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Abstract

For an autonomous robotic system to interact or collaborate efficient- and suc-
cessfully with its immediate environment, it is required to devise the appropriate
strategies of cooperation. The level of engagement, either by interaction or under-
standing, as well as the degree of dexterity and finesse on the task performance and
completion depends not only on the system equipment e.g., sensors and actuators,
but also on how the acquired information is organized and interpreted, this is, how
the environment is perceived. The challenge increases by observing non-static or
dynamic environments where the system has to cope not only with noise, inherent
sensory misreadings or incomplete data, but also with continuously modified scenar-
ios where the system has to guarantee the stated level of commitment by updating
and obtaining a consistent representation of the world and coherent prediction of
the expectations.

While the sensing capabilities of current commodity, hybrid sensors allow an
increasingly more rapid and reliable acquisition of compound data e.g., spatial and
visual information, there still exists the demand in complex scenarios, where multi-
ple (potential) events evolve at different times and parts of the scene, to complete
the captured information and extract the most essential and valuable features and
attributes, and at the same time, to organize and present it in a more human-
understandable manner.

In this work we propose a hybrid perception framework that associates the visual
and spatial information coming from the sensors with the functional and operative
aspects of the observed scene. For this, the identification of back- and foreground
scene areas allows the further labeling and characterization of potential, indepen-
dent dynamic structures -or actors- inside the scene, where a-priori or gained-by-
experience knowledge can help to complete their local- and currently observed prop-
erties and features, like 3D shape, appearance, motions, functionalities, affordances,
etc; which are to be attached to these back- and foreground entities. As a result
we obtain a hybrid representation of the world that augments the captured sensory
geometry with functional information and that is able to expand the prediction hori-
zons of tracked-actors motions from purely kinematic information to a higher level
of discernment, like actions or activities. External and specialized agents of higher
perception levels can take advantage of the hybrid framework for a deeper scene anal-
ysis and modelling of spatio-temporal events. In the presented work we expose the
methods, procedures and principles the proposed framework is built upon and show
some examples of practical applications. As a complete integration of the frame-
work an external agent for the analysis of human-object-background interactions is
implemented and a new dynamic model for object manipulation is presented.
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Zusammenfassung

Damit ein autonomes Robotersystem effizient und erfolgreich mit seiner unmittel-
baren Umgebung interagieren oder zusammenarbeiten kann, müssen entsprechende
Kooperationsstrategien entwickelt werden. Das Maß des Engagements, entweder
durch Interaktion oder Verständnis, sowie der Grad der Geschicklichkeit und Finesse
bei der Durchführung und Fertigstellung von Aufgaben hängt nicht nur von der Sys-
temausrüstung wie beispielsweise Sensoren und Aktuatoren ab, sondern auch davon,
wie die gewonnenen Informationen organisiert und interpretiert werden, d.h. wie die
Umgebung wahrgenommen wird. Das wird umso komplizierter, wenn nicht-statische
oder dynamische Umgebungen untersucht werden, in denen das System nicht nur mit
Ungenauigkeiten, inhärenten sensorischen Fehlinterpretationen oder unvollständigen
Daten zurechtkommen muss, sondern auch mit sich ständig verändernden Szenar-
ien, in denen das System das angegebene Maß an Engagement gewährleisten muss,
indem es eine gleichbleibende Darstellung der Welt und eine stimmige Vorhersage
von Erwartungen aktualisiert und bezieht.

Während die Erfassungsmöglichkeiten aktueller handelsüblicher, hybrider Sen-
soren eine zunehmend schnellere und zuverlässigere Erfassung zusammengesetzter
Daten wie räumliche und visuelle Informationen ermöglichen, besteht in komplexen
Szenarien, in denen sich mehrere (potenzielle) Ereignisse zu verschiedenen Zeiten
und in verschiedenen Teilen der Szene abspielen, nach wie vor der Bedarf, die
erfassten Informationen zu vervollständigen und die wichtigsten und wertvollsten
Merkmale und Eigenschaften zu extrahieren und gleichzeitig in einer für den Men-
schen verständlicheren Weise zu organisieren und zu präsentieren.

In dieser Arbeit schlagen wir ein hybrides Framework vor, das die von den Sen-
soren stammenden visuellen und räumlichen Informationen mit den funktionalen
und operativen Aspekten der beobachteten Szene verknüpft. Zu diesem Zweck
ermöglicht die Identifizierung von Hinter- und Vordergrundbereichen der Szene die
weitere Kennzeichnung und Charakterisierung potenzieller, unabhängiger dynamis-
cher Strukturen oder Akteure innerhalb der Szene, wobei a priori oder durch Er-
fahrung gewonnene Kenntnisse dabei helfen können, ihre lokalen und aktuell beobach-
teten Eigenschaften und Merkmale wie 3D-Form, Aussehen, Bewegung, Funktion-
alität, Leistungen usw. zu vervollständigen, die diesen Hinter- und Vordergrunden-
titäten zugeordnet werden sollen. Als Ergebnis erhalten wir eine hybride Darstel-
lung der Welt, die die erfasste sensorische Geometrie um funktionale Informatio-
nen erweitert und in der Lage ist, die Vorhersagehorizonte der Bewegungen der
verfolgten Akteure von rein kinematischen Informationen auf eine höhere Unter-
scheidungsebene, wie z.B. Aktionen oder Aktivitäten, auszudehnen. Externe und
spezialisierte Agenten höherer Wahrnehmungsebenen können die Vorteile des hybri-
den Rahmens für eine tiefere Analyse der Szene und die Modellierung raum-zeitlicher
Ereignisse nutzen. In der vorliegenden Arbeit werden die Methoden, Verfahren und
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Prinzipien erläutert, auf denen das vorgeschlagene Framework aufgebaut ist und
einige Beispiele für praktische Anwendungen gezeigt. Als vollständige Integration
des Frameworks wird ein externer Agent für die Analyse von Interaktionen zwischen
Menschen, Objekten und Hintergrund implementiert und ein neues dynamisches
Modell für die Objektmanipulation vorgestellt.



“If you wish to make an
apple pie from scratch,

you must first invent the
universe“

— Carl Sagan
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Overview

Before presenting and describing the fundamental concepts and methods that sup-
port our proposed hybrid-model framework, we first present in this introductory
chapter the concepts and foundations that motivate and encourage to materialize
the presented approach and research into this work.
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1.1. Motivation

1.1 Motivation

Today’s challenges in robotics perception systems demand a huge amount of knowl-
edge comprising numerous and diversified databases ranging from daily-life knowl-
edge to specialized expertise in the fields of science and technology. Although current
sensory imaging devices become cheaper with steady increasing robustness allowing
a rapid and reliable perception of two- and three-dimensional data from the envi-
ronment, the sensory information they offer is confined to a paired visual and re-
constructed spatial information of the world inside a limited field of view; Moreover,
non-static environments or relative motion between the sensors and the structures
inside the scope increases the distortions and inconsistencies between the measured
and the collated data, demanding a continuous update and refinement for a consis-
tent and coherent world representation. In order to maintain the expected level of
engagement either by interaction or understanding at the given task an enhancement
of the sensory data must be accomplished. For this, the robotic system is required
to re-arrange, complete and associate plausible knowledge to the captured, limited
information. Type and amount of the added and attached knowledge indicate the
level of perception on the scene.

Biological as well as artificial systems shape the captured information according
to their learning or experience, expectations, attention, etc; therefore, they both
process and respond differently to the sensory input, which is commonly noisy, in-
complete, changing or varying, e.g., we never see or observe fully an object, yet we
are able to infer and complete its occluded dimensions, we are also capable to read
or decipher an unknown and poorly-understandable handwriting; in audition, we
can complete sentences or react to one’s own name in noisy crowds. In artificial
systems we can consider in first place systems that possess very elemental faculties
of perception, i.e., they simply react or are triggered by raw or conditioned sensory
data, e.g., simple ambulatory robots like some vacuum cleaners or lawnmowers, only
turn randomly to change the path when hitting some physical constraints; similarly,
audio or visual devices can react to a fixed level of noise, certain frequencies, or
respond to certain colors, intensity of light or motion flow, respectively; Probably
the most simple trait of high perception for a robotic mobile system is the ability
to navigate around autonomously in a mostly-static environment, this would imply,
the capacity to identify physical constraints, avoid them, and eventually correct the
path at any possible contact with them; A more perceptive system would detect and
classify relevant salient visual features from the environment for self-orientation; In
the same manner, systems endowed with even higher level of perception would cap-
ture additional functions or attributes from the observed environment, for example,
in exploration or grasping systems: the former would search and evaluate specific
scene attributes to decide the next steps to execute or the trajectory to follow, the
latter would detect and recognize objects and define possible points or areas on them
for a stable, proper grasping or handling.

Although in all previously mentioned examples the systems might have captured the
same sensory information the level of perception increased respectively; Analogous
to biological systems, this could also indicate that perception in artificial systems
could be also considered as a subjective aspect since the amount or type of knowl-
edge influence how the environment is perceived.
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Chapter 1. Introduction

Table 1.1: Perception layers of the hybrid framework: Geometry- and Abstraction-
Layers

Sensor Level: captured raw data is conditioned/adjusted for further processing.

Input
Data

visual (2D images),
spatial (3D point
cloud)

Processes
signal conditioning: fil-
tering, warping, align-
ment, etc.

Output
Data

aligned, warped 2/3D
images

Geometric Layer: data is re-arranged, identified and augmented with functional
information and attributes

Input
Data

calibrated 2/3D images

Processes

3D segmentation and
clustering, 2/3D object
detection/completion,
visual tracking, back-
and foreground areas
and person skeleton
detection, etc.

Output
Data

knowledge-augmented
geometry: Location
areas, segmented 3D
object candidates,
motion parameters,
etc;

Abstraction Layer: augmented data, recollected and organized in the geometric
layer, is utilized and interpreted by external agents of

perceptions (plugins)

Input
Data

Knowledge containers
for motion (traces), lo-
cations, physics.

Processes

Analysis and inter-
pretation of data for
modelling, labelling of
events, eventually also
inference mechanisms

Output
Data

Labeling, recognition,
categorization of:
actions, activities,
gestures, events,
behaviour, etc.

4



1.1. Motivation

Following the definition of perception as the organization, identification and inter-
pretation of sensory data to represent and understand the received information of
the environment, we organize the layers of the framework in a hierarchical percep-
tion concept of data abstraction and analysis, where besides the two main layers
that compound our hybrid framework, the geometric and abstraction layers, an ex-
tra stage at sensor level was included to cover and illustrate better the bottom-up
data processing in the framework. The sensor level, like in the electronics field, is
considered the signal-conditioning stage where the data is adjusted to fulfill the
minimal requirements or basic format to be further processing; as explained later in
this work this stage comprises mainly a image calibration, i.e., a warping to align
the 2D and 3D image data buffers. As also shown in Table 1.1, the geometric layer
is the processing level where the spatial information is essentially re-ordered, iden-
tified and augmented, i.e., the individual, segmented structures are assigned with
plausible functional or operational knowledge that is provided by an Atlas, which
is a database where a-priori, object-class information of possible scene elements can
be stored and acts equivalent to the knowledge gained by learning or experience
in humans; processes like 3D segmentation and clustering, 3D object detection and
completion, and tracking of motions have been implemented and integrated, yet
additional or auxiliary methods or approaches e.g., [85] [117] can also be integrated
at this stage; For example, in [85] a mathematical algorithm was implemented for
reliable 3D object recognition in clustered arrangements without 3D segmentation is
developed, while in [117] alternative and oriented methods for object recognition un-
der scale and perspective variations have been proposed. In Table 1.1 we also show
some exemplary images related to some of the processes mentioned for each stage;
For example, in the geometric layer: back- and foreground detection, 3D object seg-
mentation and clustering, person-skeleton and hand detection, location areas and
the object container which is a data structure used to collect and store attributes and
functional information about the objects in the scene; In order to emphasize that a
higher level of analysis or a deeper perceptive processing based on more abstract in-
formation can be performed at the top level of our framework, we call this level, the
abstraction layer; At this highest layer external agents of perception or plugins utilize
the re-organized and recollected data from the geometric layer, like traces, locations
and physics, to analyze and understand a certain, specific event of the many that
might be running in parallel inside a dynamic scene. In this work we implemented
and present a plugin for the modelling and labelling of physical interactions; For
example, in Table 1.1 we present some images corresponding to the action ’writing
on white-board’ where motion patterns of the tracked hand are re-projected onto
the interacting background (white-board), encapsulated and decomposed for iden-
tification and labeling of this particular action. For the sensor-level we show a 2D
image, a stereo-reconstructed depth image and a 3D image respectively. Basically
the output data of a layer is the input data for the next one. In the following sections
we present first the concept of the proposed framework and give an overview of its
functional blocks, next we give an overview of the concept for the external agent.
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1.2 External-Agent Concept

In our plugin approach we relate the human capacity of recognizing actions to three
significant factors: what object is in use, how it is handled or manipulated, and
where the action takes place; As shown in Fig. 1.1 these factors are linked directly
to the object; what stores two main object attributes: physics and functionality; the
first attribute is related with the spatial and appearance properties as well as other
abstract parameters like weight, center of mass, grasping points, etc; the second
refers to the primary functionality or functionalities the object offers; how considers
the dynamic aspects the object undergoes like motion parameters, path, trajectory,
etc; in where we consider the affordance of the environment, this is, all those relevant
areas inside the scene that are related with the object’s functions or states.

WHAT WHERE

HOW

* Thing/blob with
  own vocabulary :
- Geometric features
- Physics
  properties
- States
- Functions

* The environment : 
Semantic Context -
Functional Graph -

Semantic -
   Regions  

* How the object is
  handled / moves :
- Grasping Points
- Motion Parameters

Figure 1.1: An object-centric perspective in robot perception analysis of a scene.
The what-factor is related with the object attributes; the where is related to those
specific places or location areas the object have contact with inside the scene; the
how is related to the motions the object undergo during its employment.

We consider the relevance or weight of theses factors decreases correspondingly; for
example, we can deduce the action of ’cooking’ not necessarily inside a kitchen but
also outdoors e.g., in a camp or on the street, we can also infer if a person is ’reading’
or ’typing’ in the public transport. Although the recognition of the object employed
could lead directly to the labeling of the action since objects are designed to fulfill
a particular task or function, many of them possess more than one functionality, or
they could be not properly manipulated or be used with other purposes.

Our plugin utilizes the captured knowledge in the framework and boosts the traces
and prediction horizons of motions from the geometric level representation to the
level of actions or tasks. In Sec. 4.2 we present a new method to characterize and
model human-object actions based on the observation of the manipulation motions
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and the interaction background upon which the action takes place; Our implementa-
tion allow us the labeling of actions like ’hitting vs. pulling’, ’picking vs. tightening’,
that are distinguished when using the same object, hammer or screwdriver, respec-
tively; furthermore, we are also able to differentiate actions with similar motion
patterns and that are performed with different objects like ’eating vs. drinking’ or
’chopping vs. writing’.
Extended or modified versions of this plugin can be applied for example in human-
robot collaboration areas to infer the task in progress and assist in its execution,
or in surveillance systems to supervise the proper use of objects, or simply to learn
new objects functionalities or improvise objects by transferring known functions to
geometrically similar objects.

1.3 Challenges

The current, ongoing development in artificial scene perception and understanding
requires not only a modeling of the static scene structure but also requires additional
knowledge, i.e., some scene facts to be maintained in the world model, like motion
parameters, physical properties and functionalities of potential objects or structures.
It is then necessary to further enhance the information delivered by visual sensors
beyond the appearance or geometry level in order to perceive and understand the
world based on a more functional, operative knowledge, for example, by incorpo-
rating in hierarchical manner additional layers that abstract, organize this supple-
mentary information: a layered representation of the environment that couples the
pure geometric 3D representation of the world to the abstract knowledge about the
tentative object structures, blobs, in the scene, this is, the sensory information is
augmented and acts in the abstraction layer as a set of geometric tokens linked to
their attached functions and attributes that, in turn, will support the completion
and execution of more complex abstract tasks; This knowledge will represent known,
a-priori, task-relevant information or facts of object candidates like mass, handling
properties and grasping points being examples in a case of manipulation tasks. The
coupling of abstract knowledge to the geometry in a layered scheme of the map
helps to ensure consistency of the representation. From an implementation point of
view it must be required to identify back- and foreground areas, isolate foreground
shapes that represent possible objects, identify and complete their properties and
track their motions, as well as to identify the affordances or locations areas in the
background.
In Fig. 1.2 it is shown a general, functional structure of a devised layered framework
with the fundamental data blocks in blue and with some supplemental and exem-
plary blocks in green. The Geometry block represents the captured sensory data that
is split in back- and foreground areas for the segmentation and identification of 3D
shapes, Blobs, representing places of affordances or location areas in the background
and tentative object candidates in foreground; the attributes and functions of the
detected blobs are estimated locally, and if required, completed by the Atlas; the
gained knowledge is recollected and organized in the Knowledge Containers: physics,
locations and motions. As shown in the scheme this knowledge can be supplied and
accessed by additional processes like semantic mapping, trajectory analysis, naviga-
tion, etc; that might expand the functionality of the framework. Similarly, external
agents of higher level of perception or understanding, plugins, can be also coupled
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to build models or mechanism of inference for labeling, categorization or recognition
of events, actions, gestures, etc. In Chap.3 and Chap.4 these layers are described in
more detail.

Blobs

Geometry

Knowledge Containers

Semantics Actions

Planner

Navigation

Physics
Locations

Motions

Hybrid-Model

Labels Traces

Figure 1.2: General hybrid-model architecture and supporting functionalities. The
core elements of the hybrid model (in blue) couples the geometry data coming from
the sensors with a higher level of information, the knowledge containers, which in
turn can support alternative processing methods of perception (in green).

1.4 Related Work

Regarding the previously described features and functionalities of the framework and
its layers, in this section we present some approaches and works from the robotics
and computer vision fields that we consider are either pioneer, relevant, or closely
related with the methods and implementations in this work; since these topics could
widely range from camera calibration processes to prediction-horizons-related ap-
proaches we present this compilation based on two main subjects: i) environment
representation, which basically corresponds to the work implemented in the geo-
metric layer of the framework and would involve topics like 2/3D mapping, object
detection/recognition, scene segmentation, semantic mapping, etc; and ii) human
action understanding, namely, the analysis of Human-Object Interactions (HOI),
which is the main topic of our external agent of perception. In Fig.1.3 it can be
observed how we arrange and site these topics among the huge amount of proposed
and related approaches in these fields.
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Perception 
Framework

2/3D Mapping Action
Understanding

Visual
Tracking

Scene
Understanding

Environment
Modeling

SLAM Semantic/
Functional

Object
Detection/

Recognition

HOI
Human-Object

Interaction

Detection/Recognition/Modeling

Person/
Body-Parts
Detection

Action
Detection/

Recognition

Object
Detection/

Recognition
Verb

Object
Completion

Object
Segmentation

... ...

Figure 1.3: Placement of framework’s main topics inside the robotics and computer
vision fields. We can derive our work on the geometric layer fundamentally from
the subject of Environment Modelling, in which we perform a 3D scene mapping
where auxiliaries topics like slam, functional mapping, object detection/completion,
etc; are also treated; likewise, the implementations presented in the abstract layer,
namely our plugin (Sec.1.2), can be related to Scene Understanding ; as described
further in this section this is a huge field of study that comprises several research
branches that give origin to a huge amount of approaches as well. Visual Tracking
is a entire research area on its own and it is almost an ubiquitous tool in computer
vision nowadays; in our framework visual tracking is also an important auxiliary
tool (Sec.3.6.1).

1.4.1 Environment Representation

Sparse Mapping, SLAM approaches. The surroundings representation of a
robotic agent depends, in large part, on the main objective of the application or
planned robot-scene interactions, and it is also influenced, to some extent, by the
type of data the sensor devices supply. We can find, for example, in robot navigation
works based on Visual Odometry (VO) approaches [79][98][35] the representation of
the environment is based mainly on sparse data points, where the principal objective
is to build a consistent path of the sensor’s ego-motion subject to the matching and
alignment of salient visual features (like sift, brisk, surf [70][66][5]) between con-
secutive image frames. vo approaches have been widely utilized to support wheel
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odometry readings on planetary exploration rovers [44][17][124][73] where the envi-
ronments are predominantly static. Moreover, vo approaches have been integrated
and have become part of more complex and global mapping schemes like in Si-
multaneous Localization And Mapping (SLAM) [26][3], in particular Visual-SLAM
(V-SLAM) [56][62]; Unlike the local and incremental estimation of the sensor paths
in vo methods slam approaches consist of a constant estimation and refinement of
sensor poses and the building and maintenance of a consistent world map, this is,
sensor pose and environment map are correlated, refined and updated in a global con-
text. A huge amount of slam variations have been proposed covering as well a huge
variety of exploration applications like in rovers, Unmanned Aerial Vehicles (UAV)’s,
underwater vehicles, humanoids, medical applications, pipe inspections, etc; some
other representative slam derivations are monocular slam (MonoSLAM) [19][21],
stereo slam [20][112][68], fastSLAM [76][78], graph slam [39] and more recently
rgb-d slam [51][28]. For a more dense spatial representation Occupancy Grids
approaches [27] divide the environment into cell or voxel regions and define for each
cell a probabilistic estimate of its occupancy state: occupied/empty. vo and slam
methods constitute in our framework auxiliary processing components at the geom-
etry layer that support our 3D object completion and fusion with the estimation of
sensor ego- and independent-object motions.
Dense Mapping approaches. In our work we aim to observe the world as a set
of 3D independent, in-foreground shapes embedded in rigid 3D background struc-
tures, therefore, we need to be able to augment and split a rigid environment rep-
resentation to discern and incorporate tentative, independent and active elements.
Mapping models based on octrees [75], k-dimensional trees (kd-trees) [6] or spatial
kd-trees (skd-trees) [80][81], offer an efficient way to re-arrange and re-group volu-
metric data based on certain data characteristics like proximity of neighbor data
points. Although kd-trees are a valuable data structure to evenly distribute mul-
tidimensional point data and get efficient access to it we employ in our framework
an octree as a base data structure since it allows to tessellate the observed envi-
ronment, and to distinguish and define potential 3D foreground structures by the
clustering of connected components through its leaves (as explained in Chap. 3); in
a further processing stage we could apply and benefit of (spatial) kd-tree features
for a balance storage and fast access to the data elements of segmented structures.
3D environment modeling based on octrees is widely applied in the area of robotics
and computer graphics; their main feature is that they recursively discretize the
stored data into voxels, allowing a hierarchical segmentation and representation of
the environment, with this, we can determine at what level of resolution our world
representation will be; this also permits a compression of data and memory saving
(at cost of lower resolution); With octrees we do not need to know beforehand the
size of the area to be mapped since they can be gradually extended; they also allow
a local, confined map regions to be updated by isolating the data only in the cor-
responding voxels. A representative example of octree-based 3D-modelling tool is
OctoMap [50] which is a c++ open source library implementation of a 3D probabilis-
tic occupancy grid mapping. In this work we coded our own octree implementation.
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1.4.2 Human-Action Analysis

