from the secret key.
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Alice Bob
public system parameters

n, m, t

Key generation:

g(x) $← F2m [x], irreducible, degree t

Calculate G, generator matrix of an
[n, k ⩾ n−mt, d ⩾ t + 1] Γ (L, g(x)) code

S $←− Fk×k
2 non-singular, dense

P $←− Fn×n
2

G′ = SGP public key G′

Encryption:
u ∈ Fk

2

e $←− Fn
2 with wtH(e) = t

ct = uG′ + e

ciphertext ct

Decryption:
ct′ = ctP−1

Decoding to u′

u = u′S−1

Figure 3.1: Summary of the McEliece cryptosystem in a protocol view. Alice is generating
the keys. Bob encrypts the secret message u and sends it in encrypted form to Alice. Only
Alice with her secret key can decrypt the ciphertext ct to obtain the plaintext of the secret
message of Bob.

For the key generation, a binary irreducible Goppa code of code length n and
dimension k with a random irreducible Goppa polynomial of degree t over F2m is
chosen. The parameters n, t,m are publicly known. A generator matrix G of size
k×n for the previous chosen code, a random dense k×k non-singular matrix S and a
random n×n permutation matrix is produced. These matrices are kept private. The
public key is calculated with G′ = SGP. This public generator matrix G′ generates
a linear code with the same rate and minimum distance as the code generated by G.

For encryption, a plaintext message of length k, denoted by u, is first multiplied
by the public generator matrix G′ ∈ Fk×n

2 . Then, a random vector e of length n and
Hamming weight t is added to the product, such that the ciphertext is ct = uG′ + e
and has size n.

For decryption, the ciphertext is right multiplied by the inverse of the permutation
matrix P−1, such that ct′ = ctP−1. The resulting vector ct′ is then an erroneous
codeword in the previously chosen Goppa code and can be decoded to u′ using an
efficient decoding algorithm. The original plaintext u is obtained by computing u =
u′S−1.
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3 Introduction to the McEliece Cryptosystem and its Variations

A summary is given in Fig. 3.1, where Alice and Bob are two interlocutors that
communicate via encrypted messages.

3.2 Niederreiter Cryptosystem
The Niederreiter cryptosystem [Nie86] is also a PKE system and by using Goppa codes
as the underlying linear error-correcting code, it is the dual version of the McEliece
cryptosystem. The secret key consists of a parity-check matrix, a scrambling matrix M
and a permutation matrix P. The public key is a scrambled and permuted version of
the parity-check matrix of the secret key.

For key generation, a linear error-correcting code of length n, dimension k and
error-correction capability t is chosen. The code length n and the extension degree m
is publicly known. A parity-check matrix of the chosen code is computed. Let M be
a randomly chosen non-singular matrix of size (n − k) × (n − k) and P a randomly
chosen permutation matrix of size n×n that can be generated by permuting the rows
of a non-singular diagonal matrix. To compute the public key K, the secret parity-
check matrix is left multiplied by the scrambling matrix M and right multiplied by
the permutation matrix P, such that K = MHP.

Alice Bob
public system parameters

n, m, t

Key generation:
Choose a linear error-correcting code C
Calculate H, parity-check matrix of C
M $←− F(n−k)×(n−k)

2 non-singular

P $←− Fn×n
2

K = MHP public key K

Encryption:
y ∈ Fn

2 with wtH(y) ⩽ t

ct = yK⊤

ciphertext ct

Decryption:

ct′ = ctM⊤−1

Decoding to y′

y = y′P⊤−1

Figure 3.2: Summary of the Niederreiter cryptosystem in a protocol view. Alice is gener-
ating the keys. Bob encrypts the secret message y and sends it in encrypted form to Alice.
Only Alice with her secret key can decrypt the ciphertext ct to obtain the plaintext of the
secret message of Bob.
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3.3 Classic McEliece Cryptosystem

For encryption, a plaintext message y of length n with Hamming weight wtH(y) ⩽ t

is multiplied by the public parity-check matrix K ∈ F(n−k)×n
2 , such that the ciphertext

is ct = yK⊤ and has size (n− k).
For decryption, the ciphertext is right multiplied by the inverse of the transposed

scrambling matrix M⊤−1 , such that ct′ = ctM⊤−1 . The resulting vector ct′ corre-
sponds to yP⊤H⊤ = y′H⊤ and y′ is found by using an efficient decoding algorithm.
The original plaintext y is obtained by computing y = y′P⊤−1 .

It has been shown that the original proposed Niederreiter cryptosystem using Reed-
Solomon codes is vulnerable to structural attacks (see also Section 3.5.1). However,
using Goppa codes as the underlying linear error-correcting code, it is still today
unbroken.

A summary is given in Fig. 3.2, where Alice and Bob are two interlocutors that
communicate via encrypted messages.

3.3 Classic McEliece Cryptosystem
Classic McEliece is a Key Encapsulation Mechanism (KEM) that is build on the
Niederreiter cryptosystem using Goppa codes as the underlying error-correcting code.
The encryption and decryption algorithms are incorporated into an encapsulation
and decapsulation algorithm, which generate and recover a secret symmetric key to
be used in further communication over a symmetric cryptosystem. This symmetric
key is also called shared secret or session key, as for every new connection a new
symmetric key is exchanged using the KEM.

The cryptosystem implements three main algorithms: key generation, encapsulation
with encryption and decapsulation with decryption. The key generation algorithm
produces a key pair consisting of public and secret (private) key. The encapsulation
algorithm chooses a random vector, calculates its ciphertext and generates a secret
session key from the combination of both. The decapsulation algorithm decrypts the
ciphertext and recovers the secret session key.

We represent here the “Model Classic McEliece” as described in [BCL+20] for better
readability. The description of the actual implementation with representation in bits
is given where it is necessary.

The hash function that is used in the cryptosystem is the SHA-3 Keccak SHAKE-
256 hash function defined in [Nat15] and is denoted byH, whose output is the first 256
bits of SHAKE256(x), independent of its input length. In particular, we write H(2,v)
and H(i,v, C) for the hash of the concatenation of an initial byte valued i ∈ {0, 1} or
2, vector v ∈ Fn

2 and ciphertext C, see also [BCL+20, Sec. 2.5.2].

3.3.1 Key generation
The goal of the key generation is to generate a secret (private) key and the correspond-
ing public key. In our model the secret key is a tuple (s, γ) where s is a bit-vector
in Fn

2 and γ = ( g(x),L ) a generator tuple consisting of the monic irreducible Goppa
polynomial g(x) ∈ F2m [x] of degree t and the support L = (α1, . . . , αn) with code
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3 Introduction to the McEliece Cryptosystem and its Variations

locators αi for i = 1, . . . , n. Then, γ defines the binary irreducible Goppa code (see
also Eq. (2.12))

Γ(L, g) =
{

(c1, . . . , cn) ∈ Fn
2 |

∑
i∈supp(c)

1
(x−αi) = 0 in F2m [x]/g(x)

}
⊆ Fn

2 (3.1)

with αi ̸= αj for i ̸= j and g(αi) ̸= 0. In the actual implementation the secret key
does not contain the support L explicitly, but instead the seed of the random function
that is used to generate it.

Algorithm 3 presents the construction of the secret and public keys in Classic
McEliece. The public key is given by the matrix T ∈ F(n−k)×k

2 , that is computed via
a parity-check matrix in systematic form

Hsys = (In−k|T) (3.2)

where In−k is the identity matrix of size n − k. If H has not full rank, then the
systematic form cannot be computed in Line 5 of Algorithm 3 and the key generation
algorithm needs to start over with a new tuple γ. On average this takes about three
trials. This ensures that the Goppa code Γ(L, g) has dimension k = n−mt with code
length n and allows efficient correction of up to t errors.

Note, that in particular the code Γ(L, g) itself is public knowledge since T is public.
However, the algebraic structure, i.e. the Goppa polynomial and the support, are part
of the secret key. The Gaussian elimination used for computing the systematic form
destroys the structure of the code in the parity-check matrix such that T looks like a
random matrix.

3.3.2 Encapsulation
For encapsulation, a random vector e ∈ Fn

2 of Hamming weight t is generated. The
ciphertext C = (c0, C1) is generated by encoding the vector e using the public key
such that c0 = eHsys

⊤ and by calculating the hash C1 = H(2, e). The secret session
key K is then the hash H(1, e, C).

The encapsulating party uses the public key and the random vector as plaintext
to generate a ciphertext from which only the holder of the secret key can extract the
random plaintext again. This can be used to establish a common secret session key.
Details can be found in Algorithm 4 and Algorithm 5.

3.3.3 Decapsulation
In Algorithm 6, the session key K is reconstructed by the decapsulating party holding
the secret key. Decapsulation is done by splitting the received ciphertext C = (c0, C1)
in parts c0 ∈ Fn−k

2 and the hash C1. c0 is decoded to a vector e′ ∈ Fn
2 of weight t using

the secret γ of the Goppa code. Then the result is verified by calculating C ′
1 = H(2, e′)

and checking if C ′
1 and C1 are equal. If no error occurred and C ′

1 and C1 match, then
the output is the reconstructed session key K ′ = H(1, e′, C) and K is equal to K ′. The
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3.3 Classic McEliece Cryptosystem

Algorithm 3 Key Generation
Input: parameters m, t, n ≤ 2m, f(z) ∈ F2[z] irreducible of degree m.
Output: secret key (sr, γ), public key T.

1: Generate a uniformly random monic irreducible polynomial g(x) ∈ F2m [x] of de-
gree t.

2: Select a uniform random sequence L = (α1, α2, . . . , αn) of n distinct elements
in F2m .

3: Compute the t × n matrix H = {hij} over F2m where hij = αi−1
j /g(αj) for i ∈

[t], j ∈ [n], i.e.

H =



1
g(α1)

1
g(α2) · · ·

1
g(αn)

α1
g(α1)

α2
g(α2) . . . αn

g(αn)
... ... . . . ...

αt−1
1

g(α1)
αt−1

2
g(α2) · · ·

αt−1
n

g(αn)

 .

4: Form matrix Ĥ ∈ Fmt×n
2 by replacing each entry c0 + c1z + ... + cm−1z

m−1 ∈
F2[z]/⟨f(z)⟩ ∼= F2m of H ∈ Ft×n

2m with a column of m bits c0, c1, ..., cm−1.
5: Reduce Ĥ to systematic form (In−k|T) where In−k is an identity matrix of (n −
k)× (n− k) and k = n−mt .

6: If Step 5 fails, go back to Step 1 .
7: Generate a uniform random n-bit string sr (needed if decapsulation fails).
8: Output secret key: (sr, γ) with γ = (g(x), α1, α2, ..., αn)
9: Output public key: T ∈ F(n−k)×k

2

Algorithm 4 Encoding
Input: weight-t row vector e ∈ Fn

2 , public key T
Output: syndrome c0

1: Construct Hsys = (In−k|T).
2: Compute and output c0 = eHsys

⊤ ∈ Fn−k
2 .

Algorithm 5 Encapsulation
Input: public key T
Output: session key K, ciphertext C

1: Generate a uniform random vector e ∈ Fn
2 of Hamming weight t.

2: Use the encoding subroutine defined in Algorithm 4 on e and public key T to
compute c0.

3: Compute C1 = H(2, e) (input to hash function is a concatenation of 2 and e as
a 1-byte and ⌈n/8⌉-byte string representation).

4: Put C = (c0, C1) .
5: Compute K = H(1, e, C) (input to hash function is a concatenation of 1, e and
C as a 1-byte, ⌈n/8⌉-byte and ⌈mt/8⌉+ ⌈ℓ/8⌉ string representation).
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Algorithm 6 Decapsulation
Input: ciphertext C, private key (s, γ)
Output: session key K ′

1: Split the ciphertext C as (c0, C1) with c0 ∈ Fn−k
2 and hash C1.

2: Set b← 1.
3: Use the decoding subroutine defined in Algorithm 7 on c0 and private key γ to

compute e′. If the subroutine returns Failure, set e′ ← s and b← 0.
4: Compute C ′

1 = H(2, e′) (input to hash function is concatenation of 2 and e′ as a
1-byte and ⌈n/8⌉-byte string representation).

5: If C ′
1 ̸= C1, set e′ ← s and b← 0.

6: Compute K ′ = H(b, e′, C) (input to hash function is concatenation of b, e′ and C
as a 1-byte, ⌈n/8⌉-byte and ⌈mt/8⌉+ ⌈ℓ/8⌉ string representation).

7: Output session key K ′.

Algorithm 7 Decoding
Input: vector c0 ∈ Fn−k

2 , private key (s, γ)
Output: weight-t vector e′ ∈ Fn

2 or Failure
1: Extend c0 to v = (c0, 0, ..., 0) ∈ Fn

2 by appending k zeros.
2: Find the unique codeword c in the Goppa code defined by γ that is at distance
≤ t from v. If there is no such codeword, return failure.

3: Set e′ = v + c.
4: If wt(e′) = t and c0 = e′Hsys

⊤, return e′, otherwise return Failure.

encapsulating party and decapsulating party will then both know the same session
key K. In case the input c0 or C1 is no valid ciphertext, the decoding step will fail,
or the plaintext confirmation of C ′

1 = C1 will fail. In this case a predefined output
K ′ = H(0, s, C) is returned, where s ∈ Fn

2 is part of the secret key (see line 7 in
Algorithm 3). These checks are implemented to protect against chosen-ciphertext
attacks.

For decoding, the syndrome c0 = eHsys
⊤ ∈ Fn−k

2 is first appended with k zeros to
form a received vector v = (c0, 0, . . . , 0) ∈ Fn

2 in Algorithm 7 - Line 1. By construction,
the syndrome of v with Hsys is exactly c0 such that c0 = vHsys

⊤. Then, different
syndrome-based unique decoders can be used to decode v and to find a codeword
c ∈ Γ(L, g) such that v = c + e. Classic McEliece uses the Berlekamp-Massey
Algorithm [Ber68; Mas69b] in Algorithm 7 - Line 2 that calculates the ELP σe(x)
(see Section 2.1.4 with p = 2), whose degree is the number of positions in v that
need to be corrected in order to receive a valid codeword c. The error e can then be
reconstructed directly from the zeros of σe(x), since ei = 1 if and only if σe(αi) = 0
for all i ∈ {1, . . . , n}. The roots of the ELP correspond to the specific positions that
need to be corrected. The reconstructed error vector e′ is returned if its Hamming
weight is t and the re-encoding e′Hsys

⊤ matches with the input vector c0, otherwise
Failure is given back to the decapsulation algorithm.
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3.4 Security Levels and Categories

CAT 1 “Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 128-bit key (e.g. AES 128)”

CAT 3 “Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 192-bit key (e.g. AES 192)”

CAT 5 “Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 256-bit key (e.g. AES 256)”

Table 3.1: NIST defined categories, extracted from [Nat16].

AES 128 2170/MAXDEPTH quantum gates or 2143 classical gates
AES 192 2233/MAXDEPTH quantum gates or 2207 classical gates
AES 256 2298/MAXDEPTH quantum gates or 2272 classical gates

Table 3.2: NIST defined security levels, extracted from [Nat16].

3.4 Security Levels and Categories
A cryptosystem submitted to NIST must be designed such that the security of the
system can be categorized in one or more of the NIST-defined categories. The cat-
egories CAT 1, CAT 3 and CAT 5 are listed in Table 3.1. NIST writes that the
computational resources for an attack must be comparable or greater than the stated
threshold with respect to all metrics that NIST thinks that are potentially relevant
for practical security [Nat16, p. 17]. NIST also writes that they consider a variety
of possible metrics that reflect different predictions about the future development of
quantum and classical computing technology and that those metrics can change over
time during the standardization competition. As a preliminary, NIST gave the se-
curity levels in Table 3.2 as guidance to the submitters. In Table 3.2 the variable
MAXDEPTH takes values from 246 to 296 (for details see [Nat16, p. 17]).

In Classic McEliece the parameters n,m, t need to be chosen such that they meet
the security categories defined by NIST. The submitters chose CAT 1, CAT 3 and
CAT 5 for interest. To choose good parameters for the specified security categories, the
attacks in the following list need to be considered. As a prerequisite, the cryptosystem
needs to be designed to be based on a mathematically hard to solve problem. In Classic
McEliece this is the SDP for decoding random linear codes (see also Section 2.3). It
needs to be investigated that for chosen parameters it is hard for an attacker to obtain

1. the secret key (Key Attack - in Section 3.5.1) and

2. the secret message (Message Attack - in Section 3.5.2).

The submitters of Classic McEliece chose the parameters listed in Table 3.3. In
2022, Zweydinger et al. [EMZ22] state that the code parameters specified for CAT 3
with n = 4608 and the parameters specified for CAT 5 with n = 6688 and n = 6960
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Security Category n m t

CAT 1 3488 12 64
CAT 3 4608 13 96
CAT 5 6688 13 128
CAT 5 6960 13 119
CAT 5 8192 13 128

Table 3.3: Parameter Sets of Classic McEliece KEM [BCL+20]

do not meet the necessary security levels. Thus, parameters are under discussion in
the community [PQC20; PQC21].

Not only security levels are important, but also the construction of the KEM as
cryptographic protocol. A KEM needs to meet the requirements for Indistinguisha-
bility under Chosen Ciphertext Attacks (IND-CCA2) and Indistinguishability under
Chosen Plaintext Attacks (IND-CPA) [Nat16, p. 14-15]. IND-CPA means that an
attacker who can generate ciphertexts from arbitrary plaintexts, which is always the
case in a public-key cryptosystem, cannot distinguish between the input plaintexts by
looking at the ciphertexts. Otherwise, the attacker could learn something about the
secret key. IND-CCA2 means that an attacker with access to a decryption function
can decrypt arbitrary ciphertexts but cannot distinguish from the different outputs
which ciphertext has been decrypted and thus cannot learn anything about the secret
key. It is ensured that no secret data is leaked if faulty ciphertexts are processed.
These can be formalized considering the following games [KL21, p.405, p.414]. Let’s
assume an adversary A, which has in the case of IND-CPA access to an encryp-
tion algorithm Enc (e.g. Algorithm 5) and in the case of IND-CCA2 also access to
a decryption algorithm Dec (e.g. Algorithm 6). At the beginning of the games, a
probabilistic polynomial-time key generation algorithm Gen (e.g. Algorithm 3) with
security parameter 1λ chooses according to some distribution a public and private key
pair (pk, sk). It is assumed that these keys have a length of at least λ. The public key
pk is given to the adversary A. The adversary A generates two plaintext messages
m0 and m1 from the message spaceMpk defined by the public key pk. The challenger
chooses uniformly at random from {0, 1} and encrypts the message mb using the en-
cryption algorithm The challenge ciphertext is given to A. The adversary A needs
to decide, whether the message m0 or the message m1 corresponds to the challenge
ciphertext. For IND-CPA, the adversary A has access to the encryption algorithm
as long as she needs (adaptively). For IND-CCA2, the adversary A has access to
the encryption and the decryption algorithm as long as she needs (adaptively). She
stores her decision to b′. If b′ = b, then A succeeds and the experiment outputs 1
otherwise 0. The public-key cryptosystem has indistinguishable encryptions under a
chosen-plaintext attack if for all probabilistic polynomial-time adversaries A there is
a negligible function negl(.) such that

Pr[ IND-CPAA
Enc(λ) = 1] ⩽ 1

2 + negl(λ). (3.3)
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(a) IND-CPA (b) IND-CCA2

Figure 3.3: IND-CPA and IND-CCA2 games

The public-key cryptosystem has indistinguishable encryptions under a chosen-cipher-
text attack if for all probabilistic polynomial-time adversaries A there is a negligible
function negl(.) such that

Pr[ IND-CCAA
Dec(λ) = 1] ⩽ 1

2 + negl(λ). (3.4)

A summary is shown in Algorithm 8 and Algorithm 9 and depicted in Section 3.4.
These games can also be transformed to KEMs that operate on encapsulation and

decapsulation algorithms. The IND-CCA2 security can be achieved by implementing
the Fujisaki-Okamoto transform [FO13] that most of the cryptosystems submitted to
NIST integrate. Classic McEliece takes another approach and achieves IND-CCA2

Algorithm 8 IND-CPAA
Enc(λ)

1: (pk, sk) $← Gen(1λ)
2: Public key pk is given to the adversary.
3: Access to Enc is given to the adversary.
4: A chooses two messages m0,m1 ∈ Mpk of the same length and sends it to the

challenger.
5: Challenger chooses b $← {0, 1} and sends a ciphertext ct← Enc(pk,mb) to A.
6: A has still access to Enc
7: A outputs a bit b′.
8: Return 1 if b = b′, 0 else.
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Algorithm 9 IND-CCA2A
Dec(λ)

1: (pk, sk) $← Gen(1λ)
2: Public key pk is given to the adversary and thus access also to Enc.
3: Access to Dec is given to the adversary.
4: Adversary A chooses two messages m0,m1 ∈ Mpk of the same length and sends

it to the challenger.
5: Challenger chooses b $← {0, 1} and sends a ciphertext ct← Enc(pk,mb) to A.
6: Adversary A has still access to Dec, but it is not allowed to request a decryption

of ct itself.
7: Adversary A outputs a bit b′.
8: Return 1 if b = b′, 0 else.

security in its own way with plaintext confirmation in Line 3 and Line 4 of Algorithm 5
and implicit rejection in Algorithm 6). In the submission for Round 4 [BCL+22] the
plaintext confirmation in Line 3 of Algorithm 5 has been removed due to a patent
inquiry.

NIST also states that submissions whose implementation is resistant to side-channel
attacks, multi-key attacks and misuse are more desirable than those which are not.
The designers have the problem to find the best trade-off between security, speed and
implementation aspects of a cryptosystem.

3.5 Best Known Attacks
The two different attack scenarios mentioned above are studied. The first attack
scenario is to recover the private key from the public key (key attack). If successful,
it allows the attacker to reveal all secret information and impersonate the attacked
party. The second attack scenario is to recover the secret message from the ciphertext
using the public key, without learning about the private key (message attack). In a
message attack, a single secret message is revealed. To reveal multiple messages, the
message attack needs to be repeated. The most efficient attacks known for message
attacks are based on ISD.

