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Abstract

Computed tomography (CT) is a highly valuable imaging technique used in non-invasive medical diagnosis.
However, for soft tissue in the human body the differences in attenuation and therefore image contrast are in-
herently small. Grating-based X-ray phase-contrast imaging is a relatively new method that exploits additional
interaction mechanisms between photons and matter, namely refraction and small-angle scattering. This tech-
nique generates supplementary images with distinct contrast properties. Previous challenges arose due to
the susceptibility of the Talbot-Lau interferometer as the primary component of the experimental setup to me-
chanical vibrations. Consequently, acquiring suitable data for clinical routine has been hindered in the past.
In this thesis we propose a comprehensive processing pipeline designed to detect and analyze spatially and
temporally variable fluctuations occurring in an interferometer installed on a continuously rotating clinical CT
gantry. By leveraging correlations in the vibrations of the modular grating setup we identify a small number of
relevant fluctuation modes. This enables the reconstruction of samples without the presence of vibration arti-
facts. Furthermore, we introduce an extended signal-retrieval method that accounts for higher-order terms of
the interference pattern’s Fourier series, as well as various system movements. By combining these innovative
approaches we establish a processing pipeline that facilitates accurate and rapid tomographic reconstructions
of the linear attenuation coefficient, linear diffusion coefficient, and refractive index decrement in clinical CT
using a Talbot-Lau interferometer. The advancements presented in this thesis have the potential to significantly
improve the detection and diagnosis of lung-related conditions, thereby offering valuable insights for enhanced
patient care.





v

Zusammenfassung

Die Röntgen-Computertomographie (CT) ist ein wertvolles bildgebendes Verfahren für die nichtinvasive medi-
zinische Diagnose. Bei weichem Gewebe im menschlichen Körper sind die Unterschiede in der Abschwächung
und damit der Bildkontrast jedoch von Natur aus gering. Die gitterbasierte Röntgen-Phasenkontrast-
Bildgebung ist eine relativ neue Methode, die sich zusätzliche Wechselwirkungsmechanismen zwischen Photo-
nen und Materie zunutze macht: Brechung und Kleinwinkelstreuung. Diese Technik erzeugt zusätzliche Bilder
mit eigenständigen Kontrasteigenschaften. Bisherige Herausforderungen ergaben sich aus der Anfälligkeit des
Talbot-Lau-Interferometers als Hauptkomponente des Versuchsaufbaus für mechanische Vibrationen. Folglich
wurde die Gewinnung geeigneter Daten für die klinische Routine in der Vergangenheit behindert. In dieser
Arbeit wird eine umfassende Verarbeitungspipeline zur Erkennung und Analyse räumlich und zeitlich variabler
Fluktuationen vorgeschlagen, die in einem Interferometer auftreten, das auf einer kontinuierlich rotierenden
klinischen CT-Gantry installiert ist. Durch die Ausnutzung von Korrelationen in den Schwingungen des mod-
ularen Gitteraufbaus wird eine kleine Anzahl relevanter Fluktuationsmoden identifiziert. Dies ermöglicht die
Rekonstruktion von Proben ohne das Vorhandensein von Vibrationsartefakten. Darüber hinaus wird eine er-
weiterte Methode zur Signalgewinnung eingeführt, die Terme höherer Ordnung in der Fourier-Reihe des Inter-
ferenzmusters sowie verschiedene Systembewegungen berücksichtigt. Durch die Kombination dieser Ansätze
wird eine Verarbeitungspipeline geschaffen, die genaue und schnelle tomographische Rekonstruktionen des
linearen Absorptionskoeffizienten, des linearen Diffusionskoeffizienten und der Brechungsindexabnahme in
der klinischen CT mit einem Talbot-Lau-Interferometer ermöglicht. Die in dieser Arbeit vorgestellten Fortschritte
haben das Potenzial, die Erkennung und Diagnose von Lungenerkrankungen erheblich zu verbessern und bi-
eten damit wertvolle Erkenntnisse für eine verbesserte Patientenversorgung.





“It has captivated our imaginations
Haunted our dreams

And here it is
Spinning before our eyes.”

—Bas Oskam
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Chapter 1

Introduction

Medical imaging using X-rays is widely utilized in con-
temporary clinical practice due to its effectiveness.
It offers numerous advantages such as affordability,
speed, and the ability to provide quantitative results,
distinguishing it from magnetic resonance imaging
(MRI). Nonetheless, there are certain drawbacks as-
sociated with X-ray imaging, including radiation expo-
sure and limited contrast when imaging soft tissues.
To overcome these limitations, researchers have ex-
plored the wave properties of X-ray radiation and the
resulting refraction phenomena to enhance soft-tissue
contrast and capture functional signals from porous
structures. However, it is important to note that the
refraction angles observed in this context are typi-
cally minute, necessitating modifications to conven-
tional X-ray imaging setups to detect them accurately.
One such approach involves utilizing a Talbot-Lau in-
terferometer, which employs a grating-based phase-
contrast imaging technique.

Context Grating-based X-ray phase contrast [1–3]
uses the Talbot effect to retrieve additional information
about the sample from the X-ray wavefront. Besides
the conventional attenuation coefficient, the refractive
index decrement and small-angle scattering as the lin-
ear diffusion coefficient [4] can be obtained. It has
been shown that the latter provides signals from struc-
tures smaller than the system’s direct resolution [5–8].
A periodic intensity pattern is generated by a modu-
lation grating G1, creating self-images at specific dis-
tances. The “intensity” is the local mean of the pattern,
the relative magnitude of the modulation is called “vi-
sibility”, and the position of the pattern is the “phase”.
These quantities are altered by the presence of a sam-
ple, where attenuation leads to an overall intensity re-
duction of the pattern, refraction shifts its lateral po-
sition, and coherent small-angle scattering (diffusion)
reduces the visibility. As the interference pattern is
usually too small to be resolved directly an analyzer
grating G2 is placed in front of the detector to sub-
sample the wavefront [3]. One of the gratings is moved
in small increments to obtain the convolution of the
G2 modulation with the interference pattern at multi-
ple positions. From these data points the three sig-
nals transmission, dark-field contrast, and differential
phase shift can be retrieved. This procedure is called
“phase stepping” [3, 9]. The method was developed

with highly coherent synchrotron radiation and brought
to laboratory setups by including a third grating G0
in the interferometer [9]. Placed between G1 and a
conventional X-ray source, it transforms the latter into
many small slit sources which are mutually incoherent
but produce individual G1 interference patterns adding
up constructively at the detector plane. The combina-
tion of G0, G1, and G2 gratings is called a Talbot-Lau
interferometer. Fig. 3.1 shows a sketch of the exper-
imental setup of such an interferometer with inverse
geometry [10] in which the sample is placed between
G1 and G2.

Studies involving in-vivo pigs [5, 11] and ex-vivo hu-
man subjects [7, 12] provided compelling evidence of
the potential and feasibility of dark-field chest radiog-
raphy in humans. The translation of this technology to
human lung imaging posed challenges primarily due
to the size of the human thorax and the production dif-
ficulties associated with the reacquired gratings. The
Klinikum rechts der Isar (the university hospital of the
Technical University of Munich) successfully installed
and commissioned the first system for clinical dark-
field chest radiography [13]. This achievement marks
a significant milestone in bringing the potential of dark-
field X-ray imaging to the forefront of clinical practice,
offering new avenues for improved diagnosis, monitor-
ing, and management of lung-related conditions [14–
18].

The application of dark-field imaging extends beyond
radiography to include dark-field computed tomogra-
phy [19]. This advanced technique enables three-
dimensional visualization and analysis of the lung, of-
fering valuable insights into various pathologies. The
clinical significance of dark-field imaging lies in its abil-
ity to enhance the detection of subtle tissue changes,
such as early signs of lung diseases or the assess-
ment of treatment response. Furthermore, sophisti-
cated image processing algorithms play a crucial role
in extracting meaningful information from dark-field
images, aiding in diagnosis and treatment planning.

Research project The first Talbot-Lau interferome-
ter mounted in a continuously rotating clinical gantry
is presented in [20]. It is a modified commercial CT
platform with 70 cm bore size operated in a standard
clinical scan protocol and with sufficient field-of-view
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to capture a human. Its interferometer design [21] and
characteristics [22] have been investigated in the liter-
ature.
Unlike conventional lab-based setups, this scanner
presents a highly unstable environment for interferom-
etry due to its continuous rotation. The stepping curve
is sampled based on inherent system vibrations, elim-
inating the need for explicit phase stepping. These
vibrations introduce spatial fluctuations in intensity, vi-
sibility, and fringe phase, independent of the sample’s
properties. The movement of the gratings caused by
vibrations and centrifugal forces from rotation results
in complex spatial phase variations. Moreover, the in-
terferometer’s visibility is reduced due to the scanner’s
movement during detector exposures, effectively blur-
ring the modulation pattern. To cover the entire detec-
tor the G2 grating is constructed by combining multiple
smaller gratings with each potentially vibrating inde-
pendently. Finally, slight movements of the X-ray focal
spot on the rotating anode cause defocusing in the in-
terferometer, leading to spatial fluctuations in visibility
and intensity. The triangular G1 profile combined with
unsteady sampling of the stepping curve in a small
angular window leads to unprecedented relevance of
higher-order Fourier terms of the wavefront sampled
by the G2.

Contribution This work presents several advances
of processing algorithms used in grating-based dark-
field and phase imaging to facilitate dark-field CT with
in clinical practice.
We propose a method to model the spatio-temporal
fluctuations in a Talbot-Lau interferometer. The fluc-
tuations in visibility and phase are modeled per G2
tile as linear combinations of two-dimensional poly-
nomials. To enable reconstruction of a sample scan,
these are reduced to a joint vibration model over all G2
tiles by employing principal component analysis (PCA)
and keeping only few components after factor analy-
sis. The joint model is translated to a sample scan
and enables the estimation of tile-wise vibrations be-
hind a sample by determining the coefficients of the
PCA model outside of the sample.
We also introduce an extended signal-retrieval method
to account for higher-order terms of the interference
pattern’s Fourier series, the macroscopic movement of
the gratings during a gantry rotation, slow thermal de-
formation, and continuous sample rotation during ac-
quisition.
The combination of the presented methods forms a
processing pipeline for fast, accurate tomographic re-
constructions of linear attenuation coefficient, linear
diffusion coefficient, and refractive index decrement in
the context of clinical CT with a Talbot-Lau interferom-
eter.
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Chapter 2

Background and previous work

This chapter presents the theoretical foundations of X-
ray phase and dark-field imaging with a Talbot-Lau in-
terferometer. The chapter begins with an overview of
conventional clinical X-ray imaging techniques, includ-
ing physical processes, radiography, and CT. These
techniques have been the cornerstone of medical
imaging for many years, providing valuable insights
into the internal structures of the human body. How-
ever, they are limited in their ability to differentiate soft
tissues with similar attenuation coefficients and may
expose patients to higher doses of ionizing radiation.

The chapter then discusses the principles of X-ray
grating interferometry with clinical sources, focus-
ing on the Talbot-Lau interferometer. This innova-
tive imaging setup leverages the wave nature of X-
rays and the interference phenomena to extract ad-
ditional information beyond conventional absorption-
based imaging. The Fourier series and stepping
curve analysis are discussed, providing a mathemati-
cal framework to understand the interference patterns
generated by the grating interferometer.

The next section explores the various types of im-
age projections that can be obtained from the Talbot-
Lau interferometer. These projections include visibi-
lity, dark-field, and differential phase projections, each
capturing distinct physical phenomena and providing
complementary information about the imaged object.
The mathematical formulations and interpretations of
these projections are presented, highlighting their po-
tential for enhancing image contrast and enabling the
visualization of subtle tissue variations.

Finally, the chapter discusses the application of to-
mography to extract quantitative parameters from the
acquired projections, specifically focusing on the esti-
mation of the diffusion coefficient and refractive index
decrement. Tomography plays a crucial role in recon-
structing cross-sectional images of the imaged object
and enables the three-dimensional visualization of in-
ternal structures. The principles of tomographic re-
construction, including line integrals and the filtered
back-projection algorithm, are elaborated.
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Figure 2.1: Energy dependence of the mass attenuation
coefficient of water and calcium. The total attenuation is
the sum of photoelectric absorption, Compton, and Rayleigh
scatting, respectively. The sharp edge for calcium corre-
sponds to its K-edge at 4 keV.

2.1 Conventional clinical X-ray
imaging

In the field of medical imaging, X-ray imaging plays
a crucial role in the diagnosis and treatment of var-
ious diseases and conditions. Conventional clinical
X-ray imaging techniques, such as radiography and
CT, have been widely used for decades. In this sec-
tion, we will explain the fundamental principles under-
lying these techniques as well as their limitations. It
is largely based on the comprehensive discussions
in [23] and [24].

2.1.1 Interactions and image contrast

X-ray radiation consists of high-energy photons, i.e.
electromagnetic radiation, in the approximate energy
range of 1 keV to 1000 keV per photon. The effect rel-
evant to conventional clinical imaging is their absorp-
tion on the path from X-Ray source through patient (or
object) to the individual detector pixel. One single pho-
ton is assumed to either reach the pixel unaffected or
being completely absorbed such that it does not reach
the detector pixel—or the detector at all, to be precise.
The attenuation is therefore not an effect of a single
photon, but only defined as the reduction of an initial
beam intensity comprised of many photons.
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The attenuation of X-rays in the specified energy
range is a compound effect of multiple physical pro-
cesses where the most important three are photo-
electric absorption, Compton scattering, and Rayleigh
scattering. All of these processes depend on the X-
Ray energy E and the atomic number Z of the ma-
terial in a different way. In clinical imaging they are
combined into one macroscopic quantity, the linear at-
tenuation coefficient µ. It can be expressed as the
sum of the scattering cross sections of the individual
processes,

µ(E,Z)

ρa
= σtot (E,Z) (2.1)

= σPhoto (E,Z) + σComp (E,Z) + σRayl (E,Z) ,

with the atomic number density ρa, the total cross sec-
tion σtot (E,Z), and the cross sections σPhoto, σComp,
and σRayl of photoelectric absorption, Compton scat-
tering, and Rayleigh scattering, respectively.

The linear attenuation coefficient µ can also be moti-
vated with the complex refractive index n of a material.
It is defined as

n = 1− δ + iβ , (2.2)

with the real part 1 − δ causing a phase shift of the
electromagnetic wave and the imaginary part β being
associated with its attenuation.

We define a plane wave ψ with amplitude ψ0 traveling
in direction r with wave vector k and frequency ω,

ψ(r, t) = ψ0 exp
�
i (k · r − ωt)

�
(2.3)

= ψ0 exp
�
iω

�
(1− δ + iβ) r/c− t

��
, (2.4)

where the second line uses the dispersion relation
ω = kc/n and the assumption k · r = kr ⇔ k∥r. We
compare (2.4) with the wave in a vacuum,

ψvac (r, t) = ψ0 exp
�
iω

�
r/c− t

��
, (2.5)

where the refractive index is defined as nvac = 1 and
therefore δ = β = 0. We express (2.4) in terms of ψvac,

ψ(r, t) = ψvac(r, t) exp
�
−iδωr/c

�
exp

�
−βωr/c

�
,

(2.6)
where it becomes apparent that the wave in a medium
is influenced via a phase shift −δωr/c (first exponen-
tial term) and exponential attenuation exp

�
−βωr/c

�

(second exponential term). The phase shift is used
later in this work and not relevant to this discussion of
conventional clinical X-ray imaging.

Generally, a detector can only measure the intensity of
a signal. The intensity I(r, t) of the wave is computed
by its squared absolute value,

I(r, t) = |ψ(r, t)|2 . (2.7)

To compute the intensity of a wave traveling through a
homogeneous medium, we square (2.6) and use the
thickness d instead of r,

I(d, t) = ψ2
0 exp

�
−
�
4πβ/λ

�
d
�

(2.8)

= I0 exp (−µd) , (2.9)

with the second line using the relation ω = 2πc/λ and
the definition of the linear attenuation coefficient,

µ = 4πβ/λ . (2.10)

(2.9) is commonly called the Lambert-Beer law. It
describes the exponential attenuation of X-rays and
therefore governs the image formation in clinical X-ray
imaging. The unit of the linear attenuation coefficient
is cm-1. It is also common to provide the mass attenu-
ation coefficient µ/ρ(E) given in units of cm2 g-1 where
ρ is the density of the material, compound, or mixture
in g cm-3.

For this thesis, the exact physical processes underly-
ing the attenuation coefficient are not directly relevant.
We use it mainly as a macroscopic quantity describing
the material-specific attenuation of an X-ray beam and
thereby providing visual contrast of the human body.

2.1.2 Radiography

Radiography is a widely used X-ray imaging technique
that provides two-dimensional (2D) images of the in-
ternal structures of an object. It involves the transmis-
sion of X-rays through the object onto an X-ray detec-
tor, which captures the attenuated X-rays. The detec-
tor converts the X-rays into an electrical signal, which
is then processed to produce a radiographic image.
Corresponding to (2.9), the measured intensity I(u, v)
at pixel (u, v) is basically the shadow of the human
body in the X-ray spectrum.

A clinical X-ray source emits a broad spectrum of X-
rays that pass through the patient’s body. The X-
rays are attenuated to different extents as they inter-
act with the various tissues and structures within the
body. Dense structures, such as bones, attenuate X-
rays more than soft tissues, resulting in differences in
the transmitted X-ray intensities. These intensity vari-
ations are captured by the X-ray detector, forming the
basis for the contrast in the radiographic image.

The acquired radiographic image represents a 2D pro-
jection of the internal structures. The intensity of each
pixel in the image corresponds to the X-ray attenua-
tion along the path from the X-ray source to the de-
tector. The technique is comparatively simple, afford-
able, and requires only little radiation dose. However,
due to the superposition of structures along the X-ray
path, the resulting image may lack depth information
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Figure 2.2: Coordinate system of a cone-beam setup with a
Talbot-Lau interferometer in inverse geometry. The location
in the sample is described with (x, y, z) and on the projection
with (u, v). The X-ray beam travels along positive y. (0, 0, 0)
is in the center of the sample and (0, 0) in the center of the
projection. The stepping position of G2 is described by ξ.
The bars in each grating are along z or v, respectively. The
sample coordinates rotate with θ around z.

and suffer from overlapping structures, limiting its di-
agnostic capabilities.

2.1.3 Tomographic reconstruction

Tomography is a powerful imaging technique that al-
lows for the visualization of internal structures in a
cross-sectional manner. It reconstructs a 2D or 3D
representation of the object based on its projection
data acquired from multiple angles. This section dis-
cusses the canonical case of parallel X-ray illumina-
tion, a 2D object, and a flat detector. The coordi-
nate systems for a general cone-beam setup are il-
lustrated in Fig. 2.2. It also depicts the three gratings
of a Talbot-Lau interferometer which is discussed in
section 2.2.

Line integrals At the heart of tomographic imaging
lies the concept of line integrals, which capture the at-
tenuation of X-rays as they traverse the imaged object
along different paths. The line integral represents the
total attenuation coefficient along a line connecting the
X-ray source and the detector. Mathematically, it is ex-
pressed as an integral of the attenuation coefficient µ,

l(θ, u) =

ZZ
µ(x, y) δ(x cos(θ) + y sin(θ)− u) dx dy ,

(2.11)
where l(θ, u) is the line integral at angle θ and dis-
tance u from the center of rotation, δ( · ) is the Dirac
delta function, and µ(x, y) is the linear attenuation co-
efficient at position (x, y) within the object. This trans-
lation from µ(x, y) to l(θ, u) is called the “Radon trans-
form”. In this pure form it is only valid for parallel-beam
geometry which is the canonical case for introducing

tomographic reconstruction. In general it is called a
“tomographic forward-projection” or just “projection”.

By acquiring a set of line integrals at different angles
a projection data set is obtained which serves as the
input for the tomographic reconstruction process. The
process therefore aims to obtain µ(x, y) from projec-
tion data l(θ, u). The latter is commonly called the
“sinogram”.

As stated before, the physically measured signal is al-
ways an intensity I. We measure I(θ, u) with the ob-
ject in the beam path, I0(θ, u) without the object and
compute the line integral by taking the negative loga-
rithm of the transmission,

l(θ, u) = − ln
I(θ, u)

I0(θ, u)

= − lnT (θ, u) , (2.12)

with T (θ, u) shorthand for the transmission in angle θ
and distance u. (2.12) is a inversion of the Lambert-
Beer law (2.9).

Filtered back-projection Performing the inversion
of (2.11), i.e. obtaining µ(x, y) from l(θ, u), involves
the “Fourier slice theorem”. It states that the one-
dimensional (1D) Fourier transform Fu of the line in-
tegral along u is equivalent to a radial slice through
the 2D Fourier transform Fx,y of the original function
µ(x, y),

Fu

�
l(θ, u)

�
(ω, γ) = Fx,y

�
µ(x, y)

�
(ω cos γ,ω sin γ) ,

(2.13)
where ω and γ are radius and angle in polar coordi-
nates in Fourier space of the sample, respectively. By
measuring line integrals l(θ, u) of an unknown object
µ(x, y), we therefore radially sample the 2D Fourier
transform of µ. Instead of rebinning this polar sam-
pling into cartesian sampling and performing a 2D in-
verse Fourier transform (which is problematic in real-
world, discretized systems) to obtain µ(x, y), we can
express the inverse 2D Fourier transform in polar co-
ordinates and combine it with (2.13),

µ(x, y) =
1

2π

Z π

0

F−1
u

h
|ω| Fu

�
l(θ, u)

�i
dθ , (2.14)

where F−1
u is the 1D inverse Fourier transform along u

and the integral over θ from 0 to π is the “tomographic
backwards-projection” or simply “back-projection”. It
can be seen as a smearing over the (x, y) image plane
under angle θ. The term |ω| originates from the trans-
form to polar coordinates. It is commonly seen as a
high-pass filter, enhancing high-frequency features in
the sinogram before back-projection. Other filter terms
can be used instead to change resolution and noise of
the reconstructed image µ(x, y).
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Discretized notation In a real-world measurement
all quantities are discretized into pixels and voxels
respectively. The image is described by a vector
µ = (µi) ∈ RN with N the number of voxels of the 2D
or 3D image. The sinogram is described by the vector
l = (lj) ∈ RM with M the total number of data points,
i.e. the number of projection angles times the number
of detector pixels. The tomographic projection is writ-
ten as a matrix multiplication,

l = Aµ , (2.15)

lj =
X

i

aijµi , (2.16)

with A = (aij) ∈ RN×M the tomographic system ma-
trix. It describes the contribution of voxel i to line inte-
gral j. The tomographic back-projection is expressed
by the transpose operation,

z = A⊤l , (2.17)

zi =
X

j

aij lj , (2.18)

with z = (zi) ∈ RM . It is apparent that z is not gen-
erally identical to µ, i.e. the transpose of A is not its
inverse. Still, many introductions to tomographic re-
construction first show the back-projection of a sino-
gram, somehow expecting it to be the reconstructed
image.

The system matrix A is very sparse and far too large
to be computed and stored at once. Instead, its ele-
ments are computed on-the-fly to perform the matrix
multiplications in (2.15) and (2.17). This is typically
done on graphics processing units (GPUs), leveraging
their “single instruction, multiple data” (SIMD) archi-
tecture and texture memory for fast bilinear interpola-
tion. There are multiple techniques how to compute A
in a given geometry, all involving a tradeoff between
accuracy and computational cost [25].

2.2 X-ray grating interferometry
with clinical sources

As mentioned in the previous section, X-Rays are
electromagnetic radiation and therefore governed by
the material-specific refractive index n. While conven-
tional clinical X-ray imaging uses its imaginary part
β and associated absorption to generate image con-
trast, the real part δ also influences the radiation. More
concretely, it causes a phase shift of the incoming
wave, leading to a refraction by a certain angle α. The
reason why this is typically ignored in clinical imag-
ing is the fact that the angular change is minuscule for
X-ray energies and materials commonly found in the
human body. X-ray beams being refracted by the ob-
ject reach the same detector pixel and the refraction
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Figure 2.3: Simulated Talbot carpets for A-C the three com-
mon grating types and D the novel triangular design. The
simulation assumes monochromatic X-Ray radiation and
parallel illumination traveling from left to right. A The binary
absorption grating creates a self-image at dT and a laterally
shifted self-image at dT/2. B A phase-shifting G1 with π/2
has self-images at dT/4 and 3 dT/4. C For a π phase shift
there are self-images at (2k + 1)/16 dT with k ∈ N and the
lateral pattern period is p1/2. D A triangular phase shift with
a maximum of π creates a complex pattern with more local-
ized peaks but no distinct self-image.

therefore does not generate image contrast. One type
of optical setup to make the refraction and associated
effects visible in the context of clinical X-ray imaging is
the Talbot-Lau interferometer, presented in the follow-
ing.

2.2.1 Talbot effect

The core principle of the interferometer is the “Talbot
effect” [26]. It describes the phenomenon that a pe-
riodic structure illuminated by a plane wave creates
a diffraction pattern similar to this structure in spe-
cific distances. Here, we use a 1D grating as a pe-
riodic structure. The specific distances dT in which
self-images occur a called “Talbot distances” dT,

dT = n
2p21
λ

, (2.19)



2.2. X-ray grating interferometry with clinical sources 7

G0
G1

G2

Source

Detector
Sample

L
d

r

p1
p2

p0

yz

x

Figure 2.4: Geometry of a Talbot-Lau interferometer in a
fan-beam setup. The geometric magnification is governed
by the G0-G1 distance L and G1-G2 distance d. The grat-
ing periods p0, p1, and p2 are chosen accordingly. The G1-
object distance r determines the effective angular sensitivity.

with n ∈ Q a rational factor depending on the grating,
p1 the grating period, and λ the wavelength of the illu-
minating radiation. Conventionally, for binary absorp-
tion gratings, n ∈ N. More relevant to clinical appli-
cation are phase-shifting gratings which introduce a
periodic phase shift but have zero or little absorption
themselves to maximize dose efficiency.

This grating introducing the diffraction pattern is
commonly called “interference grating”, “beam-splitter
grating”, or simply G1. The visualization of the interfer-
ence pattern over propagation distance is called “Tal-
bot carpet”. Fig. 2.3 shows Talbot carpets simulated
with Fresnel propagation for different grating types and
monochromatic X-ray radiation. The binary attenua-
tion G1 in A has the first self-image at n = 1, and
a shifted self-image at n = 1/2. For the π/2 phase-
shifting G1 in B, self-images occur at n = 1/4 and
n = 3/4. The π phase-shifting G1 in C produces a
self-image already at n = 1/16. Additionally, the pe-
riod of the lateral intensity modulation is half the period
of the G1 itself. Finally, D shows a novel design with
a triangular phase shift, discussed in [21] and used in
the dark-field computed tomography system (DFCT).
It offers an improved overall visibility for a polychro-
matic setup and imperfect G0 and G2 gratings (which
is not visible in the ideal, monochromatic simulation of
Fig. 2.3 D.)

2.2.2 Analyzer grating

To describe the geometry of the interferometer setup,
we define the distance from a point-like X-Ray source
to grating G1 as L, and the distance from G1 to detec-
tor as d. The period p2 of the lateral intensity modula-
tion at the detector follows from geometric magnifica-
tion,

p2 = p1
L+ d

L
. (2.20)

For clinical X-Ray energies the wavelength is in the
order of picometers (λ ≈ 10−12 m). To implement a
setup with a propagation distance of meters (dT ≈
100 m) a grating period in the order of micrometers is

required (p1 ≈ 10−6 m) according to (2.19). Even for
d = 9L in (2.20) the pattern period p2 would still be
p2 = 10p1 = 10−5 m.