In the field of robotics and computer vision an interesting, important and ongoing
topic of research is scene understanding ; this area is very attractive for such research
communities since an accurate evaluation and judgment of the environment and
actions inside it by artificial agents will allow to perceive and interact with their
surroundings with high levels of reliability and engagement. This is an immense area
of study, where, an equally immense amount of approaches have been developed,
and new ones are being continuously proposed. Scene understanding can exclusively
comprise the labeling of indoor and outdoor scenes or environments based generally
on the detection, recognition and at times also the spatial order of the visual elements
they contain; output labels can be like: bedroom, library, forest, office, landscapes,
etc; it can also comprise, as shown in Fig.1.3, the understanding of human actions
individually or in group, where by understanding we imply the detection/recognition
or modelling of such actions or activities; based on the current approaches we can
find that detection/recognition can be generally carried out on still images since it
mainly consists on identifying the object in use, a human pose or body part and
the evaluation of the semantic or geometric relation between them, whereas the
modelling is accomplished on footages; Recognition might tell us what an action
is observed, while modelling might inform additionally how it is performed. In
our plugin (Sec.4.2) we focus on the analysis of Human-Object Interactions (HOI);
we consider this area, shown Fig.1.3, as a division inside Action Understanding and
whose principal characteristic is that it must be mandatory an object involved in the
action. In our work an action, or task, always implies the use of an object, otherwise
we refer to an activity, this is explained in more detail later in Sec.4.2.1, along
with other related terms; other approaches might go a bit further and differentiate
between action and task, where examples of the former are like ’closing the door’,
’take a glass’, ’open the fridge’, etc; on the other hand, tasks imply a more steady
grasping and manipulation of the object rather than a simple, short contact with the
object like just pushing, pulling or shifting it. Another term to highlight in this field
is event; one of its definitions can be found as “something that happens or is regarded
as happening; an occurrence, especially one of some importance”; according to this
and in this context, we can understand it as an unexpected behaviour or a motion
that suddenly comes up and breaks or differs from the motion patterns observed
so far, [87]: they do not exhibit temporal or spatial repetition. The relevance
of such event depends on the purpose of the approach, such as it can vary from
detections of irregularities like small, short body gestures or incidents, like a ’person’s
fall/stumble’, ’stealing an object in a shop’ or as simple as ’start extending the arm to
grasp an object’ [123][58][54][42]; its importance can be also given in a global context
where the focus is not only on one single person nor the motion of his/her body parts
but on all, or most of, the visual elements (persons, objects, animals, buildings,
surroundings, etc;) and the relations between them; in this case the main event
might be marked by a set of different actions or activities executed simultaneously
by different actors that all together, as a whole, describe the same single situation:
event [116][67][114]; e.g., watching a group of sitting persons in a room one could
tell whether it is a ’classroom’ or an ’office meeting’ by closely observing furniture,
arrangement, clothes, poses, etc.
Human-Object Interactions (HOI). As mentioned above, we consider hoi a re-
search area part of Action Understanding. As shown in Fig.1.3, we distinguish three
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fundamental components that can help us to describe in general an action in this
area: i) the person or body parts that execute the action and are in contact with the
object, ii) the object in use and iii) a verb, which is eventually the searched com-
ponent that describes the action. Detection/recognition approaches, mainly in still
images, require basically the first two elements to infer the third one; out of these
components other elements can be derived or new features can be extracted, like in
modelling approaches, in which an additional element, the motion, can substitute or
complement the object, and vice versa. In our hoi modelling plugin three elements
are relevant: i) the principal doer of the action: the hand, ii) the motion: hand’s
trajectory, and iii) the scene background, namely, the supporting plane upon which
the action is executed. We can find that our approach shares and combines close
similarities with two other research streams in this field: 1st-person/ego action recog-
nition and gesture recognition; in the former the hand(s) also plays an important
role, they focus on the manipulation of objects by evaluating hand-related aspects
like grasping, motion parameters, hand-object pose, etc: for the latter approaches,
gestures are basically short, ordered hand motions, therefore, hand trajectories are
the most important feature they focus on. Similarly, in our approach we search for
the fundamental and characteristic traits of hand motion trajectories that belong
and describe the basic manipulation of the object; these traits have to be discrimi-
nated from other attributes also conveyed in the motion, like noise, speed, personal
manipulation techniques, etc. In the rest of this section we describe briefly how
some selected and related approaches in these areas represent and model actions
and interactions with objects.

In [40] the authors present a Bayesian framework to integrate different perceptual
aspects like analysis of human movements or detection of manipulable objects, that
are involved in the hoi understanding in video sequences or static images, and ap-
ply spatial and functional constraints on them for coherent semantic interpretations;
although there is no dynamic in static images they utilize contextual information
instead. In their research they also found that the functional capabilities or prop-
erties of objects can be derived from shape [94][109] and physics [25]. Similar to
our analysis, they also consider that two objects similar in appearance can also be
recognized by their functionality i.e., how people interact with them, e.g., in the
case the objects are not visible at all, the analysis of the persons’ pantomime can
help to identify them; in the same way, two identical poses or motions could be also
differentiated by the context. In their approach three classes of human movements
are identified: i) reach movements: enable object localization, ii) grasping: ignored,
since they are too subtle to be perceived in their approach and iii) manipulations:
provide contextual information about the type of objects being acted on. Addition-
ally, they also utilize the object reactions, i.e., the result, effect or consequence of
the manipulation, as contextual information, e.g., the pouring liquid into a cup, or
the light bulb on/off as result of pressing a button. In [33] they are concerned to
recognize primitive hois; they call primitive interactions to actions on objects that
basically consist on a primitive body motion, like ’reaching and grasping a cup’.
They claim that motion information alone may not be sufficient to achieve higher-
level reasoning about activities that involve interactions with objects; the authors
introduce the concept of actor-object state, which combines the information about
the interaction dynamics, actor-object static appearances and spatial configurations,
and base their analysis on the fact that the motion and appareance of the actor as
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well as the actor-object configurartion are constrainted by the object. The interac-
tion scenarios they dealt with are the ’grasping’, ’touching’ or ’pushing’ different
objects, like forks, spoons, cups or small toys. For a given image, the authors in
[69] try to identify triples of the form: <human, verb, object>. Their framework
consists of a human-object detection followed by an interaction prediction stage; a
scoring scheme based on spatial, context and motion encoders, and a fusion module
that combines the accumulated knowledge predicts the final score for each detected
candidate human-object pair and outputs the plausible triple. In their work [30] the
authors consider that conventional methods treat the hoi problem at a holistic body
or a very coarse-part level (torso, legs, head, etc;). However, according to their re-
search [9] [95], attention is non-uniform and humans tend to focus on different body
parts according to different contexts, therefore, different body parts should be paid
with different attention levels, and correlations betweeen different body parts should
be also considered. They proposed a pairwise body-part attention model to learn
to focus on the crucial parts; their goal is to evaluate the probabilities of certain
interactions on a predefined list of hois; their non-uniform model can discover the
most informative body parts for recognition, they also focus on the correlations
between multiple body parts through joint correlations between each pair of body
parts. In other approach [127] the authors acknowledge that hoi consists of basically
two different problems, detecting: i) an object that is commonly small or partially
visible, and ii) self-occluded body parts; however, objects and body poses can serve
as mutual context to each other, i.e., recognizing one facilitates the recognition of
the other. In this regard, they propose a mutual context model to jointly repre-
sent objects and human poses; object detection provides a prior for better human
pose estimation, while human-pose estimation improves accuracy detecting the ob-
jects. A 4D modelling of hoi is presented in [119]; such model is defined as the
combination of 3D mutual space of human pose and object, plus the 1D temporal
dimension of event transitions. The authors present a hierarchical graph model of
events: a major event is decomposed in sub-sets of smaller, atomic events, which in
turn are decomposed into human poses, object(s), and their geometric relations; for
the temporal component, they evaluate the transition probability between consecu-
tive atomic events; in their approach, the eight events under study are of the type of
’fetching water from dispenser’, ’drink with a mug’ or ’press the button’. The work
presented in [37] is an approach to modelling and recognizing temporal structures
of visual activities; these structures can be extracted by representing an activity
as a trajectory of an observation vector, which besides positions and displacements
can include additional features like object’s salient points, its color distribution, 3D
pose, etc; they present a probabilistic framework to recognize gestures as spatial-
temporal structures in state space, where covariance in the measurements are also
taken into consideration and state predictions are simply previous states plus arbi-
trary Gaussian noise. In [125] the authors tackle the problem of recognizing human
motion in real time; they present a method for fast-recognizing 3D motion trajec-
tories by parsing them into segments of sequential primitives: straight line, plane
arc, left/right hand helix, etc; then each primitive is labelled and represented by
an integral variant descriptor. In the motion recognition stage the primitives are
matched by a proposed hierarchical dynamic time warping (H-DTW) algorithm. In
the real-time recognition stage, as soon as a new primitive is complete, it is matched
with the candidate trajectories learned for every motion class; actions under study
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comprise whole body activities as well as upper- and lower-extremities motion, like
’jumping in place’, ’jumping jacks’, ’throwing’, ’waving/clapping hands’, ’sit down’,
’stand up’, etc. In [74] they extract visual motion trajectories of gestures and actions
and model them in a probabilistic framework as a series of visual events based on
the image moments (area, centroid, and elongation); they restrict the study to four
gestures for visually mediated interaction to control a camera: ’pointing left/right’
and ’waving high-up/low-down’. Instead of splitting a whole trajectory into prim-
itives they divide them into three main events: initial transitional phase, middle
phase, and a final transitional phase. Observed and modelled events are matched
by estimating the likelihood of the observed trajectory given the model in a Gauss
density function; a corresponding gesture is outputted by the matching of its events
sequentially. The approach in [11] exploits the global spatio-temporal information
about where and when 2D interest points are detected. They represent actions as
clouds of interest points observed at different temporal scales. For this interest-point
detection they propose a two-step image differencing detector based on the Gabor
filter [22]; they build clouds of these interest points by accumulating previously de-
tected points along the consecutive image frames and distinguish two set of features:
i) 1st set is related with the shape and speed of the foreground object: height-width
ratio and its speed, ii) 2nd set is a vector of features of the interest points: height-
width ration of the cloud, speed of the cloud, density, amount of overlap between
two clouds. Their representation is able to capture smooth motions, robust to view
changes and occlusions. The authors of [115] propose to characterize human actions
with an actionlet ensemble model, where an actionlet represents the interaction of a
subset of human joints. They start from the observation that human motion is ar-
ticulated by nature, therefore, extracting it from video is a difficult task and present
novel features to represent human actions in depth data: i) Local Occupancy Pat-
tern (LOP): describes the depth appearance in the neighborhood of a 3D joint and is
also able to capture relations between human body parts and the objects the person
interacts with; ii) Fourier Temporal Pyramid (FTP) that represents the temporal
structure of an action, iii) actionlet ensemble model, where an actionlet ensemble
is a linear combination of actionlets that represent an action, and the model rep-
resents a particular action that may only involve a small subset of joints. In this
way, they take into consideration the relative position of a joint with respect to the
other, and with the lop they compute the local occupancy information based on
the 3D point cloud around each 3D joint; through the ftp they recursively split the
action and apply the short Fourier transform [82] to the previously estimated 3D
joints and lops, and take its low frequencies coefficients as features. They analyzed
actions like: ’high arm wave’, ’horizontal arm wave’, ’hand catch’, ’press button’,
’pour water from kettle’, ’fetch water from dispenser’ ’use mouse’, ’make a call’, etc.
In their paper [111] the authors try to demonstrate that ’specific’ human actions can
be detected from ’single frame postures’ in a video sequence. They are able to recog-
nize human actions by detecting the image of a person’s posture corresponding to a
particular key frame that corresponds to certain action; they apply a transformation
of matching points between a key frame of the action and the frames of the action
to evaluate; this transformation corresponds to an image (edge/silhouette) deforma-
tion like pure translation, similarity, affine, etc; that defines a relation between the
images (edges); pure translation yielded the best results. In [83] the authors build
a framework of pose- and feature-based action recognition methods to both classify
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fine-grained human actions and locate manipulated objects. They represent pose
trajectories as sequences of meaningful ’dynamic instants and intervals’. A dynamic
instant is a single point in a trajectory that represents an important change in mo-
tion characteristics, like direction or acceleration, and occurs at salient moments of
motion and object interaction (’moving the arm’, ’picking up’, ’touching’, etc;). An
interval is a trajectory segment between two instants. They augmented the work in
[92] by introducing the concept of visual instant, which is a dynamic instant plus
a set of (visual) features extracted from the frames and pixels around such instant:
these features contain spatio-temporal interest-points (STIP) [22] descriptors that
lie inside a given spatial and temporal radius. In their approach [91][92] the au-
thors present a representation of human action to capture ’dramatic changes’ using
spatio-temporal curvature of 2D trajectories. These dramatic changes are changes
in speed and direction of the trajectory; they also introduce the concept of action
units called: dynamic instants, and intervals. Based on this, they proposed a math-
ematical model based on how humans perceive motion by start and stop instants
emerging from any type of acceleration: continuous (impulse or step function) or
discontinuous (ramp or smooth function). For the matching of actions, they com-
pare only actions with the same/equal number of instants and since the analysis of
trajectories is performed in 2D from observing 3D trajectories, they also developed
a view-invariant model based on the ’instants’ and their ’signs’ (defined by direction
of turns in the action: clockwise is positive). The authors in [122] utilize histograms
of 3D joints locations (HOJ3D) as a compact representation of human postures.
The histogram representation of postures is based on 12 body joints and employ
a spherical coordinate system for the body-joint location binning, whose center is
the hip-center joint; the sphere is partitioned in 84 bins and the 3D joints are cast
into these spatial histogram bins through a vote scheme based on Gaussian weights.
As a result of the accumulated votes the observed or given posture is represented
by a n-bin histogram, a hoj3d. They collect a large collection of these histograms
and vectors of dominant features are extracted from them through the Linear Dis-
criminant Analysis (LDA); these vectors are finally clustered to create a K -word
vocabulary where each posture is individually identify. The temporal evolution of
those visual words are modeled by the discrete Hidden Markov Model (HMM). The
type of actions they analyze are like: ’walk’, ’stand up’, ’sit down’, ’pick up’, ’carry’,
’throw’, ’push/pull’, ’wave/clap hands’.
The following works are related to 1st-person/ego HOI recognition, which also fo-
cus on the hand-object motion trajectories; as described below, they also present
additional features that can be integrated in the to the framework (Fig.3.25c), e.g.,
a single action can be split into a set of smaller sub-actions by observing the evo-
lution of the grasping over the object. In their approach for egocentric recognition
of interactions [113] the authors define actions as verbs: ’pour’, and interactions
as verb + nouns: ’pour juice’ ; they try to overcome some of the limitations in
hoi works like the lack of semantic meaning about the actions of the subject since
they obtain the sole knowledge of the subject’s pose, or the lack of environmen-
tal understanding since they focus on capturing hand motions without recovering
the object pose; therefore, the authors propose an approach to predict simultane-
ously 3D hand and object poses, object classes and action categories from a single
image, with the ultimate goal to construct comprehensive interpretations of egocen-
tric scenes to understand human activities. For hand-object pose estimations they
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jointly parametrized the control points of the articulated grasping-hand skeleton
together with 20 more points corresponding to the object’s bounding box (corners,
midpoints edges and centroid); given hand-object poses, actions and object classes a
set of probabilities are trained and stored. The trained-mapping learns the explicit
dependencies between hand and hand-poses and interactions. Their model takes
as input a sequence of frames and outputs for each frame 3D hand object poses
predictions along with the estimates of object and action categories for the entire
sequence. The work in [38] presents techniques that extract an understanding of
objects from the understanding of hands. The authors demonstrate that what the
hand is doing reveals information about the state of the object, how to interact with
it and where the interactions occur, and apply all these to the two aspects of in-
teractive object understanding: i) learning state-sensitive features and ii) inferring
object affordances. For the first point they exploit the appearance and motion of
the hand as it interacts with the object to derive supervision for the object state;
for the second point a context prediction task is designed: they mask out the hand
and train a model to predict the locations and grasp-types for the surrounding con-
text. They use the hand and object-of-interaction detector from [101]; with these
detections, object, hand and hand motions are stacked together to learn the state
sensitive feature space, and by adding hand-grasp labels they train to learn regions
of interactions and the grasps afforded by those regions. The egocentric approach
for RGB-D manipulations of handheld objects presented in [97] takes into consider-
ation hands’ contact points and forces for parsing object manipulations/interactions
from a functional perspective. The work is related with fine-grained grasp classifi-
cation: similar hand kinematic poses can have different functions and the authors
also differentiate and classify these situations by analyzing contact regions of the
hand and the force vectors over the objects. A taxonomy of a 3D hand model for
18 grasps showing the contact and forces for each grasp is also presented. The
type of analyzed interactions are like: ’opening a lid’, ’writing’, ’flat hand cupping’,
’holding chopsticks’, ’trigger press’, ’can/jar open’, ’ball hold’, ’wiping’, etc. In their
approach [36] the authors also present the benefits of using hand poses as a cue for
action recognition. They also study the use of 3D hand poses to recognize 1st-person
dynamic hand actions interacting with objects. They show that one object can have
multiple grasps associated depending on the action performed on it and one (type
of) grasp can have multiple actions associated (e.g., lateral grasp at ’sprinkle’ and
’clean glasses’ ). They obtain, however, hand pose annotations via 6 magnetic sen-
sors (fingertips + wrist) attached to the back of the hand and a 3D full hand pose
is inferred using inverse kinematics over a defined 21-joint hand model. In their
hand-action taxonomy they involve different actions/verbs, like: ’unfold’, ’open’,
’use’, ’wash’, ’flip’, etc; with different objects: ’milk’, ’juice’, ’mug’, ’spoon’, ’spray’,
’pen’, etc; to give actions like: ’put sugar’, ’open wallet’, ’open soda’, etc. In order to
capture the connections among different heterogeneous features the authors in [52]
propose a joint heterogeneous feature learning model for rgb-d activity recognition.
Heterogeneous features are those same attributes but that are extracted from differ-
ent channels, e.g., hog -Histogram Of Gradients- features extracted from rgb and
depth channels. They learn a set of subspaces (one subspace for each heterogeneous
feature type) such that features with different dimensionality can be compared and
their shared and specific components can be encoded; for this they also introduce
a linear projection matrix for each type of feature, to control the dimensionality
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of each subspace. Three channels are utilized: dynamic skeleton features, dynamic
color pattern and dynamic depth pattern; From each of them the temporal pyra-
mid Fourier (tpf) [115] features from the rgb and depth sequences are extracted.
The type of actions under study are like: ’play guitar’, ’cheer up’, ’use laptop’, ’sit
still’, ’brushing teeth’, ’relaxing on couch’, ’cooking(stirring)’, ’cooking(chopping)’,
etc. In their paper [126] the authors confirm that the type of grasp of human over
objects give away their intentions of action. The grasp type provides crucial infor-
mation about human action: i) grasp type contains fine-grain information about
human action, ii) the grasp contains information about the action itself and it can
be used for prediction or as a feature for recognition and iii) it also contains info
about the beginning and end of action segments. Two applications utilizing this
information are presented: i) inference of human action intention and ii) fine level
manipulation action segmentation. Their system takes an image, patches around
the hand and outputs the type of grasp is used; the types of grasp they consider are
of: power (cylindrical, spherical and hook), and precision (pinch, tripod, lumbrical),
and closely related with this classification three human action intentions are con-
sidered: force oriented, skill oriented and casual. The hypothesis in [12] is that is
necessary to model the grasp types and the attributes of manipulated objects in or-
der to accurately recognize manipulation actions, they both contain complementary
information for characterizing different actions. Grasp type helps to describe the
functionality of an action, they are a discrete set of canonical hand poses, nine grasp
types in total, two main types: power and precision, which are divided in prismatic,
round and flat. Object attribute characterizes physical properties of the objects
such as rigidity or shape; it also indicates possible hand motion in hand-motion in-
teraction e.g., the body part of a bottle indicates a motion of ’holding’, while its cap
with small and round shape indicates a motion of ’screwing’. The authors identify
three different shape classes: prismatic, round, flat, and additionally deformable.
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1.5 Contributions

In this work we present a hybrid framework for scene analysis that contributes to
robot perception systems in dynamic scenarios. We conceptualize this proposed
framework as hybrid since it divides and organizes an observed scene in two layers
of different knowledge domains, i.e., a geometric layer composed of re-ordered and
identified, spatial data coming from the sensor devices and an operative layer of
functional and dynamic attributes of objects and actors. In this way, the geometric
components of the scene are augmented at the operative layer by indexing each
relevant geometric structure to its functional attributes. The framework provides
with the required components and procedures to keep and maintain this connection,
e.g., the knowledge containers, which store relevant information that is current and
locally recollected in the scene, as well as the Atlas, which store a-priori or gained-
by-experience information about general attributes and features of objects.

The field of scene robot perception and understanding is a huge subject of research
involving multidisciplinary aspects and knowledge of human daily life that eventually
might not be required all of them at once in a single application. In this context, the
hybrid scheme also gives the framework the capacity of being extended or customized
by external data-processing agents or clients that might require all or some of the
collected knowledge the framework offers. Along this work we present different
applications in which, depending on the application purposes, the framework is
demanded to work on the geometric layer like in cases of 3D object segmentation
and reconstruction, navigation or mapping, or rather to work on the augmented
layer like in the analysis of functions and motions of foreground elements. The
contributions and benefits of the presented work are listed in the following points:

• the sensory data, as a rigid geometric representation of the world composed
by a set of 2D images and 3D point cloud data, is analyzed and broken down
into a set of independent structures (foreground) embedded in a fixed geo-
metric layout (background). With this arrangement each detected foreground
body represents a tentative object candidate that can not only be analyzed
and updated individually but also serves as a local, solid-index token linked
to corresponding knowledge (functionalities and attributes) about the object
itself.

• purely geometric information corresponding to dynamic objects is augmented
with functionalities and attributes at the operative layer of the framework
which in turn facilitates a consistent prediction of the world since geometric
and dynamic state of objects can be analyzed, updated and refined individu-
ally: assumptions on 3D shape completion of partial observed objects (due to
(self-)occlusions, sensor misreadings, etc.) can be validated as newly spatial,
textural and dynamic information is analyzed and collated.

• knowledge at the operative layer is anchored and indexed to the geometry
through the segmented bodies in the scene; the structure of the framework
provides with the functional blocks to expand and update knowledge: the Atlas
is the database block that contains general, a-priori or gained-by-experienced
information of the world and can be used to hypothesize about object states
of the scene, e.g., functions, shape and behavior of objects; the knowledge
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containers, instead, recollect local, current and specific information about the
observed scene, e.g., object completion, traces or paths of dynamic objects.

• prediction horizons i.e., the scope or extent of state predictions, related to
dynamic actors in the world described as paths or trajectories with a few
seconds of time projection at the geometric layer are levered and interpreted
at the operative or functional level as task or action descriptions with more
extended prediction windows of multiple seconds.

• a framework with the capacity to supply external and specialized agents of per-
ception with the required spatial and operative information: a plugin agent
for analysis of human-object interactions is implemented and a new model for
description of object motion manipulation is proposed. Unlike other motion
analysis approaches that take into consideration transportation movements
in their analysis, our proposed motion model focuses exclusively on the lo-
cation/functional areas (those certain places inside a scene where an object
fulfills its main function) and decomposes the manipulation movements into a
set of motion components that have a direct connection with the function of
the object and its immediate background.

