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Backward Data
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Abstract—Autonomous systems are desired to safely accom-
plish predetermined tasks with guaranteed performance de-
spite uncertainties. This paper proposes a safe planning and
performance-guaranteed control (SP-PGC) scheme to accomplish
safe execution of autonomous systems suffering from uncertain-
ties and disturbances. This is realized by investigating mutual
influences between planning and control levels, either explicitly
considering control-level attainable performance bounds into safe
planning algorithms, or directly relating planned safe boundaries
to control-level performance bounds. In particular, we first utilize
one-step backward data to construct incremental systems, which
are equivalent representations of the investigated autonomous
systems but without using explicit model information (kinematics
and/or dynamics). The formulated incremental systems transform
the influence of uncertainties and disturbances into the effect of
provably bounded estimation errors, caused by the difference be-
tween current and one-step backward states. Then, we introduce
the concept of input-to-state stable with provable safety barrier
Lyapunov function (ISS-PS-BLF) to facilitate the performance-
guaranteed tracking controller design based on the incremental
systems, wherein the estimation errors are rigorously analyzed
through an input-to-state stable approach. Finally, either the
guaranteed tracking performance bound of the ISS-PS-BLF
based controller is considered in the safe planning algorithm
to guide the reference trajectory generation, or the safe planned
boundary is used to determine the explicit value of the control-
level performance bound for safe execution under uncertainty.
The efficiency of our developed SP-PGC scheme is validated
through both numerical and experimental validations.

Index Terms—Performance guaranteed control, input-to-state
stability, one-step backward data
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I. INTRODUCTION

The safe execution of autonomous systems under uncertainty
is required for safety-critical scenarios such as robot manipu-
lators for public services and quadrotors for cave rescue [1],
[2]. The common solution to the problem is to firstly build
an accurate map wherein a safe smooth desired trajectory is
then planned, and finally the resulting reference trajectory
is supposed to be precisely followed by capable tracking
controllers [3]. However, the planned collision-free trajectory
does not imply the guaranteed safe execution given potential
tracking controllers’ inefficiency caused by model uncertainties
and environmental disturbances. The deviation between the
real execution trajectory and the planned trajectory might result
in unsafe behaviours. In practice, the gap between planning
and control levels mentioned above could be solved via replan-
ning [4]. However, the additionally introduced computational
load and complexity cause the associated solution fragile,
and no theoretical guarantee of robust safety is provided.
Alternatively, this work solves the problem of safe execution
under uncertainty via analyzing the mutual influence between
planning and control levels from a systematic perspective,
rather than independently investigating in either planning or
control levels [3], [4]. In particular, the planning level generates
one collision-free reference trajectory lying in a safe set, and
the control level robustly guarantees tracking performance
even under model uncertainties and environmental disturbances.
More importantly, the quantified actual control-level tracking
performance bounds and the boundary of the planned safety
set are interconnected with each other. Our adopted compatible
safe planning algorithm and performance-guaranteed control
strategy collaborate to realize the guaranteed safe execution of
autonomous systems under uncertainty.

A. Related Work

The safety (collision avoidance in particular) and robustness
properties have been separately investigated from planning and
control perspectives. The planning level mainly solves safety
concerns via numerical optimization algorithms [4] or sampling
methods [5]. The corresponding numerical or experimental
validations are often conducted assuming available perfect
controllers that precisely track planned trajectories or paths
[4], [5]. However, imperfect controllers inevitably result in
discrepancies from the collision-free desired trajectory. Thereby,
the practical and safe execution cannot be guaranteed. Departing
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from the planning level, the control level attempts to use
methods such as model predictive control [6] and control barrier
function [7] to realize safety with preference to theoretical
guarantees. However, these theory-oriented methods [6], [7]
struggle with adaptability to complex scenarios such as obstacle-
filled environments. The above analysis presents the weakness
of the related works [4]–[7] in isolatedly addressing safety
problems from one single level (either planning or control
level in particular). Thus, this work adopts one compatible
planning and control solution to realize the practical and
safe execution. Robustness is mainly considered from the
control level using various methods including H-∞ control
[8], sliding mode control [9], and (partial) model-free control
via parametric [10]–[14] or non-parametric methods [15]–
[17]. Departing from the methods used in the works [8]–[17]
mentioned above, the so-called one-step backward data is
exploited in this work to embed our approach with robustness
against model uncertainties and environmental disturbances in
a computationally efficient way.

Except for the safety or robustness properties disjointly
discussed above, the robust safety property (i.e., provable safety
under uncertainty) is desired to ensure the safety solution
is applicable even with respect to uncertainties. The robust
safety is nontrivial and few related works focus on this topic.
Existing works either assume available uncertainty bounds
[18] or estimate uncertainty bounds [19] to rigorously analyse
the influence of uncertainties on safety. However, autonomous
systems often behave conservatively given that the utilized
uncertainty bounds [18], [19] might treat collision-free areas
as unsafe regions. Compared to the works mentioned above
[18], [19], no prior-given or estimated disturbance bounds are
required in our work to enforce the practical and safe execution
under uncertainty. Thus, conservative behaviours are avoided.