Common clinical X-ray detectors currently do not offer
pixel sizes small enough to resolve the interference
pattern directly. Instead, we can use an additional
grating in front of the detector to sub-sample the wave-
front. The grating is commonly called “analyzer grat-
ing” or G2. It is a binary absorption grating with period
p2 from (2.20). For a G1 with π phase shift, the inten-
sity pattern has period p1/2 and the analyzer period p2
is halved accordingly.

The intensity recorded by a detector pixel behind the
G2 grating is the convolution of the interference pat-
tern in front of the G2 with the binary absorption pro-
file of the G2 itself. It follows that (a) the measured in-
tensity is not the interference pattern itself (unless G2
has infinitesimal slit width, i.e. we convolve with the
Delta function δ( · )), and (b) multiple measurements
have to be acquired with different lateral positions in
order to completely sample the modulation pattern. (a)
poses no problem for imaging because we can still re-
trieve the relevant changes to the wavefront caused
by the object. (b) is called “stepping”: the gratings are
moved in small increments relative to each other for
each measurement, resulting in a “stepping curve” of
pixel intensities depending on lateral grating shift.

2.2.3 Source grating

In reality, the X-ray source always has some finite
extent. It results in a blurred interference pattern
computed by projecting the spatial focal spot inten-
sity profile through G1 onto the detector and perform-
ing a convolution. Typical spot sizes of clinical X-Ray
sources are larger than the interference pattern pro-
duced by the Talbot effect and would wash it out com-
pletely.

We introduce a third grating G0 into the beam path
placed between X-ray source and G1 [9]. It is a bi-
nary absorption grating and transforms the large con-
tinuous focal spot into many narrow slit sources with
each source as wide as one G0 grating slit. It is there-
fore called “source grating”. The slit sources are mu-
tually incoherent but create constructive interference
patterns at the detector if the period p0 is chosen ac-
cording to the setup geometry,

p0 = p2
L

d
, (2.21)

which is called “Lau effect” [27]. The combination of
G0, G1, and G2 gratings is therefore called “Talbot-Lau
interferometer”.
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Translation Magnification Rotation

Figure 2.5: Origin of Moire fringes. Left shows a translation
without fringes. The center illustrates periodicity mismatch
from longitudinal displacement and resulting fringes parallel
to the grating bars. Right shows rotated gratings leading to
fringes perpendicular to the grating bars. (Viewing this figure
on a computer screen may alter the fringes if the pixel size is
similar to the rendered lines. Zoom in to avoid this problem.)

2.2.4 Stepping curve

The final intensity signal measured by a detector pixel
is a combination of the wave propagation of the G1
modulation, the convolution with the analyzer grating
G2 profile, and the convolution with the source grating
G0 profile projected through G1 onto G2. A detailed
derivation of the resulting analytical equation can be
found in [28]. In this work, it is sufficient to state that
the final pixel intensity I(ξ) depending on the lateral
grating position ξ is described by a Fourier series,

I(ξ) = a0


1 +

∞X

n=1

an cos

 
n

�
2π

ξ

p2
+ ϕ

�!
 ,

(2.22)
with a0 mean magnitude of the pattern, an the Fourier
coefficients of the modulation, and ϕ a constant
macroscopic reference phase which depends on the
grating position. I(ξ) in (2.22) is commonly called the
“stepping curve”.

The “visibility” V of a modulated signal is generally de-
fined as the ratio between peak-to-peak and mean in-
tensity,

V =
Imax − Imin

Imax + Imin
. (2.23)

In the context of (2.22), the visibility of the stepping
curve is dominated by the first Fourier coefficient a1.
We can therefore approximate the visibility with this
coefficient and drop the higher terms,

I(ξ) ≈ a0

"
1 + a1 cos

�
2π

ξ

p2
+ ϕ

�#
, (2.24)

giving the canonical model in X-Ray imaging with a
Talbot-Lau interferometer and clinical sources. Param-
eters a0, a1, and ϕ are setup-specific, vary over the
interferometer area, and are determined empirically.

Unless the gratings are perfectly aligned with respect
to each other the final macroscopic intensity pattern
over the detector will be governed by Moire fringes. In

general they result from the superposition of two pe-
riodic signals with slightly different periods, illustrated
in Fig. 2.5. In a Talbot-Lau interferometer the periodic
signals are the propagated interference pattern, the
G2 absorption profile, and the G0 absorption profile at
the location of the G2. For a given setup with p0, p1,
and p2 slight deviations from (2.20) and (2.21) cause a
mismatch. In terms of (2.24) this results in the phase
ϕ varying with the detector pixel. Moving one of the
gratings changes ξ in (2.24) globally and “moves” the
Moire fringes laterally. The apparent lateral movement
of the macroscopic fringes is much larger than the ac-
tual microscopic grating displacement ξ.

2.2.5 Image contrast

The image contrast in a stepped Talbot-Lau interfer-
ometer is associated with three separate physical ef-
fects shown in Fig. 2.6. Each of them influences (2.24)
in a different way. We formulate the stepping curve
Is(ξ) with a sample in the beam path,

Is(ξ) = as
0

"
1 + as

1 cos

�
2π

ξ

p2
+ ϕs

�#
(2.25)

= a0T

"
1 + a1D cos

�
2π

ξ

p2
+ ϕ+ Φ

�#
(2.26)

with T the sample transmission, Φ the differential
phase shift, and D the so-called “dark-field” of the
sample.

Although this model is motivated by a spatial interfer-
ence pattern introduced in section 2.2.1, the contrast
mechanisms are only corresponding to changes of the
stepping curve I(ξ) within one detector pixel. The lat-
eral modulation of the signal (and its modification by
the sample) is assumed local to a pixel. The variable
ξ is the microscopic stepping position of the grating,
not the macroscopic position on the detector (u, v) in
Fig. 2.2. It follows that the image resolution does not
depend on the grating periods but on the detector res-
olution.

Absorption The image contrast via absorption in
the sample is used in conventional clinical X-ray imag-
ing and discussed in section 2.1. In short, it is the
combined effect of photoelectric absorption, Compton
scattering, and Rayleigh scattering in the sample. As
displayed in Fig. 2.6 A, it reduces the overall magni-
tude of the pattern, i.e. mean and modulation ampli-
tude. The transmission is computed as the ratio of as

0

and a0,

T =
as
0

a0
. (2.27)
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Figure 2.6: Contrast mechanisms in a Talbot-Lau interferometer. A Attenuation in the object leads to a reduced mean of
the local stepping curve. B Refraction shifts the local interference pattern laterally. C Small-angle scattering reduces the
local modulation amplitude. Note that the horizontal axis in the lineplots corresponds to lateral position ξ of the G2, not the
longitudinal beam position.

According to (2.12) we can compute the projected at-
tenuation l(θ, u) from transmission T and perform to-
mographic reconstruction, giving volumetric slices of
the linear attenuation coefficient µ.

Refraction As discussed in section 2.1.1, X-Ray ra-
diation is influenced by the real part δ of the refractive
index n, causing a material-specific refraction and lat-
eral phase shift. This effect is visualized in Fig. 2.6 B.
More precisely, the refraction angle α is proportional
to the spatial gradient of the projected electron den-
sity ρe,

α ∝ ∂

∂u

Z
ρe(x, y, z) dy , (2.28)

where we assume the X-ray beam traveling in y direc-
tion according to Fig. 2.2 for ease of notation. The
lateral interference pattern shift ∆u is proportional to
α,

∆u = d tanα ≈ dα , (2.29)

where we use the small-angle approximation for α and
G1-G2 distance d from (2.20) and Fig. 2.4. The result-
ing phase shift Φ of the stepping curve (2.26) is com-
puted using the G2 period p2,

Φ = 2π
∆u

p2
= 2π

d

p2
α = Sαα . (2.30)

The term Sα is the “angular sensitivity” of the interfer-
ometer. It connects the physically intrinsic refraction
angle α with the measured lateral phase shift Φ.

(2.30) assumes that the refraction occurs at the posi-
tion of G1. In real setups the sample is placed some-
where between G1 and G2 leading to a reduced sen-
sitivity eSα,

eSα(r) = Sα

�
1− r

d

�
, (2.31)

with r the distance from G1 to sample. For large sam-
ples with extent similar to r and d, the sensitivity varies
within the sample and makes tomographic reconstruc-
tion more complicated. For small samples, we can as-
sume a constant factor r/d.

Combining (2.28) and (2.30) we see that integrating
the phase shift Φ yields the projected electron density
ρe, Z

Φ(u) du ∝
Z

ρe(x, y, z) dy , (2.32)

with u the pixel coordinate from (2.14) and the de-
tector axis perpendicular to the grating bars, i.e. the
direction sensitive for refraction. Integrating Φ(u) is
commonly combined with filtered back-projection and
more specifically the Fourier filter acting along u. Gen-
erally, the derivative of a function f(u) can be ex-
pressed via its Fourier transform,

Fu

�
∂

∂u
f(u)

�
(ω) = 2πiωFu

�
f(u)

�
(ω) , (2.33)

with ω the coordinate in Fourier space corresponding
so u in real space. Similarly, the integral of f(u) can
be expressed via its Fourier transform,

Fu

�Z
f(u) du

�
(ω) =

Fu

�
f(u)

�
(ω)

2πiω
, (2.34)
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omitting some arbitrary constant of integration. We
combine (2.34) with the conventional equation for fil-
tered back-projection (2.14),

ρe(x, y) =

=
1

2π

Z π

0

F−1
u

"
|ω| Fu

�Z
Φ(θ, u) du

�#
dθ

=
1

2π

Z π

0

F−1
u

�
sgnω

2πi
Fu

�
Φ(θ, u)

��
dθ , (2.35)

fusing the integration of Φ(u) and filter |ω| into the
“Hilbert filter” sgnω/2πi. We can therefore obtain volu-
metric slices of the electron density ρe in the object by
performing filtered back-projection with adapted filter
weights directly on the differential phase projections
Φ.

Small-angle scattering The third contrast mecha-
nism is small-angle scattering at material interfaces
displayed in Fig. 2.6 C. The scattered X-rays still reach
the same detector pixel but the lateral coherence and
according modulation amplitude of the stepping curve
is reduced. Mathematically, a0 of (2.24) is unaffected
while a1 is lower, i.e. the visibility is reduced. The ratio
between as

1 and a1 is the dark-field signal D in (2.26),

D =
as
1

a1
. (2.36)

“Scattering” in this context means small deflections
of the X-ray beams at material intersections, i.e. mi-
croscopic changes of the electron density ρe. The
exact definition varies in the literature. In this work
we define dark-field and Rayleigh scattering to be
separate effects. While the strongly forward-directed
Rayleigh scattering in microscopically homogeneous
matter can cause a loss in lateral coherence of the
stepping curve, we would regard this effect as an arti-
fact rather than a valid source of dark-field signal.

In contrast, we do regard microscopic structures as
the cause of dark-field contrast. The X-ray beam is re-
fracted at each material interface with the normal vec-
tors of the interfaces assumed isotropic. After many
interactions the beam is “widened” and reaches the
detector pixel. The small-angle scattering in dark-field
contrast can therefore be interpreted as unresolved re-
fraction. The microscopic structures are not resolved
directly but generate a signal indicating their presence.

While the dark-field projections already offer diag-
nostic value [14–18] we can also compute a volu-
metric representation of the scattering power via to-
mographic reconstruction: the “linear diffusion coeffi-
cient” ε. It is motivated by considering a sharp X-ray

beam being widened into a Gaussian angular distribu-
tion A1(α) by a thin slice of scattering material,

A1(α) =
1

σ1

√
2π

exp

 
− α2

2σ2
1

!
, (2.37)

with azimuthal angle α from the initial beam direction
and σ1 the width of the distribution. After many such
slices, the final distribution A is a convolution of all
distributions Ai,

A(α) =
1

σ
√
2π

exp

 
− α2

2σ2

!
, (2.38)

with total width σ2 =
P

i σ
2
i . Going from discrete slices

to a continuous distribution σ(x),

σ2 =

Z
dσ2(x)

dx
dx =

Z
ε(x) dx , (2.39)

gives the scattering power density ε(x). We assume
small angles α and transform the angular distribution
A(α) into a spatial distribution eA(ξ) on the detector,

eA(ξ) =
1

σd
√
2π

exp

 
− ξ2

2d2σ2

!
, (2.40)

with d the distance between object and detector and ξ
the stepping coordinate within one pixel. The stepping
curve I(ξ) with period 2π/p2 is convolved with this lat-
eral distribution eA(ξ) resulting in a new stepping curve.
Its modulation amplitude is reduced by D,

D = exp

 
−2π2d2

p22
σ2

!

= exp

 
−S2

α

2

Z
ε(x, y) dy

!
, (2.41)

connecting the measured visibility reduction D
from (2.36) with the line integral of the linear diffu-
sion coefficient ε over y via the angular sensitivity Sα

from (2.30). The volumetric distribution ε(x, y) can
therefore be obtained from D with tomographic re-
construction analogous to the linear attenuation coef-
ficient µ in section 2.1.3.

Coming back to the discussion about the term “scat-
tering”, (2.41) highlights that we define valid dark-field
signal as generated by a mechanism subject to Gaus-
sian scattering profiles and the line integral thereof,
instead of merely reducing the observed ratio as

1/a1.
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Figure 2.7: Simulated polychromatic X-ray spectra for peak
photon energies 80 keV, 100 keV, and 120 keV. The spec-
trum is a combination of the continuous bremsstrahlung and
the distinct Kα and Kβ emission lines of the tungsten anode.

2.3 Image artifacts

The discussion so far assumed monochromatic X-ray
radiation and ideal interferometer gratings. This sec-
tion goes into image artifacts resulting from polychro-
matic X-Ray radiation and realistic gratings.

2.3.1 Spectral effects

Polychromatic X-ray spectrum The spectrum of
clinical X-ray tubes is not monochromatic. Broadly
speaking, they use a high voltage Vpeak to accelerate
electrons onto a target anode made from tungsten or
molybdenum. The electrons are decelerated or ab-
sorbed in the material which generates X-ray photons.
Their energy spectrum is a combination of the contin-
uous “bremsstrahlung” and the sharp Kα and Kβ lines
of the anode material. Simulated spectra for a tung-
sten anode and different Vpeak are shown in Fig. 2.7.

Beam-hardening As shown in Fig. 2.1 the linear at-
tenuation coefficient µ(E) depends on the X-ray en-
ergy E and generally decreases with increasing en-
ergy in the range relevant to clinical imaging. Com-
bined with the polychromatic X-ray spectrum this
leads to “beam-hardening”: the spectrum of the X-ray
beam changes while traveling through the sample be-
cause lower energies are absorbed more. The mean
attenuation coefficient is lower for the hardened beam.
Overall, this results in an underestimation of the recon-
structed µ as illustrated in Fig. 2.8.

Imperfect gratings, polychromatic visibility The
interferometer gratings are finite physical objects gov-
erned by the same physics as the measured object.
Both absorption and phase shift induced on the wave-
front depend on the X-ray energy and the gratings’
thickness, materials, and microscopic structures.
G0 and G2 are binary absorption gratings. Ideally their
transmission profile should be either 1 or 0. For real

�
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�

�������������
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Figure 2.8: Beam-hardening artifacts in the reconstructed
linear attenuation coefficient µ of two aluminum cylinders.
A shows a slice of the monochromatic simulation. B shows
the reconstructed image of a polychromatic simulation.
C,D are line profiles through the cylinders. The underesti-
mation of the attenuation coefficient manifests as cupping.

gratings, the absorption in the grating bars is finite and
decreases with increasing photon energy. Further-
more, the absorption of grating slits is non-zero be-
cause they contain “bridges” for mechanical support.
The G1 grating is either also a binary absorption or a
phase-shifting grating. In the first case, the same limi-
tations apply as for G0 and G2. For the phase-shifting
case, the phase shift is not constant but inversely pro-
portional to the X-ray energy. Additionally the thin G1
absorbs some of the radiation in its bars.

These effects lead to a interferometer visibility V (E)
that depends on the photon energy E. Simulated visi-
bility spectra are shown in Fig. 2.9 for different G1 de-
signs. For ideal G0 and G2 gratings, the visibility would
be largest for the “design energy” and decreases for
increasing X-ray energies. With realistic G0 and G2
the optimal energy is lowered. At 80 keV the visibi-
lity increases abruptly due to the K-edge of the grating
material gold.

Beam-hardening-induced visibility reduction
The spectral visibility in Fig. 2.9 decreases with
increasing X-ray energy. If the polychromatic beam
is hardened by the energy-dependent attenuation
coefficient µ(E) (as discussed before), the effective
visibility decreases even if no small-angle scattering
has occurred. This leads to an overestimation of
the diffusion coefficient ε generally in all attenuating
materials but most noticeably in homogeneous ma-
terials like water. The visibility loss ∆V (T ) can be
modeled as a function of the sample transmission
T for some homogeneous, absorbing calibration
material like polyoxymethylene (POM) [22]. After



12 Chapter 2. Background and previous work

Figure 2.9: Simulation of polychromatic visibility spectra for
different G1 designs. All gratings are simulated realistically.
For phase-shifting G1’s the design energy is 35 keV. G0 and
G2 are 200 and 300µm high and have bridge fractions of
10 % and 1 %, respectively. The absorption G1 is 200µm
high.

signal retrieval on the sample scan the acquired dark-
field D is corrected by ∆V (T ) before tomographic
reconstruction.

2.3.2 Interferometer vibrations

The Talbot-Lau interferometer described in section 2.2
is susceptible to mechanical instabilities due to its fine
grating structures. These instabilities can lead to arti-
facts in the reconstructed images, which can be mit-
igated by incorporating a parameterization of vibra-
tions into the image reconstruction process. This ap-
proach typically formulates the problem as an opti-
mization problem, where the goal is to estimate the
position of the stepped grating. The grating shift is
modeled as a global shift of the observed phase on
the detector. A widely used algorithm for this ap-
proach was presented in [29] and has been applied to
grating-based X-ray differential phase contrast in [30]
and [31]. This algorithm alternates between optimiz-
ing the images and the grating shift based on the
model likelihood. Another alternative is to maximize
image smoothness, as discussed in [32] and [33]. The
vibration parameters are determined through a nested
optimization process, which uses a linearized least-
squares algorithm for obtaining the projections during
optimization. Additionally, errors resulting from incor-
rect stepping positions can be mitigated through post-
processing techniques outlined in [34]. These tech-
niques predict artifacts based on the reference phase
image, assuming that the errors are uncorrelated with
the sample images.
Mechanical instabilities can cause gratings to vibrate,
which can lead to spatial variations in the phase of
the image. [35] proposed an alternating algorithm that
optimizes the model likelihood with respect to grating
positions and pixel-wise flat-fields. This algorithm can
determine the vibration coefficients in a single step if

only transverse shifts are considered. However, for
movements along the optical axis or rotation of the
gratings, the optimization process becomes iterative.
[36] presented a different algorithm that focuses on
correcting flux variations (i.e., global intensity offsets)
along with stepping errors. This algorithm is compu-
tationally very efficient, but it only accounts for global
offsets in intensity and phase.
[13] described a chest radiography scanning setup
that exhibits visibility fluctuations caused by the move-
ment of the interferometer during a single exposure.
To address this issue, [37] presented a processing al-
gorithm that incorporates vibrations both during and
between exposures, accounting for variations in visibi-
lity and phase.
In contrast, [38] utilized a stationary tiled interferome-
ter that does not consider tile-wise vibrations.
[39] and [40] introduced a small animal scanner
equipped with rotating gantries and gratings. The sys-
tem operates in a “step-and-shoot” mode where only
one grating position is measured per rotation angle.
The gantry moves precisely to each angular position
and remains stationary for phase stepping, rather than
rotating continuously. Due to the limited scale and ro-
tation speed of this setup, the authors observe phase
drifts dependent only on the gantry’s orientation.
[41] presented a larger phase-contrast CT system in-
corporating clinical components. This tabletop setup
involves rotating the sample, but the authors do not
discuss any form of grating vibrations.

In summary, various methods have been proposed to
address spatial phase fluctuations, combinations of
phase with visibility or flux offsets, or a combination of
these factors individually. However, none of the litera-
ture mentioned simultaneously considers spatial fluc-
tuations in all channels. Furthermore, to our know-
ledge, no previous work has focused on modeling the
coupled vibration of a tiled G2 grating.

2.4 Prototype for dark-field com-
puted tomography

The measurements in this work were conducted with
the dark-field computed tomography system (DFCT)
presented in [20]. Both its design considerations [21]
and characteristics [22] have been discussed in the
literature and most detailed in [42]. This section gives
only a brief overview of the setup.

The base unit is a commercial CT system “Brilliance
iCT SP” manufactured by “Koninklijke Philips N.V.”. It
is a state-of-the-art clinical CT system with air bear-
ings. A Talbot-Lau interferometer is mounted on the
gantry with custom holders designed by our group.
An annotated photograph of the setup is shown in
Fig. 2.10 and a schematic drawing in Fig. 2.11. The
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G2

CT gantry
G0 and G1 in 
collimator box

Human thorax phantom

Figure 2.10: Annotated photograph of the DFCT with
opened maintenance cover. It shows the gantry, the colli-
mator box containing G0 and G1, the tiled G2 in front of the
detector, and a human thorax phantom on the movable ta-
ble. Figure adapted from [20].

interferometer is in inverse geometry, meaning G0 and
G1 are placed close to the X-ray source and the object
is between G1 and G2. G0 and G1 both consist of a
single grating respectively and are mounted inside the
collimator box (“visor”) of the CT, replacing the origi-
nal bowtie filter. The G2 grating is mounted in front of
the detector and covers a large width of approximately
80 cm. It consists of multiple small gratings tiled hori-
zontally on a shared holder. Each tile can be adjusted
individually to form a consistent fringe pattern over the
full detector width.

Both X-ray source and detector are from the original
base unit. The source is a rotating anode with up to
120 kVp and 550 mA. Its focal spot can be moved be-
tween consecutive exposures to improve spatial res-
olution by emulating a half-pixel detector shift [43].
More relevant in our context is the possibility of doing
virtual stepping without moving the gratings [44] which
is not explored in this work.
The detector is an integrating flat-panel type with a
framerate of up to 4800 exposures per second. It has
64×672 pixels (rows×columns) which are 1.04 mm
high and 1.41 mm wide. Due to limitations in grat-
ing manufacturing mainly concerning the G0 height we
only use the central 32 detector rows.

The Talbot-Lau interferometer is implemented in in-
verse geometry as shown in Fig. 2.11. G0 and G1 are
placed very close to the X-ray source to maximize:

• dose efficiency: only G2 blocks radiation after the
patient,

• G2 period p2 (for a given p0): large d/L ⇒ large p2
as of (2.21),

where p0 determines the overall lateral coherence

Source trajectory
1140 mm

FOV
450

Bore
700⌀

⌀

⌀

G0
G1

G2

0

10
0

18
7

99
9

10
40

Detector

Isocenter

57
0

Figure 2.11: Schematic drawing of the DFCT. G0 and G1

are placed close to the X-ray source in “inverse” geometry.
All gratings and the detector are curved to focus on the fo-
cal spot. The effective FOV is 450 mm with a fan angle of
52.5◦. The G2 is implemented by multiple small gratings
tiled along detector width. The gaps between tiles are exag-
gerated here. All distances are given in mm.

and, for a fixed total length L + d, the maximum an-
gular sensitivity of the setup.

G0 and G2 are binary absorption gratings. Most no-
table is the small pitch of G0 given its relatively large
area, in combination representing the current state-of-
the-art in grating manufacturing [45, 46]. The G2 is im-
plemented as multiple horizontally tiled gratings. They
sit on a shared holder in which each tile can be ad-
justed to form a consistent overall fringe pattern. The
G1 is a phase grating with a triangular profile. This
novel design offers improved polychromatic visibility
and is easy to manufacture [21].

The purpose of the DFCT is tomographic dark-field
imaging of human subjects in a clinical context. We
operate the system solely with its original protocols to
ensure dose compatibility. The gantry is continuously
rotating to enable fast tomographic scans. As a conse-
quence, we can not perform stepping as with conven-
tional lab-based interferometer setups which involves
multiple exposures for every gantry angle. Instead,
we use movement of the gratings induced mainly by
the rotating anode and the cooling pump to sample
the stepping curve. This has significant implications
for the signal processing which are discussed in the
following chapters.
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Chapter 3

Air-scan processing

This chapter introduces the model for the interferom-
eter in the dynamic environment of a continuously ro-
tating clinical CT gantry. The origins and parameter-
ization of fluctuations in all image modalities are dis-
cussed. An optimization method for determining refer-
ence flat-fields terms and vibration parameterization
coefficients from raw scanner data is presented. Two
additional extensions to the conventional model are
introduced, namely higher-order visibility terms, and
macroscopic lateral movement of the gratings.

The vibration model discussed in this chapter has
been published as [47].

3.1 Grating vibrations

The canonical model of a stepped Talbot-Lau interfer-
ometer without a sample is [9]

ysimple
pt = Ip

�
1 + Vp cos

�
ϕp + γt

��
, (3.1)

with the expected intensity ysimple
pt in detector

pixel p ∈ {1, . . . , P} at stepping position index
t ∈ {1, . . . , T}, flat-field intensity Ip, flat-field visibility
Vp, flat-field phase ϕp, and the global phase shift γt in-
duced by moving one of the gratings perpendicular to
the grating bars. The flat-fields (Ip, Vp,ϕp) are intrinsic
to the interferometer setup and usually assumed to
be constant during a scan and between scans. The
only parameter which is changed between exposures
is the global phase offset γt by controlling one of
the grating positions. In laboratory setups γt can be
deliberately chosen. We use the term “explicit” phase
stepping for this conventional method. The experi-
mental setup of interest in this work is a commercial
clinical gantry platform (Brilliance iCT, Philips) which
has been retrofitted with gratings to enable human CT
scans giving dark-field contrast. The system design
is presented in [20]. The gantry is operated in a
continuously rotating manner and, given the fact that
the tube is not pulsed and the detector is read out
at 2 to 4 kHz, it is impractical to implement explicit
phase stepping. Instead, the acquisition relies on
the vibrations intrinsic to the system which generate
sufficient sampling of γt to perform phase retrieval
both for air and sample-scans. Therefore the index

Shadowing

Tile-wise
variations

G0
G1

G2

Focal
spot

Sample

Global
variations

Figure 3.1: Schematic depiction of the vibrations in the
setup [47]. The G0-G1 combination vibration creates global
phase fluctuations on the detector. The individual G2 tile
movements lead to tile-wise phase and visibility variations.
The focal spot movement creates global intensity and visibi-
lity fluctuations due to shadowing. The interference pattern
amplitude is further reduced by grating movement during an
exposure.

t refers to both the stepping position as well as the
gantry angle as they are changing simultaneously. We
use the term “implicit” phase stepping for exploiting
the vibrations to sample the stepping curve at initially
unknown points.

A schematic of the interferometer and the expected
modes of vibrations is shown in Fig. 3.1. We do not
use a single grating for sampling of the stepping curve
and all gratings are moving simultaneously. The ob-
served phase variation therefore is a compound effect
from all gratings.