1.6 Thesis Outline

This work has been organized as follows. Chap.1 contains the introductory chapter
of the thesis; in this chapter we present the reasons and purposes that encouraged
the research and implementation of this work, we introduce the general scheme of
our approach and also present the research of some representative approaches in
the robotics and computer vision communities that we consider are related with the
topics and implementations presented in our work, and in Chap.2 we briefly intro-
duce the perception fundamentals of the sensor devices utilized in this work.
We dedicate Chap.3 and Chap.4 to describe the structure and core components of
the main framework layers as well as the methods and analyses that are carried
out at each. In Chap.3, The Geometric Layer, we explain its functional blocks and
describe the methods and implemented tools with which the captured, spatial infor-
mation is analyzed and re-organized; we also present our approach to fuse 3D data
from different camera poses, which is utilized for our 3D object reconstruction and
completion process; In Chap. 4 we describe our highest layer in the framework, the
Abstraction Layer, where the re-ordered and recollected data at the geometric stage
is processed and analyzed in a more abstract level in order to obtain patterns or
models that help to understand or characterize certain scene events or phenomena;
we also propse the implementation of a plugin i.e., an external agent of perception,
and present a new motion model for the analysis and description of object manipula-
tion motions; Results, evaluations, analyses and images corresponding to the tests,
implementations or methods of each main layer are found in Chap.5 and Chap.6
respectively.
To conclude this work, in Chap.7 we give some finals comments and remarks on the
presented work and present some additional ideas for this work to be continued and
extended with potential research directions and implementations.
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Overview

Commonly in data processing applications it is not longer relevant to know where
the information come from or how it was obtained since it is in general understood
that the data already passed through a pre-processing stage that makes it reliable
within certain margins. These reliability or uncertainty margins are obtained by
the identification of the processes (measurement devices in our case) the data came
from; the characterization of sensor devices allow us to know how precise (statistical
error) or how accurate (systematic error) are the readings they supply. Nowadays,
imagery data of hybrid sensors (e.g., RGB-Depth) offers not only spatial information
but compound two- and three-dimensional data that can be acquired, accessed and
linked in several ways for different devices. Comparable to a signal conditioning
phase in electronics, the sensor layer of the framework is the stage in which data pre-
processing is performed to condition and understand the data we are working with;
in computer vision intrinsic and extrinsic camera calibration belong to this stage. In
this chapter we briefly review the measurement principles of the sensors we employed
and describe the pre-processing procedures we performed, where we mainly focus on
the adjustment or correction between the raw two- and three-dimensional sensory
data.
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2.1. Stereo Camera Rig

2.1 Stereo Camera Rig

With a stereo camera setup the 3D location of points in space can be estimated.
Typical stereo camera arrangements are attempts to emulate human -animal- binoc-
ular vision to get a 3D perception of the environment. A common stereo camera
setup consists in mounting side-by-side two twin cameras, i.e., cameras with identi-
cal internal parameters (focal length, pixel dimensions, image size, etc.), separated
(horizontally) by a fixed distance, baseline, and with image planes kept parallel, fixed
in the same plane. Design variations or adaptations to specific purposes can also
be found as shown in Fig.2.1. In general the left image is considered the reference
image.

RightLeft RightLeft

Figure 2.1: Examples of two stereo camera setups. The parallel setup (left) is the
most commmon stereo camera arrangement that emulates the animal stereo vision
when looking objects in a long distance, while the convergent setup (right) can be
also considered as the emulation of the natural eye rotation to find or focus on a
specific object inside the scope.

2.1.1 Stereo Camera Principle

The physical principle of a stereo camera setup is to obtain a parallax effect on
the objects inside the overlapped visual field of the cameras, this is, to obtain a
measurable shift or difference in the position of a point that is observed from two
different points of view; This optical effect is known in computer vision as disparity
and can be quantified through depth-from-triangulation techniques to determine the
amount of shift or displacement (in pixels) between the left and right images of an
object; the disparity is inversely related to the distance of the object normal to the
the image plane since it becomes larger for closer objects and smaller for distant
ones, (see Fig.2.2):

z =
b · f
d
, d = dl − dr (2.1)

where z is the distance of the object, b is the baseline, f the focal length of the
cameras, and dl, dr are the object image on the left and right images. Spare or dense
stereo matching methods are applied to obtain disparity values of only matching
salient features (spare approach), or over entire images in which a higher template-
similarity value of each left-image pixel is searched and estimated on each right-image
pixel inside a given disparity range [dmin, dmax].
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Figure 2.2: Typical stereo camera setup of non-verged cameras to estimate the depth
of an observed point in the 3D space as a function of the image disparity.

2.1.2 3D Stereo Reconstruction

In most robotics and computer vision applications it is required to count with a 3D
model of the world rather than a disparity image; this 3D representation can be
obtained out of the estimated disparity values and the stereo camera setup. Ideally,
the position of a point Pi = (Xi, Yi, Zi) in 3D space is related to a pixel point
pi = (ui, vi, di) in disparity space:

Zi =
b · f

ρ · (Lui − Rui)
=

b · f
ρ · di

Xi =
b · (Lui − u0)

di

Yi =
b · (Lvi − v0)

di

(2.2)

which gives, as before, the distance of the point in space now in function of the pixel
width ρ, and (u0, v0) is the pixel coordinate of the center of the image. In practice,
the estimation of stereo reconstructed points contains also uncertainty components
in each dimension, where the Z-component dominates over the other uncertainty
dimensions:

σz =
b · f
d2
· σd =

Z2

b · f
· σd (2.3)

here the disparity d is considered a random variable with normal distribution and
standard deviation σd that is propagated to the uncertainty of the object depth
estimate σz; this uncertainty increases with the distance squared Z2 of the image
plane to the object. Fig.2.3 shows an example of a 3D reconstructed image using
our stereo camera setup.
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Figure 2.3: Example of a 3D stereo reconstructed image. At the sides are the left and
right images of the stereo cameras, resp; and in the middle their reconstructed image;
the brightness of each pixel is proportional to the proximity of such point to the
sensors, the brighter, the closer; black areas indicate the lack of depth information.

2.2 RGB-Depth Sensors

Besides the stereo camera setup we also employ an rgb-d sensor, namely, the Kinect-
1 R©. Essentially it consists of three components: an infrared (IR) laser, an ir and
an rgb camera. The function of the ir components is to supply a textureless depth
image that is obtained through stereo triangulation of an ir point pattern emitted
by the laser and detected by the ir camera. As shown in Fig.2.4 Kinect-1 supplies
basically three types of images, an rgb, a Depth and an ir image, from which the
first two are the most commonly used in user-end applications either separated or
compound, the last image is rather used for calibration purposes of the ir camera.
Although the rgb and ir images are the same size (480 x 640 pixel) we can also
observe that the sizes and positions of the captured objects differ inside each image;
this is basically due to (AO) the difference of focal lengths, normally being in the
rgb shorter (∼ 2.9mm) than in the ir camera (∼ 6.1mm).

Figure 2.4: Kinect’s three basic types of images: (left) rgb, (middle) Depth and
(right) infrared (IR) images. The cyan-colored areas in the Depth image correspond
to points with no valid depth values; the ir image was taken without blocking the
ir projector so that the ir projected points can be observed as those brighter dots
scattered throughout the image. Note how the sizes (hence also positions) of the
objects differ from rgb to ir-Depth images; the objects appear to be more distant,
and hence smaller in the rgb image; note the gap from the objects to the image
edges.

This image difference between the rgb and ir-Depth can be better exposed if we
overlap the rgb and Depth images as shown in Fig.2.5; however, to work with proper
3D rgb-textured images an rgb-ir camera correction is required. This adjustment
can consist in an extrinsic calibration to obtain a full transformation matrix (rota-
tion and translation) that relates the two cameras in space, or it can also consist
in an image warping procedure. Since the Kinect cameras are close to each other
(∼ 2.5cm baseline) and assembled in a common stereo setup we opt to warp the
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images in our framework. The main objective in this procedure is to create a dis-
tortion in one image in such a way that fits as much as possible the other one; Two
outcomes from this procedure are possible: the warped (distorted) ir is projected
onto the rgb image or vice versa; In either case, this distortion is an image trans-
formation that basically shrinks the Depth or expands the rgb data to fit the image
counterpart; we proceed as follows.

Using the rgb as base image we warp the Depth
image:

urgb = irgb − Crgb,x
vrgb = jrgb − Crgb,y

(2.4)

the resulting pixel coordinates 〈u, v〉rgb are now
expressed w.r.t. the image center; the corre-
sponding Depth pixel values are then found:

udepth = (urgb ·
fir,x
frgb,x

+ Cir,x)

vdepth = (vrgb ·
fir,y
frgb,y

+ Cir,y)

(2.5)

where the parameters [fx, fy]rgb, [fx, fy]ir of
camera focal lengths and [Cx, Cy]rgb, [Cx, Cy]ir
of camera centers are obtained through the rgb
and ir intrinsic camera calibration.

Figure 2.5: Kinect rgb-Depth
overlapped image. Basically due
to the difference in focal lengths
(fIR > fRGB) the rgb and
Depth image data do not fit:
the cyan-colored areas of non-
valid ir-depth values do not cor-
respond to the object shapes of
the rgb image.

Respectively, for the rgb warping:

uDepth = iDepth − Cir,x,
vDepth = jDepth − Cir,y,

urgb = (uDepth ·
frgb,x
fir,x

+ Crgb,x)

vrgb = (vDepth ·
frgb,y
fir,y

+ Crgb,y)

(2.6)

The wrapped corrections can be seen in Fig.5.3 of Sec.5.1.2.

2.2.1 Sensor Data Set

The resulting working data in our approach consists of 2/3D-image sets {I2D, I3D}k,
where I2D(k) ≡ [ui, vi]k is the set of image pixels, I3D(k) ≡ {pi, Pi}k is a set of 3D
reconstructed points pi along with their spatial uncertainty Pi, and k is the obser-
vation or capturing time-stamp.

A huge amount of information about stereo cameras and rgb-d sensors regarding
identification, precision, accuracy, calibration, etc; is ubiquitous nowadays. Here
we only addressed the particular topics and issues that we considered are directly
related with our work and that are meaningful to be referred to at this stage. Some
of our consulted references regarding stereo calibration are [89] [60] [96], regarding
kinect [106] [128] [45] [59] [77]. In addition to the own captured image frames and
footages the framework was also adapted to work with external footage databases.
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Overview

Our actual world consists primarily of environments imposing physical constraints
through geometric structures, where each of them has its own meaning either as a
context-related function specific to the current scene or as a general object attribute.
While the awareness and consistent registration of these geometrical constraints can
help supporting simple perception processes like localization, navigation, mapping,
grasping, etc; the acknowledgment of functions and attributes of these surrounding
objects or structures can help to understand the environment in a higher level of
perception. The geometric layer is the first stage to extract and convert simple
pixels and 3D points to a more concise and concrete information towards a more
human semantic or familiar daily vocabulary; In this layer we decide what and
how this new information, embedded in the imagery data, is extracted; The goal of
this layer is to implement and apply the appropriated mechanisms and elements to
observe, register and organize the captured data from a geometric perspective. In
this chapter we focus on the geometric modelling of fore- and background entities
inside scenes. First we present the 3D segmentation of captured scene data to obtain
a set of independent structures or blobs; This segmented data is further processed
and analyzed (clustered, associated and fused) for modelling and completion of 3D
objects, where we introduce a Z-buffered re-projection method as a way to get
more consistent structures and filter out noisy information. On the background side
we also detect and confine spatially the functional areas i.e., those regions within
background structures with possible semantic meanings, (specially on supporting
planes); this contributes to the understanding of actions and activities as well as
current states or functions of objects. Since our registration approach does not
store data as one rigid model but as a set of independent point clusters (foreground)
embedded in a 3D point cloud of supporting structures (background) we are able to
update independently not only the chassis of single foreground objects but also their
poses, which in turn allows us to cope with dynamic changes in the world. From
this geometric level, we also describe the mechanisms we applied to observe and
register these dynamic changes and motions; this is a valuable information that will
also help us to infer or support possible, general attributes or current functionalities
of objects in a higher level of understanding.
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3.1. Structure and Overview

3.1 Structure and Overview

The presented framework is an effort to model the actual world by introducing a
layered representation of the environment that couples, as solid tokens, the pure
geometric 3D representation of the world to the knowledge of their functional or
operative attributes. An overview of this layer can be seen in Fig. 3.1. The scheme
shows the data flow and the relations between the principal components and proce-
dures that are explained in more detail later in this chapter.

Object
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& 
plane 

detection

Blob 
Detection

FUSION
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Geometric
Layer

Sensor

Blobs

3D Data

MAP
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Map 
Update

System

Input Data Stream Output Data Stream

Figure 3.1: Structure of the geometric layer. The input data stream coming from
the sensor layer is firstly spatially split to obtain a set of tentative object candidates
(blobs) that are independently updated as more data is available.

From a stereo camera rig we obtain a range image of the observed scene (Figs. 3.2a,
3.2b), after determining the supporting background plane, we build a first rough
geometric representation of the scene by means of an octree (Fig. 3.2c). A 3D seg-
mentation procedure on the octree leaves (Sec.3.2) is performed in order to cluster
the groups of 3D points that are spatially connected through the leaves. The output
of this procedure yields a set of 3D blobs, (tentative objects) see Fig. 3.2d, that
represents geometrical tokens linked to the higher level of the framework. The data
association and fusion is executed blob-wise between two consecutive 3D segmented
scenes by applying a Z-buffered re-projection method as explained in more detail in
Sec. 3.4.1. The resulting map model at this stage is a spatial representation of the
world that comprises a 3D background structure holding a set of potential object
candidates and whose 3D structures are to be completed and refined over time as
more captured data is collated. The object container is our data structure repre-
senting and linking these segmented tokens to the higher-perceptive layer, where
additional object functions and attributes can be assigned and stored.
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(a) (b) (c) (d)

Figure 3.2: Exemplary images of the main data flow processes at the geometry layer.
a) 2D left-camera image, b) range image of the scene, c) octree scene representation
with potential foreground (red) and background (green) structures and d) set of 3D
clustered and encapsulated blobs.

3.2 3D Scene Representation

The rigid 3D information supplied by the imagery sensor still constitutes a simple
group of captured points without any particular assumption about their spatial
connections or relations among them. The main goal of the scene segmentation is
to obtain a first spatial notion of the captured 3D data; The result of this process
is the spatial identification of the back- and foreground structures along with a set
of independent and encapsulated 3D blobs that represent tentative objects in the
scene. The role of an octree, our storage and mapping component, as well as the
required procedures employed at this stage are following described.

3.2.1 Octree Data Structure

An octree is a computational tree-based data structure (DS) primarily used in 3D
graphics and game engines; at the present it is commonly utilized in computer vi-
sion and robotics applications. As illustrated in Fig. 3.3 octrees allow to spatially
organize and access three-dimensional data in a hierarchical manner by partitioning
recursively the space it encases in eight smaller and equally-sized cubes (or rect-
angles) known as octants, voxels or oct-nodes. This spatial subdivision continues
until the leaves, fixed at a maximum tree depth dmax, are reached. The leaf, a.k.a.
oct-leaf, is the smallest and un-splittable voxel where data is stored, and its size
determines the resolution of the octree. We can consider, for example in mapping
applications, data-occupied leaves’ connections form a downsampled 3D tessellated
model of the world as the data resolution is reduced from a 3D point to a voxel rep-
resentation. This downsampled representation is the finest and closest 3D spatial
model of the world that an octree can achieve.

3.2.2 Storage and Mapping

An octree has a linearithmic spatial complexity O(k logN), where k is the number
of points and N is the number of nodes (Fig.3.4a), and as a tree-based data structure
the octree has a running time of O(logN), which is faster than a linear running time
but gets a bit slower as the number of nodes increases (Fig.3.4b). Accessing oct-
leaves for data storing or retrieving is achieved by traversing the octree according to
the Depth-First Search (DFS) algorithm [18], see Fig.3.5a. As its name indicates this
algorithm focuses on traversing a ds deeper at each search step as opposite to the
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3.2. 3D Scene Representation

Figure 3.3: Geometric and graph representation of an octree ds. From the octree
root, largest node (top cube), each oct-node divides recursively into eight cubes of
equal size (octants or voxels), until the leaves, the smallest voxels where data is
stored, are reached. In this example dmax = 2.

Breadth-First Search (Fig.3.5b) that explores first thoroughly along the spread of the
structure before going one step deeper; dfs is the common option to reach the tree
leaves that lie at the deepest level in the tree structure. bfs is also later employed
in 2D segmentation procedures. Mapping approaches based on octree ds allow a
simplified and flexible occupancy model of the world. The Octomap library [50] is
a representative mapping work implementation based on this ds that offers several
storage features and algorithms to obtain and maintain an updatable and flexible
3D model of arbitrary environments. A 3D scene mapped from several camera poses
can be observed in Fig.3.6a along with some snapshots of our octree-based storage
implementation for this scene.

3.2.3 Background Detection

Opposite to object structures, and from a geometric point of view, background re-
gions are in general large, flat and predominantly static areas; but like foreground
objects, they can also have different purposes or functionalities in the world, like
walls, shells, doors, desks, tables, etc. Due to the limited sensory scope and the
partial and scattered occlusions of foreground structures background areas are in
general captured as broken or incomplete surfaces. To detect such background re-
gions we apply either of two procedures: the first is based on a pure RANdom SAmple
Consensus (RANSAC) procedure [34] over the whole scene, the second method is
by picking three reliable image pixel-points (x, y, z) that belong to the background
plane model, according to Eq. 3.1:

ax+ by + cz + d = 0 (3.1)

for the normal-point form equation of a plane a, b and c are the constants that define
the normal vector n̂ = [a, b, c], and d is the distance from the origin of the coordinate
system to a reference point on the plane d = −n̂ · p.
For the first method we can assume the background regions cover larger areas than
the foreground areas in the observed scene, therefore we can expect large parts of
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(a) (b)

Figure 3.4: Octree computational complexity. a) Spatial, building time based on
the number of nodes N for different image sizes k, b) running, accessing time based
on number of images (data size), with an image size of 640x480 pixel-pts

scene 3D points belong to these structure planes; following [43] we choose a tentative
percentage of outliers ε, i.e., points that do not belong to the current searching
plane, to define the first number of iterations N (Eq. 3.2) over the next steps: a
set of three 3D-points is randomly selected to define a normal-vector candidate of a
temporal plane model; through a voting scheme we determine the number of inliers
supporting this plane model, i.e., how many scene points lie or fit to this plane
based on a threshold distance from the plane to each tested point. This process is
repeated until the number of iterations N is reached or some other ransac conditions
are satisfied, e.g., N can be adjusted inside each loop according to a better plane
estimate. The plane model with the largest number of supportive points, inliers, is
chosen. This whole procedure can be run repeatedly until all background planes are
detected (see Fig. 3.7).

N = log(1− p)/ log(1− (1− ε)s) (3.2)

Where p is the probability that at least one set of selected plane points is free of
outliers, ε is the proportion of outliers and s the size of model points.

For the second procedure, the model set of three points defining the best plane
candidate is directly selected by picking the corresponding pixels on the 2D image;
After confirming the selected pixels have valid depth values the 3D plane points
are selected as those lying inside a fixed perpendicular threshold distance from the
plane. This second procedure can be employed when the first method is not giving
optimal results, or the visible 3D background surface is too small or shattered, and
we want to force a 3D plane model under these conditions. Moreover, among all
kind of possible background regions that can be found inside a scene, in this work
we are primarily interested in the supporting or interacting background planes since
these planes do not only support objects but also actions or activities are commonly
executed upon them. In this work we apply mainly the second procedure to model
directly these planes; Fig.3.7 shows some examples of background detection and in
Sec.3.3 we continue the analysis of these regions, specifically, the supporting surfaces.
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Figure 3.5: Graph traversing algorithms for a tree-based ds: a) Depth-first search
(DFS) and b) Breadth-first search (BFS). dfs traverses the nodes deeper whenever
is possible as indicated by the searching-timestamps inside the nodes that mark the
discovery/finishing times, respectively; bfs firstly traverses the nodes on the same
tree level at the same search step, which is also indicated by the traversing step
numbers.

(a) (b) (c) (d)

Figure 3.6: Implementation of a 3D Octree-based storage and mapping. a) shows a
3D mapped scene along with all previous camera poses. In some applications it is
practical to detect b) the oct-leaves (yellow) inside a camera Field of View (FoV)
or camera frustum, or to count with c) an octree occupancy model: only occupied
oct-leaves (blue wire cubes) are shown; d) highlights the detected oct-leaves inside
the current camera scope.

3.2.4 Foreground Detection

After background detection the 3D structural association among foreground points
is achieved by identifying the occupied oct-leaves throughout the octree following
the DFS (Fig.3.5a) to associate neighbor leaves. The outcome of this DFS leaf-
connecting process is a group of 3D oct-leaves segmented out of the scene. We cluster
the 3D points inside each single bunch of segmented leaves to obtain a set of 3D
blobs that represent potential object candidates in the scene foreground. Under some
circumstances the octree resolution (leaf size) might be increased (smaller leaf size)
in order to adapt the 3D segmentation to the object density of the scene(s), and with
this to avoid overlapped or merged object shapes during the clustering, see Fig. 3.8.
At the geometric level, each clustered 3D blob contains firstly a partial 3D shell of
the actual object structure; this portion of object hull will be completed and refined
as more observations of the object are collated. Since we are not certain about the
resulting entire shape during the object completion and, in passing, to simplify the
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Figure 3.7: Geometrical detection of background regions. (left) Wall and table
planes are found by repeatedly running ransac over the entire scene points (1st
procedure); in the framework, supporting or interacting surfaces like a cooking table
(middle) or a whiteboard (right) are determined by picking three plausible plane
points on the image (2nd procedure).

(a) (b)

Figure 3.8: Clustering of connected leaves at two different octree resolutions in two
different scenes (a, b). The size of the octree leaf can be adjusted to get a finer search
and association of connected leaves and to avoid merged segmentation among closer
objects.

scene representation we model or encapsulate each object shell into a rectangular box
whose dimensions and axis orientations are estimated by the Principal Component
Analysis (PCA) procedure [102] [107] as illustrated in Fig. 3.9.

Figure 3.9: Examples of pca encapsulation of 3D blobs. (left) clustered front faces
of some boxes, (middle) the 3D pca-encapsulated blobs, and (right) their corre-
sponding pca box frames and axes as an object model simplification.

As an object candidate, a 3D blob has the potential to acquire a more active and
functional role in the framework. The object container (OC) is the model that
represents this blob abstraction and enhancement, in which more object-related
features are collected and stored; therefore, a clustered 3D blob also embodies a
solid token that links the geometric and spatial data to the attributes and functional
information of an object in a higher level of perception. In the Chap.4 we describe
in more detail these abstract properties. In Sec.3.4 we continue with the geometrical
aspects of the blobs and describe the procedures for 3D object completion. At this
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point we outline the processes described so far with the data flow shown in Fig. 3.10.

Figure 3.10: Outline of 3D scene segmentation processes. 3D data points of a
scene (up-left) are stored into an octree (up-middle), background supporting plane
(green) is detected and foreground structures (red) are oct-leaf segmented; 3D point
clustering (up-right) of segmented leaves in a higher octree resolution (smaller leaf
size) is performed to avoid improper merging of individual 3D blobs; finally, clustered
3D blobs are pca encapsulated (down-right). An encapsulation example (down-
middle) of a figurine (down-left) is shown.
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3.3 Location Areas

We call location or functional areas to those confined spaces within the scene back-
ground that have certain semantic meanings related with either object states, like
trash bin, cupboard, etc; or with object functionalities (sink, cook plate, etc;)
through the execution of actions, or activities as described in [16]; in other words,
they are those background spaces upon which an object is handled to fulfill a func-
tion (e.g., a plate on the table, for eating) or to confirm a state or condition (e.g.,
a plate in the sink, it is dirty). Although current semantic mapping approaches
e.g., [103] [46] [129] [63] [13] could help us to identify relevant areas or rather fur-
niture, inside the scenes it is common that more than one location area can lie or
exist inside a piece of furniture or in a single surface area as shown in Fig. 3.11a.
Opposite to an action or object manipulation a transportation action is a transla-
tional movement that generally describes a simple path that connects two functional
areas, see Fig. 3.11b; Identification of ending points of transportation actions can
lead in turn to the uncovering of possible functional areas. The Fig. 3.11 shows a
cooking-activity scenario in which the table surface has been divided into different
functional areas corresponding to some cooking tasks like chopping, frying, stirring,
etc.