3.5.1 Find secret key from public key - Key Attack
Attacks that find the secret key by knowing only the public key and the public pa-
rameters n,m, t are also known as structural attacks. Multiple aspects need to be
taken into account when designing the cryptosystem to prevent key attacks.

First, it needs to be ensured that the parameters n and t are large enough such
that it is hard to find the secret key from the public key T by trying all possible
constructions of codes with n and t. This is the case for the proposed parameters.
There exists I2m(t) different possibilities for choosing an irreducible Goppa polynomial
of degree t over F2m (see Eq. (4.7)) and there exist

(
2m

n

)
n! different possibilities of
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Code class Proposal Attack
GRS codes 1986: Niederreiter [Nie86] 1992: Sidelnikov, Shestakov [SS92]
Gabidulin codes 1993: Gabidulin [Gab95] 1996: Gibson [Gib96]

2008: Overbeck [Ove08]
Reed-Muller codes 1994: Sidelnikov [Sid94] 2007: Minder, Shokollahi [MS07]

2013: Chizhov, Borodin [CB13]
Concatenated codes 1995: Sendrier [Sen95] 1998: Sendrier [Sen98]

2015: Puchinger et al. [PMIB17]
Algebraic geometry codes 1996: Janwa, Moreno [JM96] 2008: Faure, Minder [FM08]

2014: Couvreur et al. [CMP17]
Subcodes for GRS codes 2005: Berger, Loidreau [BL05] 2009: Wieschebrink [Wie10]
QC-LDPC 2007: Baldi et al. [BCGM07] 2010: Otmani et al. [OTD10]
MDPC 2013: Misoczki [MB09]

Table 3.4: Some proposals and corresponding attacks that break them for McEliece/Niedr-
reiter cryptosystem using other code classes.

choosing a set of code locators of size n. For the CAT 1 parameters with n = 3488,m =
12, t = 64 this is I212(64) = 2762 ≈ 10229 and 3488! ≈ 236022 ≈ 1010843. Together,
this makes 1011073 different possibilities, which is impossible to check in a brute-force
attack.

Second, the public key needs to be constructed such that it cannot be told whether
the parity-check matrix came from of a random code or from a particular family. The
parity-check matrix H is constructed using the Goppa polynomial and the code lo-
cators which constitute the secret key. Therefore, the secret information is contained
in the parity-check matrix and must be destroyed for publishing the public key. The
public key then looks as if it came from a random code. In the original McEliece cryp-
tosystem the destruction is done by left multiplying a permutation matrix and right
multiplying a scrambling matrix to the parity-check matrix H. In Classic McEliece
this essential security relevant step is done via the Gaussian elimination in Line 5 of
Algorithm 3 resulting in Hsys [BCL+20].

There exist many proposals to replace Goppa codes with other families of codes,
mostly in order to reduce the public key size. However, many of them are shown to be
insecure or inefficient. Table 3.4 represents some of the proposals and corresponding
breaks. These attacks use algorithms that run in polynomial time and allow fast
recovery of the secret key from the public key due to special structure of the public
key in these cryptosystems.

The original McEliece cryptosystem based on Goppa codes, which are subfield sub-
codes, still withstands cryptanalysis. It is known to be resistant against structural
attacks in polynomial time, as Goppa codes share many characteristics with random
codes. However, Goppa codes with a high rate close to one (see Eq. (2.4)) can be
distinguished from random codes [FGO+11]. Thus, the degree t of the Goppa poly-
nomial must be large enough for the distinguisher to stop working [FGO+11, Tab. 1],
which is the case for all parameters in Table 3.3. In 2017, Couvreur et al. [COT17]
found a method to attack Goppa codes that are constructed on field sizes F2

q with
m = 2.
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Third, it is needed to make sure that no part of the Goppa code of the secret
key is leaked. If the support or the Goppa polynomial is revealed then the Goppa
polynomial can be easily found and vice-versa.
Support Set is Known: In the case the support set L is known to the attacker, a cor-
responding Goppa polynomial can be computed in polynomial time using codewords
calculated from the public key T [BBD09, p. 125]. Some codewords c are generated
from the public key using G = [−T⊤ | In-k] and c = uG for any non-zero word u.
Then, the binary irreducible Goppa polynomial g(x) can be reconstructed using the
fact that g(x) divides ∑

i∈supp(c)

∏
j∈supp(c)

j ̸=i

(x− αj) (3.5)

with αj the code locators of the Goppa code. A concrete algorithm is given in Chap-
ter 6, Proposition 6.17.
Goppa Polynomial is Known: In the case the Goppa polynomial g(x) is known to the
attacker, the corresponding code locators α1, . . . , αn can be computed in polynomial
time using the public key T. From the Goppa polynomial g(x) a parity-check matrix H
using an arbitrary set L0 is constructed. The secret support L is then obtained
by applying the support splitting algorithm to the parity-check matrix H and Hpub
[BBD09, p. 125]. The support splitting algorithm computes the permutation between
two permutation-equivalent codes (see [BBD09, Sec. 4.2], [Sen00]). The permutation
between L0 and L is the same as the permutation between H and Hpub.

3.5.2 Information Set Decoding - Message Attack
A message attack tries to reconstruct the secret message from the ciphertext using the
known public key. There exist computationally intensive techniques for solving the
cryptographic decoding problem in Definition 2.9. An understanding and measure of
the complexity of the best decoding techniques is necessary to select secure cryptosys-
tem parameters. The most relevant decoding technique in this regard is Information
Set Decoding (ISD). The first idea for ISD traces back to Prange in 1962 [Pra62]. A
more concrete analysis was mentioned in [McE78] and given in [RN87; AM87]. Since
then many further improvements have been made.

The general idea consists of an attacker that repeatedly selects k symbols at random
from a received word r of length n in hope that none of the k chosen symbols are
in error. The k chosen symbols are denoted by rk ∈ Fk

2 and let R = {i1, . . . , ik} be
the set of index positions i1, . . . , ik ∈ {1, . . . , n} that were randomly selected. The
received word includes at most we errors. Then, the attacker takes the public key
G′ ∈ Fk×n

2 and selects the same k columns indexed by R to receive a k×k matrix G′
k.

She computes the inverse of G′
k and the secret message candidate ũ = rk ·G′

k
−1. If the

Hamming weight wt(r− ũG′) ⩽ we then ũ is our searched secret message. The vector
rk is then our error-free information set. For separable Goppa codes with d ⩾ 2t+ 1
at most t errors can be corrected and thus we = t. A summary of the described
algorithm is given in Algorithm 10.
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Algorithm 10 Prange ISD [Pra62; AM87]
Input: received word r, public key G′

Output: secret message ũ
1: repeat
2: Choose randomly k unique indices ia ∈ {1, . . . , n} with ia < ia+1 for a =

1, . . . , k
3: Select the symbols ria of r and construct rk = (ri1 , . . . , rik

)
4: Select the columns g′⊤

ia
of G′ to construct the k × k matrix G′

k = [g′⊤
i1 · · ·g

′⊤
ik

]
5: Compute the inverse G′

k
−1

6: Calculate the secret message candidate ũ = rk ·G′
k

−1

7: until wt(r− ũG′) ≤ we

The number of operations needed for the matrix inversion is O(ka), where a is
between 2 and 3. Assuming there are exactly we errors in the received word r, then
the number of different possibilities of choosing k out of n is

(
n
k

)
and the number of

possibilities to choose error-free symbols is
(

n−we

k

)
. Therefore, the probability of no

error in k randomly selected symbols of n symbols with we errors is (n−we
k )

(n
k)

. The total
expected work factor is then [AM87]

WFPrange = ka

(
n
k

)
(

n−we

k

) , (3.6)

with n the code length, k the dimension, we the number of errors and 2 < a ⩽ 3. For
simple schoolbook matrix inversion e.g. Gauss-Jordan elimination, the factor is a = 3.
For more elaborated matrix inversion algorithms a factor of a < 3 can be achieved
[Str69].

The above described ISD algorithm directly applies to the original McEliece cryp-
tosystem, whose public key is a scrambled generator matrix. But, this attack can
also be transformed to the Niederreiter cryptosystem that has a parity-check matrix
as public key. For the Niederreiter cryptosystem the syndrome s = c0 is a public
ciphertext. From the parity-check matrix K there are we columns randomly selected
to form an n− k × n− k matrix. These columns are summed up and checked if they
give the syndrome s.

The problem of generic decoding can be transformed to the problem of finding a
codeword of low weight in a slightly larger code. Algorithms addressing that problem
have been presented by Canteaut, Chabanne in 1994 [CC94], Canteaut, Chabaud in
1998 [CC98], Canteaut, Sendrier in 1998 [CS98], Engelbert et al. in 2007 [EOS07] and
Bernstein in 2008 [BLP08].

Based on the naive Prange ISD, many more elaborate ISD algorithms exist and
ISD algorithms have still today a broad attention for research. Lee, Brickell and van
Tilbourg [LB88; Til88] improved the work factor of Eq. (3.6) in 1988. The current
best known ISD algorithms are all variants and build upon Stern’s algorithm [Ste89]
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and Dumer [Dum91] in 1989/91, that combine the algorithm of Lee, Brickell with
birthday decoding.

The birthday decoding principle applied to the Niederreiter cryptosystem splits the
public key K into two equally sized parts K1 and K2 such that K = [K1K2] and
enumerates through the two following sets

A1 =
{

e1K⊤
1 | wtH(e1) = we

2

}
(3.7)

A2 =
{

e2K⊤
2 + s | wtH(e2) = we

2

}
(3.8)

where e1, e2 ∈ Fn/2
2 are the splits of e = (e1e2), which needs to be found. The goal is

to find we columns of K that add to the syndrome s. The vectors e1 and e2 for which
the intersection of the two sets is not the empty set A1 ∩ A2 ̸= ∅, are solutions of
the syndrome decoding problem with s + e1K⊤

1 + e2K⊤
2 = 0 mod 2. To obtain most

of the solutions, the principle needs to be applied to different splits of the public key
K e.g. by randomly picking the columns for the two halves, or by allowing the two
halves to overlap such that some columns of K are part of both K1 and K2.

For the Stern/Dumer algorithm the public key K need to be transformed such that
K′ ∈ F(n−k)×n

2 in the following form

K′ =
[
In−k−l K′

top
0 K′

bottom

]
(3.9)

is achieved, with K′
top ∈ F(n−k−l)×(k+l)

2 and K′
bottom ∈ Fl×(k+l)

2 . For this, the public key
matrix is multiplied by an invertible matrix U and a permutation matrix P. Then,
K′ = UKP and the syndrome transforms to s′ = sU⊤. The searched error vector
e is also transformed to e′ = eP and to receive the plaintext by knowing e′, a back
transformation to e = e′P⊤−1 is needed. Corresponding to the above form in Eq. (3.9)
the syndrome is separated into s′⊤ = (s′

tops′
bottom) with s′

top ∈ Fn−k−l
2 and s′

bottom ∈ Fl
2.

The first step of the algorithm is then to apply the birthday decoding principle to
s′

bottom = e′
bottomK′

bottom
⊤ to find e′

bottom with wtH(e′
bottom) = a and 0 < a < we. The

second step applies the principle of Lee, Brickell and enumerates through all solutions
of e′

bottom and checks if the Hamming weight of e′
top = e′

bottomK′
top

⊤ + s′
top corresponds

to we− a. If wtH(e′
top) = we− a, then e = (e′

tope′
bottom)P⊤−1 In order to minimize the

complexity of the algorithm a good value of the parameters l and a must be found.
Bernstein et al. in 2011 [BLP11] use ball collision decoding. The MMT algorithm

introduced in 2011 by [MMT11] improves the algorithm by Dumer using improved
birthday decoding [HJ10], while BJMM in 2012 by [BJMM12] use further improved
birthday decoding. May-Ozerov [MO15] and Both May [BM18] again reduce the work
factor.

Esser, Bellini in 2021 [EB22] established a framework that analyses the complexity
of all these algorithms in a unified and practical model. They compare the different
variants and give concrete hardness estimations. The improvements compared to
the algorithm of Prange are mostly based on taking less computation operations at
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the cost of more memory use. Memory use also takes time and may slow down
the algorithm, which needs to be added to the work factors above. Thus, a trade-
off between operations and memory consumption needs to be taken into account.
Memory usage can be modeled. Prominent models take a logarithmic or cube-root
penalty factor, that is costs of T ·logM or T · 3

√
M , respectively, with time complexity T

and memory usage M [EB22]. Prange is a memory-free algorithm.
For cyclic codes there exists a speed-up for ISD algorithms in a factor of roughly

√
k

with k the dimension of the code [Sen11]. This speed-up is called Decoding One Out
of Many (DOOM), but that does not apply for Classic McEliece.

In 2010, Bernstein [Ber10] investigated ISD for quantum computers and found out
that they bring roughly a square-root speed-up.
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Chapter 4
Investigating Generalized Goppa
Codes
In this chapter Generalized Goppa Codes (GGC) are introduced. These codes are
defined by a Goppa polynomial g(x) and a set Lr of fractions of polynomials in Fq[x].
In the special case where all numerators of Lr are 1 and all denominators of Lr are
monic polynomials of degree 1, this corresponds to classical Goppa codes introduced
in Section 2.1.3. Therefore, GGC are an extension of classical Goppa codes to a new
class of codes. Generalized Goppa codes are also called generalized (L, g)-codes.

In Section 4.1 generalized Goppa codes and binary generalized Goppa codes are
investigated. A parity-check matrix for binary GGC with a set Lp of polynomials of
any degree is developed. It is shown that a careful selection of the polynomials in Lp
leads to a lower bound on the minimum Hamming distance of generalized Goppa codes
which improves upon previously known bounds. A syndrome-based unique decoder for
generalized Goppa codes which can decode errors up to half of the minimum distance
is presented.

Section 4.2 investigates the application of GGCs in a Niederreiter cryptosystem.
For this, binary GGCs are used. They have the advantage that the code length n can
be chosen bigger than the 2m allowed by classical Goppa codes. This allows to reduce
the field size, albeit at the cost of a reduced security level or a bigger public key size.

The content of Section 4.1.1 and Section 4.1.2 is a joint work with Hedongliang Liu
and has been published in [LPZW21, Sec. 3-4] 1. The code parameters in Section 4.2
have been published in [LPZW21, Sec. 6].

4.1 Generalized Goppa Codes
Generalized Goppa Codes are introduced by Shekhunova, Mironchikov and Bezzateev
in [SM81; BS97] and defined as follows.

Definition 4.1 (q-ary Generalized Goppa Codes [BS97; BS11]).
Let be given a Goppa polynomial g(x) ∈ Fq[x] of degree t and a support Lr of fractions

1Interleaved Generalized Goppa Codes in Section 5 of [LPZW21] are not part of this thesis.
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with polynomials φi(x), ψi(x) ∈ Fq[x] and deg(φi(x)) < deg(ψj(x)) such that

Lr =
(
φ1(x)
ψ1(x) ,

φ2(x)
ψ2(x) , . . . ,

φn(x)
ψn(x)

)
(4.1)

with gcd(φi(x), ψj(x)) = 1 for i ̸= j and ∀i, j ∈ {1, . . . , n}. Then, the q-ary GGC is
defined by

Γ(Lr, g) :=
{

c ∈ Fn
q |

n∑
i=1

ci
φi(x)
ψi(x) = 0 mod g(x)

}
, (4.2)

where gcd(φi(x), g(x)) = 1 and gcd(ψi(x), g(x)) = 1 for i ∈ {1, . . . , n}.

All φi(x) and ψi(x) are relatively prime to each other and to the Goppa polyno-
mial g(x).

Theorem 4.2 (q-ary GGC Minimum Distance).
The minimum distance of a generalized Goppa code satisfies ([BS11] without proof)

d ⩾
t+ 1
ℓ

(4.3)

and dimension k ⩾ n− t for ℓ = max(deg(ψi(x))) with i ∈ {1, . . . , n}.

4.1.1 Binary Generalized Goppa Codes
For binary GGC we have q = 2m with t = deg(g(x)). From definitions in Eq. (4.1)
and Eq. (4.2) a subclass of binary GGC [BS13, Chap. 3], denoted by Γ(Lp, g), can be
defined.

Definition 4.3 (Binary Generalized Goppa Codes).
Let be given a Goppa polynomial g(x) ∈ Fq[x] of degree t with q = 2m and a support
Lp of irreducible polynomials fi(x) ∈ Fq[x] such that

Lp =
(
f1(x), f2(x), . . . , fn(x)

)
(4.4)

with deg(fi(x)) ⩽ deg(g(x)) and gcd(fi(x), fj(x)) = 1,∀i ̸= j, and gcd(fi(x), g(x)) =
1, ∀i, j ∈ {1, . . . , n}. Then,

Γ(Lp, g) :=
{

c ∈ Fn
2 |

n∑
i=1

ci
f ′

i(x)
fi(x) = 0 mod g(x)

}
, (4.5)

is a generalized Goppa code, where f ′
i(x) is the formal derivative of fi(x).

The degree of fi(x) is denoted by li and ℓ is the maximum degree of all f(x) with

ℓ = max{li} = max
f(x)∈Lp

{deg(f(x))}. (4.6)
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Properties of Binary Generalized Goppa Codes:

Length: n ⩾ m · deg(g(x)) (4.20)

n ⩽
ℓ∑

i=1
Iq(i) (4.8)

Dimension: k = n− rank(Hbin) ⩾ n−m · deg(g(x)) (4.19)

Minimum distance: d ⩾ dg := deg(g(x)) + 1
ℓ

(4.21)

dsep := 2 · deg(g(x)) + 1
ℓ

(4.29)

Error-Correction Capability: we ⩽ wesep :=
⌊

deg(g(x))
ℓ

⌋
=
⌊
dsep

2

⌋
(4.39)

For ℓ = 1 we have a classical binary Goppa code that corresponds to Eq. (2.15) in
Section 2.1.3.

The code length n is bounded by the number of irreducible polynomials in F2m [x]
existing with degree smaller or equal to deg(g(x)) = t. For classical Goppa codes
the code length is limited by the field size q = 2m. The number Iq(τ) of irreducible
polynomials of a degree τ over Fq can be calculated ([Rot06, p. 225]) by

Iq(τ) = 1
τ

∑
k|τ
µ(k) · q τ

k (4.7)

where µ(k) is the Möbius function (cf. [Rot06, p. 224])

µ(k) =


1 if k = 1
(−1)s if k is a product of s distinct primes
0 otherwise.

Thus, the code length n is upper bounded with the following theorem.

Theorem 4.4 (Code Length [NB20a]).
Let q = 2m for some positive integer m and denote ℓ = maxf(x)∈Lp deg f(x). The
length of Γ(Lp, g) is limited by

n ⩽
ℓ∑

τ=1
Iq(τ), (4.8)

where Iq(τ) is the number of irreducible polynomials of degree τ in the polynomial ring
Fq[x].

Then, the maximum possible code length n for given degree t of the Goppa polynomial
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g(x) is
t∑

τ=1
Iq(τ). (4.9)

By definition in Eq. (4.4), the code locators in Lp are Fq-irreducible polynomials, which
can be represented by their roots in the splitting field such that (see also Theorem 2.5
in Chapter 2)

fi(x) =
li−1∏
j=0

(
x− γi

qj
)
, ∀i = 1, . . . , n (4.10)

of degree li, where γi
qj ∈ Fqli are the roots of fi(x) in the splitting field Fqli .

A parity-check matrix for binary GGC with code locators of first and second degree
is specified without a proof in [NB20b]. In the following theorem a parity-check matrix
for generalized Goppa codes with code locators of arbitrary degree is constructed.

Theorem 4.5 (Parity-Check Matrix).
Given a binary generalized Goppa code Γ(Lp, g) as in Eq. (4.5) with polynomials of
Eq. (4.10) in Lp. Let t = deg(g(x)) be the Goppa polynomial degree and n = |Lp| the
code length. A parity-check matrix H of Γ(Lp, g) is

H = [h⊤
1 h⊤

2 · · · h⊤
n ] ∈ Ft×n

q (4.11)

with hi = (hi,1 hi,2 · · · hi,t), where

hi,j =
li−1∑
ι=0

γ
(j−1)qι

i

g (γi
qι) , ∀i = 1, . . . , n and j = 1, . . . t

such that Hc⊤ = 0, ∀c ∈ Γ(Lp, g).

Proof. From Eq. (4.4), fi(x) and g(x) are relatively prime such that gcd(g(x), fi(x)) =
1. That implies that the roots of fi(x) are not roots of g(x) and g(γi

j) ̸= 0,∀j =
0, . . . , li − 1 and i = 1, . . . , n. Using the relation in Eq. (2.32) an inverse f−1

i (x)
mod g(x) can be found by the Extended Euclidean Algorithm (EEA)

1 ≡ fi(x)f−1
i (x) mod g(x) (4.12)

with v(x) = f−1
i (x) the output and a(x) = g(x), b(x) = fi(x) the input of Algorithm 1

in Section 2.2. Let the Goppa polynomial be

g(x) = g0 + g1x+ · · ·+ gtx
t

with gt ̸= 0. Then, by using the EEA Algorithm 1 in Section 2.2 for calculating the
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inverse we obtain

f ′
i(x)
fi(x) mod g(x) =

li−1∏
j=0

g
(
γi

qj
)−1

·

t−1∑
τ=0

xτ

 t∑
k=τ+1

gk

li−1∑
j=0

γ
(k−1−τ)qj

i

li−1∏
ξ=0,
ξ ̸=j

g
(
γi

qξ
)
 .

(4.13)

The above polynomial can also be written in vector notation where the (t − τ)-th
element of the vector vi contains the polynomial coefficient of xτ ,∀τ ∈ [0, t− 1]. The
vector v⊤

i forms the i-th column of the matrix C ·H of size (t× n) where

C =


gt 0 . . . 0
gt−1 gt . . . 0

... ... . . . ...
g1 g2 . . . gt

 . (4.14)

Plugging the vectors vi for all i = 1, . . . , n into Eq. (4.5), it can be verified that
c ∈ Γ(Lp, g) if and only if [v⊤

1 ,v⊤
2 , . . . ,v⊤

n ] · c⊤ = CH · c⊤ = 0. Therefore,

CH = H̃ (4.15)

is a parity-check matrix of Γ(Lp, g). Since C is invertible, H is also a parity-check
matrix.

