
TUM School of Computation,
Information and Technology

Scalable Learning of 6-DoF Object
and Robotic Grasp Poses

Martin Bernd Sundermeyer

Vollständiger Abdruck der von der TUM School of Computation, Information and

Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Eckehard Steinbach

Prüfende der Dissertation: 1. Prof. Dr. Rudolph Triebel
2. Prof. Dr. Daniel Cremers
3. Prof. Dr. Vincent Lepetit

Die Dissertation wurde am 07.02.2024 bei der Technischen Universität München

eingereicht und durch die TUM School of Computation, Information and Technology am

02.10.2024 angenommen.



Acknowledgments

A PhD resembles a long road that is not always straight but has amazing views
along the way. I was fortunate enough to go on this road-trip with my fellow
colleagues, students and friends which helped me driving and writing through
the darker nights.

I want to especially thank Rudolph for giving me the opportunity, freedom and
support to pursue this thesis at DLR. Thank you, Zoltan, for the early support
by supervising my master thesis and first publications, I could learn a lot from
you. Thank you, Max Du., for being always there with a positive attitude, I
enjoyed working under and with you from being your first student to being in
your department group. I am sure your passion for robots will open their eyes!

Thank you, Max De., for sharing so many good and bad moments from the master
thesis to our shared office. I loved your passion and at the same time enjoyed
the best PhD vents I got to experience. I learned a lot developing BlenderProc
together with you and your student army, especially with Dominik. Thank you,
Manuel, for the great collaborations towards the end of my PhD and best of luck
with your new endeavors.

Thank you, Wout, and Sebastian for being such great students and colleagues,
it’s great to see how you are continuing the research and completely integrated
yourself into the RMC laboratory. Also thanks to my students Philipp, Ahsan,
Amrutha and Jakob!

I want to thank my family for paving the way for so many years and for being a
role model in persevering through obstacles. And finally a special thanks to Elli
for the love, understanding and mental support, also in more difficult periods.



Abstract

This dissertation addresses the problem of 6-DoF Object Pose and 6-DoF Grasp
Pose estimation from visual sensor data, which is crucial for tasks such as robotic
manipulation and Augmented Reality. We present novel learning-based methods
that are fast, reliable, and scalable concerning training data, test environments,
and target objects. Instead of relying on real pose annotated data, we train our
models in simulation which provides an abundant source of variably steerable
data with exact 3D annotations.

Our first contribution, the Augmented Autoencoder, integrates sim2real transfer
techniques and resolves pose ambiguities by training appearance-based encod-
ings without explicit pose supervision. The approach, which won the Best Paper
Award at ECCV 2018, achieves real-time 6-DoF object pose estimation on em-
bedded hardware. Our second contribution, the Multi-Path Encoder, extends
Augmented Autoencoders to scale efficiently across multiple objects and estimates
the poses of objects unseen during training, while maintaining a small memory
and inference time footprint. Next, we analyze the results of the Benchmark for
6D Object Pose Estimation (BOP Challenge) which we organize to produce fair
comparisons between pose estimation methods under realistic conditions. We
address the limiting synthetic-to-real domain gap by introducing BlenderProc,
an open-source, procedural, physically-based rendering tool that significantly
advances synthetic data realism and transfer to real sensor data. In the BOP
Challenge methods trained on our provided BlenderProc data achieved up to
25.5% improvement over the same amount of rasterized training data. We further
extend BlenderProc to create the Robot Tracking Benchmark (RTB) for evaluat-
ing 6-DoF articulated object tracking in complex scenarios. Subsequently, we
present Contact-GraspNet, an end-to-end network for efficient 6-DoF grasp gen-
eration from a single depth view, achieving over 90% success rates in unknown
object grasping tasks. Finally, we demonstrate the practical utility of our meth-
ods through the deployment on robotic systems, including humanoid robots,
industrial arms and mobile robots such as an assistive wheelchair.
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Kurzfassung

Diese Dissertation befasst sich mit dem Problem der 6-DoF Objektposen- und
6-DoF Greifposen-Schätzung aus visuellen Sensordaten, welche entscheidend
sind für Anwendungen wie autonome robotische Manipulation und Augmented
Reality. Wir präsentieren neue, lernbasierte Methoden, die schnell, zuverläs-
sig und skalierbar in Bezug auf Trainingsdaten, Testumgebungen und Anzahl
der Zielobjekte sind. Anstatt auf realen, posen-annotierten Daten, trainieren
wir unsere Modelle in Simulationen, aus denen vielfältige Daten mit genauen
Annotationen synthetisiert werden können.

Unser erster Beitrag, der Augmented Autoencoder, integriert Sim2Real-Transfer-
Techniken und löst Posen-Ambiguitäten, indem er auf erscheinungsbasierten
Kodierungen ohne explizite Posen-Supervision trainiert. Dieser Ansatz, der
den Best Paper Award auf der ECCV 2018 gewann, ermöglicht eine 6-DoF-
Objektposen Schätzung in Echtzeit auf eingebetteter Hardware. Unser zweiter
Beitrag, Multi-Path Encoder, erweitert Augmented Autoencoders, um effizient
auf viele Objekte zu skalieren und die Posen von Objekten zu schätzen, die
zur Trainingszeit nicht bekannt waren während gleichzeitig Speicherressourcen
geschont werden. Als nächstes analysieren wir die Ergebnisse des Benchmark for
6D Object Pose Estimation (BOP Challenge), der standardisierte Vergleiche unter
realistischen Bedingungen durchführt und in Verbindung mit den "Recovering 6D
Pose" Workshops organisiert wird. Wir adressieren die Domänenlücke zwischen
synthetischen und echten Daten, indem wir BlenderProc einführen, ein Open-
Source Tool für prozedurales Rendering, das die Realitätsnähe synthetischer
Daten erheblich verbessert. In der BOP Challenge erzielten auf BlenderProc-Daten
trainierte Methoden eine Verbesserung von bis zu 25,5% gegenüber der gleichen
Menge an gerasterten, synthetischen Trainingsdaten. Wir entwickeln BlenderProc
weiter, um das Robot Tracking Benchmark (RTB) für die Evaluierung von 6-DoF-
Objektverfolgung in komplexen Szenarien zu schaffen und stellen eine effiziente
Baselinemethode zur Verfügung. Wir präsentieren Contact-GraspNet, ein Ende-
zu-Ende trainiertes Netzwerk für effiziente 6-DoF-Greifvorhersagen aus einzelnen
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Kurzfassung

Tiefenansichten, das über 90% Erfolg bei unbekannten Objektgreifaufgaben erzielt.
Abschließend demonstrieren wir den praktischen Nutzen unserer Methoden auf
Robotersystemen, einschließlich humanoider Roboter, Industriearme und mobiler
Roboter wie beispielsweise einem Assistenzrollstuhl.
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1 Introduction

Robotic systems that can autonomously perceive and act in complex environments
have the potential to solve important problems of mankind. They could automate
repetitive or dangerous tasks currently performed by humans, assist elderly and
disabled people in their households, enable driver-less transport, revolutionize
medical surgery and allow for extraplanetary colonization. Especially in our
aging society automating physical tasks can avoid accidents, reduce human
workload and thus increase available time for human interactions. But, to realize
these goals, we not only require robust robotic hardware, planning and control
but also substantial progress in robotic perception.

In practice, autonomous robots need to perceive the open, physical world from
on-board sensor streams. They face unique challenges such as power constraints,
sensor disturbances and constantly changing environments. Nevertheless, we
already see the adoption of several semi-autonomous consumer products such
as robot vacuums and robot lawn mowers. These affordable robots can create
accurate maps of their surroundings and navigate through them while bypassing
obstacles. For their navigation capabilities, a simple 2D LiDAR stream that is
geometrically fused to a map is typically sufficient.

Autonomous vehicles (AVs) demand a much finer visual understanding to navi-
gate within dynamic environments. Yet, their primary goal is similar, i.e. avoiding
obstacles at any cost which they already do similarly well as human drivers [211].

Despite this progress, many impactful robotic applications are still out of reach
since they would require autonomous robots to not only avoid objects but to
physically interact with them based on vision and tactile feedback. Current robotic
systems struggle greatly with autonomous manipulation tasks, in particular when
objects and the environment are not fixed. Guaranteeing the behavior of complex
physical interactions fully in advance is extremely challenging. At the same
time, failure cases can have serious consequences for both the robot itself and
its surroundings, especially if humans are involved. While a simple model of

1



1 Introduction

Figure 1.1: Humanoid robot David empties a dishwasher based on object detection [225], 6-DoF
pose estimation [181] and refinement/tracking [214].

the robot often exists, our knowledge of the environment and the manipulated
objects is usually limited and needs to be inferred from noisy, partial observations.
Traditional perception pipelines based on geometric matching are often unable
to handle those demanding settings because they lack the required accuracy,
robustness, generality, efficiency and scalability. These limitations motivate the
goal of this thesis to develop and analyze new methods that could fulfill these
requirements and thus enable robotic manipulation and related applications.

The last ten years have brought significant advances in the field of machine
learning and its application to computer vision [41]. This progress is primarily
driven by the development of artificial neural networks that allow learning
complex representations from large, high-dimensional datasets. But despite the
advances in the semantic analysis of large datasets, many robotic perception
problems are still open.

Besides semantic, image-level understanding, robots require a rich spatial, object-
centric understanding within their 6-DoF workspace to tackle autonomous manip-
ulation tasks. However, it is challenging to directly apply common learning-based
methods since annotating sufficient robotic sensory data with 6-DoF information
is expensive and usually performed in controlled lab environments [93]. Con-

2



1 Introduction

Figure 1.2: Taxonomy of object-centric perception tasks relevant to robotic manipulation. Given a
sensor image or stream of RGB(-D) image(s) (grey) and either a 3D model (green) or
no 3D model (red), we propose different perception modules in this thesis that enable
robots to interact with objects.

sequently, the amount and variation of the training data is often insufficient to
generalize to novel environments where i.i.d. assumptions are violated. Still, the
majority of proposed methods in the computer vision literature is disconnected
from the lack of labeled data as they only evaluate on closely related, 6-DoF
annotated train and test sets under narrowly defined conditions [40].

Instead of labeling real data, arbitrary amounts of 6-DoF annotated training data
can be generated from 3D object meshes in a procedural simulation. 3D object
meshes are ubiquitous in manufacturing environments or can be 3D reconstructed
from image collections [83]. By rendering these meshes from virtual viewpoints
we can scale up perfectly annotated datasets to sizes where machine learning
algorithms excel. Consequently, the new challenge becomes to create sufficiently
realistic and diverse data such that the learning algorithm trained in simulation
generalizes to real scenarios. Throughout this thesis we will develop and analyze
techniques to improve transfer from synthetic to real domains such as domain
randomization and physically-based simulation.

3



1 Introduction

1.1 Problem Formulation

Two of the most elementary perception problems in robotic manipulation are
6-DoF Object Pose Estimation and 6-DoF Grasp Pose Generation. These tasks
are the main applications studied in this thesis and are summarized in the fol-
lowing. An introduction into the underlying fundamentals is given in Chapter 2.

1.1.1 6-DoF Object Pose Estimation

In 6-DoF 1Object Pose Estimation the transformation between a sensor and a
known object is estimated, given a single sensory image and its intrinsics. While
numerous applications exist, it is crucial in autonomous robotic manipulation
for tasks like assembly, planning and task-oriented grasping. Most methods that
estimate absolute poses require a 3D model of the object instance or at least 3D
models of other instances within the same category. Given that the sensor is
calibrated to the robot, the 3D models can then be placed into a world model at
the estimated pose which allows reasoning about manipulation tasks. In contrast,
relative or few-shot 6-DoF object pose estimation is a subfield where the relative
transformation between two or more views of the same object is sought. Here, 3D
models are not necessarily required, and the methods can be quickly adapted to
novel objects. While this relative formulation is less compatible to world models
and traditional motion planning algorithms, it circumvents the effort of designing
or reconstructing a 3D model. The appropriate formulation always depends on
the requirements and prerequisites of a given application which will be discussed
throughout this thesis.

1.1.2 6-DoF Grasp Generation

In vision-based 6-DoF Grasp Generation we estimate a distribution of stable
6-DoF grasp poses and gripper configurations over an object or a scene, given
a single input view as well as 3D models of the robot and gripper. The gripper
configuration for parallel-jaw grippers is simply the grasp width, while for robotic
hands it is the full finger configuration. In contrast to object pose estimation,
grasps can be estimated on completely unknown objects. This is crucial in

1Note: 6-DoF and 6D refer to a pose in SE(3) and are used interchangeably throughout this
thesis.

4
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scenarios where the robot must act in a more unconstrained setting, e.g. for
pick and place, packaging, bin picking or delivery tasks. Grasps can also be
conditioned on specific tasks or objects to perform functional manipulation. In
this context we also discuss how to generalize demonstrated tasks to novel views
and environments.

1.2 Challenges and Existing Limitations

Both tasks constitute unique challenges but are also highly related. Existing
algorithms often lack robustness against occlusion and background clutter. They
fail if the environment and lighting conditions change. Saturation, noise and
missing values in color and depth sensors impede robust estimations – further
aggravated by reflective, transparent or light absorbing materials. There are
challenging objects that lack a distinctive texture or shape where the features
extracted by traditional computer vision methods such as edges [25], color
histograms [105] or point correspondences [11] cannot disambiguate hypotheses
in the large 6-DoF prediction space.

To tackle these limitations learning-based methods have been developed to extract
more robust, descriptive and thus distinctive features [77, 107]. However, the
learning process itself is non-trivial and creates many new challenges. For both
object and grasp pose estimation, an optimizable output representation needs to
be found that does not suffer from the curse of dimensionality and still covers
the full 6-DoF space.

6-DoF object pose estimation methods specifically suffer from object or view
symmetries that introduce pose ambiguities. Two identical views can have
different pose annotations assigned which can harm the common uni-modal
supervised learning schemes. Therefore, current algorithms often require certain
object properties such as enough textural surface structure or an asymmetric
shape to avoid ambiguities and therefore ensure convergence.

6-DoF grasping of unknown objects from a partial 3D view is challenging because
(1) it is necessary to separate unknown objects from each other, (2) unobservable
regions need to be inferred from the visible ones which is often ambiguous, (3) the
stability of grasps needs to be predicted with limited knowledge about material
properties, (4) sufficient grasp coverage is required to ensure the existence of
kinematically feasible and non-colliding approach trajectories in cluttered scenes.

5
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Separating unknown objects and inferring their invisible parts (1 + 2) can benefit
from data-driven methods that can reason about what constitutes an object and
how its geometry completes in the unobserved regions. To learn stable grasps
with sufficient coverage (3+ 4), we can either rely on data from heuristics, physics
simulations or robotic interactions in the order of increasing quality and cost.
However, even if dense and high quality grasp labels can be obtained, it is still
open how to constrain the distribution of 6-DoF grasps plus gripper width to
a learnable output representation. Since simple multi-target regression fails for
such large, imbalanced output spaces, we will introduce new techniques to reduce
the dimensionality and imbalance of this problem.

To leverage learning-based methods for these tasks, the lack of available annotated
training data and resulting over-fitting issues must be overcome. There are two
major strategies attempting to solve this issue:

1. Train on real world data with no, few or automatically obtained labels.

2. Simulate realistic and diverse 6-DoF annotated data and train with domain
randomization/adaptation to ensure sim2real transfer.

The main challenge of weakly supervised real world training is to obtain sufficient,
relevant and diverse data that generalizes outside the controlled training domain.
Even if labels can be generated automatically, the required supervision, wear and
interaction time of the robotic system can still be a major hurdle that needs to be
overcome.

On the other hand, training in simulation requires to faithfully replicate the real
world while also covering its corner cases. Furthermore, the trained models need
to become invariant against the sim2real gap. The factors for successful sim2real
transfer are generally understudied, but crucial for the final performance.
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2 Fundamentals and Problem
Definitions

2.1 Pinhole Camera Model

The pinhole camera model describes how a point in 3D camera coordinates
Pc = (X, Y, Z)T projects to a 2D point p = (x, y)T on the image plane of an ideal
pinhole camera, as shown in Fig. 2.1. The aperture of an ideal pinhole camera is
assumed to be a point with no lenses to focus light. Under these assumptions, we
can simply use the focal length f , defined as the distance between image plane
and pinhole, to compute the 2D image coordinates as p = (x, y)T = ( f X

Z , f Y
Z )

T.

In contrast, real perspective cameras have lenses and non-zero aperture which
violates the ideal pinhole assumptions and produces images with lens distortion.
However, for most perspective cameras these effects can be corrected by using
e.g. the Brown–Conrady distortion model [3] to produce mostly undistorted
images. These undistorted images can then again be approximated well by the
ideal pinhole camera model.

Since all points on an infinite 3D projection ray map to the same point in 2D,
we usually describe the pinhole relation using homogeneous coordinates P =

(kX, kY, kZ, k) with k > 0 defining the point on the ray which intersects the image
plane at k = 1. This also simplifies many downstream derivations and lets us
formulate the perspective projection as a linear system

p =

x
y
1

 =

 f X
Z

f Y
Z

1

 ∼
 f X

f Y
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0


︸ ︷︷ ︸

Cpin


X
Y
Z
1


c

(2.1)

with Cpin being the camera matrix of the ideal pinhole model. For real perspec-
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Figure 2.1: Pinhole Camera Model using the OpenCV coordinate convention.

tive projections the camera intrinsics matrix K is commonly used to map to a
coordinate system defined at the top-left corner of the image. It also accounts for
lateral offsets of the image sensor which shifts the optical center to o = (cx, cy)T

in pixels:

p =

u
v
1

 =

 fx
X
Z + cx

fy
Y
Z + cy

1

 ∼
 fxX + cxZ

fyY + cyZ
Z

 =

 fx γ cx 0
0 fy cy 0
0 0 1 0


︸ ︷︷ ︸

K


X
Y
Z
1


c

= KPc (2.2)

where γ represents the skew coefficient which is ≈ 0 for modern cameras. The
focal length f is divided into fx and fy in pixels accounting for slightly different
projections along coordinate directions.