(a) (b)

Figure 3.11: Example of location areas in a cooking scene. a) The background
plane surface was detected and two locations areas corresponding to some cooking
tasks were defined: the red half-sphere indicates the chopping area and the green
half-sphere defines the cooking plate area. b) The transportation action path (red
points) described by the segmented hand (in purple) connects both areas for a
chopping-frying sequence. Location areas are those regions in the background scene
upon which an object is handled to accomplish its function, this is, where an action
occurs.
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3.4 3D Object Completion

The result after the oct-leaf segmentation and point clustering (Sec.3.2.4) is a set
of independent 3D structures or blobs that represent object candidates in the scene
foreground. This set of blobs composes a Blob Map, which is a mapping tool concept
that helps to detect spatial overlappings between the newly encapsulated with the
stored blobs; it also supports the object-completion management by updating the
map after the blob fusion processes as described below. Basically, our map M(k) =
{Bj(k)} at time k (see Fig. 3.12) is defined as the set of blobs {Bj(k)}, where each
blob Bj = {pi, Pi, CVi}, is in turn a set of 3D clustered points pi, along with their
spatial uncertainty Pi and confidence value CVi, (Sec.3.4.3).

Figure 3.12: Blob Map: Two sets of 3D blobs of the same scene captured from
different camera poses at times (k) and (k+1). (left) set of blobs {Bj(k)}, (middle)
set of blobs {Bi(k + 1)}, (right) intersection of both sets observed at pose (k + 1).

Object completion basically consists to collate the 3D structural data of the mapped
blobs with the corresponding data of the newly encapsulated blobs to compose a
consistent and closer 3D model of the actual object shape; A core concept for this is
Data Fusion, in which it is defined how the previous- and newly captured data are to
be combined and/or organized; Object Fusion is addressed in next Sec.3.4.1. Since
object completion is carried out blob-wise, a first step is to determine the corre-
sponding blobs to be collated. The pseudo-code for the blob 3D-intersection search
is outlined in Algorithm 1. In Algo-line 1.5 the condition refers to the intersection
of 3D geometric bodies, in our particular case, to the collision of rectangular solids;
for this kind of plane-face geometries it is sufficient to detect a contact of an edge
on one object with a face of the other as suggested in [10]; we obtain as output a
list of geometric intersections of mapped with new blobs Ψ(k) = {ψb}.

3.4.1 Object Fusion

The main objective of a Data Fusion System (DFSys) is to combine and integrate
data from different (types of) sensors, or multiple observations from the same object
in order to understand the phenomenon under observation, and with this to increase
the confidence of such observation when several sensor readings confirm that phe-
nomenon state or measurement. Under a dfsys architecture [110] two essential
procedures are: the data alignment and the data association. The former consists
in transforming the data received from the different observations into a common
spatial and temporal reference frame, it comprises basically coordinate and time
transformations, see Fig. 3.13. The latter is related with the correlation of the
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Algorithm 1 Blob Intersection Search

Require: Map M(k) = {{Bj(k)} ∪ {Bi(k + 1)}}, with j = 1, 2, . . . , J and i =
1, 2, . . . , I

Ensure: List of intersection containers Ψ(k) = {ψb} where ψb = {Bb(k)∩Bm(k+1)}
with b ≤ J and m ≤ I

1: Ψ(k)← ∅
2: for all Bj(k) ∈M(k) do
3: ψj ← ∅ . Bj(k)’s intersection container
4: for all Bi(k + 1) ∈M(k) do
5: if Bj(k) ∩Bi(k + 1) then
6: ψj ← ψj ∪ (Bj(k) ∩Bi(k + 1))
7: end if
8: end for
9: if ψj 6= ∅ then

10: Ψ(k)← Ψ(k) ∪ ψj
11: end if
12: end for
13: return Ψ(k)

multiple observations to determine whether a group of those belong to the same
or a new event or target. Roughly speaking, given two noisy data sets, the data
association (DA) problem is defined as that of finding for each data point in one
of the sets the appropriate corresponding matching data point in the other set, as
illustrated in Fig. 3.14. DA problems arise mainly in registration systems in which
new observations have to be integrated to previous ones.

At time
(k)

At time 
(k+1)

scene

(a)

At time
(k)

At time 
(k+1)

scene

(b)

At time
(k)

At time 
(k+1)

scene

(R, t)

(c)

Figure 3.13: Data Alignment: Data re-projection for object fusion. Scene data (red
squares) is observed by camera planes (yellow screens) at different times and poses:
a) At time k data is captured (purple pixels) by the camera at the initial pose, b)
camera pose at time k+ 1, new data is captured (cyan pixels) from the same scene,
c) the captured data at time k is re-projected to the camera frame at time k + 1,
the orange pixels indicate the re-projection of previous data at occupied pixels by
the current data.

Typically in registration methods, the output after minimizing the distance of en-
tity correspondences between two sets is a rigid, global spatial correction that is
applied and affects to all entities in such sets uniformly. In stereo vision, the 3D
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Figure 3.14: Data Association (DA): Example of Data Matching between two point
sets (discs and squares). a) DA searches for potential matchings at local, point
level, b) the most plausible correspondences are defined based on a fixed metric or
criterion (e.g., distance, color, etc); c) a global correction, here a transformation
[R, t], is applied and evaluated; data can be fused (green crosses).

reconstruction of points does not present a fixed uniform error, and applying such a
global correction might hinder a proper registration in some regions while improving
it in others. As we know, in this framework the newly captured 3D data is associ-
ated to our map not as rigid entity but as a group of individual clusters, the blobs;
the fusion between new sensor readings and the map is performed in a blob-paired
manner considering the local measurement errors presented in that region and the
association metric of the tentative matching entities. A benefit in this scheme is
that of correcting and updating the state of individual blobs by propagating to all
its points any spatial modification even in the presence of occlusion or partial vis-
ibility. Algorithm 2 outlines the steps to iterate through the list Ψ(k) (Algo.1) to
fuse the blobs and obtain an updated map M(k + 1); in this case the condition
in line 2.5, makes reference to the fusion of blobs through the association of their
points. The call doassoc() (Algo-line 2.6) follows the dfsys for the data alignment
and association procedures that are treated in Sec. 3.4.2; the call updatelist() is
required to update the references of the blobs as they are fused.

3.4.2 Z-buffered Re-projection and Data Association

With z-buffered re-projection we refer to the spatial transformation of data points
from its original capturing spot i.e., at camera pose {C1}, to a second pose {C2}.
We emulate the camera pinhole model at the second pose and re-project the first
set of captured data onto this second camera screen to associate the two sets of
data as shown in Fig. 3.13; To choose which data point is visible when more than
one is re-projected to the same emulated screen pixel we utilize the z-buffer of each
point to determine its depth in the scene, the point closest to the camera is selected
as the visible one. In Fig. 3.15 we show different re-projection screens of two 3D
blobs each captured at different poses. In this re-projection phase we imply that the
transformation estimates between camera poses are based on positional information
that has been determined previously with some degree of certainty by an unbiased
sensing process.

At time k + 1, a measurement zi(k + 1) of a point pi(k + 1) with covariance matrix
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Algorithm 2 Blob Fusion

Require: Map M(k) and List Ψ(k)
Ensure: Map M(k + 1)

1: Γ← ∅ . updated list of blobs
2: for all ψb ∈ Ψ do
3: Bb(k + 1)← extractFromMap( Bb(k) )
4: for all Bm(k + 1) ∈ ψb do
5: if Bb(k + 1) ∩Bm(k + 1) then
6: Bb(k + 1)← doAssoc(Bb(k + 1),Bm(k + 1))
7: end if
8: end for
9: Γ← Γ ∪Bb(k + 1)

10: updateList( Ψ(k) )
11: updateList( Γ(k) )
12: end for
13: M(k + 1) ≡M(k)←M(k) ∪ Γ
14: return M(k + 1) . Map updated

Figure 3.15: 2D z-buffered re-projection images of two 3D blobs in three different
scenes. The blobs in blue were captured at previous camera poses (k) and re-
projected to camera screens at time k+ 1 where the objects in green were captured.
Since they were not captured at the presented camera screen (k+ 1) and due to the
re-projection note how the shapes of the blue blobs are less well-defined i.e., diffuse
points at the edges and some blanks inside.

Ri(k + 1), is normally distributed around its estimated value or state ẑj(k + 1|k) of
pj(k+ 1|k) = T k+1

k pj(k) with covariance Pj(k+ 1|k) = HjPj(k)HT
j , where T k+1

k rep-
resents a rigid transformation to the current pose and H represents the measurement
model matrix; the innovation or observation residual is defined as:

vij(k + 1) = zi(k + 1)− ẑj(k + 1|k) (3.3)

the quantification of similarity between the observations is given by the Mahalanobis
distance χ2:

χ2
ij = vijS

−1
ij v

T
ij < χ2

α (3.4)

where

Sij = Pj(k + 1|k) +Ri(k + 1) (3.5)

is the innovation covariance. In order to find the correspondences between an ob-
servation zi(k + 1) from a data set S1 = {p1,i} with i = 1, 2, 3, . . . , n and prediction
state ẑj(k + 1|k) from a data set S2 = {p2,j} with j = 1, 2, 3, . . . ,m, that fulfill
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Eq.3.4, we re-project both sets to an emulated camera screen with camera model
C(k + 1) in the current pose T (k + 1)

(ui, vi) = C(k + 1)zi(k + 1) (3.6)

(uj, vj) = C(k + 1)ẑj(k + 1|k) (3.7)

By the re-projection we have bucketed [130] the data points in screen pixels (u, v)
and confined the matching search to a small pixel neighborhood around the pre-
dicted state represented by (uj, vj) and corresponding to the point pj(k+ 1|k). The
matching search cost is reduced from O(nm) to O(km) where k is the number of
neighbor pixels. Considering bucketing as a re-quantization loss of information can
occur when more than one point is re-projected to the same pixel. For the case in
which we re-project the current-pose observed points, (Eq. 3.6), the loss is negligible.
For the case of Eq. 3.7, we examine the z-buffer of each point in order to determine
which point is visible and which ones are occluded. We consider only the visible
points of each set for association as we are interested in the restoration of what can
constitute the shell or chassis of the actors in the scene.
The validation of correspondences by Eq.(3.4) constitutes the local-heuristic part of
the process. After this, a new set of corrected, fused points are obtained:

pl(k + 1|k + 1) = pj(k + 1|k) +K(k + 1)vij(k + 1) (3.8)

with the gain K defined by:

K(k + 1) = Pj(k + 1|k)HjS
−1
ij (3.9)

and the covariance propagation

Pl(k + 1|k + 1) = Pj(k + 1|k)−K(k + 1)HjPj(k + 1|k) (3.10)

We obtain a set L = {(S′1,S′2)l} of L matching-ordered subsets (S′1,S
′
2), where

S′1 ⊂ S1 and S′2 ⊂ S2 and a set of fused points F = {fl ≡ pl(k + 1|k + 1)} with
l = 1, 2, 3, . . . , L. As a global matching validation we apply ransac to the matched
subsets in order to determine the two rigid transformations [2] that relate with the
smallest error each of them to the corrected point set, Eq. 3.11

RANSAC(Σ2
i =

∑
s∈S′

i,f∈F

‖f − (Ris+ Ti)‖2) (3.11)

for i = 1, 2.
The application of these rigid transformations to the entire blob sets S1,S2, can also
be considered as a blob state update propagation in a static environment since they
modify spatially the blob data points to the current state.

3.4.3 Object Maintenance

The object maintenance at the geometric layer is based on the degree of credibility
or confidence value (CV) assigned to each point during the fusion process, i.e., a value
that corresponds to the existence of each point. Within the re-projection process
we can state whether a certain re-projected data point is inside the current camera
scope or screen, and with its depth we can also infer whether it is visible or not. This
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leads to the next analysis based on the current observed point pi(k + 1), or pcurr
for simplicity, at time k + 1. Similar analysis would result based on the predicted
point pj(k + 1|k), here ppred, i.e., a point captured at time k and re-projected at
k + 1. Fig. 3.16 illustrates this analysis.
pcurr is visible and . . .

• it has to be visible, i.e. there exists a corresponding, previous point ppred
predicting the existence of pcurr to be matched. This constitutes a matching .
The confidence value of the fused point is increased.

• it has not to be visible, i.e. there is not a corresponding predicting point: ppred
is occluded or out of scope. pcurr might be either a new or a noisy point. This
is an unpredicted observation . The confidence value of pcurr is initialized.

pcurr is not visible and . . .

• it has to be visible, i.e. there is a corresponding prediction ppred anticipating
the point pcurr at this camera pose: pj(k) was probably a noisy point or outlier.
This is an unobserved prediction . The confidence value of the predicting,
previous point ppred is decreased.

• it has not to be visible. This affects to the rest of the points in- or outside the
scope. Their confidence values remain the same.

In general, cv update of data or features is based on the number of times an observed
feature is supported so(k) or unsupported uo(k) up through time k; this same pro-
cedure applied at blob/object level will be the base for an object-removal/addition
detection (surprise detection); with learning α and forgetting β rates the rule to
cv updating can be implemented as: CV i(k) = 1− e−(soi(k)/α−uoi(k)/β), as proposed
in [64].
Experimental evaluations and results corresponding to the implementations and
approaches presented in this section are shown in Chap. 5.
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Figure 3.16: The four cases of cv assignment. First row illustrates a matching
of pixels/points: a) the matching points are encircled in both camera screens, b)
their corresponding cv values are increased. Second row presents an unpredicted
observation: c) a point is captured at time k+ 1 but not in at k, d) the cv of the
new (valid/noisy) point is initialized. Third row shows an unobserved prediction:
e) the captured point at time k predicts a point inside the camera screen at time
k+ 1, f) the cv of the point is decreased. The last row shows an example of a noisy
point captured at time k but not at k + 1 and whose cv will be hence decreased.

47



Chapter 3. The Geometric Layer

3.5 Foreground Motion: Non-Static Environments

Besides the structural aspects like the fusion and completion of 3D bodies at the
geometric layer additional mechanisms of perception like navigation and mapping
can be added at this level to better support potential and higher agents of perception.
The analysis of dynamic changes provides us with more information about the spatio-
temporal relations and behaviors of the structures inside the scene. This analysis
can be also in turn performed at different levels of abstraction. Structures can
start moving or being moved at different times, for different periods of time and
at different speed rates; At the geometric level the analysis of motion can range
from the perception of the initial and final poses of objects that might have been
moved outside the sensor observation periods, to the uninterrupted observation of
the object motions inside the sensing scope; for the former case we can estimate the
motion parameters or pose modification between those only two observed states, for
the latter we can follow the motion evolution over time with help of visual tracking
mechanisms, with which we could obtain in general a short-lived prediction horizon
of object states in the length of seconds.

In the previous section we assume the pose transformation between consecutive
camera spots (e.g., for 3D object completion) was given by an external tool while
the objects were kept in their places, static. In this section we work on non-static
environments i.e., changes in the scene occur outside the sensor scope, see Fig. 3.17.
Under these circumstances the system is then demanded to cope not only with the
inherent noise of the sensory data but also with potential feature mismatchings
generated by dynamic factors. As a supporting component to the framework we
describe in this section the visual estimation of the camera motion (ego-motion) as
well as the estimation of independent motion parameters corresponding to individual
objects moved in non-static scenes. This mapping update can be a supportive feature
of awareness for assistant or surveillance perception systems that supervise confined
and relatively well-known indoor environments. Next, we first organize and present
the data we are working with for this task, then we illustrate the ego- and object-
motion estimation.

(a) (b) (c)

Figure 3.17: Exemplary non-static scene for visual estimation of independent fore-
ground motions. a) 2D rgb image of the scene, b) supporting plane is detected and
tentative objects are clustered and mapped, c) an object was moved and the change
of its blob pose is detected, its mapped and current poses are linked through the
matching features.
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3.5.1 Motion Detection

At time k a set of N 3D points S(k) = {pn, Pn} is taken from the sensor devices,
being pn ∈ <3 the measured, mean point value and Pn its z-spatial uncertainty.
After segmentation of S(k), we define our map M(k) = {Bi(k)} as a set of blobs
Bi(k) = {pj, Pj, γj}, where each blob point is assigned a confidence value γj, as
described in Sec.3.4.3.
We also employ a set of 2D image features I(k) = {uf , vf}. These features are
detected by the Speed-Up Robust Features (SURF) detector [5] with each of these
having a corresponding 3D feature point in the set f(k) = (pf , Pf ) related by H :
(uf , vf ) 7→ (pf , Pf ), where H is a mapping function from pixel to 3D coordinates.
At pose (k + 1) new blob and feature sets [{Bj(k + 1)}, f(k + 1)] from sensory
data [S(k + 1), I(k + 1)] are determined and a set of L 2D-feature correspondences
C2D = (I1, I2) is established, where I1 ⊆ I(k) and I2 ⊆ I(k+1); Their corresponding
set of 3D matching points C3D = (F1,F2) is also determined from C2D by means
of the mapping function H. Fig. 3.18 presents an example of independent motion
detection by 2D feature detection and matching when camera and objects are moved.
Although the matching lines seem to be generated by a same single motion the longer
lines of the mid object suggest the effect of an extra motion component.

(a) (b)

Figure 3.18: Example of 2D detection of independent motions in non-static scenes.
a) First set of detected features I(k): features with valid 3D points are presented
by red circles, with invalid 3D values in green and areas with no-depth values in
cyan. b) Valid 2D feature matches C2D = (I1I2): the closest object to the camera in
(a) was moved backward while the sensor was moved forward; Although sensor and
object moved in the same direction we can observe that the lengths of the matching
lines differentiate each motion: while the objects on the sides (and some objects
behind) support the camera motion, the longer matching lines of the mid object
characterizes its only independent motion.

3.5.2 Ego-Motion Estimation

Assuming a static scene only with camera motion, all lines of matching features
would ideally correspond to this single motion and they would converge to one
specific point, the epipole, which is the projection of the camera center of the previous
pose onto the current camera screen. Unlike a homography computation between
two images of a planar surface or two images involving a pure rotation due to
the spatial structure given by the corresponding 3D points of the 2D matching
features we can estimate a rigid transformation; like previously applied, we find a
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rotation matrix and a translation vector [egoR, egot] in this case, involving only the
3D feature points of the whole scene (back- and foreground) {C3D} that minimizes
a cost function in Eq. 3.12.

Σ2 =
L∑
l=1

‖p2,l − (egoR · p1,l + egot)‖ (3.12)

with p1,l ∈ f1,l and p2,l ∈ f2,l. Essentially due to noisy sensor readings or feature
mismatches not all 3D lines of matched features in {C3D} support the minimization
in Eq. 3.12. We discriminate under a ransac scoring scheme the matching features
that support the camera ego-motion (i.e., the inliers), and the matches caused by
independent flow of motions (i.e., the outliers). We find a proper subset of matched
features (F′1,F

′
2) that is geometrically consistent with the motion of the cameras; we

define the transformation hypothesis (hypR, hypt) with the largest amount of scores
as the one which gives this set of inliers. The scoring is based on the similarity of
the matching points:

p′1,j = hypR · p1,j + hypt (3.13a)

with

vjj = p2,j − p′1,j (3.13b)

χ2
j = vjjS

−1
j vTjj < χ2

α (3.13c)

and

Sj = P1,j + P2,j (3.13d)

where (p1,l, P1,l) ∈ F1 and (p2,l, P2,l) ∈ F2. We use the set of matched points
that fulfill the Mahalanobis metric χ2 of Eq. 3.13c to minimize the sum of squared
residuals Σ2 of Eq. 3.12 and to obtain the transformation from pose k to pose (k+1)
corresponding to the ego-motion of the cameras. The matched pairs that do not
fulfill Eq. 3.13c constitute the group of outliers. In Fig. 3.19a the set of flow inliers
supporting the ego-motion is shown.

3.5.3 Independent Object Estimation

We profit from the fact that not all information classified as outlier is derived from
noisy or mismatched data, and that this information gives in turn new patterns
indicating independent events inside the scene. At this stage we can distinguish
three types of outlier flows: generated by noisy 3D points, generated by mismatched
features and the ones generated by independent object motions. In order to detect
these last good matches for each independent motion we inspect the spatial con-
nections that each matching flow provides between the mapped and newly captured
blobs. Detecting that some outlier features in F1 and their correspondences in F2

belong to some blobs at time k and (k + 1) respectively, i.e., {(f1,l)i} ∈ Bm(k) and
{(f2,l)i} ∈ Bn(k + 1), we could infer that blob Bm(k) was moved to blob Bn(k + 1)
and compute its motion parameters [nR, nt] by following the same procedure for
the ego-motion estimation but now with a reduced set of I outliers {(f1,l), (f2,l)}i.
Fig. 3.19b shows the subset of outliers from the set of matches shown in Fig. 3.18
that indicates the motion of the object; this first motion estimate can be refined
with Eq.3.12 now taking into consideration all the blob points; the Iterative Closest
Point (ICP) procedure [7] can be also applied for the refinement.
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(a) (b)

Figure 3.19: Exemplary scene for feature-matched flows of inliers and outliers for
camera ego- and object motion estimates. a) Flow of matching inliers supporting
the ego-motion of the sensor, b) flow of matching outliers indicating the motion of
the object.

3.6 Foreground Actor Tracking: Dynamic Envi-

ronments

We understand as foreground actors those active or dynamic 3D structures in the
scene that are able to move or to generate motion in other scene structures; seg-
mented 3D blobs as tentative object candidates are the palpable choice to repre-
sent potential foreground actors. In order to identify these potential objects in
the scene, object recognition and detection can be supported and achieved in our
framework by the addition of external applications, like OpenCV feature matching
modules (Fig. 3.20a), You-Only-Look-Once approach (YOLO) [93] (Fig. 3.20b) or
other available, public libraries. In general, the output of these approaches are 2D-
image information like feature-matching locations or 2D bounding boxes, as shown
in Fig. 3.20; this information can be complemented with the 3D-scene information,
e.g., locations or dimensions, of the 3D segmented blobs for a more precise modeling
world.

Dynamic behavior of foreground actors can be analyzed and characterized in a higher
level of perception by their motions observed and registered by visual tracking mech-
anisms at the geometric layer; these visual-tracking tools are extensively studied,
researched and applied in the robotics and computer vision fields. Visual trackers
allow to predict and correct over time the state of target or targets in despite of
relative motion between the tracking device (camera) and the target(s), occlusions,
image blur, jitter, changes of illumination, etc; currently a huge variety of tracking
methods have been developed to adapt and better cover an equal huge variety of
applications [84] [65] [105] [29] [57].