Recently, barrier Lyapunov functions (BLFs) emerge as
efficient tools to design stable controllers with guaranteed
tracking performance [20]. This is because BLFs enjoy the
properties of both Lyapunov functions and barrier functions,
i.e., stabilizing autonomous systems while confining system
states into specific regions. The usage of BLFs for safe control
highly depends on accurate model knowledge (kinematics
and/or dynamics). However, practical applications inevitably
involve uncertainties. The safety check based on inaccurate
model knowledge is untrustworthy. This problem is especially
obvious for controlled plants such as robot manipulators that
might involve both uncertain dynamics (e.g., lifting different
workloads) and unknown kinematics (tools installed in end-
effectors with arbitrary angles and effective lengths). There
exist works utilizing parametric or non-parametric methods
to estimate unknown model knowledge [10]- [17]. However,
the problem concerning safety checks based on potentially
inaccurate model knowledge (i.e., kinematics and/or dynamics
are still in learning processes before the accurate ones are
learned) has not been thoroughly analyzed. Compared to the
above works, our work utilizes one-step backward data to
formulate the evolution model of the uncertain controlled
plant into an incremental system. This formulated incremental
system offers an equivalent model-free (kinematics-free and/or
dynamics-free) representation of the original controlled plant

for safety check, wherein the effect of the estimation error on
safety is rigorously analyzed through an input-to-state stable
approach.

B. Contribution

The contributions of our work are summarized as follows.
• The compatible safe planning and performance-guaranteed

control (SP-PGC) scheme is developed from a systematic
perspective to accomplish the nontrivial provable safe
execution under uncertainty.

• Departing from existing model-free control methods,
one-step backward data is reused to realize model-free
control that embeds robots with robustness against model
uncertainties and environmental disturbances in a compu-
tationally efficient way.

• The common BLF is extended to input-to-state stability
with provable safety BLF (ISS-PS-BLF) that contributes
to design controllers capable of realizing stabilization and
safety robustly.

C. Organization

This paper is organized as follows. Section II firstly presents
the preliminaries and the problem formulation. Then, the
incremental system developed in Section III serves as the
basis for the controller design process illustrated in Section
IV. The developed approach is numerically and experimentally
validated in Section V and Section VI, respectively. Finally,
Section VII concludes this paper.

Notations: Throughout this paper, R, R+, and R+
0 denote

the set of real, positive, and non-negative real numbers,
respectively; Rn is the Euclidean space of n-dimensional real
vector; Rn×m is the Euclidean space of n×m real matrices;
The i-th entry of a vector x := [x1, ..., xn]> ∈ Rn is denoted

by xi, and |x| :=
√∑N

i=1 |x|2 is the Euclidean norm of the
vector x; The ij-th entry of a matrix D ∈ Rn×m is denoted by
dij , and |D| :=

√∑n
i=1

∑m
j=1 |dij |2 is the Frobenius norm of

the matrix D; The pseudo inverse of the full column rank D is
denoted as D† := (D>D)−1D> ∈ Rm×n; diag(x) is the n×n
diagonal matrix with the i-th diagonal entry equals xi. Int(S)
and ∂S denote the interior and boundary of the set S; For any
two real vectors a, b ∈ Rn, a � (≺) b is the component-wise
comparison, i.e., ai ≤ (<) bi, ∀i ∈ {1, · · · , n}.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Input-to-State Stable with Provable Safety BLF

This subsection presents the preliminaries to develop our
approach by focusing on the state evolution model

ẋ = f(x) + g(x)u(x) + g(x)d, (1)

where x ∈ Rn, u(x) : Rn → Rm are the system state and
control input, respectively. Both f(x) : Rn → Rn and g(x) :
Rn → Rn×m are bounded and locally Lipschitz. d ∈ Lm∞ is
a bounded disturbance with the (essential) supremum norm
|d|∞ := sup |d(t)| , t ≥ 0.

As stated in [21], iff the system (1) admits an input-to-state
stable (ISS) Lyapunov function as Definition 1, the system (1)
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is ISS as Definition 2. Therefore, ISS control can be realized
by using a ISS-Lyapunov function to perform the controller
design.

Definition 1 (ISS-Lyapunov Function [21]). A smooth function
V (x) : Rn → R+

0 is an ISS-Lyapunov function for the system
(1) if there exists α1, α2, α3, α4 ∈ K∞ such that ∀ x, d

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

V̇ (x, d) ≤ −α3(|x|) + α4(|d|). (2b)

Definition 2 (ISS [22]). The system (1) is ISS if there exists
λ ∈ KL and γ ∈ K∞ such that

|x(t, x0, d)| ≤ λ(|x0| , t) + γ(|d|∞),∀x0, d, ∀ t ≥ 0.

The Definitions 1-2 inspire us to extend the original BLF
[20], which is defined on an ideal accurate dynamics ẋ =
f(x) + g(x)u(x), to the uncertainty scenario in Definition 3.

Definition 3 (ISS-PS-BLF). A smooth function V (x) :=
V1(x1) + V2(x2) ∈ R+

0 , where x := [x>1 , x
>
2 ]> ∈ Rn1+n2 ,

x1 ∈ Rn1 , x2 ∈ Rn2 , is an ISS-PS-BLF for the system (1)
on the open region S := {x1 ∈ Rn1 : −ε ≺ x1 ≺ ε}, where εi,
εi ∈ R+, ∀i ∈ {1, · · · , n1}, if there exist functions βi ∈ K∞,
i = 1, · · · , 6, such that ∀ x, d

β1(|x1|) ≤ V1(x1) ≤ β2(|x1|) (3a)
β3(|x2|) ≤ V2(x2) ≤ β4(|x2|) (3b)

V̇ (x, d) ≤ −β5(|x|) + β6(|d|) (3c)
V1(x1)→∞, x1 → ∂S. (3d)

The resulting ISS-PS-BLF formulated in Definition 3 is a
valid ISS-Lyapunov function according to Definition 1 given the
establishment of the inequalities (3a), (3b), (3c). Furthermore,
the presented (3d) implies that a bounded ISS-PS-BLF would
confine the state x1 into the predetermined safe region S.
Thereby, our defined ISS-PS-BLF (3) provides designers with
an efficient tool to realize the desired input-to-sate stabilization
with provable safety.