For example, for classical Goppa codes Eq. (4.13) simplifies to

1
(x− αi)

mod g(x) = g(αi)−1 ·

t−1∑
τ=0

xτ

(
t∑

k=τ+1
gkα

k−1−τ
i

) (4.16)

and for GGC with a code locator of second degree it reads

γj + γq
i

(x− γi)(x− γq
i ) mod g(x) = (g(γi)g(γq

i ))−1 ·

·

t−1∑
τ=0

xτ

(
t∑

k=τ+1
gk

(
γk−1−τ

i g(γq
i ) + γ

q(k−1−τ)
i g(γi)

)) . (4.17)
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In matrix notation a parity-check matrix of arbitrary degrees li can be written as

H =



1
g(γ1) + · · ·+ 1

g(γ(l1−1)q
1 )

· · · 1
g(γn) + · · ·+ 1

g(γ(ln−1)q
n )

γ1
g(γ1) + · · ·+ γ

(l1−1)q
1

g(γ(l1−1)q
1 )

· · · γn

g(γn) + · · ·+ γ
(ln−1)q
n

g(γ(ln−1)q
n )

... · · · ...
γt−1

1
g(γ1) + · · ·+ γ

(t−1)(l1−1)q
1
g(γ(l1−1)q

1 )
· · · γt−1

n

g(γn) + · · ·+ γ
(t−1)(ln−1)q
n

g(γ(ln−1)q
n )


(4.18)

Using the relation in Eq. (2.2) the above parity-check matrix with l1 = 1 and l2 = 2
corresponds to the parity-check matrix presented in [NB20b] with code locators of
degree 1 and 2.
A binary parity-check matrix Hbin ∈ Ftm×n

2 of Γ(Lp, g) can be obtained by replac-
ing every entry in H from Eq. (4.11) or Eq. (4.18) with a length-m column vector
representation over F2 according to some fixed basis of Fq over F2.

Theorem 4.6 (Dimension).
For a binary generalized Goppa code Γ(Lp, g) as in Eq. (4.5), the dimension is

k = n− rank(Hbin) ⩾ n− tm (4.19)

where Hbin ∈ Ftm×n
2 is the F2-representation of H ∈ Ft×n

2m and t = deg(g(x)).

From the above theorem it follows that

n ⩾ mt. (4.20)

Theorem 4.7 (Minimum Distance).
The minimum Hamming distance d of Γ(Lp, g) is

d ⩾ dg := t+ 1
ℓ

, (4.21)

where t = deg(g(x)) and ℓ = maxf(x)∈Lp deg(f(x)).

Proof. For all codewords c ∈ Γ(Lp, g) we have Hc⊤ = 0 ⇐⇒ Hbinc⊤ = 0. Consider
one codeword c, the product of all fi(x) for i ∈ supp c is denoted as

Fc(x) :=
∏

i ∈ supp(c)
fi(x),

where its formal derivative is denoted as

F ′
c(x) :=

∑
i ∈ supp(c)

f ′
i(x)

∏
j ∈ supp(c)

j ̸=i

fj(x).
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Furthermore, let
Rc(x) :=

∑
i ∈ supp(c)

f ′
i(x)
fi(x) = F ′

c(x)
Fc(x) , (4.22)

where f ′
i(x) is the formal derivative of fi(x). Since all fi(x) have distinct roots by

Eq. (4.10), they are relatively prime to its formal derivative f ′
i(x) and therefore also

gcd(F ′
c(x), Fc(x)) = 1 holds. By definition in Eq. (4.4) it applies gcd(fi(x), g(x)) = 1

and thus also gcd(Fc(x), g(x)) = 1. From these properties it follows

Rc(x) ≡ 0 mod g(x) ⇐⇒ g(x)|F ′
c(x).

Since we are working over a field of characteristic 2, the formal derivative F ′
c(x) has

only even powers and is a perfect square. Let ḡ(x) be the lowest degree perfect square
which is divisible by g(x), then

g(x)|F ′
c(x) ⇐⇒ ḡ(x)|F ′

c(x)

and

c ∈ Γ ⇐⇒ Rc(x) = 0 mod g(x)
⇐⇒ ḡ(x)|F ′

c(x). (4.23)

With li = deg(fi(x)) the degree of Fc(x) is deg(Fc(x)) = ∑
i∈supp(c) li and

deg(F ′
c(x)) ⩽ deg(Fc(x))− 1 =

∑
i ∈ supp(c)

li − 1. (4.24)

Consider a vector vm ∈ Fn
2 whose non-zero index positions supp vm correspond to

index positions i for which fi(x) have highest degree ℓ, then

deg(F ′
vm

(x)) ⩽ wt(vm) · ℓ− 1. (4.25)

Note that vm is not necessarily a codeword. Assume that deg(F ′
vm

(x))
!
⩾ deg(ḡ(x))

then wt(vm) ⩾ deg(ḡ(x))+1)
ℓ

. To have Eq. (4.23) fulfilled we require

deg(F ′
c(x)) ⩾ deg(ḡ(x)) ∀ c ∈ Γ. (4.26)

For any c with wt(c) < wt(vm) it follows that deg(F ′
c(x)) < deg(F ′

vm
(x)). In

other words, we cannot find a codeword c with wt(c) < wt(vm) and deg(F ′
c(x)) ⩾

deg(F ′
vm

(x)). Therefore, to fulfill the relation in Eq. (4.26) it follows

d(Γ) = min
c∈Γ

wt(c) ⩾ wt(vm) (4.27)

⩾
deg(ḡ)(x) + 1

ℓ
⩾

deg(g(x)) + 1
ℓ

= dg. (4.28)
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Corollary 4.8 (Separable GGC Minimum Distance).
A binary separable generalized Goppa code Γ(Lp, g) with Goppa polynomial g(x) whose
roots are all distinct, is the same code as Γ(Lp, g

2). Thus, the minimum distance is

d ⩾ dsep := 2t+ 1
ℓ

. (4.29)

Proof. Since g(x) is separable, all roots of g(x) are distinct. Therefore, the proof of
Theorem 4.7 applies with ḡ(x) = g(x)2.

For separable GGC whose code locators have only even degrees, the lower bound on
the minimum distance is increased by 1/ℓ compared to Eq. (4.29).

Corollary 4.9 (Separable Even-Degree Code Locators Minimum Distance).
A binary separable GGC with the support Lpeven of even-degree polynomials has at least
a minimum distance d with

d ⩾ deven := 2t+ 2
ℓ

. (4.30)

Proof. Since deg(fi(x)) is even for all fi(x) ∈ Lp, so is degFc(x) even. Then, for a
binary field it applies that degF ′

c(x) ⩽ ∑
i∈supp(c) li−2 in Eq. (4.24) and degF ′

vm
(x) ≤

wt(vm) · l − 2 in Eq. (4.25). Using Corollary 4.8 and the proof in Theorem 4.7, the
statement follows.

4.1.2 Decoding of Binary Generalized Goppa Codes

For decoding binary GGC an explicit decoding algorithm and a new decoding radius
are presented. The unique decoding radius for binary GGC is

⌊
d
2

⌋
, which is slightly

different compared to the common form of
⌊

d−1
2

⌋
for other codes. In the following we

apply the relations for decoding Goppa codes in Section 2.1.4 of Chapter 2 to binary
GGC.

Definition 4.10 (Syndrome Polynomial, Error Locator Polynomial (ELP),
Error Evaluator Polynomial (EEP)).
Let e ∈ Fn

2 be an error vector and E = supp(e) for a binary GGC of code length n
with c ∈ Γ(Lp, g). The syndrome polynomial is defined by

s(x) :=
∑
i∈E

ei
f ′

i(x)
fi(x) mod g(x). (4.31)

The Error Locator Polynomial (ELP) is defined by

σ(x) :=
∏
i∈E

fi(x) (4.32)
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and the Error Evaluator Polynomial (EEP) is defined by

η(x) :=
∑
i∈E

eif
′
i(x)

∏
j∈E\{i}

fj(x). (4.33)

Let c ∈ Γ(Lp, g) be a codeword and r = c + e ∈ Fn
2 the received word from a noisy

channel. Then, the syndrome polynomial is calculated from r = (r1, . . . , rn) by

s(x) =
n∑

i=1
ri
f ′

i(x)
fi(x) mod g(x). (4.34)

The syndrome polynomial s(x) = ∑t
i=1 six

t−i can also be written in vector notation
as s = (s1, . . . , st) and corresponds to s = rH̃⊤ with H̃ from Eq. (4.15).

In Algorithm 11 a syndrome-based decoder for Γ(Lp, g) is presented. The main step
of decoding is to determine the ELP σ(x) and the EEP η(x) given the syndrome s(x)
by solving the key equation.

Lemma 4.11 (Key Equation).
For a binary generalized Goppa code Γ(Lp, g) with error e of weight we a key equation
is

η(x) = σ(x)s(x) mod g(x) (4.35)

with

gcd(σ(x), η(x)) = 1 (4.36)
deg η(x) < deg σ(x) ⩽ we · ℓ (4.37)

where ℓ = maxf(x)∈Lp deg f(x).

Proof. With E = supp(e) and we = |E| the Eq. (4.35) follows from Eq. (4.31),
Eq. (4.32), and Eq. (4.33) since

s(x) =

∑
i∈E

eif
′
i(x) ∏

j∈E\{i}
fj(x)∏

i∈E
fi(x) = η(x)

σ(x) mod g(x). (4.38)

Since all fi(x) have distinct roots by definition in Eq. (4.10) it applies that
gcd(fi(x), f ′

i(x)) = 1 and Eq. (4.36) follows. From the definition of an ELP in
Eq. (4.32) the degree of σ(x) is upper bounded with the maximum degree of fi(x) such
that deg σ(x) = ∑

i∈E deg(fi(x)) ⩽ we ·maxi∈E{deg(fi(x))} ⩽ we · ℓ. From the defini-
tion of an EEP in Eq. (4.33) the degree of η(x) is the degree of the formal derivative
of σ(x) such that deg(η(x)) = deg(σ′(x)) < deg σ(x). Thus, Eq. (4.37) follows.

Theorem 4.12 (Separable Binary GGC Unique Decoding Radius).
For a binary separable generalized Goppa code Γ(Lp, g) with d ⩾ dsep the Algorithm 11
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using the Extended Euclidean Algorithm (EEA) can uniquely decode any error e of
weight we with

we ⩽ wesep :=
⌊
t

ℓ

⌋
=
⌊
dsep

2

⌋
, (4.39)

where t = deg(g(x)) and ℓ = maxf(x)∈Lp deg f(x).

Proof. For syndrome-based unique decoding the EEA in Algorithm 2 can be used to
solve the key equation. A unique solution for the ELP σ(x) and EEP η(x) can be
found with the stopping condition in Line 5 of Algorithm 2 such that deg(rµ(x)) <
deg g(x)

2 ⩽ deg(rµ−1(x)). Then, σ(x) = vµ(x)/c and η(x) = rµ(x)/c. From Eq. (2.31)
and deg g(x)

2 ⩽ deg(rµ−1(x)) it follows deg vµ(x) ⩽ deg(g(x))
2 and thus deg σ(x) ⩽ deg(g(x))

2 .
Since the separable generalized Goppa code Γ(Lp, g) is the same code as Γ(Lp, g

2)
according to Corollary 4.8, we can apply Algorithm 11 on Γ(Lp, g

2) to decode Γ(Lp, g).
Then, the degree constraint for uniquely decoding becomes deg(g(x)2)

2 . Since deg(σ(x)) ⩽
weℓ we know that we can uniquely decode an error e of weight we as long as weℓ ⩽
deg(g(x)2)/2. Thus,

deg σ(x) ⩽ we ℓ
!
⩽

deg(g(x)2)
2 = t.

It holds that t
ℓ
< t

ℓ
+ 1

(2ℓ) = dsep
2 . In particular,

⌊
t
ℓ

⌋
<
⌊

t
ℓ

+ 1
(2ℓ)

⌋
only if 2ℓ | (2t + 1),

which is impossible for positive integers t and ℓ. Therefore,
⌊

t
ℓ

⌋
=
⌊

t
ℓ

+ 1
(2ℓ)

⌋
.

Algorithm 11 Syndrome-based Decoding Algorithm for binary separable GGC
Input: received word r ∈ Fn

2 , Goppa polynomial g(x) and support Lp of Γ(Lp, g)
1: Calculate the syndrome polynomial s(x) according to Eq. (4.34) or from s = rH⊤

2: Execute the EEA in Algorithm 2 with inputs g(x), s(x) and outputs η(x),_, σ(x)
3: Search for the roots of σ(x) among any root γi of fi(x) in the splitting field Fqli

(e.g. using Chien Search) and get E ← {i | σ(γi) = 0}
4: Initialize e = 0 and set ei ← 1, ∀i ∈ E

Output: codeword ĉ← r− e

4.2 Niederreiter Cryptosystem with Binary Generalized
Goppa Codes

After having introduced generalized Goppa codes, we investigate a Niederreiter-based
cryptosystem using binary generalized Goppa codes. A cryptosystem using binary
GGC is constructed in the same way as described in Section 3.2, but with different
code parameters for the code length n, the field size m, the Goppa polynomial degree
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m,τ 1 2 3 4 5 6
1 2 1 2 3 6 9
2 4 6 20 60 204 670
3 8 28 168 1008 6552 43.596
4 16 120 1360 16.320 209.712 279.548
5 32 496 10.912 261.888 6.710.880 178.951.344
6 64 2016 87.360 4.193.280 214.748.352 1.14532018e+10
7 128 8128 699.008 67.104.768 6.87194765e+09 7.33007400e+11
8 256 32.640 5.592.320 1.07372544e+09 2.19902326e+11 4.69124933e+13
9 512 130.816 44.739.072 1.71798036e+10 7.03687442e+12 3.00239973e+15
10 1024 52.3776 357.913.600 2.74877645e+11 2.25179981e+14 1.92153584e+17
11 2048 2.096.128 2.86331085e+09 4.39804546e+12 7.20575940e+15 1.22978294e+19
12 4096 8.386.560 2.29064909e+10 7.03687400e+13 2.30584301e+17 7.87061080e+20
13 8192 33.550.336 1.83251935e+11 1.12589989e+15 7.37869763e+18 5.03719092e+22
14 16.384 134.209.536 1.46601550e+12 1.80143984e+16 2.36118324e+20 3.22380219e+24
15 32.768 536.854.528 1.17281240e+13 2.88230376e+17 7.55578637e+21 2.06323340e+26

Table 4.1: Number of irreducible polynomials of degree τ over F2m

t and the error-correction capability we. According to Eq. (4.8) the code length n for
binary GGC is upper bounded by the number of irreducible polynomials existing for
a given field size. Table 4.1 shows the number of irreducible polynomials of degree
τ over F2m according to Eq. (4.7). To receive the maximum possible code length for
a given support Lp, these numbers need to be summed up according to Eq. (4.8).
Classical Goppa codes (binary GGC with ℓ = 1) are using code locators of degree
τ = 1 therefore the code length n is restricted to 2m for a field size of F2m with the
extension degree m a positive integer (see Table 4.1 Column 1). Using binary GGC
with code locators of degree greater than 1, the code length n can be much higher.
This makes it possible to construct much longer codes for a smaller field size with
binary GGC than with binary Goppa codes. In other words, for ℓ > 1 a smaller m
compared to classical Goppa codes can be used to obtain the same code length (see
Table 4.1 Column 2-6). For example, with parameters m = 5 and ℓ = 3 and li ⩽ 3
for i = 1, . . . , n a maximum code length of nmax5,3 = 32 + 496 + 10.912 = 11.440 is
possible.

In Table 4.2, we show some examples of code parameters (k ⩾, m, ℓ, t, dsep) of binary
separable Goppa codes and binary separable generalized Goppa codes Γ(Lp, g(x)),
denoted by GC and GGC-ℓ respectively, for several values of length n.

For GGCs with a fixed code length n and fixed degree t of the Goppa polynomial,
the lower bound on the minimum distance dsep is reduced by the factor of ℓ, according
to Corollary 4.8. For a fixed dsep, the degree t must be increased to achieve the same
error-correction capability. The lower bound on the dimension k is calculated by
n−mt and is therefore smaller for a higher degree of t.

Table 4.2 also shows the corresponding public key sizes of Classic McEliece and the
corresponding expected work factor for an ISD attack by Eq. (3.6) of [AM87]. The
public key size is determined by the systematic form of Hbin with Hsys = (In−k | T)
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Code n k ⩾ m ℓ t dsep WFPrange ≈ |pk| [bytes]
GC 3488 2720 12 1 64 128 2177 261.120
GGC-2 3488 3040 7 2 64 64 2162 170.240
GGC-2 3488 2585 7 2 129 129 2130 291.782
GC 6960 5413 13 1 119 239 2301 1.047.319
GGC-2 6960 6127 7 2 119 119 2222 637.974
GGC-3 6960 5170 5 3 358 239 2275 1.156.788
GC 8192 6528 13 1 128 257 2339 1.357.824
GGC-2 8192 7296 7 2 128 128 2245 817.152
GGC-8 8192 6528 2 8 832 208 2281 1.357.824

Table 4.2: Code parameters for binary separable GGCs with corresponding work factor of
Prange (Eq. (3.6)) and public key size for Classic McEliece. Table adapted from [LPZW21]
and extended.

according to Eq. (3.2) and the size of T is

|pk| = (nmt−m2t2)/8 (4.40)

bytes. Thus, a higher n leads to a larger public key for fixed m and t. To meet the
NIST security requirements, Classic McEliece needs to choose code parameters that
result in a large public key size compared to other NIST KEM submissions. That is
a drawback in computation, storage and transmission. Therefore, it is desirable to
reduce the public key size while retaining the requested security strength. As Classic
McEliece contains big public keys compared to other PQC KEMs we want to search
for code parameters in GGC that can reduce the public key size by retaining the
security levels chosen by the submitters. We investigate how generalized Goppa codes
can help in reducing this drawback.

For estimating the security level, e.g. work factor of ISD (see also Section 3.5.2) we
take the memory-free algorithm of Prange [Pra62] with the work factor specified in
Eq. (3.6) [AM87].2 The security level is represented by SLPrange = log2(WFPrange) with
WFPrange = k3

(
n
k

)
/
(

n−we

k

)
the work factor for a = 3 in Eq. (3.6) and we = ⌊dsep/2⌋. It

can be seen from the formula that a higher dimension k and a higher error-correction
capability wesep result in a higher work factor. For CAT-1 parameters in Table 3.3 the
security level is SLPrange ≈ 177 and for CAT-3 parameters it is SLPrange ≈ 220. The
goal is to find code parameters for GGC that improve the public key size.

We focused on the CAT-1 security level and calculated the public key size for all
possible t and n given the field size m and the maximum degree ℓ for GGC that
achieve the security level of at least 177. As a smaller n brings a smaller public key
according to Eq. (4.40) thus, we stop the calculation if we found code parameters
achieving the security level for fixed t. Fig. 4.1 shows the smallest public key sizes

2As introduced in Section 3.5.2, improved ISD algorithms exist. They are not memory-free, making
comparisons more complicated, as both runtime and memory usage need to be taken into account.
At their core, they rely on the same idea as Prange, hence we expect similar behaviour.
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Figure 4.1: Smallest public key sizes for given ℓ (in different colours) and m achieving a
security level of at least 177. (Corresponding code parameters are listed in Table 4.3)

possible for given extension degree m of Fqm and maximum degree ℓ that achieve at
least the security level of CAT-1 parameters of 177. It can be seen that the smallest
public key for the given security level of 177 is reached with ℓ = 1 and m = 12
and that corresponds to classical Goppa codes. The smallest possible public key has
260.190 bytes. That differs from the parameters chosen by the submitters for CAT-1
with a size of 261.120 bytes, because the submitters chose the parameters such that
they are a multiple of 2, 8 or 32 and t = 64 can be better implemented on classical
binary computers than t = 59. The observation that the smallest public key sizes can
be achieved with classical Goppa codes ℓ = 1 is also valid for other security levels.
Thus, GGC do not give an advantage in reducing the public key size for given security
level. Classical Goppa codes are still the best code parameters in terms of smallest
public key size for given security level. However, the field size F2m can be reduced
using separable GGC by tolerating a small increase of the public key size. So, to
minimize the field size it is best to choose either ℓ = 2 with m = 7 for a public key
size of 353.012 bytes or to construct a cryptosystem with m = 3 and ℓ = 5 for a
public key size of 404.550 bytes. For m = 1 and m = 2 [COT17] there exist breaks
for classical Goppa codes distinguishing the code from a random code that can most
likely be applied also to GGC. Note that parameters n and t must also be big enough
to prevent brute-force key attacks on the public key as specified in Section 3.5.1.

Looking at Fig. 4.1 raises the question of why increasing ℓ by 1 sometimes makes
smaller public key sizes possible. The answer lies in Eq. (4.8) and the values given in
Table 4.1. The given security level for ℓ = 1 is reached with a code length n = 3648.
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To achieve this code length the minimal extension degree must be m = 12 (Table 4.1
Column 1, Row 12 gives a value of 4096 which is the first value in this column that is
bigger than 3648). For higher ℓ > 1 it can be estimated which minimal m can bring a
code length of at least 3648. For ℓ = 2 this is m = 7 as the sum of Row 7, Column 1
and Row 7, Column 2 in Table 4.1. An m = 6 would be too small to achieve the
security level as the maximum code length is restricted to 64+2016 = 2080 in Row 6.
For ℓ = 3, the smallest m for which we can achieve an n > 3648 is m = 5. The same
applies for ℓ = 4, the smallest m achieving the security level is with m = 4. Thus, to
achieve an m = 1 we need at least ℓ = 15 to construct codes with a length of at least
3648. Codes with smaller n than 3648 do not achieve the security level of 177 based
on the work factor specified above.