3.6.1 Visual Object Tracking

Object tracking is performed by utilizing visual salient, distinctive features or at-
tributes of interest of the target objects; these features can be shape, contour, col-
ors, texture, pattern of edges, etc. Fig. 3.21 and Fig. 3.22 show two object tracking
implementations based on 3D object models and object appearance, respectively.
Fig. 3.21a shows the outputs of a contour tracker in which the 3D model of a plane
square is fit to the output of an image edge detector [23] [24] [1] in three different
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(a)

(b)

Figure 3.20: Images of OpenCV and YoLo object detection. a) OpenCV flann-
based matcher for object recognition: most of the 2D sift-features detected on the
object model (left) are rightly matched to the object in the scene (middle) and whose
pose is different to the model’s (see right image). b) yolo outputs (bounding boxes
and probabilities) in three different scenes for object recognition.

situations; Fig. 3.21b shows a more complex contour model based on BSplines [4] to
fit a person’s head-and-shoulders silhouette [53]. Fig. 3.22a shows a Particle Filter
(PF) tracker [61] [88] based on the color histogram of a coffee box, and in Fig. 3.22c
we can see the same pf tracker acting on a person’s face [86] [32]. Fig. 3.22b shows
the model templates for these examples.
In order for some objects to interact with the environment, or rather, to fulfill their
functionalities they are required to (be) move(d); in many situations, however, a
person’s hand covers total- or partially the object it handles, and makes in turn,
the visual tracking of the object difficult to succeed; One benefit of this, however, is
that once the hand grasps an object its shape does not change abruptly, which might
allow to keep a simpler 2/3D model representation of it rather than keeping a more
complex model for each grasped object. Since in this work we are not interested
in hand gesture recognition nor finger position detection, either, we refer to the
foreground actor as the person’s hand grasping and manipulating objects, whose
model can be represented as a round-ish blob surface. In this way, by knowing
the object (hence, its functionalities) along with the the manipulation motions such
object undergoes we can analyze the fore- and background interactions in the scene.
Next, we present the two main approaches we follow to detect and track a person’s
hand in the framework: by detection/Kalman Filter and by Openpose Skeleton.

3.6.2 Hand Tracking: by Detection and Kalman Filter

In this procedure the 3D segmentation of the hand is manually initialized by enclos-
ing the area where it lies on the 2D image and its corresponding 3D hand blob is
segmented by the process at the 3D image; after this first step, the 3D hand blob is
detected by the visual tracker and segmented at each 2/3D image frame. Starting
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(a) (b)

Figure 3.21: Visual 3D model-based object tracking: 3D plane square and BSpline-
based contour. a) a 3D model of a plane square (red) is fit to the outputs of an
image edge detector (right, dark images) in different scene situations (in motion,
occlusions); b) a BSpline-based contour of a person’s head and shoulders is fit to a
person’s head-and-shoulders silhouette. The short white lines around the contour
models are locally perpendicular to the models at their respective crossing points
and represent the feature searching path of that contour point over the image.

from a pixel-point (px-pt) seed we employ this time the Breadth-First Search (BFS)
algorithm [18] (Sec. 3.2.2) to connect 2D neighbor pixels under 3D conditions, i.e.,
each pixel must have a valid depth value and the 3D distance between neighbor px-
pts must be less than a fixed threshold. Tracking by detection is a common and a
simple tracking method that consists in searching and detecting either globally, i.e.,
over the whole current image frame, the salient features of interest and matching
them with the ones detected in the previous image frame; or searching for these
visual entities locally, this is, only in a confined image region close to the previ-
ously detected features. Fig. 3.23 shows a sequence of hand tracking by detection;
the hand blob in the current frame is searched locally inside a 3D encapsulation
sphere around the previously detected hand blob centroid. A 3D Kalman Filter
(KF) [55][121] with added white-noise acceleration model was also implemented and
employed as a visual tracker. kf, with its variants, are mathematical procedures
extensively used in data fusion processes; their prediction-correction scheme allows
them to be employed as general trackers; For this, it is required to know the pre-
vious state of the target, the target state uncertainty and the current target state
measurement along with its associated measurement uncertainty. As example, we
applied the kf tracker to a eating-with-a-fork sequence and show in Fig. 3.24 the
different hand trajectories that can be generated by this tracker.

3.6.3 Hand Tracking: by Skeleton Detection

An alternative, supporting approach for the hand-blob detection and tracking in the
framework is the integration of the OpenPose1 body skeleton detection [14][104][15][120],
as shown in Fig.3.25a. The OpenPose implementation allows the detection of hu-
man body skeletons in 2D as well as in 3D images; Additionally, the available c++
OpenPose library also offers the detection of faces and hand poses (see Fig 3.25b).

1http://www.openpose.x
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(a) (b) (c)

Figure 3.22: Visual appearance-based object tracking: Particle Filter (PF). a) shows
the pf tracking a box front cover under temporal partial and total occlusion con-
ditions, c) shows the pf tracking a person’s face, b) shows the model templates for
these examples. The white rectangles represent the tracker particles, i.e., tentative
target states; the green rectangle is the output of the pf, the average of all probable
states.

Figure 3.23: Hand tracking by detection. The left-most image shows the 3D seg-
mented hand (blue) at the beginning of the eating-with-a-fork sequence, the rest
of the images show the tracking-by-detection encapsulation sphere and the resulted
segmented hand at different sequence frames.

Fig.3.25c shows the OpenPose integration in the framework for face, fingers and
body parts in some task scenes. The implementation of all these additional features
in our framework not only slows down the detection from frame to frame but they
all are also not required at this stage for our manipulation modeling (Sec.4.2); In
order to spot only the hand blob positions we augment the 25-key points skeleton
frame (Fig.3.25a) by extending both arms at the wrist sides by a fixed percentage
of the corresponding detected forearm length. In Fig.3.26a we can observe these
additional 2D key points and in Fig.3.26b their corresponding 3D locations. Al-
though a reliable hand-blob detection is obtained in this way, a latent drawback is
that a stable skeleton detection is also required; In many cases, to get an entire and
individual body detection OpenPose requires most of the person body to be visible,
otherwise body fragments are detected and might be assigned to different person
bodies; Fig.3.27 shows some of these cases.

3.6.4 Optical-Flow Estimation

In addition to the translational hand motion registered by the tracking tools we
also aim to perceive cues of rotational movements of the hand. This is obtained by
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(a) (b) (c) (d)

Figure 3.24: Hand tracking by Kalman Filter (KF): 3D kf tracker applied to the
sequence eating-with-a-fork. a) path of measured hand blob centroids, b) path of
kf predicted spots, c) path of kf corrected centroid spots and d) all paths of the
sequence.

(a) (b) (c)

Figure 3.25: OpenPose (OP) key points and detection of body-skeleton, fingers and
face. a) op 25-key points skeleton, b) op key points of hands and faces, c) op
skeleton, finger and face detection into the framework in some task scenes.

estimating the optical flow (OF) inside segmented hand areas between consecutive
image frames. On one side the approach presented in [71] is extensively referenced
and applied for the estimation of sparse optical flow; this method requires first
the detection of salient visual features to be matched between consecutive frames;
on the other hand approaches for a dense optical flow estimation have been also
proposed [49] [31]. The main difference between these methods is that the former
looks for a coordinate frame transformation between two images with help of the
matching of salient features, whereas the latter refers to a vector field over two
consecutive images in which every image pixel contributes to the estimation. For
the scene in Fig. 3.28a, we present the sparse of in Fig. 3.28b and dense of in
Fig. 3.28c. Considering that the hand covers in general a small area inside the
visual environment and consequently it does not offer a large body surface for a
sparse optical flow estimate we employ the Farnebäck method for a dense optical
flow. In Fig. 3.29 we present some scenes of tracking and optical flow detection on
a segmented hand, a manipulated object and a freely-hanging toy.
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(a) (b)

Figure 3.26: Augmented op skeleton of hand-blob key points. a) Augmented hand-
blob key points by extending the arms at the wrist sides in 2D images, the hand
key points are marked with blue points inside yellow circles, b) the corresponding
3D spots of the 2D hand-blob key points are marked in the 3D images.

Figure 3.27: Examples of op fragmented and failed detections under partial body
visibility in some 2D scenes.

(a) (b) (c)

Figure 3.28: Sparse and dense optical flow (OF) examples: a) Image scene of a rover
as it started moving, b) sparse of of detected salient features, c) shows (left) the
point grid over the image for dense of estimation, (middle) of vectors (blue lines)
indicate the motion of the rover, (right) the motion of a car covering a few pixels in
the image background is also perceived.
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(a) (b) (c)

Figure 3.29: Exemplary scenes of object tracking paths and optical flow detections
on: a) a hand (purple) manipulating a fork, b) an object, c) a hanging toy moving
freely (left) 2D of, (right) 3D segmentation and path.
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Overview

How high the level of abstraction or understanding about a scene is demanded de-
pends partially on the planned and required strategies of interaction; In our frame-
work these comprise to identify what information we want to extract from the scene
and how we want to utilize it. In this chapter we present the procedures and methods
with which the geometric data recollected and organized at the geometrical layer is
further analyzed and utilized. First we introduce the structure of the abstraction
layer, how it is organized, and describe related concepts and components, then we
present three different scenarios in which the subtracted 3D blobs acquire differ-
ent meanings and hence properties and functions; In the first scenario we focus on
the doer of manipulation tasks, i.e., a person’s hand, and for which we expand our
framework by developing a plugin: Dynamic Model of Object Manipulation that al-
lows us to characterize and model the manipulation motions applied to objects with
different functionalities as well as to help to distinguish similar actions executed
with different objects. The second scenario is an outdoor scene where we employ
our framework to support an autonomous parking procedure of the highly maneu-
verable vehicle RoMo (Robo Mobil); the detected blobs acquire another different
meaning, namely, as vehicles; The strategy in this case is to obtain the relevant,
spatial scene information like the size of neighbor vehicles, localization and size of
the parking lot in order to estimate RoMo’s rotation spot and the amount of rotation
as well to avoid collisions or scratches during its crab (sideways) parking maneuver
as it enters to the parking box. In the third application, like in the first one, we
consider a situation where the behavior (motions) of objects in the scene are more
relevant than obtaining accurate 3D models of them; we analyze again the blobs as
active elements, as pedestrians, and estimate their 2D path prediction around the
RoMo.
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4.1. Semantic Structure

4.1 Semantic Structure

Complex environments expose multiple parallel actions happening in different parts
of the scene. Perception agents acting in the scene try to model the dynamic changes,
which allows them to predict future state transitions and reduces the required fre-
quency in which the actions need to be verified. Depending on the level of the
abstraction, the prediction horizons may vary from a few seconds for primitive
motion trajectories, over multiple seconds for basic actions, like screw tightening, all
the way to multiple minutes in case that the system can recognize the current process
being executed in some part of the environment. The dynamic environment model
presented in [90] (also Chap. 3) provides different abstraction modalities and a-priori
descriptors that can be used by dynamically configurable plugins, like navigation,
object recognition, action labeling modules, etc. In Fig. 4.1 we present our abstrac-
tion layer constituted of two fundamental components: Knowledge Container and
Atlas, along with an external agent of perception or plugin. The Knowledge Con-
tainer and the Atlas are the interface between the geometric layer, represented by
the dynamic 3D model of the scene, and the external, specialized plugins of different
abstraction modalities like for object recognition, object transportation modelling,
etc. For example, the action labeling presented in [16] characterized pure trans-
portation actions that were segmented by changes in the contact relation between
the manipulator and the object in the scene. The plugin extension presented below
works on the Location Areas (Sec. 3.3) which are regions in the scene where main
actions or activities occur other than pure transportation motions like fore- and
back-ground actor interactions, manipulation of objects, etc. The plugin described
in Sec. 4.2 utilizes the observed motion path associated with the dynamics of fore-
ground objects to model and represent interactions related with certain background
regions in the scene.

Physics

Motions

Locations

Knowledge
Containers

Atlas

Transportation

Action Labelling

Object Recognition

Agents

Imagery Data

Dynamic 3D Model

Figure 4.1: Fundamental components in the semantic structure: Knowledge Con-
tainer and Atlas, plus pluggable extensions agents of perceptions or plugins com-
prise the layer of perception in our framework. Plugins with different abstraction
modalities act on different aspects of the scene.
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Chapter 4. The Abstraction Layer

4.1.1 Knowledge Container, Atlas and Object Representa-
tion

These elements are the interface that store and organize the information extracted
from the geometric layer and keep it available to agents of perception for further
processing. The Knowledge Container (KC) collects the local information ob-
served in the current scene and organizes it in three areas: physics, motions and
locations. Physics is related with the physical properties of the foreground struc-
tures; motions stores the observed trajectories described by dynamic elements of
the scene and locations, which is essentially the location areas defined in the scene
background and that are related with objects’ states and functions. The Atlas is
our global database that contains common, generic data of the world; this repre-
sents a source of a-priori knowledge previously learned by experience (observation
or interaction) in other scenarios. Global information stored in the Atlas can be
attached to the current scene actors to enrich and complement the local information
recollected in the Knowledge Container, and vice versa.

(a)

Object

〈Hammer〉



Physics



Shape:

Appearance:

Weight:

Mass:

Center of gravity:

Grasping Points:

...

Functionalities


〈Hitting〉

〈Pulling out〉

...
〈Function n〉

(b)

Figure 4.2: a) Object Container as abstraction of 3D-blob structure (Sec.3.2.4)
is organized under the b) Object Representation; it contains two attributes for a
foreground object: physics and functionalities.

As mentioned in Sec 3.2.4 the Object Container (see Fig. 4.2) is the enhancement
of the 3D blob structure, whose geometric data is augmented with semantic, con-
textual information; Consequently the Object Representation we employed as
a storage unit in the framework is depicted in Fig. 4.2. The first object attribute
physics, comprises all the physically measurable characteristics like dimensions,
color, texture, weight, etc; as well as the set of physics properties that are proba-
bly not directly perceptible or considered at first sight like center of mass, grasping
points, parametric descriptions, etc; The second attribute functionalities, refers to
the operational part of the object, whose principal objective is to satisfy a human
demand: the main reason the object was made for.
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4.1.2 Prediction Horizons

The visual tracking scheme of state prediction and correction presented on the geo-
metric layer (Chap.3) is based on a dynamic model that is required to give plausible
indications about a future state of a target; depending also on the nature of the
observed phenomenon the predicted state normally vary from fractions to few sec-
onds ahead of the current state. To extend this prediction horizon from a geometric
level to multiple seconds in a higher level of awareness the agent has to be able to
discern the feature(s) or pattern(s) that characterizes the main goal or objective of
such event (action/activity in our case) from the short or sudden states that might
belong to the natural development of the action but that also correspond to imme-
diate, spontaneous alterations, or permanent adjustments that are irrelevant to the
completion of the task. We illustrate this with the two examples shown in Fig. 4.3.
The top-row images show a scene where a child starts walking from the right with
the goal to reach the offered toy at the left side of the image (Fig. 4.3a); on his
way the child suddenly turns back to his left to receive an object (Fig. 4.3b) and
then continues to reach his original goal describing the path shown in Fig. 4.3c. As
shown in Fig. 4.3d the application of a 1st-order estimator predicts and fits (red
line) the actual path (cyan points) from the start to the goal, thereby neglecting the
turn and other disturbances in this approach. A more complex action like writing
on a whiteboard (WB) is shown on the lower-row images. Some words are started
to be written in Fig. 4.3e until a change of row is done (Fig. 4.3f). The trace of the
hand motions projected onto the interacting background surface (wb) in Fig. 4.3g,
could be also modeled by a 1st-order or higher estimator, which in either case it
would not describe or exhibit the main purpose of the motions, the action of writ-
ing. In order to recognize a certain action a higher-perceptive agent might collect
more information like the objects in use (wb, pen, knife, etc.), the locations where
the action takes place along with the analysis of the observed motions to find the
distinctive features that characterize such action. Our proposed agent decomposes
the projected xy-pattern on the wb into three elements: the evolution of the pro-
jected x- and y- motion components and the hand’s distance-to-wb vs No.frame
respectively. In Fig. 4.3h we can observe how the projected x-motion component
(red plot) indicates with the ascent of the slope the progress and speed of the writing
along the row, which in the end drops corresponding to the returning of the hand
to start a new row; in the middle graph we can associate the size variations of the
projected y-motions (green plot) to the size of the written letters, i.e., to the long
of the hand strokes; the blue plot corresponds to the hand distance to the plane,
we can observe that during the writing the hand stays continually close to the wb
except during the gap or space between the two written words, which is marked by
the high peak of the plot; Additionally we could also infer from this separation the
long of the words, being the first shorter than the second one in this case.
In the next section we propose an extension for our presented dynamic 3D model
(Chap. 3) that allows a hierarchical labeling of continuous interactions in scenes.
While most systems focus on labels for pure transportation tasks, we show how
Atlas information attached to objects identified in the scene can be used to label
not only transportation tasks but also physical interactions, like writing, erasing
a board, tightening a screw etc. We analyse the dynamic motion observed by a
camera system at different abstraction levels ranging from simple motion primitives,
over single physical actions to complete processes. The associated observation time
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(a) (b)
(c) (d)

(e) (f)
(g)

(h)

Figure 4.3: Prediction horizons in two different scenes. Upper-row scene: a) a child
walks from the right to get a toy at the left side of the image, b) the child turns back
to the right to receive another object and then continues his original walk, c) shows
the actual path of the child projected on the floor, d) a 1st-order estimator (red
line) tracks and fits the actual path (cyan points) and indicates the main goal of the
action ignoring the child’s sudden turn and other disturbances. Lower-row scene:
e) some words are starting to be written on a wb, f) two words were written and a
change to a new row is done, g) shows the projected pattern of the hand motions
on the wb, h) our plugin decomposes the projected pattern in x- and y- motion
components and the hand’s distance to wb (red, green and blue plots respectively).

horizons can range from single turning motion on the screws tightened during a task
over the process of inserting screws to the entire process of building a device. The
complexity and the time horizon for possible predictions about actions in the scene
increase with the abstraction level. Next we present the extension at the example
of typical tasks observed by a camera, like writing and erasing a whiteboard.

4.2 Dynamic Model for Manipulations

Under the principle that the function of an object is meant to be its form, and
hence its function determines its shape, one can state that those two attributes are
complementary since by knowing complete- or partially one of them we can infer or
confirm the other. There are many scenarios, however, in which we know in advance
the object but we do not posses the specific information about how such object is
intended to be used or handled. It becomes then necessary to disambiguate the
possible object functionalities by observing and reasoning about the manipulation
motions the object undergoes. In this context we can detect three factors that
might help to the identification of actions: what object in use is, how the handling
or manipulation is performed and where the action takes place, in descending order
of influence. Just by observing a certain object a person recalls a catalogue of a-
prior functions or states the object can perform and undergo; all these functions and
states, however, might not be active concurrently but detached in time or space. It
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is until we observe how the object is employed that we start setting apart the set
of functionalities, see Fig. 4.4. Endowing an artificial perception system with such
interpretation skill will allow him to take a more active role in areas like human-robot
collaboration, elderly-persons monitoring or in security surveillance systems, where
the system will be required to identify the task in progress and properly assist it, to
supervise the proper use of detected objects, to learn new object functionalities, or
to transfer functionalities to unknown but geometrically similar objects.

(a) (b)

Figure 4.4: Examples of an object with two different functionalities (manipulations)
and two objects with similar manipulations (but different actions). a) the same
object, a screwdriver, is used with different purposes, for tightening (up) and for
poking (down); although the 3D paths of the hand manipulations (at their sides)
look different from each other no dominant feature or pattern can be identified at
this point to characterize each action out of the chaotic traces. b) Eating (with a
fork - up) and drinking (with a glass - down) are similar actions since they describe
almost identical 3D traces from table to person’s face back and forth. We can also
observe in the images that small or thin objects are almost not perceptible by the
sensor; in some cases they are covered totally by the hand.

4.2.1 Action and Activity

In colloquial language we can find the use of both words without any critical dis-
tinction, like cooking, driving, eating, etc; In this area, however, it is common to
encounter and advisable to distinguish terms like activity, task, action or atomic ac-
tion. Atomic Action: also called stroke or gesture, they generally describe fast, short,
instantaneous and continuous motion displacements, e.g., a hand twist or lifting an
arm, etc. Action or Task: it is composed by an ordered sequence of atomic actions,
e.g., drinking, writing, etc; normally a single action is associated with a single ob-
ject. Activity: is an (un-) ordered series of actions that are executed to achieve a
main goal, e.g., cooking, driving, etc; an activity is commonly associated with the
use of multiple objects since it consists of more than one action. In this manner we
can now differentiate that cooking as activity implies the whole process of preparing
a meal: chopping, stirring, salting, etc; driving : turning the steering wheel, shifting
the gear stick, etc; eating : drinking, sipping, chewing, etc. Additionally, activities
can be expressed without any object, giving a generic meaning like waiting, writing,
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cleaning, etc; whereas actions can be expressed with objects, giving a more interact-
ing context e.g., cleaning with a rag the board, writing with a pen over the table, etc;
In this work we focus on the latter where, for example, eating as an action will only
imply the use of a either spoon or fork to take food from the table to the mouth.

4.2.2 Plugin Scheme

We propose a new method to characterize and model human-object actions based
on the observation of the manipulation motions the object undergoes during the
interaction. Our method extracts the temporal and cumulative translational manip-
ulation motions and relate them via a geometrical projection with the immediate
background, i.e., an interaction plane, which results in a fingerprint of the action
(e.g., see Fig. 4.3g). With this linked fore-and-background pattern the key motion
primitives that are related with the object functionality are correlated upon the
background and decomposed in a new set of distinctive manipulation motion pro-
files as shown in Fig. 4.3h; simultaneously, angular motions of the person’s hand,
the active element generating motion, are also kept tracked by means of a dense
optical flow estimation (Sec. 3.6.4). Besides the geometry completion (Sec. 3.4), the
additional information about functionalities attached to foreground actors can be
gained by the utilization of object detectors (Sec. 3.6) and Atlas (Sec. 4.1.1). The
obtained results in our model show that our approach is able to disambiguate the
functionalities of the same object as well as to differentiate similar actions executed
with different objects (Fig. 4.4); This allows to boost the set of observed motions to
a higher level of understanding, namely as a task or action. A scheme of the agent
coupled to the framework is shown in Fig. 4.5.

The information pipeline starts with the reception of 2/3D imagery data from the
sensor Kinect-1 R©, the foreground actor and interacting background structure are
defined, and the motion evolution of the hand (the principal active element in the
scene) is observed and registered; All this information that belongs to the current,
local environment is collected by the Knowledge Containers and linked with the
Atlas. The current extension takes the required information from these elements;
it projects the captured motion onto the background plane to obtain the pattern
of the manipulation i.e., the fingerprint of the action, and encapsulates it to finally
decompose it into a new set of motion components.

4.2.3 Fore- and Background Interaction Actors

We understand as foreground those active, dynamic 3D structures in the scene that
are able to move or generate motion in other structures; in this plugin we refer in
particular to the person’s hand grasping and manipulating objects. Many objects
are designed to be handled by one hand, therefore they are partial or totally covered
once they are grasped; however, the shape of a hand holding an object does not
change abruptly and its shape is simpler to model than rather to keep a complex
3D model of an object for segmentation and tracking.

The 3D segmentation of the hand is initialized by OpenPose detection of the hand or
by manually defining the area where the hand lies in the 2D image (Sec. 3.6.3), after
that the 3D hand blob is detected by OpenPose or a visual tracker and segmented at
each image frame. Starting from a pixel-point (px-pt) seed we employ the Breadth-
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Figure 4.5: Plugin Scheme for dynamic model of object manipulations. The exten-
sion coupled to the framework’s geometric layer takes from the Knowledge Container
the required data to obtain a new set of motion profiles characterizing the object
manipulation.

First Search (bfs) algorithm [18] (Sec. 3.2.2) to connect 2D neighbor pixels under 3D
conditions, i.e., each pixel must have a valid depth value and the distance between
neighbor pixels must be less than a fixed threshold. In Fig. 4.6 fore- and background
detection and segmentation of some experimental scenes presented in Sec. 6.1 are
shown. The scene background in these scenarios is modeled as the 3D plane closest
to the manipulation action since this element serves either as a supporting structure
and the action is directly executed over it (Sec. 3.2.3).