To satisfy the requirements presented in Definition 3,
combining with the result in [20], this work chooses

V (x) :=
1

2

n1∑
i=1

[
εiεix1i

(εi − x1i)(εi + x1i)

]2

︸ ︷︷ ︸
V1(x1)

+
1

2
x>2 x2︸ ︷︷ ︸
V2(x2)

, (4)

as the candidate ISS-PS-BLF to conduct the controller design.

B. Problem Formulation

This work attempts to realize the provable safe execution of
uncertain autonomous systems in obstacle-filled environments.
Our solution to this nontrivial problem is our developed SP-
PGC scheme: the combination of the performance-guaranteed
control that explicitly quantifies the control-level performance
under uncertainty, and the safe planning where the collision-
free desired trajectory is planned within the consideration of
the attainable performance of the utilized controllers, see Fig. 1.
This work adopts the safe planning algorithms that satisfy the
requirement presented in the following assumption.

Planned Trajectory
Real Trajectory
Performance-Guaranteed Region

Planned Trajectory

Buffered Obstacle

Planned Trajectory
Safe Corridor

Fig. 1: Schematic of the SP-PGC scheme. The safe reference
trajectory is planned within the consideration of the control-
level performance bound ε, either establishing safe corridors
with radius ε (the left above figure), or inflating obstacles (i.e.,
buffered obstacle) via size ε (the left below figure). The control
level guarantees tracking performance even under uncertainties
and disturbances ignored in the planning level (the right figure).

Assumption 1. The planning level outputs a collision-free
desired trajectory pd ∈ Rm lying in a safe set D :={
p(t) ∈ Rm : p(t) ≺ p(t) ≺ p(t)

}
, where p(t), p(t) ∈ Rm.

Assumption 1 easily holds using off-the-self planning
algorithms [23] conducted based on buffered obstacles 1, whose
buffer size is ε ∈ Rm, εi ∈ R+, ∀i ∈ {1, · · · ,m} (see the left
below figure in Fig. 1). The associated safe execution region is
D :=

{
p ∈ Rm : p := pd − ε ≺ p ≺ p := pd + ε

}
. Regarding

this case, the tracking error e1 := p − pd ∈ Rm should
satisfy e1 ∈ E := {e1 ∈ Rm : −ε := −ε ≺ e1 ≺ ε := ε}
to achieve safety, where ε, ε ∈ Rm are lower and up-
per performance bounds of e1. Alternatively, Assumption
1 is easily satisfied by the reachable set based algorithms
[24], or corridor (funnel) based algorithms [25], [26] (see
the left above figure in Fig. 1). In this case, e1 ∈
E :=

{
e1 ∈ Rm : −ε := p− pd ≺ e1 ≺ p− pd := ε

}
should

be guaranteed to avoid collision during practical executions 2.
Through the aforementioned analysis, we interpret the

provable safe execution under uncertainty problem as a
robust performance-guaranteed tracking control problem. This
problem is nontrivial given that state constraints are considered
under model uncertainties and environmental disturbances. We
solve this nontrivial problem via our formulated incremental
system in Section III and the ISS-PS-BLF facilitated controller
in Section IV.

1This case matches the robot manipulator numerical and experimental
validations displayed in Section V and Section VI separately.

2This case matches the quadrotor numerical simulation in Section V-B.
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III. DATA INFORMED INCREMENTAL SYSTEM

This section utilizes one-step backward data to formulate the
incremental system that equivalently describes the movement
of the original autonomous system (1). By doing so, no explicit
model knowledge (kinematics and/or dynamics) is required.
The formulated incremental system serves as the basis for the
controller design process presented in Section IV.

A. Development of Incremental System

In the following, we focus on the control-affine nonlinear
system (1) satisfying Assumption 2 to clarify the formulation
of the one-step backward data informed incremental system.

Assumption 2. The columns g1, g2, · · · , gm ∈ Rn of the
system matrix g := [g1, g2, · · · , gm] are linearly independent.

Remark 1. Here g(x) is assumed to be full column rank
such that its pseudo inverse g† could be expressed as a
simple algebraic formula (the inverse of g>(x)g(x) exists).
This property is widely observed in many physical systems,
such as the quadrotor presented in Example 1, and the robot
manipulator shown in Example 2.

Firstly, introducing a prior-chosen constant matrix ḡ ∈ Rn×m
and multiplying its pseudo inverse ḡ† on (1), we obtain

ḡ†ẋ = h+ u, (5)

where h := (ḡ†−g†)ẋ+g†f +d ∈ Rn embodies the unknown
knowledge of the system (1).

Accordingly, the following equation holds

ḡ†ẋ0 = h0 + u0, (6)

where (•)0 := (•)(t− ts) denotes one-step backward data, and
ts ∈ R+ is the sampling time.