As indicated in Fig. 3.1 we expect various vibrations
which will lead to a pixel- and time-dependent change
of the intensity, visibility, and phase of the interference
pattern. The model (3.1) is extended to

ypt =Ip

�
1 + Ivib

pt

�
×

×
�
1 + Vp

�
1 + V vib

pt

�
cos

�
ϕp + ϕvib

pt

��
,

(3.2)

with Ivib
pt , V vib

pt , and ϕvib
pt representing spatial and tem-

poral fluctuations over p and t.

It is obviously infeasible to fit the unknowns on the
right-hand side from the measurements ypt directly
without any parameterization. We have P × T data
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Figure 3.2: Polynomial phase shifts form grating movement
and rotation. Different deviations from the desired position
result in changing observed phase, modeled by 2D polyno-
mials. The maximum order is two perpendicular to the grat-
ing bars (x here) and one parallel to the grating bars (y here).

points versus 3 × P + 3 × P × T ≫ P × T unknowns
(three flat-fields + three vibrations terms). There-
fore we need some parameterization for the unknown
terms.

In principle, we could come up with some parame-
terization for the flat-fields Ip, Vp,ϕp. They have very
“pixel-wise” characteristics however, which are not
trivial to capture with low-dimensional functions over
p.

It is much more feasible to find a model for the vibra-
tions Ivib

pt , V
vib
pt ,ϕvib

pt over p, as we will show in the fol-
lowing. Furthermore it is more profitable in terms of
decreased degrees-of-freedom (DOF) as the number
of vibrations unknowns P × T per channel is much
larger than the number of unknowns P per flat-field.

We initially discuss the vibration model for phase and
visibility, which can be parameterized by 2D polyno-
mials. First, we will first discuss the vibration model
behind one G2 tile, which is possible because the tiles
can be treated as separate interferometers.

3.1.1 Phase fluctuations

As indicated in Fig. 3.1 we assume translations and
rotations of the G0-G1 assembly, the G2 carrier, and
the individual G2 tiles. According to [35] the resulting
changes of the phase can be accurately modeled by
low-order two-dimensional polynomials over the de-
tector behind a G2 tile. The effects are illustrated in
Fig. 3.2. We will introduce our notation for this phe-
nomenon in the following.

We define a two-dimensional polynomial term
P ij = (Pijp) of order i along the width of the detec-
tor and order j along the height of the detector in pixel
p as

Pijp = u(p)iv(p)j , (3.3)

with u(p) the u coordinate along the width and v(p)
the v coordinate along the height of the detector in
pixel p as defined in Fig. 2.2. Here, the pixel index p
refers to the area behind a single G2 tile. Each term

of the polynomial is multiplied with a coefficient γijt to
calculate the amplitude of the local phase offset per
exposure t, leading to the phase vibration

ϕvib
pt =

X

i,j

γijtPijp . (3.4)

As motivated in [35], the maximum polynomial order
along the grating bars (j here) is one, whereas the
maximum perpendicular (i here) is two. This equates
to (2 + 3) × T unknowns to describe the phase vibra-
tions for one scan (behind one G2 tile). The global
phase shift γt from (3.1) is represented in component
P00p and coefficient γ00t. This model is therefore a su-
perset of the conventional method of regarding only a
global phase change per exposure.

3.1.2 Visibility fluctuations

Additional to the phase fluctuations we experimentally
observe spatial variations in visibility. These originate
from (a) movement of the gratings during one expo-
sure and (b) movement of the focal spot. (b) causes
defocusing, or more precisely a non-perpendicular in-
cident angle of the radiation onto the grating, referred
to as “shadowing”.

Finite exposure time

We will first discuss (a): a change in total phase (i.e.
the terms inside the cosine) during an exposure gen-
erally leads to a drop in visibility for that exposure [48]
because the moving fringe pattern is spatially aver-
aged out over the exposure time. This is the case for
our scanner as it is continuously rotating and the de-
tector is read out continuously. The amount of visibility
reduction depends on the ratio between exposure time
and amount of phase change during that exposure.
This in turn depends on the strength of the vibration
and its frequency.

[48] models visibility loss with long exposure times
where one exposure integrates over many vibration
cycles. We use the model introduced in [37] due to
comparatively short exposure times at our scanner.

The coefficients γijt to describe the phase vibrations
are discretized in time t in our model (3.4). For the
context of finite exposure times, they can be regarded
as continuous variables in time τ and the vibration lin-
earized around the timepoints t as

ϕvib
p (τ) ≈ ϕvib

pt + ϕ̇vib
pt τ , (3.5)

where

ϕ̇vib
pt =

∂ϕvib
p (τ)

∂τ

�����
τ=t

. (3.6)

We therefore treat the values γijt as infinitesimal
“snapshots” of the in reality continuous phase ϕvib

p (τ).
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Figure 3.3: Visibility depending on the G2 position [21]. We
observe maximum visibility at one specific G2 distance. De-
viations from that position cause a noticeable reduction in
visibility.

Let ∆t be the exposure time during which the phase
changes. To compute the observed visibility drop, we
average the cosine of (3.2) over the exposure time ∆t:

1

∆t

t+∆t
2Z

t−∆t
2

cos
�
ϕp + ϕvib

p (τ)
�
dτ

≈
 
1− ∆t2

24

�
ϕ̇vib
pt

�2
!
cos

�
ϕp + ϕvib

pt

�
. (3.7)

To get from the integral to the approximation, we per-
form a Taylor expansion in τ of the cosine to second
order. The factor ∆t2/24 originates from the integra-
tion of the cosine.

Apparently, the space of possible visibility reductions
caused by the finite exposure time is given as a sum of
pair-wise products of the phase displacements, when
using (3.4) for ϕ̇vib

pt :

1− ∆t2

24

�
ϕ̇vib
pt

�2

= 1− ∆t2

24


X

i,j

γ̇ijtPijp




2

. (3.8)

The spatial characteristics of the visibility drop are
therefore also described by 2D polynomials, but their
effective maximum order is doubled compared to
the phase shift of (3.4). This equation underlines
our statement in the beginning of this section: the
amount of visibility loss depends on the exposure time
(squared) and the amount of phase change per expo-
sure, quantified by its “velocity” ϕ̇.

Defocusing

As mentioned as (b) before, changes of the X-ray focal
spot and/or grating location can also cause visibility
fluctuations. Ideally, the gratings are bent to a cylin-
drical surface and carefully focused onto the intended
source position. Due to their vibration they move out

of the ideal location, which leads to a reduction of visi-
bility [21]. The same is true for movement of the focal
spot. It lies on a rotating anode typical for commercial
clinical CTs which need high flux. Despite it being en-
gineered to high precision, due to the material wearing
out from electron irradiation the exact location of X-
ray generation varies slightly. This is not noticeable in
conventional absorption imaging. In the Talbot-Lau in-
terferometer in our prototype, even the slightest move-
ment changes the interference pattern and ultimately
reduces the system visibility.

We assume that the observed reduction can be also
approximated by 2D polynomials. This effect is addi-
tive to the aforementioned finite exposure time model.
We can therefore formulate a general model for the
visibility fluctuation:

V vib
pt =

X

i,j

βijtPijp . (3.9)

The maximum polynomial order in i and j is doubled
in comparison to (3.4), such that the squared phase
change in (3.7) can be modeled. The coefficients βijt

in (3.9) do not have a physical representation on their
own. They do merely empirically model the observed
total visibility fluctuation as a combination of the finite
exposure time and interferometer defocusing.

This leads to 2× (2+3)×T unknowns βijt to describe
the visibility fluctuation per G2 tile.

We want to note that the reduction of visibility varying
over exposures leads to variations of the noise level
and potentially artifacts in reconstructions of dark-field
and differential phase, as they are sensitive to the sys-
tem visibility [49]. This effect is not captured by the
presented model.

3.1.3 Principal vibration components

With the proposed tile-wise polynomial parameteriza-
tion, we can model the individual tiles for an air-scan.
This enables us to obtain satisfactory flat-fields terms
Ip, Vp, and ϕp of (3.2). They are shown and discussed
in section 3.4.1.

However, the overall goal is to measure and recon-
struct an unknown sample. A detailed discussion on
the processing pipeline itself is presented in chapter 4,
but it also motivates the air-scan processing to pro-
duce a vibration model with as little DOF as possible.
Furthermore, if the vibration over G2 tiles is correlated,
we can find a model which has joint components over
all tiles. We can approximate vibrations in the cen-
ter (behind the sample) from regions on the left- and
right-hand side of the detector (outside the sample).

It is therefore desirable to approximate the fluctuations
with few dominant, shared modes across G2 tiles, in-
stead of modeling each G2 tile separately. The tile
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movement is expected to be correlated because of the
shared G2 carrier. This leads to similar coefficients γijt
over some or all G2 tiles. It also implies correlations in
the visibility drop caused by the finite exposure time as
we expect γ̇ijt to be similar over G2 tiles. It is beneficial
to exploit these correlations and approximate the fluc-
tuations in visibility and phase with a reduced model.

We can use principal component analysis (PCA) to
find this new vibration representation. Let X ∈ RP×T

be a data matrix with P variables in the rows and T
observations in the columns. The singular value de-
composition (SVD) on X is given as

X = UΣV ⊤ , (3.10)

with the orthogonal matrix U ∈ RP×P , the diago-
nal matrix Σ ∈ RP×T , and the orthogonal matrix
V ∈ RT×T . Σ contains the singular values of X on
its diagonal which we define to be in descending or-
der so that Σ is unique. The rows of ΣV ⊤ are called
the “principal components” of X and the columns of
U are called the “principal directions” of X, i.e. the
magnitude of each principal component per observa-
tion. The principal components are used as a basis to
express the data X, where the basis components are
sorted in order of descending “importance”. We can
therefore use only the first couple basis components
to express X to a high degree of accuracy while dras-
tically reducing the amount of variables. In practice,
we use the SVD implementation in numpy.linalg.svd.

We translate our definition of PCA to be used on the
vibration terms V vib = (V vib

pt ) and ϕvib = (ϕvib
pt ). Let the

function PCA be defined as acting on a matrix X and
returning ΣV ⊤ and U⊤:

PCA(X) → (ΣV ⊤,U⊤) . (3.11)

To apply PCA on the combined fluctuations from all
G2 tiles, their terms V vib

pt and ϕvib
pt are concatenated

along the width of the interferometer and the index p
is changed from locally on a G2 tile to globally on the
detector. In practice, this simply means to use inde-
pendent polynomials per G2 tile when processing the
raw data, combining the resulting 2D vibrations to an
array with the same shape as the raw data, and apply-
ing PCA on the combined array.

It has proven useful in practice to exclude the global
fluctuations β00 and γ00 (with P00 = 1) from PCA and
use them as the “0th” component of the PCA models.
We simply add them again later to the PCA approxi-
mation in (3.14) and (3.15). This allows for an intuitive
meaning of the first term as a global visibility drop and
phase shift, respectively.

With this definition of PCA, the joint principal compo-
nents B = (Bkp) and C = (Ckp) (both ∈ RP×T ) over
all G2 tiles of the visibility and phase fluctuations are

determined via

PCA
�
V vib − β00

�
→ (B,β⋆) , (3.12)

PCA
�
ϕvib − γ00

�
→ (C,γ⋆) . (3.13)

The coefficients β⋆
kt, γ

⋆
kt ∈ RT×T correspond only to

the magnitude of principal component k at exposure t,
not to the original polynomial model. They express the
magnitude of the vibration component k in exposure t,
respectively. The joint polynomial vibration across all
G2 tiles are therefore expressed in B and C.

The fluctuations are approximated with a reduced
number B⋆ and C⋆ of modes:

V vib
pt ≈ β00t +

B⋆X

k=1

β⋆
ktBkp , (3.14)

ϕvib
pt ≈ γ00t +

C⋆X

k=1

γ⋆
ktCkp . (3.15)

The reduced set of vibration components is used for
reconstruction in a sample-scan. How to determine
B⋆ and C⋆ empirically during air-scan processing is
discussed in section 3.4.2. The most dominant com-
ponents of B and C in our prototype are shown in
Fig. 3.14.

3.1.4 Why no direct vibrations?

We briefly want to motivate why we use a parame-
terized model for V vib

pt and ϕvib
pt instead of determining

them directly from rearranging the model (3.2).

We rearrange (3.2) to isolate the visibility terms

Vp

�
1 + V vib

pt

�
=


 ŷpt

Ip

�
1 + Ivib

pt

� − 1


×

×
�
cos

�
ϕp + ϕvib

pt

��−1

,

(3.16)

with ŷpt the measured intensities. Evaluating the right-
hand side of this equation leads to numerical instability
as the cosine term can be very close to 0 and its recip-
rocal very large. It is therefore not feasible in practice.

We rearrange (3.2) in a similar manner to isolate the
phase terms

cos
�
ϕp + ϕvib

pt

�
=


 ŷpt

Ip

�
1 + Ivib

pt

� − 1


×

×
�
Vp

�
1 + V vib

pt

��−1

.

(3.17)
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Evaluating this equation is feasible, as the visibility
terms are not close to 0 and their reciprocal is nu-
merically stable. However, to obtain the phase vibra-
tion we have to compute the arccos of the right-hand
side. arccos(x) is only defined for x ∈ (−1, 1). Due
to noise and labile intermediate values, the right-hand
side of (3.17) can be /∈ (−1, 1). It is therefore also not
possible to directly compute ϕvib

pt from (3.17) in prac-
tice.

3.1.5 Intensity fluctuations

The defocusing of the interferometer caused by dis-
placements of the focal spot and grating movement,
introduced in section 3.1.2, also leads to modulations
in intensity. As shown in [21] there is a shadowing ef-
fect when grating lamella are not perfectly aligned to
the focal spot, i.e. deviate from a cylindrical surface
around the focal spot. Furthermore, imperfections in
a grating (especially cracks from bending) cause small
intensity variations, which change their projected posi-
tion on the detector when the position of the focal spot
changes. In contrast to visibility and phase vibrations,
we do not use an explicit model for these shadowing
effects in intensity. The structure of the imperfections
is too fine to be captured by (tile-wise) 2D polynomi-
als. Luckily, also in contrast to visibility and phase, we
can access the intensity vibrations directly:

Ivib
pt =

ŷpt
ypt

− 1 . (3.18)

Here, ŷpt denotes the measured values and ypt the
predicted signal including only visibility and phase
fluctuations. In other words, we use the normalized
residuum at some point in the processing pipeline—
after introducing phase and visibility vibrations—to de-
termine the main vibration modes in intensity. We
compute the global flux α00 = (α00t) ∈ RT as

α00t =



ŷpt

�
p


ŷpt
�
pt

. (3.19)

As with visibility and phase, we apply PCA on the de-
termined vibrations Ivib without the global fluctuation
α00:

PCA
�
Ivib −α00

�
→ (A,α⋆) , (3.20)

We obtain the model A = (Akp) ∈ RP×T with coeffi-
cients α⋆ = (α⋆

kt) ∈ RT×T . Again we approximate Ivib
pt

with a reduced number A⋆ of modes:

Ivib
pt ≈ α00t +

A⋆X

k=1

α⋆
ktAkp . (3.21)

How to determine A⋆ empirically is discussed in sec-
tion 3.4.2. The most dominant components of A in our
prototype are shown in Fig. 3.14.

As will be discussed later in section 3.2.3, we use 2D
polynomials spanning the whole detector as an inter-
mediate model for A during the processing pipeline.
Only at a later stage, we can calculate a good approx-
imation for Ivib and determine the final model from that
via (3.18) and (3.20).

3.2 Likelihood optimization of vi-
brations and flat-fields

This section first defines (linearized) statistical phase
retrieval and extends it to include spatial variations in
intensity, visibility, and phase. Then a minimization
around SPR is presented to determine the temporal
coefficients of the vibration model.

3.2.1 Linearized statistical phase re-
trieval

We first discuss phase retrieval regarding (3.1), mean-
ing no per-exposure changes except the global phase
offset γt. This is the established method used in con-
ventional lab-based interferometer setups. The flat-
field terms (Îp, V̂p, ϕ̂p) are determined by minimizing
the pixel-wise weighted least-squares problem

Lp(ypt, ŷpt) =

TX

t=1

�
ypt − ŷpt

�2

ypt
(3.22)

≈
TX

t=1

�
ypt − ŷpt

�2

ŷpt
, (3.23)

(Îp, V̂p, ϕ̂p) = argmin
Ip,Vp,ϕp

Lp(ypt, ŷpt) , (3.24)

with the predicted signal ypt and the measured values
ŷpt in pixel p at exposure t. The weights 1/ŷpt are mo-
tivated by the measurement being a Poisson process
and the variance of the signal ŷpt therefore approxi-
mated by the signal itself.

The minimization in (3.24) can be performed directly
by linearizing (3.1) with respect to the flat-field terms
(Ip, Vp,ϕp) [49]. A trigonometric identity and change
in variables to ap and bp is applied,

ypt = Ip + IpVp

�
cosϕp cos γt − sinϕp sin γt

�

= Ip + ap cos γt + bp sin γt , (3.25)

and (3.24) is solved for (Îp, âp, b̂p) as an overdeter-
mined linear system with T > 3. The initial flat-field
terms of (3.1) are obtained via

V̂p =

q
â2p + b̂2p

Îp
, (3.26)

ϕ̂p = arctan2(−b̂p, âp) . (3.27)
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For ease of notation the SPR can be written in matrix
form. Let ŷp = (ŷpt) ∈ RT be the vector of T measure-
ments in pixel p, wp = (wpt) ∈ RT the weight vector
with wpt = 1/ŷpt, and γ = (γt) ∈ RT the vector of
global phase offsets. The system matrix A is defined
as

A =




1 cos γ0 sin γ0
...

...
...

1 cos γT sin γT


 ∈ RT×3 . (3.28)

Note that A does not depend on the pixel p. The
weighted least squares version of the linearized model
from (3.25) is formulated in matrix notation as

�
A⊤WpA

�
xp = A⊤Wpŷp , (3.29)

with the diagonal weights matrix Wp ∈ RT×T

given as Wp = diagwp and the solution vector
xp = (Ip, ap, bp) ∈ R3. Solving (3.29) for xp is per-
formed via matrix factorization. We implement the
SPR with JAX [50] and use jax.numpy.linalg.solve,
which in turn uses LU decomposition.

We have to extend the SPR to include vibrations in
all image channels as in (3.2) in order to use it for
the DFCT. Luckily, also with the addition of vibration
terms, the cost function is still linear with respect to
(wrt.) the flat-field terms Ip, Vp, and ϕp. Only the sys-
tem matrix has to be adapted. We define the columns
of the system matrix Ap ∈ RT×3 in pixel p as

�
Ap

�
t,1

= 1 + Ivib
pt , (3.30)

�
Ap

�
t,2

=
�
1 + Ivib

pt

��
1 + V vib

pt

�
cosϕvib

pt , (3.31)
�
Ap

�
t,3

=
�
1 + Ivib

pt

��
1 + V vib

pt

�
sinϕvib

pt , (3.32)

where [ · ]t,i with i = 1, 2, 3 denotes row t and the three
columns i of Ap. The weighted least-squares problem
is formulated the same as in (3.29) except that Ap now
also depends on the pixel p:

�
A⊤

p WpAp

�
xp = A⊤

p Wpŷp . (3.33)

For a given set of vibrations Ivib
pt , V vib

pt , and ϕvib
pt we

can now compute the resulting flat-field terms Îp, V̂p,
and ϕ̂p in an efficient, parallized manner. Construct-
ing Ap and solving (3.33) for xp is implemented in
em_jax.spr.lsq_all.

3.2.2 Nested optimization of flat-fields
and vibrations

When we process an air-scan, we initially set the vi-
bration models A, B, and C to 2D (tile-wise) polyno-
mials as discussed before. But we neither know the

flat-fields I, V , and ϕ, nor the vibration coefficients α,
β, and γ. In principle, we could optimize some likeli-
hood cost function wrt. all unknowns at once. Due to
the model (3.2) being non-linear and non-convex we
would most probably not find the global minimum this
way—also known as (aka.) the physically correct solu-
tion. Instead, we split the unknowns into two groups,
flat-fields (I,V ,ϕ) and vibration coefficients (α,β,γ),
and treat them separately during optimization.

“Separately” can mean different things in this context.
One common method is alternating optimization: one
minimizes the cost function only wrt. to one set of un-
knowns to convergence, while holding the other set(s)
fixed. Then the sets are switched and the cost func-
tion is optimized wrt. the other set. While this method
is generally stable and widely used, it has been shown
that the convergence can be slow in our context [37].
Instead, we use “nested” optimization: we put in the vi-
bration coefficients (α,β,γ), build Ap to apply SPR as
in (3.33), and compute the residuum of the linearized
solve for SPR. The optimization then minimizes this
residuum wrt. the vibration coefficients, while the in-
termediate flat-fields are re-computed every iteration.
A flowchart of this optimization principle is shown in
Fig. 3.4.

More formally, for a given vibration model (A,B,C) the
pixel-wise cost function Lp is defined as a weighted
sum over the squared residuum after phase retrieval

Lp = (Apxp − ŷp)
⊤Wp(Apxp − ŷp) , (3.34)

and the sum over all pixels p gives the total cost C

C(α,β,γ) =

PX

p=1

mpLp(α,β,γ) , (3.35)

with mp the grating mask. It is 0 outside of the active
grating area and between G2 tiles (see Fig. 3.9), and
1 otherwise. For a given fluctuation model (A,B,C)
the function C(α,β,γ) is minimized with respect to the
vibration parameters

(α̂, β̂, γ̂) = argmin
α,β,γ

C(α,β,γ)
��
(A,B,C) , (3.36)

giving the optimal coefficients (α̂, β̂, γ̂).

For the first-order gradient descent algorithm used for
optimization (L-BFGS [51]), the gradient of C with re-
spect to the temporal vibration parameters has to be
computed. Of special interest is the derivative of Lp

through the SPR. The gradient of Lp with respect to
αkt is computed by

dLp

dαkt
= 2x⊤

p A
⊤
p Wp

∂Ap

∂αkt
xp − 2ŷ⊤

p Wp
∂Ap

∂αkt
xp (3.37)

= 2
�
Apxp − ŷp

�⊤
Wp

∂Ap

∂αkt
xp , (3.38)
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Current vibration models (polynomials or from PCA)

Flat-fields

ResiduumCost

SPR

Measurements ...

Vibration
coefficients

Linear combination

Vibration terms

Minimize wrt.
coefficients

Weighted with grating mask

Figure 3.4: Flowchart of the nested optimization of vibration coefficients and flat-fields. The coefficients α, β, and γ are
combined with the vibrations models A, B, and C to form vibration terms Ivib, V vib, and ϕvib. They are in turn combined
with the measurements ŷ in SPR. The pixel-wise residuum Lp of the pixel-wise linearized solve is summed over pixels p,
giving the cost function C. It it minimized wrt. the coefficients. The flat-fields Î, V̂ , and ϕ̂ are not used during optimization.
The vibration models A, B, and C are not altered during optimization (but between optimizations).

as the solution vector xp minimizes Lp by definition
and ∂Lp/∂xp = 0. Therefore the derivative ∂xp/∂αkt

through the linearized solve for xp is not necessary.
The remaining derivative ∂Ap/∂αkt is straightforward.
This concept works equivalently for βkt and γkt. It can
be seen as an application of the implicit function theo-
rem [52].

We implement the nested optimization around SPR in
JAX. The fact that ∂Lp/∂xp = 0 is expressed by using
jax.lax.stop_gradient on the solution vector xp after
the linear solve:

@jax.jit
def get_cost_after_spr(A, b):

x = jnp.linalg.solve(
jnp.dot(A.T, A),
jnp.dot(A.T, b)

)
x = jax.lax.stop_gradient(x)
L = jnp.square(jnp.dot(A, x) - b)
C = jnp.sum(L)
return C

Here, A already contains the statistical weights Wp.
This code nicely illustrates that we only need to com-
pute xp for (α,β,γ), but do not need to differentiate
through the process of computing xp. It results in a
speedup of roughly 30 %.

3.2.3 Optimization strategy

To avoid running into local minima during the optimiza-
tion, the cost function C(α,β,γ) is not optimized with
respect to all vibrations immediately: we ignore most

0

Global polynomials (    as global index)

Tile-wise polynomials (    as tile-wise index)

10987654321Tile

Figure 3.5: Illustration of global and tile-wise polynomials
Pijp. The optimization pipeline starts with treating the whole
G2 as one interferometer and using global polynomials as
vibration models. Later we allow tile-wise differences and
use tile-wise polynomials.

vibration terms in the beginning and introduce the pa-
rameters successively as outlined below. All vibration
coefficients are initialized with α = β = γ = 0. Before
being introduced, a parameter is not included in the
model.

We found the SPR to be most sensitive to a global off-
set in intensity and phase, as modeled by P00p with
Pijp defined in (3.3). A convenient method to find ap-
proximations eα00t and eγ00t for the corresponding co-
efficients is described in [53]. We briefly outline the
method with our notation here.
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We first approximate the flat-field I via the pixel-wise
mean over all exposures,

eIp =


ŷpt

�
t
, (3.39)

where ⟨ · ⟩t is the pixel-wise mean over all exposures
t. This implicitly assumes randomly distributed phase
over t, such that

�
cos

�
ϕp + ϕvib

pt

��

t

≈ 0 . (3.40)

We approximate the flux eα00t by the mean of the nor-
malized intensities ŷpt/eIp over p:

eα00t =

*
ŷpt
eIp

+

p

. (3.41)

This in turn requires that the fringes are sufficiently
small, such that

�
cos

�
ϕp + ϕvib

pt

��

p

≈ 0 . (3.42)

We compute the global phase offsets eγ00t by PCA on
the normalized intensities

PCA

 
ŷ

eα00
eI

!
→ (Y ,U) , (3.43)

where we could compute flat-fields Vp and ϕp from the
principal components Y , but don’t because we employ
nested optimization later which gives us the flat-fields
(Ip, Vp,ϕp) anyway. The important output is U = (Ukt)
with which we calculate eα00t via

eα00t = arctan

 
U2,t

U1,t

!
, (3.44)

using the first and second components of U per expo-
sure t.

Afterward we start with the main processing pipeline.
We initially approximate the whole G2 as one single in-
terferometer and introduce tile-wise terms only in the
end. We first find global offsets (including global fluc-
tuations in intensity), then global polynomials, and fi-
nally tile-wise polynomials in visibility and phase. After
global visibility and phase polynomials, we compute
an intermediate approximation of the intensity PCA
model A. It contains slight fringe artifacts and has
to be blurred, but is required to determine accurate
tile-wise vibrations in visibility and phase afterward. In
the final steps the PCA components on all channels
are computed, including an un-blurred intensity PCA
model.

In detail, the steps of the optimization pipeline are:

1. Compute eα00t and eγ00t as described in [53].

2. Introduce global phase offset (γ00t,P00p), initial-
ized with eγ00t. eα00t is kept constant.

3. Introduce global visibility offset (β00t,P00p).

4. Introduce global intensity offset (α00t,P00p)
where α00t is initialized with eα00t from step 1.

5. Introduce global phase polynomials (γijt,Pijp)
with i = 0, 1, 2 and j = 0, 1 as in (3.3).

6. Introduce global visibility polynomials (βijt,Pijp)
with i = 0, . . . , 4 and j = 0, 1, 2.

7. Determine PCA model for spatial intensity fluctu-
ations (A,α⋆) as described in (3.20) and (3.21).
Blur A with a 2D Gaussian filter over the detector.