2.1.1 Extrinsics

So far we assumed that the point Pc is given in camera coordinates. To project a
point Pw defined in world coordinates, i.e. any other Cartesian coordinate system,
we need to first transform it back to camera coordinates. The full projection based
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on the camera matrix C is therefore defined as

p =

u
v
1

 ∼
 fx γ cx 0

0 fy cy 0
0 0 1 0


︸ ︷︷ ︸

K


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1


︸ ︷︷ ︸

Hc
w=[R|t]


X
Y
Z
1


w

= K[R|t]︸ ︷︷ ︸
C

Pw (2.3)

where Hc
w = [R|t] is the homogeneous transformation from world to camera

coordinates formed by the rotation matrix R and the translation vector t.

2.2 6-DoF Object Pose Estimation

Hc
w can also be interpreted as the pose of the world frame in camera coordinates.

Now, if we define the world frame to be the coordinate frame of an object,
Hc

w corresponds to the 6-DoF pose of the object in camera coordinates Hc
obj.

Consequently, a point Pobj in 3D object coordinates projects to a 2D point p in the
image plane as

p =

u
v
1

 ∼ KHc
objPobj (2.4)

The 6-DoF object pose Hc
obj is the interest of many applications, so the questions

arises on how it can be estimated?

2.2.1 Perspective-n-Point

Given the camera intrinsics K, one way to solve projection 2.4 for the object
pose Hc

obj is by finding at least three 2D-3D correspondences between points
in the object coordinate system Pobj,i and their 2D projections pi in the image
plane. This is known as the Perspective-3-Point (P3P) problem which was first
solved by the mathematician Grunert [1] in 1841. However, with just three
point correspondences, we obtain up to four geometrically feasible solutions. A
fourth non-colinear correspondence can be used to remove this ambiguity. In
practice, more 2D-3D correspondences are usually estimated to solve the general
Perspective-n-Point (PnP) problem and achieve robustness against noise and
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outliers, often in conjunction with a voting scheme like RANSAC [6]. We search
for R and t that minimize the reprojection error

PnP(p, P, K) = argmin
R,t

1
n

n

∑
1
||pi − K[R|t]Pi||22 (2.5)

A popular variant is the Efficient PnP (EPnP) [23] by Lepetit, et al. where the
n ≥ 4 points are represented by a weighted linear combination of four virtual
control points resulting in O(n) time complexity.

For 6-DoF object pose estimation a 3D object model is often used to define 3D
reference points such as the eight corners of an object aligned 3D bounding
box [102] or normalized object coordinates (NOCS) [155]. The major challenge in
the PnP framework is to robustly predict these correspondences in monocular
images and several approaches will be discussed in Chapter 3.

2.2.2 Kabsch Algorithm

If an RGB-D image is available, we can unproject pixels into 3D camera coordi-
nates Pc and the relation 2.4 simplifies to

Pc = Hc
objPobj (2.6)

We can find a unique solution for the object pose Hc
obj from at least three 3D-

3D point correspondences using the Kabsch algorithm [5]. After centering the
two 3D point sets, we compute their covariance matrix H = PTQ | P, Q ∈
Rnx3 from which the optimal rotation to align the points can be determined by
R = (HT H)

1
2 H−1. However, since H is not guaranteed to have an inverse we

commonly perform a singular value decomposition (SVD) H = UΣVT. Then the
optimal rotation matrix R follows as

R = V


1 0 0
0 1 0
0 0 d

UT where d = sign(det(VUT)) (2.7)

Outliers can again be removed using e.g. RANSAC [6].
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2.2.3 Explicit 6-DoF Pose Representations

Estimating correspondence points is just one way to retrieve a 6-DoF object pose
Hc

obj. We will discuss other methods such as template matching [29, 25, 32], point-
pair features (PPFs) [128, 26], pose regression [160, 58] and classification [95] in
the related work, Chapter 3.

An explicit 6-DoF pose can be represented in various forms and its choice is
especially crucial for pose regression methods [160]. In equation 2.6 and 2.4
we used homogeneous coordinates to depict a 6-DoF transformation which
contain twelve parameters: nine for the rotation matrix R and three for the 3D
translation vector t. However, for direct regression methods it can be beneficial to
re-parameterize this representation. For example, instead of directly regressing
the 3D translation vector, we can decouple the translation into the projection
of the object centroid to the image plane and its distance in Z direction, thus
simplifying the regression task [95, 107].

There are a variety of representations to depict 3D rotations such as quaternions,
axis-angles, Euler angles and rotation matrices. For example, three Euler angles
α, β, γ can describe any valid 3D rotation. They are applied subsequently in a
predefined order since they are non-commutative. A common convention is to
start with a rotation of γ around the original x-axis, followed by a rotation of β

around the resulting y-axis and finally a rotation α around the resulting z axis.
Each Euler angle can be converted to a rotation matrix that is left multiplied to
the target vector as

R = Rz(α) Ry(β) Rx(γ)

=

cos α − sin α 0
sin α cos α 0

0 0 1


 cos β 0 sin β

0 1 0
− sin β 0 cos β


1 0 0

0 cos γ − sin γ

0 sin γ cos γ



=

cos α cos β cos α sin β sin γ− sin α cos γ cos α sin β cos γ + sin α sin γ

sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ− cos α sin γ

− sin β cos β sin γ cos β cos γ


(2.8)

The individual and combined rotation matrices are orthogonal with a determinant
of 1 which preserves the right-handed orientation. All feasible rotations in R3

form the special orthogonal group SO(3).
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Euler angles are rather intuitive and only require 3 dimensions, but they also
have several drawbacks. They are always discontinuous at certain points and
need to be constrained to certain ranges for uniqueness, e.g. α, γ ∈ [−π, π] and
β ∈ [−π

2 , π
2 ]. Even then we can find multiple Euler angles describing the same

3D rotation at so-called Gimbal locks, where we lose a degree of freedom and
can describe the same 3D rotation using arbitrary combinations of the remaining
two angles. The ambiguities and discontinuities make Euler angles unsuitable for
regression tasks.

Axis-angle representations are also 3-dimensional combining a unit vector e
indicating the rotation axis with a rotation angle θ encoded as vector r = θe.
They do not suffer from Gimbal locks but need to be transformed to other
representations for composition, are non-unique (−θ)(−e) = θe and the angle
also has a discontinuity.

Unit Quaternions have four dimensions (q1, q2, q3, q4) ∈ R4 and are given by
q = q1 + q2i + q3 j + q4k where i2 = j2 = k2 = ijk = −1. They behave similar to
the axis-angle representation, i.e. cause no Gimbal locks, but in contrast can be
composed by simple vector multiplications. A 3D vector v ∈ R3 can be rotated by
v′ = qvq−1. Still they are non-unique, q = −q represent the same 3D rotation, and
have a discontinuity. In fact, it has been shown [160] that any ≤ 4D representation
has discontinuities which impedes their regression.

Rotation matrices are continuous representations of 3D rotations containing
nine entries consisting of three basis vectors rj ∈ R3 | j ∈ Z : j ∈ [1, 3]. The
basis vectors rj are orthonormal to each other so that the third basis vector can
be derived from the cross product of the first two basis vectors r3 = r1 × r2

resulting in a 6D representation. The dimension can be even further reduced to
5D by stereographic projection while still being continuous since basis vectors are
constrained to unit length ||rj|| = 1. Interestingly, empirical results [160] suggest
that the higher dimensional 6D representation is a favorable regression target
for neural network trainings. The authors hypothesize that the stereographic
projection to 5D causes distortions in the gradients. However, increasing the
dimensions of regression targets has been demonstrated to be beneficial for
other, even larger representations such as the full 9D rotation matrix projected
onto SO(3) using SVD/Procrustes orthonormalization [174, 189]. In [189] it is
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Figure 2.2: Egocentric vs. allocentric viewpoints. Shown are cropped views of an object translated
along the camera X axis at constant 3D rotation.

experimentally shown that losses on higher dimensional regression targets behave
more linearly wrt. rotation erros which could explain the better performance
using gradient based methods. In our work on 6-DoF grasping [198] we build
upon the 6D representation combined with a Gram Schmidt orthogonalization.

Egocentric vs. Allocentric: To reduce the combinatorial 6-DoF search space it
is favorable to estimate 3D rotation and 3D translation independently. However,
from the egocentric camera viewpoint, an object translation parallel to the image
plane also results in a change of appearance, as shown in Fig. 2.2 on the left.
Therefore, the egocentric representation prevents estimating the 3D rotation
from an image crop alone because the appearance depends on the translation
as well. To alleviate this issue, one can estimate object rotation in the allocentric
parameterization [117] which is agnostic to 3D translations, as shown in Fig. 2.2
on the right, and convert it back to egocentric camera coordinates subsequently.

2.3 6-DoF Robotic Grasp Estimation

In 6-DoF object pose estimation, we determine the current pose of a known,
rigid object that is observed in a sensor image. In contrast, 6-DoF robotic grasp
estimation seeks a virtual 6-DoF gripper pose from which a robotic grasp of a
potentially unknown target object is stable. Commonly, not only a single grasp is
estimated but a full distribution of stable 6-DoF grasps so that the subsequent
planner can pick a non-colliding, reachable and efficient grasp for a specified
target object.
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Figure 2.3: A parallel-jaw robotic grasp can be parameterized by a 6-DoF end-effector pose, the
gripper width w and the gripper depth a(w). Depending on the gripper model there
is an analytic dependence of the gripper depth a(w) on the gripper width w.

2.3.1 6-DoF Parallel Jaw Grasp Representations

A 6-DoF robotic grasp pose of parallel jaw grippers can be described similarly to
a 6-DoF object pose, i.e. the representations introduced in Section 2.2.3 still apply.
In addition to the 6-DoF object pose of the gripper origin, a grasp is characterized
by its grasp width w as shown in Fig. 2.3. For certain gripper models such as the
RobotiQ grippers1, the grasp depth a is not constant but depends on the grasp
width w.

2.3.2 Robotic Grasp Execution

To execute an estimated 6-DoF grasp, we first need to perform a hand–eye
calibration between an in-hand or external camera and the robot base. Usually,
we can retrieve the camera in robot base coordinates Hbase

c using an extrinsic
calibration method, e.g. by Tsai et al. [9]. Estimated grasp poses in camera
coordinates Hc

g are transformed to grasp poses in robot base coordinates Hbase
g by

Hbase
g = Hbase

c Hc
g (2.9)

A robotic motion planner [48] then plans a non-colliding end-effector trajectory
to the grasp pose Hbase

g where the gripper is closed. The grasp approach and
retreat directions are along the z-axis of the gripper.

1https://robotiq.com/products/2f85-140-adaptive-robot-gripper
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3 Related Work

This chapter introduces and categorizes existing research in 6-DoF object and
grasp pose estimation with a focus on learning-based techniques that are most
relevant to this dissertation. We do not claim to list every published method in
this increasingly large field but instead aim to give a comprehensible overview of
the main foundational directions.

3.1 6-DoF Object Pose Estimation

6-DoF object pose estimation has drawn attention from the early days in Computer
Vision and is still a very active and growing area of research. We discuss the
lines of work that evolved with different sensory, algorithmic and computational
advances. While we distinguish between classical and learning-based methods, it
is notable that many learning-based methods are based on or inspired by classical
ideas which are briefly introduced in the following.

3.1.1 Classical Low-level Feature Matching

For many years, 6-DoF object pose estimation was primarily performed based
on matching low-level features such as corners, edges, templates, feature points
or pairs. These low-level features were extracted from grayscale, color and later
also depth images as well as 3D object models using classical Computer Vision
techniques [15, 36].

3.1.1.1 Edge-based Matching

The earliest works in 6-DoF object pose estimation go back to the 1960s where
Roberts [2] fitted 3D wire-frame models to edges in grayscale images. At the time
such methods were limited by the amount of available computation. Lowe [8]
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Figure 3.1: Our GPU implementation of edge-based pose estimation based on Ulrich et al. [25]
combined with CNN-based 2D object detection [77]. From left to right 3D model edges
are matched with 2D image edges at hierarchically finer resolutions while reducing
the large 6-DoF search space.

extended edge-based recognition and pose estimmation to 3D object models and
filtered corresponding edges for viewpoint invariance. In 2009, Ulrich et al. [25]
proposed an edge-based pose estimation method that matches 3D edges extracted
from object models with 2D edges extracted at multiple levels of an image
pyramid. Based on these ideas we implemented a GPU accelerated version of the
same approach combined with learning based object detection [77] as shown in
Fig. 3.1. Especially for texture-less, industrial objects their approach demonstrates
better accuracy and robustness over feature point methods described in the next
Sec. 3.1.1.2. However, depending on the object, edges are not always present or
observable from any viewpoint, and it is typically difficult to distinguish whether
edges in 2D images originate from geometry or texture. Furthermore, while GPU
acceleration, hierarchical resolutions and 2D object detection reduce the runtime,
online rendering still bottlenecks the efficiency of such approaches, particularly if
the full 6-DoF pose space is searched.

3.1.1.2 Local Feature Point Matching

In the 2000s, keypoint detection and description techniques from color or grayscale
images such as SIFT [13] or SURF [19] revolutionized the image matching field.
These local features points are typically invariant to changes in illumination and
affine image transformations. Consequently, feature point matching also attracted
interest in the object pose estimation domain where 2D-3D correspondences to a
reference 3D model are sought. Lepetit [17] estimated box and face poses based
on feature points using an iterative POSIT [12] + RANSAC [6] solver. Today,
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2D-3D correspondence problems are often solved with Perspective-n-Point (PnP)
+ RANSAC algorithms [23] that do not require initial pose estimates, see Sec. 2.2.1
for an introduction. Classical keypoint matching approaches excel on objects
with non-repetitive texture where the local regions can be repeatedly detected
and distinctively described despite viewpoint changes. However, for texture-less
and symmetric objects [93] their robustness is often compromised.

3.1.1.3 Template-based Matching

Template-based methods [29, 38] were introduced to tackle objects that do not
necessarily contain clear edges or rich texture. In an offline stage, template
views are recorded or rendered from a 3D model and low-level features such
as color histograms or gradients are extracted. At test time, the templates
with corresponding object poses are compared against the image at different
image positions and scales to detect an object and determine its pose. Multi-
modal template matching [32, 38] from RGB-D data was introduced to improve
robustness and accuracy. Template-based approaches excel on texture-less objects
and can be implemented efficiently on parallel hardware [38]. They can have
difficulties with strong occlusions, high-frequency textures and distinguishing
similar instances.

3.1.1.4 Depth-based Pose Estimation and Refinement

With the rise of consumer depth sensors [34], pure depth-based methods for object
pose estimation and refinement were introduced. Point cloud registration tech-
niques such as Iterative closest point (ICP) [11] refine object poses given a close
initial estimate. In contrast to the Kabsch algorithm introduced in Section 2.2.2
which assumes correspondences between point sets to be given, ICP iteratively
estimates the point correspondences, e.g. by nearest neighbor in the simplest
form. Different ICP variants [43] such as point-to-plane ICP exhibit increased
robustness against noise and occlusions and therefore still enjoy popularity in
modern computer vision pipelines. However, since ICP performs local pose
optimizations, it relies on accurate initialization without which the optimization
can get stuck in local minima.

For absolute depth-based pose estimation, 3D features such as e.g. SHOT [54] can
be extracted from the observed point cloud to establish 3D-3D correspondences
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with the object model. Kabsch [5] + RANSAC solvers [35] subsequently yield the
6-DoF object pose as formulated in Section 2.2.2.

Point pair features (PPFs) Alternatively, Point pair features (PPFs) [26] pro-
posed in 2010 by Drost et al. are still widely used in computer vision appli-
cations [110, 223] as of 2023. A point pair feature depicts the relation of two
3D points based on their distance and based on the orientation of their sur-
face normals. Crucially, these distinctive relations are invariant under rigid
body transformations which makes them an excellent candidate for 6-DoF ob-
ject pose estimation. At training time, PPFs are sampled from the 3D object
model, then binned and stored in a hash-table. At test time, PPFs are sampled
from the observed point cloud and similar point pairs are retrieved from the
hash table to vote for an object pose. Several works improve upon the original
PPFs, e.g. by novel voting and sampling schemes [73] or view-dependent ver-
ifications [128]. According to experiments in [116] point pair features mostly
outperform SHOT [54] features for depth-based pose estimation except when
point clouds are low-resolution and noisy. In the Benchmark for 6D Object
Pose Estimation (BOP challenge) [137] that captures the state-of-the-art in the
field, PPF-based methods combined with ICP had the most accurate results in
2019 [128] and still competitive results in 2020 [172].

However, several limitations of purely depth-based approaches were also exposed.
First of all, existing time-of-flight (ToF) or structured light depth sensors are often
sensitive to sunlight as well as specular or light absorbing object materials that
produce missing or wrong measurements which consequentially leads to wrong
pose estimates. Furthermore, purely geometric approaches usually rely on the
computationally expensive evaluation of many pose hypotheses and do not
take into account high level features. Thus, they have troubles detecting and
distinguishing different objects in cluttered environments. An effective way to
reduce the search space and improve the robustness against clutter is to combine
them with 2D segmentation networks as shown by Koenig et al. [172].
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3.1.2 Learning-based Approaches

Learning-based methods have been proposed to tackle the previously described
limitations of classical pose estimation and to increase the robustness and effi-
ciency under challenging test conditions. In an early attempt, Jurie et al. [16]
improved template tracking by replacing pre-computed Jacobians with a matrix
learned by linear regression on data pairs. Later, random forest classifiers were
deployed by Tejani et al. to perform patch-based voting for 6-DoF poses [55].
Brachmann et al. [45] also used random forests to predict 3D object coordinates
for 6-DoF pose estimation.

More recently, Convolutional Neural Networks (CNNs) are predominantly trained
to perform 6-DoF object pose estimation. When trained on sufficient, represen-
tative data, CNNs can extract high-level features from 2D images which allows
detecting a wide variety of objects in cluttered environments [77, 120]. While
the training of these networks can be resource and time intensive, the inference
time is usually on par or lower than classical methods and scales better with the
number of target objects [94]. To further estimate the full 6-DoF pose, different
strategies have been developed which we will categorize in the following.