Then, we use one-step backward data in (6) to estimate h as

ĥ = h0 = ḡ†ẋ0 − u0, (7)

Finally, substituting (7) into (5), we get the incremental system:

ẋ = ẋ0 + ḡ∆u+ ḡξ, (8)

where ∆u := u − u0 ∈ Rn, and ξ := h − ĥ ∈ Rn is the
estimation error proved to be bounded and vanishing in Lemma
1 under the properly chosen ḡ.

Remark 2. The theoretical derivation (5)–(8) exploits one-step
backward data to transform model uncertainties and external
disturbances of (1) into a provably bounded estimation error
ξ of (8). This is beneficial to achieve provable safety under
uncertainty given that the influence of the estimation error ξ
on safety could be rigorously analyzed via an ISS approach
as presented in Section IV. To achieve the same goal with
our work, however, related works either estimate disturbance
bounds explicitly using computation-intensive methods such as
GP [15] or directly assume a known bound of uncertainty [18].
The utilized uncertainty bound often results in conservative
behaviours.

Remark 3. The state observer [27] or the numerical differen-
tiation technique [28] could be applied to get the indirectly

measurable state or state derivatives that are required to con-
struct the incremental system (8). Furthermore, the inevitable
measurement noise could be addressed by the robust exact
differentiator technique [29].

Through the processes (5)-(8), we get an equivalent form
of (1) under Assumption 2 without using explicit model
information. In the subsequent Section IV, we use the above
formulated incremental system (8) and our proposed ISS-PS-
BLF (4) together to design the robust tracking controller with
guaranteed performance.

Before proceeding to the controller design process, we
provide two explicit examples to clarify how to derive the
associated incremental systems from the quadrotor dynamics
and the robot manipulator kinematics and dynamics.

Example 1 (Quadrotor). The Euler-Lagrange (E-L) equation
of a quadrotor follows [30]

mζ̈ +mgcIz = RTB + Td (9a)
J(η)η̈ + C(η, η̇)η̇ = τB + τBd, (9b)

where ζ := [x, y, z]> ∈ R3, and η := [φ, θ, ψ]> ∈ R3

represent the absolute linear position and Euler angles defined
in the inertial frame, respectively; m ∈ R+ denotes the mass of
the quadrotor; gc ∈ R+ is the gravity constant; Iz := [0, 0, 1]>

represents a column vector; TB = [0, 0, T ]> ∈ R3, where
T ∈ R is the thrust in the direction of the body z-axis;
τB := [τφ, τθ, τψ]> ∈ R3 denotes the torques in the direction of
the corresponding body frame angles; Td =∈ R3 and τd ∈ R3

denote the external disturbance; R, J(η), C(η, η̇) ∈ R3×3

represent the rotation matrix, Jacobian matrix, and Coriolis
term, respectively. We could rewrite the above translation
dynamics (9a) or the attitude dynamics (9b) as

ẋ1 = x2 (10a)
ẋ2 = f + gu+ gd, (10b)

via letting x1 := ζ or η ∈ R3, x2 := ζ̇ or η̇ ∈ R3, f := −gcIz
or −J−1C(η, η̇)η̇ ∈ R3, g := R/m or J−1 ∈ R3×3, u := TB
or τB ∈ R3, d := R−1Td or τBd ∈ R3, respectively. Applying
the theoretical derivation processes (5)–(8) mentioned above
on (10b), we would get

ẋ1 = x2 (11a)
ẋ2 = ẋ2,0 + ḡ∆u+ ḡξ, (11b)

which is an equivalent representation of (9) but without using
explicit knowledge of quadrotor dynamics.

Example 2 (Robot Manipulator). The Cartesian-space position
p ∈ Rm of the robot manipulator end-effector is expressed as

p = h(q), (12)

where q ∈ Rn is the joint-space angle vector, and h(q) : Rn →
Rm is the differential forward kinematics. Note that m ≤ n
holds. The end-effector velocity and acceleration ṗ, p̈ ∈ Rm
are related to the joint velocity and acceleration q̇, q̈ ∈ Rn as

ṗ = J(q)q̇ (13a)

p̈ = J̇(q)q̇ + J(q)q̈, (13b)
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where J(q) := ∂h(q)/∂q ∈ Rm×n is the Jacobian matrix.
Besides, the robot manipulator dynamics follows [14]

M(q)q̈ + C(q, q̇)q̇ +G(q) + Fv(q̇) = τ + τd, (14)

where M(q) : Rn → Rn×n is the symmetric positive definite
inertia matrix; C(q, q̇) : Rn × Rn → Rn×n is the matrix of
centrifugal and Coriolis terms; G(q) : Rn → Rn represents
the gravitational term; Fv(q̇) : Rn → Rn denotes the viscous
friction; τd ∈ Rn represents the external disturbance.

Substituting (13) into (14) yields

Mp(q)p̈+ Cp(q, q̇)ṗ+G(q) + Fv(q̇) = τ + τd, (15)

where Mp(q) := M(q)J†(q) : Rn → Rn×m, Cp(q, q̇) :=
C(q, q̇)J†(q) −M(q)J†(q)J̇(q)J†(q) : Rn × Rn → Rn×m.
The pseudo inverse follows J†(q) := (J>(q)J(q))−1J>(q) :
Rn → Rn×m. Then, the integrated kinematics and dynamics
form (15) could be rewritten as the form (11) by denoting
x1 := p ∈ Rm, x2 := ṗ ∈ Rm, f := −M†p(q)(Cp(q, q̇)ṗ +
G(q)+Fv(q̇)) ∈ Rm, g := M†p(q) ∈ Rm×n, u := τ ∈ Rn, and
d := τd ∈ Rn. Through the theoretical derivation processes
(5)–(8), we would get one associated incremental system of the
robot manipulator (in the same form as (11)) without using
explicit information of kinematics and dynamics.