8. Introduce tile-wise phase polynomials (γijt,Pijp)
with i = 0, 1, 2 and j = 0, 1.

9. Introduce tile-wise visibility polynomials
(βijt,Pijp) with i = 0, 1, 2, 3, 4 and j = 0, 1, 2.

10. Determine dominant vibrations in visibility (B,β⋆)
and phase (C,γ⋆) via PCA as described
in (3.13), (3.14), and (3.15).

11. Recompute PCA model for spatial intensity fluc-
tuations (A,α⋆).

Each of the steps (except 1, 7, 10 and 11) is a min-
imization of (3.36) with the L-BFGS algorithm [51] of
the current fluctuation model coefficients to a certain
small threshold ε > 0.

The optimization of the vibration coefficients (α,β,γ)
is performed via gradient-based minimization of
C(α,β,γ) with the L-BFGS algorithm. The L-BFGS
implementation used is from scipy. It requires double-
precision floating point arrays on CPU, so we copy
(α,β,γ) from GPU to CPU and cast to float64 for ev-
ery iteration. Compared to the computational cost of
computing the gradient in the first place this is cheap,
because the number of elements to move around is
small—we optimize coefficients, not images.

Orthogonality

Looking at (3.2) it becomes obvious that the three
groups of coefficients do not contribute equally to C.
Put differently, the Hessian HC of C is not a diagonal
matrix, nor are its diagonal elements equally scaled.
Ideally, this is covered by the approximated (inverse)
Hessian in the L-BFGS solver. But we can make its
task easier by (a) making sure HC is diagonal and (b)
rescaling its diagonal.

(a) is achieved by using a vibration model with pair-
wise orthogonal (and therefore completely orthogonal)
model components per channel. This makes the Hes-
sian block-wise diagonal, because the vibration coef-
ficients for one exposure are not correlated. For the
models A, B, and C from PCA, the components are
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Figure 3.6: Hessian matrix HC ∈ R60×60 wrt. the vibration
coefficients of five exposures for 2D polynomials as vibra-
tion models in intensity, visibility, and phase. A The left-hand
Hessian corresponds to non-orthogonal polynomials as de-
fined in (3.3). One bright square represents the intensity
coefficients αijt of one exposure t. The five squares in the
upper-left therefore correspond to the intensity coefficients
over five exposures, which are clearly correlated within an
exposure and over exposures, and furthermore dominate in
magnitude compared to the visibility and phase coefficients
in the center and lower-right, respectively. B The right-hand
Hessian corresponds to pair-wise orthogonal polynomials,
which are also scaled per-channel with flat-fields Î and V̂ ,
respectively. It is approximately diagonal, which is beneficial
for convergence of C.

already pair-wise orthogonal by the definition of PCA.
In contrast, the 2D polynomials P ij from (3.3) are not
pair-wise orthogonal in their original definition. We
can make them orthogonal over i, j with the Gram-
Schmidt process [54],

ePijp = Gram-Schmidtij
�
Pijp

�
, (3.45)

such that eP ij are pair-wise orthogonal polynomials
with ⟨ eP ij , ePkl⟩p = 0 if i ̸= k and j ̸= l.

(b) is analogous to the simple pre-conditioning method
of using the pre-computed inverse of the Hessian di-
agonal as a pre-conditioner. We approximate this by
scaling the vibrations models per channel by the L2
norm over pixels of the respective component P ij or
Ak. More formally, we define weighted L2-norms ∥ · ∥I

2

and ∥ · ∥V
2 for intensity and visibility,

∥x∥I
2 =

vuut
PX

p=1

�
mpIpxp

�2
, (3.46)

∥x∥V
2 =

vuut
PX

p=1

�
mpIpVpxp

�2
, (3.47)

with placeholder variable x ∈ RP and grating mask m.

We compute scaled polynomials eP I
ij , eP

V
ij , and ePϕ

ij in

intensity, visibility, and phase,

eP I
ij =

P ij

∥P ij∥I
2

, (3.48)

ePV
ij =

ePϕ

ij =
P ij

∥P ij∥V
2

, (3.49)

and use them instead of P ij from (3.3) during air-scan
processing. The application of PCA is not altered by
these polynomials. They merely improve convergence
of the cost function C, but if anything converge to the
same vibration terms V̂ vib and ϕ̂vib, which are then
put into PCA. Strictly speaking, we only use P00 in
the specified air-scan processing pipeline.

The vibration models A, B, and C from PCA are al-
ready pair-wise orthogonal in k, but not scaled wrt.
the flat-fields. We define scaled PCA models,

eAk =
Ak

∥Ak∥I
2

, (3.50)

eBk =
Bk

∥Bk∥V
2

, (3.51)

eCk =
Ck

∥Ck∥V
2

, (3.52)

and use them mainly in sample-scan processing with
the final estimation for flat-fields Î and V̂ from the air-
scan.

3.3 Further perturbations

Additionally to the modeled vibrations, we identified
additional deviations in the DFCT data from the con-
ventional model of a stepped Talbot-Lau interferom-
eter. We employ the main processing pipeline dis-
cussed until now and use the flat-fields (Î, V̂ , ϕ̂) and
vibration terms (Îvib, V̂ vib, ϕ̂vib) to determine the re-
maining perturbations discussed in the following.

We therefore implicitly assume that we can correctly
determine the flat-fields and vibrations terms before
identifying the perturbations discussed here. The gen-
eral motivation is that these effects have zero mean
over a full axial scan and do not negatively influ-
ence the air-scan processing. They do however neg-
atively influence the image quality when processing a
sample-scan, which involves phase-retrieval in small
angular windows, in which the effects have non-zero
mean. Simply put, we have to determine the perturba-
tions in the air-scan, even though we need them only
for sample-scan image quality.

3.3.1 Higher orders of visibility

As discussed in section 2.2.4 the model of a Talbot-
Lau interferometer is a Fourier series, where only the
first two terms a0 and a1 are used in practice. The
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Figure 3.7: Simulation of visibility orders depending on the G0 and G2 duty cycle for different G1 configurations. The
G1 duty cycle is 50 % in all simulations. Orange lines represent the sum of higher visibilities with even order, and green
lines the sum of odd orders. A-C The top row depicts monochromatic simulations with the gratings in the respective
optimal fractional Talbot distance. Even orders do not contribute to the visibility. D-F The bottom row shows polychromatic
simulations with a 80 kVp Tungsten spectrum and 40 keV design energy. Even orders do contribute to the visibility, but not
at duty cycle 50 %. F The triangular G1 has the strongest odd higher orders. The gray dashed line represents the DFCT
duty cycle of approximately 60 %.
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Figure 3.8: Relative visibility decrease depending on num-
ber of pixels per fringe and visibility order n. The visibility
generally decreases with finer fringes. Higher orders are af-
fected much more by this effect, because their fringes are
smaller. The DFCT is tuned to roughly ten pixels per fringe
which barely affects the first-order visibility. Negative visibil-
ities imply aliasing and a lateral phase shift of π.

higher orders a2, a3, etc. get smaller very quickly and
are typically ignored as they contribute very little to the
overall visibility contrast.

The DFCT has a phase-shifting G1 with a triangular
profile. It has been shown [21] that such a triangular
G1 has stronger higher visibility (i.e. Fourier series)
orders than a G1 with a binary profile. These are not
included in our model (3.2) so far.

Bech [55] showed that the stepping curve has only odd
terms if the analyzer grating G2 has 50 % duty cycle.

More generally, the even order Fourier terms of any ar-
bitrary function f are removed by a convolution with a
symmetric G0 or G2, whose even order Fourier series
terms are zero.

The magnitude of the terms an decreases rapidly with
n ≥ 2 mainly depending on the size of the G0 and G2
slits [28]. For symmetric G0 and G2, i.e. a duty cycle
of 50 %, an = 0 if n is even. A simulation comparing
the visibility orders for different duty cycles is shown in
Fig. 3.7. The DFCT has G0 and G2 with duty cycle of
approximately 60 % [21], leading to non-zero even visi-
bility terms. Note that the derivation in [28] is valid only
for binary G1 profiles, not for triangular phase-shifting
gratings presented in [21] and used in the DFCT.

The DFCT has a G2 with 60 % and G0 with 56 % duty
cycle [21]. This leads to non-zero (albeit small) visibil-
ities of even order as seen in Fig. 3.7. Experimentally,
we observe and use the second order V (2) and third
order V (3).

Due to the additive structure of the model including
higher-order visibilities (3.55), visibilities V (n) of order
n ≥ 2 do not influence the result of first-order SPR
(as in (3.33)) if the sampling points of the stepping
curve, i.e. γt in the conventional model (3.1) or ϕvib

pt

in (3.2), cover at least (0, 2π). Instead, they end up in
the residuum after the (linear) fit of the model to the
data.

This means that the air-scan processing does not
have to take the higher-order visibilities into account to
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obtain accurate results for flat-fields (I,V ,ϕ) and vi-
bration coefficients (α,β,γ). It applies per-pixel SPR
on T = 2400 sampling points covering (0, 10π) (see
section 3.4.2) leading to a robust fit of the first-order
model. Furthermore, even with our triangular G1,
the higher orders are still comparatively small (see
Fig. 3.10). Only for small window sizes in sliding-
window SPR they become noticeable as artifacts in
the dark-field D. We discuss these artifacts in sec-
tion 3.4 and chapter 4. Our method of determining
the higher visibility orders of the DFCT in the air-scan
processing is discussed here.

The visibility fluctuation V vib also influences higher-
order visibility terms. To quantify the effect, we extend
the notion of continuously changing phase ϕvib (τ) as
in (3.7) to higher orders n of the phase term inside the
cosine,

1

∆t

t+∆t
2Z

t−∆t
2

cos

�
n
�
ϕp + ϕvib

p (τ)
��

dτ

≈
 
1− n2∆t2

24

�
ϕ̇vib
pt

�2
!
cos

�
n
�
ϕp + ϕvib

pt

��
,

(3.53)

where we again approximate the cosine by its Taylor
expansion to second order in τ . The structure of (3.53)
is very similar to (3.7), except for the added factor
n2 for the visibility drop. We therefore assume the
spatio-temporal fluctuations of the higher-order visibi-
lity terms V vib,(n) to be approximated by the weighted
first-order fluctuations V vib,

V
vib,(n)
pt = n2V vib

pt , (3.54)

and extend the air-scan model (3.2) to include higher-
order visibility terms,

y
higher
pt = Ip

�
1 + Ivib

pt

��
1+

+

NX

n=1

V (n)
p

�
1 + n2V vib

pt

�
×

× cos

�
n
�
ϕ(n)
p + ϕvib

pt

��#
, (3.55)

with the number of visibility orders N and the a pri-
ori unknown higher-order visibilities V (n) and phases
ϕ(n). This model has the same additive structure
as (3.2) and we can perform a linearized least-squares
solve for I, V (n), and ϕ(n) in a very similar manner.
We define a pixel-wise system matrix Hp ∈ RT×(1+2N)

as
�
Hp

�
t,1

= 1 + Ivib
pt , (3.56)

�
Hp

�
t,2n

=
�
1 + Ivib

pt

��
1 + n2V vib

pt

�
cos

�
nϕvib

pt

�
,

�
Hp

�
t,2n+1

=
�
1 + Ivib

pt

��
1 + n2V vib

pt

�
sin

�
nϕvib

pt

�
,

for row t and n ∈ {1, ..., N}. Therefore Hp has 1 + 2N
columns: one for the intensity term and two per vi-
sibility order. The pixel-wise weighted least-squares
problem is formulated as

�
H⊤

p WpHp

�
xp = H⊤

p Wpŷp , (3.57)

with the statistical weights Wp from (3.33). (3.57) is
solved for xp via matrix decomposition, giving the so-
lution vector x̂p ∈ R1+2N . The solution terms Îp, V̂ (n)

p ,
and ϕ̂

(n)
p are computed from the solution vector x̂p,

Îp =
�
x̂p

�
1
, (3.58)

V̂ (n)
p = 1⧸Îp

q�
x̂p

�2
2n

+
�
x̂p

�2
2n+1

, (3.59)

ϕ̂(n)
p = arctan2

�
−
�
x̂p

�
2n+1

,
�
x̂p

�
2n

�
. (3.60)

We formulate the model (3.55) with independent
phases ϕ(n). The (linear) solve of the model for
ϕ̂(n) therefore gives numerically independent phases.
Physically, we do expect a relation between them,

ϕ(n)
p = nϕ(1)

p , (3.61)

because the model (2.2.4) is motivated from the
Fourier series description of the stepping curve in sec-
tion 2.2.4 and all orders work on the same “macro-
scopic” interferometer phase. However, we can per-
form the described linear solve (3.57) only if we treat
ϕ(n) separately. Even though this is suboptimal from
a physical point of view, it gives us the opportunity to
verify the physical sensibility of our model: we can
compare the obtained phase orders ϕ̂(n) and check
whether they satisfy (3.61). The results for the DFCT
are presented in section 3.4.1.

Concerning the empirical processing routine, we first
perform the air-scan processing pipeline as discussed
in section 3.2.3 and ignore higher-order terms. Then
we find the higher-order terms V (n) and ϕ(n) as de-
scribed here. The higher-order model (3.55) is never
used “online” in the nested optimization discussed in
section 3.2.2, but only once in the very end to deter-
mine the higher-order terms, given the previously de-
termined vibration terms Îvib, V̂ vib, and ϕ̂vib.

3.3.2 Macroscopic grating movement

The principle of image formation with a Talbot-Lau
interferometer is to detect angular deviations much
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smaller than a detector pixel. In explicit phase step-
ping, one of the gratings is moved in small increments
over one period of that grating. The grating movement
is therefore by design much smaller than the spatial
resolution of the detector. This is the reason why we
can usually assume the flat-fields I, V , and ϕ as con-
stant, because the projection of the macroscopic grat-
ing structures onto the detector does not change dur-
ing a measurement. In contrast, the vibration model
from the previous sections (and the phase modulation
in conventional setups) is assumed to be caused by
microscopic movements of the gratings.

As we will see in section 3.4.4 and Fig. 3.15 C, the
global phase γ00 moves over approximately 10π or
five grating periods during one rotation of the gantry
in the DFCT. The grating period geometrically magni-
fied onto the detector is the same for all gratings and
we can use the period p2 of the analyzer grating G2 for
further discussion. In the DFCT we have p2 = 45µm,
equating to a lateral shift of the macroscopic grating
structure of 5× 45 = 255µm. The width of the (non-
square) detector pixels is approximately 1.41 mm.
The projection of the gratings therefore changes by
0.255/1.41 ≈ 15% of a pixel. The usual assumption
that the grating movement is much smaller than a de-
tector pixel does not hold in the DFCT.

As long as the expected projected lateral movement is
smaller than one pixel, the change of the flat-fields can
be modeled by adding their respective spatial deriva-
tives,

eI ≈ I + au (∂uI) + av (∂vI) , (3.62)
eV ≈ V + au (∂uV ) + av (∂vV ) , (3.63)
eϕ ≈ ϕ+ au (∂uϕ) + av (∂vϕ) , (3.64)

where eI, eV , and eϕ are the effective projected flat-
field terms, au, av ∈ R with −1 < au, av < 1 are
the horizontal and vertical macroscopic shifts in pixel
fractions, and ∂u, ∂v denote the horizontal and vertical
spatial gradient, respectively. We omit index t in (3.62)
to (3.64) for readability, but the factors au and av do
change per exposure. Equations (3.62) to (3.64) can
be interpreted as performing a Taylor expansion to
first order, where we approximate the first derivative
as the spatial gradient. We combine these displace-
ment terms into movement terms Imov

pt , V mov
pt , and ϕmov

pt

(all ∈ RP×T ) and formulate an adapted model,

ymov
pt =

�
Ip + Imov

pt

��
1 + Ivib

pt

� h
1+

+
�
Vp + V mov

pt

��
1 + V vib

pt

�
×

× cos
�
ϕp + ϕmov

pt + ϕvib
pt

� i
, (3.65)

with vibration terms Ivib
pt , V vib

pt , and ϕvib
pt

from (3.21), (3.14), and (3.15).

Modeling Imov, V mov, and ϕmov directly over the sub-
pixel shifts au and av is impractical. The observed lat-
eral shift of the flat-fields is a compound effect of the
individual grating movements. The macroscopic struc-
tures of the gratings contribute differently to the sev-
eral flat-fields and it is therefore not guaranteed that
the observed lateral shift is identical in intensity, visi-
bility, and phase. Put differently, the modalities might
each have their own au and av.

Instead, we empirically determine the observed ef-
fect from measured air-scan data. We perform SPR
on angular subsets of the full axial air-scan with the
previously determined vibration terms (Ivib

pt , V
vib
pt ,ϕvib

pt )
incorporated into a system matrix Mpt, such that
the resulting terms constitute the effective flat-field
terms from (3.65). We define the system matrix
Mpt ∈ RM×3,

�
Mpt

�
τ,1

= 1 + Ivib
pτ ,

�
Mpt

�
τ,2

=
�
1 + Ivib

pτ

��
1 + V vib

pτ

�
cosϕvib

pτ , (3.66)
�
Mpt

�
τ,3

=
�
1 + Ivib

pτ

��
1 + V vib

pτ

�
sinϕvib

pτ ,

with M the number of adjacent exposures in one an-
gular window around exposure t and τ ∈ window(t)
the index inside that window. Compared to Ap dis-
cussed in section 3.2.1, the system matrix Mpt also
depends on the exposure t, because its index τ is al-
ways centered around it.

For a more elaborate discussion of this so-called
“sliding-window phase-retrieval”, see section 4.2.1. In
short, it is a method of determining approximations
Îmov, V̂ mov, and ϕ̂mov which have high spatial reso-
lution (pixel-wise) but lower temporal resolution (de-
termined by the angular window size M).

We formulate the according least-squares problem
similarly to section 3.2.1 as

�
M⊤

ptWptMpt

�
xpt = M⊤

ptWptŷ
(1)
pt . (3.67)

The data vector ŷ(1)
pt ∈ RM represents the measured

data ŷ around exposure t with the higher-order visi-
bility terms n > 1 subtracted, such that only the first-
order visibility remains. The weights Wpt are com-
puted accordingly. The movement terms Imov, V mov,
and ϕmov are computed from the solution vector x̂pt,

Îmov
pt =

�
x̂pt

�
1
− Îp , (3.68)

V̂ mov
pt =

1

Îmov
pt

q�
x̂pt

�2
2
+

�
x̂pt

�2
3
− V̂p , (3.69)

ϕ̂mov
pt = arctan2

�
−
�
x̂pt

�
3
,
�
x̂pt

�
2

�
− ϕ̂p , (3.70)

with the previously determined flat-fields Î, V̂ , and
ϕ̂. We determine the dominant components of Imov,
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V mov, and ϕmov with PCA,

PCA
�
Imov� →

�
RI, rI

�
, (3.71)

PCA
�
V mov� →

�
RV, rV

�
, (3.72)

PCA
�
ϕmov� →

�
Rϕ, rϕ

�
, (3.73)

and approximate the movement terms in (3.65) with
the first two components respectively,

Îmov
pt ≈

2X

k=1

rI
ktR

I
kp , (3.74)

V̂ mov
pt ≈

2X

k=1

rV
ktR

V
kp , (3.75)

ϕ̂mov
pt ≈

2X

k=1

rϕktR
ϕ
kp , (3.76)

as we expect the change being caused by lateral
movement along height and width of the detector,
modeled by (3.62) to (3.64).

In sample-scan processing, we use RI, RV, and Rϕ

determined as described above. The coefficients rI,
rV, and rϕ have to be re-determined. We can ei-
ther perform a likelihood fit similar to the vibration co-
efficients, or just use the low-frequency component
from the air-scan coefficients, because we expect the
movement to be correlated with the gantry movement
and therefore comparatively slow anyway. Results for
RI, RV, and Rϕ and the influence of movement cor-
rection on reconstructions is shown in section 3.4.3.

We can estimate the effect of the flat-field movement
terms on the sample projections after sliding-window
phase-retrieval in transmission Tpt, Dpt, and Φpt. For
that we assume that the erroneous projections eTpt,
eDpt, and eΦpt obtained without the movement consti-
tute the same total signal as the corrected projections,

eTptIp
!
= Tpt

�
Ip + Imov

pt

�
, (3.77)

eDptVp
!
= Dpt

�
Vp + V mov

pt

�
, (3.78)

eΦpt + ϕp
!
= Φpt + ϕp + ϕmov

pt , (3.79)

and obtain the following relations,

eTpt = Tpt

 
1 +

Imov
pt

Ip

!
, (3.80)

eDpt = Dpt

 
1 +

V mov
pt

Vp

!
, (3.81)

eΦpt = Φpt + ϕmov
pt . (3.82)

In phase, the error is simply additive. In transmission
and dark-field, the macroscopic movement creates an

error in the projections proportional to the movement
itself, inversely weighted with the respective flat-field.
The error is therefore larger in areas with small refer-
ence intensity or visibility, respectively. The intensity
flat-field Î in the DFCT (see Fig. 3.9) is relatively ho-
mogeneous. This makes the expected error in trans-
mission small for two reasons: a) The intensity has
no falloff at the borders of the interferometer, and b)
the spatial gradients ∂uÎ and ∂vÎ are small as well,
which determine the magnitude of the movement er-
ror as of (3.62). In visibility, we do expect a larger error
at the far left- and right-hand side of the interferometer
field of view (FOV), because the visibility magnitude
tapers off there (also see Fig. 3.9), and at the same
time the spatial gradient along the width of the detec-
tor ∂uV̂ is large. This can be circumvented by gener-
ously cropping the projections used for reconstruction,
if the sample is not too large. Alternatively, optimizing
the grating setup for homogeneous visibility lessens
this problem.

3.4 Experimental results

We discuss the results determined with the optimiza-
tion method discussed in the previous sections. An ax-
ial air-scan is used as measurement data ŷ. First, we
show the flat-field terms Î, V̂ (n), and ϕ̂(n). They char-
acterize the interferometer and are of primary interest
in conventional grating-based phase-contrast imaging,
at least for n = 1. Then, we discuss the fluctuation
models A, B, and C. They exhibit different global and
tile-wise behavior depending on the image channel.

To show the importance of this adapted model, we
employ a simple sample-processing method using a
global polynomial model (spanning all G2 tiles) on the
one hand, and our determined PCA model (A,B,C)
on the other hand. We process both another air-
scan and a measurement of a test phantom. In the
same comparison we show the impact of previously
discussed higher-order visibility terms and the macro-
scopic movement of flat-fields.

3.4.1 Flat-fields

We first show the resulting flat-fields Î, V̂ (n), and ϕ̂(n)

of an air-scan in the DFCT. They are presented in
Fig. 3.9 together with an exposure of the raw data ŷ
and the grating mask m indicating where a pixel rep-
resents usable interferometer area and therefore con-
tributes to the likelihood C in (3.35).

The intensity Î is relatively homogeneous over the
width of the detector. Only between G2 tiles and on
the far left- and right-hand side of the detector (outside
the active grating area) it is noticeably larger. This ho-
mogeneity is an effect of the bent gratings, avoiding
shadowing artifacts as discussed in [21]. A remaining
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Figure 3.9: DFCT flat-fields after processing an air-scan. A shows one exposure of the raw data ŷ. The fringes and G2

tiles are clearly visible. The tile borders manifest as bright vertical lines. B shows the intensity profile Î. It is relatively
homogeneous. Only the tile borders and especially the grating-free area on the far right are brighter than the G2 area.
C depicts the (first-order) visibility V̂ (1). Similarly to the intensity it peaks in the center with values around 30 %. It is very
low at tile borders and obviously 0 outside the grating area at the far left and right. D shows the (first-order) phase pattern
ϕ̂(1). It matches the fringes and is tuned to 4-6 vertical fringes per tile. E depicts the grating mask m. It is 0 outside the
grating area and at tile borders, and 1 otherwise.
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Figure 3.10: DFCT visibility in A first, B second, and C third order. The first-order visibility V̂ (1) reaches a maximum of
30 % in the center of the detector. Both the second and third order visibilities V̂ (2) and V̂ (3) are much smaller in overall
magnitude and are below 1 % almost everywhere. V̂ (2) is largest at G2 borders. V̂ (3) has a similar trend as V̂ (1) and is
largest in the center.
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Figure 3.11: Lineplots of DFCT higher-order visibilities
along the width of the detector. The visibility magnitude de-
creases with increasing order. Gray areas indicate invalid
values from outside the interferometer FOV.

feature is a horizontal line with slightly less intensity. It
is an effect of the detector and does not influence our
processing further.

The first-order visibility V̂ (1) peaks at 30 % and shows
a stronger horizontal gradient, being large in the
center and smaller towards the edges. Even still,

compared to unbent gratings the profile is homoge-
neous [21]. Between G2 tiles and outside of the active
grating area on the far left- and right-hand side it is
close to zero.

The pattern of the first-order phase ϕ̂(1) resembles the
fringes on the raw data ŷ. The interferometer is tuned
to four to six vertical fringes per G2 tile. This amounts
to approximately ten pixels per fringe. According to
Fig. 3.8 this fringe size has only a very small negative
effect on the visibility.

The grating mask m is zero on the far left- and right-
hand side of the detector, and between G2 tiles. Theo-
retically, our model should also be valid outside of the
grating area, as the visibility is simply zero there. But
with very low visibility comes very strong sensitivity to
noise, and it has proven useful to explicitly exclude
such areas from the vibration coefficient optimization
by masking them. As the adjustment of G2 tiles is
an elaborate process, some grating borders consist of
two-pixel columns which show up as thick black lines
in m. These lead to circular artifacts in the recon-
structed volumes because we do not employ any kind
of typewriter shift (moving detector, sample, or focal
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Figure 3.12: DFCT phase in A first, B second, and C third order. The first-order phase ϕ̂(1) visually matches the fringes of
the raw data ŷ seen in Fig. 3.9. The higher orders ϕ̂(2) and ϕ̂(3) have double and triple the spatial frequency, respectively.

spot between exposures). We discuss them in chap-
ter 4 and see that these artifacts are not noticeable
after ring correction [56].

We show higher orders of visibility V̂ (n) and phase
ϕ̂(n) in Fig. 3.10 and Fig. 3.12 for n = 1, 2, 3, respec-
tively. The higher-order visibilities V̂ (2) and V̂ (3) in
Fig. 3.10 are much smaller than the first order V̂ (1)

and below 1 % almost everywhere. V̂ (2) seems to be
largest at borders of G2 tiles. This could be caused by
the mounting brackets deforming the gratings slightly
and changing their effective duty cycle at the edges.
V̂ (3) is even smaller overall, and has a similar hori-
zontal trend as V̂ (1) in that it is largest in the center.
According lineplots for the horizontal visibility profiles
are shown in Fig. 3.11. Higher-order visibilities up to
n = 10 are shown in Fig. A.1 and are basically zero.

The phase patterns ϕ̂(2) and ϕ̂(3) in Fig. 3.12 have
double and triple the spatial frequency as ϕ̂(1), respec-
tively. This matches our expectation from (3.61). As
discussed in section 3.3.1, we expect decreasing vi-
sibility magnitude with increasing order both from the
convolution of the Talbot carpet with G0 and G2, as
well as because of the fringe period becoming smaller
than one detector pixel. We see in Fig. 3.12 that the
third-order fringes are already barely larger than one
pixel. It is therefore not surprising that for even higher
orders the determined phase patterns ϕ̂(n) are only
noise, as seen in Fig. A.2.