(a) (b)

Figure 4.6: Detection and segmentation of fore- and background actors in some
experimental scenarios. a) Hitting and pulling with a hammer, b) tightening and
poking with a screwdriver. The segmented hand is highlighted in purple, the inter-
action background in green.

4.2.4 Motion Representation

To build up a path-based motion representation of the hand motions we utilize either
our augmented Openpose skeleton-hand detection or our 3D Kalman filter [55] tuned
with added white-noise acceleration model as a visual tracker to estimate the hand
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position at each frame. In addition to this translational motion we also aim to
perceive cues of rotational motions of the hand. This is obtained by estimating
the changes on the 3D optical flow direction inside segmented hand areas between
consecutive image frames. Considering that the hand covers in general a small area
inside the visual environment and consequently it does not offer a large body surface
for a sparse optical flow estimate [71] we employ the Farnebäck method [31] for a
dense optical flow. In Fig. 3.28 we can observe the difference between the sparse and
dense 2D optical flow in some examples. Fig. 4.7 shows some 3D kf path estimations
and 2D optical flow detections in some exemplary scenarios.

(a) (b) (c)

Figure 4.7: Motion representation: 3D path and rotation angles. a) shows the
obtained 3D paths (red points) of a segmented hand (eating with a fork) and a
hanging toy moving freely (both in purple); b) shows the detected optical-flow vec-
tors (white lines) of a hand (hitting with a hammer) and the hanging toy; c) Scenes
of pulling/hitting with a hammer: (up) 2D optical-flow detection over segmented
hands and (down) mapped to their corresponding 3D flow vector inliers (black) and
outliers (orange)

In order to determine the amount of angular motion exerted by the hand the detected
2D optical flow between two consecutive frames at time (k) and (k + 1) is mapped
to their corresponding 3D vectors and a coordinate frame {H} is initialized at the
segmented 3D hand centroid at frame time (k), and whose initial Hz-axis is aligned
with the normal vector of the background surface (see Fig.4.7c). The 3D flow vectors
are then projected onto the planes defined by each hand frame axis, i.e., onto the
yz-plane for the Hx-axis, onto the xz-plane for the Hy-axis and onto the xy-plane
for the Hz-axis (see Fig.4.8); the angular displacement for each axis is estimated for
each projected set:

Σ2 =
L∑
l=1

‖f(k + 1)l − (flowR · f(k)l + flow~t)‖ (4.1)

where L is the number of flow vectors, f(k)l and f(k+ 1)l are respectively the start
and ending points of the l flow vector between consecutive frames (k) and (k + 1).
We change the rotation matrix R to the axis-angle representation following [72]:

θ = ‖v‖ = arccos

(
trace(R)− 1

2

)
(4.2)
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with which we can obtain the vector representation of the motion parameters:

v̂ =
~v

‖v‖
=

1

2 sin θ
(R32 −R23,R13 −R31,R21 −R12) (4.3)

Figure 4.8: Projection of 3D of vectors onto the plane defined by Hz-axis at hand
centroid for estimation of hand rotations between two frames during ’tightening with
a screwdriver’. (From left, for each row) detected 2D of over the hand are mapped
to find their corresponding 3D vectors; two different views of the augmented plane
at hand centroid are shown; finally a close-up view of the projected 3D of vector
inliers (black) and outliers (orange) onto the plane is shown.

4.2.5 Manipulation Modelling

The motion representation we obtained until now can be described w.r.t. some
arbitrary frame e.g., camera frame {C} or world frame {W}, which in any case do
not directly expose any relation between the fore- and background interaction.
In order to extract the distinctive traits of the manipulation motions and to link them
with the background we project the translation movements of the hand centroid
onto the interaction plane and at the same time record its distance to this plane;
following [100] we apply Eq. 4.4 and Eq. 4.5:

c’ = c− (c · n̂ + d) n̂ (4.4)

where ‖n̂‖ = 1, c is the hand centroid
and c’ is its projection onto the plane,

r =
c · ~n + d

‖~n‖
(4.5)

being r the perpendicular distance from
the plane to the hand centroid, see
Fig. 4.9 and Fig.4.10.

n

c

c’

r

Figure 4.9: 3D geometric projec-
tion c′ of a point c onto a plane
defined by the normal vector ~n.

The projected motion path is next framed or encapsulated in 2D; the purpose of this
encapsulation is to set some correlation of the projected motion directly upon the
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(a) (b)

Figure 4.10: Hand centroid projections onto interaction planes. The red line in each
scene (a, b) represents the projection vector parallel to the normal plane and whose
magnitude gives the distance ′r′ between the current hand centroid position and the
plane. a) 2/3D images and hand of with projection vector of ’pouring on a fry
pan’, b) ’writing on the whiteboard’, 3D hand centroids (green) are projected (black
points) onto the board plane.

interaction background, where actually the action takes place. Such encapsulation
can be performed under the pca procedure [102, 107], in which the resulting major
and minor PCA(x, y) axes are basically determined by the distribution of the data
i.e., the scattering of the projected points; Additionally, the encapsulation axes can
be alternatively defined in advance according to a fixed scene context or feature
that might be more in direct relation with the manipulation, like the chest or face
of the person, the active arm’s axis up, etc; e.g., aligning the encapsulation x-axis to
the person’s chest axis or setting up the encapsulation y-axis parallel to the arm’s
axis; giving in this way a more semantic meaning to the encapsulation. Besides the
pca, in Fig.4.11 we show the pln encapsulation, in which the x- and y-axis of the
interaction plane are used as reference for this procedure. With the projection we
obtain a fingerprint as a characteristic pattern of the interaction, which in turn is
decomposed in its Encap(x, y) motion components to constitute along with the hand
distances (to the plane) our new set of motion profiles that characterizes the action.
In Fig. 4.12 we show some examples of the encapsulation, projected xy-pattern and
the hand motion profiles obtained during ’writing-on-a-whiteboard’ scene, and also
the distributions of measured and aggregated hand rotations obtained during the
’tightening-with-a-screwdriver’ scene.
In Chap.6 we present the results of our proposed motion modeling applied to differ-
ent manipulation scenes in where each employed object is used with two different
purposes i.e., two different functions; we also present scenes where the manipulation
motions are similar in spite of handling different objects. The model is able in each
case to characterize and distinguish each task or action.
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(a) (b) (c)

Figure 4.11: Examples of pca and pln encapsulations. a) shows as reference the
3D-rgb image of the segmented hand (purple), the motion path (red points) and
the projected path onto the table (black points), b) shows the 3D-rgb upper-view
(up) and their corresponding zoomed-in (down) images of the pln (left) and pca
(right) encapsulations. While the resulted pca encapsulation axes are determined
by the 2D scattering of the projected points, in the pln encapsulation the axes are
defined in advance to be aligned with the background plane axes; with this, the
projected motions could be geometric and semantically related with the edges of the
supporting plane, c) shows the 3D overlapped pln-pca encapsulations.

(a) (b)

Figure 4.12: Manipulation Modelling: pca encapsulation, motion and histograms
profiles of projected manipulation patterns. a) Writing on a whiteboard ”Hello Hallo
Hola” (up-left), the pca encapsulation was obtained (up-right); the xy-pattern or
fingerprint of the action along with the decomposed motion profiles are shown in the
lower row; b) Histogram profiles of hand angle rotations by-step (up) and cumulative
(down) about a plane-normal vector corresponding to the scene ’tightening with a
screwdriver’ ; more detailed analyses of these two actions are presented in Chap.6.
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4.3 Dynamic Model for Autonomous Driving

The ROboMObil (RoMo)1 (Fig.4.13a), is a driven-by-wire vehicle prototype de-
signed and built at the Center for Robotics and Mechatronics (RMC) of the Deutsches
Zentrum for Luft- und Raumfahrt (DLR) for research, development and tests of new
technological approaches in several subjects of engineering and science like Human-
Machine interaction, vehicle simulation and dynamics control, wheel slip control
and torque blending, vertical dynamics, path following control, autonomous driv-
ing, car2x communication, ergonomics. Its high maneuverability is based on the
individual high angle range and independent steering control of its four identical
wheel robots, and whose operation is regulated and coordinated by an intelligent
central unit. These features allow extended maneuvers like sideways driving, 360◦

rotations around its vertical axis or augmented zig-zag maneuvers where all four
wheels are turned and parallel aligned at once. Additionally, RoMo can be fully or
partially operated in both manual or autonomous modes.

4.3.1 Perception System

The RoMo perception system to support autonomous driving was conceptualized
from the beginning to consist exclusively in cameras adapted to the chassis structure
to cover a 360◦ view and 3D reconstruction of the surroundings. The RoMo vision
system is composed of 18 cameras in total; As shown in Fig.4.13b the relevant
camera arrangement is placed on the vehicle deck, where six stereo camera rigs are
setup: two camera pairs with overlapping visual areas are set to each side, one more
pair to cover the rear part and one more at the front; a set of three cameras aligned
horizontally were also installed on the front (below the windshield), see Fig.4.13c,
and also on the rear side (at the lower part of the back glass), see Fig. 4.13d.
Additionally, ultrasound sensors were also installed at the rear and front bumper
areas to perceive immediate close obstacles unseeable to the cameras, see Fig. 4.13d.
A top view of the areas covered by the stereo camera layout can be seen in Fig. 4.13e.

The employed cameras are of type Prosilica GC780(C) with Ethernet interface and
image resolution of 782(H) x 582(V) pixels; only the front cameras supply color
images with color digitization of 3 x 8 bit and 12 bit for the rest of monochrome
cameras. For the 3D stereo reconstruction of the point cloud the Semi Global Match-
ing (SGM) algorithm [47, 48] is applied and computed with the support of paral-
lel processing hardware like GPU’s (Graphics Processing Unit) or FPGA’s (Field-
Programmable Gate Array). The software application used in the management and
communication of the cameras as well as in the camera data distribution (data
streams) is SensorNet [8], which is a middleware software developed and maintained
at DLR for the distribution of sensor data in parallel applications.

4.3.2 Segmentation and Mapping

The segmentation and mapping previously described in this work were adapted and
applied to the data supplied by the RoMo vision system to contribute to its auton-
omy, in particular, in an autonomous parking scenario. Unlike the indoor settings

1https://www.dlr.de/sr/desktopdefault.aspx/tabid-11633/
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(a) (b)

(c) (d) (e)

Figure 4.13: The ROboMObil (RoMo). a) RoMo is a test platform vehicle designed
and built at DLR, b) location of the six stereo camera (dark squares) rigs arranged
on the vehicle deck: two stereo rigs at each side (up and down in the image), one
rig on the deck front (right in the image) and one more on the deck back (left
in the image), c) the front face shows the two front cameras on the deck and the
three additional cameras below the windshield; the light-blue areas show the visual
scope of the side cameras, d) the light-blue areas indicate the scope of the front
and back cameras on the deck, while the dark-blue areas mark the scope of the
additional cameras below the windshield and at rear side; the yellow curves indicate
the ultrasound sensors installed at the bumper areas. e) shows the general top view
of the areas covered by the stereo cameras, i.e., areas of 3D stereo reconstruction.

presented in this work so far we are now dealing with an outdoor parking scenario
where the average size of the objects are now potentially much larger; therefore,
we are not interested in obtaining refined, precise or complete 3D reconstructions
of segmented 3D blobs but rather in guesstimating their coarse occupancy geome-
tries and behaviors (dynamics) since these factors affect and interfere more direct
and drastically the autonomy strategies of the vehicle; e.g., occupancy is more rele-
vant in a parking scene and blob behaviors are more relevant in obstacle avoidance
maneuvers. As shown in Fig. 4.14 we firstly collect and align the individual 3D
reconstruction of each stereo rig to obtain a single 360◦ rigid point cloud and break
it down into a set of segmented entities that might represent individual objects in
the world; the benefits of the segmentation in this application are, first to obtain a
gross impression on how the immediate surroundings is structured; second, each seg-
mented entity might have its own semantic meaning i.e., own functions and behavior.
Additionally, for each 360◦ reconstructed 3D cloud we assume a flat terrain that is
perpendicular to the RoMo’s vertical axis and whose 3D points lying in this plane
or below are removed from the segmentation; we found the proximity connections of
the remaining 3D points by means of the dfs algorithm (Sec. 3.2.2) to cluster each
point with its closest neighbors; each segmented 3D blob is then encapsulated into
a box whose dimensions are determined by the pca method (Sec. 3.2.4). The final
outcome is a set of encapsulated 3D blobs representing potential active actors as
shown in Fig. 4.14b, and whose dimensions and poses have been already determined
and registered. The potential functions and behaviors of each segmented blob can
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be inferred by means of additional routines or applications for object recognition
and detection (furniture, cars, traffic signs, etc.), as presented in Sec. 3.6.

(a) (b)

Figure 4.14: 360◦ stereo reconstruction and 3D segmentation around RoMo. a)
shows the 360◦ collated stereo reconstruction around RoMo , the lower image shows
a color-coded distance rendering of the point cloud (red points are closer), b) sets
of encapsulated blobs.

4.3.3 Autonomous Parking Maneuver

In order to show the RoMo maneuverability the parking scenario shown in Fig. 4.15
was set. The images in Fig. 4.15a from top to bottom show the 2D image, the
3D reconstruction and 3D blob segmentation rendering of the parking scene cap-
tured from the RoMo front camera; The images in Fig. 4.15b illustrate the three
autonomous parking stages, from top: the approaching step, where RoMo moves
forward to a estimated spot outside the parking box (yellow arrow and circle in
Fig. 4.15a-bottom) and centered between the two other parked cars; in the second
stage RoMo turns around the reached point in order to be parallel aligned with the
neighbor cars (blue turning arrow in Fig. 4.15a-bottom); in the last step, Fig. 4.15b-
bottom, RoMo drives sideways into the parking box. More information and details
about the presented parking approach can be found in [99].

4.3.4 Pedestrian Segmentation and Path Prediction

RoMo as a unique test-bed platform for diverse engineering approaches and in its
road to achieve fully autonomy we also explore and test the segmentation and map-
ping of dynamic elements in the scene, namely pedestrians. We follow the segmen-
tation steps as explained before in Sec. 4.3.2 and each clustered blob is encapsulated
into a vertical, rectangular cuboid parallel to the terrain normal. In Fig. 4.16a and
Fig. 4.16b we can observe that the height of each encapsulation cuboid remains al-
most constant while its length and width present abruptly and constant size changes
mainly due to pedestrian’s extended arms or separated legs during walking. There-
fore, obtaining a precise 3D representation of each encapsulated pedestrian is not
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(a) (b)

Figure 4.15: RoMo’s Autonomous Parking Maneuver. a) shows front top: 2D image,
3D reconstruction and 3D segmentation renderings of the parking scene from the
RoMo front camera; the bottom image also indicates with the yellow, blue and
red signs the parking steps to follow; b) shows the three stages of the autonomous
parking maneuver, from top: approaching, turning and alignment, and the sideways
driving to the parking box.

the main concern in this outdoor scenario, it is rather important to describe and
predict the walking path they exhibit. In the images of Fig. 4.16 we can also see
the path trails the pedestrian blobs have left; the registered trails help us to predict
and correct at each frame the probable path a pedestrian can follow. Unlike a full
6-DOF (Degrees Of Freedom) pose detection and tracking of an object like a hand
that can move (or be moved) arbitrary in 3D with sudden changes of directions
plus three more independent rotation axes: roll, pitch and yaw, a pedestrian motion
exhibits in general 3-dof since he/she is confined to move on the ground (xy-plane,
2-dof) plus an additional rotation about his/her vertical axis (1-dof) and whose
estimate could contribute to detect unexpected path changes. Pedestrian behavior
is a wide topic extensively researched in the community under a lot of different
scenarios, in crowded or normal out- and indoor places, like stations, airports, cor-
ridors, sidewalks, etc; Regarding the pedestrian motion and behavior, we based our
path estimates on two assumptions: i) a person walks to reach a fixed point, this
point is in general not changed abruptly, ii) the person tries to reach the goal as
direct and fast as he/she can, commonly describing a straight line and avoiding large
deviations along it. The estimates of the predicted paths are performed utilizing
only the first 2-dof, i.e., xy-motions based on the collected trail points and updated
with every newly observed position under a recursive least square procedure [108]
[118]. In Fig. 4.16c we show some images of the RoMo’s interface for 2/3D visu-
alizations, where the predicted path for each encapsulated pedestrian in 3D (left,
blue background) and for their corresponding tokens in the 2D mapping (right) is
estimated and delineated. The top image of Fig. 4.16c shows the ideal case where
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each pedestrian is individually identified and tracked; the middle image shows a
total occlusion in which a pedestrian blob (green) blocks completely the detection
of another one (red) becoming the latter not detectable during some frames inside
the sensor scope; in the bottom image we can see a partial occlusion: the partially
blocked blob (red) and the blocking one (green) are merged into a single larger blob
(black box) for some frames.

(a) (b) (c)

Figure 4.16: RoMo’s interface for visualizations of 3D Pedestrian segmentation,
path prediction and 2D mapping. a, b) show some 3D segmented and encapsulated
pedestrians along with the trailing paths. We can observe the changes on the length
and width of the rectangular cuboids according to the pedestrian shape; c) shows
the 3D (left, blue background) and 2D mapping (right) visualizations of the RoMo
interface, where the estimated path for each pedestrian is delineated (thin line;
black points in 3D or thick lines in 2D rendering indicate the blob trails): (top)
ideal case where the pedestrians are detected and segmented individually, (middle)
shows a total occlusion: a pedestrian blob (red) is fully blocked by another one
(green), (bottom) presents a partial occlusion, where the blocking and partially
blocked blobs are merged into a single one (black box); as shown, in all these cases
the predicted paths are kept, and updated with new observations.

78



Chapter 5

Results - Geometry Layer

Sections
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Sensor Setups . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Stereo Cameras . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 RGB-D Sensor . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Octree-DS Performance . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Building and Storing Times . . . . . . . . . . . . . . . . . 85

5.2.2 3D Scene Mapping Test . . . . . . . . . . . . . . . . . . . 85

5.3 3D Object Completion . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Z-Buffered Fusion & Confidence Value . . . . . . . . . . . 87

5.3.2 Blob State Propagation under Partial Visibility . . . . . . 88

5.4 Visual Estimation of Independent Foreground Motions 90

5.4.1 Ego- & Independent-Motion in Non-Static Scenes . . . . . 90

5.4.2 3D Object Completion in Non-Static Scenes . . . . . . . . 91

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

79





Overview

In Chap.3 we presented the methods, procedures and implementations that we ap-
ply to organize the geometrical information inside a scene; we started by breaking
down the rigid 3D point cloud of an observed scene into two main components:
fore- and background, where the former constitutes a set of tentative object candi-
dates, each with potential functionalities and attributes, and the latter corresponds
to larger bodies representing (pieces of) furniture, walls, doors, etc. Both of these
regions are further processed at geometric level e.g., segmentation, clustering, loca-
tion areas, etc; to obtain a consistent world map. Besides the structural aspects we
also went over the kinematics of the scene in non-static and dynamic environments;
we presented the procedures for ego- and independent-motion estimates as well as
the implemented tools for hand detection and motion tracking, which is a required,
relevant information at the higher layer of the framework.
In this chapter we introduce some practical aspects and specifics regarding the im-
plementations, devices and libraries that we consider are directly related with the
core operation of the framework at the lower layer; at the sensor level we describe the
sensor setups we employed; on the Geometric-Layer side we test and evaluate the be-
haviour of our octree-based mapping implementation. By means of some exemplary
scenes we also run experiments for the evaluation of the geometric-layer methods
and approaches presented in Chap.3; two implementation results are presented in
this chapter corresponding to: i) 3D object completion, in which the data associa-
tion and fusion of encapsulated 3D blobs is conducted by our proposed z-buffered
re-projection approach and a confidence value is assigned to each fused-blob point,
ii) independent-motion estimations of foreground structures in non-static scenes:
ego- and independent-motions.
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5.1 Sensor Setups

5.1.1 Stereo Cameras

Our stereo camera rig is constituted by two paired Guppy F-080C IRF (Fig. 5.1)
cameras with a baseline of 8cm delivering images of size 640 by 480 pixels.

Figure 5.1: Guppy F-080C camera.

In order to obtain disparity map images
(e.g., Fig. 5.2b) and 3D point cloud re-
constructions (Fig. 5.2c) we made use
of the XVISION-2 library [41]; this li-
brary allowed us to adjust and cus-
tomize the 3D point reconstruction by
accessing and setting some camera in-
ternal parameters like gain, exposure,
shutter, white balance, etc; The intrin-
sic camera parameters as well as the extrinsic stereo calibration parameters were
obtained with the Matlab1 calibration toolbox. The first set of experiments pre-
sented in this chapter was executed using our stereo camera setup; in Fig.5.2 we
show some exemplary images that can be obtained at each step during the 3D map
building process and object segmentation. Fig.5.2d shows a snapshot of our first
online detector of 3D object candidates. At the same time we can also observe
how sensitive, and hence noisy, the 3D point reconstruction can be to spurious re-
flections of light coming from bright backgrounds or directly from shining object
surfaces; these issues can be resolved at sensor level with the utilization of other
sensor technologies like rgb-Depth sensors.

(a) (b) (c) (d)

Figure 5.2: Stereo camera images of 3D object segmentation process. a) 2D rgb
scene, b) disparity map obtained with xvision-2 library, c) fore- and background
structures in octmap, and d) snapshot of our first online detector for labeling of 3D
segmented object candidates; note how a group of noisy reflected points can be also
clustered.

5.1.2 RGB-D Sensor

As already mentioned in Sec.2.2 the rgb-d sensor we occupied is the Kinect-1; we
employ it principally for the recording and analysis of object-manipulation scenes
at the higher layer of the framework described in Sec.4.2, and whose experiments
are presented in the next Chap.6. The middleware for accessing this device is the

1www.mathworks.com
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open source library libfreenect2, built and running on linux; Although we can obtain
rgb, Depth and ir images all of size 640x480 [px] as described in Sec.2.2 (and
shown in Fig.2.4) Kinect-1 does not supply a compound rgb-Depth image, i.e., a
textured/colored 3D point cloud; moreover, since rgb and ir cameras are assembled
with a baseline of approx. 2cm in a typical stereo camera layout, plus the difference
on focal-length between them, the raw data buffers coming from them are displaced
i.e., rgb and Depth buffers do not correspond one to one. As described in Sec.2.2
the warping adjustments (Eqs.2.4,2.5,2.6) between these images are carried out and
shown in Fig.5.3.

Figure 5.3: Kinect rgb-Depth overlapped and warped images. Basically due to the
difference in focal lengths (fIR > fRGB) the rgb and Depth image data do not fit as
can be observed on the rgb-Depth overlapped image (right), where the cyan-colored
areas of non-valid ir-Depth values do not correspond to the object shapes of the
rgb image. In the 1st adjustment, warped-Depth projected onto rgb (middle), we
take the rgb as base and distort the Depth to fit the rgb image, observe that the
resulting image is cropped to cover only the area overlapped by both images; In
the 2nd correction, warped-rgb projected onto Depth (right), the base is the Depth
image in which the warped texture of the rgb image is projected.