Remark 4. Examples 1-2 build on the assumption that
singularities are always avoided during the whole execution
process for the quadrotor and the robot manipulator. The
systematic method to avoid singularity is beyond the scope
of this article. Besides, we use the pseudo-inverse of the
manipulator Jacobian in (15) to deal with the redundancy
problem of the robot manipulator case.

Remark 5. Note that (15) in Example 2 departs from the com-
mon method [12] that attempts to write (12), (13), and (14) to-
gether to formulate an integrated kinematics and dynamics form
as M̄p(q)p̈ + C̄p(q, q̇)ṗ + J(q)G(q) + J(q)Fv(q̇) = J(q)τ +
J(q)τd, where M̄p(q) := J(q)M(q)J†(q) : Rn → Rm×m,
C̄p(q, q̇) := J(q)C(q, q̇)J†(q) − J(q)M(q)J†(q)J̇(q)J†(q) :
Rn × Rn → Rm×m. Based on this form, the kinematics
free control is impossible following the controller design
process illustrated in Section IV. In particular, a controller
in the form τp := J(q)τ will be firstly designed. Then, an
inversion calculation using the explicit kinematic knowledge,
τ = J†(q)τp in particular, is required to recover the torque
applied at each joint. Our formulated (15) directly links
the joint-space control input τ with the task-space position
p without introducing the computationally intensive inverse
kinematics calculation. This allows us to use one-step backward
data to realize kinematics free control later and utilize ISS-PS-
BLFs to encode task-space safety constraints while designing
joint-space torques applied to robot manipulators.

IV. MODEL-FREE PERFORMANCE-GUARANTEED CONTROL

This section utilizes our proposed ISS-PS-BLF (4) to de-
velop a model-free performance-guaranteed tracking controller
through a recursive controller design process. The ISS-PS-BLF
provides explicit quantification of realizable tracking errors.
This control-level performance quantification could feedback to

the planning level to refine planned trajectories accounting for
actual implementation tracking errors. The recursive controller
design process based on the incremental system formulated in
the previous section is illustrated as follows.

Step 1: Focusing on (11) 3, the position tracking error follows
e1 := x1 − pd ∈ Rm. To ensure that the tracking error e1

always lies in a predetermined performance bound, e1 ∈ E :=
{e1(t) ∈ Rm : −ε ≺ e1(t) ≺ ε} in particular, we firstly use
the corresponding Lyapunov function V1(e1) given in (4) to
facilitate the controller design. The derivative of V1(e1) follows

V̇1(e1) =

m∑
i=1

e1i

ε3i ε
3
i + ε2i ε

2
i e

2
1i

(εi − e1i)
3(εi + e1i

)3︸ ︷︷ ︸
pi

ė1i = e>1 P ė1,

(16)
where P := diag(P1, P2, · · · , Pm) ∈ Rm×m.

Let e2 := x2 − z ∈ Rm, where z ∈ Rm is a stabilizing
term designed for stability analysis. Combining with (11a), the
explicit form of ė1 used in (16) follows

ė1 = ẋ1 − ṗd = x2 − ṗd = e2 + z − ṗd. (17)

Then, we design z := ṗd−P−1L1e1 to facilitate a stabilizing
control policy, wherein L1 := diag(L11, L12, · · · , L1m) ∈
Rm×m, L1j ∈ R+, j = 1, · · · ,m.

Substituting (17) into (16) yields

V̇1 = −e>1 L1e1 + e>1 Pe2. (18)

Step 2: According to (4), we choose the ISS-PS-BLF as
V := V1 + V2, wherein the explicit form of V2 follows

V2(e2) :=
1

2
e>2 e2. (19)

Then, combining with (11b) and (16), we get

V̇ = V̇1 + V̇2

= −e>1 L1e1 + e>1 Pe2 + e>2 (ẋ2,0 + ḡ∆u+ ḡξ − ż).
(20)

Finally, we develop the incremental control input as

∆u = ḡ†(ż − ẋ2,0 − L2e2 − Pe1), (21)

to input-to-state stabilize the tracking errors e1 and e2 to a small
neighbourhood around zero as proved in Theorem 1, wherein
L2 := diag(L21, L22, · · · , L2m) ∈ Rm×m is a positive definite
matrix, L2j ∈ R+, j = 1, · · · ,m. Accordingly, the control
input applied at the controlled plant is recovered as

u = u0 + ∆u. (22)

In the following, we theoretically analyze the properties of
our designed performance-guaranteed control strategy (22). We
firstly present the rigorous proof of the bounded estimation error
in Lemma 1. Then, the proved bounded estimation error allows
us to analyse the desirable provable safety under uncertainty
in Theorem 1.

Lemma 1. Given a sufficiently high sampling rate 4, there

3We purposely focus on (11) rather than (8) given that the controller design
process based on (11) is more difficult than the one related to (8).