As stated earlier, we only use V̂ (2) and V̂ (3) for the
higher-order correction during sample-scan process-
ing. It is discussed in section 4.3.3.

3.4.2 Vibration model

We discuss the dominant spatial fluctuations (A,B,C)
determined by PCA. The number of components
A⋆ and B⋆ in intensity and visibility (as introduced
in (3.21) and (3.14)) to keep for processing a sample-
scan is chosen by plotting the singular values deter-
mined during PCA sorted by their magnitude for each
channel. These so-called “scree plots” [57] are shown
in Fig. 3.13. The magnitude of the singular values cor-
responds to the magnitude of the principal directions
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Figure 3.13: Scree plots of PCA model components for A in-
tensity, B visibility, and C phase. In A and B there are two
dominant components, after which the singular values drop
to almost zero. Therefore we choose A⋆ = B⋆ = 2. In C
the decrease is more gradual and the number C⋆ = 4 is de-
termined manually based on the quality of the reconstructed
images. The magnitudes of the singular values correspond
to the magnitudes of model coefficients shown in Fig. 3.15.

(i.e. vibration coefficients) shown in Fig. 3.15. The fac-
tors before the first “knee” of the scree plots are con-
sidered important and A⋆ and B⋆ are assigned to this
number in the respective channel. With this method
we determine A⋆ = B⋆ = 2. The principal compo-
nents k > 2 diminish very quickly and therefore con-
tribute only very little to Ivib and V vib, respectively.
The scree plot for the phase channel does not show
a pronounced first knee. C⋆ is empirically chosen by
first determining A⋆ and B⋆ and then increasing C⋆

until no visual difference in the reconstructions is per-
ceived. Here, we determine C⋆ = 4.

In principle, the number of model components A⋆, B⋆,
and C⋆ can be determined and updated after each
processed air-scan. While we do update the models
A, B, and C after each air-scan, the number of model
components in the DFCT has been constant for the
duration of this thesis.

Principal components

The dominant principal components forming the vibra-
tion models in intensity, visibility, and phase are shown
in Fig. 3.14. In the intensity channel A,B, the first
two principal components are dominated by large gra-
dients showing a distinctive left-right and outer-inner
trend, respectively. We assume they originate from the
shadowing caused by the drifting of the focal spot [21].
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Figure 3.14: The most dominant principal components of the spatial fluctuations in A,B intensity, C,D visibility, and
E-H phase. All components are scaled to [-1, 1] only for visualization. The vibrations models are determined only in
the active grating area. A,B The intensity components are a combination of large gradients over the whole detector and
small interferometer structures, respectively. Both C,D visibility and E-H phase components emanate from a tile-wise poly-
nomial model and can not express small structures. While the visibility vibration consists of mainly global gradients, the
phase components also show distinct tile-wise properties. The images shown are cut to the valid interferometer area.

Additionally, the components show fine details which
are vertical in the center and more diagonal on the
outside of the field of view (FOV). They may origi-
nate from macroscopic structures in the gratings from
bending them onto the cylindrical geometry [58].

The two visibility components C,D are also dominated
by a large trend over the width of the detector. They
resemble the intensity vibrations in that the first fac-
tor is a horizontal ramp with a flat region in the center
and the second factor has an inner-outer trend. As the
visibility fluctuation is modeled with tile-wise polynomi-
als, the components do not show fine details like the
intensity fluctuations. One can still identify tile-to-tile
differences, like the bright tile second from the right or
the details in tile corners.

The vibrations in the phase channel E-H exhibit the
most distinct tile-wise behavior. The first two prin-
cipal components E,F are smooth ramps over the
whole detector with only the right-most tile slightly
brighter. They capture the movement of the G2 car-
rier. The third and fourth components G,H however
have only tile-wise characteristics and show no dis-
cernible global trend.

Model coefficients

The determined “principal directions” aka. model co-
efficients α̂⋆, β̂⋆, and γ̂⋆ are shown in Fig. 3.15. The

global terms α̂00, β̂00, and γ̂00 dominate in all modal-
ities. We note again that these global terms could be
incorporated directly in the PCA models, but it has
proven useful in practice to discern between an arti-
ficial “global” fluctuation and the spatial vibrations de-
termined in PCA.

All coefficients in all modalities are comprised of a low-
frequency component (correlated to the gantry posi-
tion) and few high-frequency components originating
from vibrating subsystems in the DFCT, like the rotat-
ing anode and the cooling pump [22]. This becomes
apparent in the temporal Fourier spectra shown in
Fig. 3.16. They are very sparse with high-frequency
peaks at 176 Hz, 189 Hz, and 2×176 Hz, depending
on the channel. Apart from the global phase γ̂00 at
176 Hz and corresponding global visibility drop β̂00 at
2×176 Hz, all other coefficients are mainly at 189 Hz.

This work does little more than acknowledge the ex-
istence of these few dominant frequencies. Our team
has shown that the amplitude and frequency of the vi-
brations are essential to the quality of the images after
signal retrieval [59]. In contrast, here, we assume the
DFCT as-is with its given vibrations, and aim to opti-
mize the processing and reconstruction with them.
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Figure 3.15: Plot of per-shot coefficients of PCA model in
A intensity α̂⋆, B visibility β̂⋆, and C,D phase γ̂⋆. A The
intensity is mostly influenced by the global flux variation α̂00.
B The visibility reduction from the varying phase per expo-
sure is captured mostly by the global term β̂00. C The global
phase γ̂00 varies over 10π per rotation, i.e five fringe peri-
ods. The influence of the PCA model components is much
smaller. The high-frequency oscillation of γ̂00 has a range of
approximately 1.5π.

3.4.3 Movement correction

The components R̂I, R̂V, and R̂ϕ for the macroscopic
movement model of section 3.3.2 are determined on
the same axial air-scan in the DFCT and presented in
Fig. 3.17. For visualization, they are min/max-scaled
to [-1, 1]. During processing, they are instead scaled
to have the same L2 norm (analogously to the PCA
vibration model components) for better convergence,
as described in section 3.2.3. We use two model com-
ponents per channel, because we motivate the per-
turbance from macroscopic grating movement to be
similar to the spatial gradients of the respective flat-
fields. The components in Fig. 3.17 do indeed mimic
the spatial gradients of the flat-fields of the respective
channel. All components show vertical grating struc-
tures mainly in the center, which are probably caused
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Figure 3.16: Plot of Fourier spectra of per-shot coeffi-
cients of PCA model in A intensity α̂⋆, B visibility β̂⋆, and
C phase γ̂⋆. It is apparent that all vibration coefficients have
sparse frequency spectra, i.e. consist of a small number of
oscillations. The dominant frequencies are 189 Hz in in-
tensity, 189 Hz and 2×176 Hz in visibility, and 176 Hz and
189 Hz in phase.

by cracks in the substrate after bending [22]. The sec-
ond components in visibility R̂V

2 and phase R̂ϕ
2 contain

a distinct blob-like feature on the far right. It matches
the local drop in visibility in the first-order visibility flat-
field V̂ (1) shown in Fig. 3.9. The intensity components
R̂I

2 are modulated with slight, high-frequency fringe
artifacts. This is likely due to the movement being
modeled in part by the vibration model in intensity A,
as it is determined directly via PCA on the intermedi-
ate relative residuum during the processing pipeline.
The remaining movement terms should be fairly small
and apparently approach the contrast of very slight re-
maining fringe artifacts.

This assumption is validated by the visualization of the
error from movement terms in Fig. 3.18. It depicts the
mean of the absolute value of the deviation from ideal
sample projections, motivated in section 3.3.2. We
compute the mean of the absolute value (as opposed
to the value itself), because the terms have approxi-
mately zero mean over all exposures from an air-scan.
The images in Fig. 3.18 naturally resemble the model
components shown in Fig. 3.17.
The error in transmission ⟨|Îmov/Î|⟩ is roughly one or-
der of magnitude smaller than in dark-field and phase.
This is not surprising, as a) the intensity flat-field Î is
comparatively homogeneous and its spatial gradient
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Figure 3.17: Components of macroscopic flat-field movement in A,B intensity, C,D visibility, and E,F phase. All components
are min/max-scaled to [-1, 1] for visualization. Although empirically obtained by sliding-window SPR on an air-scan, they do
resemble the spatial gradients of the respective flat-fields and in that show macroscopic grating features. A,B In intensity,
slight residual fringes are visible. The images shown are cut to the valid interferometer area.
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Figure 3.18: Absolute value of projection error from flat-field movement, averaged over exposures t, in A transmission,
B dark-field, and C differential phase. All terms show a similar crack structure in the center. As expected, it mimics the
spatial gradient of the respective flat-field Î, V̂ , or ϕ̂. A The magnitude of the transmission error is smaller by roughly one
order of magnitude. B The dark-field is affected mostly on the far left and right because of the small visibility. C The phase
error has stronger features in the center than dark-field, but similar large values at the borders.

therefore small, and b) the perturbation that does oc-
cur is in part covered by the vibration model in inten-
sity, which is computed by PCA on the intermediate
model residuum.
The dark-field error is dominated by large values at the
far left- and right-hand side of the inner FOV, increas-
ing from the center. These are explained by the low
first-order visibility V̂ (1) at the interferometer borders,
as seen in Fig. 3.9. The distinct blob-like structure
near the right border also appears in the dark-field er-
ror.
The error in the phase channel is generally the largest.
Similar to the dark-field error, its magnitude increases
at the borders of the interferometer. But in contrast
to the dark-field, it also shows crack-like features in
the center. Ultimately, the projection error caused
by macroscopic flat-field movement is largest in the
phase channel.

3.4.4 Impact on reconstructed images

We show the relevance of the proposed reference
processing pipeline by comparing reconstruction re-
sults using the PCA model (A,B,C) from Fig. 3.14 to
global polynomial fluctuations P (as defined in (3.3))
in all channels. The processing pipeline used for the
sample-scans is described in section 4.2.2. The pro-
cessing pipeline for the polynomial basis is effectively
steps 1-6 from section 3.2.3 and the PCA model for in-
tensity in step 7 replaced with global polynomials Pijp

with i, j = 0, 1, 2.
In addition, we show the effect of including higher-
order visibility terms and macroscopic flat-field move-
ment as discussed in section 3.3.

Even though this chapter is concerned with process-
ing air-scans, we have to look at reconstuctions of
sample-scans to appreciate the relevance of an ac-
curate vibration model. To obtain accurate flat-fields
(Î, V̂ , ϕ̂), we would not need tile-wise polynomials or
high-resolution intensity fluctuations from PCA. Over
one axial scan of 2400 projections, the mean of the
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Figure 3.19: Comparison of air-scan reconstructions for different vibration models, higher-order correction and flat-field
movement correction in attenuation coefficient (top), diffusion coefficient (middle) and refractive index decrement (bottom).
The left-most column A,F,K shows reconstructed slices with the PCA model and both higher-order and macroscopic move-
ment correction applied, i.e. the presented method. The second column B,G,L shows the same slices with the most con-
ventional methods of a global polynomial vibration model and neither corrections. Columns three to five show the slices with
one of the presented techniques omitted, respectively. The windowing is A-E: [-3, 3] × 10-3 cm-1; F-J: [-3, 3] × 10-2 cm-1;
K-O: [-2, 2] × 10-1 cm-1.

vibrations is roughly 1 or 0, respectively, and they can
therefore be ignored in (3.2).

In contrast, accurate vibrations are important when
we apply SPR on a small set of consecutive ex-
posures. This is the case for sample-scan recon-
struction, where we perform sliding-window phase-
retrieval. Therefore, it is appropriate to compare
sample-scan reconstructions to assess the air-scan
processing.

Air-scan

We look at the reconstruction of an air-scan as a
homogeneous, known “sample”. The full detector
area can be used to determine vibration parameters
(αs,βs,γs) at the time of the “sample”-scan. This
allows us to analyze the importance of an accurate
vibration model (A,B,C) without the need for a so-
phisticated sample-scan processing pipeline. Two di-
rectly subsequent scans are performed with no sam-
ple in the beam path. One scan consists of 2400 ex-
posures over a full 360◦ gantry rotation which takes
1 s. The X-ray tube is operated at 80 kVp and 550 mA.

The second scan is used with the proposed reference
processing pipeline from section 3.2.3 to extract the
PCA vibration model shown in Fig. 3.14, the higher-
order visibility terms V̂ (2) and V̂ (3), and the movement
models R̂I, R̂V, and R̂ϕ. The first scan is processed
and reconstructed with the pipeline in chapter 4 as if
it was a sample-scan. We use eleven subsequent an-
gular views per sliding-window. The duration between
scans was 30 seconds.

The results are compared with a simplified pipeline in
which fluctuations in all channels are only modeled
with polynomials Pijp as in (3.3) up to second order
along the width and height of the whole detector. In
terms of the air-scan processing in section 3.2.3, this
equates to performing steps 1-6 with i = j = 0, 1, 2
in visibility and phase. Also in intensity, polynomials
P replace the dominant components A from PCA.
For sample-scan processing and specifically equa-
tion (4.5), the same global polynomial vibration model
is used in intensity, visibility, and phase. Therefore,
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Figure 3.20: Comparison of sample-scan reconstructions for different vibration models, higher-order correction and flat-
field movement correction in attenuation coefficient (top), diffusion coefficient (middle) and refractive index decrement
(bottom). The left-most column A,F,K shows reconstructed slices with the PCA model and both higher-order and macro-
scopic movement correction applied, i.e. the presented method. The second column B,G,L shows the same slices with
the most conventional methods of a global polynomial vibration model and neither corrections. Columns three to five
show the slices with one of the presented techniques omitted, respectively. The windowing is A-E: [-0.05, 2.2] × 10-1 cm-1;
F-J: [-2, 8] × 10-2 cm-1; K-O: [-2, 4] × 10-1 cm-1. Narrow window in B-E: [-5, 5] × 10-3 cm-1.

this simplified pipeline does not handle tile-wise vibra-
tions nor the intricate details of the intensity fluctua-
tions. Even still, it covers all established methods dis-
cussed in section 2.3.2.

We show the central slices of the resulting volumes in
linear attenuation coefficient µ̂, linear diffusion coeffi-
cient ε̂, and refractive index decrement δ̂ in Fig. 3.19.
The left-most column A,F,K represents the complete
presented pipeline, i.e. using the PCA vibration model,
higher-order visibility terms, and macroscopic flat-field
movement. All image modalities are homogeneous,
showing no distinct artifacts. The noise pattern is dif-
ferent however, with the attenuation A showing high-
frequency (white) noise, while diffusion F and refrac-
tive index K show rather patchy, low-frequency noise.
The second-from-left column B,G,L is the result of the
most conventional processing pipeline. We apply the
simple vibration model of global 2D polynomials in all
image modalities, and regard neither higher-order vis-
ibilities nor flat-field movement. The reconstructions
therefore suffer from strong, somewhat circular arti-
facts in all channels. Again, the attenuation B exhibits

features with spatially rather high frequency. The dif-
fusion G looks similar, albeit with features of approx-
imately half the spatial frequency. The refractive in-
dex L is dominated by broad ring-like structures, while
there are some finer bands visible.
The following columns isolate the omission of one
novel technique presented in this work, respectively.
The central column C,H,M shows the artifacts gen-
erated by using a naive vibration model. In attenua-
tion C only lower-frequency, circular artifacts remain.
Their apparent magnitude is slightly lower than the to-
tal error in B. The diffusion H is least affected by the
naive vibration model, exhibiting similar features to C
but smaller in magnitude. In the refractive index M
the dominating ring structures remain and are there-
fore apparently caused by incorrect vibration terms,
namely tile-wise phase fluctuations.
The second-from-right column D,I,N isolates the error
from the higher-order visibility terms. Somewhat un-
expectedly, but as explained before, the small higher-
order terms create significant artifacts in sliding-
window phase retrieval and the corresponding recon-
structed images. In attenuation D they are responsible
for the high-frequency circular features. Apparently,
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the error in transmission has double the frequency
of the fringe pattern. In contrast, these “fringe arti-
facts” in diffusion I and refractive index N have once
the fringe frequency, and look very overall very similar
to each other. In diffusion I, they pose a larger error
than vibrations in H, while in refractive index the vibra-
tions in M are much more significant.
Finally, the right-most column E,J,O visualizes the im-
pact of macroscopic flat-field movement. In both atten-
uation E and diffusion J the effect is barely noticeable
despite the narrow window. Only the refractive index
O exhibits thin circular structures mainly in the center.
They correspond to the expected projection error in C.

Overall, the artifacts resulting from naive processing
of the DFCT data are different in magnitude and struc-
ture, depending on image modality and effect. The at-
tenuation coefficient is most affected by both the vibra-
tion model and the higher-order visibility terms. In dif-
fusion, the higher-order terms dominate. The refrac-
tive index decrement shows the largest error overall
from all modalities, which in turn is generated mostly
by an incorrect vibration model, resulting in broad tile-
wise bands.

As mentioned previously, we do employ a ring re-
moval [56] on the reconstructed images. This is nec-
essary to avoid sharp concentric ring artifacts in all
channels originating from invalid sample projections at
G2 tile borders (as seen in Fig. 3.9). No such artifacts
are visible in Fig. 3.19.

Rod phantom

To assess the impact of the discussed image arti-
facts compared to the sample contrast, we conduct
the same comparisons for the scan of a test object.
It consists of a POM cylinder of 5 cm diameter and
six Falcon tubes with 3 cm diameter each, filled with
wool at three different levels of dampness, chocolate
chips, water, and neoprene, respectively. Again a
subsequent air-scan is performed to obtain the flat-
fields (Î, V̂ , ϕ̂), the dominant vibration components
(A,B,C), the higher-order visibility terms V̂ (2) and
V̂ (3), and the movement models R̂I, R̂V, and R̂ϕ. The
duration between scans was 30 seconds. All scan pa-
rameters are identical to the air-scan reconstruction.
The vibration coefficients are determined by fitting the
model (A,B,C) in the sample-free area on the far left-
and right-hand side of the interferometer.

The central slices of the reconstructions of linear
attenuation coefficient µ̂, linear diffusion coefficient
ε̂, and refractive index decrement δ̂ are shown in
Fig. 3.20. The artifacts in all channels are similar
to the air-scan reconstruction in Fig. 3.19. The win-
dowing is adapted to the full sample contrast in each
modality, and therefore enables the comparison of
noise and artifact magnitudes.

The left-most column A,F,K shows the reconstructed
images with all novel techniques employed and repre-
sents the state-of-the-art image quality in the DFCT
at the time of this thesis. The attenuation A qual-
itatively has the largest contrast-to-noise ratio, com-
pared to diffusion F and refractive index K. The POM
and water cylinders exhibit the strongest attenuation
signal. While the neoprene contrast is very low, the
attenuation of the three wool cylinders increases with
the dampness and corresponding relative water con-
tent. Overall, each material is well separated from
the noise floor. In contrast, the diffusion coefficient
F shows a much higher noise floor compared to the
sample signal. Similar to the air-scan image, no dis-
tinct artifacts are visible. The neoprene, dry wool, and
chocolate chips exhibit the strongest scattering signal,
due to their porous structure and resulting high num-
ber of uni-directional air-material interfaces. In this
comparison, we ignore the effect of beam-hardening-
induced visibility reduction [22]. It results in POM
and water having a non-zero diffusion coefficient, de-
spite the materials being homogeneous on the length
scales relevant for dark-field signal. While important
for medical imaging, this has no consequence for the
discussion of artifacts in the context of the presented
methods in this chapter. The complementary contrast
between attenuation A and diffusion F is still apparent.
The refractive index K qualitatively looks very similar
to the attenuation A, albeit with a much higher noise
floor and decreased contrast-to-noise ratio (CNR).
The second-from-left column B,G,L finally depicts the
relevance of the new techniques presented in this
chapter by relating the image errors with the sample
contrast. The artifacts themselves are unsurprisingly
very similar to Fig. 3.19. However, in attenuation B
they are only visible if a narrow window is chosen,
completely saturated from sample signal. The sam-
ple’s diffusion signal G is approximately of the same
magnitude as the image artifacts. The tubes and dif-
ferent materials in them are still discernible, but sig-
nificantly modulated by the concentric features corre-
sponding to the back-projected fringe pattern. The re-
fractive index L is affected strongest by the artifacts.
Their contrast is stronger than the sample contrast,
resulting in barely visible tubes and their contents.
The middle, second-from-right, and right columns
serve the same purpose as in Fig. 3.19, isolating the
impact of a single novel method, respectively. Again,
the attenuation is affected similarly by the vibration
model C and the higher-order correction D. In diffu-
sion, the higher-order visibilities I are most detrimen-
tal. But also an naive vibration model H lead to signif-
icant image errors. In contrast, the refractive index is
completely unusable with incorrect vibrations M. Un-
corrected higher-order terms N are less severe, but
still comparable to the total error in diffusion and sig-
nificant on their own. The macroscopic flat-field move-
ment in the right-most column E,J,O is only discernible



36 Chapter 3. Air-scan processing

in refractive index O. In these examples, it has the low-
est overall impact of the discussed effects.

3.5 Discussion

The main finding in this chapter is that by using the
proposed PCA model, we can significantly reduce the
number of parameters to model the vibration state of
each projection compared to previous methods. The
approach is quite universal and may be applied to
other setups, especially if they use a tiled G2 grating.
The number of parameters A⋆, B⋆, and C⋆ per pro-
jection might be adjusted according to the scree plots.
If the setup is reasonably stable, they have to be de-
termined only once—in contrast to the model compo-
nents (A,B,C) themselves, which should be updated
somewhat regularly.

We further propose estimating the vibration coeffi-
cients in a sample-scan on a per-projection basis from
sample-free detector area. This simple method is
used in order to validate the model and to investigate
the number of PCA components needed for a recon-
struction without vibration artifacts. If one is only inter-
ested in flat-field terms I, V , and ϕ, a simpler polyno-
mial model (or even only global flux and phase offset)
might be sufficient. But for an adequate reconstruc-
tion of an unknown sample, a more accurate vibration
model is required, as shown by the comparisons of
reconstructed images.

The proposed correction works independently of the
attenuation or phase shift of the sample. We deter-
mine the inherent interferometer vibrations, which are
independent of the sample properties in the model.
The tiles of G2 have to exhibit some joint vibration such
that the number of model parameters can be reduced
by PCA. Theoretically, the tiles could be completely in-
dependent. However, as the fluctuation is induced by
an external vibration and the tiles are mounted on a
common holder, similar vibrations can be expected in
practice. Lacking a comparable system to the DFCT,
we assume that our vibration model is universally ap-
plicable. The air-scan processing in section 3.2.3, in-
cluding tile-wise vibrations and the PCA method, is ro-
bust to noise and shortened rotation times: we can
choose a large tube current and if the statistics are
still limited by short rotation time, we can use sev-
eral gantry rotations to increase the number of data
points. The sample-scan (potentially with a patient) is
governed by dose limitations, which is a problem or-
thogonal to the vibration model.

The exact order of the optimization steps in sec-
tion 3.2.3 is empirically found and may be different for
another setup. We show the detailed algorithm due to
the novelty of the experimental platform and the lack of
comparison in the literature. It is generally advisable

to begin with the terms which influence the cost func-
tion the most, namely global intensity α00 and phase
γ00. Then we introduce global spatial fluctuations, and
then tile-wise spatial fluctuations. We do expect a very
similar pipeline to be successful in an alternative im-
plementation of a DFCT.

Reducing the spatial fluctuations in all channels—for
which we formulate the model and PCA method—
while keeping the global phase variation for sampling
may not be feasible, as the grating movement would
have to be strictly transversal. Removing one grating
may reduce system vibrations and their impact on im-
age quality. Recent work uses structured anodes [60,
61] and could make the G0 grating obsolete. How-
ever, the fact that the vibration is not the same on all
G2 tiles clearly shows that at least some vibrations
cannot be avoided by omitting G0. Furthermore, the
structured anodes can only be used for very small fan-
angles. Reducing the number of G2 tiles by imple-
menting larger tiles would naturally reduce the com-
plexity and should be a motivation for further advances
in the grating fabrication field.

We motivate, determine, and correct for higher-order
terms of the Fourier model of the stepping curve. Due
to the phase-shifting G1 with its triangular profile and
the G0 and G2 gratings with ≈ 60 % duty cycle the
observed stepping curve has stronger terms n > 1
than a conventional setup. Furthermore, these terms
cause image artifacts in our pipeline because the
phase stepping is not guaranteed to be evenly sam-
pled over 2π in every angular window. We determine
them with the proposed extended SPR algorithm, as-
suming an interferometer vibration state found with the
first-order model. The higher-order model is only used
for SPR but not in an “online” optimization of the vibra-
tions. Although not completely rigorous this procedure
has proven accurate enough in practice. However, a
closer examination of the interplay of vibrations and
higher Fourier orders is necessary to fully understand
the imaging system.

The macroscopic movement of the flat-fields is poten-
tially in part modeled by the vibration terms Ivib, V vib,
and ϕvib—which originally are motivated by spatio-
temporal fluctuations caused by microscopic move-
ment of the gratings. In visibility and phase, we model
these fluctuations with 2D polynomials. In intensity,
we compute the vibration term Ivib directly from the
relative residuum of model and measurement. This
residual probably is a combination of vibration- and
movement effects.

All in all, the corrections employed on the DFCT data
are somewhat empirical, even though motivated by
physical effects. We have no independent guaran-
tee that the terms we determine in air-scan processing
describe the underlying processes accurately and are
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phenomenologically separate. We do however deter-
mine a model which describes the data with a small
number of parameters, enabling tomographic recon-
struction of an unknown sample.

In summary, we propose a processing scheme to
identify and correct for vibrations of a Talbot-Lau in-
terferometer mounted inside a rotating clinical CT
gantry. All channels show spatial fluctuations chang-
ing between exposures which have a specific shape
over the detector. Polynomials in visibility and phase
over the whole detector and per G2 tile are used in
the data model and an implicit optimization scheme
with linearized phase retrieval as an internal layer
is employed to determine their individual magnitude
per exposure. The resulting tile-wise vibrations are
coupled by applying PCA and keeping only the first
few dominant components for processing a sample-
scan. In the intensity channel, dominant fluctuation
components are identified by PCA on the normalized
residuum. The vibration model for the intricate fluc-
tuations allows an artifact-free reconstruction in the
presence of a sample with only a small number of pa-
rameters. A comparison with a vibration model us-
ing global polynomials shows that the latter is not suf-
ficient to capture the system’s dynamics and leads
to artifacts in the reconstruction of a sample (see
Fig. 3.19 and 3.20). The proposed algorithm can be
used to identify setup-specific vibrations in a clinically
relevant platform where mechanical instabilities can
not be avoided.





39

Chapter 4

Sample-scan processing

This chapter discusses challenges and techniques
concerning determining and reconstructing the three
contrast modalities transmission, dark-field, and dif-
ferential phase of a measured sample. The main chal-
lenge lies in determining the interferometer vibrations
during the time of the sample scan. It is not trivial as
neither vibration coefficients nor the sample projec-
tions are known initially, although we generally keep
the vibration models from PCA as discussed in chap-
ter 3. We have to consider a large sample covering the
whole detector and the temporal stability of the setup.