Table 4.3 shows the code parameters corresponding to the plot in Fig. 4.1 repre-
senting the smallest public key for given ℓ and m.

Conclusion In this chapter, Generalized Goppa Codes (GGC) have been discussed
and investigated for use in conjunction with a Niederreiter cryptosystem. We found
out that these codes do not bring a smaller public key size for the same security
level compared to classical Goppa codes. We developed a construction of parity-check
matrices for binary GGC with code locators of arbitrary degrees of polynomials. We
derived a bound on the minimum distance for binary GGC and separable binary GGC.
For separable GGC and even degree polynomials of the support the lower bound on
the minimum distance is slightly increased. A decoding algorithm for GGC has been
presented. By using the EEA for decoding separable GGC, it has been shown that
the unique decoding radius is increased to

⌊
dsep

2

⌋
. We set up Classic McEliece with

GGC and searched for code parameters that decrease the public key size for the same
security level as for the parameters chosen for classical Goppa codes using the ISD
work factor of Prange. We showed that it is not possible to find parameters for
binary GGC that improve the public key size compared to classical Goppa codes.
Classical Goppa codes still show the best performance regarding public key size for
given security level. However, by tolerating a slightly larger public key size, the field
size can be reduced appreciably.

For future work, it is interesting to look into q-ary GGCs that operate on Fqm for
q > 2. A further direction of research is to look for supercodes of GGCs, i.e. a code
that contains GGCs as subcodes, if any exist.
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ℓ m t n SLPrange |pk| [bytes]
1 12 59 3648 177,023 260.190
1 13 59 3947 177,024 304.883
1 14 59 4245 177,027 353.012
1 15 58 4590 177,031 404.550
1 16 58 4888 177,017 459.360
2 7 118 4245 177,027 353.012
2 8 116 4888 177,017 459.360
2 9 116 5483 177,024 579.290
2 10 116 6074 177,019 712.530
2 11 116 6662 177,015 859.067
3 5 174 4590 177,031 404.550
3 6 174 5483 177,024 579.290
3 7 174 6368 177,012 784.088
3 8 174 7248 177,019 1.018.944
3 9 171 8210 177,022 1.283.334
4 4 232 4888 177,017 459.360
4 5 232 6074 177,019 712.530
4 6 232 7248 177,019 1.018.944
4 7 228 8503 177,020 1.377.947
4 8 228 9670 177,016 1.788.888
5 3 290 4590 177,031 404.550
5 4 290 6074 177,019 712.530
5 5 290 7540 177,020 1.103.813
5 6 285 9087 177,013 1.576.834
5 7 285 10541 177,018 2.131.159
6 3 348 5483 177,024 579.290
6 4 348 7248 177,019 1.018.944
6 5 342 9087 177,013 1.576.834
7 3 399 6438 177,013 784.185
7 4 399 8503 177,020 1.377.947
7 5 399 10541 177,018 2.131.159
8 2 464 4888 177,017 459.360
8 3 464 7248 177,019 1.018.944
8 4 456 9670 177,016 1.788.888
9 2 522 5483 177,024 579.290
9 3 513 8210 177,022 1.283.334
9 4 513 10830 177,015 2.251.557
10 2 580 6074 177,019 712.530
10 3 570 9087 177,013 1.576.834
10 4 560 12117 177,012 2.765.560
11 2 638 6662 177,015 859.067
11 3 638 9856 177,018 1.900.124
12 2 696 7248 177,019 1.018.944
12 3 684 10830 177,015 2.251.557
13 2 754 7831 177,016 1.191.886
13 3 741 11696 177,016 2.632.310
14 2 798 8503 177,020 1.377.947
15 1 870 4590 177,031 404.550
15 2 855 9087 177,013 1.576.834
16 1 928 4888 177,017 459.360
16 2 912 9670 177,016 1.788.888
17 1 986 5186 177,022 517.650

Table 4.3: Code parameters corresponding to Fig. 4.1
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Chapter 5
Accelerations using the RISC-V
Vector Extension
The security of cryptosystems is the foundation for establishing secure communication
channels between multiple parties. For employing the cryptosystems on real devices
the performance of the algorithms are also important, especially computational com-
plexity and resource consumption. The reduction of the memory consumption due
to the big public key used in Classic McEliece was investigated in Chapter 4. In
this chapter, the reduction of the computational complexity is researched. For this,
it is necessary to look at the actual implementations of Classic McEliece. These are
introduced in Section 5.1.

We examined the different implementations and there exists source code of the
algorithms specially written for readability and algorithms specially designed for per-
formance. In particular there are vectorized accelerations for x86/AMD64 ISA pro-
cessors. Vectorization is a general strategy to speed up computations whenever the
same operation is applied to large chunks of data. Processors that support the nec-
essary vector operations can apply them to a whole vector of data at once, instead
of cycling through the data points individually. A performance profiling of these im-
plementations showed that the Gaussian Elimination Algorithm (GEA) is the most
time consuming algorithm of the cryptosystem. This is reported in Section 5.2. The
GEA is investigated in detail in Section 5.3. We find that it is possible to accelerate
the GEA by vectorization to which the rest of the chapter is dedicated.

The fast execution of cryptographic algorithms is important on any system and the
vectorization of the GEA is expected to result in speed-up on processors integrating
any Instruction Set Architecture (ISA), e.g. x86 ISA. An ISA is a description of
a processor architecture which defines the machine code that a processor core can
understand and also how instructions are interpreted and executed. Based on the
ISA, the core is developed and its layout defined. Assembly code contains ISA specific
instructions that are readable by humans. Therefore, source code that was compiled
to a binary executable for a specific ISA can usually only be understood by a core
integrating the same ISA.

We demonstrate the vectorization of the GEA on the RISC-V ISA. RISC-V is a
simple and easy to understand ISA because of its reduced set of instructions, compared
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5 Accelerations using the RISC-V Vector Extension

to the x86 and AMD64 ISAs which is complex. We use RISC-V and RISC-V Vector
Extension (RVV) to vectorize the GEA. In Section 5.4 and in Section 5.4.1 the RISC-
V ISA and its vector extension are presented. The RVV was under development at the
time this study was conducted. Only a few industrial architectures providing RVV
had been announced, e.g. Andes’ NX27V, SiFive’s VIU75 and Alibaba’s Xuantie-
910 chipsets. As these platforms were yet to become available, this work showed
how these new RVV-extended processor generations can be used to accelerate Classic
McEliece using a rapid prototyping approach. In Section 5.5 the GEA using RVV
is presented. In Section 5.6 we simulate and verify the correctness of our vectorized
implementation. As simulator the Extendable Translating Instruction Set Simulator
(ETISS) [MDG+17] is used. We evaluate the performance for an architecture with
and without RVV for different memory interfaces.

The content of Section 5.2, Section 5.3, Section 5.5, Section 5.6 is published in
[PGZM21]. Section 5.6 as well as the numerical results of Section 5.5 are a joint
work with Johannes Geier. He developed the “SoftVector” library, the simulation
environment on ETISS and obtained the final simulation results. More details on
the simulation environment can be found in the paper. At the time this study was
conducted, the most recent version of Classic McEliece implementation has been of
Round 2 [BCL+19]. Therefore, we worked on the Round 2 implementations.

Our simulation code and environment, as well as the RVV accelerated GEA source
code can be found in https://github.com/tum-ei-eda/rvv-gauss-demo.

5.1 Overview of Classic McEliece implementations
As required by NIST each submission needs to attach an implementation of their
proposed system to the submission package. The Classic McEliece submission package
of Round 2 consists of the following implementations for each parameter set specified
in Table 3.3 :

• Reference/Optimized implementations: platform independent implementations
in C-code

• Additional implementations1: x86 ISA processors specific implementations for
reference and optimized implementation in C-code and assembly-code using the

– Streaming Single Instruction Multiple Data (SIMD) Extension (SSE)
– Advanced Vector Extension (AVX)

The reference/optimized implementation is described in Section 5.1.1. The addi-
tional implementations are presented in Section 5.1.2. Since Round 3, the submission
package also includes a platform independent vectorized implementation, that uses
64 bit long long types.

1Since Round 3 of the NIST competition there is also an additional implementation that uses the
VEC Extension.
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5.1 Overview of Classic McEliece implementations

For each parameter set in Table 3.3 there exist two different key generation algo-
rithms. One calculates the systematic form of Line 5 in Algorithm 3 and the other
calculates a semi-systematic form which are called as f variants. In the variant of the
systematic form, the algorithm in Algorithm 3 is executed until a keypair is found
resulting with the public key being in systematic form. This takes about three trials
for Line 5 in Algorithm 3, for each trial having a newly generated Goppa polynomial.
To minimize this number of trials, the f variants key generation algorithm swaps code
locators in Line 5 of Algorithm 3 to achieve a systematic form without selecting a new
Goppa polynomial and code locators, making it possible to generate valid secret/pub-
lic keypairs already at the first trial. In order to revert the swapping for decryption,
the swapping parameters are stored in the secret key.

5.1.1 Platform independent implementations
The platform independent implementations are written in plain C-code. The opti-
mized implementations are an exact copy of the reference implementations.

The reference implementation integrates the following main procedures with the
corresponding file names in parenthesis:

– Galois Field Operations in F2 and F2m (gf.c)

– Key Generation of Algorithm 3 (operations.c)
- Secret key generation (sk_gen.c)
- Public key generation (pk_gen.c)

– Encapsulation of Algorithm 5 (operations.c)
- Encryption (encrypt.c)

– Decapsulation of Algorithm 6 (operations.c)
- Decryption (decrypt.c)
- Syndrome computation (synd.c)
- Polynomial evaluations (root.c)
- Berlekamp-Massey Decoder (bm.c)

– Beneš network (benes.c)

– Controlbits for Beneš network (controlbits.c)

The Beneš network is used to represent the code locators α1, . . . , αn in L in a
different way for simpler fast constant-time decoding. The code locators are described
as the controlbits of the Beneš network.

The secret key is stored as a concatenation of bits constituting of the seed used for
randomness, the column selections (f variants) or zeros (non-f variants), the Goppa
polynomial g(x), the controlbits and the string s.
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5 Accelerations using the RISC-V Vector Extension

5.1.2 AVX/SSE Implementations

The AVX/SSE implementations only run on processors that integrate the x86 In-
struction Set Architecture (ISA) with an AVX or SSE extension. The x86 ISA is a
Complex Instruction Set Computer (CISC) and has been initially developed by Intel
Corporation. CISCs processors implement an architecture where a single instruction
can execute multiple functions, e.g. load from memory, execute arithmetic operation
and store result back to memory. While Reduced Instruction Set Computers (RISCs)
are designed to have less and simplified instructions with each instruction execut-
ing only one function, e.g. either load, arithmetic operation or store. Compared to
CISCs, the RISCs may need to perform more instructions for the same task. Pro-
cessors that are implementing the base x86 ISA operate on 16 bit, 32 bit or 64 bit
wide General Purpose Registers (GPRs). By integrating instruction set extensions,
additional registers and instructions are available on hardware for more complex com-
putations. Usually, using instruction set extensions accelerates the computation of
tasks compared to computations on base ISA only, as computations have access to
additional hardware that is used concurrently with base ISA hardware. The SSE and
AVX extend the base ISA with 128 bit or 256 bit registers.

The Streaming Single Instruction Multiple Data (SIMD) Extension (SSE) is an
instruction set extension for x86 ISA processors developed by Intel Corporation. The
first version of SSE contains eight registers holding 128 bits and instructions that
operate on these registers. Using a single SSE instruction, the operation can be applied
to all 128 bits simultaneously. The following versions are extensions that integrate
more additional instructions and more registers than the earlier versions. Thus, higher
versions include lower versions. In Classic McEliece the SSE implementation is written
for version SSE4.1 having registers for 128 bits.

The Advanced Vector Extension (AVX) is also an instruction set extension for x86
ISA processors developed by Intel Corporation. But, compared to SSE, the AVX
contains 16 registers holding 256 bits and defines instructions that operate on these
registers. An expansion of AVX is AVX2 which integrates additional functionality,
e.g. vector shifts. In Classic McEliece the AVX implementation is written for version
AVX2 and automatically also implements the SSE version 4.1 such that computations
are executed concurrently on 128 bit and 256 bit registers.

Intrinsics are an application programmable interface in C-code that correspond to
the instruction in assembly code, but can be called in C-code. Thus, there is no
need of including explicit assembly code and the programmer does not need to care
about registers and can use variables instead, e.g. instead of writing and knowing the
operands, the programmer can just call the function, and the intrinsics interface is
taking care of input and output.

In the AVX implementations the ELP is differently represented in memory than
in the platform independent implementations, which affects the simulations in Sec-
tion 6.3.1 of Chapter 6.

56



5.2 Performance Analysis of Implementations

5.2 Performance Analysis of Implementations

A performance analysis of the reference and AVX implementations of Round 2 show
the time consuming parts in the algorithm. The analysis was done using the software
program Callgrind and KCachegrind [Wei] on a Linux 64 bit, Intel i7-8650U @1.9GHz
machine. The key generation algorithm takes much longer than encryption or de-
cryption. Thus, we analyzed the key generation algorithm and present the important
parts for two parameter sets in Table 5.1 and Table 5.2. In the reference implemen-
tation, the construction of controlbits for the Beneš network, which is needed for a
simplified fast constant-time decoding algorithm, makes up a big portion of the key
generation. This is more evident in the case for parameters n = 6960,m = 13, t = 119
with a 62% share in Table 5.2 compared to parameters n = 8192,m = 13, t = 128
with a 40% share in Table 5.1. In both cases it can be seen that the use of platform
specific ISA extensions accelerates the construction of the controlbits to 10% and 8%
share, respectively. The Galois Field multiplication (GF mul) takes about one eighth
of the key generation in the reference and in the AVX accelerated implementation.
In the AVX reference implementation the GEA dominates the running time in key
generations and is thus the most time consuming operation in the cryptosystem.
As the AVX implementation is designed for performance, while the reference imple-
mentation is designed for clarity and easier readability, we focus on accelerating the
GEA.

Reference implementation [%] AVX implmementation [%]
GEA 41 67
GF mul 13 18
Controlbits 40 8
Others 6 7

Table 5.1: Profiling of Keypair Generation for Classic McEliece with parameters 8192128
on Linux 64 bit, Intel i7-8650U @1.9GHz

Reference implementation [%] AVX implementation [%]
GEA 26 73
GF mul 8 12
Controlbits 62 10
Others 4 5

Table 5.2: Profiling of Keypair Generation for Classic McEliece with parameters 6960119
on Linux 64 bit, Intel i7-8650U @1.9GHz
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5.3 Gaussian Elimination Algorithm (GEA)

The GEA is needed in Step 1 and in Step 5 of Algorithm 3. For the systematic form
key generation algorithms, the mt × n parity check matrix Ĥ of the Goppa code is
brought into systematic form

( Ia | T ) (5.1)
where Ia is a a×a identity matrix and T is a a× (b−a) matrix with a = n−k = m · t
and b = n. This is a row-reduced echelon form such that an identity matrix is formed
in the left-most a× a block of the matrix. The systematic form reduces the key size
of the public key from (n− k)× n to (n− k)× k and scrambles the matrix such that
the secret keys cannot be recovered from the public key T (see also Section 3.5.1).
Not every matrix can be brought to systematic form. If it is not possible, Step 5 of
Algorithm 3 fails and the key generation process needs to start over, as described in
Section 5.1.

The pivot element is an element on the diagonal of the matrix. The pivot row is the
row of the current pivot element. To form the identity matrix, the algorithm needs
to iterate through the rows of the matrix and perform two operations:

1. Check if pivot element is a 1. If not, form it to a 1.

2. Bring all elements below and above the pivot element to a 0.

Operation 1 is realized by dividing the whole row by the value of the pivot element
to get a 1. If the pivot element is a 0, the pivot element needs to be formed to non-zero
first. This is done by adding another row to the pivot row. If that does not succeed,
the algorithm fails and a new matrix must be generated.

Operation 2 is realized by subtracting the pivot row from all other rows. If the
matrix is not binary, the pivot row is subtracted with a factor, which sets the element
to a 0. Not every parity-check matrix of size a × b with a = m · t and b = n
can be transformed into its systematic form. This is only possible if the right-most
(b− a)× (b− a) block of the matrix consists of linearly independent columns. That
is the case in about 1/3 of the parity-check matrices for Goppa codes. The procedure
is described in Algorithm 12. It operates on a binary matrix and is constant time.

The implementation of Step 5 of Algorithm 3 operates on a binary matrix with a
rows and b columns, specified in Algorithm 12. For Operation 1 every other row is
added to the pivot row if the pivot element is a 0. This is needed such that the algo-
rithm is constant time and impedes timing attacks. The complexity of Algorithm 12
is O(a2 · b) with a rows and b columns. By analysing Algorithm 12 we identify the
approximate number of load and store accesses on the matrix of size a×b in Eq. (5.2).
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Algorithm 12 Gaussian Elimination Algorithm (GEA)
Input: binary matrix A of size a× b
Output: binary matrix Ã in form (Ia|T) or ⊥

1: for i = 0 → a+7
8 − 1 do

2: for j = 0 → 7 do
3: row ← i·8+j
4: // Operation 1
5: for k = i + 1 → a-1 do ▷ k1-loop
6: mask ← A[row,i] ⊕ A[k,i]
7: mask ← mask ≫ j
8: mask ← mask ∧ 1
9: mask ← -mask

10: for column c = i → b
8 − 1 do ▷ c1-loop

11: A[i,c] ← A[i,c] ⊕ A[k,c] ∧ mask
12: if A[i,i]̸= 1 then
13: Failure and stop of algorithm
14: // Operation 2
15: for k = 0 → a-1 do ▷ k2-loop
16: if k ̸= row then
17: mask ← A[k,i] ≫ j
18: mask ← mask ∧ 1
19: mask ← -mask
20: for column c = 0 → b

8 − 1 do ▷ c2-loop
21: A[k,c] ← A[k,c ] ⊕ A[row,c] ∧ mask

Na,b = a ·

1 + (a− 1)︸ ︷︷ ︸
k2-loop

(
1 + 3 · b8︸ ︷︷ ︸

c2-loop

)+ 2 · a(a− 1)
2︸ ︷︷ ︸

k1-loop

+

+ 3 ·
⌊ a

8 ⌋∑
j=1

((8j + 2)(8j + 3)
2 − (8j − 6)(8j − 5)

2

)
·
(
b

8 −
⌊
a

8

⌋
+ j

)
︸ ︷︷ ︸

c1-loop

.

(5.2)

The first term of Eq. (5.2) describes one memory access in Line 12 and Line 17
of Algorithm 12 respectively and three memory accesses in Line 21 of Algorithm 12.
The second term accounts for two memory accesses in Line 6 of Algorithm 12. The
last term describes three memory accesses in Line 11 of Algorithm 12.

Example 5.1.
For system parameters n = 8192, t = 128 and m = 13 the matrix is of size a = 1664
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and b = 8192 for the GEA. Then, from Eq. (5.2) we obtain

N1664,8192 = 8503 · 106 + 2 · 106 + 3978 · 106

≈ 12.5 · 109.
(5.3)

In Section 5.5 the inner loops (c1-loop and c2-loop) are replaced by a single vector
arithmetic operation that reduce the number of memory accesses using the RVV.
RISC-V and the vector extension are introduced in the next section.

5.4 Introduction to RISC-V

RISC-V is an open-source Instruction Set Architecture (ISA) that is based on RISC
instructions. It was initially developed by Andrew Waterman, Yunsup Lee, Krste
Asanović and David Patterson from University of California, Berkeley in 2010 with
the idea to design the first ISA that is freely available and not protected by patents.
So, the RISC-V ISA can be integrated in any processor without having to pay licence
fees. Since then, the RISC-V ISA gained much attention and many developers and
companies support the development of the open-source project. In 2015, the RISC-V
international non-profit organization took over the worldwide management of the fast-
growing community. The RISC-V ISA is known for its minimalistic, simple and flexible
design. The goal of RISC-V is to be a universal ISA, that fits any kind of processor,
from the smallest microcontroller to the most powerful supercomputer. It should be
suitable for all kind of architectures like Field Programmable Gate Arrays (FPGAs)
and Application-Specific Integrated Circuits (ASICs).

The minimal requirement for a RISC-V processor is to have hardware and gate logic
that integrates a base integer ISA. A base integer ISA constitutes an architecture that
supplies basic operations like additions, shifts, branches, comparisons. It can operate
on either 32 bits, 64, bit or 128 bit integer values. These values can be stored in
31 general-purpose base ISA registers denoted by x1[XLEN] - x31[XLEN] with XLEN
referring to the size of the register in bits. The register x0[XLEN] is hardwired to
zero. For resource constrained embedded devices there may also only 16 registers be
implemented. The base integer ISA is denoted by RV followed by the value of XLEN and
an I for integer with 32 registers or E for embedded with 16 registers. For example,
RV64I stands for the RISC-V base instruction set for 64 bit processors. To realise
more complex operations like multiplications, floating point calculations or vector
operations, the base architecture needs to be extended by additional instructions.
These additional instructions are grouped into different extensions. For example,
the instructions for integer multiplication and division are grouped in the standard
extension for Integer Multiplications and Divisions, denoted by an M. In this work
the 64 bit base integer ISA with the extension for integer multiplication and division
RV64IM is used. The following section is occupied with the RISC-V Vector Extension
(RVV), denoted with a V, for example RV64IMV.
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5.4.1 RISC-V Vector Extension (RVV)
A RISC-V organised volunteer task force defines and develops the RVV. In 2020, they
established the RVV version 0.9 [AKA+20] which this work rests on. The RVV is
very flexible compared to SSE and AVX. The length of the registers in SSE and AVX
are fixed to a length of 128 bits and 256 bits respectively, while in RVV the length of
the registers can be freely chosen up to 216 bits (ratified version 1.0).