3.1.2.1 Direct 6D Pose Regression or Classification

The most straightforward approach is to let a neural network directly regress or
classify the 6D pose from a 2D input image. PoseNet [58] performs such a direct
6-DoF camera pose regression on images but the reported results are subpar to
classical approaches. Their training and test data come from a similar, limited
subset of SE(3) and they tackle camera pose estimation which is usually easier
than object pose estimation since features in the whole image can be utilized.
When training object pose estimation on the full, non-euclidean 6-DoF target
space in cluttered scenes, the direct regression approach hardly converges on the
training set and does not generalize well to unseen regions of SE(3) as shown by
Zhao et al. [184].

Expanding 2D Object Detection and Segmentation Networks To overcome
the curse of dimensionality, existing 2D object detectors were extended with
additional branches that directly regress or classify an independent representation
of 3D rotation. Kehl et al. [95] adapted the 2D Single Shot Multibox Detector
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(SSD) [77] by adding a branch that classifies discretized 3D rotations. The 3D
translation is then computed based on the size of the 2D bounding box, the 3D
model size and camera intrinsics. Xiang et al. [107] proposed PoseCNN that
instead predicts object masks and regresses pixel-wise 2D unit vectors pointing
towards the projected object centers as well as their distance to the camera. The
3D translation is determined by Hough voting for the 2D object centers from the
predicted unit vectors combined with an average over the predicted pixel-wise
distances from the camera. The 3D orientation is derived by cropping a region
around the instance mask and regressing a quaternion representation from it.

Regressing Representations of 3D Rotations Do et al. [134] instead predict 3D
orientations parameterized by a Lie algebra representation. Zhou et al. [160]
further compared multiple different output representations of 3D rotations, such
as quaternions, rotation matrices and Euler angles, and showed that they have
a major influence on the ability of neural networks to regress them. They
find that the discontinuities that are present in all four or less dimensional
representations impede neural network training. Moreover, they find that higher
dimensional targets such as the 6D representation, consisting of two of the three
unit vectors of a rotation matrix, perform best. Levinson et al. [174] confirm
this relationship and find that regressing the full 9D rotation matrix followed
by an SVD orthogonalization does improve results further. An introduction to
the different representations and their impact on performance can be found in
Section 2.2.3.

Classification While regressing rotations seems like a natural choice, Li et
al. [118] and also Mahendran et al. [96] have found that a mix of 3D rotation
classification and subsequent regression of the remaining pose delta can perform
better. The motivation is that direct regression in large output spaces such as
SO(3) cannot easily deal with multi-modal targets originating from symmetries or
imbalanced rotation distributions in the training set and consequently often result
in predictions that are biased towards the mean. In contrast, classification allows
reweighing or resampling the bins depending on the data distribution and losses
such as binary cross-entropy can optimize for multiple possible rotations jointly.
On the other hand, classification of 3D object orientations requires a discretization
of SO(3). Even rather coarse intervals of ∼ 5o lead to over 50.000 possible
classes. Since each class appears only sparsely in the training data, this hinders

22



3 Related Work

convergence. In SSD6D [95] the 3D orientation is learned by separately classifying
a discretized viewpoint and in-plane rotation, thus reducing the complexity to
O(n2). However, for non-canonical views, e.g. if an object is seen from above, a
change of viewpoint can be nearly equivalent to a change of in-plane rotation
which yields ambiguous class combinations. Another general disadvantage of
one-hot classification is that the relation between similar orientations is ignored.

Single Stage vs. Multi Stage Most of the previously described methods are
single stage, i.e. they process the whole image or point cloud in a single forward
pass to predict the 3D translation and 3D rotation of an object wrt. the camera.
While single stage methods [126, 127] can be fast, it has been shown for example
in the BOP challenges [223, 168] that two stage pipelines which perform 2D
object detection or segmentation followed by 6D pose estimation on the resulting
crops reach superior performance. Intuitively, detection benefits from viewpoint
invariant features whereas pose estimation requires viewpoint variant features
which might favor the separation of feature extractors. Furthermore, the pose
network can focus computations on the relevant parts of the scene at higher
local resolutions and the sequential estimation reduces the combinatorial search
space. As explained in Section 2.2.3, this separation of translation and rotation
prediction is not possible if poses are given from an egocentric viewpoint since
the appearance of objects inside crops depends on both object translation and
rotation. Therefore, Kundu et al. [117] proposed to instead regress allocentric
poses which resolves the dependency between 3D rotation and 3D translation.
Alternatively, we [124] instead train wrt. canonical viewpoints at the optical center
and correct 3D rotation estimates depending on the independently estimated
translation, as described in Section 4.1.3.6.

3.1.2.2 Correspondence-based 6D Pose Estimation

Another line of work estimates sparse or dense 2D-3D correspondences be-
tween object views in 2D images and the corresponding 3D model. Variants of
Perspective-N-Point (PnP) together with RANSAC are applied to estimate the
6-DoF pose [45, 102, 166, 159].

Sparse Correspondences Several works such as BB8 from Rad and Lepetit [102]
predict the locations of the eight 3D object bounding box corners in the image
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plane. To enhance the stability of the sparse regression, BB8 [102] predicts the
probability of each pixel within a 2D object crop to correspond to a specific 3D
keypoint. However, the 3D bounding box corners can be far away from the object
which can complicate the regression for neural networks. Therefore, DOPE [127]
and PVNet [150] regress 2D vector fields pointing towards the corner keypoint
locations which are then determined via voting. They show that this improves
the prediction of occluded and further keypoints. Tremblay et al. [127] and
Tekin et al. [126] propose single-stage networks for 3D bounding box regression
that additionally predict a 3D centroid keypoint. Instead of 3D bounding box
regression other approaches attempt to define sparse 3D keypoints on the surface
of the 3D model using heuristics such as farthest point algorithms [150] or learn
the most visually consistent 3D keypoint positions [185]. However, due to the
low number of 2D-3D matches, processing sparse correspondences with PnP
/ RANSAC can be prone to outliers. The sparse keypoint predictions can also
suffer from occlusions and pose ambiguities.

Dense Correspondences Dense correspondences aim to predict the (normal-
ized) 3D object coordinate location for each pixel in the image plane that belongs
to the target object. This results in a variable and usually higher number of 2D-3D
matches than sparse methods that can be used to optimize a 6-DoF object pose
with more effective outlier filtering. As only the visible part and not the occluded
part of the object is matched, the correspondences are often more stable. However,
especially under occlusions, dense correspondences are also closer together than
e.g. sparse bounding box corners and therefore require more precise matches to
achieve the same 6-DoF pose accuracy.

An early work from Brachmann et al. [45] uses random forests for dense 3D
object coordinate prediction. For each RGB-D input pixel the 3D location of
the corresponding 3D model point in object coordinates is predicted. The trees
simply split according to differences in RGB and depth. Later, encoder-decoder
CNNs [155, 148, 141] were deployed to predict normalized 3D object coordinates
(NOCS) [155] from RGB input crops only. Formulating the NOCS regression as
a discrete classification problem was found to lead to faster convergence and
superior quality of correspondences. DPOD [159] and DPODv2 [197] discretize
the continuous normalized object coordinate space [0, 1]3 into 256 classes. Hodan
et al. [166] propose to discretize the 3D model surface into 64 fragments using
farthest point sampling. To obtain precise 3D locations, EPOS [166] additionally
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(a) Object symmetries (b) Self-occlusion
induced symmetries

(c) Occlusion
induced symmetries

Figure 3.2: Causes of pose ambiguities

predicts local 3D fragment coordinates for each of the fragments. Another major
advantage of classification is that multiple possible fragments can be predicted
for each pixel which improves performance for symmetric objects.

Recent approaches such as GDRNet [200, 170] predict dense correspondences as
an intermediate network representation from which a light-weight network head
directly regresses a representation of 3D object rotation and translation. This
end-to-end procedure is shown to perform on par or better than PnP / RANSAC
methods while being significantly faster. In the BOP challenge 2022 [223] a
method based on GDRNet called GDRNPP [209] displayed excellent performance
while having an inference time of around 0.2 seconds per scene. We analyze the
BOP challenge 2022 results in detail in Section 4.6.2.

3.1.2.3 Handling Object Pose Ambiguities

The mapping from an object view to an object pose can be ambiguous, i.e. the
same object view might explain multiple different object poses. This is an issue
for any unimodal learning-based algorithm that discriminates object views based
on fixed SO(3) representations.

Symmetries, as shown in Figure 3.2, are a major cause of pose ambiguities. If not
addressed, identical training images can have different orientation labels assigned
which can significantly disturb the learning process itself. For example, when
regressing the orientation of a line-symmetric object, the training often leads
to average predictions which fail to explain either of the two potential ground
truth poses corresponding to an object view. Likewise, the PnP / RANSAC
pose optimization expects one-to-one 2D-3D correspondences and can fail if
correspondences between the object view and the 3D model are ambiguous.
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In order to cope with ambiguous object poses, most approaches in literature are
manually adapted [67, 39, 95, 102]. The strategies reach from ignoring poses
around a specified symmetry axis [67, 39] over adapting the training viewpoints
according to the object symmetries [95] to the training of extra CNNs to predict
specific symmetries [102]. These depict tedious, manual ways to filter out global
object symmetries (Fig. 3.2a) in advance. But even the definition of object
symmetries is not always straightforward in practice where small differences
in geometry and texture can break them. 3D reconstructed models usually
have imperfections which makes the automatic detection of symmetries from 3D
models difficult. Xiang et al. [107] proposes a loss that is invariant to global object
symmetries by computing 3D distances between the closest surface points of the
3D model in the predicted and ground truth pose. However, this approach ignores
texture and is insensitive to small symmetry breaking geometrical features.

Ambiguities due to self-occlusions (Fig. 3.2b) and occlusions (Fig. 3.2c) are
viewpoint dependent and cannot be covered by simply computing global object
symmetries. For instance, many objects in the T-LESS dataset [93] contain small
symmetry breaking details that are not visible from all viewpoints. To tackle
this issue, Manhardt et al. [145] regress multiple quaternions for each 2D object
detection but compute the loss only against the closest ground truth quaternion
to account for potential symmetries. Hodan et al. [166] train many-to-many
2D-3D correspondences between object pixels and surface fragments. To find a
set of consistent one-to-one 2D-3D correspondences among them they deploy
EPnP [23] with GC-RANSAC [108] that takes into account spatial coherence, i.e.
it is assumed that nearby (in 2D and 3D) correspondences belong to the same
pose hypothesis. It is shown that this improves the robustness under ambiguous
correspondences.

3.1.2.4 Latent Embeddings for 6D Pose Estimation

The pose ambiguities described in the last Section 3.1.2.3 motivate a third per-
spective on 6D pose estimation which we will focus on in this thesis. The goal is
to learn latent embedding spaces that do not necessarily depend on potentially
ambiguous explicit poses but encode object appearance from different viewpoints
of the target object.

Wohlhart et al. [67] introduced a CNN-based descriptor learning approach
using a triplet loss that minimizes/maximizes the Euclidean distance between
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similar/dissimilar object orientations. In addition, the distance between different
objects is maximized. Although mixing in synthetic data, the training also relies
on pose-annotated sensor data. The approach is not immune against symmetries
since the descriptors are supervised using explicit 3D orientations. Thus, the
loss can be dominated by symmetric object views that appear the same but have
opposite orientations which can still produce incorrect average pose predictions.

Balntas et al. [85] extended this work by enforcing proportionality between de-
scriptor and pose distances. They acknowledge the problem of object symmetries
by weighting the pose distance loss with the depth difference of the object at the
considered poses. This heuristic increases the accuracy on symmetric objects with
respect to [67].

Our work is also based on learning descriptors, but in contrast we train our Aug-
mented Autoencoders (AAEs) such that the learning process itself is independent
of any fixed SO(3) representation. The loss is solely based on the appearance of
the reconstructed object views and thus symmetrical ambiguities are inherently
regarded. Thus, unlike [85, 67] we abstain from the use of real pose-annotated
data during training and instead train completely self-supervised. The assign-
ment of explicit 3D orientations to the descriptors only happens after the training.
Our Multi-Path Encoders [180] extend this approach to encode multiple objects
at the same time in the same latent space using one general encoder and multiple
object-specific decoders. These view-centric representations were also shown to
work well for 6D object tracking [132].

Kehl et al. [75] train an Autoencoder architecture on random RGB-D scene
patches from the LineMOD dataset [32]. At test time, descriptors from scene
and object patches are compared to vote for the 6D pose. Since the approach
requires the evaluation of many patches, it takes about 670ms per prediction.
Furthermore, processing local patches independently means to ignore holistic
relations between object features which is crucial if few texture exists. Instead we
train on holistic object views and explicitly learn domain invariance.

The advantage of the implicit approach is that symmetric views share the same tar-
get representation during trainig. Corresponding explicit poses are automatically
grouped and can be retrieved at test time.
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3.1.2.5 Simulation to Reality Transfer

CNNs have revolutionized 2D object detection from RGB images [63, 77, 120].
But, in comparison to 2D bounding box annotation, the effort of labeling real
images with full 6D object poses is magnitudes higher, requires expert knowledge
and a complex setup [93]. Although there are ways to label object poses semi-
automatically [122], it remains a cumbersome, error-prone process.

Nevertheless, the majority of learning-based pose estimation methods, namely
[126, 67, 69, 102, 107], use real labeled images that you only obtain within
pose-annotated datasets.

In consequence, [95, 67, 127, 159] have proposed to train on synthetic images
rendered from a 3D model, yielding a great data source with pose labels free of
charge. However, naive training on synthetic data does not typically generalize
to real test images. Therefore, a main challenge is to bridge the domain gap that
separates simulated views from real camera recordings.

There exist three major strategies to generalize from synthetic to real data:

Photo-Realistic Rendering The works of [78, 66, 99, 81] have shown that photo-
realistic renderings of object views and backgrounds can in some cases benefit
the generalization performance for tasks like object detection and viewpoint
estimation. It is especially suitable in simple environments and performs well if
jointly trained with a relatively small amount of real annotated images. However,
photo-realistic modeling is often imperfect and requires computational effort.
Hodan et al. [138] have shown promising results for 2D Object Detection trained
on physically-based renderings. Tremblay et al. [127] use mixed training data
consisting of photo-realistic rendering and domain randomized samples.

Domain Adaptation Domain Adaptation (DA) [87] refers to leveraging training
data from a source domain to a target domain of which a small portion of
labeled data (supervised DA) or unlabeled data (unsupervised DA) is available.
Generative Adversarial Networks (GANs) have been deployed for unsupervised
DA by generating realistic from synthetic images to train classifiers [104], 3D pose
estimators [86] and grasping algorithms [109]. While constituting a promising
approach, GANs often yield fragile training results. Supervised DA can lower
the need for real annotated data, but does not abstain from it.
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Domain Randomization Domain Randomization (DR) builds upon the hypoth-
esis that by training a model on rendered views in a variety of semi-realistic
settings (augmented with random lighting conditions, backgrounds, saturation,
etc.), it will also generalize to real images. Tobin et al. [106] demonstrated the
potential of the DR paradigm for 3D shape detection using CNNs. Hinterstoisser
et al. [91] showed that by training only the head network of FasterRCNN [63]
with randomized synthetic views of a textured 3D model, it also generalizes well
to real images. It must be noted, that their rendering is almost photo-realistic as
the textured 3D models have very high quality. Kehl et al. [95] pioneered an
end-to-end CNN, called ’SSD6D’, for 6D object detection that uses a moderate DR
strategy to utilize synthetic training data. The authors render views of textured
3D object reconstructions at random poses on top of MS COCO background im-
ages [51] while varying brightness and contrast. This lets the network generalize
to real images and enables 6D detection at 10Hz. Alghonaim [187] benchmarks
the different factors of domain randomization and photorealism on the task of
object detection and pose estimation and finds that they are complementary in
improving sim2real transfer.

Since photo-realistic renderings are costly, we first follow a less expensive DR
strategy [95, 126] as presented in Section 4.1: 3D models are rendered in poses
randomly sampled from SO(3) using OpenGL with randomized Phong illumina-
tion [4] and superimposed onto real images from data sets such as MS COCO
[51] or Pascal VOC [27]. Later in Section 4.5, we show how to scale procedural,
photorealistic data generation with our BlenderProc [133, 220] framework and
combine it with domain randomization to minimize the sim2real gap.

3.1.2.6 Generalization to Unseen Objects

Most learning-based methods predict the pose of one [148] or few instances
[127, 159, 126, 107] and have to be retrained for every newly encountered object.
However, in domains like service and industrial robotics or augmented reality,
it would be beneficial to have a general feature extractor that could produce
pose-sensitive features for untrained objects such that testing on a novel object
becomes immediately possible.

When trained on few instances, current pose networks like [127, 126] concurrently
classify objects which potentially hinders their ability to generalize to untrained
objects. Wohlhart et al. [67] and Balntas et al. [85] were the first to report
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qualitative results of deep pose descriptors applied to untrained objects. However,
their descriptors are discriminated by both, orientation and object class. So if
an untrained object has similar appearance from any viewpoint to one of the
trained objects, the corresponding descriptor will get corrupted. Unlike [67, 85],
our multi-path training strategy does not attempt to separate different object
instances in the encoding space and instead allows them to share the same latent
features.

Category-level pose estimation [123, 203] can be used to generalize to novel objects
from a given category. It assumes that all instances within a category have similar
shape and are aligned in a joint coordinate frame. However, these assumptions
often do not hold in practice where semantic and geometric similarities oftentimes
do not coincide. Assigning aligned coordinate frames can be ambiguous because
symmetries of instances can vary within a category. Therefore, in this work, we
will not explicitly enforce the alignment within semantic categories and instead
leave this decision to the self-supervised, appearance-based training.

CNNs trained on large datasets are frequently used to extract low-level features
for downstream tasks, e.g. image retrieval [71] or clustering [47]. A naive
baseline to predict the 3D orientation of unknown objects would be to compare
feature maps of a network trained on a large dataset like ImageNet or COCO.
Unsurprisingly this baseline does not work very well because (1) early features
are sensitive to translation while the later layers lost geometric information (2)
features strongly differ for synthetic and real object views (3) the dimensionality
of feature maps is too high to finely discretize SO(3) while reduction techniques
like PCA destroy too much information.