In Fig.5.4 besides the wrapped (Fig.5.4a) and non-wrapped (Fig.5.4b) rgb-d image
corresponding to some cooking scene tasks, we also show at this geometric level
some other exemplary images that can be obtained with this sensor and that help
the processing and analysis of scenes in the framework;

5.2 Octree-DS Performance

In computer science a Data Structure (DS) is an abstract entity that helps to orga-
nize information inside a computer memory; depending on the type of ds sometimes
it is required for its implementation to reserve or allocate a certain amount of mem-
ory, and also a set of procedures have to be devised and provided to perform the
required ds functionalities, like data storage, data access, ds maintenance, etc; on
the other hand, independently on its type or organizational structure a key parame-
ter to quantify a ds performance is its computational complexity which is in general
measured based on specific ds operations, like ds building/traversing, data insert-
ing/deleting, etc. In this context an octree performance is typically described by
the plots shown in Fig. 3.4

2https://openkinect.org
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(a)

(b)

(c) (d)

(e) (f)

Figure 5.4: Exemplary rgb-d images for processing and analysis of scenes. a, b)
Warped and non-wrapped rgb-d image, note how well the Depth-silhouettes fit the
contours of rgb-data (objects), c) raw 3D segmentation and clustering of foreground
regions, d) voxel-occupancy of 3D segmentation, e) 3D segmentation and supporting
plane, and f) 3D segmentation and points > z-depth (e.g., wall).

5.2.1 Building and Storing Times

In order to analyze and characterize the behavior of our particular octree-ds imple-
mentation first we obtained its computational performance regarding the building
and storing times; For the building time we tested the ds with three different sizes
of point sets k at different number of nodes, as we can observe the curves in Fig.5.5a
the building behaviour resemble those presented in Fig. 3.4 (Sec.3.2.2). The cor-
responding obtained storing-time performance tested also at different voxel sizes is
shown in Fig.5.5b.

(a) (b)

Figure 5.5: Building and storing performance of implemented octree ds. a) Octree
building times in function of the number of nodes with three different data sizes, b)
octree storing times in function of the number of images at two different voxel sizes.

5.2.2 3D Scene Mapping Test

In a second experiment we want to test the ds’ behaviour and to know how some
of its parameters alter when mapping a 3D scene. For this we employ the scenes
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shown in Fig. 5.6 corresponding to an indoor scenery. Table 5.1 shows the results of
collating the first eight (of nine) 3D scene images of Fig. 5.6a and building an octree
with this data at different voxel resolutions. Since the 3D scene images overlap, as
shown in the collated scene in Fig. 5.6b, many points of newly collated images might
not generate neither new nodes nor leaves. We can observe in the table, as expected,
the octree building time, the number of nodes and the number of leaves decrease
as the size of the voxels (leaves) increases, as shown graphically by the curves in
Fig. 5.7. We can also observe that for some consecutive and multiple voxel sizes the
cubical size and volume of the octree root node remain the same.

(a) (b)

Figure 5.6: Exemplary mapping sequence for characterization of octree-ds perfor-
mance. a) Individual 3D scenes, b) collated scene showing the camera poses from
where each individual scene image in (a) was taken.

Table 5.1: Test Results of Octree-ds
mapping sequence at different voxel sizes:
building-time, number of nodes/leaves,
size/volume requirements at different
voxel sizes.

For 8 captured images with a total of 2,292,618 pts

RootVoxel

size

[mm]

#

Nodes

#

Leaves
size

[m]

volume

[m3]

Building

Time

[s]

1 2,325,222 2,209,382 4.096 68.7195 3.487930

2 266,195 899,111 6.144 231.928 2.215324

5 83,934 317,872 5.12 134.218 1.557559

10 18,182 65,687 5.12 134.218 1.106374

15 7,667 26,362 7.68 452.985 0.952324

20 4,262 13,787 5.12 134.218 0.919194

40 1,072 3,197 5.12 134.218 0.807496

80 288 787 5.12 134.218 0.731326

Figure 5.7: Building time and num-
ber of nodes/leaves vs voxel size
for the mapping test of images in
Fig.5.6 and Table.5.1.
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5.3 3D Object Completion

5.3.1 Z-Buffered Fusion & Confidence Value

For the test and evaluation of the proposed blob fusion in Sec.3.4 based on the
z-buffered re-projection approach and a confidence value (CV) assignments to each
fused-blob point we present the scene shown in Fig.5.8a; we took a sequence of
observations at different camera poses around this scene to obtain the 3D segmented
fore- and background at each captured observation as shown in Fig.5.8d. The final
blob map in Fig.5.8b shows the final fused blobs, in which each point has assigned
a color-coded cv from 0 to 7 corresponding to : white, yellow, light brown, orange,
green, violet, purple and red, respectively. Close-up views of two of these fused blobs
is shown in Fig.5.8c. As we can observe in Fig.5.8c the points colored with lower cv

(a) (b) (c)

(d)

Figure 5.8: Scene sequence for 3D object completion and confidence value (CV)
assignments. a) 2D rgb image of scene, b) 3D final map of encapsulated and fused
blobs with color-coded cv, c) 3D close-up views of two fused blobs corresponding
to the object boxes at the scene sides (left) pop corn box, (right) cereal box; d)
sequence of registered and segmented 3D fore- and background at different camera
poses that are to be fused.

are or must be assigned to noisy or rather more 3D superficial points to the blob
hull; In a first evaluation we are interested to determine how precise the points with
different cv assignments describe the actual size of a fused object. We present the
results for the two boxes of the scene presented in Fig. 5.8c, which are the objects
whose blob point readings undergo the widest range of error observations due to the
variations in the proximity of the objects to the cameras as these moved around the
scene. In tables 5.2 and 5.3 we summarize the results obtained with the valuated
points of the cereal box blob and pop-corn box blob respectively. The tables show
by cv assignation: the percentage of points that belong to that value, the measured
size of the box these points define, and the root mean square deviation as a measure
of error fitting between the valuated blob points with its corresponding actual-size
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box model; this error in fitting is achieved by the iterative closest point (ICP)
algorithm [7]. Visually these fittings can be observed in the pictures of Fig. 5.9.

Table 5.2: Confidence-Value evaluation for 3D object completion of a cereal-box
blob.

Cereal Box, actual size= 13.6 x 5.3 x 21.2 cm
CV Points [%] Measured Size [cm] RMS Error [cm] Figure

7 0.52 13.67x4.83x20.23 0.000081 5.9a
6 2.17 15.36x8.21x22.21 0.000098 5.9b
5 12.7 16.01x12.13x22.43 0.000092 5.9c
4 56.53 18.36x11.38x23.16 0.004374 5.9d
3 12.92 18.98x13.14x23.12 0.005539 5.9e
2 6.41 18.37x10.06x24.29 0.005946 5.9f
1 4.29 18.26x10.38x24.38 0.006908 5.9g
0 4.46 19.1x9.19x24.45 0.005781 5.9h

Table 5.3: Confidence-Value evaluation for 3D object completion of a pop-corn box
blob.

Pop Corn Box, actual size= 16 x 5.75 x 11.7 cm
CV Points [%] Measured Size [cm] RMS Error [cm]

7 1.19 15.23x7.697x10.75 0.002548
6 3.61 17.69x8.91x11.01 0.002792
5 10.09 18.61x11.15x13.45 0.003715
4 54.46 20.09x12.29x15.90 0.004805
3 14.41 21.34x12.58x15.24 0.007764
2 8.9 19.45x11.76x14.60 0.006681
1 4.77 19.28x12.41x12.40 0.003378
0 2.55 18.90x11.26x12.45 0.003580

5.3.2 Blob State Propagation under Partial Visibility

Continuing in the blob update context, in a second test we want to observe how the
updated state of a captured blob propagates under partial occlusion, i.e., although
only a part of the blob is visible and only this part can be updated with current
information, the updated state of the blob is propagated to all its structure. For this
we map an object with a sequence of measurements before the occlusion; Fig.5.10a
shows the 2D rgb image of this object along with its cv-valuated fused points
that are fit to its 3D model observed from the front and above; the object is now
clockwise rotated and partially occluded, and a sequence of scene observations during
this condition was also taken as shown in Fig.5.10b; as we can observe the state of
the object’s 3D model fit to the partially occluded-blob points corresponds to this
new state of the blob structure.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.9: icp fitting of fused points (black points) with different cv to a 3D model
(cyan points). a-h) The blob points correspond to the fused cereal box of the scene
in Fig.5.8, with different cv assignments of 7 to 0 resp; (from Table 5.2)

(a)

(b)

Figure 5.10: Blob state propagation under partial visibility: the pop-corn box is
mapped before and during the partial occlusion; a) shows the scene before the
occlusion (left), along with its cv-valuated fused points fit to the object’s 3D model
(cyan) from two different views: front (middle) and above (right); b) although
the object is slightly clockwise rotated and now partial visible, after a sequence of
mapped measurements we can observe how the object’s 3D model fit to the updated
blob points corresponds to this new blob state.
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5.4 Visual Estimation of Independent Foreground

Motions

5.4.1 Ego- & Independent-Motion in Non-Static Scenes

In order to test our approach for map update in non-static environments (Sec.3.5)
based on independent ego- and object-motion estimations of 3D segmented

Figure 5.11: Pioneer 3-DX

foreground structures we set the follow-
ing scenario up. Our vision system is
now mounted in a wheeled robot Pi-
oneer3 that moves through a series of
fixed poses to captures and update its
map at each spot. As in a non-static
environment, the scene is constituted
by some movable, graspable objects (see
Fig.5.12a), that was modified as the robot travels from one spot to the next.

(a) (b) (c)

Figure 5.12: Test scene for visual estimation of independent foreground motions. a)
3D rgb image of the scene at its initial state, b) robot ego-motion frames obtained
at each setpoint (see Table 5.4) and 3D overlapped blob registrations, c) example of
feature-matching flows of two detected object motions.

In Table 5.4 we enumerate the list of the seven robot’s pre-programmed poses (set-
points) and the measured pose estimates we obtained corresponding to a sample
trial. Considering that in each trial the ego-poses reached by the robot are, or
might be, biased by the built-in odometry system of the Pioneer, we also report
in Table 5.4, as reference, the estimated ego-poses that were obtained by running
the test but keeping the scene static. As described in Sec.3.5, since the visual esti-
mation of a pose transformation depends on the quantity as well as the quality of
the matching points, we also include for the dynamic test the Mean Squared Error
(MSE) of each transformation (mse Tr) as a reference of the reliability or precision
of the estimation, and in order to have a statistics of the accuracy of the process we
show the mse of the Euclidean distance (mse Eu) between the estimated poses and
the reference positions corresponding to 40 measurement for each pose.
Fig.5.12b shows the enumerated pose frames obtained during the trial, we can also
observe the overlapped registrations of the moved blobs corresponding to the first
three boxes in Fig.5.12a. Fig.5.12c shows an example of the motion detection in two
mapped blobs moved during the same sequence interval.

3https://robots.ieee.org/robots/pioneer/
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Table 5.4: Test results of Pioneer ego-motion estimation in a non-static scene

Pose (X [cm], Y [cm], Angle [◦])
Set

Point
Static
Scene

Dynamic
Scene

MSE
Tr(x−3)

MSE
Euclidean

1 (0,0,0) (0,0,0) (0,0,0) —– —-
2 (40,0,10) (41.21,-0,9.7) (42.25,0,10.46) 1.019 6.9104
3 (0,-20,0) (-0,-19.54,0.88) (0,-20.12,0.15) 1.029 1.5678
4 (-45,0,15) (-46.19,-0,14.71) (-45.16,-0,14.0) 0.119 3.3030
5 (-24,0,14) (-23.62,-0,14,32) (-24.72,-2,13.78) 0.282 5.9464
6 (0,10,0) (-0,9.65,1.1) (1.1,8.32,0.44) 0.688 3.6485
7 (20,0,10) (20,0,9.7) (22.22,-0,11.35) 0.316 5.8045

The last two columns of Table 5.4 indicate that our visual motion estimation system
is more precise than accurate, i.e., we can not certainly determine the absolute
pose of each mapped object in the world but rather determine that the measured
geometric relations inside the map are the closest values to the actual ones. In
Table 5.5 we report the estimated pose values that were obtained with the moved
objects.

Table 5.5: Test results of object-motion estimation in a non-static scene

Pose (X [cm], Y [cm], Angle [◦])
Cereal Box Pop-Corn Box

Set Point Meas. Pose Set Point Meas. Pose

1 (0,120,0) (0,117,1.52) (-33,115,10) (-33.67,114,8.1)
2 (0,110,0) (0,106.3,0.28) (-33,115,10) (33.84,113.42,9.52)
3 (0,130,0) (0,126.3,1.92) (-33,115,10) (33.78,113.01,8.78)
4 (0,130,0) (0,126.52,2.39) (-27,107,10) (-27.42,104.95,7.40)
5 (-33,120,10) (-32.77,118.28,4.81) (0,100,0) (0,97.15,1.16)
6 (-33,120,10) (-32.74,118.27,5.46) (0,94,0) (1.38,92.84,1.24)
7 (-33,120,10) (-32.83,118.22,6.04) (0,94,20) (0,92.42,22.47)

5.4.2 3D Object Completion in Non-Static Scenes

We now present the results of collating a sequence of range data of the front figurine
shown in Fig. 5.13a. As before, the cameras and some objects were moved to different
spots during the test (Fig. 5.13b). In order to analyze how precise a given set of cv
points of a fused 3D blob images the actual object in this kind of environments, we
present the results of the icp fittings of each obtained cv point set to the figurine’s
3D model; the cv assignments ranges from 0 to 7 and some of the fittings can be
observed in Fig. 5.13. We also present the magnitude of the matrix rotation (Eq. 5.1)
that was needed in this trial for each fitting: {CV pts} → {model pts};

‖RF‖ ≡ ‖{valuated pts} − {model pts}‖F

=
√
trace(RT ·R) (5.1)
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Since the 3D object-model frame and each cv-point frame were set aligned before
running icp, this value will give us a measure of the amount of correction that
was needed to obtain the corresponding rms error value for such fitting. The re-
sults are shown in Table 5.6; Although the amount of correction might be similar
for the points with extreme cv, we can observe that the points with larger cv
present smaller rms errors; this means that these fused points were better spatially
corrected/fused in their local frames before the icp fitting and therefore describe
better the actual size of the object. We can also remark at this point that in spite
of the independent sensor and object motions, plus the non-simple geometric shape
of the figurine, the percentage distribution of the resulting cv points in this trial
resembles to those obtained for the object boxes in static scenes (Sec.5.3.1) as shown
in Fig.5.14; this can be an indication of the consistency not only of the fusion ap-
proach against these factors (relative motion, shape) but also of the coherence with
the independent motion estimation process.

(a) (b)

(c) (d) (e)

Figure 5.13: Confidence Value and 3D object completion in non-static scene. a)
Initial 2D rgb image of the scene, b) example of 3D feature-flows detection corre-
sponding to motion of two mapped blobs, c-e) sets of fused-blob points with highest
cv (5, 6, 7, resp.), see Table 5.6.
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Table 5.6: Confidence-Value (γ)
Evaluation for 3D Object Com-
pletion of a figurine in a non-
static scene

Chicken Blob

γ
Points

[%]
Rotation

Norm
RMS Error

[cm]
Fig.

7 1.97 0.257931 0.001407 5.13e
6 2.85 0.279540 0.001439 5.13d
5 3.24 0.334356 0.002410 5.13c
4 74.66 0.411679 0.004266 —–
3 4.92 0.339462 0.004003 —–
2 4.14 0.255960 0.002779 —–
1 3.01 0.260456 0.002608 —–
0 5.22 0.251197 0.002689 —–

Figure 5.14: Percentage distribution of cv
fused points obtained during 3D object
completion in non- and static scenes

Summary

In this chapter we presented experiments and test results to validate and determine
the performance of the geometric approaches (blob-fusion based on z-buffered re-
projection, cv assignments, independent foreground motion estimation) that were
proposed and described in Chap.3; we also presented different tests to observe the
parameter behaviour and performance of our implemented octree-ds tool. We also
described some practical aspects of our stereo-camera setup and showed the cor-
rected, warped rgb-d images.
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Overview

In Chap. 4 we demonstrated how the geometric information captured and organized
at the geometric layer of the framework can be further processed and analyzed at a
higher level of perception. We introduced the framework components that interface
both layers, knowledge containers, and the concept of object container as an abstrac-
tion of their corresponding geometrical tokens in the scene foreground: the object
candidates. We presented three examples in which these actors can have different
attributes and functions: i) as a hand: for this highly dynamic actor a plugin was
developed for the modeling of physical interactions using objects with different func-
tionalities; ii) as vehicles: as static, mapped structures, their dimensions, positions
and orientations were relevant to support RoMo’s motions during an autonomous
parking maneuver; iii) as pedestrians: whose motions and path predictions are more
context-relevant than obtaining their accurate 3D models.
The proposed extension -plugin- for the characterization of humans interactions
described in Chap. 4 is tested and the results are presented in this chapter. Inter-
action scenes with objects can present similar manipulation progressions although
the objects in used are different, we model and analyze these kind of scenes in the
first part of the experimental settings, Sec. 6.1.1; in the second part, Sec. 6.1.2, we
analyze interaction scenes to disambiguate the use of an object: we observe each
handling sequence, which should correspond to a particular functionality of the ob-
ject, to obtain the motion traits or patterns that help to characterize and distinguish
each action from the other. Our plugin helps to extend the prediction horizons of
geometrically described motions to a level of manipulation gestures, like writing,
hammering, hand turns, etc.
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6.1 Identification and Analysis of Object Manip-

ulation Actions

The objects we employed in the experiments offer a diverse set of motion properties.
In Table 6.1 we present the first set of experimental scenes, in which, as described
in Sec.4.1, we identify the object in used based on the analysis of the observed
motion although these motion trajectories describe similar patterns; whereas in a
second set of scenes, shown in Table 6.2, we identify the motion, i.e., the current
funcionality, for each object in used, as described in Sec.4.2. The implementation
code is written in c++ programming language supported by external libraries like
OpenCV, OpenGl, qt, vtk, and eigen, running on a linux system. For each given
scene we present besides the plots of the obtained model some related images of the
running experiments corresponding to some supporting functions of the framework
previously described, like hand segmentations by either OpenPose or Kalman-Filter
detections, 2- or 3D hand-blob optical flow detection, hand paths or encapsulations
of projected patterns.

Table 6.1: Object Identification despite Similar Motions Patterns

Object Action
Motion

Attributes
Projected
Pattern

#
Frames

knife chopping
translational, ran-
dom

period-ish, oscillat-
ing

140

pen writing
predominantly
translational w/
curved segments

structured, period-
ish: sawtooth-ish

267

fork eating
translational w/
curved segments

Period-ish: repeti-
tive curved patterns

187

glass drinking
translational w/
curved segments

Period-ish: repeti-
tive curved patterns

188

6.1.1 Identification of Object from Data in the Semantic
Structure

The next two scenarios we analyze, set and convey similar manipulation progressions,
probably very distinguishable to humans, but not that obvious to artificial agents.
The first scenario ’chopping’ vs ’writing’ over a table are two tasks confined to a
fixed area over which the hand moves relatively free but close to the interacting
surface; the second presented scenario, ’eating’ vs ’drinking’, offers pretty similar
manipulation paths as both motions extend back and forth from the table surface
to the person’s face; Both scenarios, however, leave distinctive manipulation traits as
it is shown below. Additionally, in many cases the grasped objects are not detectable
by the sensory systems since they are small, thin or partially covered by the hand,
like the knife, pen or fork in these particular cases, leaving the hand motions as the
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Table 6.2: Motion (funcionality) Identification for each Object in Used

Object Action
Motion

Attributes
Projected
Pattern

#
Frames

Whiteboard
writing

predominantly
translational w/
curved segments

structured, period-
ish: sawtooth-ish

482

erasing
translational w/
curved segments

random, chaotic, un-
structured

187

Screwdriver
tightening

predominantly ro-
tational w/ short
translations

period-ish, oscillat-
ing

250

poking translational spiky, jerky, random 240

Hammer
hitting

translational w/
curved segments

period-ish: repeti-
tive spiky patterns

317

pulling
translational w/
curved segments

Period-ish, oscillat-
ing

269

only source of information to take apart these actions; we focus here again on the
hand, the doer of the action motions.

Knife and Pen: Chopping vs Writing

At first sight we can observe on the 3D path in Fig.6.2a the ’chopping’ manipula-
tion presents a quasi -periodic spiral-ish motion that can be also perceived on the
oscillatory patterns of the y-axis and distance-to-plane motion profiles in Fig.6.2b,
where the x-axis indicates the progression of the chopping spots, which seem to be
arbitrary across the chopping area. Regarding the ’writing’ 3D trace in Fig.6.2c
we can observe how it differs from the previous writing 3D traces in Fig.6.6a, for
this reason in this approach a 3D path is not considered as a direct indication of
what action is performed but it could be analyzed to rather infer how such action
was performed; The obtained motion profiles in Fig.6.2d, however, are quite similar
to the ones obtained for ’writing on the wb’ in Fig.6.6b. The sawtooth-ish wave
also indicates with each tooth slope the progression and speed of the writing at
each row i.e., the steeper the slope, the faster the writing, the length of each slope
corresponds to the length of each row and the sharp drop at the end of the slope
indicates the change of row. In the same way, the implicit tendency in the y-axis
profile gives the vertical advance of the writing from up to down with the size of
spikes corresponding in proportion to the size of the actual written letters; finally
the big spikes on the distance-to-plane plot can be associated to the gaps between
written words or changes of row when the hand separates a bit away from the writ-
ing plane. In the framework images of Fig.6.1 we present some views of these scenes
with the supporting functions like skeleton-hand detection, hand blob segmentation,
2/3D of detection, etc.
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Figure 6.1: Framework-augmented images of ’chopping with a knife’ (up) and ’writ-
ing with a pen’ (down). Each row shows the detected 2D of over the hand blob for
the chopping action (up) and also the skeleton-hand detection for the writing action
(down), the 3D-rgb image with the hand blob segmentation (purple), a close-up
image of the hand of inliers (black) and outliers (orange) vectors and some tracks
of the projected pattern, and the last image shows the final 3D encapsulated pattern
of the projected hand motions.