The vector extension adds 32 vector registers and 7 unpriviledged Control Status
Registers (CSRs) to a base integer RISC-V ISA. The vector registers are denoted by

v0[VLEN] - v31[VLEN] (5.4)

with VLEN the number of bits that can be stored in the registers. The value of VLEN
must be a power of 2 and greater or equal than the parameter ELEN. The parameter
ELEN defines the maximum size of a single vector element in bits on that can be
operated on. The value of ELEN must also be a power of 2 and additionally be greater
or equal than 8. The values of VLEN and ELEN are fixed by the hardware and cannot
be changed by software.

The parameter SEW denotes the dynamic standard element width, which is set
during computations and is upper bounded by ELEN. By default, a vector register is
viewed as being divided into VLEN/SEW standard-with elements. The parameter LMUL
specifies how many vector registers are grouped together such that a single vector
instruction operates on this group of registers. In other words, LMUL indicates on how
many registers one vector is spanned. Then, a vector length VL can be set, which
refers to the number of elements of size SEW bits inside one vector. The following
instructions configure these values.

vsetvli rd, rs1, vtypei (5.5)
vsetvl rd, rs1, rs2 (5.6)

rd and rs1 stands for a register from the base ISA. In rs1 the value of VL is stored,
that should be set by the instruction. In rd the return value of the instruction is
stored. In the normal case, where the content of rs1 is not zero, the return value is
the set VL. vtypei specifies SEW and LMUL values separated with commas. For SEW = X
the character eX and for LMUL = Y the characters eY must be set. For example, for
SEW = 8 and LMUL = 8 the instruction is vsetvli t0, a2, e8, m8 . As alternative
to vsetvli the instruction vsetvl can be invoked to set the SEW and LMUL values via
a separate register rs2.

The vector extension supports different kind of load and store operations. In this
work only the unit-strided addressing modes are used. To load and store values to
and from the vector registers v0 - v31, the following instructions are used.

vleX.v vd, (rs1), vm (5.7)
vseX.v vs3, (rs1), vm (5.8)
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Used RVV instructions:
vsetvli rd, rs1, vtypei Sets SEW, LMUL and VL
vle8.v vd, (rs1), vm Unit-strided load of VL ∗ 8 bits
vse8.v vs3, (rs1), vm Unit-strided store of VL ∗ 8 bits
vand.vi vd, vs2, imm, vm Bitwise logical AND with immediate parameter
vand.vx vd, vs2, rs1, vm Bitwise logical AND with base ISA register parameter
vand.vv vd, vs2, vs1, vm Bitwise logical AND with vector register parameter
vxor.vi vd, vs2, imm, vm Bitwise logical XOR with vector register parameter
vxor.vx vd, vs2, rs1, vm Bitwise logical XOR with base ISA register parameter
vxor.vv vd, vs2, vs1, vm Bitwise logical XOR with vector register parameter

With vd the vector register destination for load operations is specified. The vector
register vs3 holds the data that should be stored on memory. In rs1 the base address
of the memory for loads and stores is kept. Unit-strided load and stores access elements
stored continuously in memory starting form the base effective address given in rs1.
The vm flag specifies whether vector masking is enabled or not. Masking is used to
modify the execution of a vector instruction, i.e. to apply the instruction only on
selected vector elements. The mask value is always supplied by the vector register v0,
where the mask bit for the vector element i is located in bit i of v0. If vm is given
as v0.t, then masking is enabled. Otherwise, when vm is missing then masking is
disabled. The character X in load/store instructions is usually set to the value of SEW,
e.g. for 8 it is vle8.v . Roughly said, it specifies how many bits multiplied by VL are
moved to/from memory.

As vector bitwise logical instructions the XOR and AND operations are used. There
exist three different instructions for each bitwise logical operation, depending on
whether the value is passed directly to the instruction, or given inside a base ISA
register or vector register.

vand.vi vd, vs2, imm, vm (5.9)
vand.vx vd, vs2, rs1, vm (5.10)
vand.vv vd, vs2, vs1, vm (5.11)

vxor.vi vd, vs2, imm, vm (5.12)
vxor.vx vd, vs2, rs1, vm (5.13)
vxor.vv vd, vs2, vs1, vm (5.14)

The instruction vand.vi calculates the bitwise logical AND operation of a vector
in vs2 and a 5-bit immediate scalar that is encoded in imm. In the vxor.vx in-
struction the scalar value is taken from a base ISA register rs1. If XLEN>SEW, the
least-significant bits of length SEW of rs1 are used for the operation. The instruction
vand.vv calculates the logical AND of two vectors vs1 and vs2. The same structures
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apply to the XOR instructions.

Example 5.2.
The following example code in assembly instructions for a RVV with VLEN=1024 cal-
culates Line 11 to Line 13 of Algorithm 13 with vectors of length VL = 870 and thus
b = 6960.

li a2 , 870 # set vector length
vsetvli t0 , a2 , e8 , m8 # e8: SEW =8, m8: LMUL =8
vle8.v v8 ,( rs1) # Unit - strided load of VL*8- bit
vle8.v v16 ,( rs2) # Unit - strided load of VL*8- bit
lbu a5 , (rs3) # Load operand from memory
vand.vx v24 ,v8 ,a5 , v0.t # v24 = v8 & operand
vxor.vv v16 ,v16 ,v24 # v16=v16^v24
vse8.v v16 ,( rs2) # Store row with VL*8- bit from v16 to

memory address rs2

5.5 Acceleration of GEA with RVV
In this section the GEA is accelerated by RVV version 0.9 as specified in [AKA+20]
using an assembly-level implementation (nearly all instructions used here remained
unmodified also in the RVV ratified version 1.0). As no intrinsics (see Section 5.1.2)
for RVV existed at the time this study was conducted, the GEA of the C-code was
extracted and compiled to RISC-V 64 bit assembly using the GNU Compiler Collec-
tion (GCC). Based on this RISC-V assembly, an analysis of the GEA showed where
an integration of RVV could accelerate the algorithm. The code locations marked
with “Vector arithmetic” in Algorithm 13 are identified for RVV use.

We adapt the GEA in Algorithm 12 such that the inner loops of Algorithm 12
are replaced by two vector bitwise logical operations: vxor.vv and vand.vv. The
resulting algorithm is shown in Algorithm 13.

For a Classic McEliece cryptosystem with system parameters of n = 8192, t = 128
and m = 13, the parity check matrix for the GEA is of size a = 1664 and b = 8192.
With a vector register length of VLEN = 1024 bits, a standard element width of SEW =
8, LMUL = 8 and thus a vector length of VL = 870 one single row of the 1664×8192 bits
matrix can be stored into one vector register group. Hence, one vector represents one
row of the parity check matrix. Thus, load/stores and operations can be executed by
one single instruction. This is possible for VLEN ∗ 8 ⩾ b. Then, one vector register
group consists of 8 vector registers of length VLEN and can store in total VLEN*8 bits.
The vector extension has 32 vector registers. Therefore, for the above parameters a
maximum of 4 matrix rows can be simultaneously stored in vector registers. If the
mask register v0 is used, then it reduces to 3 matrix rows in 3 vector register groups,
starting at v8, v16 and v24.

The source code of the accelerated GEA with RVV inline assembly can be found in
Appendix A.
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5 Accelerations using the RISC-V Vector Extension

Algorithm 13 GEA with Vector Extension
Input: binary matrix A of size a× b
Output: binary matrix Ã in form (Ia|T) or ⊥

1: for i = 0 → a+7
8 − 1 do

2: for j = 0 → 7 do
3: row ← i·8+j
4: Load A[row] into vector register
5: // Operation 1
6: for k = i + 1 → a-1 do ▷ k1-loop
7: mask ← A[row,i] ⊕ A[k,i]
8: mask ← mask ≫ j
9: mask ← mask ∧ 1

10: mask ← -mask
11: Load A[k] into vector register
12: A[row,i:b-1] ← A[row,i:b-1] ⊕ A[k,i:b-1] ∧ mask ▷ Vector arithmetic
13: Store A[row] from vector register to memory
14: if A[i,i]̸= 1 then
15: Failure and stop of algorithm
16: // Operation 2
17: for k = 0 → a-1 do ▷ k2-loop
18: if k ̸= row then
19: mask ← A[k,i] ≫ j
20: mask ← mask ∧ 1
21: mask ← -mask
22: Load A[k] into vector register
23: A[k] ← A[k] ⊕ A[row] ∧ mask ▷ Vector arithmetic
24: Store A[k] from vector register to memory

The memory access savings of the accelerated GEA can be estimated. Assuming a
rows and b bits per row, the approximate number of load and store accesses using the
vector extension is

NV
a,b,W = a ·

(
1 + (a− 1)︸ ︷︷ ︸

k2-loop

)
+ 2 · a(a− 1)

2︸ ︷︷ ︸
k1-loop

+
⌈
b

W

⌉
·
(

a︸︷︷︸
vec. i-th row

+ 2a(a− 1)
2︸ ︷︷ ︸

vec. k1-loop

+ 2a(a− 1)︸ ︷︷ ︸
vec. k2-loop

)
,

(5.15)

where W denotes the vector processing unit’s memory port width in bits. That means,
that W is the number of bits, that can be concurrently loaded/stored into/from the
vector registers from/to memory by the above described vector load/store instruction.
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With a >> 1 it follows

NV
a,b,W = 2a2 +

⌈
b

W

⌉
· (a+ 3a2). (5.16)

The first term of Eq. (5.15) describes one memory access to read out the pivot element
in Line 14 of Algorithm 13 and one memory access in Line 19 of Algorithm 13. The
second term accounts for two memory accesses in Line 7 of Algorithm 13. The third,
fourth and fifth terms describe the number of memory accesses to load or store the
vector registers in the case of a port width of W bit. The third term accounts for one
load of the vector in Line 4 of Algorithm 13. The forth term accounts for two vector
load/store operations in Line 1 and Line 13 of Algorithm 13 and the fifth term for
two load/store operations in Line 22 and Line 24 of Algorithm 13.

Example 5.3.
For a matrix size of a = 1664, b = 8192 and a variable port width W the Eq. (5.15) is
simplified to be approximately

NV
1664,8192,W = 5.54 · 106 +

⌈8192
W

⌉
· 8.31 · 106.

Memory port width W [bit] 8 32 64 128 256
NV

1664,8192,W [·109] 8.51 2.13 1.07 0.537 0.271
1− NV

1664,8192,W

N1664,8192∗ [in %] 31.9 83.0 91.4 95.7 97.8

* from Eq. (5.3), we get N1664,8192 ≈ 12.5 · 109 individual memory accesses

Table 5.3: Estimated number of memory accesses for the vector accelerated GEA and
comparison to non-accelerated scalar GEA

By increasing the memory port width W , the number of memory accesses of the
GEA can be reduced. Thus, the vector processing unit benefits from a high width
data port, which is shown in Table 5.3. For a reasonably sized memory port, e.g.
256 bit, a reduction in memory accesses of up to 97.8% compared to the scalar solu-
tion introduced in Section 5.3 could be gained. But this is only a theoretical value
for a rough design guidance, as the baseline is a non-optimized scalar source code.
The C compiler can also significantly improve memory accesses on the scalar GEA
implementation.

5.6 Experimental Evaluation
In this section the above described code is experimentally analysed regarding its run-
time. As there was no hardware processor available integrating the RVV at the time
this study was conducted, we investigated the source code on a simulator.
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5 Accelerations using the RISC-V Vector Extension

5.6.1 Simulation Environment
As simulator we use the ETISS [MDG+17], which is well suited for profiling and fast
prototyping. It easily allows to add simulation support for RVV. ETISS uses a simple
resource model and generates resource usage traces. This permits to compute the tim-
ing for different pipelines and memory interface configurations. The ISA models are
specified in CoreDSL, which is a Domain-Specific Language (DSL). For the base ISA
an open-source model [MIN20] is used. The RVV model is outsourced to an external
library called “SoftVector”. The machine encodings, micro-architectural states and
exceptions are handled inside the DSL definition.

For our analysis we model a 64 bit processor with a four stage pipeline. As refer-
ence architecture the Register Transfer Level (RTL)2 model of CVA6 (Ariane) from
OpenHW Group [ZB19] is taken. The algorithm on a RV64IM architecture runs in
a core with an internal L1 data cache. For the simulations with RVV, the RV64IMV
architecture implements a separate vectorial pipeline with its own Vector Load/Store
Unit (VLSU) and a vector arithmetic logic unit (VALU) for the vector instructions.
For the vector load/store unit an own high-bandwidth memory interface is provided.
Thus, these two architectures integrate different memory and cache systems, that
are depicted in Fig. 5.1. Each resource in ETISS is assigned an individual execution
time in cycles. This gives the possibility to get performance estimates on data sheet
accuracy level.

(a) Architecture of RV64I core (b) Architecture of RV64IV core with VLSU

Figure 5.1: Two processor architectures are used for the performance analysis of the GEA.
The L1 cache consists of the instruction cache (I$) and the data cache (D$). An instruction
fetch (IF) and a load/store unit (LSU) is considered for the scalar RV64I architecture. For
the RV64IV architecture the RV64I is extended by RVV and a dedicated Vector Load/Store
Unit (VLSU). Other core components, such as arithmetic units and instruction decoders,
are not shown in these figures.

5.6.2 Performance Analysis
We cross-compiled the source code in Appendix A with GCC version 9.2.0 and the
optimization level -O3 for the best possible runtime optimization. The functionality

2For a short introduction into RTL see Section 6.3.3.
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Architecture I[109] W [bit] MP C[109] IPC t[s] G

RV64IM 4.99 64 10 7.76 0.643 15.5 -
20 10.5 0.475 21.0 -

RV64IMV 0.064

64 10 1.27 0.0468 2.54 6.1
20 1.36 0.0498 2.72 7.7

128 10 0.737 0.0853 1.47 10.5
20 0.830 0.0767 1.66 12.7

256 10 0.472 0.132 0.944 16.4
20 0.564 0.113 1.13 18.6

Table 5.4: GEA simulation results comparing a pure scalar (RV64IM) and vector acceler-
ated model (RV64IMV). Table from [PGZM21].

of the vector accelerated GEA on RV64IMV was validated by comparing the simulation
results with the simulation results of a scalar implementation of the GEA on RV64IM
that does not integrate RVV.

The performance is substantially dependent on the memory accesses, because the
modelled vector register length in RVV exceeds the base ISA registers by far. Thus, the
data cache hits/misses need also be taken into account. For the RV64IM architecture,
the cache misses are modelled via a penalty of additional 10 or 20 cycles per cache miss.
For this, the L1 cache hit ratio was experimentally gathered via a RTL simulation
of the above described CVA6 core [ZB19] and is 83% of all L1 cache accesses. For
RV64IMV, a memory port warm-up penalty is introduced, which models a delay of 10
or 20 cycles before data through the memory port is streamed with a bandwidth of
W . For each architecture, the two different cache miss penalties MP of 10 cycles and
20 cycles are explored.

We profiled with ETISS the runtime C and the number of instructions I of the
vector accelerated GEA with RVV on RV64IMV and the non-accelerated GEA on
RV64IM. These two values are gathered for a memory port width W of 64, 128 and
256 bits. The runtime C is given in clock cycles.

Table 5.4 presents the simulation results for the vector accelerated GEA with RVV
on RV64IMV in comparison with the non-accelerated GEA on RV64IM. The instructions
per cycle IPC are calculated by IPC = I

C
. For the execution time t in seconds, a

processor clock of 500 MHz is taken and thus, t = C
500 MHz . To calculate the speed-

up gain G, all runtime clock cycles CRV64IMV,MP of the same cache miss penalty on
RV64IMV are compared to the runtime clock cycles CRV64IM,MP of the matching cache
miss penalty on RV64IM. Thus, G = CRV64IM,MP

CRV64IMV,MP
.

For the non-accelerated GEA on RV64IM we can estimate a runtime of 7.76 billion
cycles for an assumed MP of 10 cycles. That would be an execution time of 15.5
seconds on a 500 MHz processor. A higher MP of 20 cycles results in 10.5 billion
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5 Accelerations using the RISC-V Vector Extension

cycles. For different configurations of the VLSU memory port width W , we received
performance gains of 6 up to 18 for very wide vector memory interfaces of 256 bits for
the GEA using the RVV extension. The low IPC shows that the runtime on RV64IMV
is strongly dependent on the memory port width W . However, these results clearly
display the benefit of RVV.

Conclusion In this chapter, the implementations of Classic McEliece have been anal-
ysed and accelerated using the RISC-V Vector Extension (RVV). First, the imple-
mentations were profiled regarding their runtime on a x86-64 processor. The GEA was
found as the most time-consuming algorithm in the cryptosystem. Thus, the GEA
was selected for exploring the acceleration on a processor integrating the RISC-V ISA
and its vector extension. Then, the GEA was investigated and the most promising
code locations for vector integration were located. The RISC-V base ISA and RVV
were explained in detail to understand the GEA source code modifications. There-
upon, the vector accelerated GEA source code was simulated and compared to the
non-accelerated GEA. For this, a simulation environment was established using the
Extendable Translating Instruction Set Simulator (ETISS). The SoftVector library
on CoreDSL that connects RVV support to ETISS had to be developed. Two archi-
tectures with separate memory models and different sizes of the memory port width
for the VLSU were investigated. Because the performance is substantially dependent
on the memory accesses, also the data cache accesses had to be modelled. For this
cache hits/misses were estimated and provided with a miss penality, which is reflected
in the number of clock cycles needed for the execution of the algorithm. In our setup
and on a RISC-V 64 bit Ariane core integrating RVV we received a 6 to 18 time higher
runtime for memory port widths of 64 bit to 256 bits than for the GEA that does
not take advantage of the vector extension. For further works different values of the
maximum vector register length VLEN and thus the vector length VL can be examined.
Different cores, memory and cache models can be explored. Additionally, also other
algorithms used in the implementations of Classic McEliece should be investigated
and further accelerated.
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Chapter 6
Attacking Classic McEliece using
Fault Injections
As already described in Section 3.5, Classic McEliece withstands decades of crypt-
analysis and is designed to be robust to structural attacks and ISD attacks. Thus, it
is exceedingly hard to attack the system from the mathematical perspective. But, it
is interesting to look into attacks that target the hardware and the electronic device
on which an implementation of Classic McEliece is executed, e.g. on an embedded
system. A classical binary computer is built upon many transistors forming gates and
storage elements connected via electrical wires. Two voltage levels are represented via
a bit which can have values 0 or 1. If an attacker has access to the physical device, the
cryptographic computations can be observed or disrupted in ways that compromise
secret information. There exist different attack models that are interesting to look at
for an embedded device. These can be divided into observing (passive) attacks and
fault (active) attacks. Observing attacks passively monitor the behavior of the device
or monitor some affect from its environment in some form e.g. observing voltage on
electrical wires with an oscilloscope or measuring the time usage of a computation.
These can be called side-channel attacks. In contrast, fault attacks actively manipu-
late the functionality of the device such that computations are intentionally disrupt.
For example, the algorithms of a cryptosystem can be interfered by injecting light
with a laser to flip bits or by shortly removing the power source (glitching). With
highly focused laser beams and a good spatial and temporal precision, specific sin-
gle and adjacent bits on a chip can be set and reset [SHS16]. Guo et al. [GJJ22]
published a key-recovery side-channel attack on Classic McEliece. They use chosen
ciphertexts and exploit a side-channel leakage in the additive Fast Fourier Transform
(FFT) that evaluates the ELP during decoding. Cayrel et al. [CCD+21] present a
message-recovery fault attack on Classic McEliece by attacking the syndrome com-
putation that changes the syndrome from F2 to the integers N. The resulting syn-
drome decoding problem in N can be easily solved by integer linear programming.
In [CDCG22] they present a similar message-recovery attack using only side-channel
information on power consumption of the chip. This attack also gathers information
on the syndrome in N but is more tolerant to noise. Xagawa et al. [XIU+21] showed
single-fault injection attacks for all NIST PQC Round 3 KEM candidates except for
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Classic McEliece, as no simple key-recovery plaintext checking attacks for the un-
derlying McEliece/Niederreiter PKE system are known. The presented single-fault
injection attacks in [XIU+21] are executed by skipping instructions on a chip using
glitching of the power supply. The skipping circumvents the IND-CCA2 security of
the KEM and leads to execute chosen-chiphertext attacks on the vulnerable PKE.

In this chapter a key-recovery attack to the Classic McEliece Key Encapsulation
Mechanism (KEM) considering fault injections is presented. The main idea is to use
fault injections to retrieve the secret key of the cryptosystem from physical hardware
via a chosen-chipertext attack. The fault injections target the Error Locator Polyno-
mial (ELP) of the Goppa code and the validity checks of the decapsulation algorithm.
The faulty outputs of decapsulation achieved by fault injections are used to set up
a system of polynomial equations in the unknowns of the secret support elements of
the Goppa code. The polynomial system of equations is solved over the extension
field F2m and a suitable Goppa polynomial is determined via Eq. (3.5) to form an
alternative secret key.

The attack is mathematically described and is based on Classic McEliece that is
presented in Section 3.3 of Chapter 3. We simulated the complete attack on the
implementations submitted to NIST Round 3 [BCL+20] with software in C-code and
SageMath-code. We additionally investigated and simulated the fault injections on
two open-source RISC-V processors.

In Section 6.1 the hardware fault model is defined and the mathematical background
of the key-recovery attack is described. The details to solve the system of polynomial
equations in the finite field F2m are given in Section 6.2. In Section 6.3 the imple-
mentation details and simulation results that validate the attack are presented. A
feasibility study for two RISC-V processors using RTL simulations.

The idea of the work in this chapter has initially been presented at [PGMW22] and
the content is published in [PGD+23]. Johannes Geier performed the RTL simulations
presented in Section 6.3.3. For this, he developed a tool which has since been pub-
lished in [GM23]. Julian Danner joined the project at a later stage and provided the
algorithms in Section 6.2 and corresponding SageMath program to solve the system
of polynomial equations and to calculate the alternative keys as well as contributed
in the mathematical formulation of the principles of the described attack.