The pose refinement methods [121, 119, 173] iteratively predict rotation and
translation residuals between an estimated rendered and a real target view of
an object. They were shown to generalize to untrained objects of the same
category, and to a less degree even generalize to objects of new categories. These
approaches predict an accurate, relative transformation between two object views
in a local neighborhood. In contrast, our proposed MP-Encoder method is able
to yield both, local relative and global 3D orientation estimates. More recently,
Labbe et al. introduced MegaPose [221] that scales the render&compare approach
to a large training set for better generalization.
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3.2 Vision-based 6-DoF Grasp Generation

As a fundamental problem in robotics, grasping has been studied for decades [21,
14, 49, 192]. We review related literature in the context of data-driven methods as
these are the main focus in my PhD thesis.

3.2.1 End-to-end Policy Learning

One line of work for grasping and manipulation of objects employs an end-to-
end policy that learns to generate actions from raw input pixel values [76, 115].
This results in a monolithic model that concurrently reasons about perception,
planning, grasping, and controlling the robot. A large group of these works
learn from interactions of the robot with the environment through reinforcement
learning. These approaches have mostly shown promise in bin picking, in
(quasi-) planar grasping and in small, insensible workspaces that do not require
complicated motion planning in the robot configuration space. Few works
[130] have demonstrated iterative 6-DoF grasping approaches with a monolithic
policy by combining imitation learning and reinforcement learning. A common
drawback of these methods is the limited generalization to novel environments,
because the perception and control are learned indirectly at the same time. In
addition, these methods are not easily steerable towards grasping a specific object
as the reward function encourages grasping any object. In contrast, we will
learn to generate diverse 6-DoF grasps on novel objects and scenes for specifiable
target objects while just using simulated training data. Additionally, Contact-
GraspNet (Sec. 5.1) can be integrated with other perception and motion planning
algorithms.

3.2.2 3D Scene Reconstruction

A complete 3D scene reconstruction enables traditional grasp planning. However,
learned single-view reconstructions are often ambiguous, coarse and require
class-conditioning [158, 129, 186]. Multiple views for 3D scanning are beneficial
[190] but not always obtainable in constrained environments like households,
take additional time and typically assume a static scene.
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3.2.3 Discriminative Methods

Discriminative methods for grasping train a classifier that evaluates the quality
of existing grasps [57, 143, 97]. They use different sampling strategies to generate
potential candidates. For planar grasping, cross entropy is widely used since
it can converge to the final grasp location by iteratively evaluating the quality
of grasps in different locations [97]. However, the cross-entropy method does
not work well in the higher dimensional 6-DoF grasp space. To overcome the
sampling complexity issue, grasp locations are often sampled using geometric
heuristics [100, 143].

3.2.4 Generative Methods

Learning-based generative grasp methods aim to overcome the limitations of
geometric heuristics and generate meaningful 6-DoF grasps often from experience
in a physics simulator [147, 176]. The main challenge is the large, multi-modal
search space of 6-DoF grasps. Instead of sampling some potential candidates
using heuristics and ranking them, some methods directly predict a per-point
graspability score and approach direction in SO(3) space [178, 165, 177]. One
problem with predicting approach directions is that they cannot easily capture
high curvature areas such as mug rims or handles and also can not represent
grasps encompassing hollow structures. Furthermore, successful approach di-
rections are quite ambiguous to learn as multiple ones are possible for a single
contact. Therefore, in this work we are aiming to generate stable grasps for un-
known objects with full surface contact. We design losses that further improve the
convergence by accounting for the discontinuities, imbalance and multi modality
of the grasp distribution. Unlike other methods [177], our proposed method is
independent of category labels and has no assumption of grasps being always
perpendicular to a surface. Instead, we learn a grasp semantic purely from a
wide variety of grasp annotated training shapes [194].
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4 Contributions: 6D Object Pose
Estimation

This chapter presents the publications and additional results on Augmented
Autoencoders [124, 125, 181] and Multi-Path Encoders [180]. Furthermore, the
motivation and my contributions towards BlenderProc [133, 163], the Benchmark
on 6D Object Pose Estimation (BOP) [168, 137] and the combination of object
pose estimation with 3D tracking [214] are discussed. All of these efforts have
the common goal to enable scalable 6-DoF pose estimation of rigid objects with
known geometry from RGB and/or depth images.

4.1 Augmented Autoencoders: Implicit 3D Orientation

Learning for 6D Object Detection (ECCV 2018 Best

Paper Award, IJCV 2019)

Martin Sundermeyer1,2, Maximilian Durner1,2, Zoltan-Csaba Marton1, Rudolph
Triebel 1,2

1German Aerospace Center (DLR), 2Technical University of Munich (TUM)

4.1.1 Motivation

One of the most important components of modern computer vision systems for
applications such as autonomous robotic manipulation and augmented reality
is a reliable and fast 6D object detection module. Although, there are very
encouraging recent results from [107, 95, 93, 67, 128, 73, 127], a general, easily
applicable, robust and fast solution is not available, yet. The reasons for this
are manifold. First and foremost, current solutions are often not robust enough
against typical challenges such as object occlusions, different kinds of background
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Figure 4.1: Our full 6D Object Detection pipeline: after detecting an object (2D Object Detector),
the object is quadratically cropped and forwarded into the proposed Augmented
Autoencoder. In the next step, the bounding box scale ratio at the estimated 3D orien-
tation R̂′obj2cam is used to compute the 3D translation t̂obj2cam. The resulting euclidean
transformation Ĥ′obj2cam ∈ R4x4 already shows promising results as presented in [124],
however it still lacks of accuracy given a translation in the image plane towards the
borders. Therefore, the pipeline is extended by the Perspective Correction block which
addresses this problem and results in more accurate 6D pose estimates Ĥobj2cam for
objects which are not located in the image center. Additionally, given depth data,
the result can be further refined (Ĥ(re f ined)

obj2cam ) by applying an Iterative Closest Point
post-processing (bottom).

clutter, and dynamic changes of the environment. Second, existing methods often
require certain object properties such as enough textural surface structure or
an asymmetric shape to avoid confusions. And finally, current systems are not
efficient in terms of run-time and in the amount and type of annotated training
data they require.

Therefore, we propose a novel approach that directly addresses these issues. Con-
cretely, our method operates on single RGB images, which significantly increases
the usability as no depth information is required. We note though that depth
maps may be incorporated optionally to refine the estimation. As a first step,
we build upon 2D Object Detectors ([77, 120]) which provide object bounding
boxes and identifiers. On the resulting scene crops, we employ our novel 3D
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orientation estimation algorithm, which is based on a previously trained deep
network architecture. While deep networks are also used in existing approaches,
our approach differs in that we do not explicitly learn from 3D pose annotations
during training. Instead, we implicitly learn representations from rendered 3D
model views. This is accomplished by training a generalized version of the De-
noising Autoencoder from [31], that we call ’Augmented Autoencoder (AAE)’, using
a novel Domain Randomization strategy. Our approach has several advantages:
First, since the training is independent from concrete representations of object
orientations within SO(3) (e.g. quaternions), we can handle ambiguous poses
caused by symmetric views because we avoid one-to-many mappings from im-
ages to orientations. Second, we learn representations that specifically encode 3D
orientations while achieving robustness against occlusion, cluttered backgrounds
and generalizing to different environments and test sensors. Finally, the AAE
does not require any real pose-annotated training data. Instead, it is trained to
encode 3D model views in a self-supervised way, overcoming the need of a large
pose-annotated dataset. A schematic overview of the approach based on [124] is
shown in Fig 4.1.

Contributions: I proposed and implemented the approach. Maximilian Durner
helped with 2D detection results and supervision. Zoltan Csaba Marton and
Prof. Rudolph Triebel advised me throughout the process with their domain
knowledge and paper writing.
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a)

b) c)

Figure 4.2: Training process for the AAE; a) reconstruction target batch xxx of uniformly
sampled SO(3) object views; b) geometric and color augmented input; c)
reconstruction x̂̂x̂x after 40000 iterations

4.1.2 Abstract

We propose a real-time RGB-based pipeline for object detection and 6D pose
estimation. Our novel 3D orientation estimation is based on a variant of the
Denoising Autoencoder that is trained on simulated views of a 3D model using
Domain Randomization.

This so-called Augmented Autoencoder has several advantages over existing
methods: It does not require real, pose-annotated training data, generalizes to
various test sensors and inherently handles object and view symmetries. Instead
of learning an explicit mapping from input images to object poses, it provides an
implicit representation of object orientations defined by samples in a latent space.
At the time of publication this pipeline achieved state-of-the-art performance
on the T-LESS dataset, both, in the RGB and RGB-D domain, and competitive
performance with other synthetically trained methods on the LineMOD dataset.

Our code is available here 1

4.1.3 Method

In the following, we mainly focus on the novel 3D orientation estimation technique
based on the AAE.

1https://github.com/DLR-RM/AugmentedAutoencoder
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4.1.3.1 Autoencoders

The original Autoencoder (AE), introduced by [7], is a dimensionality reduction
technique for high dimensional data such as images, audio or depth. It consists of
an Encoder Φ and a Decoder Ψ, both arbitrary learnable function approximators
which are usually neural networks. The training objective is to reconstruct the
input x ∈ RD after passing through a low-dimensional bottleneck, referred to as
the latent representation z ∈ Rn with n << D :

x̂ = (Ψ ◦Φ)(x) = Ψ(z) (4.1)

The per-sample loss is simply a sum over the pixel-wise L2 distance

`2 = ∑
i∈D
‖ xi − x̂i ‖2 (4.2)

The resulting latent space can, for example, be used for unsupervised clustering.

Denoising Autoencoders introduced by [31] have a modified training procedure.
Here, artificial random noise is applied to the input images x ∈ RD while the
reconstruction target stays clean. The trained model can be used to reconstruct
denoised test images. But how is the latent representation affected?

Hypothesis 1: The Denoising AE produces latent representations which are invariant
to noise because this facilitates the reconstruction of de-noised images.

We will demonstrate that this training strategy actually enforces invariance not
only against noise but against a variety of different input augmentations. Finally,
it allows us to bridge the domain gap between simulated and real data.

4.1.3.2 Augmented Autoencoder

The motivation behind the AAE is to control what the latent representation
encodes and which properties are ignored. We apply random augmentations
faugm(.) to the input images x ∈ RD against which the encoding should become
invariant. The reconstruction target remains eq. (4.2) but eq. (4.1) becomes

x̂ = (Ψ ◦Φ ◦ faugm)(x) = (Ψ ◦Φ)(x′) = Ψ(z′) (4.3)

To make evident that Hypothesis 1 holds for geometric transformations, we
learn latent representations of binary images depicting a 2D square at different
scales, in-plane translations and rotations. Our goal is to encode only the in-plane
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(a) Xs=1.0,txy=0.0,r∈[0,2π]

(b) Xs=0.6,txy=0.0,r∈[0,2π]

(c) Xs=1.0,txy∼U (−1,1),r∈[0,2π]

(d) Xs∼U (0.5,1),txy∼U (−1,1),r∈[0,2π]
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(3) Augmented Autoencoder (d) −→ (a)

Figure 4.3: Experiment on the dsprites dataset of [98]. Left: 64x64 squares from four distributions
(a,b,c and d) distinguished by scale (s) and translation (txy) that are used for training
and testing. Right: Normalized latent dimensions z1 and z2 for all rotations (r) of
the distribution (a), (b) or (c) after training ordinary AEs (1),(2) and an AAE (3) to
reconstruct squares of the same orientation.

rotations r ∈ [0, 2π] in a two dimensional latent space z ∈ R2 independent of
scale or translation. Fig. 4.3 depicts the results after training a CNN-based AE
architecture similar to the model in Fig. 4.4. It can be observed that the AEs
trained on reconstructing squares at fixed scale and translation (1) or random
scale and translation (2) do not clearly encode rotation alone, but are also sensitive
to other latent factors. Instead, the encoding of the AAE (3) becomes invariant to
translation and scale such that all squares with coinciding orientation are mapped
to the same code. Furthermore, the latent representation is much smoother and
the latent dimensions imitate a shifted sine and cosine function with frequency
f = 4

2π respectively. The reason is that the square has two perpendicular axes
of symmetry, i.e. after rotating π

2 the square appears the same. This property of
representing the orientation based on the appearance of an object rather than on
a fixed parametrization is valuable to avoid ambiguities due to symmetries when
teaching 3D object orientations.
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Figure 4.4: Autoencoder CNN architecture with occluded test input, "resize2x" depicts nearest-
neighbor upsampling

4.1.3.3 Learning 3D Orientation from Synthetic Object Views

Our toy problem showed that we can explicitly learn representations of object
in-plane rotations using a geometric augmentation technique. Applying the
same geometric input augmentations we can encode the whole SO(3) space of
views from a 3D object model (CAD or 3D reconstruction) while being robust
against inaccurate object detections. However, the encoder would still be unable
to relate image crops from real RGB sensors because (1) the 3D model and the
real object differ, (2) simulated and real lighting conditions differ, (3) the network
can’t distinguish the object from background clutter and foreground occlusions.
Instead of trying to imitate every detail of specific real sensor recordings in
simulation we propose a Domain Randomization (DR) technique within the AAE
framework to make the encodings invariant to insignificant environment and
sensor variations. The goal is that the trained encoder treats the differences to
real camera images as just another irrelevant variation. Therefore, while keeping
reconstruction targets clean, we randomly apply additional augmentations to the
input training views: (1) rendering with random light positions and randomized
diffuse and specular reflection (simple Phong model [4] in OpenGL), (2) inserting
random background images from the Pascal VOC dataset [37], (3) varying image
contrast, brightness, Gaussian blur and color distortions, (4) applying occlusions
using random object masks or black squares. Fig. 4.2 depicts an exemplary
training process for synthetic views of object 5 from T-LESS [93].
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Table 4.1: Augmentation Parameters of AAE; Scale and translation is in relation to
image shape and occlusion is in proportion of the object mask

50% chance light (random position)
(30% per channel) & geometric

add U (−0.1, 0.1) ambient 0.4
contrast U (0.4, 2.3) diffuse U (0.7, 0.9)
multiply U (0.6, 1.4) specular U (0.2, 0.4)

invert scale U (0.8, 1.2)
gaussian blur σ ∼ U (0.0, 1.2) translation U (−0.15, 0.15)

occlusion ∈ [0, 0.25]

Figure 4.5: AAE decoder reconstruction of LineMOD (left) and T-LESS (right) scene crops

4.1.3.4 Network Architecture and Training Details

The convolutional Autoencoder architecture that is used in our experiments is
depicted in Fig. 4.4. We use a bootstrapped pixel-wise L2 loss, first introduced by
[84]. Only the pixels with the largest reconstruction errors contribute to the loss.
Thereby, finer details are reconstructed and the training does not converge to
local minima like reconstructing black images for all views. In our experiments,
we choose a bootstrap factor of k = 4 per image, meaning that 1

4 of all pixels
contribute to the loss. Using OpenGL, we render 20000 views of each object
uniformly at random 3D orientations and constant distance along the camera axis
(700mm). The resulting images are quadratically cropped using the longer side
of the bounding box and resized (nearest neighbor) to 128× 128× 3 as shown in
Fig. 4.2. All geometric and color input augmentations besides the rendering with
random lighting are applied online during training at uniform random strength,
parameters are found in Tab. 4.1. We use the Adam [50] optimizer with a learning
rate of 2× 10−4, Xavier initialization [28], a batch size = 64 and 40000 iterations
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5

Figure 4.6: Top: creating a codebook from the encodings of discrete synthetic object
views; bottom: object detection and 3D orientation estimation using the nearest
neighbor(s) with highest cosine similarity from the codebook

which takes ∼ 4 hours on a single Nvidia Geforce GTX 1080.

4.1.3.5 Codebook Creation and Test Procedure

After training, the AAE is able to extract a 3D object from real scene crops of
many different camera sensors (Fig. 4.5). The clarity and orientation of the
decoder reconstruction is an indicator of the encoding quality. To determine 3D
object orientations from test scene crops we create a codebook (Fig. 4.6 (top)):

1) Render clean, synthetic object views at nearly equidistant viewpoints from
a full view-sphere (based on a refined icosahedron [20])

2) Rotate each view in-plane at fixed intervals to cover the whole SO(3)

3) Create a codebook by generating latent codes z ∈ R128 for all resulting
images and assigning their corresponding rotation Rcam2obj ∈ R3x3

At test time, the considered object(s) are first detected in an RGB scene. The image
is quadratically cropped using the longer side of the bounding box multiplied
with a padding factor of 1.2 and resized to match the encoder input size. The
padding accounts for imprecise bounding boxes. After encoding we compute the
cosine similarity between the test code ztest ∈ R128 and all codes zi ∈ R128 from
the codebook:

cosi =
zzzi zzztest

‖zzzi‖‖zzztest‖
(4.4)

The highest similarities are determined in a k-Nearest-Neighbor (kNN) search
and the corresponding rotation matrices {RkNN} from the codebook are returned
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0.5 0.3 

Figure 4.7: AAE decoder reconstruction of a test code ztest ∈ R128 scaled by a factor s ∈ [0, 2.5]

Table 4.2: Augmentation Parameters for Object Detectors, top five are applied in random
order; bottom part describes phong lighting from random light positions

chance SIXD train Rendered
(per ch.) 3D models

add 0.5 (0.15) U (−0.08, 0.08) U (−0.1, 0.1)
contrast norm. 0.5 (0.15) U (0.5, 2.2) U (0.5, 2.2)

multiply 0.5 (0.25) U (0.6, 1.4) U (0.5, 1.5)
gaussian blur 0.2 σ ∼ U (0.5, 1.0) σ = 0.4
gaussian noise 0.1 (0.1) σ = 0.04 -

ambient 1.0 - 0.4
diffuse 1.0 - U (0.7, 0.9)

specular 1.0 - U (0.2, 0.4)

as estimates of the 3D object orientation. For the quantitative evaluation we use
k = 1, however the next neighbors can yield valuable information on ambiguous
views and could for example be used in particle filter based tracking. We use
cosine similarity because (1) it can be very efficiently computed on a single
GPU even for large codebooks. In our experiments we have 2562 equidistant
viewpoints × 36 in-plane rotation = 92232 total entries. (2) We observed that,
presumably due to the circular nature of rotations, scaling a latent test code does
not change the object orientation of the decoder reconstruction (Fig. 4.7).