Fork and Glass: Eating vs Drinking

We can observe in Fig.6.3a and Fig.6.3c the motion paths of both actions are very
much alike, both outline similar curved motion segments of the hand, spanning
from the table to the person’s face; we can bring, however, some key differences
that help us to take them apart. Comparing the motion profiles of Fig. 6.3b and
Fig.6.3d we can observe that in both actions the captured motion component on the
x-axis corresponds to minor movements of arbitrary or random hand positions along
its table-face path which is better described, in these trials, by the y-axis profiles;
the length of the flat segments on the top of these latter plots indicate, in turn,
the duration of the hand remaining closer to the table surface (whose location is
assumed to be on the upper part of each projected pattern). Independently of the
number of half cycles or positive wave crests on the distance-to-plane plots we can
observe that the heights and durations of the peaks during the eating with a fork
are smaller and shorter than the peaks during the drinking action. According to the
plots, during the eating the heights are around 250 mm, which would correspond to
the distance between the table and the person’s face, or they could be even smaller
(like the 4th peak in Fig.6.3b), which would mean that the person’s face also moves
closer to reach sooner the fork in a typical eating movement. On the other side,
we can also notice the wave peaks drawn during ’drinking’ are in general higher
(> 300mm) and present a kind of inflection point approximately ∼ 250mm; This
point indicates the first contact of the glass with the mouth and the continuation of
the hand motion upwards in order to place the glass a bit higher and tilt it toward
the person (while the person leans the head slightly backwards). On the slope down
of the peaks we can also notice another subtle inflection point indicating the end
of the mouth-glass contact and returning the glass to the table. These points can
be observed in Fig.6.3d and Fig.6.4b. The differences in head and hand postures
between these actions can be also observed in the 2/3D images presented in Fig.6.4.
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(a) (b)

(c) (d)

Figure 6.2: Manipulation pattern and motion profiles of ’chopping with a knife’ (up)
vs ’writing with a pen’ (down). (a, c) show an exemplary 3D path trace for each
action, (b, d) show the obtained projected patterns (left) and motion profiles (right).
The 3D curled-loop patterns in (a) is mainly reflected as oscillatory variations on the
y-axis and on the distance-to-plane motions and also indicated as cutting line strokes
along this axis on the projected pattern in (b), while the x-axis motion component
indicates arbitrary cutting spots across the chopping area. Although the 3D trace in
(c) might look different to the ones in ’writing on board’ (Fig.6.6a), we can observe
that the obtained motion profiles in (d) are consistent with the patterns previously
obtained in (6.6b) independently of the scale or context where the action takes place;
a sawtooth-ish-wave component is also identified as a major distinctive feature in
this manipulation, corresponding the y-axis motion to the vertical progression of the
writing and the amplitude of its spikes to the proportional size of the written signs;
larger peaks in the distance-to-plane plot indicate bigger separations of the hand to
the writing plane, which occur between words or changes of writing rows.
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(a) (b)

(c) (d)

Figure 6.3: Manipulation pattern and motion profiles of ’eating with a fork’ (up) vs
’drinking with a glass’ (down). (a, c) show the 3D path traces of each manipulation,
(b, d) show the projected patterns or fingerprints (left) and the motion profiles
(right) for each action. We can notice in both actions repetitive movements of the
hand going back and forth from the table to the person’s face, which are better
described in our trials on the y-axis profile, and where also arbitrary repetitions and
durations of this motion can be seen, while the x-component can be considered as
a minor motion produced by random or arbitrary hand positions along the major
path. Although both actions outline these similar manipulation progressions the
most distinctive feature can be observe on the additional peak in each crest of the
distance-to-plane motion during drinking; this additional segments are produced
by the further motion of the hand to get a bit higher and tilt the glass toward
the person’ mouth and whose head is leaned backwards as shown in Fig.6.4a. The
inflection points (red, yellow) mark the start and end of these peak segments in the
distance-to-plane in Fig.6.3d and Fig.6.4b.
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(a) (b)

Figure 6.4: Framework-augmented images of ’eating with a fork’ and ’drinking with
a glass’. a) shows for the ’eating’ (up) and ’drinking’ (down) trials 2D OpenPose
skeleton-hand images with of detection and 3D-rgb images with hand-blob segmen-
tations (purple). We can observe in these snapshots the difference in the hand-head
postures; the hand approaches the person’s head during eating and the head remains
still or moves a bit forward to also approach the hand, this highest point of the hand
at each loop is ∼ 250mm as can be seen in 6.3b, while during drinking around this
height the first glass-mouth contact is made (red circles in b), the hand then moves
on in order to put the glass higher and tilt it as the person leans back the head a
bit, as shown in (a); this state continues until the glass is separated (yellow circles)
to be returned to the table. (b) also shows the 3D encapsulated projections of each
action motions (up).

6.1.2 Identification of Motion from Data in the Dynamic
Model

Whiteboard (WB): writing vs erasing

We start with a particular case since instead of considering two different objects
like a wb-marker or a wb-eraser for writing or erasing we select as primary object
the item that also acts as the interaction background, namely the whiteboard; this
trial clearly illustrates how the motions projected onto the background can help to
distinguish the manipulation. Both of these actions are examples of translational
rather than rotational motions since the positions of the hand are more perceptible
and descriptive of the actions than the small turns or rotations the hand wrist can
exert during the manipulations.

In Fig.6.5 we show some snapshots of the executed scenes corresponding to the oc-
cidental (up) and oriental (down) writing styles; for both cases we present the 2D
images of the OpenPose skeleton with hand-blob and of detection (left), the 3D-
rgb images of hand-blob segmentations and projected paths (middle) and the 3D
encapsulations of projected manipulation patterns onto the wb (right). In order to
have a first impression on how the 3D motion paths of these actions look like, we
show in each of Fig.6.6a and Fig.6.6c two examples of the obtained 3D traces corre-
sponding to the writing and erasing on wb respectively; the upper image in Fig.6.6a
shows the obtained 3D hand path of the occidental writing style i.e., horizontal
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rows with left-to-right progressions and adding new rows down, it also shows in the
lower image the obtained 3D path of the oriental writing style i.e., vertical rows
with up-to-down progressions and new rows to the left; In Fig.6.6b we can see the
corresponding manipulation fingerprints on the left and the decomposed, projected
motions (right) of these 3D traces. Fig.6.6c shows two different erasing sequences,
one with mostly short, sharp strokes (up), the other with rather long and rounder
moves, yet both sequences keep in general the hand closer to the wb than during
writing; their projected fingerprints and decomposed motion patterns are shown on
the left and right of Fig.6.6d respectively. On the obtained motion patterns of the
manipulation modeling (right of Fig.6.6b) we can observe that both writing actions
present a rather structured, periodic motion sequence, whereas the motion model-
ing of erasing shows arbitrary, chaotic motion strokes (right of Fig.6.6d). Observing
the sawtooth-ish wave outlined on the x-motion for the occidental writing style in
Fig.6.6b we understand each slope of the plot as the left-to-right advance of the
writing in each of the three rows, where the steep of the slope indicates the speed of
the writing i.e., the steeper is the slope the faster is the writing, and the length of
the slope corresponds to the length of the written row; we can attribute the sharp
drop at each end of the slopes to the change of writing line i.e., the returning of the
hand to start a new row. On the y-motion we can first notice the vertical progress
of the action going downward to the bottom of the board, we can also associate
the variations in amplitude of the y-spikes to the size of the written signs. In the
distance-to-plane plot (blue) we can observe the big spikes correspond to the sep-
aration of the hand from the board either due to the changes of rows or the gaps
between written words; the steady increase presented in the hand-board separation
can be taken as an indication that the hand centroid gets closer to the board on
the upper areas i.e., the forearm is rather parallel to the board with the elbow also
close to the board, and gets away on the lower areas during writing, with the fore-
arm somewhat perpendicular to the board. Analogous observations can be deduced
about the obtained patterns of the oriental writing style (down in Fig.6.6b).

Figure 6.5: Framework supporting functions for the wb-writing scenes. For occiden-
tal (up) and oriental (down) writing styles: (right) Openpose skeletons with hand-
blob and of (cyan) detections, (middle) 3D-rgb images of hand-blob segmentations
(purple) and projected paths (black) during writing, (right) 3D encapsulations of
projected manipulation patterns.
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(a) (b)

(c) (d)

Figure 6.6: Manipulation modeling of actions on wb, ’writing’ vs ’erasing’ : a) al-
though the obtained 3D hand traces of the performed actions for the occidental (up)
and oriental (down) writing styles look very different we can observe on the right of
b) a sawtooth-ish motion modeling in both sequences, where each outlined tooth fun-
damentally corresponds to the writing progress along a row with the change to a new
row, (left) shows the corresponding fingerprints or projected patterns of both writing
styles. c) Shows two different erasing sequences, one with short, sharp strokes (up),
the other with round, longer motions; we can observe in the obtained manipulation
modeling in (d) that these actions do not reveal any pattern or structure; erasing a
wb consists of mostly arbitrary motion strokes.

.

106



6.1. Identification and Analysis of Object Manipulation Actions

Screwdriver: tightening vs pocking

Although both actions are executed predominantly around one spot, this is, the
screw’s head and the poked point, the x- and y-projected motions they describe
are very distinctive from each other; Fig.6.7 shows some images of the experiments
carried out augmented with some framework functions. Fig. 6.8a and Fig.6.8c show
two corresponding 3D traces of the executed experiments. As can be observed on the
projected pattern and motions in Fig.6.8b the roughly oscillating wave on the x-axis
during tightening describes the change of position of the hand centroid during the
back-and-forth twists of the wrist, the obtained span of these x-displacements are
a bit larger than the ones presented on the y-axis, which indicates a larger motion
impulse on the x component; we can also observe that the hand distance to the plane
presents small up-and-down variations corresponding to the vertical components
of the twists and with a constant trend downwards as the screw is getting tight.
Opposite to the tightening we can observe in Fig.6.8d the most distinctive motion
of the poking action is a vertical movement corresponding to the sudden up-and-
down poking strokes which are mainly depicted with the abruptly spiky lines in the
distance-to-plane plot and also reflected on the x- and y-axis with the zigzagged
motions around the poked point.

(a) (b)

Figure 6.7: Augmented framework images of a) ’tightening’ and b) ’poking with a
screwdriver’. For each action the upper row shows the 2D image with of detec-
tion over the hand and the 3D-rgb image with hand blob segmentation (purple)
with an additional Normal-plane centered at hand centroid for hand-twists calcula-
tions; each left image in the lower row shows the corresponding 3D hand of inliers
(black)/outliers (orange) vectors with the kf predicted (blue)/corrected (red) path
points and their projected point path below (black); the last image shows this en-
capsulated projection for each action.

As mentioned ’tightening’ also contains a characteristic rotational motion compo-
nent due to the hand’s wrist turnings; in order to represent this rotational motion
we estimate the rotation angles about the hand’s z-axis, which is parallel to the
background’s normal plane and also aligned-ish to the screw’s long axis; for this
the obtained 3D of inliers of the segmented hand blob are projected onto the plane
defined by the hand’s z-axis centered at blob centroid (see Fig.6.7) and the rota-
tion angle at each frame can be estimated as described in Sec.4.2.4. Fig.6.9a and
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(a) (b)

(c) (d)

Figure 6.8: Manipulation modeling of actions with a screwdriver: ’tightening’ (up) vs
’poking’ (down). (a, c) show the 3D path traces of the manipulation motions and (b,
d) their corresponding obtained patterns (left) and decomposed motion modelling
(right). The irregular oscillating wave on the x-axis in (b) corresponding to the
hand’s tightening twists contrasts the spiky motion components in (d) corresponding
to the abrupt poking strokes. The hand distance-to-plane in (b) tends downward as
the screw gets tight, while in (d) flutter around a distance.
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Fig.6.10a present two exemplary sequences of each action that show the projection
of detected 3D of vectors for the estimation of rotation angles at different frames
and in Fig.6.9b and 6.10b the evolution of estimated rotation angles at each frame
along with their standard (middle) and cumulated (right) distributions are shown;
we can observe in the latter figures that although the standard distributions of both
actions produce similar angle ranges the tightening is better distributed, less central-
ized as the poking one; additionally we can also notice the cumulated distribution of
tightening spans a wider range of angles, which means that more consecutive angles
support or reinforce the rotational motion of the hand and do not counteract as in
case of poking ; the shift to the right in the cumulated histogram in Fig.6.9b could
indicate a bias in our measurements, which can be produced by several factors i.e.,
the irregular, not symmetric surface of the hand, or that the angles are estimated
about the hand centroid and not about the actual center of rotation, etc.

Hammer: hitting vs pulling

Snapshots augmented with some framework supporting functions for the analysis
and modeling of these two actions are shown in Fig.6.11 and the obtained 3D traces
can be seen in Fig.6.12a and Fig.6.12c, respectively. The three spiky plots in the
motion modeling in Fig.6.12b give immediately the idea of an action with sudden and
sharp motion strokes that correspond to the impulse movements of the hand during
’hitting’ ; as shown in the projected pattern these motions are quite centralized and
slightly symmetric around the point being hit, the nail head. In contrast, pulling
with a hammer’s claw delineates a rather oscillating wave that is mainly reflected in
this trial on the y-axis and distance-to-plane plots in Fig.6.12d, which correspond to
the back and forth swinging ’pulling’ motions, whereas the x-axis represents a minor
motion basically produced by small and random variations of the hand position along
the principal motion, as can be observed in projected pattern.
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(a)

(b)

Figure 6.9: Representation of the rotational hand motion component during ’tight-
ening with a screwdriver’. a) Exemplary sequence of ’tightening’ frames for 3D of
projection and rotation-angles estimation: 1st row shows the 2D of detected over
the hand blob, in the 2nd row close-up views of 3D hand of inliers (black) and
outliers (orange) are shown, 3rd and 4th rows show two different views of the seg-
mented 3D hand and augmented z-axis plane for 3D of-vectors projection, last row
shows the obtained projected sets of 3D of inliers (black) and outliers (orange) onto
the hand’s z-axis plane for rotation angle estimates between frames. b) shows the
evolution of the estimated rotation angles at each frame (left) and the distribution
of these angles (middle); we can observe the cumulated rotations (right) spans a
wider range of angles corresponding to full hand turnings.
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(a)

(b)

Figure 6.10: Representation of the rotational hand motion component during ’poking
with a screwdriver’. a) Exemplary sequence of ’poking’ frames for 3D of projection
and rotation-angles estimation: 1st row shows the 2D of detected over the hand
blob, in the 2nd row close-up views of 3D hand of inliers (black) and outliers
(orange) are shown, 3rd and 4th rows show two different views of the segmented 3D
hand and augmented z-axis plane for 3D of-vectors projection, last row shows the
obtained projected sets of 3D of inliers (black) and outliers (orange) onto the hand’s
z-axis plane for rotation angle estimates between frames. b) shows the evolution of
the estimated rotation angles at each frame (left) and the standard distribution of
these angles (middle); unlike ’tightening’ in this case we can deduce by observing
the cumulated distribution (right) that consecutive angles counteract to each other
resulting in a narrow distribution, this is, no rotational motion is supported.
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Figure 6.11: Framework augmented images of ’hitting’ (up) and ’pulling’ (down)
with a hammer. path of tracked hand centroids; the next image presents a zoomed-
in view of the 3D hand of inliers (black) and outliers (orange) vectors of the hand
blob with the kf predicted (blue) and corrected (red) path points, the last image
shows a close-up view of the 3D encapsulated pattern of projected motions onto the
background plane.
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(a) (b)

(c) (d)

Figure 6.12: Manipulation modelling of actions with a hammer: ’hitting’ (up) vs
’pulling’ (down). (a, c) show the 3D path traces of the presented trials for each
action and (b, d) their corresponding obtained patterns (left) and motion modeling
(right). Although the hitting motion impulses are better perceptible in the distance-
to-plane plot, these sudden and sharp strokes are also reflected by the spikes on the
x- and y- components produced around the point being hit as shown in the plots and
projected pattern in (b); the pulling action is essentially characterized by the back-
and-forth swinging motion of the hand, which is mainly described on the y-axis and
the distance-to-plane motions, on the x-axis we can notice a minor motion basically
generated as random deviations of the hand position along the pulling trajectories
as shown in (d).
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Summary

In this chapter we presented a new modeling for physical interactions of manipula-
tion sequences. For this, the 3D tracked, motion trajectory of a person’s hand are
projected onto the immediate supporting plane and the distances of the hand to this
plane are also registered; this results in a characteristic fingerprint or manipulation
pattern of the action that is projected upon where the manipulation progression di-
rectly takes place. 3D Optical Flow estimation over the hand blob also assists to the
modeling of possible hand turns or twists during the interactions. The presented
plugin is tested for the modeling and labelling of actions in manipulation scenes
using the same object but with different functions, and also to distinguish similar
manipulation progressions but that correspond to different actions.
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Overview

In this final chapter we summarize and make some final comments and observations
about our presented work; we also present some suggestions for the extension of the
framework.
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7.1. Summary

7.1 Summary

In this work we presented a scene analysis framework based on a bottom-up hierar-
chical concept of data abstraction that organizes the incoming sensory information
(sensor-level) in essentially two coupled layers of abstraction, therefore, the frame-
work is conceptualized as hybrid, linking a geometrical and an operative or functional
layer of perception; At the lower level of perception, the geometrical layer, the cap-
tured structural data obtained from a rigid 3D point cloud is processed and orga-
nized firstly in back- and foreground regions, where the former is mainly composed
of large structures in the scene, like (part of) tables, walls, windows, furniture, etc;
and that are modelled in the framework as supporting surfaces and/or functional
areas to indicate those scene zones where an action, task or activity takes place,
while the latter (foreground regions) are further processed to obtain a set of indi-
vidual structures, 3D blobs, representing tentative object candidates; At this level
we also analyze independent sensor and object motions and apply a z-buffered re-
projection procedure for a consistent 3D object completion and mapping; diverse
tracking mechanisms as well as a specialized human-body detector were also imple-
mented, adjusted and integrated at this framework level to observe and captured
the geometric motions of dynamic actors, the doers of action(s), inside the scene.
At the higher-layer of perception functional attributes as well as dynamic proper-
ties are observed and recollected, and assigned to objects and actors; In this way,
relevant geometric components inside the scene act as physical tokens, each of them
indexing not only to own geometric properties but also to its own augmented vo-
cabulary of functional/operational knowledge; Consequently, the object candidates
can take particular context-depending meanings or roles different to small, grasp-
ing objects as shown in the RoMo implementations, where they can be considered
as vehicles or pedestrians depending on the application. The framework provides
with the required components and procedures to keep and maintain this connec-
tion, e.g., the knowledge containers, which store relevant information that is locally
recollected in the current scene, and the Atlas, which store a-priori or gained-by-
experience information about general class-object attributes and features. A higher
agent of perception or plugin for analysis and modeling of physical interactions that
utilizes the recollected information at the geometric level was also implemented and
presented in this work; as shown, our plugin is able to model and differentiate ma-
nipulation sequences when handling the same object or observing similar actions
using different objects; the agent extracts distinctive motion traits of the observed
manipulation sequences that expand the prediction horizons from a geometric scope
to a level of action or task, e.g., from tracked hand motion sequences to a writing-
or tightening-action labelling.
From the proposed framework concept and presented work we draw and summarize
the following contributions.
Flexible and structured 3D data. The sensory data, as a captured 3D rigid
geometric representation of the world is split and re-organized firstly in two main
scene regions: back- and foreground, which are, in turn, also broken down into a
set of independent bodies that represent tentative object candidates in foreground
embedded into a set of larger structures in background, like tables, walls, etc. This
flexibility in the geometry of the world representation allows us to focus, if required,
on individual analysis and update of objects or regions of interest.
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Knowledge-augmented geometry. The purely geometric information corre-
sponding to tentative objects is augmented with functionalities and attributes at
the higher layer of perception in the framework, while background geometries are
also identified and labelled in functional areas corresponding to areas where objects
acquire certain or special states or functions inside the scene; particularly in this
work plane surfaces are identified as supporting or interacting planes to indicate
those specific areas where an action or object manipulation takes place.
Foreground geometries as tokens for data inquiry. Derived from the previous
remark we can also point out that operative/functional knowledge is anchored and
indexed by the geometry of the segmented bodies in the scene: the knowledge con-
tainers, recollect locally-gained information through current scene observation, while
the Atlas is the database that contains general, a-priori or gained-by-experienced
information of the world that can be used to complete local data or to predict and
hypothesize about states, functions, shape or behavior of objects in the current
scene.
Boost of geometric-level motions to task/action-level labelling. A common
prediction horizon obtained at a geometric level by a typical tracking mechanism
that follows a target ranges in general from fractions to the order of seconds ahead
of the current target state. With our plugin we were able to expand these prediction
horizons where tracked hand motions at the geometric scope were boosted to a level
of action or task representing object-manipulation sequences, e.g., a set of hand
translation paths to a writing- or chopping-action progression, or a series of hand
turnings to the distinction of a either tightening- or poking-action manipulation.

Extensible and adjustable hybrid architecture. The presented framework is
conceived and structured on data-processing layers that correspond to increasing
levels of data perception, i.e., how the information is processed and what meaning
is given to it at each level, e.g., at a lowest level, sensor layer, we dealt merely
with two shifted arrays (for 3D points and colors) that were adjusted (calibrated)
for a proper point-color correspondence, while in our main two hybrid layers we
regroup the data in a set of 3D structures or series of points representing tentative
scene objects, regions or motion paths at the geometric layer, and that were able
to take different meanings and behaviours, like vehicles, pedestrians or actions at
the higher abstraction-layer. With this concept we did not only break an scene
analysis requirement into smaller problems but also organize these smaller issues
into abstraction-levels of data processing; this makes the framework extensible and
customizable in each layer, e.g., by integrating more tracking modalities, specific
object detectors, etc; or by adding higher agents of perception.

7.2 Future Works

In the presented work we proposed a hybrid framework that aimed to focus mainly
on the two central levels of perception that we called the geometric and abstraction
layers; we presented in Chap.2 an additional stage of data processing at sensor
level; although this stage could also be part of the geometry-layer we considered this
separation an adequate arrangement to distinguish sensory data/signal conditioning
issues from rather the core of higher data analyses, like scene segmentation, object
completion, etc.
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In the same way, many other additional features, tools and improvements can be
proposed and integrated to the framework; below we listed some potential improve-
ments and extensions we consider can be directly applicable and suitable to the
proposed concept and work.
Additional geometry-layer tools. In the geometry layer we define what and how data
of interest is extracted and represented; this means that several tools can be imple-
mented and integrated in order to capture and encode this relevant and functional
information. In this work we presented some tools that were also integrated as al-
ternative, plausible solutions to some of the encountered issues e.g., the edge-based
tracker to detect and track the pose of objects based on 3D models, the Particle
Filter (PF) to track objects or hands (wearing flashy gloves) based on color distri-
bution, or the B-Spline to detect and track human contours; in the same way, other
tools like the sift- and yolo-based object detectors that were implemented but
not yet integrated could facilitate the 3D segmentation, clustering and completion
of foreground objects; Additionally, other new tools can be integrated to contribute
with the presented work e.g., a semantic mapping could help to an automatic la-
belling of functional areas in background regions.
Interaction analysis of two-hand motions. This can be an evident extension of the
presented plugin in which with the analysis of a single hand’s motions some object
manipulation sequences are modeled and labelled as actions, like writing, drinking,
chopping, etc; the integration of the second hand in the motion analysis would con-
tribute not only to cover more manipulation sequences and reassure the already
analyzed actions, but also could help to find manipulation variants inside particu-
lar actions e.g., whether an action using the same object, a knife, corresponds to
chopping, peeling or slicing manipulation, since in these cases the guide (2nd) hand
would give us additional indications how or where the object is held.
Modeling and labelling of activities. Since an activity comprises the execution of a
consecutive series of actions, this proposal can be also considered a natural extension
of the presented work; This extension would imply the implementation of an external
plugin with a supervisory mechanism to register the non- and observed actions and
decide based also on their chronological order the labelling of the executed activity;
For example in Fig.7.1 we show a sequence of three actions with their respective
projected patterns.

(a) (b) (c) (d)

Figure 7.1: Modeling and Labelling of Activities. An exemplary sequence of three
actions and their pca-encapsulated patterns of: a) chopping, b) pushing, c) stirring;
d) shows all the pca-encapsulated pattern of the sequence, including the transporta-
tion paths, from chop to push area (green) and from push to stir (orange).

119



Chapter 7. Conclusions

Cognition/Inference layer. The presented framework covers from a lowest -sensor-
level, passing through a geometrical data representation up to a higher layer -
modeling level- of perception, the next step will be the integration of a cognition layer
following this bottom-up hierarchical concept of abstraction layers in the scene anal-
ysis; In this highest layer a learning machinery would be expected to infer, predict
and/or classify similar action patterns based on the manipulations models obtained
in the previous layer.
To conclude this chapter and work we would like to mention two alternative, related
projects which can be derived from this work, or the framework can be part of:
Helping recognizing objects by manipulation rather than by shape, as mentioned in this
work, an object is designed to fulfill a specific function based on its shape, hence,
shape and manipulation are strongly associated and complemented, knowing one
can help to infer the other; Transfer of functional properties to similar-shaped objects
Going deeper in a human way of thinking, the absent of a required object or tool
makes us to search for possible, similar-shaped substitutes in our surroundings based
on valid geometrical and functional criteria.
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