4This is a prerequisite for estimating the unknown h in (5) by reusing
one-step backward data, which could be chosen as the value that is larger than
30 times the system bandwidth [31]. Under this setting, one digital control
system could be treated as one continuous system so that the gap of h in (5)
between adjacent sampling periods is tiny. Thus, the estimation error ξ in (8)
is sufficiently small.
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exists a positive constant ξ̄ ∈ R+ such that |ξ| ≤ ξ̄.

Proof. Combining with (5), (7) and (11), we get

ξ = h− h0 = (ḡ† − g†)(ẋ2 − ẋ2,0) + (g†0 − g†)ẋ2,0

+ g†(f − f0) + (g† − g†0)f0 + d− d0.
(23)

Besides, focusing on (11b), the following equation holds

ẋ2 − ẋ2,0 = f + gu+ gd− f0 − g0u0 − g0d0

= g∆u+ (g − g0)u0 + f − f0 + g(d− d0) + (g − g0)d0.
(24)

Then, substituting (24) into (23) reads

ξ = (ḡ†g − In×n)∆u+ δ1, (25)

where δ1 := ḡ†(g − g0)u0 + ḡ†(f − f0) + ḡ†g(d − d0) +
ḡ†(g − g0)d0 ∈ Rn. For representation simplicity, let v :=
ż − L2e2 − Pe1. Accordingly, v0 := ż0 − L2e2,0 − P0e1,0.

Then, invoking (5), (7) and (21), we get

∆u = ḡ†(v − ẋ2,0) = ḡ†v − h0 − u0

= ḡ†v − (ḡ† − g†0)ẋ2,0 + g†0f0 − u0

= ḡ†v − (ḡ† − g†0)(f0 + g0u0) + g†0f0 − u0

= ḡ†v − ḡ†(f0 + g0u0)

= ḡ†(v − v0)− ḡ†(ẋ2,0 − v0).

(26)

Combining (11b) with (21) yields

ẋ2 = v + ḡξ. (27)

Besides, according to (27), we get

ξ = ḡ†(ẋ2 − v), ξ0 = ḡ†(ẋ2,0 − v0). (28)

Substituting (28) into (26) implies

∆u = ḡ†(v − v0)− ξ0. (29)

Finally, substituting (29) into (25), we get

ξ = (In×n − ḡ†g)ξ0 + δ1 + δ2, (30)

where δ2 := (ḡ†g − In×n)ḡ†(v − v0) ∈ Rn.
To analyse the estimation error bound better, we rewrite (30)

into a discrete-time domain as

ξ(k) = (In×n − ḡ†g(k))ξ(k − 1) + δ1(k) + δ2(k). (31)

Given a sufficiently high sampling rate, it is reasonable to
assume that there exist positive constants δ1, δ2 ∈ R+ such
that |δ1| ≤ δ1, and |δ2| ≤ δ2 hold. We choose the value of ḡ to
satisfy

∣∣In×n − ḡ†g(k)
∣∣ ≤ l < 1, l ∈ R+. Then, the following

equation holds

|ξ(k)| ≤ l |ξ(k − 1)|+ δ̄1 + lδ̄2

≤ l2 |ξ(k − 2)|+ (l + 1)(δ̄1 + lδ̄2)

≤ · · · ≤ lk |ξ(0)|+ δ̄1 + lδ̄2
1− l

:= ξ̄

(32)

As k →∞, ξ̄ → δ̄1+lδ̄2
1−l .

Theorem 1. Consider the system (11) with the controller (22).
Given Assumption 1 for initial conditions lying in the safe set
D, the following properties hold:

1) The tracking errors e1 and e2 are input-to-state stabilizing
to a small neighbourhood around zero.

2) The Cartesian position tracking error e1 satisfies e1 ∈ E.
3) The controlled plant realizes provable safe execution p ∈

D under model uncertainties and environmental disturbances.

Proof. Proof of 1) Substituting (21) into (20) yields

V̇ = −e>1 L1e1 − e>2 L2e2 + e>2 ḡξ

= −e>1 L1e1 − e>2 (L2 − Im×m)e2 − (e>2 e2 − e>2 ḡξ)
= −e>1 L1e1 − e>2 (L2 − Im×m)e2

−
∣∣∣∣e2 −

1

2
ḡξ

∣∣∣∣2 +
1

4
|ḡξ|2

≤ −e>1 L1e1 − e>2 (L2 − Im×m)e2 +
1

4
|ḡ|2 |ξ|2

= −e>Le+
|ḡ|2

4
|ξ|2 ≤ −ηmin(L) |e|2 +

|ḡ|2

4
|ξ|2

≤ −(ηmin(L) +
|ḡ|2

4
) |e|2 , ∀ |e| > |ξ| ,

(33)

where e := [e>1 , e
>
2 ]> ∈ R2m, L :=

diag(L1, L2 − Im×m) ∈ R2m×2m, and ηmin(L) :=
min {ηmin(L1), ηmin(L2 − Im×m)} denotes the minimum
eigenvalue of L. Note that L2 − Im×m > 0 is required to
make L as one positive definite matrix. This requirement
provides practitioners with guidelines to choose suitable values
of L2. It is concluded that the tracking errors e1 and e2 are
ISS with α3(•) = −ηmin(L) |•|2, α4(•) = |ḡ|2

4 |•|
2 based on

Definition 1. Then, |e(t)| ≤ λ(e(t0), t) + γ(|ξ(t)|∞) holds
according to Definition 2, i.e., the tracking error e remains in
a ball with radius λ(e(t0), t) + γ(|ξ(t)|∞). Besides, as time t
increases, the tracking error e approaches to a smaller ball of
radius γ(|ξ(t)|∞) given that for fixed e(t0), the KL function
λ decreases to zero as t→∞.