4.1.3.6 Extending to 6D Object Detection

Training the 2D Object Detector.
We finetune the 2D Object Detectors using the object views on black background
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which are provided in the training datasets of LineMOD and T-LESS. In LineMOD
we additionally render domain randomized views of the provided 3D models and
freeze the backbone like in [91]. Multiple object views are sequentially copied into
an empty scene at random translation, scale and in-plane rotation. Bounding box
annotations are adapted accordingly. If an object view is more than 40% occluded,
we re-sample it. Then, as for the AAE, the black background is replaced with
Pascal VOC images. The randomization schemes and parameters can be found
in Table 4.2. In T-LESS we train SSD [77] with VGG16 backbone and RetinaNet
[120] with ResNet50 backbone which is slower but more accurate, on LineMOD
we only train RetinaNet. For T-LESS we generate 60000 training samples from the
provided training dataset and for LineMOD we generate 60000 samples from the
training dataset plus 60000 samples from 3D model renderings with randomized
lighting conditions (see Table 4.2). The RetinaNet achieves 0.73mAP@0.5IoU on T-
LESS and 0.62mAP@0.5IoU on LineMOD. On Occluded LineMOD, the detectors
trained on the simplistic renderings failed to achieve good detection performance.
However, recent work of [138] quantitatively investigated the training of 2D
detectors on synthetic data and they reached decent detection performance on
Occluded LineMOD by fine-tuning FasterRCNN on photo-realistic synthetic
images showing the feasibility of a purely synthetic pipeline.

Projective Distance Estimation
We estimate the full 3D translation treal from camera to object center, similar

to [95]. Therefore, we save the 2D bounding box for each synthetic object view
in the codebook and compute its diagonal length ‖bbsyn,i‖. At test time, we
compute the ratio between the detected bounding box diagonal ‖bbreal‖ and the
corresponding codebook diagonal ‖bbsyn,argmax(cosi)

‖, i.e. at similar orientation.
The pinhole camera model yields the distance estimate t̂real,z

t̂real,z = tsyn,z ×
‖bbsyn,argmax(cosi)

‖
‖bbreal‖

× freal
fsyn

(4.5)

with synthetic rendering distance tsyn,z and focal lengths freal, fsyn of the real
sensor and synthetic views. It follows that

∆t̂ = t̂real,zK−1
realbbreal,c − tsyn,zK−1

synbbsyn,c (4.6)

t̂real = tsyn + ∆t̂ (4.7)
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where ∆t̂ is the estimated vector from the synthetic to the real object center,
Kreal, Ksyn are the camera matrices, bbreal,c, bbsyn,c are the bounding box centers
in homogeneous coordinates and t̂real, tsyn = (0, 0, tsyn,z) are the translation
vectors from camera to object centers. In contrast to [95], we can predict the 3D
translation for different test intrinsics.

Perspective Correction
While the codebook is created by encoding centered object views, the test image

crops typically do not originate from the image center. Naturally, the appearance
of the object view changes when translating the object in the image plane at
constant object orientation. This causes a noticeable error in the rotation estimate
from the codebook towards the image borders. However, this error can be
corrected by determining the object rotation that approximately preserves the
appearance of the object when translating it to our estimate t̂real.(

αx

αy

)
=

 − arctan(t̂real,y/t̂real,z)

arctan(t̂real,x/
√

t̂2
real,z + t̂2

real,y)

 (4.8)

R̂obj2cam = Ry(αy)Rx(αx)R̂′obj2cam (4.9)

where αx, αy describe the angles around the camera axes and Ry(αy)Rx(αx) the
corresponding rotation matrices to correct the initial rotation estimate R̂′obj2cam

from object to camera. The perspective corrections give a notable boost in accuracy
as reported in Table 4.7. If strong perspective distortions are expected at test time,
the training images x′ could also be recorded at random distances as opposed
to constant distance. However, in the benchmarks, perspective distortions are
minimal and consequently random online image-plane scaling of x′ is sufficient.

ICP Refinement
Optionally, the estimate is refined on depth data using a point-to-plane Iterative

Closest Point (ICP) approach with adaptive thresholding of correspondences
based on [10, 11] taking an average of ∼ 320ms. The refinement is first applied
in direction of the vector pointing from camera to the object where most of the
RGB-based pose estimation errors stem from and then on the full 6D pose.

Inference Time
The Single Shot Multibox Detector (SSD) with VGG16 base and 31 classes plus
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Table 4.3: Inference time of the RGB
pipeline using SSD on CPUs
or Nvidia 1070 GPU

4 CPUs GPU

SSD - ∼17ms
Encoder ∼100ms ∼5ms

Cosine Similarity 2.5ms 1.3ms
Nearest Neighbor 0.3ms 3.2ms
Projective Distance 0.4ms -

∼24ms

Table 4.4: Single object pose estimation
runtime w/o refinement

Method fps

[128] 0.2
[69] 2
[75] 2

[102] 4
[95] 12

OURS 13 (RetinaNet)
42 (SSD)

[126] 50

Table 4.5: Ablation study on color augmentations for different test sensors.
Object 5 tested on all T-LESS [93] scenes. Standard deviation of

three runs in brackets.

Train RGB Test RGB dyn. light add contrast multiply invert AUCvsd

3D Reconstruction Primesense 3 0.472 (± 0.013)
(synthetic) (real) 3 3 0.611 (± 0.030)

3 3 3 0.825 (± 0.015)
3 3 3 3 0.876 (± 0.019)
3 3 3 3 3 0.877 (± 0.005)

3 3 3 0.861 (± 0.014)

Primesense (real) Primesense (real) 3 3 3 0.890 (± 0.003)

3D Reconstruction Kinect 3 0.461 (± 0.022)
(synthetic) (real) 3 3 0.580 (± 0.014)

3 3 3 0.701 (± 0.046)
3 3 3 3 0.855 (± 0.016)
3 3 3 3 3 0.897 (± 0.008)

3 3 3 0.903 (± 0.016)

Kinect (real) Kinect (real) 3 3 3 0.917 (± 0.007)

the AAE (Fig. 4.4) with a codebook size of 92232× 128 yield the average inference
times depicted in Table 4.3. We conclude that the RGB-based pipeline is real-time
capable at ∼42Hz on a Nvidia GTX 1080. This enables augmented reality and
robotic applications and leaves room for tracking algorithms. Multiple encoders
(15MB) and corresponding codebooks (45MB each) fit into the GPU memory,
making multi-object pose estimation feasible.

4.1.4 Evaluation

We evaluate the AAE and the whole 6D detection pipeline on the T-LESS [93]
and LineMOD [32] datasets.
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(a) Effect of latent space size, stan-
dard deviation in red

(b) Training on CAD model (bottom) vs. textured 3D
reconstruction (top)

Figure 4.8: Testing object 5 on all 504 Kinect RGB views of scene 2 in T-LESS

4.1.4.1 Test Conditions

Few RGB-based pose estimation approaches (e.g. [95, 25]) only rely on 3D model
information. Most methods like [67, 85, 69] make use of real pose annotated
data and often even train and test on the same scenes (e.g. at slightly different
viewpoints, as in the official LineMOD benchmark). It is common practice to
ignore in-plane rotations or to only consider object poses that appear in the
dataset [102, 67] which also limits applicability. Symmetric object views are
often individually treated [102, 85] or ignored [67]. The SIXD challenge [92]
is an attempt to make fair comparisons between 6D localization algorithms
by prohibiting the use of test scene pixels. We follow these strict evaluation
guidelines, but treat the harder problem of 6D detection where it is unknown
which of the considered objects are present in the scene. This is especially difficult
in the T-LESS dataset since objects are very similar. We train the AAEs on the
reconstructed 3D models, except for object 19-23 where we train on the CAD
models because the pins are missing in the reconstructed plugs.

We noticed, that the geometry of some 3D reconstruction in T-LESS is slightly
inaccurate which badly influences the RGB-based distance estimation (Sec. 4.1.3.6)
since the synthetic bounding box diagonals are wrong. Therefore, in a second
training run we only train on the 30 CAD models.

4.1.4.2 Metrics

Hodan et al. [74] introduced the Visible Surface Discrepancy (errvsd), an
ambiguity-invariant pose error function that is determined by the distance be-
tween the estimated and ground truth visible object depth surfaces. As in the
SIXD challenge, we report the recall of correct 6D object poses at errvsd < 0.3 with

46



4 Contributions: 6D Object Pose Estimation

Table 4.6: T-LESS: Object recall for errvsd < 0.3 on all Primesense test scenes (SIXD/BOP
benchmark from [114]). RGB† depicts training with 3D reconstructions, except objects

19-23 −→ CAD models; RGB‡ depicts training on untextured CAD models only

AAE AAE AAE
SSD RetinaNet RetinaNet [69] [75] [128] [26] w/ GT 2D BBs

Data RGB† RGB† RGB‡ RGB†+Depth(ICP) RGB-D RGB-D +ICP Depth +ICP Depth +edge RGB† +Depth(ICP)

1 5.65 9.48 12.67 67.95 8 7 43 53 12.67 85.98
2 5.46 13.24 16.01 70.62 10 10 47 44 11.47 86.27
3 7.05 12.78 22.84 78.39 21 18 69 61 13.32 90.80
4 4.61 6.66 6.70 57.00 4 24 63 67 12.88 84.20
5 36.45 36.19 38.93 77.18 46 23 69 71 67.37 90.14
6 23.15 20.64 28.26 72.75 19 10 67 73 54.21 90.58
7 15.97 17.41 26.56 83.39 52 0 77 75 38.10 86.94
8 10.86 21.72 18.01 78.08 22 2 79 89 24.83 91.79
9 19.59 39.98 33.36 88.64 12 11 90 92 49.06 91.09

10 10.47 13.37 33.15 84.47 7 17 68 72 15.67 84.67
11 4.35 7.78 17.94 56.01 3 5 69 64 16.64 77.01
12 7.80 9.54 18.38 63.23 3 1 82 81 33.57 79.32
13 3.30 4.56 16.20 43.55 0 0 56 53 15.29 64.38
14 2.85 5.36 10.58 25.58 0 9 47 46 50.14 71.37
15 7.90 27.11 40.50 69.81 0 12 52 55 52.01 73.90
16 13.06 22.04 35.67 84.55 5 56 81 85 36.71 87.58
17 41.70 66.33 50.47 74.29 3 52 83 88 81.44 78.88
18 47.17 14.91 33.63 83.12 54 22 80 78 55.48 85.64
19 15.95 23.03 23.03 58.13 38 35 55 55 53.07 82.71
20 2.17 5.35 5.35 26.73 1 5 47 47 38.97 70.87
21 19.77 19.82 19.82 53.48 39 26 63 55 53.45 86.83
22 11.01 20.25 20.25 60.49 19 27 70 56 49.95 84.20
23 7.98 19.15 19.15 62.69 61 71 85 84 36.74 76.40
24 4.74 4.54 27.94 62.99 1 36 70 59 11.75 84.38
25 21.91 19.07 51.01 73.33 16 28 48 47 37.73 87.53
26 10.04 12.92 33.00 67.00 27 51 55 69 29.82 90.26
27 7.42 22.37 33.61 82.16 17 34 60 61 23.30 84.43
28 21.78 24.00 30.88 83.51 13 54 69 80 43.97 89.84
29 15.33 27.66 35.57 74.45 6 86 65 84 57.82 88.58
30 34.63 30.53 44.33 93.65 5 69 84 89 72.81 95.01

Mean 14.67 19.26 26.79 68.57 17.84 24.60 66.51 67.50 38.34 84.05

Time(s) 0.024 0.077 0.077 0.4 13.5 1.8 4.7 21.5 0.006 0.33

tolerance τ = 20mm and > 10% object visibility. Although the Average Distance
of Model Points (ADD) metric introduced by [40] cannot handle pose ambiguities,
we also present it for the LineMOD dataset following the official protocol in
[40]. For objects with symmetric views (eggbox, glue), [40] adapts the metric
by calculating the average distance to the closest model point. Manhardt et al.
[121] has noticed inaccurate intrinsics and sensor registration errors between RGB
and D in the LineMOD dataset. Thus, purely synthetic RGB-based approaches,
although visually correct, suffer from false pose rejections. The focus of our
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Table 4.7: Effect of Perspective Corrections on T-LESS

Method RGB†

w/o correction 18.35

w/ correction 19.26 (+0.91)

experiments lies on the T-LESS dataset.

In our ablation studies we also report the AUCvsd, which represents the area
under the ’errvsd vs. recall’ curve:

AUCvsd =
∫ 1

0
recall(errvsd) derrvsd (4.10)

4.1.4.3 Ablation Studies

To assess the AAE alone, in this subsubsection we only predict the 3D orientation
of Object 5 from the T-LESS dataset on Primesense and Kinect RGB scene crops.
Table 4.5 shows the influence of different input augmentations. It can be seen
that the effect of different color augmentations is cumulative. For textureless
objects, even the inversion of color channels seems to be beneficial since it
prevents overfitting to synthetic color information. Furthermore, training with
real object recordings provided in T-LESS with random Pascal VOC background
and augmentations yields only slightly better performance than the training with
synthetic data. Fig. 4.8a depicts the effect of different latent space sizes on the 3D
pose estimation accuracy. Performance starts to saturate at dim = 64.

4.1.4.4 Discussion of 6D Object Detection Results

Our RGB-only 6D Object Detection pipeline consists of 2D detection, 3D orienta-
tion estimation, projective distance estimation and perspective error correction.
Although the results are visually appealing, to reach the performance of state-
of-the-art depth-based methods we also need to refine our estimates using a
depth-based ICP. Table 4.6 presents our 6D detection evaluation on all scenes
of the T-LESS dataset, which contains a high amount of pose ambiguities. Our
pipeline outperforms all 15 reported T-LESS results on the 2018 BOP benchmark
from [114] in a fraction of the runtime. Table 4.6 shows an extract of competing
methods. Our RGB-only results can compete with the RGB-D learning-based
approaches of [69] and [75]. Previous state-of-the-art approaches from [128, 26]
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Table 4.8: LineMOD: Object recall (ADD [40] metric) of methods that use
different amounts of training and test data, results taken from [126]

Test data RGB +Depth (ICP)

Train data RGB w/o real pose labels RGB with real pose labels –

Object [95] OURS [69] [102] [126] [107] OURS [95]

+refine +refine +DeepIm

Ape 0.00 4.18 - 33.2 27.9 40.4 21.62 - 77.0 24.35 65
Benchvise 0.18 22.85 - 64.8 62.0 91.8 81.80 - 97.5 89.13 80

Cam 0.41 32.91 - 38.4 40.1 55.7 36.57 - 93.5 82.10 78
Can 1.35 37.03 - 62.9 48.1 64.1 68.80 - 96.5 70.82 86
Cat 0.51 18.68 - 42.7 45.2 62.6 41.82 - 82.1 72.18 70

Driller 2.58 24.81 - 61.9 58.6 74.4 63.51 - 95.0 44.87 73
Duck 0.00 5.86 - 30.2 32.8 44.3 27.23 - 77.7 54.63 66

Eggbox 8.90 81.00 - 49.9 40.0 57.8 69.58 - 97.1 96.62 100
Glue 0.00 46.17 - 31.2 27.0 41.2 80.02 - 99.4 94.18 100

Holepuncher 0.30 18.20 - 52.8 42.4 67.2 42.63 - 52.8 51.25 49
Iron 8.86 35.05 - 80.0 67.0 84.7 74.97 - 98.3 77.86 78

Lamp 8.2 61.15 - 67.0 39.9 76.5 71.11 - 97.5 86.31 73
Phone 0.18 36.27 - 38.1 35.2 54.0 47.74 - 87.7 86.24 79

Mean 2.42 32.63 32.3 50.2 43.6 62.7 55.95 62.7 88.6 71.58 79

perform a time consuming refinement search through multiple pose hypotheses
while we only perform the ICP on a single pose hypothesis. That being said,
the codebook is well suited to generate multiple hypotheses using k > 1 nearest
neighbors. The right part of Table 4.6 shows results with ground truth bounding
boxes yielding an upper bound on the pose estimation performance.

The results in Table 4.6 show that our domain randomization strategy allows to
generalize from 3D reconstructions as well as untextured CAD models as long as
the considered objects are not significantly textured. Instead of a performance
drop we report an increased errvsd< 0.3 recall due to the more accurate geometry
of the model which results in correct bounding box diagonals and thus a better
projective distance estimation in the RGB-domain.

In Table 4.8 we also compare our pipeline against state-of-the-art methods on the
LineMOD dataset. Here, our synthetically trained pipeline does not reach the
performance of approaches that use real pose annotated training data.

There are multiple issues: (1) As described in Sec 4.1.4.1 the real training and test
set are strongly correlated and approaches using the real training set can over-fit
to it; (2) the models provided in LineMOD are quite bad which affects both, the
detection and pose estimation performance of synthetically trained approaches;
(3) the advantage of not suffering from pose-ambiguities does not matter much
in LineMOD where most object views are pose-ambiguity free; (4) We train and
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Figure 4.9: Rotation and translation error histograms on all T-LESS test scenes
with our RGB-based (left columns) and ICP-refined (right columns)
6D Object Detection

(a) (b) (c)

Figure 4.10: Failure cases; Blue: True poses; Green: Predictions; (a) Failed detections due to
occlusions and object ambiguity, (b) failed AAE predictions of Glue (middle) and
Eggbox (right) due to strong occlusion, (c) inaccurate predictions due to occlusion

test poses from the whole SO(3) as opposed to only a limited range in which the
test poses lie. SSD6D also trains only on synthetic views of the 3D models and
we outperform their approach by a large margin in the RGB-only domain before
ICP refinement.