6.1 Mathematical Description of Key-Recovery Fault
Injection Attack

We present an attack that finds an alternative secret key of the Classic McEliece
KEM by adapting and combining the skipping attacks of Xagawa et al. [XIU+21]
with the fault injection attack on the Niederreiter cryptosystem using Goppa codes
by Danner and Kreuzer [DK20]. The attack targets the decapsulation function to find
an alternative secret key. The alternative secret key can be used to gain access to
sensitive information that is encrypted by a symmetric cipher whose symmetric key
is generated by Classic McEliece.
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6.1.1 Fault Model
It is considered that the secret key is stored in a Trusted Execution Environment
(TEE) so that its memory location is well protected. Only the TEE itself has access
to the secret key, i.e. the key cannot be physically accessed or retrieved by any other
means.

Assumption 6.1.
The attacker has access to the input and output of the decapsulation function (Algo-
rithm 6 in Chapter 3). She can freely choose the input of the decapsulation function
(chosen ciphertext attack).

Assumption 6.2.
The attacker can inject faults on the physical device during decapsulation such that
the transistor states are changed at specific positions and times. It is assumed that
single and adjacent bits can be set or reset.

Such faults described in Assumption 6.2 are achievable, for example, by laser fault
injections [SHS16].

On the computational level, the following is achieved by fault injections: The va-
lidity checks in Line 4 of Algorithm 7 and Line 5 of Algorithm 6 (see Chapter 3) is
bypassed (VCB) and the ELP is corrupted either by setting or resetting one or more
adjacent bits in a single coefficient (ELPb) or by setting a coefficient to zero (ELPz).

To simplify the theoretic analysis of fault injections into the ELP, consider the
following remark.

Remark 6.3.
We model the faults on a coefficient a ∈ F2m of the ELP as an addition in the field F2m,
i.e. write the faulty coefficient ã ∈ F2m as ã = a + ξ for some appropriately chosen
ξ ∈ F2m. Note that for our attack we do not need to know the fault value ξ.

6.1.2 Implementation Specific Behaviour of Decoding
The implementations submitted to NIST [BCL+20] contain a reference implementa-
tion, as well as several hardware accelerated implementations for x86/AMD64 pro-
cessors. These implementations are described in Section 5.1.1 and Section 5.1.2. The
ELP σe(x) ∈ F2m [x] (see Eq. (2.23)) is represented differently in the reference and
hardware accelerated code, but all implementations share the same properties that
result from storing the ELP in memory. These can be mathematically modeled as
follows.

Remark 6.4 (Implementation Details of ELP).
The ELP σe(x) ∈ F2m [x] of degree deg(σe) ⩽ t is stored as the polynomial σe(x) ·
xt−deg(σe) of degree t. All coefficients of xj with j < t− deg(σe) of this polynomial are
zero.
Using this alternate form of the ELP does not affect error correction as long as no αi
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is zero, or wt(e) = deg(σe(x)) = t. However, if there is i ∈ {1, . . . , n} with αi = 0
and wt(e) < t, then the output e′ ∈ Fn

2 of Line 2 in Algorithm 7 is changed, resulting
in supp(e′) = supp(e)∪{i} and wt(e′) ⩽ wt(e)+1. In particular, e ̸= e′ only if there
is an i ∈ {1, . . . , n} with αi = 0 and ei = 0.

This allows the attacker to quickly find the index i ∈ {1, . . . , n} for the zero element
αi = 0, if it is contained in L (details in Remark 6.7).

6.1.3 Overview of Attack
The attack targets the decapsulation function and can find an alternative secret key.
The main idea is to generate chosen ciphertexts and induce faults on the decapsulation
procedure in order to retrieve the secret support L of the Goppa code. If the support
is known, the Goppa polynomial g(x) of the secret key can be calculated using the
public key T (see also Section 3.5.1).

Theorem 6.5 ([BBD09, p. 125]).
If one part of the secret key Γ (the support set L or the Goppa polynomial g(x)) is
known, the other part of the secret key Γ can be calculated using the public key T.

The attack consists of two fault injection steps on the decapsulation. The decryption
procedure of Classic McEliece in Algorithm 6 and Algorithm 7 is illustrated in a flow
chart in Figure 6.1a showing the algorithm in normal operation. Fig. 6.1b illustrates
a faulty operation of decapsulation and indicates the fault positions necessary for the
attack. The first step of the attack is to inject faults on the decoding procedure on
the ELP coefficients so that it leaks information about the secret key. The second
step is to produce faults that bypass the validity checks (VCB) ensuring the faulty
decoding result is not rejected. With a wise choice of the chosen-ciphertexts the
information about the secret key contained in the hashed output can be retrieved.
That is demonstrated by our simulation in Section 6.3, where it is demonstrated
that under given circumstances the information about the secret key contained in the
hashed output can be retrieved.
There are two kinds of faults in the ELP coefficients (in Section 6.1.6):

• ELPb: single and adjacent bits of coefficients of ELP are corrupted.

• ELPz: coefficients of ELP are corrupted to zero.

Both lead to successful key recovery, but the case of zeroing the coefficients in ELPz
is more efficient, which will be discussed in the next sections.

With access to the faulty output ẽ′ of the decoding step via the second fault of VCB
in Section 6.1.4, a polynomial equation with unknowns of the secret support L can be
obtained. The goal is to gather enough equations to solve the resulting polynomial
system of equations. A solution of that (non-linear) system of polynomial equations
via Gröbner basis and Buchberger’s algorithm (see also Appendix B) eventually leads
to an alternative support L̃ for which there is an irreducible polynomial g̃(x) ∈ F2m [x]
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Input

Byte Splitting Algorithm 6, Line 1

Extension to codeword Algorithm 7, Line 1

Error Locator Polynomial Algorithm 7, Line 2

Root Finding Algorithm 7, Line 2

Error Vector Algorithm 7, Line 3

Validity Checks Algorithm 7, Line 4,
Algorithm 6, Line 5

Failed Output Valid Output

C, (sr, γ)
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v
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(a) Normal operation

Input

Byte Splitting Algorithm 6, Line 1
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Error Locator Polynomial Algorithm 7, Line 2

Root Finding Algorithm 7, Line 2
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(b) Faulty operation

Figure 6.1: Flowchart showing the decapsulation and decoding steps indicating the differ-
ences between normal and faulty operation. Fault injections target the steps marked in red.

of degree t with Γ(L, g) = Γ(L̃, g̃). This allows efficient correction of up to t errors
in the code Γ(L, g). Hence, for every sr ∈ Fn

2 the tuple (sr, (g̃, L̃)) can be used as an
alternative secret key with Algorithm 6. If the zero element 0 ∈ F2m is contained in
the support L, then its index can be easily found by 6.1.5.

6.1.4 Fault Injection on the Validity Checks (VCB)
If a faulty ELP is accomplished with the first fault injection and a faulty error vector ẽ
is computed, then the validity checks in Algorithm 7 Line 4 and Algorithm 6 Line 5
would result in a failure. The checks confirm whether the decoding function provides
a valid output and compares the corresponding hashes. In general the faulty error
vector ẽ′ is not equal to e and the decapsulation procedure would return a predefined
session key with sr (Failed Output in Figure 6.1a). Thus, this needs to be prevented.
The second fault circumvents these validity checks C ′

1 = C1 and Hsysẽ′⊤ = Hsyse⊤ in
the decapsulation and decoding procedure. Both validity checks can be attacked by
one fault injection.

A faulty session key K̃ ′ = H(1, ẽ′, C) is a hash of the input ciphertext C =
(c0,H(2, e)) and the output ẽ′ ∈ Fn

2 of the decode algorithm. According to our
fault model the attacker has full control over C. It is feasible to extract ẽ′ from K̃ ′

by exhaustive search if the weight of ẽ′ is small enough.

Remark 6.6 (De-hash Session Key).

(a) If C and hash K̃ ′ = H(1, ẽ′, C) are known for some ẽ′ ∈ Fn
2 with wt(ẽ′) ≤ 2, then
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one can find ẽ′ with less than
(

n
2

)
+
(

n
1

)
+
(

n
0

)
hash computations and comparisons

via exhaustive search.

(b) The statement in (a) is also true if wt(ẽ′) ≤ 3 and one index i ∈ supp(ẽ′) is
known.

(c) For the parameters (Table 3.3), we have n ≤ 213, this means that less than
225 + 212 + 1 hash computations and comparisons are required to find the output
of the decoding algorithm ẽ′ from a faulty session key K̃ ′, given that supp(ẽ′)
contains at most two unknown indices.

Before the corruption of the coefficients of the ELP which lead to polynomial equa-
tions in the unknown support L of the Goppa code is discussed, it is shown that one
can easily check if zero is one of the support elements and if so, find its index.

6.1.5 Locating the Zero Element in the Support

As already mentioned, the attacker can freely choose the input of the decapsulation
algorithm and can read faulty outputs with VCB if the input ciphertext comes from
a small weight e (see Section 6.1.4). Thus, it is also possible to choose an input
ciphertext that is generated from the all-zero vector e = 0 ∈ F2 of weight wt(e) = 0.
This allows to find out whether the zero element is contained in the support or not.
If the zero element, for which αj = 0, is part of the support its index j ∈ {1, . . . , n}
can be found without a fault injection on the ELP.

Remark 6.7 (Finding of Zero Element).
Let e = 0 ∈ Fn

2 , and set C = (c0 = eHsys
⊤,H(2, e)) as input for the decapsula-

tion algorithm in Algorithm 6 such that c0 is the input for the decoding algorithm in
Algorithm 7. If there is a j ∈ {1, . . . , n} with αj = 0, then the decoding algorithm
evaluates the polynomial xt and outputs e′ ∈ Fn

2 where supp(e′) = {j} by Remark 6.4.
Otherwise, e′ = e = 0 holds.
Since wt(e′) ≤ 1 a VCB fault can be applied and e′ from the hash output of the decap-
sulation function retrieved (see Remark 6.6). From e′ it can be determined whether
there exists a j ∈ {1, . . . , n} with αj = 0 and find the index j.

Remark 6.8 (Probability of Existence of Zero Element).
The probability that the zero element exists in L is n

2m . Thus, with smaller distance
between n and 2m the probability increases.

For the next sections, it is presumed that the attacker has knowledge of the index j
for j ∈ {1, . . . , n} with αj = 0, if it exists. The zero element in the support can be
gathered with a single execution of the decapsulation algorithm with chosen ciphertext
input generated from the all-zero vector and one fault to skip the validity checks VCB.
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6.1.6 Fault Injection on the ELP Coefficients

To receive information about the secret key, fault injections into certain coefficients
of the Error Locator Polynomial (ELP) during the decoding process are necessary.
The inputs are chosen-ciphertexts generated from chosen words e ∈ Fn

2 of Hamming
weight 2. The ELP is defined as (see also Eq. (2.23) and Eq. (2.24))

σe(x) =
∏
i∈ε

(x− αi) ∈ F2m [x] (6.1)

where ε = {i | ei ̸= 0, i = 1, . . . , n − 1} is the set of error locations. The goal is
to receive a faulty output ẽ′ ∈ Fn

2 of the decoding step whose non-zero positions are
the indices of the code locators that are roots of the faulty ELP. The roots are only
searched among the code locators. So, the root finding leaks information about the
evaluated code locators of the secret key.

The fault injections on the ELP are mainly based on the ideas of the fault attack
presented in [DK20], but a handful of adjustments had to be made to accommodate
the different fault model and the peculiarities of the implementation. Also the solving
process was refined to decrease the number of required fault injections.

A faulty ELP is denoted as σ̃e with ẽ′ the faulty error vector calculated from a
faulty ELP such that

ẽ′
i =

1 if σ̃e(αi) = 0
0 otherwise

(6.2)

where i ∈ {1, . . . , n}. Based on the non-zero positions of the output of the decoding
function, it can be read out which support element is a zero of the (faulty) ELP. If
ẽ′ = 0, then there could no root be found among the code locators in L.

For both cases ELPb and ELPz the syndromes corresponding to vectors e ∈ Fn
2

of weight 2 are chosen as input to the decapsulation procedure. Then, an ELP has
degree 2 and the form σe(x) = (x− αi1)(x− αi2) ∈ F2m [x] for supp(e) = {i1, i2} and
chosen i1, i2 ∈ {1, . . . , n} with i1 ̸= i2.

Definition 6.9 (Fault Injection on ELP).
Let e ∈ Fn

2 with wt(e) = 2 and supp(e) = {i1, i2} ⊆ {1, . . . , n} for i1 ̸= i2. Let
d ∈ {0, 1} be the degree location for the induced fault and let ẽ′ ∈ Fn

2 be the faulty
error vector from output of Algorithm 7 where a fault was injected during computation
such that the d-th coefficient of σe(x) is corrupted. Then, the ELP is replaced by a
faulty ELP

σ̃e(x) = ξxd + σe(x) (6.3)
with ξ ∈ F2m. The result of a fault injection on the ELP is a pair (e, ẽ′) .

Our fault model allows to generate arbitrary many such fault injections. Also note
that the value of ξ is unknown. It is introduced in order to simplify the mathematical
descriptions. In reality the implementation behaves as described in Remark 6.10. We
use two types of fault injections on the ELP:
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6 Attacking Classic McEliece using Fault Injections

(a) Constant fault injection (d = 0): a fault is injected on the coefficient of the
constant term of the ELP.

(b) Linear fault injection (d = 1): a fault is injected on the coefficient of the linear
term of the ELP.

In order to calculate the unknown support set L, constant fault injections are
insufficient (see Proposition 6.18). We need additional fault injections on the ELP
which we achieve by compromising the linear coefficient of the ELP with d = 1.

For an e of weight 2 and thus for an ELP of degree 2, the implementation specific
output using Remark 6.4 and Remark 6.7 is summarized in the following remark,
if a fault injection is given to the linear or constant coefficient. Recall that the
implementation specific output of the decode algorithm is constructed not from the
zeros of σ̃e(x) but from the zeros of xt−2σ̃e(x).

Remark 6.10 (Implementation Specific Output for Fault on Quadratic
ELP).
Let e ∈ Fn

2 with supp(e) = {i1, i2} and i1 ̸= i2. Assume that a fault ξ ∈ F2m is
injected into the d-th coefficient of σe(x) with d ∈ {0, 1}. Let ẽ′ ∈ Fn

2 be the output of
the decoding algorithm when the polynomial for the root finding is given by xt−2σ̃e(x)
(Remark 6.4) where σ̃e(x) = ξxd + σe(x).

(a) If αj ̸= 0 for all j ∈ {1, . . . , n}, then wt(ẽ′) ≤ 2, and

supp(ẽ′) = {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)}. (6.4)

(b) If there is j ∈ {1, . . . , n} with αj = 0, then wt(ẽ′) ≤ 3 and j ∈ supp(ẽ′) is
known. Moreover, we have

supp(ẽ′) = {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)} ∪ {j}. (6.5)

Using Remark 6.7 these two cases can be distinguished.

Not all fault injections lead to a polynomial equation, but only those where the
faulty ELP has two zeros among the support L. Thus, it can be seen from the weight
of the faulty output ẽ′, if a fault injection was successful and leaked information about
the secret key.

Definition 6.11 (Successful Fault Injection).
A result (e, ẽ′) of a fault injection is called successful, if

(1) for all j ∈ {1, . . . , n} holds αj ̸= 0 and wt(ẽ′) = 2, or

(2) there is a j ∈ {1, . . . , n} with αj = 0 and wt(ẽ′) = 3.

For every successful result the set {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)} is deduced
using Remark 6.10 and Definition 6.11 such that it contains exactly two elements in
order to set up the polynomial equations in the following two cases ELPb and ELPz.
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Remark 6.12 (Probability Successful Fault Injection).
The probability to have a successful fault injection increases with the ratio n

2m . This
follows simply from the fact that the number of support elements increases with n and
by that also the number of possible roots for the faulty ELP σ̃e(x) increases.

6.1.6.1 Corrupting bits of coefficients (ELPB)

In the case of ELPb, the fault injections are positioned such that single or adjacent
bits in the linear or constant coefficient of an ELP are set or reset. This means, that
the ELP is replaced by σ̃e(x) = ξxd+σe(x) for d ∈ {0, 1} and some (unknown) ξ ∈ F2m

(see also Remark 6.3).

Proposition 6.13 (Fault Equations ELPB).
Let (e, ẽ′) be the result of a successful fault injection with supp(e) = {i1, i2} and
{i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)} = {j1, j2}. Then, an equation can be found in
the following forms.

(a) Constant injection (d = 0):
If (e, ẽ′) is a successful result of a constant injection, then

αi1 + αi2 = αj1 + αj2 (6.6)

and (α1, . . . , αn) is a zero of the linear polynomial xi1 + xi2 + xj1 + xj2 ∈
F2m [x1, . . . , xn].

(b) Linear injection (d = 1):
If (e, ẽ′) is a successful result of a linear injection, then

αi1αi2 = αj1αj2 (6.7)

and (α1, . . . , αn) is a zero of the quadratic polynomial xi1xi2 + xj1xj2 ∈
F2m [x1, . . . , xn].

Proof. The proof can be shown by comparing the coefficients of the resulting poly-
nomials. The ELP of degree 2 of supp(e) = {i1, i2} is denoted by σe(x) = (x −
αi1)(x − αi2). The faulty ELP is denoted by σ̃e(x) = ξxd + σe(x) for d ∈ {0, 1}
and ξ ∈ F2m . By Remark 6.10 and Definition 6.11, the roots αj1 and αj2 of σ̃e(x)
are known and σ̃e(αj1) = σ̃e(αj2) = 0 applies. Then, σ̃e(x) can also be written as
σ̃e(x) = (x− αj1)(x− αj2) = x2 + (αj1 + αj2)x+ αj1αj2 . For both statements (a) and
(b) the coefficients in ξxd + σe(x) = σ̃e(x) are compared:

ξxd + (x− αi1)(x− αi2) = (x− αj1)(x− αj2).

For (a) with d = 0 this result in x2+(αi1+αi2)x+(αi1αi2+ξ) = x2+(αj1+αj2)x+αj1αj2 .
Comparing the linear coefficients yields αi1 + αi2 = αj1 + αj2 .
For (b) with d = 1 this result in x2+(αi1 +αi2 +ξ)x+αi1αi2 = x2+(αj1 +αj2)x+αj1αj2 .
So, αi1αi2 = αj1αj2 follows from the constant coefficients.
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Note that αj1 , αj2 are the roots of the faulty error locator polynomial σ̃e(x) = 0 and
αi1 , αi2 are the roots of the original error locator polynomial σe(x), but all are elements
of the support set L (αj1 , αj2 , αi1 , αi2 ∈ L).

6.1.6.2 Zeroing Coefficients (ELPZ)

From observations of the RTL simulation (see Section 6.3.3), we found out that instead
of targeting individual bits of the ELP coefficients stored in GPRs, one may also target
the instructions that operate on them. For example, by skipping the instruction that
stores the ELP coefficient to memory, the resulting coefficient will be equal to zero.
This is the case as the algorithm sets the ELP vector to zero before calculating its
coefficients. Such fault injections also fit well with Definition 6.9, where the fault
value ξ ∈ F2m has the same value as the targeted coefficient of the ELP such that
the coefficient cancels out. Coefficient-zeroing fault injections provide polynomial
equations as follows.

Proposition 6.14 (Fault Equations ELPZ).
Let (e, ẽ′) be the result of a successful fault injection with supp(e) = {i1, i2} on the d-th
coefficient of σe(x) such that the d-coefficient of σ̃e(x) is set to zero. Let j ∈ supp(ẽ′)
with αj ̸= 0. Then, an equation can be found in the following forms.

(a) Constant injection (d = 0):
If (e, ẽ′) is a successful result of a constant injection, then

αi1 + αi2 = αj (6.8)

and (α1, . . . , αn) is a zero of the linear polynomial xi1 +xi2 +xj ∈ F2m [x1, . . . , xn].

(b) Linear injection (d = 1):
If (e, ẽ′) is a successful result of a linear injection, then

αi1αi2 = α2
j (6.9)

and (α1, . . . , αn) is a zero of the quadratic polynomial xi1xi2+x2
j ∈ F2m [x1, . . . , xn].

Proof. As in the proof above, the ELP of degree 2 of supp(e) = {i1, i2} is denoted by
σe(x) = (x− αi1)(x− αi2) = x2 + (αi1 + αi2)x+ αi1αi2 .
For (a) with d = 0 it applies σ̃e(x) = x2 + (αi1 + αi2)x. By Remark 6.4 the im-
plementation constructs ẽ′ from the zeros of xt−2σ̃e(x) = xt−1(x + αi1 + αi2) which
has only one non-zero root αi1 + αi2 . Then, j ∈ supp(ẽ′) with αj ̸= 0 implies that
αj = αi1 + αi2 .
For (b) with d = 1 it applies σ̃e(x) = x2 + αi1αi2 . For αj ̸= 0 a zero of σ̃e(x) and
of xt−2σ̃e(x) the polynomial can be written as σ̃e(x) = x + αj and σ̃e(αj) = 0 =
α2

j + αi1αi2 . Thus, it follows α2
j = αi1αi2 .

Recall that the attacker knows if there is j ∈ supp(ẽ′) with αj ̸= 0 due to Re-
mark 6.7. Hence, the above proposition can be applied directly.
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Remark 6.15 (Probability for Successful Fault Injection for ELPz).
If the support elements α1, . . . , αn and e ∈ Fn

2 with wt(e) = 2 are chosen uniformly
at random, then the probability that there exists an αj with αj = αi1 + αi2 or α2

j =
αi1αi2 for supp(e) = {i1, i2} is n

2m . This means that the success rate for obtaining a
polynomial equation for a zeroing fault injection (ELPz) is about n

2m .

This probability is significantly greater than the success rate of the injections that
directly target single or adjacent bits of the coefficients (ELPb), especially if n≪ 2m.
This observation can be confirmed with our simulations.

6.2 Computation of Alternative Secret Key
After the equations with indeterminates in the unknown support elements were gath-
ered, the obtained polynomial system of equations needs to be solved in order to
assign values to the elements. The drawback of this kind of method is, that it is not
fail-safe. If the equations contain any wrong information, the secret key cannot be
reliably reconstructed and the whole key-recovery attack has to start over again. To
verify if the recovered secret key is indeed a valid secret key of the cryptosystem, we
implemented a check that compares the public key of the original and the public key
calculated from the recovered secret key. Two scenarios can be distinguished, depend-
ing on whether the obtained system of polynomial equations contain equations in all
support elements or only a subset of them.