First, we define the model with a sample in the beam
path. Then we motivate processing pipelines and op-
timization schemes for small objects where there is
sample-free detector area, and for large objects with
no sample-free area. To obtain satisfactory image
quality of the tomographic reconstructions with sliding-
window SPR we present and employ several novel
post-processing techniques.

4.1 Model notation

The coefficients αs, βs, and γs describe the state of
the interferometer vibrations at the time of the sample
scan. For ease of notation we add the DC component
P00 at index k = 0 to the PCA models from chapter 3,

A0,p := B0,p := C0,p := 1 , (4.1)

and use coefficients αs
0,t, βs

0,t, and γs
0,t instead of

αs
00t, β

s
00t, and γs

00t accordingly. We also drop the · ⋆
identifier for the sample-scan coefficients because we
do not need to differentiate between polynomials and
PCA model in this chapter.

We use helper variables I tot
pt , V tot

pt , and ϕtot
pt to describe

the complete interferometer state at the time of the

sample scan combining flat-fields and vibrations,

I tot
pt = Ip


1 +

A⋆X

k=0

Akpα
s
kt


 , (4.2)

V tot
pt = Vp


1 +

B⋆X

k=0

Bkpβ
s
kt


 , (4.3)

ϕtot
pt = ϕp +

C⋆X

k=0

Ckpγs
kt , (4.4)

and adapt the model (3.2) with vibrations but without
other perturbations accordingly,

ys
pt = TptI

tot
pt

�
1 +DptV

tot
pt cos

�
Φpt + ϕtot

pt

��
, (4.5)

with the sample’s projected transmission T , dark-field
D, and differential phase Φ under angle t in pixel
p. While the PCA models (A,B,C) are inherited un-
changed from the air-scan the coefficients αs, βs, and
γs are in general different from the air-scan and have
to be re-determined.

It should be emphasized that even though the vibra-
tion state in a sample-scan is initially unknown it is
assumed to be independent of the sample. Put differ-
ently, a sample-scan has the same characteristics in
terms of the interferometer as an air-scan, just that a
sample is also in the beam and modulates the respec-
tive parts of the model. Only because this modulation
is initially unknown the process of determining αs, βs,
and γs is different and arguably more involved. The
interferometer itself is not changed by the presence of
the sample.

We formulate the likelihood function Cs using (4.5),

Cs =

TX

t=1

PX

p=1

wpt

�
ys
pt − ŷs

pt

�2

, (4.6)

with ŷs
pt the measured intensities and wpt the statisti-

cal weights. Due to the measurement being a Pois-
son process, the weights can be approximated by
wpt ≈ 1/ŷs

pt. The optimization problem is formulated



40 Chapter 4. Sample-scan processing

Gantry angle θ

G
ra

tin
g 

po
s.

 ξ

Window

Gantry angle θ

Window

Stepping Continuous

A B

Output

Figure 4.1: Acquisition schemes for A stepping and B con-
tinuous grating movement. A Stepping requires separate
gantry and grating movement. The input window for signal
retrieval consists of one gantry angle θ over which the step-
ping position ξ is changed. B In continuous acquisition both
θ and ξ change simultaneously. The signal retrieval works
on a sliding window of exposures.

as a minimization of Cs,
�
T̂ , D̂, Φ̂, α̂s, β̂s, γ̂s

�
= argmin

T ,D,Φ,αs,βs,γs
Cs . (4.7)

In practice, it is not feasible to fit all unknowns of (4.7)
immediately. The likelihood function is highly non-
convex and it can not be expected that the determined
minimum is physically sensible (i.e. it is not the global
minimum). We can incorporate prior knowledge in the
optimization process by including only some param-
eters in the beginning with sensible initial values and
introducing more parameters step by step. The spe-
cific methods of optimizing the model are explained in
the following sections.

4.2 Alternating optimization in
projection domain

For an unstable, non-convex optimization problem it
is a common technique to split the set of parameters
into two or more groups. Each parameter set is op-
timized with respect to the objective function, while
the other sets are kept constant. After convergence
of one set, this procedure is repeated with the sets ex-
changed. In general this technique has slower overall
convergence than joint optimization, but is more ro-
bust against running into local minima [37]. For the
optimization in the context of (4.7) we split the param-
eters into two groups: projections (T ,D,Φ) and vibra-
tion coefficients (αs,βs,γs). The parameters in each
set are optimized jointly, respectively.

4.2.1 Projection optimization

For the projections, the optimization is performed via
sliding-window SPR [62]. It applies SPR on a small
angular window of consecutive exposure to determine
the sample projections of the exposure central to that

window. The current estimate for the vibration state
(α̂s, β̂s, γ̂s) is assumed constant and the model (4.5)
is linearized with respect to the sample projections T ,
D, and Φ. The system matrix As

pt ∈ RM×3 is defined
in accordance to section 3.2.1,

h
As

pt

i
τ,1

= I tot
pτ , (4.8)

h
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pt

i
τ,2

= I tot
pτV
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�
, (4.9)

h
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i
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pτV

tot
pτ sin

�
ϕtot
pτ

�
, (4.10)

with

τ ∈ window(t) , (4.11)

window(t) =
�
t− ⌊M/2⌋, . . . , t+ ⌊M/2⌋

	
, (4.12)

and M the user-defined number of consecutive expo-
sures used for a window. It is usually an odd num-
ber so that the index t really is in the center of the
window. The indexing is wrapped around the scan’s
end in the case of an axial scan. We formulate the
weighted least-squares problem per output pixel p and
output angle t,

��
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Wptŷ

s
pt . (4.13)

We solve (4.13) for x̂s
pt with LU decomposition in JAX

and compute the sample projections,

T̂pt =
h
x̂s
pt

i
1
, (4.14)
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Φ̂pt = arctan2
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x̂s
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i
3
,
h
x̂s
pt

i
2

�
. (4.16)

Although this mathematical notation is cumbersome,
the actual computation is quite simple: to obtain the
sample’s projections under angle t, we use SPR on
the adjacent projections around t with flat-fields and vi-
brations as input. In comparison to chapter 3, the sys-
tem matrix As

pt depends on output pixel p and output
angle t. The larger number of indices (As

pt depends
on p and t, and is then indexed with τ ) is explained by
every output projection t having its own input window
of exposures τ ∈ window(t).

Sliding-window SPR involves the implicit assumption
that the sample does not rotate and its projections
do not change over the input angle τ , illustrated in
Fig. 4.1. This is obviously not the case in a contin-
uously rotating system. The discrepancy results in
“rotation” artifacts which are especially strong in re-
gions where the sample’s projections change quickly.
This is the case at sample edges and in the outer re-
gions of the FOV with large projected movement. The
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resulting artifacts are in general small enough to not
negatively affect the overall optimization. We discuss
a correction method in section 4.3.2 and image quality
in section 4.4.

4.2.2 Vibration optimization

Solving (4.7) for the vibration coefficients (αs,βs,γs)
is performed with the L-BFGS algorithm [51]. The co-
efficient vectors are concatenated into one combined
parameter vector while the current estimate for the
sample projections (T̂ s, D̂s, Φ̂s) is assumed constant.

We implement the likelihood Cs and its gradient wrt.
the vibrations in JAX. The results are transferred from
the GPU to host memory and passed to the L-BFGS
implementation in scipy. Unlike the nested optimiza-
tion in section 3.2.2 which computes the non-trivial
vibration gradient through SPR, here we fix the pro-
jections (T̂ s, D̂s, Φ̂s) and the cost function gradient is
rather straightforward. Nevertheless it is convenient in
practice to use the automatic differentiation (autodiff)
features of JAX instead of implementing it by hand.

As mentioned before the temporal progression of
(αs,βs,γs) is similar to the air-scan coefficients
(α,β,γ). Primarily the influence of the gantry rotation
is reproducible from scan to scan because the angular
position is encoded with each measured exposure. In
contrast, the exact state of the various high-frequency
oscillations influencing the gratings is not known a pri-
ori. A good initialization for the sample-scan vibrations
(αs,βs,γs) is therefore a low-pass-filtered version of
the air-scan parameters (α,β,γ).

Small samples For small samples which do not
cover the whole active interferometer we can use
the sample-free area to determine (α̂s, β̂s, γ̂s) before
any signal retrieval of the sample projections. The
pipeline is illustrated in Fig. 4.2. In sample-free area,
T = D = 1 and Φ = 0. The model (4.5) simplifies to

eys
pt = I tot

pt

�
1 + V tot

pt cosϕtot
pt

�
. (4.17)

Eq. (4.17) looks similar to the canonical model (3.1)
and we could linearize it accordingly. However, per-
forming sliding-window SPR on eys to obtain I tot, V tot,
and ϕtot is not feasible: the vibration terms change
much more quickly than the rotating sample’s projec-
tions T , D, and Φ and the assumption of window-
wise constancy is strongly violated. Instead we find
(α̂s, β̂s, γ̂s) with the L-BFGS solver as explained ear-
lier. The advantage of the vibration model deter-
mined with PCA as discussed in chapter 3 is the low
number of coefficients per exposure. The results in
section 3.4.4 were obtained with this small-sample
pipeline. In this chapter, we use it to analyze the im-
pact of sample-free area size on reconstruction quality
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Figure 4.2: Processing of a small sample. We use the
sample-free area to fit the PCA vibration model coeffi-
cients. Afterward the sample projections are determined
with sliding-window SPR. They are reconstructed with fil-
tered back-projection (FBP).

and the temporal stability of the PCA model in sec-
tion 4.4.2.

Large samples We investigate the influence of the
relative size of the sample-free detector area on the
quality of the tomographic reconstruction in the “small
sample pipeline” in section 4.4.2 and Fig. 4.8. With-
out jumping ahead, it should not be surprising that the
quality of the vibration fit decreases for small (or no)
sample-free detector area. This scenario is relevant
for the DFCT because we aim at measuring human
subjects which may fill the whole FOV.

When there is insufficient sample-free interferome-
ter area we employ an alternating optimization of Cs

in (4.7) wrt. projection and vibration quantities. In gen-
eral we do not optimize all quantities immediately but
introduce them in succession.
All vibrations coefficients (αs,βs,γs) are initialized
with low-pass-filtered versions of the air-scan values
(α̂, β̂, γ̂).
Concerning initial values of sample projections, the
transmission T is most detrimental in the cost func-
tion but also can be initialized with a good approxima-
tion: we perform tomographic reconstruction with fil-
tered back-projection (FBP) on the unprocessed pro-
jections ŷs normalized by the reference intensity Î,

µ̂ = R−1

"
− ln

�
ŷs

Î

�#
, (4.18)
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Figure 4.3: Flowchart of the processing pipeline for the scan
of a large sample. We compute pre-processing estimates eT
and eαs

0 from the raw projection data ŷs. We use them to
initialize the alternating optimization of vibration coefficients
(α̂s, β̂s, γ̂s) and sample projections (T̂ , D̂, Φ̂). After conver-
gence we employ corrections of higher-order Fourier terms,
sample rotation, beam-hardening-induced visibility reduc-
tion (only on dark-field D̂), and slow phase drift (only on dif-
fusion coefficient δ̂). The tomographic reconstruction into at-
tenuation coefficient µ̂, diffusion coefficient ε̂, and refractive
index decrement δ̂ are performed with FBP, respectively.

to obtain an initial guess of the attenuation coefficient
µ̂. R−1 is the inverse Radon transform and shorthand
for the FBP. µ̂ is modulated by the fringe pattern but
has comparatively good quality. We then perform to-
mographic forward-projection,

eT = exp
�
−R [µ̂]

�
, (4.19)

and obtain an approximation of the sample transmis-
sion eT before doing any phase-retrieval or fitting of
the vibration coefficients. R represents the Radon

transform and is shorthand for tomographic foward-
projection. Due to the double enforcement of tomo-
graphic consistency through (4.18) and (4.19) there
are hardly any fringe artifacts in eT .

The global flux variation αs
0 is also estimated be-

fore phase-retrieval. We use a high-pass filter on
the exposure-wise mean of the normalized measured
data ŷs and combine it with the low-pass-filtered air-
scan values α̂00,

eαs
0 = HFt

"�
ŷs

Î eT

�

p

#
+ LFt [α̂00] (4.20)

with HFt and LFt the temporal high- and low-pass fil-
ter, respectively. We implement LFt with a Gaussian
filter and define HFt [x] = x− LFt [x].

After those initializations we begin with the main op-
timization loop consisting of repeated minimization of
Cs in (4.7). All parameters are held fixed at their ini-
tial values until explicitly listed here, i.e. added as an
actively optimized parameter. The individual stages of
the alternating optimization are listed in table 4.1 by
the parameters they optimize.

Step Vibrations Projections
1 γs

0 T
2 γs T
3 αs,γs T , D
4 αs, βs, γs T , D, Φ

Table 4.1: Optimization steps in the processing pipeline for
a large sample. For each step we first minimize Cs wrt.
the vibrations and then wrt. the projections. The results are
used as initializations in the next step, respectively. Until a
variable is listed, it is held at its initialization and not included
in the cost function gradient.

4.3 Image enhancement methods

We found several methods to improve the image qual-
ity specifically in processing the scan of a large sam-
ple. We explain each of them in the following. The im-
pact on experimental results is shown in section 4.4.

4.3.1 Tomographic consistency

Enforcing tomographic consistency in this projection-
focused optimization pipeline is useful not only to com-
pute an initial transmission estimate eT as mentioned
before, but also to reduce artifacts in intermediate
sample projection estimates of T , D, and Φ listed in
table 4.1. We formulate the general method,

T FP = exp

�
−R

h
R−1

�
− ln (T )

�i�
, (4.21)
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Figure 4.4: Enforcing tomographic consistency by forward-
projecting the FBP. Due to cone-beam geometry, the
top and bottom of the sample are not estimated correctly.
We extrapolate the top- and bottom-most axial slice before
forward-projection.

with T FP the projections with enforced tomographic
consistency. It works analogously for dark-field D and
differential phase Φ, reducing noise and fringe arti-
facts from incorrect intermediate vibration estimates.

This method can be seen as a middle-ground be-
tween a strict “projections-then-FBP” pipeline, and a
full-fledged intensity-based statistical iterative recon-
struction (IBSIR) going directly from raw sample pro-
jections to all sample volumes. The former requires
phase-stepping for each projection angle which the
DFCT does not allow. The latter correctly incorporates
the continuous rotation into the model, but (unneces-
sarily) introduces a sophisticated statistical model for
the projection data. If we deem the fit of the vibration
coefficients to be the main challenge in our process-
ing pipeline (in contrast to low photon counts), then the
projection-based processing combined with intermedi-
ate tomographic consistency enforcement is a sensi-
ble compromise.
In cone-beam geometry the FBP can not reconstruct
the full sample FOV along the rotation axis leading to
under-estimation at the top and bottom of the forward-
projected volumes. We mitigate this error by extrapo-
lating the intermediate reconstructed volume vertically
along the rotation axis before forward-projection, illus-
trated in Fig. 4.4. This approximation is obviously only
valid for samples that are sufficiently invariant along
the rotation axis.

4.3.2 Rotation artifacts

As mentioned before the sliding-window SPR as-
sumes that the sample projections (T ,D,Φ) do not
change in the angular window of exposures. This as-
sumption is violated in the DFCT because the gantry is
continuously rotating and each exposure corresponds
to a different projection angle. The resulting projection
artifacts are different depending on the signal modal-
ity. In general their severity depends on the projected
lateral movement of the sample which in turn is larger
for voxels far away from the rotation axis.

The transmission T̂ is simply blurred out over the an-
gular window and the reconstructed attenuation coef-
ficient µ̂ has lower spatial resolution with increased
distance from the isocenter. The dark-field D̂ and
differential phase Φ̂ are strongly correlated and both
show artifacts resembling the reference phase pat-
tern ϕ̂. They are discussed in [59] which calls them
“movement-induced crosstalk-artifacts”. The recon-
structed diffusion coefficient ε̂ and refractive index δ̂
are modulated with streaks between high-absorbing
features outside the central FOV.

We have found that in the DFCT the non-constant
transmission T in an angular window is the main
source of rotation artifacts. Luckily it is also least af-
fected by movement and easiest to approximate both
in terms of noise as well as sampling ϕ of the stepping
curve. We therefore aim to find a good estimate T̂
and perform signal retrieval again on ŷs/T̂ without the
transmission influence to obtain improved estimates
D̂ and Φ̂. [59] discusses multiple ways to achieve
this and reduce rotation artifacts in the context of large
samples in the DFCT. Here we present one method
because it is used for the experimental results in sec-
tion 4.4.

It relies on the reduction of projection artifacts after
reconstructing the projections with FBP and then pro-
jecting them again with tomographic foward-projection
(FP) as outlined in section 4.3.1. The outline of the
algorithm is:

1. Compute T̂ with sliding-window SPR on ŷs.

2. Correction loop:

(a) Compute µ̂ = R−1
h
− ln T̂

i
.

(b) Compute T̂ FP = exp
�
−R [µ̂]

�
.

(c) Compute T̂ ⋆, D̂, and Φ̂ with sliding-window
SPR on ŷs/T̂ FP.

(d) Update T̂ ← T̂ × T̂ ⋆

First we obtain a transmission estimate T̂ with normal
sliding-window SPR, preferably with a slightly reduced
window size M−. We compute the attenuation coef-
ficient with FBP on T̂ and forward-project it again to
obtain an improved transmission estimate T̂ FP. A vir-
tual transmission-corrected measurement ŷs/T̂ FP is
computed on which we perform sliding-window SPR,
preferably with a slightly larger window M+. The ob-
tained estimates D̂ and Φ̂ (and by extension their
reconstructions ε̂ and δ̂) already show less rotation
artifacts. We sharpen the transmission estimate T̂
with the residual T̂ ⋆ originating by the slight blurring
inherent to the FBP and FP. The steps can be re-
peated multiple times to further decrease rotation arti-
facts while the noise increases with each iteration.
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4.3.3 Corrections for higher visibility or-
ders

The significance of higher-order terms in the Fourier
series description of the stepping curve has been dis-
cussed in section 3.3.1 already. In short, we deter-
mine the higher-order visibilities V (n) and phases ϕ(n)

in air-scan processing after iterative optimization of the
interferometer vibrations Ivib, V vib, and ϕvib. Equa-
tions (3.54) and (3.55) describe the interaction with
interferometer vibrations terms. For the sample-scan
reconstructions shown in section 3.4.4 we remove the
terms n ≥ 2 and perform sliding-window SPR. This
involves the implicit assumption that the sample does
not influence the higher-order terms which is accurate
enough for small samples as seen in Fig. 3.20. In con-
trast, for large samples we have to include the sample
influence to obtain accurate reconstructions.

Dark-field Section 2.2.5 motivates dark-field signal
via small-angle scattering in the sample and a widen-
ing of an X-ray beam into a Gaussian intensity profile,
reducing lateral coherence. As of (2.41) the relative
visibility reduction D is computed by performing a con-
volution of the projected intensity distribution eA(x) with
a stepping curve I(x) with period p2 (commonly the G2
period). We assume a period p(n) of the higher-order
terms,

p(n) =
p2
n

, (4.22)

and obtain the higher-order dark-field signal D(n)

analogously to (2.41),

D(n) = exp

 
− 2π2d2

(p2/n)2
σ2

!
= Dn2

. (4.23)

The relative reduction of the higher-order visibilities
is apparently the first-order dark-field D to the n2-th
power. Qualitatively, because D ≤ 1, the reduction is
stronger with higher orders n.

Differential phase We introduce the phase shift
Φ(n) acting on the higher-order terms of the Fourier
series. Intuitively, according to the higher-order step-
ping curve period in (4.22),

Φ(n) = nΦ , (4.24)

with the first-order differential phase Φ induced by the
sample.

During sample-scan processing, we first determine
the interferometer vibration state (Î tot, V̂ tot, ϕ̂tot) and
sample projections (T̂ , D̂, Φ̂) using only the first-order
model (4.5). Then we compute higher-order dark-
field D̂(n) and differential phase Φ̂(n) from the cur-
rent first-order estimates D̂ and Φ̂ to approximate the

Figure 4.5: Illustration of the polar transform of an ax-
ial slice. Concentric features in cartesian coordinates are
straight lines along θ in polar coordinates. We use the polar
transform and its mean over θ to approximate the artifacts
from slow phase drift in the tomographic reconstruction of
the refractive index decrement δ.

first-order projections ŷs. We again perform sliding-
window SPR on the first-order estimate and obtain
sample projections without higher-order artifacts.

4.3.4 Slow phase drift

The DFCT is based on a commercial CT system and
is thermally comparatively stable due to on-board liq-
uid cooling and being located in an air-conditioned
room. As already mentioned the Talbot-Lau interfer-
ometer is sensitive to the microscopic movements of
each grating and we do observe the remaining small
thermal effects as a slow drift of the reference phase ϕ
from slight thermal deformation of the gratings. “Drift”
means slow movement or deformation of the gratings.
The resulting change of ϕ is similar to the low-order
2D lateral polynomials in Fig. 3.2 which are also used
for the vibration model in chapter 3. However, we
found that the slow phase drift differs from the interfer-
ometer vibration and is different from the PCA vibra-
tion model Ĉ. We show in section 4.4 that the result in
the tomographic reconstruction of the refractive index
decrement δ are concentric bands. This is expected
since the drift is much slower (≈ 103 s) than the typ-
ical duration of an axial scan (≈ 100 s) and therefore
constant over the scan.

We use the similarity of the attenuation µ̂ with the re-
fractive index δ̂ image and the concentric nature of the
drift to approximate and remove it from δ̂. We approx-
imate the refractive index decrement δ̂ with the scaled
attenuation coefficient µ̂,

δ̂ ≈ λµ̂ , (4.25)

with scalar λ an empirically determined scaling pa-
rameter [63, 64]. Equation (4.25) is an approxima-
tion for a single material in a given interferometer
with a fixed relationship between attenuation coeffi-
cient µ and refractive index decrement δ, combined
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with the setup-specific sensitivity Sα from (2.30). It
has proven sufficiently accurate for this correction, but
using piecewise-linear relationships for multiple mate-
rials would also be possible [64].
The image error ξ̂ from the slow phase drift is esti-
mated by their difference,

ξ̂ = δ̂ − λµ̂ . (4.26)

We transform ξ̂ into cylindrical coordinates and sub-
tract its mean over polar angle θ from the transformed
refractive index δ̂,

δ̂corr = P−1

"
P
h
δ̂
i
−
�
P
h
ξ̂
i�

θ

#
, (4.27)

resulting in the corrected refractive index image δ̂corr.
P and P−1 represent the transform into polar coor-
dinates and its inverse, respectively. We define the
polar plane (constant z) to be the axial plane and ac-
cordingly the z axis to be the rotation axis.
Experimental results are presented in section 4.4.

4.3.5 Cross-channel bilateral filter

The dark-field projections and diffusion coefficient re-
constructions inherently have increased noise com-
pared to transmission and attenuation coefficient, re-
spectively [49]. The similarity of object edges in both
channels can be exploited with various methods to im-
prove image quality [65, 66]. The tool most commonly
used in our pipeline is a cross-channel bilateral filter
due to its speed, preservation of edges, and compar-
atively low number of parameters [67, 68].

The common bilateral filter is a moving-window filter,
similar to a Gaussian or median filter. In that, it works
on a patch of the input image and computes the value
of the output image central to the patch. In contrast
to the mentioned filters the bilateral filter “identifies”
and preserves object edges. It works by applying both
index-wise and value-wise weights to the elements of
the patch, such that data points further away from
the patch center both in distance and value are con-
sidered less. Formally, we define the bilateral filter
Bf,g(x) on x = (xi) ∈ RN ,

�
Bf,g(x)

�
i
=

P
j∈Ωi

wjxjP
j∈Ωi

wj
(4.28)

with wj = f(xj , xi) g(j, i) ,

with Ωi the patch around index i, f the value-wise
weighting function, and g the index-wise (or “spatial”)
weighting function. Typical functions are a Gaussian
potential for f and either a Gaussian potential or con-
stant 1 for g. For the latter case g(j, i) = 1, the strength
of the spatial filter is controlled with the size of the
patch Ωi.

This single-channel filter is already powerful and
widely used in signal processing. Its evalua-
tion is computationally somewhat expensive because
f(xj , xi) can not be precomputed in contrast to g(j, i).
It is therefore commonly computed on a GPU.

We extend the bilateral filter to two input channels
x,y ∈ RN . Input x is assumed to be less noisy and/or
of higher resolution than y. The output of the cross-
channel filter is a filtered version of y with the patch
weights wj determined on x. We therefore expect that
both channels have similar features (albeit with differ-
ent contrast), which is generally the case in attenua-
tion and diffusion coefficient. Formally, we define the
cross-channel bilateral filter Bcc

f,g(x,y),

�
Bcc
f,g(x,y)

�
i
=

P
j∈Ωi

wjyjP
j∈Ωi

wj
(4.29)

with wj = f(xj , xi) g(j, i) .

Bcc
f,g is identical to Bf,g except for yj in (4.29) instead

of xj in (4.28). We implement the cross-channel bi-
lateral filter in JAX. Experimental results are shown in
section 4.4.

4.4 Experimental results

We show experimental results of the processing
pipeline presented in the previous sections of this
chapter.
First we concentrate on the “small sample” pipeline us-
ing sample-free detector area and analyze the tempo-
ral stability of the method, especially the PCA model.
The presented correction for slow drift of the reference
phase is applied on reconstructions of the refractive in-
dex decrement both to show its validity and to isolate
potential artifacts from a varying PCA vibration model.
Next, we investigate the robustness with respect to the
size of the sample-free detector area to determine in-
terferometer vibrations.
The results of the processing pipeline for large sam-
ples (i.e. no sample-free area) are presented and dis-
cussed on measurements of a human-sized thorax
phantom filled with various inserts. We show the im-
pact of the presented rotation correction, phase drift
correction, and cross-channel bilateral filter.