4.1.4.5 Failure Cases

Figure 4.10 shows qualitative failure cases, mostly stemming from missed detec-
tions and strong occlusions. A weak point is the dependence on the bounding box
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size at test time to predict the object distance. Specifically, under sever occlusions
the predicted bounding box tends to shrink such that it does not encompass the
occluded parts of the detected object even if it is trained to do so. If the usage
of depth data is clear in advance other methods for directly using depth-based
methods for distance estimation might be better suited. Furthermore, on strongly
textured objects, the AAEs should not be trained without rendering the texture
since otherwise the texture might not be distinguishable from shape at test time.
The sim2real transfer on strongly reflective objects like satellites can be challeng-
ing and might require physically-based renderings. Some objects, like long, thin
pens can fail because their tight object crops at training and test time appear very
near from some views and very far from other views, thus hindering the learning
of proper pose representations. As the object size is unknown during test time,
we cannot simply crop a constantly sized area.

4.1.4.6 Rotation and Translation Histograms

To investigate the effect of ICP and to obtain an intuition about the pose errors,
we plot the rotation and translation error histograms of two T-LESS objects (Fig.
4.9). We can see the view-dependent symmetry axes of both objects in the rotation
errors histograms. We also observe that the translation error is strongly improved
through the depth-based ICP while the rotation estimates from the AAE are
hardly refined. Especially when objects are partly occluded, the bounding boxes
can become inaccurate and the projective distance estimation (Sec. 4.1.3.6) fails to
produce very accurate distance predictions. Still, our global and fast 6D Object
Detection provides sufficient accuracy for an iterative local refinement method to
reliably converge.

4.1.5 Conclusion

We have proposed a new self-supervised training strategy for Autoencoder
architectures that enables robust 3D object orientation estimation on various RGB
sensors while training only on synthetic views of a 3D model. By demanding
the Autoencoder to revert geometric and color input augmentations, we learn
representations that (1) specifically encode 3D object orientations, (2) are invariant
to a significant domain gap between synthetic and real RGB images, (3) inherently
regard pose ambiguities from symmetric object views. Around this approach, we
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created a real-time (42 fps), RGB-based pipeline for 6D object detection which is
especially suitable when pose-annotated RGB sensor data is not available.

4.2 Multi-path Learning for Object Pose Estimation

Across Domains (CVPR 2020)

Martin Sundermeyer1,2, Maximilian Durner1,2, En Yen Puang1, Zoltan-Csaba
Marton1, Narunas Vaskevicius3, Kai O. Arras3, Rudolph Triebel 1,2

1German Aerospace Center (DLR), 2Technical University of Munich (TUM),
3Robert Bosch GmbH

4.2.1 Motivation

Learning-based 6D pose estimation methods such as Augmented Autoencoder
(AAEs) [124] that were introduced in the previous Section 4.1 are computation-
ally efficient and can show higher robustness towards sensor noise, clutter and
environment changes [159, 154] than traditional template or feature based meth-
ods [137]. On the other hand, the need for pose-annotated data as well as lengthy
training phases make them less flexible. To tackle the lack of annotations, several
methods have recently shifted to train on synthetic data rendered from 3D models
[95, 124, 127]. However, it is still common to train individual models for every
newly encountered instance. This practice hardly scales since training time and
inference GPU memory grow linearly with the number of target objects. Attempts
to train on many objects at once often result in deteriorated performance [159].
Furthermore, due to object discriminative training, most of these approaches are
not suited to generalize to untrained objects. Since the real world consists of
large amounts of object categories and instances, we propose a more adaptive
and scalable approach in this paper.

Inspired by AAEs [124] that extract pose representative features on an instance
level, we propose a single-encoder-multi-decoder network for jointly estimating
the 3D object orientation of multiple objects. While the encoder and latent
space are shared among all objects, the decoders are trained to reconstruct
views of specific instances (top of Fig. 4.11). This multi-path learning strategy
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Figure 4.11: Training (top) and setup phase (bottom) of the MP-Encoder. During training one
encoder is shared among all objects, while each decoder reconstruct views of a
single object. This turns the encoder into a viewpoint-sensitive feature extractor, that
generates expressive encodings for multiple trained and even untrained objects.
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allows similarly shaped objects to share the same encoding space. After training,
we can generate instance-specific codebooks containing encodings of synthetic
object views from all over SO(3). So each entry contains a shape and viewpoint
dependent descriptor mapped to an explicit 3D object orientation that can be
retrieved at test time. (bottom of Fig. 4.11)

As we show experimentally, the learned encodings generalize well to the real
domain and are expressive enough to relate views from all trained and even
untrained objects in a viewpoint sensitive way. For a large number of objects the
performance of the Multi-Path Encoder (MP-Encoder) does not deteriorate com-
pared to separately trained encoders for each object and even slightly improves
encoding quality which leads to new state-of-the-art results in 6-DoF object pose
estimation on the T-LESS dataset.

Motivated by this, we also introduce an iterative render-inference scheme based
on the learned encodings, which enables relative pose estimation on untrained
objects. It resembles the online creation of a local codebook which also helps
avoiding SO(3) discretization errors. We apply this method to iteratively refine
poses of untrained instances from ModelNet40 and outperform DeepIM [119], a
state-of-the-art approach for RGB-based 6D pose refinement.

Contributions: I proposed and implemented the approach in the context of a
collaboration with the Robert Bosch GmbH. Maximilian Durner helped with 2D
detection results and supervision. En Yen Puang implemented the ICP. Dr. Zoltan
Csaba Marton and Prof. Rudolph Triebel advised me throughout the process with
their domain knowledge and paper writing. Dr. Narunas Vaskevicius helped
proof reading and with the rebuttal.

4.2.2 Abstract

We introduce a scalable approach for object pose estimation trained on simulated
RGB views of multiple 3D models together. We learn an encoding of object
views that does not only describe an implicit orientation of all objects seen
during training, but can also relate views of untrained objects. Our single-
encoder-multi-decoder network is trained using a technique we denote "multi-
path learning": While the encoder is shared by all objects, each decoder only
reconstructs views of a single object. Consequently, views of different instances do
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not have to be separated in the latent space and can share common features. The
resulting encoder generalizes well from synthetic to real data and across various
instances, categories, model types and datasets. We systematically investigate the
learned encodings, their generalization, and iterative refinement strategies on the
ModelNet40 and T-LESS dataset. Despite training jointly on multiple objects, our
6D Object Detection pipeline achieves state-of-the-art results on T-LESS at much
lower runtimes than competing approaches. 2

4.2.3 Method

We will first briefly describe the AAE (Sec. 4.1). Building upon these results,
we then propose a novel Multi-Path Encoder-Decoder architecture and training
strategy (Sec. 4.2.3.2). Next, we will investigate the encoder on its ability to
extract pose-sensitive features and examine generalization to novel instances (Sec.
4.2.3.3). Different application scenarios depending on the test conditions are
discussed (Sec. 4.2.3.4). Finally, an iterative render-inference optimization for
pose refinements is presented (Sec. 4.2.3.5).

4.2.3.1 Implicit Object Pose Representations

Sundermeyer et al. [124] have shown that implicit pose representations can be
learned in a self-supervised way using an encoder-decoder architecture. This
so-called AAE allows to encode 3D orientations from arbitrary object views,
generalizes from synthetic training data to various test sensors, and inherently
handles symmetric object views.

The AAE is trained to reconstruct rendered views of a single object. To encode 3D
orientation exclusively, the inputs are randomly translated and scaled while the
reconstruction target stays untouched. To encode object views from real images,
the background of input views are randomized, occlusions at various locations
are generated, and various lighting and color augmentations are produced. As
a result of this domain randomization, the network learns to represent the objects’
orientation of real object views implicitly using the latent code z.

Concretely, an input sample x ∈ Rd is randomly augmented by f (.) and mapped
by an encoder Υ onto a latent code z ∈ Rm where m� d. The decoder Λ : Rm →

2Code can be found here: https://github.com/DLR-RM/AugmentedAutoencoder/tree/
multipath
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Rd is trained to map the code back to the target x.

x̂ = Λ(Υ( f (x))) = Λ(Υ(x′)) = Λ(z) (4.11)

Both Υ and Λ are neural networks, and their weight parameters are trained such
that the `2-loss is minimized, i.e.

`2(B) = ∑
i∈B
‖xi − x̂i‖2 = ∑

i∈B
‖xi −Λ(Υ( f (xi)))‖2 (4.12)

where B contains the indices of input samples of a given batch. After training,
the decoder is discarded and latent encodings of object views from all over SO(3)
are saved in a codebook together with their corresponding orientations assigned.
At test time, a real object crop is encoded and the nearest code(s) in the codebook
according to cosine similarity yield the predicted orientation. The rotation can
further be corrected for the translational offset as described in [152].

A downside of this formulation is that a new network must be trained for every
new object instance. When naively training the original AAE jointly on several
objects, they need to be separated in the latent space so that the decoder is able to
reconstruct the correct object. Even when conditioning the decoder on the object
by concatenating a one-hot vector to the encoding, it can only reconstruct few
instances and it diminishes the ability of the encoder to encode object orientations.

4.2.3.2 Multi-Path Encoder-Decoder

We propose a simple but effective architecture which, in combination with our
multi-path learning strategy, enables the 3D orientation estimation of multiple
objects (see Fig. 4.11). Our architecture consists of a single encoder Υ, an encoding
z ∈ R128, and n decoders Λj with j = 1, ..., n where n is the number of different
object instances. The convolutional encoder is fed with the same augmented
inputs as an AAE but with heterogeneous batches B̃ containing multiple objects.
The resulting codes are split and each decoder only receives codes that correspond
to a single object instance. The multi-path loss function can be written as:

`m(B̃) =
b

∑
j=1

n

∑
k=1

I(sj = k)‖xj −Λk(Υ( f (xj)))‖2

=
b

∑
j=1

n

∑
k=1

I(sj = k)‖xj −Λk(zj)‖2 (4.13)

56



4 Contributions: 6D Object Pose Estimation

where I is the indicator function used to select the decoder Λk that corresponds to
the instance sj. Note that in this setting only the encoder Υ receives information
from the entire mini-batch, while the decoders Λj backpropagate a loss `j from a
sub-batch. Since the decoders are only used to learn an efficient encoding, they
can be discarded after training, leaving behind a compact encoder model.

In contrast to other approaches [67, 85], where objects are explicitly separated
in the descriptor space, our encoder can learn an interleaved encoding where
general features can be shared across multiple instances. We consider this ability
as the main qualification to obtain encodings that can represent object orientations
from novel, untrained instances, even when they belong to untrained categories.

4.2.3.3 Principal Component Analysis of Encodings

In order to gain insights into the characteristics of the latent space from trained
and untrained objects, we perform an experiment on the ModelNet40 [68] dataset.
We first train the multi-path encoder-decoder on 80 CAD instances that originate
from the car class. A second model is trained on 10 instances from 8 different
classes, namely airplane, bed, bench, car, chair, piano, sink, toilet. Training details can
be found in the appendix.

After training, we generate 72 viewpoints along a full revolution of azimuth,
elevation and in-plane rotation. We record different objects from these viewpoints
and feed them into the encoder. From the encoding space zi ∈ R128 of all objects
we compute the first three principal components and project all encodings onto
these directions. The interpolated results can be seen in Fig. 4.12. The top row
shows the encodings of a car instance from the training set. The other rows show
instances which are not in the training set of neither model, but different sofa
and toilet instances were used to train the second model.

First, it is noticeable that the encodings vary smoothly along each of the rotation
axes, even when views of untrained objects are evaluated. It can be seen that the
views, while starting at the same point, end up in different sub-manifolds that
capture the shape of the encoded objects and their symmetries. For example, the
car instance produces closed trajectories with two revolutions because the car
shape looks similar at opposite viewpoints.

Furthermore, it can be seen that the car in the training and test set are encoded
similarly by each of the models. This indicates that the encoder as well as
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Figure 4.12: Principal Component Analysis of the learned encodings. Depicted are
the encodings of views around elevation (red), azimuth (blue), and
in-plane (green). Middle column: Encoder trained only on cars; Right
column: Encoder trained on objects from 8 categories
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Table 4.9: Different application scenarios for global and iterative pose estimation and the handling
of untrained objects

Scenario

Prerequisites I II

Shape category trained 7 3

3D Test Model available 3 7

3D Test Model aligned to Train Model 7 7

Available Methods ⇓ ⇓

Reuse codebook from a trained instance 7 3

Create a new full / sparse codebook 3 7

Iterative relative pose refinement 3 7

the codebook could be reused when predicting orientations of novel cars, even
without access to their 3D models.

The remaining encodings of untrained objects can still be clearly separated and
thus a meaningful pose descriptor could be extracted without retraining the
encoder but simply by creating a codebook from their 3D model.

Apart from an offset, both models learn quite similar encodings, even for the
sofa category which the first model has not seen during training. This implies
that low-level features are extracted that generalize across various shapes and
categories. However, to fulfill the reconstruction task the features still need to be
robust against lighting and color augmentations as well as translations that are
applied to the inputs. In the next section, we will explore different approaches to
utilize these properties.

4.2.3.4 Object Pose Estimation Across Domains

After training, the MP-Encoder can create codebooks for all n training instances
for pose estimation. (see Sec. 4.2.3.1)

On top of that, it can deal with scenarios inlcuding untrained objects which
are depicted in Table 4.9. Here, the trained encoder model is used as a fixed
pose-sensitive feature extractor. Available methods depend on the characteristics
and given information on the considered test objects.

If a 3D model of the untrained object is available, it is usually preferable to create
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Algorithm 1: Iterative 6D Pose Refinement
Input: encoder Υ, init pose qinit, tinit, target view x∗
z∗ ← Υ(x∗)
qest ← qinit

test ← tinit

for k = 0 . . . 2 do
for j = 0 . . . 3 do

for i = 0 . . . 40− 10k do
α ∼ N (0, σ2

j+1 )

v ∼ N3(0, I)
∆q← quat( v

‖v‖ , α)

qi ← ∆q qest

xi ← render(qi, test)

zi ← Υ(xi)

end
k← arg max

i

zi z∗
‖zi‖‖z∗‖

qest ← qk

end
xest = render(qest, test)

∆t = multiScaleEdgeMatching(x∗, xest)

test = test + ∆t
end
Result: qest, test

a new codebook and estimate the 3D orientation from it (I). If no 3D model
is available, but we have codebooks of trained instances from a category with
coinciding shapes, we could also reuse these codebooks directly for the test
instance (II). However, as we do not explicitly align models of a category in a
single coordinate frame, the extracted representation will be more dependent on
the shape of an object than on any semantics.

Given a 3D model, we can also use our method for iterative pose refinement at
test time. This allows us to refine results from sparser codebooks or to perform
local, relative pose estimation directly without any codebook.
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Table 4.10: Pose estimation performance of the MP-Encoder trained on objects 1-18 on the com-
plete T-LESS primesense test set (RGB-only) compared to 30 single object AAEs [124]
trained on all objects. We measure recall under the errvsd metric. The right column
shows the performance of a model trained only on 30 instances of the ModelNet40
dataset. We use ground truth bounding boxes (top) and ground truth masks (bottom)
in this experiment. It can be observed that a single MP-Encoder can reach similar
performance on unknown objects if segmentation masks are given.

Mean 30 separate AAE Single Multi-Path Encoder trained on

VSD recall encoders [124] T-Less Objects 1-18 30 Instances ModelNet40

+g
t

bb
ox Objects 1-18 35.60 35.25 27.64

Objects 19-30 42.45 33.17 34.57

Total 38.34 34.42 30.41

+g
t

m
as

k Objects 1-18 38.98 43.17 35.61

Objects 19-30 45.33 43.33 42.59

Total 41.52 43.24 38.40

4.2.3.5 Iterative Refinement of Latent Codes

Our method for iterative pose refinement is outlined in Alg. 1. We start with
an initial pose estimate and a target view. Next, we render a batch of 3D model
views at small rotational perturbations from the initial pose and insert the whole
batch into the encoder. The code with the highest cosine similarity to the target
view encoding determines the new rotation estimate. We sample again with a
smaller perturbation radius. The inner loop of this random optimization scheme,
consisting of rendering and inference, can be efficiently parallelized.

Rotation and translation are alternately optimized three times in our experiments.
As the MP-Encoder is trained to be invariant against translations, we can first
optimize for the more challenging out-of-plane rotation neglecting translation.
Afterwards, the rotation is usually roughly aligned to the target and we use a
simple edge-based, multi-scale template matching method based on OpenCV
[15] to determine the translational offset. The advantage of sampling in SO(3) vs.
sampling in the latent space is that (1) the SO(3) space has lower dimensionality
and (2) we only search valid orientations.

Apart from relative pose estimation with a novel 3D model without a codebook,
the refinement also allows to trade-off between set-up time, inference time,
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memory resources and accuracy. The full 92232× 128 codebook creation takes
∼ 5 minutes per object on a modern GPU and 45MB space. Inference only
takes ∼ 6ms on a modern GPU while the 6D pose refinement in the presented
configuration takes approximately 1 second. To further speed this up, the random
search could be replaced by more sophisticated black-box optimization tools such
as CMA-ES [22]. Depending on the application, i.e. number of objects, available
resources and constraints on the set-up time, global initialization with sparse
codebooks combined with local pose refinement could be a viable option.

4.2.3.6 6-DoF Object Detection Pipeline

Our full RGB-based 6DoF object detection pipeline consists of a MaskRCNN
with ResNet50 backbone [90], the MP-Encoder for 3D orientation estimation
and a projective distance estimate [124] for translation estimation. To compare
against other approaches that use depth data, we also report results with a
point-to-plane ICP [10, 11] refinement step. Especially in the presence of severe
occlusions the RGB-based projective distance estimate does not produce distances
accurate enough to fulfill the strict VSD metric. On the other hand, an accurate
initialization is crucial for ICP refinement to work well.

For the MaskRCNN we generate training data by pasting object recordings
from the T-LESS training set at random translation, scale and in-plane rotation
on random background images. Thereby, we produce 80000 images with MS
COCO [51] background, 40000 images with black background and 40000 images
with random texture backgrounds [46]. We apply several standard online color
augmentations like hue, brightness, blur and contrast. Our MaskRCNN reaches
an mAP@0.5 performance of 0.68 (bbox detection) and 0.67 (segmentation). Both,
MaskRCNN and the MP-Encoder can process multiple objects at once and thus
achieve a runtime that stays nearly constant for a large number of objects.