6.2.1 System of polynomial equations contains all unknowns of
the support set

Fault injections on ELP together with VCB are repeated many times for different
chosen ciphertext inputs to collect polynomial equations using Proposition 6.13 or
Proposition 6.14. These polynomial equations can be collected and written in a
fault equation system set F ⊆ F2m [x1, . . . , xn] that has the code locators of the code
(α1, . . . , αn) as a common zero. The polynomials in F are either linear or quadratic
due to the special choose of the input ciphertexts as described in Proposition 6.13 and
Proposition 6.14. Both linear and quadratic equations are needed in order to solve
the polynomial system of equations, as shown in Proposition 6.18. Denote the set of
zeros of F ⊆ F2m [x1, . . . , xn] by

Z(F) = {a ∈ Fn
2m | f(a) = 0 for all f(x1, . . . , xn) ∈ F}. (6.10)

The goal is to find a support candidate set SF ⊆ Z(F) that is a subset of the set
of the common zeros of F . The support candidate set contains a support candi-
date (α̃1, . . . , α̃n) ∈ SF for which an irreducible polynomial g̃(x) of degree t exists
with Γ(L, g) = Γ(L̃, g̃) and L̃ = {α̃1, . . . , α̃n}. Such a support candidate set is found
by solving the system of polynomial equations using Gröbner basis and Buchberger’s
algorithm (see also Appendix B). The solving process of the fault attack in [DK20,
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Section 6] is used and summarized as follows.

Proposition 6.16 (Solving Fault Equations).
Let F ⊆ F2m [x1, . . . , xn] be a fault equation system. A support candidate set SF for
F , is computed by the following steps:

(1) Reduce the linear polynomials in F to h remaining indeterminates by Gaussian
elimination.

(2) Substitute the leading terms in the quadratic polynomials with the remaining
indeterminates. This set of reduced quadratic equations is denoted as Fred ∈
F2m [xi1 , . . . , xih

].

(3) Fix one of the remaining indeterminates to 1 (the equation xi − 1 is added to
Fred for some i ∈ {i1, . . . , ih}).

(4) Find the set of zeros Z(Fred) ⊆ Fh
2m of Fred via Gröbner basis and Buchberger’s

algorithm (see also Appendix B).

(5) Extend the zeros in Z(Fred) to elements of Z(F ∪ {xi − 1}) ⊆ Fn
2m using the

linear polynomials. Then, the support candidate set SF is

SF = {(α̃1, . . . , α̃n) ∈ Z(F∪{xi−1}) | α̃j1 ̸= α̃j2 for j1 ̸= j2 and j1, j2 = 1, . . . , n}.

For every support candidate in SF it is checked if a corresponding irreducible Goppa
polynomial g̃(x) can be calculated to generate the Goppa code Γ(L, g). This is done
via Eq. (3.5) and the generated code is compared to Γ(L, g) using the public key T.
In this work a corresponding Goppa polynomial is computed by the following steps.

Proposition 6.17 (Finding Goppa Polynomial).
Let (α̃1, . . . , α̃n) ∈ Fn

2m be a set of code locators with α̃i ̸= α̃j for i ̸= j. For the number
of codewords s ≥ 1, do the following sequence of instructions to calculate a suitable
Goppa polynomial.

(1) Choose codewords c1, . . . , cs ∈ Γ(L, g) (obtained using the public key T) and set
g̃(x) = 0.

(2) Set fj(x) = ∑
i∈supp(cj)

∏
k∈supp(cj)\{i}(x − αk) for j ∈ {1, . . . , s} and compute

h(x) = gcd(f1(x), . . . , fs(x)) using the Euclidean algorithm.

(3) Factorize h(x) and collect all irreducible factors of degree t in a set G.

(4) For every ĝ(x) ∈ G, check if Γ(L̃, ĝ) = Γ(L, g) by comparing their parity-check
matrices in systematic form. If they match, then g̃(x) = ĝ(x).

(5) Return g̃(x).
This algorithm returns a non-zero g̃(x) if and only if there exists an irreducible poly-
nomial g′(x) ∈ F2m [x] with Γ(L̃, g′) = Γ(L, g). In that case holds Γ(L̃, g̃) = Γ(L, g).
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Proof. If g̃(x) is non-zero, by Item (4), it applies Γ(L̃, g̃) = Γ(L, g). Conversely, if
there is an irreducible g′(x) ∈ F2m [x] of degree t with Γ(L̃, g′) = Γ(L, g), then g′(x) is
an irreducible factor of h(x), i.e. g′(x) ∈ G. This g′(x) is processed in Item (4) and
ensures g̃(x) ̸= 0.

With s = 5 our simulations showed that, in practice, we always have two cases in
Item (3): either deg(h(x)) = 2t and G contains exactly one element, or h(x) = 1 and
G = ∅. Our implementation is optimized for this observation.

The following proposition indicates the necessity of the quadratic equations in the
solving procedure by showing that it is impossible to find a small set of support
candidates only from linear fault equations.

Proposition 6.18 (Number of Linear Independent Polynomials).
Assume that n > 2m−1. Let F ⊆ F2m [x1, . . . , xn] be a fault equation system consisting
only of linear polynomials. Then F contains less than n − m linearly independent
polynomials. Proof see [PGD+23, Prop. 18].

Note that the condition n > 2m−1 is satisfied by all proposed parameter sets (see
Table 3.3). So for the set of reduced quadratic polynomials Fred ∈ F2m [xi1 , . . . , xis ] in
Item (2) of Proposition 6.16 we have s ≥ m.

6.2.2 System of polynomial equations contains only a subset of
unknowns

In the previous subsection, it was assumed that the system of polynomial equations
obtained from the successful fault injections contains all unknown support elements.
Many fault injections may be necessary to obtain equations in every single support
element. But, an alternative secret key can be obtained even if the equation system
does not determine every single support element. This may permit faster completion
of the fault injection procedure.

Note that Proposition 6.17 (up to Item (3)) does not require the full set of support
elements to determine a Goppa polynomial candidate, since only support elements
α̃k where k ∈ supp(ci) with i ∈ {1, . . . , s} are used. Hence, using suitable codewords
ci, a Goppa polynomial candidate can be constructed from a subset of the support
set L [PGD+23; KM22]. Before Item (4) of Proposition 6.17 can be executed for
each returned Goppa polynomial candidate, the missing code locators need to be
computed. This can be done using the Goppa polynomial candidate and the public
key like described in Section 3.5.1 or [PGD+23, Remark 14]. The obtained set of
code locators and its corresponding Goppa polynomial candidate are then checked
for validity by comparing public keys (see Item (4) of Proposition 6.17). The full
mathematical description is not part of this thesis and can be found in [PGD+23,
Sec. 3.4].
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6.3 Simulation
In this section, we demonstrate the viability of the key-recovery attack. We first use
a C-implementation to simulate the attack (Section 6.3.1). For this we inject faulty
variable values directly in software. We simulate the inputs and corresponding hashed
outputs of the faulty decapsulation procedure. The de-hashing of these is described
separately in Section 6.3.2, leading to the system of polynomial equations. This is
solved to obtain an alternative secret key as described in Section 6.2 by a program
written in Python3 using SageMath [Sag22].

An attacker cannot directly modify the software execution. Instead, there are dif-
ferent ways to conduct a fault attack, e.g. using a laser to corrupt hardware memory
elements in a processor. To investigate whether this allows to inject the specific faults
required for the presented attack as were identified at software-level, we execute the
cryptosystem as software on a VP (Section 6.3.3). The VP implements the RISC-V
ISA and allows us to inject faults into the hardware of the processor in order to study
how they impact the executing software. For our software-error-model-based fault in-
jection attack, we first analyze the binary to find the program sections that calculate
the ELP and process the validity checks. The disassembly and its required alteration
gives us the fault positions necessary to produce the identified faulty variable val-
ues. The necessary hardware fault attacks are then simulated on two levels; First, a
fast ISA-level simulation assures that the hardware faults produce exploitable output.
Second, an RTL simulation yields practicability of the fault attack with respect to a
real CPU core’s micro-architecture.

For our software simulation of the attack, we adapt the hardware accelerated im-
plementation that makes use of vector arithmetics on the processor for faster runtime.
To simulate the fault injections on RISC-V cores, we use the reference implementation
(see Section 5.1.1 of Chapter 5).

6.3.1 Key-Recovery Simulation
We simulated the fault injections of Section 6.1.3 in C code and the solving of Sec-
tion 6.2 in SageMath code. To speed up that simulation at C-level we work on AMD64
machines with the vector-accelerated AVX2 implementation. The organization of the
implementation files and their names can be found in Section 5.1. An overview of the
software simulation is given in Algorithm 14.

To model the attack, we adapt the implementation of the cryptosystem to in-
clude the effects of the ELPb, ELPz and VCB faults. For the fault injections
on the ELP, we have identified the following lines of code as injection points. The
fault injection on the ELP happens between the function calls bm(locator, s) and
root(images, locator, L) in decrypt.c. Fault injections on the ELP are modelled
as bitwise operations on one of its coefficients. This way, the ELPb fault injection
that sets two adjacent bits is implemented by setting one coefficient a → aOR ζ,
where ζ is an m-bit array containing only zeros except for two adjacent entries. The
ELPz fault injection is implemented by replacing all entries of one ELP coefficient
with zeroes. Note that the fault value ξ corresponding to these injections as defined
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Algorithm 14 Attack Simulation on C-level
1: Specify a ciphertext C as input for the decapsulation function as follows:

i. Choose a plaintext e of Hamming weight wt(e) = 2.
ii. Calculate the ciphertext C = (c0, C1) = (eHsys

⊤,H(2, e))
2: Inject a fault into the Error Locator Polynomial (ELP) as follows:

i. Fix a fault value of ζ ∈ F2m .
ii. Start the decapsulation process and let the Berlekamp-Massey algorithm

calculate the ELP (in file decrypt.c).
iii. Inject a constant or quadratic fault into the ELP (see Definition 6.9).

3: Inject a fault and reset the variable called m during decapsulation such that the
following comparisons are bypassed (in file operations.c)

a) Skip the comparison ẽ′Hsys
⊤ = eHsys

⊤ (Alternative: in file decrypt.c clear
8-bit variable ret_decrypt during decapsulation).

b) Skip the comparison C ′
1 = H(2, ẽ′) = H(2, e) = C1 (Alternative: in file

operations.c clear 8-bit variable ret_confirm).
4: Reconstruct ẽ′ from the output K̃ ′ = H(1, ẽ′, (eHsys

⊤,H(2, e))) of the decapsula-
tion function as described in Section 6.3.2.

5: Calculate an alternative secret key as described in Section 6.2.

in Remark 6.3 is unknown, as it depends on the value of a. To skip the validity checks
the variable m in file operations.c and in function crypto_kem_dec_faulty in the
line m = ret_decrypt | ret_confirm is forced to 0. This gives H(1, ẽ′, C) as output
of the C-code for further analysis (see next Section 6.3.2).1

The simulation code is called repeatedly for different chosen ciphertexts and faults ζ
to build a system of equations using Propositions 6.13 and 6.14, that can be solved
with the methods from Section 6.2 to obtain an (alternative) secret key. To obtain lin-
ear equations in the support elements, faults are injected into the constant term of the
ELP. In ELPb mode, we start with ζ having the two least significant bits non-zero.
Then we generate faulty session keys from ciphertexts corresponding to plaintext vec-
tors e with wt(e) = 2 and supp(e) ∈ {{n− 1, 0}, {0, 1}, {1, 2}, . . . }. This is repeated
for faults ζ with non-zero bits in other adjacent positions, until the resulting system
of equations contains equations involving all the support elements. In ELPz mode,
there is only one way of injecting a fault, so that instead of different fault values ζ,
ciphertexts corresponding to plaintext vectors e with wt(e) = 2 with increasing dis-
tance between the non-zero support elements supp(e) ∈ {{n−1, 1}, {0, 2}, {1, 3}, . . . }
are used to obtain a sufficiently large system of equations (this is also done in the
ELPb-case if the number of possible ζ is exhausted before finding sufficiently many
equations). The same procedure is used to inject faults on the linear term of the

1For the purposes of verifying the fault attack, the simulator also directly gives ẽ′ as output, sparing
us the computational effort of de-hashing H(1, ẽ′, C)→ ẽ′.
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CAT I
n = 3488, m = 12, t = 64

CAT V
n = 6688, m = 13, t = 128

CAT V
n = 8192, m = 13, t = 128

# of constant injections 31759 70700 56991
# of linear equations 8627 17649 21343

# of linear injections 293 564 266
# of quadratic equations 80 140 100

Table 6.1: Arithmetic Mean out of 100 simulations for ELPb.

CAT I
n = 3488, m = 12, t = 64

CAT V
n = 6688, m = 13, t = 128

CAT V
n = 8192, m = 13, t = 128

# of constant injections 8030 16516 8944
# of linear equations 6836 13482 8941

# of linear injections 94 121 100
# of quadratic equations 80 100 100

Table 6.2: Arithmetic Mean out of 100 simulations for ELPz.

ELP in order to obtain quadratic equations in the support elements, finishing after an
empirically determined fixed number of equations has been obtained. To confirm that
the attack is working, we ran simulations of 100 random public/private key pairs, for
several sets of parameters where n ∈ {3488, 6688, 8192} (see Table 3.3). The average
number of required fault injections for a successful attack on the different parameter
sets are shown in Tables 6.1 and 6.2 for the fault modes ELPb and ELPz respectively.
The ELPz-mode requires significantly fewer fault injections to complete the attack
(compare with Remark 6.15). Parameter sets with smaller ratio n

2m also require more
injections, as indicated by Remark 6.12. We find that the SageMath code usually
takes only minutes to obtain an alternative secret key from the system of polynomial
equations on an office computer.

6.3.2 De-hashing: Obtaining the faulty error vector from hash
output

As output of the simulation in Section 6.3.1 we generate two files containing hashes
K̃ ′ = H(1, ẽ′, C) with (e, ẽ′) defining linear or quadratic equations in the support
elements. Thanks to the small weight of the error vectors ẽ′, we can determine them
from the hashes in a brute-force manner as follows.

First, we determine whether the zero element is part of the support set (Remark 6.4)
and determine its index if present, according to Remark 6.7. This requires only one
fault injection, giving the outputH(1, e′, C) for C = (0,H(2,0)), with wt(e′) ∈ {0, 1}.
The support supp(e′) specifies the index of the zero element in the support set, if it
is present. It is determined from the hash by calculating all n + 1 possible hashes
until the match with the output is found. Next, for every K̃ ′ we calculate the hashes
H(1,v, C) for the chosen ciphertext C = (c0,H(2, e)) and all possible ẽ′, as described
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in Remark 6.6. When a match is found, ẽ′ has been determined.
We run the de-hashing on a computer with AMD EPYC 7543P processor running

up to 3.3 GHz using 32 cores (64 threads) on Arch Linux with kernel 5.19.7. For the
ELPb case we have about

(
n
2

)
different ẽ′ to check for every hash output (number of

constant injections plus number of linear injections in Table 6.1). Depending on the
cryptosystem and its parameters, the total runtime on our system spans a few hours
up to a few days. For the ELPz case we have about

(
n
1

)
= n different ẽ′ to check for

every hash output (number of constant injections plus number of linear injections in
Table 6.2). The running time on our system is a few seconds.

6.3.3 Simulation at Register Transfer Level
The Register Transfer Level (RTL) is an abstraction level in modeling the hardware
of integrated circuits. On this level, the system is represented as digital signal flows
between hardware registers and logical operations performed on the signals. The RTL
is the abstraction level that is used in Hardware Description Languages (HDLs) such
as Verilog and Very High Speed Integrated Circuits Hardware Description Langauge
(VHDL) to describe an electronic circuit on the basis by data flow and timing models.
The description in HDL can be converted to a gate-level representation, also called
netlist, with a logic synthesis tool to derive the actual wiring. Placement and rooting
tools then create the physical hardware layout that can be deployed to an FPGA or
an ASIC.

We evaluated the vulnerability of two open source RISC-V cores, the OpenHW-
Group’s CV32E40P [Opea], formerly known as RI5CY [GST+17; DCR+17], and its
security oriented derivative CV32E40S [Opeb]. For this we simulated fault injections
on these specific micro-architectures using its hardware descriptions in Verilog at RTL.
These simulations provide information about which fault injections trigger errors on
these micro-architectures that lead to our exploit. In particular, a simulation can be
used to find the fault locations and injection timings that lead to the intended attack.
In order to find these fault locations, we try all possible bits (single bit set/reset) at
all possible simulation steps (clock cycles) if they give us our desired exploit in an
exhaustive search campaign.

A simulation at RTL is in general quite complex and a big limiting factor is the
simulation time. Thus, it is desirable to minimize the simulation effort by simulating
only specific time windows/frames of the decapsulation algorithm. The intended at-
tacks that lead to an exploit described on a mathematical level, as in Proposition 6.13
or Proposition 6.14 and Section 6.1.4 are associated to the programming lines in the
source code of the software implementation in C-code. First, the programming lines
in the software implementation on C-code, which need to be corrupted in order to
lead to the intended attack, are localized, as in Line 2 and Line 3 of Algorithm 14.
These programming lines are converted to RISC-V instructions in assembly via a
compiler. Second, we simulate the assembly instructions on an ISS implementing the
RISC-V ISA to identify interesting instructions to further narrowing the time frame
for a consecutive RTL simulation. Third, the selected time frame of instructions on
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Extraction of secret cryptographic
information (algorithm/source)Exploit

Corruption of opcodes, ISA registers,
or memory transactions (asm)ISA Error Model

Corruption of sequen-
tial logic (verilog)Manifestation

Change of transistor states
(register bit set/reset)Physical Attack

Figure 6.2: Abstraction Levels for narrowing the RTL Fault Injection Simulation.

Core: CV32E40- P S
clock cycles at ISA simulation 301 301
total architectural bits 6.001 16.586
# of checks 1.806.301 4.992.386
# of exploits for validity check bypass NVCB 114 57
# of unique faulted bits 93 39

Table 6.3: Single-Bit RTL fault injection results for validity check fault scenario VCB.

ISA-level are then fed into the RTL fault simulation of the specific micro architectures
of CV32E40P and CV32E40S to search for all possible single faults that lead to the
desired exploit.

This approach is shown in Fig. 6.2. It identifies the rough fault injection points to
further evaluate the feasibility of a physical attack in an exhaustive search campaign
at RTL. The benefit of this approach is to focus only on the program sections that
are critical on the source code to apply the exhaustive search on bit level on a narrow
time frame to reduce RTL simulation time.

To simulate the fault injections on RTL, the original SystemVerilog hardware de-
scriptions of CV32E40P/S in [Opea; Opeb] are transferred to a cycle accurate C++/
SystemC environment using the synthesis tool Verilator [Sny] and are then modified
with an LLVM-based automated source code transformation tool [GM23] to inte-
grate the fault injections. The clock cycle accurate simulation is executed in the
C++/SystemC environment with a fault injection capability into sequential storage
elements, e.g. flip-flops.
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Core: CV32E40- P S
clock cycles at ISA simulation 521 521
total achitectural bits 6.001 16.586
# of checks 3.126.521 8.641.306
# of exploits for coeff. bit corruption NELPb 69 57
# of unique faulty bits 35 29
# of exploits for coeff. zeroing NELPz 508 212
# of unique faulted bits 225 94

Table 6.4: Single-Bit RTL fault injection results for ELP coefficient fault scenario ELPb
and ELPz.

Figure 6.3: Single-Bit RTL Fault Injection Results.

In total 6001 bits for CV32E40P and 16586 bits for CV32E40S were faulted for
each clock cycle and checked if the desired exploit can be achieved. The simulation
results of the VCB fault (see Section 6.1.4) to bypass the validity checks are shown in
Table 6.3. For VCB the ISA simulation resulted in 301 clock cycles for further RTL
simulation. For CV32E40P, in 114 cases a single bit fault could achieve the VCB
exploit having 93 unique injections points identified. While for the CV32E40S the
exploit could be achieved in only 57 cases, although the security oriented architecture
contains more injectable bits. Most of the VCB exploits are achieved by faulting
bits that result in instruction skips. The simulation results of the ELPb and ELPz
faults (see Section 6.1.6) that corrupt the ELP coefficients are shown in Table 6.4.
For ELPb and ELPz the ISA simulation resulted in 521 clock cycles for further RTL
simulation. The ELPb exploit is achieved in 69 cases for CV32E40P having 35 unique
injections points identified and in 57 cases for CV32E40S having 29 unique injections
points identified. A small number of ELPb exploits are achieved by directly faulting
bits in the register storing the ELP value. The ELPz exploit is achieved in 508 cases
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for CV32E40P having 225 unique injections points identified and in 212 cases for
CV32E40S having 94 unique injections points identified. Most of the ELPz exploits
are achieved by faulting bits in the memory store instructions. These results are
summarized in Fig. 6.3. The security oriented CV32E40S core is more resistant against
fault attacks compared to CV32E40P due to its hardware based countermeasures.

Furthermore, the VCB and ELPz exploits can be jointly achieved with one single
bit fault. This was observed for 47 bits in CV3240P and for 17 bits in CV32E40S,
making the complete attack significantly less complex by requiring only one fault
injection per ciphertext input and requiring e.g. only a single laser beam source setup.

Conclusion In this chapter a fault attack on Classic McEliece KEM that finds an
alternative secret key has been described and simulated. The attack exploits that
at decoding the roots of an ELP are searched among the code locators of the secret
key. The main idea is to inject faults into the physical device during the decoding
computation in order to generate faulty ELPs. These faulty ELPs are evaluated and
the indices of the code locators are returned. With the indices of the code locators, a
system of polynomial equations with the values of the code locators as unknowns can
be set up. This system of polynomial equations can be solved using Gröbner basis
and Buchberger’s algorithm. The solution gives multiple possible values of the code
locators, which all are checked whether they meet the requirements of being part of an
alternative secret key by comparing its public key with the public key of the attacked
cryptosystem.