4.4.1 Temporal stability & phase drift

Temporal stability We analyze the temporal sta-
bility of the PCA model by performing the sample
processing on several air-scans with increasing time
spacing to a scan of the rod phantom. The result-
ing reconstructions are shown in Fig. 4.6. Five air-
scans are recorded and processed with the proposed
pipeline to obtain respective PCA vibration models.
The temporal distance to the sample-scan is one, five,
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Figure 4.6: Reconstructions of the rod phantom using PCA models from different air-scans with increasing time dis-
tance ∆T to test the temporal stability of the model and the phase drift correction. None of the reconstructions shows
vibrations artifacts (as seen in Fig. 3.20). The refractive index slices in M-O show circular bands stemming from slow
thermal drift of the reference phase flat-field. Because the drift is much slower (≈ 103 s) than the duration of a scan
(≈ 100 s) the effect is concentric. We apply the correction method from section 4.3.4 indicated by the small black ar-
rows and obtain slices P-T. They all look identical and show neither drift nor vibration artifacts. The windowing is
A-E: [-0.05, 2.2] × 10-1 cm-1; F-J: [-2, 8] × 10-2 cm-1; K-O: [-2, 4] × 10-1 cm-1. Narrow window in A-E: [-5, 5] × 10-3 cm-1.

ten, 20, and 30 minute(s), respectively. The sample-
scan is processed with the “small sample pipeline” dis-
cussed in section 4.2.2, i.e. by fitting the per-shot vi-
bration coefficients (αs,βs,γs) in the sample-free de-
tector area at the left- and right-hand side of the detec-
tor. The only difference between the reconstructions
in Fig. 4.6 are the PCA vibration models (A,B,C)
obtained from each air-scan. If the vibration model
was not valid for the sample-scan data due to ther-
mal drift effects we expect “vibration” artifacts similar
to Fig. 3.20.
None of the axial slices shown in Fig. 4.6 show such
artifacts. The attenuation coefficient µ̂ in A-E and dif-
fusion coefficient ε̂ in F-J look identical for all air-scans
and time differences. If there was a slight change
in the vibration characteristics they appear to still be

modeled by an air-scan 30 minutes apart.
The slices K-O of the refractive index decrement δ̂ do
not look identical: especially M-O are overlaid with
strong concentric features whose contrast is larger
than the sample contrast. They originate from slow
thermal drift and deformation of the interferometer
which results in slow changes of the reference phase
ϕ̂. This change apparently can not be modeled by
the PCA vibration model C which we fit to the sample-
free detector area. Therefore the difference to ϕ̂ ends
up in the projections Φ̂ and ultimately in the recon-
structed refractive index δ̂. The drift appears to be no-
ticeable after 10 minutes in this comparison, or roughly
103 seconds in general. In any case, this timeframe is
much longer than the typical duration of an axial scan
at one second or even a helical scan at ≈ 101 seconds.
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Figure 4.7: Axial slices in cartesian and polar coordinates
during drift correction. A,B show the attenuation coef-
ficient µ̂ in cartesian and polar corrdinates, respectively.
C,D show the refractive index decrement δ̂ with strong con-
centric bands before drift correction. E,F represent the dif-
ference ξ̂ between refractive index δ̂ and scaled attenuation
λµ̂. G,H show the corrected refractive index δ̂corr obtained
by δ̂ − ⟨ξ̂⟩θ.

The effective interferometer phase ϕ̂ therefore is al-
most constant during the scan and the artifacts in the
tomographic reconstruction δ̂ are perfectly concentric.

Drift correction As discussed in section 4.3.4 we
use this condition to approximate the effect and com-
pute corrected images δ̂corr. Fig. 4.7 illustrates the
method: we subtract the scaled reconstructed atten-
uation coefficient µ̂ from the refractive index decre-
ment δ̂ and mean over the polar angle θ to obtain the

drift estimate ⟨ξ̂⟩θ. It is subtracted from δ̂ giving a cor-
rected refractive index δ̂corr without concentric bands.
The axial slices P-T in Fig. 4.6 look identical. The
method apparently works well for small samples of
which we can already compute a tomographic recon-
struction of µ and δ apart from the drift. The approxi-
mation δ̂ ≈ λµ̂ discussed in section 4.3.4 seems to be
accurate enough in the DFCT.

4.4.2 Impact of sample-free detector
area size

While the “small-sample pipeline” is useful for analyz-
ing the isolated effect of the vibration model, phase
drift correction, and other effects discussed in sec-
tion 3.4.4, it is not viable for reconstructing large sam-
ples using the whole FOV of the DFCT.

Image quality We analyze the impact of the size of
the sample-free detector area used to fit (αs,βs,γs)
on the quality of the tomographic reconstructions
of the rod phantom. The air- and sample-scan are
identical to section 3.4.4. The full detector width
along all G2 tiles as seen in Fig. 3.9 is 545 pixels
and 77.2 cm, corresponding to an isocenter FOV of
42.4 cm. We employ the “small sample pipeline” and
manually restrict the sample-free detector area to
50 %, 30 %, 20 %, 10 %, and 5 % of the detector width,
evenly distributed to the left- and right side of the
sample. The resulting tomographic reconstructions of
the attenuation coefficient µ̂, the diffusion coefficient
ε̂, and the refractive index decrement δ̂ are shown in
Fig. 4.8.
The left-most column A,F,K represents the high-
quality images with plenty of area to fit the vibrations
(α̂s, β̂s, γ̂s). While the image quality varies between
modalities each image, is free of vibration-specific
artifacts as previously in section 3.4.4. The relative
width of the sample-free detector area decreases with
the right-hand columns. In the attenuation coefficient
µ̂, slight artifacts begin to appear for 10 % relative
width in D and are stronger for 5 % relative width
in E. In both cases they are only discernible in the
narrow value window, not in the window capturing the
whole sample. In F-J diffusion coefficient ε̂, slight
circular features occur only at 5 % relative width in J.
Note that they are larger in relative contrast than in
E due to the full value window. The K-O refractive
index decrement δ̂ generally is most susceptible to
decreasing sample-free area. Vignetting at the FOV
border starts at 20 % in M and significant artifacts are
visible for 5 % relative width in O.

Orthogonality We use the respective “orthogonal-
ity” of the PCA model components A, B, and C de-
pending on the sample-free detector area size as a
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Figure 4.8: Reconstructions of a phantom using different amounts of the detector width in the “small sample pipeline”
to determine the vibrations coefficients per exposure αs, βs, and γs [47]. The percentage above each column indicates
the relative amount of detector width used for the fit. The image quality is constant down to 10 % detector width in at-
tenuation A-D and diffusion coefficient F-I. The refractive index decrement is more sensitive due to the higher amount of
components in the PCA model. It shows deteriorating quality for 20 % in the outer regions M and 10 % close to the sam-
ple N. For 5 % detector width E,J,O, all channels suffer in image quality. The windowing is A-E: [-0.05, 2.2] × 10-1 cm-1;
F-J: [-2, 8] × 10-2 cm-1; K-O: [-1, 3] × 10-1 cm-1. Narrow window in A-E: [-5, 5] × 10-3 cm-1.

measure of the stability of the coefficient fit in the lat-
ter. As discussed in section 3.2.3 the vibration models
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Figure 4.9: Condition number as a measure for orthogonal-
ity of the PCA model (A,B,C) inside the sample-free detec-
tor area used for estimating vibration coefficients αs, βs, and
γs during a sample-scan. The components are orthogonal
(condition number 1) only for full width. When using less de-
tector area the condition number increases, decreasing the
stability of the coefficient fit. Figure adapted from [47].

are orthogonalized and scaled wrt. the reference in-
tensity Î and visibility V̂ , respectively, such that the
Hessian matrix of the cost function is as diagonal and
equally scaled as possible, which is beneficial for con-
vergence.
All this is performed on the full detector area. How-
ever, we use only a fraction of the detector area for
determining the sample-scan vibration coefficients α̂s,
β̂s, and γ̂s. The vibration models restricted to the
sample-free detector area are not orthogonal any-
more. We compute the condition number κ for each
vibration model A, B, and C inside a fraction of the de-
tector area to assess their “orthogonality” with a single
number, respectively. The condition number κ (X) is
given as the ratio σmax (X) /σmin (X) of the maximal
and minimal singular values of X. The condition num-
bers of the vibration models depending on the relative
detector area are shown in Fig. 4.9. If κ = 1 the mod-
els are orthogonal. This is apparently only the case
for 100 % detector area. When less area is used the
condition number increases. For intensity A and visi-
bility B this increase is pretty small and κ ≤ 1.5 down
to 5 % width. The phase model C is more sensitive to
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the area decrease. Its condition number increases al-
most fourfold for 5 % relative width.
The prominent sensitivity of the phase vibration model
C is in accordance with the comparison in Fig. 4.8, in
which the axial slices of the refractive index decrement
δ̂ in K-O exhibit the strongest quality reduction with
decreasing relative detector area for the coefficient fit.

4.4.3 Pre-processing estimations

We present the two pre-processing steps of the
pipeline for large samples discussed in section 4.2.2.
The estimation of the sample transmission eT is shown
in Fig. 4.10 and the approximation of the global flux
variation eαs

0 in Fig. 4.11. Both are crucial for the alter-
nating optimization of the model cost function (4.7) as
a good initialization.

Both are conducted on an axial scan of the commer-
cially available “Lungman” phantom (“Multipurpose
Chest Phantom N1” from Kyoto Kagaku). This object,
visible in the annotated photograph Fig. 2.10, is a life-
sized model of a human thorax including surrogates
for spine and rib bones. It can be filled with various in-
serts and has been used extensively for the investiga-
tions of dark-field radiography and computed tomog-
raphy [20, 69, 70]. In the example presented here, the
thorax is filled with a neoprene insert, a POM cylinder,
and three Falcon tubes containing water, air, or choco-
late chips. The neoprene insert has similar porosity
as healthy lung tissue and produces dark-field con-
trast accordingly, but otherwise has low attenuation.
POM and water on the other hand should exhibit only
attenuation contrast because they are homogeneous
on the length scales relevant to small-angle scatter-
ing. Chocolate sprinkles create both attenuation and
dark-field signal.

Transmission estimate We illustrate the transmis-
sion estimation in Fig. 4.10. A shows the sinogram of
the raw data ŷs normalized by the reference intensity
Î. The overall strongly attenuating thorax phantom fills
approximately two thirds of the detector width. Even
more is taken by the patient couch. The data is modu-
lated with the interferometer fringe pattern, especially
visible in the remaining sample-free detector area. As
shown in B we perform tomographic reconstruction via
FBP on the normalized projections to obtain an ap-
proximation of the attenuation coefficient eµ. It clearly
resembles the thorax phantom but is superimposed
with circular structures (“fringe artifacts”) especially in
the center. We compute the tomographic forward-
projection exp

�
−R [eµ]

�
to obtain the transmission es-

timate eT in C. It has slightly reduced lateral resolution
but also a strongly reduced interferometer fringe pat-
tern.

Flux estimate Afterward we find an approximation
for the per-exposure flux variation eαs

0 illustrated in
Fig. 4.11. The starting point is the raw data ŷs nor-
malized with the reference intensity Î and the just
acquired transmission estimate eT , shown in A. Visu-
ally, it almost resembles “flat” air-scan data ŷ apart
from the remaining edges of the sample. The lat-
ter originate from the reduced spatial resolution of
R

�
R−1 [ · ]� mentioned before. The mean of each ex-

posure is plotted in B and already shows the char-
acteristic high-frequency modulation of the flux com-
bined with the low-frequency gantry influence. Its low-
frequency component contains some residual sample
features compared to the flux α̂00 from an air-scan
in C. We therefore combine the high-frequency com-
ponent of B (blue) with the low-frequency component
of C (orange) to construct the flux estimate eαs

0 in D. It
has the correct slow gantry movement (adapted to the
encoded starting angle of the scan) modulated with
the fast vibrations of the on-board components.

4.4.4 Large sample pipeline

We present tomographic reconstructions of the thorax
phantom in Fig. 4.12 at different stages of the process-
ing pipeline discussed in section 4.2.2.

Pipeline stages Fig. 4.12 A-D show the linear atten-
uation coefficient µ̂. It has the highest image quality
overall of the three contrast channels. With only pre-
processing estimates and optimized global phase γ̂s

0

in A the image quality is already quite good apart from
fringe features in the center. The latter are gone in B
after fitting all interferometer vibrations and the correc-
tion for higher-orders in C looks identical. The rotation
correction in D does sharpen the image slightly at the
cost of increased high-frequency noise especially be-
low spine bone and table. In all slices it is apparent
that the spatial resolution decreases with increased
distance from the rotation axis in the center. The tips
of the patient table are blurred in rotation direction.
The linear diffusion coefficient ε̂ in E-I has overall in-
creased noise levels and stronger fringe/vibration ar-
tifacts than the attenuation coefficient µ̂. After pre-
processing and global phase in E the thorax phantom
and neoprene insert are discernible but strongly mod-
ulated by artifacts. They are progressively reduced
by F including all vibrations and G removing higher-
order visibility components. The impact of the rota-
tion correction in H is more subtle. It mostly reduces
streak artifacts originating from the spine in the center
and the table’s tips. Finally, we employ a projection-
based correction of beam-hardening-induced visibility
reduction in I as mentioned in section 2.3.1. It is cali-
brated to a single material (typically POM) and is dis-
cussed in more detail in [22]. In the thorax phantom it
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��

�

�T = exp (−R [�µ])

Figure 4.10: Estimating sample transmission by forward-projecting the FBP of normalized raw projections. A shows the
unprocessed measurement ŷs normalized with the reference intensity Î. It is reconstructed to an estimate of the attenuation
coefficient eµ in B with FBP. This estimate is in turn forward-projected and gives the transmission estimate eT in C, in which
fringes (and vibrations, although not discernible here) are strongly suppressed. This method is also used on intermediate
sample projections (T̂ , D̂, Φ̂) obtained with sliding-window SPR during alternating optimization of large samples.

reduces erroneous diffusion signal in the tissue sur-
rogate and central POM cylinder. The bone surro-
gates still show significant diffusion contrast, which is
caused in part by incorrect calibration as well as the
surrogate material probably exhibiting some dark-field
scattering itself. Even still, the high scattering power
of the large neoprene insert and the small tube with
chocolate sprinkles is clearly discernible in I.
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Figure 4.11: Estimating flux of sample-scan data before
phase retrieval. A shows the sample-scan sinogram ŷs nor-
malized with the reference intensity Î and pre-processing
transmission estimate eT . We combine the B high-frequency
mean of this sinogram with the C low-frequency mean of the
air-scan flux α̂00 to estimate the D flux eαs

0 of the sample-
scan measurement. The windowing in A is [0.8, 1.2]. The
plots in B,C,D are given in percent %.

The refractive index decrement δ̂ is depicted in J-
N. It has the worst image quality overall concerning
noise and structural artifacts like streaks and concen-
tric bands. After pre-processing and optimizing the
global phase in J the thorax phantom is barely dis-
cernible. Large ramps overlay the tomographic recon-
struction and have higher contrast than the sample it-
self. They are removed in K after optimizing all in-
terferometer vibrations. The noise level is still quite
high and the broad concentric bands from slow ther-
mal drift of the reference phase ϕ̂ dominate. Due to
low statistics (and a somewhat naive Gaussian noise
model) the noise around the central spine is very high.
The reduced rotation artifacts in M are therefore hardly
appreciable. Only after estimating and removing the
thermal drift in N the thorax phantom really becomes
discernible. Especially the patient table creates strong
streak artifacts.

Cross-channel bilateral filter The final images of
the diffusion coefficient ε̂ and the refractive index
decrement δ̂ in Fig. 4.12 I,N can be further improved
by employing the cross-channel bilateral filter Bcc dis-
cussed in section 4.3.5. We use the attenuation co-
efficient µ̂ from Fig. 4.12 D as the reference image to
compute value-wise weights and in that determine ob-
ject edges. Axial slices of filtered images Bcc

f,g(µ̂, ε̂)

and Bcc
f,g(µ̂, δ̂) are shown in Fig. 4.13. We use a Gaus-

sian potential for the value-wise function f and a box-
like kernel g(j, i) = 1 for the spatial filter.
The filtered diffusion coefficient Bcc

f,g(µ̂, ε̂) in B has sig-
nificantly reduced noise and streaks, especially in the
center around the spine. The edges of the spine bone
are correctly preserved. Next to it, the thin gap be-
tween rib bones and neoprene insert becomes visible.
The underestimation of ε̂ as a dark streak is not re-
moved by the filter but seems more dominant due to
the reduced surrounding high-frequency noise. The
neoprene insert does look more homogeneous after
filtering. However there is still a medium-frequency
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Figure 4.12: Tomographic reconstructions of the thorax phantom at different stages of the processing pipeline. A-D The
first row depicts the attenuation coefficient µ̂. Its quality is already reasonable in the beginning after pre-processing es-
timates ( eT , eαs

0) and optimized global phase γ̂s
0. E-I The second row shows the diffusion coefficient ε̂. It contains fringe

artifacts until the higher-order visibility terms are estimated and removed in G. I The right-most image illustrates the beam-
hardening correction which is only applied on D̂. J-N The third show depicts the refractive index decrement δ̂. Its quality
is generally the worst of all contrast modalities. The noise level is high and the slow phase drift creates concentric bands
whose contrast is stronger than the sample. Only in the last step N which estimates and removes the drift, the sample
becomes visible. The dominant remaining artifacts in I and N are streaks from the table’s tips. They are far away from
the rotation axis and their projected movement is therefore very large. The windowing is A-E: [-0.05, 2.5] × 10-1 cm-1;
F-J: [-0.2, 1.5] × 10-1 cm-1; K-O: [-3, 4] × 10-1 cm-1.

modulation visible. It is a combination of rotation ar-
tifacts, low statistics near the spine, and potentially
slightly incorrect interferometer vibrations. At the bor-
der of the central POM cylinder is a bright spot that
originates from the voxel sitting right on the sharp,
high-contrast edge in the attenuation channel. The
value-wise weights f make the filter kernel effectively
very small at the border which makes such artifacts
possible. Overall, the structure of the POM edge is
sharp and has no overshoots otherwise. The streaks
inside the patient table are reduced by the filter,
The overall image quality of the refractive index decre-
ment Bcc

f,g(µ̂, δ̂) in D is also significantly improved. The
high-frequency noise in the center near the POM cylin-
der and the spine is reduced and the surrounding tis-
sue surrogate is more homogeneous. The streaks in
the patient table are greatly reduced. However, the
artifacts that do remain seem more prominent. There
is a distinct streak originating from the right-hand ta-
ble tip through the center of the thorax, and multiple

streaks parallel to the straight table undersides. Fur-
thermore, despite the drift correction (and vibration
optimization), there are some large gradients span-
ning the axial slice.

4.5 Discussion

In this chapter we presented processing and re-
construction pipelines for phase-retrieval and tomo-
graphic reconstructions of sample measurements in
the DFCT.

The main challenge is determining the interferometer
state at the time of the scan in order to isolate the
sample’s projections in transmission, dark-field, and
differential phase. We assume that the spatial fluctu-
ations in intensity, visibility, and phase caused by sys-
tem vibrations can be described as a linear combina-
tion of the low-parameter models acquired with PCA
on an air-scan as discussed in chapter 3. The coef-
ficients of the linear combination per exposure have
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Figure 4.13: Cross-channel bilateral filter Bcc (µ̂, · ) on tho-
rax phantom with reference µ̂ in A,B diffusion coefficient
ε̂ and C,D refractive index decrement δ̂. In both modali-
ties the high-frequency noise is strongly suppressed while
sharp edges are preserved. The remaining artifacts become
more visible, such as medium-frequency “blobs” in B or a
streak from the table’s tip in D. The windowing is identical to
Fig. 4.12.

to be updated. We formulate a data model with the
sample projections and interferometer state, and opti-
mize the resulting likelihood function wrt. the vibration
coefficients and ultimately the sample projections.

If the sample is reasonably small we can estimate the
coefficients of the vibration model from the sample-
free interferometer area before doing signal retrieval of
the sample. The fit of the coefficients is iterative, start-
ing with few dominant terms and incrementally going
to the full model from the air-scan. Due to good ini-
tialization and the small number of parameters the fit
process is stable. We can therefore estimate the in-
terferometer state within the sample area from data
around the sample.

With an estimation of the interferometer state we per-
form phase retrieval on the sample measurement. The
DFCT is rotating continuously and the acquired mea-
surement of one axial scan contains only one ex-
posure per projection angle and stepping position.
Strictly speaking this is not enough information to cor-
rectly separate the three contrast channels, as we only
measure one projection per gantry angle but want to
determine three projections from it. The modulation
of the stepping curve phase via the system vibra-
tions is sufficiently fast compared to the gantry rota-
tion, such that we can assume the sample’s projection
constant over a small set of subsequent exposures.

With this assumption and the interferometer state de-
termined with sample-free area, we perform SPR on
each angular window separately and obtain the sam-
ple’s projections in transmission, dark-field, and dif-
ferential phase. Tomographic reconstructions via FBP
are performed on each of them separately giving vol-
umetric images of linear attenuation coefficient, linear
diffusion coefficient, and refractive index decrement.

The purpose of this research project and the DFCT
is ultimately dark-field CT on human patients. Given
the geometry of the DFCT and limitations of grating
fabrication we probably will not be able to use sample-
free interferometer area to determine the interferom-
eter state when imaging a human. We therefore em-
ploy an alternating minimization scheme of the likeli-
hood cost function wrt. the vibration model coefficients
and sample projections. The optimization of the vi-
bration coefficients is still performed with an iterative
first-order solver. However, the model does include
the current estimate of the sample projections. Af-
ter convergence we perform sliding-window SPR with
the current interferometer state and update the sam-
ple projections. These two steps are repeated until
satisfactory overall convergence. We compute esti-
mations for the transmission and the per-exposure in-
tensity fluctuation in a pre-processing step to initialize
the alternating optimization.
The obtained transmission, dark-field, and differential
phase projections of the large sample are improved
in several post-processing steps. We estimate and
remove the higher-order terms of the Fourier series
with the sample’s dark-field correctly adapted, sup-
press artifacts from sample rotation, and correct for
beam-hardening reduced visibility reduction and slow
thermal phase drift, respectively. These effects were
ignored for a small sample but are relevant for a larger
object.
The image quality of the diffusion coefficient and the
refractive index decrement is further enhanced by em-
ploying the presented cross-channel bilateral filter with
the attenuation coefficient as a reference. It requires
object features to be similar between contrast chan-
nels.

Overall, the results in this chapter demonstrate that
we can compute tomographic reconstructions for at-
tenuation, diffusion, and refractive index decrement for
small and large samples in the DFCT. The attenuation
objectively has the best image quality. Artifacts from
an incorrect interferometer state, higher-order Fourier
terms, and sample rotation are small and the noise
level is lowest. The diffusion coefficient is more sensi-
tive to vibrations and higher-order terms but provides a
novel and functional image contrast. The refractive in-
dex decrement generally has the poorest image qual-
ity. It is also impacted by slow drift of the reference
phase caused by thermal deformation of the gratings,
for which we only have an empirical post-processing
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correction. It works well for small samples but is lim-
ited by systematic artifacts with large samples, such
that the drift can not be completely removed.

There are several simplifications and limitations of the
current approach.
Most notably, our projection-based pipeline does not
use a valid model for continuous acquisition without
stepping. The resulting artifacts are suppressed by
the proposed rotation correction but not removed. In-
stead, the IBSIR approach correctly models the ac-
quisition and does not require any approximations,
going from raw measurement directly to tomographic
reconstruction by including the Radon transform in
the model. It is computationally expensive and slow
to converge, but could be initialized with the results
from the presented pipeline (both in interferometer
state and sample reconstructions) and serve as a
post-processing filter, removing rotation artifacts and
enforcing prior knowledge about the sample (local
smoothness and similar object edges).
Once we apply this valid model and obtain im-
proved image quality, other limitations of the current
projection-based pipeline will likely become more no-
ticeable. We estimate the higher-order terms of the
Fourier series based on the optimization of the first-
order model. The full model with higher orders is
therefore never used “online” in an iterative optimiza-
tion. Residual influences might become visible with
reduced overall image noise.
The correction for beam-hardening-induced visibility
reduction can also be improved. At the moment we
determine a global calibration for a single material.
With volumetric information, we could perform a seg-
mentation and calculate a more physically sensible es-
timation of the effect. Furthermore, we do not yet in-
corporate visibility hardening at all [71].

A logical next step for the sample acquisition overall
is moving to a helical trajectory and improved z cover-
age. This requires a more involved tomographic re-
construction in virtual “wedge” geometry which has
been done in the literature for conventional absorp-
tion contrast but not in the context of dark-field and
phase contrast. We can either perform signal retrieval
and rebinning separately or combine them in one step.
Another possibility to reconstruct helical scans without
the need for other geometries is to use iterative recon-
struction, either in the form of statistical iterative re-
construction (SIR) on already separated sample pro-
jections or in the form of IBSIR directly on the raw heli-
cal measurement. However, the difficulties of the latter
concerning convergence and computational complex-
ity will be increased by the larger datasets.

Lastly, it would be beneficial for the research of clin-
ical dark-field CT in general to describe the informa-
tion encoding and signal retrieval process in a more
formalized framework. [59] motivates phase retrieval

as a signal demodulation process but does not con-
nect it with tomographic reconstruction and sampling
in Radon space. Derivating quantitative measures for
sampling quality and resulting image properties such
as noise characteristics and undersampling artifacts
(which rotation artifacts basically are) would open the
possibility for objectively optimal setup design and sig-
nal retrieval.
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Chapter 5

Conclusion

This thesis develops improved data processing al-
gorithms relevant to clinical dark-field computed to-
mography with X-rays. It introduces several additions
to the conventional model motivated by the physical
processes governing the image formation. They are
evaluated with measurements from a prototype setup
based on a commercial CT gantry. This chapter sum-
marizes the findings and outlines further steps on the
path to clinical dark-field computed tomography with
X-rays.

Interferometer vibrations We first motivate and de-
velop a model for the spatio-temporal fluctuations we
observe on air-scan data acquired with the DFCT. It
is a commercial CT system from “Philips N.V”. which
our group retrofitted with a Talbot-Lau interferometer.
The scanner is operated in the original clinical proto-
cols in which the gantry rotation and detector readout
are continuous. Starting from the conventional model
used for X-ray imaging with a stepped Talbot-Lau inter-
ferometer, we introduce 2D polynomial terms for each
G2 tile in visibility and phase which vary for each de-
tector exposure. Lateral movement and rotation of the
interferometer gratings lead to variations in the effec-
tive phase at the G2 grating. Due to the finite expo-
sure time the phase changes during detector readout
which reduces the system visibility according to our
analytically derived model. Defosing of the interferom-
eter from movement of the gratings and the focal spot
further reduces the visibility.

Nested linearized phase retrieval We extend the
conventional SPR method with these vibration terms
and implement a nested optimization scheme in which
the parameterization coefficients are optimized wrt.
the residuum after the linear solve in SPR. The al-
gorithm is executed on a GPU via JAX. In using air-
scan data we use projections from a full axial gantry
rotation in which the stepping phase on the interferom-
eter varies over 10π and is sufficient for stable phase-
retrieval. The method gives us reference intensity, vi-
sibility, and phase flat-fields, as well as the estimated
spatio-temporal tile-wise fluctuations of visibility and
phase.

Principal component analysis These fluctuations
are analyzed in PCA to determine their dominant com-
ponents and reduce the number of parameterization
coefficients per exposure while still accurately mod-
eling the vibration. In this manner, for the DFCT we
identify two components in visibility and four in phase.
The PCA method is then used to determine dominant
fluctuations in the intensity contrast of the interferom-
eter. By re-arranging the model with current estimates
for reference flat-fields and aforementioned vibrations
in visibility and phase we can apply PCA directly and
obtain a intensity fluctuation parameterization, which
in our case consists of two major components.

Higher orders of visibility Another novelty of the
DFCT processing is the consideration of higher-order
terms of the Fourier series describing the stepping
curve measured behind the G2 grating. While the
conventional model only considers the mean and first-
order modulation (effectively assuming the curve to be
an offset cosine) we observe significant second- and
third-order terms which become noticeable as artifacts
if the phase-retrieval is performed over less than one
stepping period. In the DFCT they are especially rel-
evant because the triangular G1 generates a pattern
with inherently larger higher orders, and the phase-
retrieval for sample reconstruction works on small an-
gular windows in which the phase varies only slightly
and often < 2π. We adapt the vibration models and
the first-order SPR to include these higher orders of vi-
sibility and use axial air-scan data to determine them,
in order to remove them after the vibration fit and com-
pute virtual first-order projections.