4.2.4 Evaluation

We focus our analysis on two benchmarks: ModelNet40 [68] and the T-LESS
dataset [93].
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Table 4.11: Evaluation of our full 6D Object Detection pipeline with MaskRCNN + Multi-Path
Encoder + optional ICP. We report the mean VSD recall following the SIXD challenge
/ BOP benchmark [114] on the T-LESS Primesense test set. See the appendix for object-
wise results. A single MP-encoder model outperforms the result of 30 instance-specific
AAEs.

Template matching Point Pair Features (PPF) based Learning-based

Hodan-15 Vidal-18 Drost-10 Drost-10-edge Brachmann-16 Kehl-16 OURS Sundermeyer-18 OURS
Depth Depth +ICP Depth Depth + RGB RGB-D RGB-D + ICP RGB + ICP RGB only

Average 63.18 66.51 56.81 67.5 17.84 24.6 69.53 19.26 20.53

Time (s) 13.5 4.7 2.3 21.5 4.4 1.8 0.8 0.1 0.2

4.2.4.1 Metrics

In ModelNet40 we use the absolute angular error

eR = arccos
(

tr(R̂T R− I) / 2
)

(4.14)

as well as the ADD metric [40] at an average distance threshold of 0.1× object
diameter for the model pointsM

ADD =
1
m ∑

x∈M
||(Rx + t)− (R̂x + t̂)|| (4.15)

and the 2D projection metric at an average 5px threshold

Proj2D =
1
m ∑

x∈M
||K(Rx + t)− K(R̂x + t̂)|| (4.16)

In the T-LESS experiments we use the errvsd [74] since here the above metrics are
quite meaningless as a result of various object and view symmetries. The errvsd

is an ambiguity-invariant pose error metric that is computed from the distance
between the estimated and ground truth visible object surfaces. As in the SIXD
challenge 2017 [92] and the BOP benchmark 2018 [114], we report the recall of 6D
object poses at errvsd < 0.3 with tolerance τ = 20mm and > 10% object visibility.

4.2.4.2 Generalization Capabilities of the MP-Encoder

We first investigate the joint encoding performance and generalization capabilities
of the MP-Encoder in isolation, i.e. with ground truth detections and masks.
Therefore, we compare one MP-Encoder against 30 separately trained AAE
models on all scenes of the T-LESS Primesense test set (Table 4.10). Equivalent
encoder and decoder architectures are used. Furthermore, the MP-Encoder is only

63



4 Contributions: 6D Object Pose Estimation

Figure 4.13: Left: Qualitative 6D Object Detection results of the RGB-based pipeline
on T-LESS Primesense scenes. Only 18 of 30 objects are used to train
the Multi-Path encoder; Middle: ICP-refined results; Right: Relative
pose refinement of instances from the untrained categories guitar and
bathtub. Red is the initial pose, green depicts the refined pose.

trained on the first 18 3D object reconstructions of the T-LESS dataset to show the
generalization capabilities on untrained objects 19-30. On objects 1-18 which the
MP-Encoder has seen during training, the results using ground truth bounding
boxes are close to the AAE results. Looking at the next row, the performance on
the untrained objects 19-30 is significantly worse compared to the single AAEs.
We suppose that the MP-Encoder has difficulties to extract unknown objects
from the background. This hypothesis is strongly supported by the results with
ground truth masks (bottom) where the MP-Encoder even outperforms the AAEs.
Even for the untrained objects 19-30 the performance gap to the AAEs that were
trained on these objects is quite small. One possible explanation is that a feature
extractor trained on multiple objects learns more versatile and thus more robust
features.

The last column of Table 4.10 depicts the surprisingly good generalization from
ModelNet40 to the T-LESS dataset. Here, the MP-Encoder is specifically trained
on 30 texture-free CAD models from the 8 categories airplane, bed, bench, car, chair,
piano, sink, toilet. Codebooks are created for all T-LESS objects and it is tested on
the same real sensor recordings. These results underline that with the multi-path
training combined with an input randomization strategy, we can learn to extract
orientation variant features that generalize well across greatly differing domains.
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Figure 4.14: Failure case: MaskRCNN predicts the wrong class 20 instead of
19 (the object below). Since the shape is quite similar (except scale)
the codebook of object 20 still gives a reasonable pose estimate.

4.2.4.3 6D Object Detection Results

Next, we evaluate our full 6D pose estimation pipeline on the T-LESS dataset
which is a particularly challenging 6D object detection benchmark containing
texture-less, symmetric objects as well as clutter and severe occlusions. Table
4.11 presents results using the strict vsd metric (Sec. 4.2.3.6). We achieve state-
of-the-art results on T-LESS at much lower runtimes than previous methods,
both in the RGB domain and also in the depth domain when initializing an ICP
with our RGB-based pose estimate. Although the gains are marginal, the results
are significant because we only train a single encoder on the whole dataset and
still obtain state-of-the-art results. This makes our method scalable, particularly
considering that no real pose-annotated data is used for training. Fig. 4.13 (left)
shows qualitative examples of the full 6D Object Detection pipeline. Previously,
pose estimation of texture-less objects has been dominated by pure depth-based
geometric matching approaches that often possess high run-times and do not scale
very well with the number of considered objects. Fig. 4.14 shows a failure case
which underlines that strict instance-wise pose estimation may not be suitable
for real world applications where objects often differ only in details.

4.2.4.4 Iterative Refinement on Untrained Objects

In our final experiment, we evaluate the MP-Encoder on the task of iterative
refinement of poses on untrained instances from seen and unseen categories from
ModelNet40.
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Table 4.12: Relative Pose Refinement from up to 45o and ∆t = (10, 10, 50)[mm] perturbations
on untrained instances of seen (top) and unseen (bottom) object categories of the
ModelNet40 dataset. We measure the recall at the 5cm, 5o threshold, the ADD at 0.1d
(object diameter) metric and the Proj2D at 5px threshold.

metric (5o , 5cm) 6D Pose (ADD) Proj2D (5px)

method
DeepIm [119] Ours DeepIm [119] Ours DeepIm [119] Ours

init refined init refined init refined init refined init refined init refined

no
ve

li
ns

ta
nc

e airplane 0.8 68.9 0.9 96.9 25.7 94.7 33.4 97.9 0.4 87.3 0.1 97.4

car 1.0 81.5 0.4 96.4 10.8 90.7 13.4 98.5 0.2 83.9 0.1 94.0

chair 1.0 87.6 0.3 96.4 14.6 97.4 16.3 98.3 1.5 88.6 0.0 94.6

Mean 0.9 79.3 0.5 96.6 17.0 94.3 21.0 98.2 0.7 86.6 0.1 95.3

no
ve

lc
at

eg
or

y

bathtub 0.9 71.6 0.7 85.5 11.9 88.6 15.4 91.5 0.2 73.4 0.1 80.6

bookshelf 1.2 39.2 0.7 81.9 9.2 76.4 13.7 85.1 0.1 51.3 0.0 76.3

guitar 1.2 50.4 0.5 69.2 9.6 69.6 13.1 80.5 0.2 77.1 0.3 80.1

range_hood 1.0 69.8 0.5 91.0 11.2 89.6 14.1 95.0 0.0 70.6 0.0 83.9

sofa 1.2 82.7 0.6 91.3 9.0 89.5 12.2 95.8 0.1 94.2 0.0 86.5

wardrobe 1.4 62.7 0.7 88.7 12.5 79.4 14.8 92.1 0.2 70.0 0.0 81.1

tv_stand 1.2 73.6 0.6 85.9 8.8 92.1 10.5 90.9 0.2 76.6 0.1 82.5

Mean 1.2 64.3 0.6 84.8 10.3 83.6 13.4 90.1 0.1 73.3 0.1 81.6

We follow the evaluation protocol of DeepIm [119] where the relative pose
between two object views of an untrained instance is sought. The target view
is rendered at constant translation t = (0, 0, 500) (mm) and random rotation
R ∼ SO(3). Then we render another object view with that pose perturbed by the
angles βx/y/z ∼ N (0, (15o)2) sampled for each rotation axis and a translational
offset ∆x ∼ N (0, 102), ∆y ∼ N (0, 102), ∆z ∼ N (0, 502) (mm). If the total angular
perturbation is more than 45o, it is resampled.

We train category specific MP-Encoders on 80 instances of the airplane, car
and chair class and predict the relative pose on novel instances. We also train
another MP-Encoder on 80 instances from 8 different categories 3 to obtain a
general viewpoint-sensitive feature extractor which we test on instances from
novel categories. To retain the relative pose to the target view we use our random
optimization scheme described in Alg. 1 with an initial σ = 45o.

We compare our approach against DeepIm [119] that also minimizes the relative
pose between an initial and a target view through an iterative rendering inference
cycle. The results in Table 4.12 demonstrate superior performance of our approach
on both, seen and unseen categories. Figure 4.13 on the right shows qualitative
results of the refinement on unseen categories.

3airplane, bed, bench, car, chair, piano, sink, toilet
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4.2.5 Conclusion

In this paper we presented a novel approach for estimating poses of multiple
trained and untrained objects from a single encoder model. In contrast to other
methods, training on multiple objects does not degrade performance and instead
leads to state-of-the-art results on the texture-less, symmetric objects of the
T-LESS dataset. The same MP-Encoder architecture is also used for iterative
pose refinement on untrained objects outperforming previous approaches on
ModelNet40.

The ability of this pose estimator to generalize across objects from different cate-
gories, datasets and image domains indicates that low-level viewpoint-sensitive
features are shared across various domains. Higher-level features for discrimi-
nating semantics require viewpoint-invariance and usually generalize less well.
Therefore, our results suggest that these two tasks should be learned separately.

We believe that this is a step towards coping with the large number of instances
in industrial settings where 3D models are often available and service robotics
where categories often appear repeatedly and interactions with novel objects
should be immediately possible.
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4.3 Benchmark for 6D Object Pose Estimation (BOP)

In the following, I present the motivation, metrics and datasets of the Benchmark
for 6D Object Pose Estimation (BOP), a series of public competitions that we
organized with the goal to capture and push the state of the art in the field of 6D
object pose estimation from an RGB-D image.

4.3.1 Motivation

The field of Computer Vision and Machine Learning has been greatly advanced
by the use of benchmarks. One notable example is the ImageNet Challenge [64],
which demonstrated the superior performance of Convolutional Neural Networks
(CNNs) in object recognition tasks by providing a large training dataset. Until
today architectural decisions [72] are validated on ImageNet. Similarly, the
COCO benchmark [51] has become popular in the field of 2D object detection
and segmentation due to its high-quality mask annotations of common objects
in everyday environments. However, a similar benchmark for 6D object pose
estimation had yet to be established.

Previously, we have presented two novel approaches for pose estimation, Aug-
mented Autoencoders [181] (Section 4.1) and Multipath-Encoders [180] (Sec-
tion 4.2), and evaluated them on the LineMOD [32] (Tab. 4.8) and T-LESS [93]
(Tab. 4.6, 4.11) datasets. Both methods were trained using synthetic data gener-
ated from provided 3D meshes and are capable of estimating orientations in the
full SO(3) space.

In contrast, most other methods train on the real pose-annotated images that
are provided in popular datasets such LineMOD [32]. The issue is that training
images are usually closely related to the respective test images. Especially in
LineMOD [32] the training and test images are just slightly varying camera views
of the same underlying scenes and cover only a fraction of the full SE(3) space.
These constraints greatly simplifies the pose estimation task, but do not fully
reflect real world situations where methods need to work outside of the specified
test environment and where real, pose-annotated data is usually not available.
Other datasets, such as T-LESS, present more realistic challenges such as stronger
viewpoint variations and the presence of texture-less and symmetric objects.
However, these datasets may not fully capture the complexity of real-world
scenarios where other factors, such as lighting, may vary.
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To ensure progress in real-world applications, it is crucial to have broad and
reliable comparisons between proposed approaches. In the case of 6D object pose
estimation, this means evaluating methods on a diverse range of datasets and
objects to encompass a broad range of real-world challenges. Furthermore, pose
predictions should be evaluated automatically with unified metrics to facilitate
comparisons and avoid evaluation errors, varying experimental conditions and
cherry-picked metrics. Ideally, only validation sets should be available while test
sets remaining private, and parameters should be fixed across different objects
and datasets.

The Benchmark for 6D Object Pose Estimation (BOP challenge) [137, 168, 223]
aims to address these requirements by providing a unified format for diverse pose-
annotated datasets and an online evaluation system where anyone can submit
and automatically evaluate their 6D pose predictions. The BOP toolkit [167]
supports authors with utility functions to process the datasets and pose estimates.
Awards for different training and test settings encourage the development of
diverse solutions for various use cases.

4.3.2 Contributions

The BOP challenge [137, 168, 223, 137, 114] is regularly organized in conjunction
with the Recovering 6D Pose Workshop (R6D) [169] at ECCV / ICCV. In 2019, I
joined Tomas Hodan in the organization of the first BOP challenge [137] with
current datasets and 6D pose metrics starting with contributions to the evaluation
backend, i.e. the BOP toolkit [167]. I also participated in the BOP challenge
2019 myself with the Augmented Autoencoders [124]. For the BOP challenge
2020, I led the extension of BlenderProc to generate physically based scenes for
the seven core BOP datasets and rendered 350K photorealistic, synthetic images
with annotated poses in BOP format which turned out to be crucial for the
success and practicality of learning-based pose estimation as discussed in our
BOP 2020 report [168]. In 2022, I was the main organizer of the BOP challenge
and R6D Workshop with large support from Tomas Hodan and other organizers.
I extended the BOP challenge evaluation to separately measure object detection
and segmentation performance with COCO [51] metrics and generated COCO
annotations for the BOP datasets. This allowed distinguishing advances in the
common object detection/segmentation and pose estimation stages and revealed
many new insights discussed next.
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Train. im. Val im. Test im. Test inst.

Dataset #Obj Real PBR Real All Used All Used

LM-O [45] 8 – 50000 – 1214 200 9038 1445
T-LESS [93] 30 37584 50000 – 10080 1000 67308 6423
ITODD [88] 28 – 50000 54 721 721 3041 3041
HB [140] 33 – 50000 4420 13000 300 67542 1630
YCB-V [107] 21 113198 50000 – 20738 900 98547 4123
TUD-L [114] 3 38288 50000 – 23914 600 23914 600
IC-BIN [70] 2 – 50000 – 177 150 2176 1786

LM [38] 15 – 50000 – 18273 3000 18273 3000
RU-APC [80] 14 – – – 5964 1380 5964 1380
IC-MI [55] 6 – – – 2067 300 5318 800
TYO-L [114] 21 – – – 1670 1670 1670 1670
HOPE [217] 28 – – 50 188 188 3472 2898

Table 4.13: Parameters of the BOP datasets. Most datasets include also training images obtained
by OpenGL rendering of the 3D object models on a black background (not shown in
the table). PBR training images rendered by BlenderProc [133, 163] are provided for all
core datasets since the BOP challenge 2020. If a dataset includes both validation and
test images, the ground-truth annotations are public only for the validation images.
All test images are real. Column “Test inst./All” shows the number of annotated
object instances for which at least 10% of the projected surface area is visible in the
test images. Columns “Used” show the number of test images and object instances
used in the BOP Challenge 2019, 2020 and 2022.

4.3.3 Datasets

The BOP website4 currently offers twelve datasets in a unified format, detailed in
Tab. 4.13, seven of which were selected as core datasets for the BOP challenge.
A method has to be evaluated on all core datasets to proof its robustness and
thereby be considered for the main challenge awards. Among those are LineMOD
Occluded (LM-O) [45] which presents challenging occlusions and is backwards
compatible to methods evaluated in the past. The industrial T-LESS [93] dataset
contains texture-less objects with symmetries. HB [140] and YCB-V [107] contain
household objects in clutter. IC-BIN [70] presents objects tightly packed in bins
and TUD-L contains single objects with severe lighting changes. Finally, ITODD
[88] consists of a larger number of mainly metallic, industrial parts recorded by a
grayscale camera and a stereo sensor for depth. For an overview, please refer to

4https://bop.felk.cvut.cz/datasets/
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LM [38] LM-O* [45] T-LESS* [93] ITODD* [88]

HB* [140] YCB-V* [107] RU-APC [80] IC-BIN* [70]

IC-MI [55] TUD-L* [114] TYO-L [114] HOPE [217]

Figure 4.15: An overview of the BOP datasets. The core datasets are marked with a star. Shown
are RGB channels of sample test images which were darkened and overlaid with
colored 3D object models in the ground-truth 6D poses.

Fig. 4.15.

Each dataset is provided in a unified format and includes 3D object models
and training and test RGB-D images annotated with ground-truth 6D object
poses. The quality and types of sensor data, 3D meshes and training data vary.
The HB and ITODD datasets also include validation images, for which ground-
truth poses are publicly available only for the validation images, not for the
test images. The object models were created either manually or through the
use of KinectFusion-like systems for 3D surface reconstruction [34]. Since BOP
2020, the seven core datasets include a total of 350K photorealistic PBR training
images generated and automatically annotated using BlenderProc [133, 163],
an open-source physically-based renderer of procedurally generated scenes. A
detailed description of the generation process is described in Section 4.5 and an
analysis of the importance of PBR data is detailed in Section 4.6. The datasets T-
LESS, TUD-L, and YCB-V include real training images, and most datasets include
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also training images obtained by OpenGL rendering of the 3D object models
on a black background. The test images were captured in scenes of increasing
complexity through clutter and occlusions. The datasets can be downloaded
from: bop.felk.cvut.cz/datasets.

4.3.4 Evaluation

This section outlines the evaluation methodology which includes the definition of
the challenge task, the functions used to measure the error of a 6D pose estimate,
and the calculation of the accuracy score used to compare the evaluated methods.
The 6D pose localization task has remained the same for the BOP challenges 2019,
2020 and 2022. Therefore, the definitions in this section are based on [168].