We found two different kinds of fault injection methods: ELPb and ELPz. In
ELPb single and adjacent bits of a coefficient of the ELP get corrupted. In ELPz
all bits of a coefficient of the ELP are corrupted to zero.

As an extension of the attack, it is also possible to solve a system of polynomial
equations that contains only a subset of the indices of the unknown code locators.
The remaining indices, that are not part in the polynomial equations, can be found by
brute-forcing possible solutions, calculating Goppa polynomial candidates and check-
ing if they constitute a valid secret key.

To ensure the result of the faulty computation is output from the decapsulation in
the KEM, another fault injection on the VCB is necessary. The output is the hash
of the error vector. Thus, if the faulty ELPs have a degree of 1 and 2 the hash can be
dehashed by brute-force. This can be achieved by choosing ciphertext inputs of the
decapsulation that are generated from plaintext with Hamming weights of 2. For the
ELPb case the brute-force dehashing runtime spans a few hours up to a few days on
a 3.3GHz processor with 64 threads. For the ELPz case the brute-force dehashing
runtime takes a few seconds on the same processor.

We simulated the fault injections on two RISC-V processors at RTL. It shows the
possibilities for successful fault injections for ELPb and ELPz. In particular, we
found that ELPz and VCB can be jointly achieved by a single fault injection.

The attack described in this chapter is based on the implementations of Classic
McEliece that were submitted for the NIST PQC competition Round 3. For the
current version of Round 4 the authors removed the check in Line 5 of Algorithm 6
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in their implementations. This makes the VCB fault injections of our attack easier
as we anticipate that there would be more possible successful fault injection locations
on the processor.

For future works, it remains to execute our whole attack on real hardware. The
challenge in here could be especially to get the right injection timings. Additionally,
it also includes to find the right physical injection locations which are dependent on
the layout of the chip.

The current method of solving the system of polynomial equations is not robust
against mistakes in the fault injection procedure. Thus, the solving of the system
could be improved by developing a tolerance against incorrectly obtained polynomial
equations.
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Chapter 7
Conclusion
This thesis dealt with code-based post-quantum cryptosystems, in particular the
McEliece cryptosystem, which is based on classical Goppa codes, and variants of it.
A broad range of results ranging from their mathematical foundations, their efficient
implementation on hardware, to possible hardware attacks were presented. The code
class of binary Generalized Goppa Codess (GGCs) was examined for a reduced pub-
lic key size with equivalent security level compared to classical binary Goppa codes.
Next, the performance of Classic McEliece implementations was investigated and the
computational complexity (time and resource consumption) of the key generation was
reduced via vectorization of the Gaussian Elimination Algorithm (GEA). Finally, a
hardware fault attack on Classic McEliece was presented by compromising the Error
Locator Polynomial (ELP) during decryption.

The thesis starts by giving background knowledge on code-based cryptosystems,
introducing some key concepts of finite fields and coding theory. Syndrome-based
decoding was explained and it was illustrated how a cryptosystem can be built upon
codes that are otherwise used for channel coding. We looked into the security of
code-based cryptosystems and its dependence on the syndrome-decoding problem.
The McEliece cryptosystem and its dual version, the Niederreiter cryptosystem as a
public-key encryption system and as well as Classic McEliece as a Key Encapsula-
tion Mechanism (KEM) were presented. The best known attacks on the McEliece
and Niederreiter cryptosystem with Goppa codes were given. Key attacks are struc-
tural attacks that target the revelation of the secret key, while a message attack
targets the revelation of the message that should be kept secret. Message attacks for
McEliece go back to Prange as the first idea for an Information Set Decoding (ISD)
algorithm. Since then, further algorithms have been developed, which reduce the
number of operations needed, usually at the cost of more memory use. For a KEM,
it is also important to fulfil the requirements of Indistinguishability under Chosen
Plaintext Attacks (IND-CPA) and Indistinguishability under Chosen Ciphertext At-
tacks (IND-CCA2), which were explained.

In Chapter 4 the code class of GGC were studied. It was shown how binary GGC are
constructed, and their properties and error-correction capabilities were derived. GGC
are defined via a Goppa polynomial of degree t and code locators that are fractions
of polynomials. For binary GGC, the code locators are defined by polynomials with
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degree at most ℓ and their formal derivatives. Classical binary Goppa codes are binary
GGC with ℓ = 1. A construction of parity-check matrices for binary GGC with code
locators of arbitrary degree was developed. The maximum code length of binary GGC
is bounded by the number of irreducible polynomials in F2m [x] for given degrees. For
classical binary Goppa codes with ℓ = 1 the code length is at most 2m, while for GGC
with higher degree polynomials the maximum possible code length is larger. The
lower bound of the minimum distance is t+1

ℓ
, while for separable binary GGC it is

2t+1
ℓ

. Using the Extended Euclidean Algorithm (EEA) for decoding separable GGC,
the unique decoding radius can be increased to

⌊
dsep

2

⌋
. For separable binary GGC and

even-degree code locators the lower bound of the minimum distance can be improved
to 2t+2

ℓ
. Binary GGC were investigated for use in a Niederreiter cryptosystem, with

focus on the security level based on the work factor of Prange [Pra62; AM87] and the
public-key size. No code parameters of separable binary GGC with ℓ > 1 could be
found, such that the public key size would be improved over classical Goppa codes
(where ℓ = 1) for a security level based on the work factor WFPrange. However, the
field size can be reduced at the cost of a smaller security level or a larger public
key size to improve the complexity of all calculations, including the construction of a
parity-check matrix. Note that the extension degree m must not be chosen too small,
as structural attacks are known for binary classical Goppa codes with m = 1 and
m = 2, which are expected to also apply to GGC.

In Chapter 5 the implementations of the Classic McEliece KEM and their perfor-
mance were examined. First, the different implementations of Classic McEliece were
detailed and profiled regarding their runtime on a x86-64 processor. The GEA was
identified as the most time-consuming algorithm. An analysis of the GEA showed
that it can be accelerated with Instruction Set Architecture (ISA) vector extensions.
Next, the RISC-V ISA and its vector extension have been introduced and examples
given. Assembly instructions of the RISC-V Vector Extension (RVV) were integrated
into the GEA. The vectorized and non-vectorized versions of the GEA have been
simulated for RISC-V on the instruction set simulator Extendable Translating In-
struction Set Simulator (ETISS). It was demonstrated that by using the ISA vector
extension the number of load and store accesses could be reduced and thus also the
overall runtime decreased. For the GEA with RVV integration, an acceleration by a
factor of 6 to 18 for a memory port width W of 64 bits to 256 bits, respectively, could
be achieved.

Chapter 6 described and simulated a fault attack on the Classic McEliece KEM.
The central idea is to induce faults on the physical device during decoding in order
to output an error vector of a corrupt ELP and thus gather information about the
secret support elements of the Goppa code. For this, chosen ciphertexts coming from
small-weight plaintexts and also faults on the validity checks during decapsulation are
needed. Repeating the fault injections with a series of chosen ciphertexts results in
a system of polynomial equations that can be solved to obtain an alternative secret
key. Two fault injection methods on the ELP were found, either corrupting single
and adjacent bits of a coefficient of the ELP (ELPb), or setting all bits of an ELP
coefficient to zero (ELPz). The decoding procedure determines which code locators
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are roots of the faulty ELP and produces a binary error vector with non-zeros at
the indices of the found root code locators. For each error vector (indices of non-
zero positions) an equation with indeterminates in the unknown code locators can
be constructed. Faulting the constant or the linear coefficient of the ELP, a lin-
ear or quadratic equation is obtained. To receive the error vector as output of the
decapsulation procedure more actions are necessary. The decapsulation procedure
calculates a hash of the error vector containing the indices of the code locators that
are roots of the faulty ELP. To output this hashed error vector another fault (VCB)
is needed to bypass the validity checks of the decapsulation. Although the output is
in form of a hash, its contents can be retrieved by brute force if the error vector has
a small weight. This is achieved by choosing ciphertexts generated from plaintexts
with Hamming weights of 2. The runtime of brute-forcing the hashed error vectors
was found to be a few seconds (ELPz) to a few days (ELPb) on a 3.3 GHz processor
with 64 threads. The attack is simplified if the zero element is among the support
set. It can be found by choosing a ciphertext generated from the all-zero vector and
a single VCB fault. The probability of the zero element existing in the support set
is n

2m . Thus, a smaller difference between code length n and field size 2m increases
the probability. The equations obtained through fault injections for different chosen
ciphertexts are gathered into a system of polynomial equations with the code locators
as indeterminates. This system needs to contain not only linear equations, but also
quadratic equations in order to be solved. The number of fault injections needed to
obtain enough linear equations and quadratic equations for solving the system were
simulated using a C-code and SageMath implementation. The ELPz fault injection
method is much more efficient than the ELPb fault injection method. Having the
code locators, corresponding Goppa polynomial candidates are calculated using code-
words that are calculated from the public key. Each Goppa polynomial candidate and
the obtained support set are checked whether they comprise a valid alternative secret
key by calculating its public key and comparing it with the known public key. This is
also possible having only a subset of the code locators, as the remaining code locators
can be restored using the Goppa polynomial candidate. The fault injections were
simulated at the Register Transfer Level (RTL) of two RISC-V processors, confirming
the applicability of the attack. There are more possible injection points that lead to
ELPz than to ELPb. Thus, the ELPz fault injection method is easier to achieve.
The simulation also revealed that ELPz and VCB faults can be jointly achieved by
a single fault injection per chosen ciphertext.

In this thesis, research towards an efficient and secure implementation of McEliece-
like code-based post-quantum cryptosystems was done. The work presented in this
thesis illustrates the maturity of the Classic McEliece KEM, at a time where it is close
to becoming standardized. Work on the underlying code set out to address the public-
key size by substituting classical Goppa codes with GGC. Among the GGC, classical
Goppa codes were found to have the smallest public-key size for given security level. As
widespread adoption comes closer, efficient implementation also on embedded devices
comes into focus. The matrix operations inherent to the cryptosystem are well-suited
for vectorization, as demonstrated in this thesis for processors implementing RISC-V,
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an open source ISA. The McEliece cryptosystem based on classical Goppa codes is an
old cryptosystem that has a long history of research and thus there is high confidence
in its security. However, fault attacks such as the one described in this thesis need to
be considered as threats to implementations on highly secured devices.
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Appendix A
Source Code of Vectorized GEA
The following source code is the vector accelerated GEA using RVV version 0.9. This
code was simulated and used for the performance analysis in Section 5.6 of Chapter 5.

# include <stdlib .h>
# include <stdio.h>

# define GFBITS 13
#ifdef MCELIECE_8192128
# define SYS_T 128
# define SYS_N 8192
#else
#ifdef MCELIECE_6960119
# define SYS_T 119
# define SYS_N 6960
#else // MCELIECE_6688128
# define SYS_T 128
# define SYS_N 6688
#endif
#endif

typedef uint8_t mat_t[ GFBITS * SYS_T ][ SYS_N /8];

int gaussian_elim (mat_t mat){
unsigned char mask =0;
unsigned char * pt =0;
unsigned char ret =0;
int arg1 =128;
// clear vector register v0 ( masking register ) with vector

register length of VLEN =1024
asm volatile (" vsetvli %[ ret], %[ arg1], e8 , m1 \n" // set SEW =8,

LMUL =1, VL =128
:[ ret] "=r" (ret)
:[ arg1] "r"(arg1));
asm volatile ("vand.vi v0 , v0 , 0\n" // set all bits to 0
"vxor.vi v0 , v0 , -1 \n"); // set all bits to 1
arg1=SYS_N /8;
asm volatile (" vsetvli %[ ret], %[ arg1], e8 , m8 \n" // set SEW =8,

LMUL =8, VL =870
:[ ret] "=r" (ret)
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:[ arg1] "r"(arg1));

printf ("Gauss Elimination Algorithm for %d%d: \n", SYS_N , SYS_T
);

// Gaussian elimination algorithm from Classical McEliece NIST
submission Round 2, see: https :// classic . mceliece .org/

for (int i = 0; i < ( GFBITS * SYS_T + 7) / 8; ++i){
for (int j = 0; j < 8; ++j){

int row = i*8 + j;

if (row >= GFBITS * SYS_T)
break ;

// Load matrix row into vector register group
pt =&( mat[row ][0]); // set address to current row of

matrix
asm volatile ("vle8.v v8 , (%[ pt]) \n" // Load into vector

register group v8
:[pt] "+r"(pt));

for (int k = row + 1; k < GFBITS * SYS_T; ++k)
{

mask = mat[ row ][ i ] ^ mat[ k ][ i ];
mask >>= j;
mask &= 1;
mask = -mask;

// Vector extension replaces loop: for (c = i; c <
SYS_N /8; c++) mat[ row ][ c ] ^= mat[ k ][ c ] &
mask;

pt =&( mat[k][0]);
asm volatile ("vle8.v v16 , (%[ pt]) \n" // Load k-th row

into vector register group v16
:[pt] "+r"(pt));

asm volatile ("vand.vx v24 ,v16 ,%[ mask],v0.t\n" // v24 =
v16 & mask

:[ mask] "+r"(mask));
asm volatile ("vxor.vv v8 ,v8 ,v24 ,v0.t \n"); // v8=v8^

v24

pt =&( mat[row ][0]);
asm volatile ("vse8.v v8 , (%[ pt]) \n" // Store current

row (row of pivot) from vector register group to
memory

:[pt] "+r"(pt));

}

if ( (( mat[ row ][ i ] >> j) & 1) == 0 ) // return if not
systematic

{
return -1;
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}

for (int k = 0; k < GFBITS * SYS_T; ++k)
{

if (k != row)
{

mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;

// Vector Extension replaces loop: for (c = 0; c <
SYS_N /8; c++) mat[ k ][ c ] ^= mat[ row ][ c ] &

mask;
pt =&( mat[k][0]);
asm volatile ("vle8.v v16 , (%[ pt]) \n" // Load k-th

row of matrix into vector register group v16
:[pt] "+r"(pt));

asm volatile ("vand.vx v24 ,v8 ,%[ mask ]\n" // v24 = v8
& mask

"vxor.vv v16 ,v16 ,v24 \n" // v16=v16^v24
:[ mask] "+r"(mask));

asm volatile ("vse8.v v16 , (%[ pt]) \n" // Store k-th
row from vector register group v16 to memory

:[pt] "+r"(pt));
}

}
}

// Set Mask Register to replace loop: for (c = i; c < SYS_N
/8; c++)

arg1 =1+i/8;
asm volatile (" vsetvli %[ ret], %[ arg1], e8 , m1 \n" // Switch

to SEW =8, LMUL =1, VL =1+i/8
:[ ret] "=r" (ret)
:[ arg1] "r"(arg1));
arg1 =255 < <(1+i%8);
asm volatile ("vand.vx v0 , v0 , %[ arg1] \n"
:[ arg1] "+r"(arg1)); // Shift left for 1 bit position
arg1=SYS_N /8;
asm volatile (" vsetvli %[ ret], %[ arg1], e8 , m8 \n" // Switch

back to SEW =8, LMUL =8, VL =870
:[ ret] "=r" (ret)
:[ arg1] "r"(arg1));

}

}

int main ()
{

mat_t mat = {
#ifdef MCELIECE_8192128
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# include " matrix_begin8192128 .data"
#else
#ifdef MCELIECE_6960119
# include " matrix_begin6960119 .data"
#else // MCELIECE_6688128
# include " matrix_begin6688128 .data"
#endif
#endif

};

gaussian_elim (mat);

for (int i=0; i< GFBITS * SYS_T; ++i){
for(int j=0; j <( SYS_N /8); ++j){

printf ("%02X\t",mat[i][j]);
}
printf ("\n");

}
}
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Appendix B
Gröbner Basis and Buchberger’s
Algorithm
This appendix introduces the Gröbner basis and its use in solving systems of mul-
tivariate polynomial equations. It is used extensively in Section 6.2, and the most
important concepts are outlined here for completeness. This appendix is based on the
references [Stu05] and [Buc01].

B.1 Background of Gröbner Basis
The general idea of the method of Gröbner basis is to transform a given set F of
multivariate polynomials K[x1, . . . , xn] into another set G of multivariate polynomials
with certain “nice” properties. The set G is called Gröbner basis. In the following,
these properties are introduced before defining the Gröbner basis. Its utility in solv-
ing systems of multivariate polynomial equations is demonstrated in the subsequent
section.

Definition B.1 (Ideal).
For a finite set F ⊆ K[x1, . . . , xn], the ideal Ideal(F) generated by F is the set of all
polynomial linear combinations such that

I = Ideal(F) = ⟨F⟩ = {p1f1+· · ·+prfr | f1, . . . , fr ∈ F and p1, . . . , pr ∈ K[x1, . . . , xr]}.

The ideal of F is also denoted by ⟨F⟩. The set F and its Gröbner basis generate the
same ideal ⟨F⟩ = ⟨G⟩. Next, we define an ordering of sets of multivariate polynomials
by their terms.

Definition B.2 (Term Order).
A term order ≺ on K[x1, . . . , xn] is a total order on the set of monomials xa = xa1

1 ·
xa2

2 · · · xan
n , that has the following properties:

(a) multiplicativity, xa ≺ xb implies xa+c ≺ xb+c ∀a, b, c,∈ Nn

(b) the constant monomial is the smallest monomial, 1 ≺ xa ∀a ∈ Nn\{0}.
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Different term orders exist. For example, the degree lexicographic order for n = 2 is
1 ≺ x1 ≺ x2 ≺ x2

1 ≺ x1x2 ≺ x2
2 ≺ x3

1 ≺ x2
1x2 ≺ · · · . For a fixed term order, every

polynomial f ∈ F has a unique initial term.

Definition B.3 (Initial Term).
Let f ∈ F ⊆ K[x1, . . . , xn] with ≺ a fixed term order. Then, every polynomial f has
an unique initial term in≺(f) = xa. The initial term is the largest term with non-zero
coefficient in the expansion of f .

For example, the following is a polynomial f ∈ N[x1, x2] written in decreasing degree
lexicographic order, with the initial term first: f = 5x2

2 +3x1x2 +4x2
1 +7x2 +11x1 +13.

Using the initial terms, an initial ideal can be defined.

Definition B.4 (Initial Ideal).
The initial ideal in≺(I) is the ideal generated by the initial terms of all the polynomials
in I.

in≺(I) = ⟨in≺(f) : f ∈ I⟩

Then, the Gröbner basis of F can be defined.

Definition B.5 (Gröbner basis).
A finite subset G of an ideal I is a Gröbner basis with respect to the term order ≺ if
the initial terms of the elements in G generate the initial ideal.

in≺(I) = ⟨in≺(g) : g ∈ G⟩

If G is a Gröbner basis for I, then any finite subset of I that contains G is also a
Gröbner basis.

Definition B.6 (Reduced Gröbner basis).
A reduced Gröbner basis is defined if

(a) for each g ∈ G the coefficient of in≺(g) in g is 1,

(b) in≺(I) = in≺(G) and no smaller subset of G generates the initial ideal of I,

(c) no non-initial term of any g ∈ G lies in in≺(I).

Theorem B.7 (Unique reduced Gröbner basis).
For a given term order ≺, every ideal I ∈ K[x1, . . . , xn] has a unique reduced Gröbner
basis.

B.2 Solving Systems of Polynomial Equations
The Gröbner basis can be used to solve systems of polynomial equations as in Sec-
tion 6.2. Let K ⊆ Fq and F be a finite set of polynomials in K[x1, x2, . . . , xn], then
the variety of F can be defined.
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B.2 Solving Systems of Polynomial Equations

Algorithm 15 Buchberger’s algorithm [Buc01]
Input: Finite set F of multivariate polynomials
Output: Gröbner basis G

1: Set G = F
2: for any pair of polynomals f1, f2 ∈ G do
3: Compute the S-polynomial of f1, f2.
4: Reduce the S-polynomial to a reduced form h with respect to G.
5: if h = 0 then continue
6: else if h ̸= 0 then add h to G.

Definition B.8 (Variety).
The variety of F is the set of all common zeros.

V(F) = {(z1, . . . , zn) ∈ Fn
q | f(z1, . . . , zn) = 0 ∀f ∈ F}

The variety does not change when replacing F by another set of polynomials which
generate the same ideal in K[x1, . . . , xn]. Hence, the reduced Gröbner basis G for the
ideal ⟨F⟩ has the same variety as F .

V(F) = V(⟨F⟩) = V(⟨G⟩) = V(G)

The advantage of G is that it reveals properties of the variety that are not directly
visible from F . As an example, it can be shown that the variety is only empty if and
only if G = {1}.

To solve a system of polynomial equations it is handy to compute the Gröbner
basis, as the roots of the polynomials of the Gröbner basis are also the roots of the
polynomial system of equations.

To construct a Gröbner basis G of an arbitrary finite set F , Buchberger’s algorithm
is used. It makes use of the S-polynomial.

Definition B.9 (S-polynomial).
Consider two polynomials g1 and g2. Their S-polynomial is given by

m2g1 −m1g2,

where m1 and m2 are monomials of smallest possible degree such that m2in≺(g1) =
m1in≺(g2).

The S-polynomial of two polynomials is computed by [Buc01]:

1. Multiplication of the polynomials by such monomial factors that the leading
power term of the resulting products becomes equal, namely the least common
multiple of the leading power terms of the two polynomials.

2. Substraction of one product from the other such that the leading power term
cancels.
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B Gröbner Basis and Buchberger’s Algorithm

Example B.10.
Let g1 = xy − 2y and g2 = 2y2 − x2. Then, the S-polynomial of g1 and g2 is m2g1 −
m1g2 = S-polynomial[g1, g2]. This results in

2xy2 − 4y2 − 2xy2 + x3 = x3 − 4y2 (B.1)

and the S-polynomial[g1, g2] = x3 − 4y2.

With the Buchberger’s algorithm in Algorithm 15 the Gröbner basis can be com-
puted. During the algorithm, the set G grows and thus also the number of possible
S-polynomials grows during the algorithm. However, the algorithm does always ter-
minate. The Buchberger’s algorithm has an exponential time complexity.
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