Proof of 2) The establishment of (33) implies that V is
bounded. Thereby, V1 is bounded. Given that e1 → −ε or
e1 → ε leads to V1 →∞ according to (3d). Thus, the bounded
V1 proves that the tracking error e1 lies in the set E.

Proof of 3) The actual execution position of the con-
trolled plant is p = pd + e1. Based on the fact that
e1 ∈ E, the possible trajectory lies in the set D̄ :=
{p(t) ∈ Rn1 : pd − ε ≺ p(t) ≺ pd + ε}. By choosing −ε >
p(t)− pd and ε ≺ p(t)− pd and combining with Assumption
1, p(t) ≺ pd − ε and pd + ε ≺ p(t) hold. Thus, it is proved
that D̄ ∈ D, i.e., the actual execution trajectory p(t) always
lies in the safe region D even the controlled plant (1) suffers
from model uncertainties and environmental disturbances.

V. NUMERICAL SIMULATION

A. Safe Operation of Robot Manipulator

This subsection concentrates on a 2-DoF robot manipulator
Cartesian-space tracking task under varying kinematics settings
to exemplify the kinematics free property of our method.
The adopted 2-DoF robot manipulator serves as a benchmark
to validate the effectiveness and superiority of our method.
The explicit kinematic and dynamic knowledge of the robot
manipulator used for simulation purposes is referred to in [10].
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(a) 2-DoF robot and tool.

0 50 100 150 200
1.6

1.8

2

2.2

2.4

0 50 100 150 200
-0.5

0

0.5

(b) Trajectories of x(t), y(t) and safe boundary.

Fig. 2: The robot and the end-effector Cartesian-space position
under varying kinematics settings (Task 1 case).

The robot manipulator in one restricted environment is
required to grasp diverse tools (tools in different lengths lt, and
grasping angles qt) to complete different tracking tasks in a
provable safe way, see Fig. 2a. In particular, the working space
of the end-effector should be always confined to one specific
region that is treated as a prohibited area for humans or other
robots. Note that the information of kinematics, dynamics, and
tool (i.e., values of lt and qt in Fig. 2a) are unavailable to
practitioners to perform the controller design. To accomplish
the above task, the collision-free desired trajectory pd ∈ R2 (a
circle with center c := (cx, cy) and radius r) is firstly planned
under buffered obstacles with buffer size ε = 0.3. This buffer
size then serves as the performance bound of our designed
performance-guaranteed control strategy (22) to ensure that
the tool end track the collision-free desired trajectory pd with
the predetermined tracking accuracy ε = [−0.3,−0.3]>, and
ε = [0.3, 0.3]>.

The initial conditions are set as q(0) = [0, 0]>, τ(0) =
[0, 0]>. The parameters required for the incremental control
input (21) are set as: ḡ = diag(10, 10), L1 = diag(1, 1),
and L2 = diag(2, 2). The sampling rate is 1kHz. Note that
we always keep the same parameter setting to conduct the
following different numerical simulations. This exemplifies the
robustness of our developed method.

The robot manipulator uses different tools (different initial
lengths lt0 ) installed with different initial angles qt0 to complete
the following four Cartesian-space tracking tasks. Task 1: c1 =
(2.1, 0), r1 = 0.2 m, lt0 = 0.2 m, qt0 = π/6; Task 2: c2 =
(2.3, 0.1), r2 = 0.2 m, lt0 = 0.4 m, qt0 = π/4; Task 3:
c3 = (2.3, 0.6), r3 = 0.2 m, lt0 = 0.6 m, qt0 = π/3; and
Task 4: c4 = (2, 0.9), r4 = 0.2 m, lt0 = 0.8 m, qt0 = π/2.
To fully exemplify the kinematics free property of our method,
we additionally consider the non-trivial varying kinematics
setting here. In particular, we purposely set the tool length as
lt = lt0−0.0002 t and the grasping angle as qt = qt0−0.002 t
during the working process, where t denotes the current time.
The above varying tool length lt and grasping angle qt might
be caused by wear and tear or poor fixation in industrial
productions. This varying kinematic setting invalidates common
approaches that require the inverse kinematics calculation.

The Cartesian-space position trajectories displayed in Fig. 2b
illustrate that the tool end always lies in the predetermined safe
region. Furthermore, the high-accuracy tracking performance
shown in Fig. 3 validates the flexibility and adaptability of our

0 10 20 30 40 50 60 70

-0.1

0

0.1

0.2

1 2 3 4

-0.01

0

0.01

Fig. 3: The trajectories of the Cartesian-space tracking error
e1 := [ex, ey]> under varying kinematics and different tasks.

developed approach towards different tasks under the varying
kinematic settings mentioned above.

B. Safe Flight of Quadrotor

This subsection numerically validates the generality of our
proposed SP-PGC scheme under one safety-critical task of a
6-DoF quadrotor. The quadrotor is required to safely fly in an
obstacle-filled environment and finally reach the target position,
see Fig. 4. To realize this goal, we firstly use the reachable

(a) The flight trajectory at t = 0.8 s. (b) The flight trajectory at t = 2.3 s.

(c) The flight trajectory at t = 6.9 s. (d) The global view of flight trajectory.