Macroscopic grating movement The final addition
to the model without a sample is the macroscopic lat-
eral movement of the gratings. In contrast to a lab-
based setup where one grating is moved over micro-
scopic distances much smaller than a detector pixel,
in the DFCT the gantry rotation induces macroscopic
grating displacement. We mathematically motivate the
resulting effects from the spatial gradients of the flat-
fields and determine them with PCA on the residuum
from performing sliding-window SPR on an air-scan.
Considering this effect avoids concentric ring artifacts
in the tomographic reconstructions especially of the
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refractive index decrement, due to the spatial gradient
of the phase flat-field with fringes being so large.

Sliding-window phase retrieval In accordance
with our projection-based pipeline we use sliding-
window SPR to obtain projections from a measured
sample in transmission, dark-field, and differential
phase. This method uses small angular windows of
subsequent exposures to estimate the sample projec-
tions in the exposure central to the window, given the
interferometer state as a combination of reference flat-
fields and vibration model. Due to the continuous ro-
tation of the scanner this method violates the model
because it assumes a constant sample in the angular
window. However, implemented on GPU it is much
faster than iterative methods such as IBSIR and is
shown to produce satisfactory results if we employ a
set of image enhancement methods.

Processing a large sample The main challenge in
processing a scan of a sample is determining the in-
terferometer state at the time of the scan. We assume
that the low-dimensional vibration model from the lat-
ter is still valid (and show this to be the case for up to
30 minutes between scans) and only update the per-
exposure coefficients for each model component. The
main optimization loop is a minimization of a likelihood
cost function alternating between vibration coefficients
and sample projections. In principle, we could employ
the same nested scheme as in air-scan processing,
performing “inner” sliding-window SPR at each itera-
tion of the “outer” optimization of the vibration coef-
ficients. This has proven both unstable and compu-
tationally expensive in practice and we opted for the
robust alternating scheme instead.

Additionally, we present two novel image enhance-
ment methods for post-processing: the reduction of
rotation artifacts and the estimation of slow thermal
drift of the reference phase flat-field, both leading to
artifacts in the tomographic reconstruction of the sam-
ple projections.

The rotation artifacts stem from the sliding-window
SPR implicitly assuming a static sample. We en-
force tomographic consistency by forward-projecting
the FBP of the sample transmission and perform-
ing sliding-window SPR on virtual projections with the
transmission estimate removed. This strongly reduces
streak artifacts in the final reconstructions of all image
modalities.

Despite active thermal regulation of the setup (both
the room and on-board components) there is small de-
formation of the gratings over time, resulting in strong
artifacts in the reconstructed refractive index decre-
ment. We estimate the drift as the polar mean of
the difference between refractive index decrement and

scaled attenuation coefficient, effectively approximat-
ing the phase shift with the scaled transmission.

Combined with the temporal stability of the PCA vibra-
tion model this gives us a processing pipeline that is
stable over time and handles large samples using the
full interferometer FOV. Its validity is demonstrated
with tomographic reconstructions of both a small rod
phantom, and a human-sized thorax phantom filled
with various inserts. Employing the presented cross-
channel bilateral filter on the final results of the dif-
fusion coefficient and refractive index decrement fur-
ther increases their contrast-to-noise ratio by using the
high quality of the attenuation image.

Formalization of the signal retrieval Despite the
satisfactory experimental results of the presented
projection-based reconstruction pipeline, the method
lacks a formal framework that quantifies the infor-
mation density in the context of continuous rotation,
phase oscillation, and sliding-window phase retrieval.
The meta-parameters used by our method such as os-
cillation frequency and angular window size are empir-
ically found. At the moment we can’t predict the mag-
nitude of image errors caused by higher-order visibility
terms, insufficient phase sampling in an angular win-
dow, or projected lateral sample movement (rotation).
There has been work from our group to formalize the
signal retrieval [59] but there is not an “end-to-end”
model for image quality yet.

Even still, there exist more empirical methods for im-
proved signal retrieval which have not been discussed
in this work. According to [59] the sliding-window SPR
can be extended from only angular windows to spatial
windows, effectively implementing patch-wise SPR.
Combined with small, horizontal fringes (instead of
vertical fringes in this work) the image quality in axial
slices of tomographic reconstructions can be greatly
improved. This method (and the others presented in
the cited work) introduce even more meta-parameters,
further increasing the need for a formal framework of
information density in this context.

As an alternative to the presented sliding-window SPR
and all its modifications, we could use IBSIR for tomo-
graphic reconstruction [44]. It is an iterative recon-
struction method that incorporates the Radon trans-
form in its model and therefore correctly expresses the
continuous rotation and phase sampling implicitly. Un-
fortunately, a direct consequence is that this method
is computationally very expensive, requiring multiple
tomographic back- and forward-projections per opti-
mizer iteration. With the insights from this thesis and
the results from tomographic reconstruction (and filter-
ing) as an initialization of IBSIR, it could prove viable
to further increase image quality without the need for
manually tuned meta-parameters mentioned above.
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Helical acquisition A crucial step in the direction of
clinical viability of the setup is the transition from axial
to helical acquisition, covering the whole human tho-
rax for lung imaging. While the core principles of our
pipeline are still valid for helical acquisitions, it does in-
troduce the need for several adjustments. FBP in he-
lical geometry with the focus-centered detector in the
DFCT is more complicated. The most viable solution
is a rebinning to virtual wedge geometry [72, 73] which
has only been explored with conventional absorption
contrast in the literature. To obtain valid projections
of the dark-field and especially the differential phase,
we have to combine the rebinning with sliding-window
SPR, fusing them into one bilinear interpolation.

Furthermore, due to dose limitations and the pro-
longed scan time, the effective dose per axial slice will
be significantly lower than for the tomographic recon-
structions shown in this work. This increases image
noise especially in the diffusion coefficient. Further
post-processing filters or an IBSIR post-processing
step will be necessary. The processing time will be
increased due to the large dataset.

Dual-phase G1 An orthogonal possibility to increase
dose effectiveness are dual-pitch G1 gratings [74, 75].
This novel design features a macroscopic modulation
of the microscopic grating structure. The latter gov-
erns the correlation length and corresponding length
scales to whose dark-field signal the setup is sensitive,
but the former creates a macroscopic intensity modu-
lation at the detector, eliminating the need for the ana-
lyzer grating G2. The macroscopic modulation indeed
is decreased by small-angle scattering of the Talbot
carpet from the microscopic structure. Without the G2
absorbing approximately half the radiation, the dose
is effectively doubled. However, first investigations in
the literature have shown a lower visibility compared
to conventional designs. As the noise in the dark-field
image is proportional to V −2I−1, the visibility of the
dual-pitch G1 has to be at least 70 % of the conven-
tional design in order to be beneficial.

Spectral imaging Spectral imaging with dual-
energy or photon-counting devices is a heavily re-
searched topic with increasing commercial adoption
in recent years [76] although proposed already in
1976 [77]. It considers the energy dependency
of the attenuation coefficient to generate virtual
mono-energetic images, material decomposition, and
contrast-enhanced images in general. Using energy-
resolved measurements in dark-field and phase con-
trast has been investigated in recent work but is still
at a pre-clinical stage [78, 79]. If the DFCT would be
combined with a dual-layer or photon-counting detec-
tor, we could exploit the improved noise characteristics
and correlation between attenuation and phase shift

via the projected electron density, ultimately improv-
ing image quality.

Clinical studies Finally, the ultimate goal is to pro-
vide diagnostic information in clinical practice. To eval-
uate the potential of the DFCT reader studies are nec-
essary, comparing it to conventional CT with absorp-
tion contrast. Furthermore, there exists a prototype for
dark-field radiography that has shown great promise
for early detection of various lung diseases at low ra-
diation dose [13–17]. The added value of volumetric
diffusion information will be measured against this es-
tablished method.





59

Bibliography

[1] A. Lohmann and D. Silva, “An interferometer
based on the Talbot effect,” Opt. Commun.,
vol. 2, no. 9, 1971.

[2] S. Yokozeki and T. Suzuki, “Shearing interferom-
eter using the grating as the beam splitter,” Appl.
Opt., vol. 10, no. 7, 1971.

[3] A. Momose et al., “Demonstration of X-ray Tal-
bot interferometry,” Jpn. J. Appl. Phys., Part 2,
vol. 42, no. 7B, 2003.

[4] F. Pfeiffer et al., “Hard-X-ray dark-field imag-
ing using a grating interferometer,” Nat. Mater.,
vol. 7, no. 2, 2008.

[5] L. B. Gromann et al., “In-vivo X-ray dark-field
chest radiography of a pig,” Sci. Rep., vol. 7,
4807, 2017.

[6] J. Tanaka et al., “Cadaveric and in vivo hu-
man joint imaging based on differential phase
contrast by X-ray Talbot-Lau interferometry,” Z.
Med. Phys., vol. 23, no. 3, 2013.

[7] K. Willer et al., “X-ray dark-field imaging of the
human lung—a feasibility study on a deceased
body,” PLOS ONE, vol. 13, no. 9, e0204565,
2018.

[8] W. Yashiro, Y. Terui, K. Kawabata, and A. Mo-
mose, “On the origin of visibility contrast in x-ray
Talbot interferometry,” Optics express, vol. 18,
no. 16, 2010.

[9] F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David,
“Phase retrieval and differential phase-contrast
imaging with low-brilliance X-ray sources,” Nat.
Phys., vol. 2, no. 4, 2006.

[10] T. Donath et al., “Inverse geometry for grating-
based x-ray phase-contrast imaging,” Journal of
Applied Physics, vol. 106, no. 5, 2009.

[11] A. A. Fingerle et al., “Imaging features in post-
mortem x-ray dark-field chest radiographs and
correlation with conventional x-ray and CT,” Eu-
ropean radiology experimental, vol. 3, 2019.

[12] J. Andrejewski et al., “Whole-body x-ray dark-
field radiography of a human cadaver,” Euro-
pean Radiology Experimental, vol. 5, no. 1,
2021.

[13] K. Willer et al., “X-ray dark-field chest imag-
ing for detection and quantification of emphy-
sema in patients with chronic obstructive pul-
monary disease: A diagnostic accuracy study,”
The Lancet Digital Health, vol. 3, no. 11, 2021.

[14] T. Urban et al., “Qualitative and quantitative as-
sessment of emphysema using dark-field chest
radiography,” Radiology, 2022.

[15] F. T. Gassert et al., “Assessment of inflation in
a human cadaveric lung with dark-field chest ra-
diography,” Radiology: Cardiothoracic Imaging,
vol. 4, no. 6, 2022.

[16] M. Frank et al., “Dark-field chest X-ray imag-
ing for the assessment of covid-19-pneumonia,”
Communications Medicine, vol. 2, no. 1, 2022.

[17] T. Urban et al., “Dark-field chest radiography
outperforms conventional chest radiography for
the diagnosis and staging of pulmonary em-
physema,” Investigative Radiology, vol. Publish
Ahead of Print, 2023.

[18] M. Kattau et al., “X-ray dark-field chest radiog-
raphy: A reader study to evaluate the diagnostic
quality of attenuation chest X-rays from a dual-
contrast scanning prototype,” European Radiol-
ogy, 2023.

[19] M. Bech et al., “Quantitative x-ray dark-field
computed tomography,” Physics in Medicine &
Biology, vol. 55, no. 18, 2010.

[20] M. Viermetz et al., “Dark-field computed tomog-
raphy reaches the human scale,” Proceedings
of the National Academy of Sciences, vol. 119,
no. 8, 2022.

[21] M. Viermetz et al., “Technical design consid-
erations of a human-scale Talbot-Lau interfer-
ometer for dark-field CT,” IEEE Transactions on
Medical Imaging, 2022.

[22] M. Viermetz et al., “Initial characterization of
Dark-Field CT on a clinical gantry,” IEEE Trans-
actions on Medical Imaging, 2022.

[23] T. Buzug, Computed Tomography. Springer,
Berlin, 2008.

[24] A. C. Kak and M. Slaney, Principles of comput-
erized tomographic imaging. SIAM, 2001.

[25] H. Turbell, “Cone-beam reconstruction using fil-
tered backprojection,” Dissertation, Linköpings
Universitet, 2001.

[26] H. Talbot, “Facts relating to optical science.
no. IV,” The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science,
vol. 9, no. 56, 1836.

[27] E. Lau, “Beugungserscheinungen an Doppel-
rastern,” Annalen der Physik, vol. 437, no. 7-8,
1948.

[28] M. Chabior, “Contributions to the characteriza-
tion of grating-based x-ray phase-contrast imag-
ing,” Dissertation, Technische Universität Dres-
den, 2011.



60 Bibliography

[29] K. Okada, A. Sato, and J. Tsujiuchi, “Simultane-
ous calculation of phase distribution and scan-
ning phase shift in phase shifting interferome-
try,” Opt. Commun., vol. 84, no. 3-4, 1991.

[30] M. Seifert et al., “Optimisation of image recon-
struction for phase-contrast X-ray Talbot-Lau
imaging with regard to mechanical robustness,”
Phys. Med. Biol., vol. 61, no. 17, 2016.

[31] M. Marschner et al., “Helical X-ray phase-
contrast computed tomography without phase
stepping,” Sci. Rep., vol. 6, 23953, 2016.

[32] S. Kaeppler et al., “Improved reconstruction of
phase-stepping data for Talbot-Lau X-ray imag-
ing,” J. Med. Imaging, vol. 4, no. 3, 034005,
2017.

[33] C. Hauke et al., “Enhanced reconstruction al-
gorithm for moiré artifact suppression in Talbot-
Lau X-ray imaging,” Phys. Med. Biol., vol. 63,
no. 13, 135018, 2018.

[34] F. De Marco et al., “Analysis and correction of
bias induced by phase stepping jitter in grating-
based X-ray phase-contrast imaging,” Opt. Ex-
press, vol. 26, no. 10, 2018.

[35] J. Dittmann, A. Balles, and S. Zabler, “Optimiza-
tion based evaluation of grating interferometric
phase stepping series and analysis of mechan-
ical setup instabilities,” J. Imaging, vol. 4, no. 6,
77, 2018.

[36] K. Hashimoto, H. Takano, and A. Momose, “Im-
proved reconstruction method for phase step-
ping data with stepping errors and dose fluctua-
tions,” Opt. Express, vol. 28, no. 11, 2020.

[37] W. Noichl et al., “Correction for mechanical in-
accuracies in a scanning Talbot-Lau interferom-
eter,” IEEE Transactions on Medical Imaging,
2023.

[38] M. Seifert et al., “Talbot-Lau x-ray phase-
contrast setup for fast scanning of large sam-
ples,” Scientific Reports, vol. 9, no. 1, 2019.

[39] A. Tapfer et al., “Experimental results from a pre-
clinical X-ray phase-contrast CT scanner,” Pro-
ceedings of the National Academy of Sciences,
vol. 109, no. 39, 2012.

[40] A. Yaroshenko et al., “Pulmonary emphysema
diagnosis with a preclinical small-animal x-ray
dark-field scatter-contrast scanner,” Radiology,
vol. 269, no. 2, 2013.

[41] Z. Wu et al., “Prototype system of noninterfer-
ometric phase-contrast computed tomography
utilizing medical imaging components,” Journal
of Applied Physics, vol. 129, no. 7, 2021.

[42] M. Viermetz, “Development of the first Human-
scale Dark-field Computed Tomography Sys-
tem,” Dissertation, Technical University of Mu-
nich, 2022.

[43] M. Kachelrieß, M. Knaup, C. Penßel, and W. A.
Kalender, “Flying focal spot (ffs) in cone-beam

CT,” IEEE transactions on nuclear science,
vol. 53, no. 3, 2006.

[44] M. v. Teuffenbach et al., “Grating-based phase-
contrast and dark-field computed tomography:
A single-shot method,” Scientific reports, vol. 7,
no. 1, 2017.

[45] J. Mohr et al., “High aspect ratio gratings for X-
ray phase contrast imaging,” in AIP Conference
proceedings, American Institute of Physics,
vol. 1466, 2012.

[46] T. J. Schröter et al., “Large field-of-view tiled
grating structures for X-ray phase-contrast
imaging,” Review of Scientific Instruments,
vol. 88, no. 1, 2017.

[47] C. Schmid et al., “Modeling vibrations of a
tiled Talbot-Lau interferometer on a clinical CT,”
IEEE Transactions on Medical Imaging, 2022.

[48] F. Horn et al., “Implementation of a Talbot-Lau
interferometer in a clinical-like c-arm setup: A
feasibility study,” Scientific Reports, vol. 8, no. 1,
2018.

[49] T. Weber et al., “Noise in x-ray grating-based
phase-contrast imaging,” Med. Phys., vol. 38,
no. 7, 2011.

[50] J. Bradbury et al., JAX: Composable trans-
formations of Python+NumPy programs, ver-
sion 0.4.2, 2018.

[51] D. C. Liu and J. Nocedal, “On the limited mem-
ory bfgs method for large scale optimization,”
Mathematical programming, vol. 45, no. 1, 1989.

[52] S. G. Krantz and H. R. Parks, The implicit func-
tion theorem: history, theory, and applications.
Springer Science & Business Media, 2002.

[53] G. Pelzer et al., “Reconstruction method
for grating-based x-ray phase-contrast images
without knowledge of the grating positions,”
Journal of Instrumentation, vol. 10, no. 12, 2015.

[54] E. Cheney and D. Kincaid, Linear Algebra: The-
ory and Applications. Jones and Bartlett Pub-
lishers, 2009.

[55] M. Bech, “X-ray imaging with a grating inter-
ferometer,” Dissertation, University of Copen-
hagen, 2009.

[56] N. T. Vo, R. C. Atwood, and M. Drakopoulos,
“Superior techniques for eliminating ring arti-
facts in X-ray micro-tomography,” Opt. Express,
vol. 26, no. 22, 2018.

[57] G. Lewith, W. B. Jonas, and H. Walach, Clini-
cal Research in Complementary Therapies. El-
sevier, 2002.

[58] N. Gustschin et al., “Quality and parameter con-
trol of X-ray absorption gratings by angular X-ray
transmission,” Optics express, vol. 27, no. 11,
2019.

[59] J. Haeusele et al., “Advanced phase-retrieval for
stepping-free X-ray dark-field computed tomog-
raphy,” IEEE Transactions on Medical Imaging,
2023.



Bibliography 61

[60] K. Vegso et al., “Recent advance in grating-
based x-ray phase tomography,” in Develop-
ments in X-Ray Tomography XI, B. Müller and
G. Wang, Eds., SPIE, 2017.

[61] G. Zan et al., “High-resolution multicontrast
tomography with an X-ray microarray an-
ode–structured target source,” Proceedings of
the National Academy of Sciences, vol. 118,
no. 25, 2021.

[62] I. Zanette et al., “Trimodal low-dose X-
ray tomography,” Proceedings of the National
Academy of Sciences, vol. 109, no. 26, 2012.

[63] M. Willner et al., “Quantitative X-ray phase-
contrast computed tomography at 82 kev,” Op-
tics express, vol. 21, no. 4, 2013.

[64] S. Van Gogh et al., “Towards clinical-dose
grating interferometry breast CT with fused
intensity-based iterative reconstruction,” Optics
Express, vol. 31, no. 5, 2023.

[65] S. Gu, L. Zhang, W. Zuo, and X. Feng,
“Weighted nuclear norm minimization with ap-
plication to image denoising,” in Proceedings of
the IEEE conference on computer vision and
pattern recognition, 2014.

[66] M. J. Ehrhardt and S. R. Arridge, “Vector-valued
image processing by parallel level sets,” IEEE
Transactions on Image Processing, vol. 23,
no. 1, 2013.

[67] T. Koehler and E. Roessl, “Simultaneous de-
noising in phase contrast tomography,” in AIP
Conference Proceedings, American Institute of
Physics, vol. 1466, 2012.

[68] S. Allner et al., “Bilateral filtering using the
full noise covariance matrix applied to x-ray
phase-contrast computed tomography,” Physics
in Medicine & Biology, vol. 61, no. 10, 2016.

[69] M. Frank et al., “Dosimetry on first clinical
dark-field chest radiography,” Medical physics,
vol. 48, no. 10, 2021.

[70] N. Gustschin et al., “Dark-field imaging on a
clinical CT system: Performance and potential
based on first results,” in 7th International Con-
ference on Image Formation in X-Ray Com-
puted Tomography, SPIE, vol. 12304, 2022.

[71] F. De Marco et al., “X-ray dark-field signal reduc-
tion due to hardening of the visibility spectrum,”
arXiv preprint arXiv:2011.03542, 2020.

[72] C. Bontus and T. Kohler, “Reconstruction algo-
rithms for computed tomography,” Advances in
Imaging and Electron Physics, vol. 151, 2008.

[73] T. Kohler et al., “Evaluation of helical cone-beam
CT reconstruction algorithms,” in 2002 IEEE Nu-
clear Science Symposium Conference Record,
IEEE, vol. 2, 2002.

[74] A. Pandeshwar, M. Kagias, Z. Shi, and M. Stam-
panoni, “Envelope modulated x-ray grating in-
terferometry,” Applied Physics Letters, vol. 120,
no. 19, 2022.

[75] R. Tang et al., “Detailed analysis of the in-
terference patterns measured in lab-based X-
ray dual-phase grating interferometry through
wave propagation simulation,” Optics Express,
vol. 31, no. 2, 2023.

[76] M. Patino et al., “Material separation using dual-
energy CT: Current and emerging applications,”
Radiographics, vol. 36, no. 4, 2016.

[77] R. E. Alvarez, “Energy-selective reconstructions
in x-ray computerised tomography,” Physics in
Medicine and Biology, vol. 21, no. 5, 1976.

[78] K. Mechlem et al., “Spectral differential phase
contrast x-ray radiography,” IEEE transactions
on medical imaging, vol. 39, no. 3, 2019.

[79] K. Mechlem et al., “A theoretical framework for
comparing noise characteristics of spectral, dif-
ferential phase-contrast and spectral differen-
tial phase-contrast x-ray imaging,” Physics in
Medicine & Biology, vol. 65, no. 6, 2020.





63

List of Figures

2.1 Energy dependence of the mass attenuation coefficient of water and calcium . . . . . . . . . . . 3
2.2 Coordinate system of cone-beam setup with a Talbot-Lau interferometer . . . . . . . . . . . . . . 5
2.3 Simulated Talbot carpets for different gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Geometry of a Talbot-Lau interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Origin of Moire fringes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Contrast mechanisms in a Talbot-Lau interferometer . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Polychromatic X-ray spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Beam-hardening artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 Polychromatic visibility spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10 Annotated photograph of the dark-field CT prototype . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.11 Schematic drawing of the dark-field CT prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Schematic depiction of vibrations in the setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Polynomial phase shifts form grating movement and rotation . . . . . . . . . . . . . . . . . . . . . 16
3.3 Visibility depending on the G2 position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Flowchart of the nested optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Illustration of global and tile-wise polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Hessian matrix wrt. the vibration coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Simulations of visibility orders over duty cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Relative visibility decrease depending on the fringe size . . . . . . . . . . . . . . . . . . . . . . . 24
3.9 DFCT flat-fields after processing an air-scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10 DFCT visibility in first, second, and third order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11 Lineplots of DFCT higher-order visibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.12 DFCT phase in first, second, and third order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.13 Scree plots of PCA model components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14 The most dominant principal components of the spatial fluctuations in intensity, visibility, and

phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15 Plot of per-shot coefficients of PCA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.16 Plot of Fourier spectra of per-shot coefficients of PCA model . . . . . . . . . . . . . . . . . . . . 31
3.17 Model components of macroscopic flat-field movement. . . . . . . . . . . . . . . . . . . . . . . . 32
3.18 Absolute value of projection error from flat-field movement . . . . . . . . . . . . . . . . . . . . . . 32
3.19 Comparison of impact of various corrections on air-scan reconstruction . . . . . . . . . . . . . . 33
3.20 Comparison of impact of various corrections on sample-scan reconstruction . . . . . . . . . . . . 34

4.1 Acquisition schemes for stepping and continuous grating movement . . . . . . . . . . . . . . . . 40
4.2 Processing of a small sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Flowchart of the alternating optimization of a sample-scan . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Enforcing tomographic consistency by forward-projecting the FBP . . . . . . . . . . . . . . . . . 43
4.5 Illustration of the polar transform of an axial slice . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Reconstructions of the rod phantom using PCA models from different air-scans . . . . . . . . . . 46
4.7 Axial slices in cartesian and polar coordinates during drift correction . . . . . . . . . . . . . . . . 47
4.8 Reconstructions of a phantom using different amounts of the detector width . . . . . . . . . . . . 48
4.9 Condition number as a measure for orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.10 Estimating sample transmission with FP(FBP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.11 Estimating flux of sample-scan data before phase retrieval . . . . . . . . . . . . . . . . . . . . . . 50
4.12 Reconstruction of the thorax phantom at different stages . . . . . . . . . . . . . . . . . . . . . . . 51
4.13 Cross-channel bilateral filter on thorax phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



64 List of Figures

A.1 DFCT visibility up to tenth order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 DFCT phase up to tenth order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



65

List of Tables

4.1 Optimization steps for a large sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42





67

List of abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

aka. also known as

autodiff automatic differentiation

CNR contrast-to-noise ratio

CT computed tomography

DFCT dark-field computed tomography system

DOF degrees-of-freedom

FBP filtered back-projection

FOV field of view

FP tomographic foward-projection

GPU graphics processing unit

IBSIR intensity-based statistical iterative reconstruction

MRI magnetic resonance imaging

PCA principal component analysis

POM polyoxymethylene

SIMD “single instruction, multiple data”

SIR statistical iterative reconstruction

SPR (linearized) statistical phase retrieval

SVD singular value decomposition

wrt. with respect to





69

Appendix A

Auxiliary data

A.1 Higher-order reference visibility and phase flat-fields
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Figure A.1: DFCT reference visibility V̂ (n) for n = 1...10. It is determined by performing the presented processing pipeline
in chapter 3 for an axial air-scan and using the generalized linearized phase retrieval for higher-order Fourier terms. Please
note the different value windows in the colorbars. A The first-order visibility V̂ (1) is by far the largest in magnitude, reaching
30 % in the detector center. B,C For n = 2 and n = 3 the magnitude is below 1 %. These are the terms we use in practice.
D V̂ (4) is still discernible over the noise floor but below 0.1 % in magnitude. E-J The higher orders n = 5...10 are not
discernible and only show noise despite the high number of projections from a full axial scan used for the signal retrieval.
Their minuteness is a combination of the higher-order Fourier series terms inherently decreasing with order n, and the
effective visibility generally decreasing with smaller fringe size.
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Figure A.2: DFCT reference phase ϕ̂(n) for n = 1...10. It is determined by performing the presented processing pipeline
in chapter 3 for an axial air-scan and using the generalized linearized phase retrieval for higher-order Fourier terms. A The
first-order phase ϕ̂(1) visually matches the fringe pattern of the raw intensity measurements because the first-order visibility
V̂ (1) dominates the overall visibility contrast. B,C For n = 2 and n = 3 the fringe pattern has double and triple the spatial
frequency, respectively. These are the terms we use in practice. The doubled and tripled lateral frequency is expected from
the physical model but not enforced in the signal retrieval. Its occurrence therefore is evidence of the physical presence
of the higher orders in the data. D ϕ̂(4) is only discernible in the center where V̂ (4) is larger than the noise floor. E-J The
higher orders n = 5...10 are not discernible and only show noise despite the high number of projections from a full axial
scan used for the signal retrieval. Their minuteness is a combination of the higher-order Fourier series terms inherently
decreasing with order n, and the effective visibility generally decreasing with smaller fringe size.
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