Fig. 4: The illustration of the safe execution of quadrotor in
one safety-critical environment (red line: planned trajectory;
blue line: real trajectory).

set based planning algorithm [24] to generate a collision-free
desired trajectory pd := [xd, yd, zd] ∈ R3 inside a tube within
consideration of the distance from the quadrotor’s center of
mass to the rotor center dq = 0.27 m. Thereby, Assumption 1 is
satisfied. Then, we follow the procedures illustrated in Section
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III and Section IV to design an online performance-guaranteed
position tracking controller (22) to ensure that the quadrotor
always flies in the planned safe tube. The incremental dynamic
inversion method (a reformulation of the dynamic inversion
method [32] based on the incremental system formulated in
Section III) is adopted to design the attitude controller given
that we have no specific performance requirements for the
attitude control.

Denoting the boundary of the reachable set as b(t) ∈ R3.
Given that the desired trajectory points pd(t) are on the
center line of the reachable sets, the allowable control-
level tracking error (performance bound) to ensure safety
follows k(t) = b(t) − pd(t) − dq. Note that rather than
using this varying k(t) to construct ISS-PS-BLFs, we use
the minimum value of k(t) (ε = [−0.05,−0.05,−0.05]>,
and ε = [0.05, 0.05, 0.05]> in particular) to exemplify the
realizable high-accuracy tracking performance of our designed
control strategy (22). The simulation parameters for the position
controller are set as: p0(t) = [1, 0, 5]>, ḡ = diag(6.5, 6.5, 6.5),
L1 = diag(0.25, 0.25, 0.25), and L2 = diag(8, 8, 8).

We validate the effectiveness of our approach in six randomly
generated environments. The interactions between the quadrotor
and the environment at specific time instants are displayed in
Fig. 4. The associated videos are referred to https://youtu.be/
VKlaqWJBxus. Our designed controller enables the quadrotor
to always fly inside the safe tunnels (see Fig. 4a-4c) and finally
reach the target position (see Fig. 4d).

VI. EXPERIMENTAL VALIDATION

This section experimentally validates the robustness enhance-
ment brought by the dynamics free property of our method via
the task-space tracking task of the 3-DoF robot manipulator
(see Fig. 5) in the Chair of Automatic Control Engineering
(LSR), Technical University of Munich (TUM). The forward
kinematics is the same as (12). The dynamics follows

M(q)q̈ + C(q, q̇)q̇ + Fv(q̇) = τ + τd,

which differs from (14) given that the robot manipulator is
restricted to a horizontal plane. Thus, the gravity term is omitted.
Please refer to [14] for more details of hardware. The numerical
differential technique [28] is adopted to get the velocity and
acceleration information in practice.

An industrial welding and cutting task is considered here.
We choose ε = [−0.01,−0.01]>, ε = [0.01, 0.01]> for our
designed performance-guaranteed tracking controller (22) to
drive the robot manipulator end-effector to realize precision
machining. To ensure robust safety, the above determined
performance bounds (ε and ε in particular) are considered in the
planning level to inflate obstacles by a ε = 0.01 margin before
generating circle reference signals pd := [xd, yd] ∈ R2 (encod-
ing the industrial task). The remaining parameters required for

the tracking controller (22) are set as ḡ =

[
120 0 0
0 120 80

]
,

and L1 = diag(0.1, 0.1), L2 = diag(20, 20). The initial
position is set as x1(0) = [0.88, 0]>, x2(0) = [0, 0]>,
u = [0, 0, 0]>. The sampling rate is 1kHz.

The Cartesian-space trajectory x(t) displayed in Fig. 6a (the
trajectory y(t) is similar to Fig. 6a, thus omitted for simplicity)

Joint 1

Joint 2

Joint 3

Additional 
Load Joint 3

External
Disturbance

Fig. 5: The 3-DoF robot manipulator, load and external torque.

shows that the robot manipulator driven by our developed
control strategy (22) efficiently tracks the desired trajectory
precisely without crossing the predefined safe boundary even
under different loads. To further demonstrate the robustness
property of our method, we use one stick to apply additional
torque to the robot manipulator. As shown in Fig.6b, the
trajectories of the tracking error e1(t) firstly oscillate due
to the external disturbance and then converge to a small value
around zero.

0 50 100 150 200
0.75

0.8

0.85

0.9

(a) The trajectories of x, xd, and safe bound under different loads.

(b) The tracking error e1 (960 g case) under external disturbance.

Fig. 6: The experimental results of the SP-PGC scheme.

VII. CONCLUSION

This work realizes the safe control under uncertainty via
our formulated ISS-PS-BLF and incremental system. The
utilized one-step backward data reformulates kinematic and

https://youtu.be/VKlaqWJBxus
https://youtu.be/VKlaqWJBxus
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dynamic uncertainties as well as environmental disturbances
into a provably bounded estimation error, which allows us to
rigorously analyze the robustness of safety via an input-to-
state stable approach. The safe planning algorithm and the
ISS-PS-BLF facilitated tracking controller work together to
ensure that autonomous systems realize the safe execution
under uncertainty with guaranteed performance. Numerical
and experimental validations are conducted to show the
efficiency of our proposed SP-PGC scheme. Future works
aim to extend the kinematics free and dynamics free control
strategy to soft robot manipulators. Besides, the influence of
noisy measurements on our developed approach remains to be
investigated. Furthermore, extending the proposed method to
control-nonaffine system and input saturation (approximation
method similar to [33]) is worth investigating.
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