4.3.4.1 Task Definition: 6D Pose Localization

All Submissions are evaluated on the task of 6D localization of a varying number
of instances of a varying number of objects (ViVo) from a single RGB-D image.

Training input: For each object oi ∀i ∈ {1, . . . , k}, a method is given a 3D mesh
model of the object which can include textures or vertex colors and a set of
synthetic or real RGB-D images showing instances of the object annotated with
6D poses.

Test input: A method is provided with an image I and a list of instances
L = [(o1, n1), . . . , (om, nm)], where ni is the number of instances of the object oi

present in I.

Test output: The method produces a list E = [E1, . . . , Em], where Ei is a list of
ni pose estimates for instances of the object oi. Each estimate is given by a 3× 3
rotation matrix R, a 3× 1 translation vector t, and a confidence score s. The
matrix Hc

obj = [R|t] defines a rigid transformation from the 3D coordinate system
of the object model to the 3D coordinate system of the camera, as described in
Section 2.1.1. In the following, we define the 6D pose of an object as P = Hc

obj.
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4.3.4.2 Pose-Error Metrics

The choice of a suitable pose-error metric is dependent on the application. In
BOP, the error of an estimated pose P̂ with respect to the ground-truth pose P̄
of an object model M is measured by three pose-error functions that depend on
symmetry-aware 2D or 3D alignment.

VSD (Visible Surface Discrepancy):

eVSD
(

D̂, D̄, V̂, V̄, τ
)
= avgp∈V̂∪V̄

0 if p ∈ V̂ ∩ V̄ ∧
∣∣D̂(p)− D̄(p)

∣∣ < τ

1 otherwise
(4.17)

The symbols D̂ and D̄ denote distance maps5 obtained by rendering the object
model M in the estimated pose P̂ and the ground-truth pose P̄ respectively. These
distance maps are compared with the distance map DI of the test image I to
obtain the visibility masks V̂ and V̄, i.e. sets of pixels where the model M is
visible in the image I. The parameter τ is a misalignment tolerance.

Compared to [114, 74], estimation of the visibility masks has been modified
– an object is now considered visible at pixels with no depth measurements.
This modification allows evaluating poses of glossy objects from the ITODD
dataset [88] whose surface is not always captured in the depth image channel.

VSD treats poses that are indistinguishable in shape (color is not considered) as
equivalent by measuring the misalignment of only the visible part of the object
surface. See Sec. 2.2 of [114] for details.

MSSD (Maximum Symmetry-Aware Surface Distance):

eMSSD
(
P̂, P̄, SM, VM

)
= minS∈SMmaxx∈VM

∥∥P̂x− P̄Sx
∥∥

2 (4.18)

The set SM contains global symmetry transformations of the object model M,
identified as described in Sec. 4.3.4.3, and VM is a set of the model vertices.

The maximum distance between the model vertices is relevant for robotic manip-
ulation, where the maximum surface deviation strongly indicates the chance of a
successful grasp. Moreover, compared to the average distance used in pose-error

5A distance map stores at a pixel p the distance from the camera center to a 3D point xp

that projects to p. It can be readily computed from the depth map which stores at p the Z
coordinate of xp and which is a typical output of Kinect-like sensors.
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functions ADD and ADI [74, 38], the maximum distance is less dependent on the
geometry of the object model and the sampling density of its surface.

MSPD (Maximum Symmetry-Aware Projection Distance):

eMSPD
(
P̂, P̄, SM, VM

)
= minS∈SMmaxx∈VM

∥∥proj
(
P̂x
)
− proj

(
P̄Sx

)∥∥
2 (4.19)

The function proj(·) is the 2D projection (the result is in pixels) and the meaning
of the other symbols is as in MSSD.

Compared to the pose-error function from [45], MSPD considers global object
symmetries and replaces the average by the maximum distance to increase
robustness against the geometry and sampling of the object model. Since MSPD
does not evaluate the alignment along the optical (Z) axis and measures only
the perceivable discrepancy, it is relevant for augmented reality applications and
suitable for evaluating RGB-only methods, for which estimating the alignment
along the optical axis is more challenging.

4.3.4.3 Identifying Global Object Symmetries

The set of global symmetry transformations of an object model M, which is used
in the calculation of MSSD and MSPD, is identified in two steps. Firstly, a set of
candidate symmetry transformations is defined as S′M = {S : h(VM, SVM) < ε},
where h is the Hausdorff distance calculated between the vertices VM of the object
model M in the canonical and the transformed pose. The allowed deviation is
bounded by ε = max(15 mm, 0.1d), where d is the diameter of the object model
M (the largest distance between any pair of vertices) and the truncation at 15 mm
avoids breaking the symmetries by too small details. Secondly, the final set of
symmetry transformations SM is defined as a subset of S′M which consists of
those symmetry transformations that cannot be resolved by the model texture
which in ambiguous cases is decided subjectively by us.

The set SM covers both discrete and continuous global rotational symmetries.
The continuous rotational symmetries are discretized such as the vertex which
is the furthest from the axis of symmetry travels not more than 1% of the object
diameter between two consecutive rotations.
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4.3.4.4 Accuracy Score

An estimated pose is considered correct with respect to a pose-error function e, if
e < θe, where e ∈ {eVSD, eMSSD, eMSPD} and θe is a threshold of correctness.

The fraction of annotated object instances for which a correct pose is estimated is
referred to as Recall. The Average Recall with respect to a function e, denoted as
ARe, is defined as the average of Recall rates calculated for multiple settings of
the threshold θe, and also for multiple settings of the misalignment tolerance τ in
the case of eVSD. In particular, ARVSD is the average of Recall rates calculated for
τ ranging from 5% to 50% of the object diameter with a step of 5%, and for θVSD

ranging from 0.05 to 0.5 with a step of 0.05. ARMSSD is the average of Recall rates
calculated for θMSSD ranging from 5% to 50% of the object diameter with a step
of 5%. Finally, ARMSPD is the average of Recall rates calculated for θMSPD ranging
from 5r to 50r with a step of 5r, where r = w/640 and w is the image width in
pixels.

The accuracy of a method on a dataset D is measured by ARD = (ARVSD +

ARMSSD +ARMSPD)/3. The overall accuracy on the core datasets is then measured
by ARCore defined as the average of the per-dataset ARD scores. In this way,
each dataset is treated as a separate sub-challenge which avoids ARCore being
dominated by larger datasets.

4.4 BOP Challenge 2019 (ICCV 2019)

The BOP challenge 2019 [137] was the first challenge based on the current 6D pose
metrics described in the previous Section 4.3. Eleven methods were evaluated on
all seven core datasets from which six relied on depth-based Point Pair Features
(PPFs) [26] and six relied on RGB-based Deep Neural Networks (DNNs) [30]
where depth was only used for ICP-based refinements.

The results summarized in Table 4.14 show that methods using the depth image
channel, which were mostly based on PPFs [26], clearly outperformed methods
relying only on the RGB channels, all of which were based on DNNs. Please refer
to Section 3.1.1.4 for an introduction to point pair features. On the other hand,
in cluttered scenes these methods need thorough parameter tuning and a large
number of point pair features which results in slow runtimes.
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# Method
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1 Vidal-Sensors18 [128] PPF D 58.2 53.8 87.6 39.3 43.5 70.6 45.0 56.9 3.22
2 Drost-CVPR10-Edges [26] PPF RGB-D 51.5 50.0 85.1 36.8 57.0 67.1 37.5 55.0 87.57
3 Drost-CVPR10-3D-Edges [26] PPF D 46.9 40.4 85.2 37.3 46.2 62.3 31.6 50.0 80.06
4 Drost-CVPR10-3D-Only [26] PPF D 52.7 44.4 77.5 38.8 31.6 61.5 34.4 48.7 7.70
5 Drost-CVPR10-3D-Only-Faster [26] PPF D 49.2 40.5 69.6 37.7 27.4 60.3 33.0 45.4 1.38
6 Félix&Neves-ICRA17-IET19 [151, 103] DNN+PPF RGB-D 39.4 21.2 85.1 32.3 6.9 52.9 51.0 41.2 55.78
7 Sundermeyer-IJCV19+ICP [152] DNN RGB-D 23.7 48.7 61.4 28.1 15.8 50.6 50.5 39.8 0.86
8 Zhigang-CDPN-ICCV19 [142] DNN RGB 37.4 12.4 75.7 25.7 7.0 47.0 42.2 35.3 0.51
9 Sundermeyer-IJCV19 [152] DNN RGB 14.6 30.4 40.1 21.7 10.1 34.6 37.7 27.0 0.19

10 Pix2Pose-BOP19-ICCV19 [149] DNN RGB 7.7 27.5 34.9 21.5 3.2 20.0 29.0 20.5 0.79
11 DPOD (synthetic) [159] DNN RGB 16.9 8.1 24.2 13.0 0.0 28.6 22.2 16.1 0.23

Table 4.14: Results of the BOP Challenge 2019. The methods are ranked by the ARCore score
(the third column of the upper table) which is the average of the per-dataset ARD

scores (the following seven columns). The scores are defined in Sec. 4.3.4.4. The last
column of the upper table shows the average image processing time [s] averaged over
the datasets.

4.4.1 Augmented Autoencoder Results

We also trained and submitted pose predictions of our Augmented Autoencoder
(AAE) pipeline [181] to the BOP Challenge 2019. The AAEs are trained on the
provided 3D models only. We trained RetinaNet [120] for 2D object detection
on real or OpenGL rendered object views pasted on random images from Pas-
calVOC [37]. The resulting 2D bounding box predictions are often not accurate
enough for distance estimation (Section 4.1.3.6) resulting in reduced VSD and
MSSD scores. Therefore we use the depth data to perform a light-weight Iterative
Closest Point (ICP) as pose refinement. While this pipeline is not as accurate
as the PPF-based methods and takes the 7th place overall with 39.8 AR, it is
more efficient which is crucial for Augmented Reality and robotic applications
with limited compute capabilities. Consequently, at the BOP challenge 2019 the
AAE-based pipeline won the award for the best method with below one second
runtime per image.

4.4.2 Discussion

While DNN-based methods can be more efficient, unlike in other vision com-
petitions [51, 41] they were clearly underperforming in the BOP challenge 2019.
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We identified the available training data as a potential reason. Just three out of
seven BOP challenge datasets provide real training data and only YCB-V and
TUD-L provide real training scenes. TUD-L images only contain a single object
exposed to severe lighting changes that mainly affect the RGB channel, therefore
depth-based PPF methods still perform best on this dataset. However, PPFs
ignore the RGB channel which can result in deteriorated detection and pose
estimation performance on datasets such as YCB-V where distinguishing many
objects from local depth features alone has proven to be difficult. On YCB-V,
DNN-based methods such as AAEs [181] with a 2D detector [120] trained on the
real training scenes and hybrid methods such as Félix&Neves-ICRA17-IET19 [151,
103] that use RGB-based DNNs for object segmentation in 2D and subsequent
PPF-based pose estimation in 3D perform better than pure PPF-based methods.

On the other four BOP datasets without real training data DNNs were trained
on synthetic images generated by rendering the 3D object models using OpenGL
and pasting them on top of random backgrounds [95, 102, 91, 89, 124]. However,
as suggested in [139, 136], the evident domain gap between these “render & paste”
training images and real test images presumably limits the potential of DNN-
based methods. Real world pose-annotated training datasets are typically not
available in realistic applications as they are expensive to collect and limited
in their variation and size. Therefore, we need to focus on improving sim2real
transfer when training on synthetic data generated from 3D meshes. While
domain randomization and adaptation techniques can reduce the sim2real gap,
the performance is eventually limited by the quality of the synthetic training
data. OpenGL rasterizers are fast, but they do not simulate how light rays
bounce through the scene, cast shadows and interact with the physically-based
materials. The lack of physically plausible object relations, occlusions and clutter
and unrealistic backgrounds prevented the success of DNN-based methods in
the BOP challenge 2019.
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4.5 BlenderProc: Reducing the Reality Gap with

Photorealistic Rendering (RSS-W 2020)

In this section, I will motivate and present the open-source project BlenderProc6,
a tool mainly used for realistic synthetic data generation to improve sim2real
transfer in Deep Learning applications. This section presents the results published
in [163].

4.5.1 Motivation

Today’s neural network architectures and optimization schemes result in robust
representations if and only if (pre-)trained on large and diverse datasets [53]. For
2D vision tasks we can often label or crowdsource data from the internet and
perform transfer learning from public datasets such as ImageNet [64] to improve
sample efficiency. However, for 3D vision tasks which are relevant in robotics,
the effort of generating large and diverse labeled datasets is magnitudes higher
and suitable pretrained models are often unavailable.

Instead of collecting and labeling real world data, it is much more convenient to
procedurally generate data in simulation where 3D labels are inherently given.
However, although the necessary 3D models are often available, we lack the
tools to procedurally assemble them to diverse, plausible scenes, adding realistic
lighting and materials and producing photo-realistic images as well as their
labels.

As the BOP challenge 2019 (Section 4.4.2) has alluded, Phong-shaded [4] OpenGL
images pasted on photographs have limited generalization performance to real
test scenes which in turn limits the potential of learning-based pose estimation in
general. Other 3D vision domains such as learned 3D scene reconstruction [164],
3D part segmentation and normal estimation have shown similar shortcomings
with unrealistic training data. Augmentations and domain adaptation techniques
can help to a degree with sim2real transfer [87], but both rely on sufficiently
realistic input data. Earlier experiments have demonstrated that photo-realism
benefits sim2real transfer, but existing tools are domain or problem specific,
non-intuitive to use or closed-source [139].

6https://github.com/DLR-RM/BlenderProc
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4.5.2 Contributions

In 2019, Maximilian Denninger, Dominik Winkelbauer and me started Blender-
Proc as a config-based, procedural synthetic data generation pipeline which we
built on top of the 3D creation and raytracing suite Blender [111]. While Max
and Dominik focused on generating realistic data for single-view 3D reconstruc-
tion approaches [164], I focused on object-centric vision tasks such as detection,
instance segmentation and pose estimation. I took a major part in integrating
rigid body physics, material samplers, object pose samplers, camera intrinsics,
aliased and non-aliased depth as well as loaders and writers for common data
formats such as COCO [51] and BOP [137]. With the help of Tomas Hodan and
my student Dmitry Olefir, we generated the PBR (physically-based rendering)
data for the BOP Challenge 2020 & 2022 which will be discussed in the following
Section 4.6. I also played a major role in transforming the software from the
config-based BlenderProc v1 to the more flexible python API based Blender-
Proc v2 and together with Wout Boerdijk added loading robots URDF models
and computing forward and inverse kinematics which we used to create the
Robot Tracking Benchmark [222] described in Section 4.7.1. As of February 2023,
BlenderProc has 41 contributors and thousands of users.

4.5.3 Method

Physically-based rendering (PBR) accurately mimics the flow of light in the scene
by casting rays and simulating their interaction with 3D geometry and their
physically-based materials. This naturally accounts for complex illumination
effects such as scattering, refraction and reflection, including diffuse and spec-
ular interreflection between the scene elements [79]. The rendered images look
realistic and are often difficult to differentiate from real photographs. Rendering
techniques based on rasterization, e.g. OpenGL, can approximate the complex
effects in an ad hoc way through custom shaders, but the approximations cause
physically incorrect artifacts that are difficult to eliminate [60].

BlenderProc makes raytracing capabilities accessible through a flexible Python
API that allows procedurally generating 3D scenes and rendering labeled training
images from them. A typical run of the pipeline consists of loading a set of
objects, sampling object poses with the aid of a physics engine, randomizing
object materials, sampling cameras and lights, and rendering modalities such as

79



4 Contributions: 6D Object Pose Estimation

Figure 4.16: BlenderProc renderings of a realistic indoor scene including color, distance, semantic
segmentation, and surface normals.

color, depth, surface normals, semantic segmentation or optical flow as shown in
Fig. 4.16.

4.5.4 Sim2Real Transfer

We test the sim2real capabilities of data procedurally generated with BlenderProc
on the example task of instance segmentation on the LineMOD-Occluded (LM-O)
dataset [45]. The dataset provides eight object models with imperfect geometry,
texture and without materials acquired with KinectFusion-like techniques. While
sim2real transfer benefits from accurately modelled 3D objects placed in realistic
3D environments that imitate test settings [139], the associated modelling effort
makes this impractical for most applications. Instead, our goal is to find generic
settings that still allow generalizing to various test environments despite imperfect
models.

Therefore, we place target and distractor objects into an open cube mapped
with randomized PBR textures [161] accounting for collisions. Object material
properties like metallicness, roughness and specularity are also randomized.
The ceiling emits randomly colored light and a point light source is sampled
at random position inside the cube. This physically-based domain randomization
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(a) OpenGL + real backgrounds + domain randomiza-
tion (DR). (b) Training on photorealistic images from BlenderProc.

Figure 4.17: Sim2Real Instance Segmentation on LM-O. Notice that the OpenGL + DR scheme
results in missed instances, false positives and failures under strong occlusions.
Using the BlenderProc data for training all 8 LM-O instances are segmented well
even under challenging conditions.

represents the uncertainties in 3D modelling more realistically than common
domain randomization techniques such as color jittering or deformations in the
image plane [89]. We sample random camera poses inside a shell within the
cube and render 50K synthetic images from these scenes with BlenderProc. An
example of the synthetic training data is depicted in Fig. 4.18 on the top right.

To assess sim2real performance, we train a Mask R-CNN [90] with Resnet50
backbone on the BlenderProc data and compare it to training on OpenGL render-
ings pasted on real backgrounds from COCO [51] combined with strong domain
randomization [89], using 50K images as well. Qualitative test results on LM-O
are shown in Fig. 4.17.

With default hyperparameters, we achieve a clear improvement from 26.2 (OpenGL)
to 33.8 (BlenderProc) Mask mAP50 (+7.6). Note, that the Mask R-CNN models
were pretrained on COCO and fine-tuned on the respective datasets. Hinter-
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stoisser et al. [91] found that when fine-tuning on the domain-randomized
OpenGL data, freezing the complete backbone is necessary to avoid overfitting to
the synthetic domain. This is accounted to the domain gap of low-level image
statistics between real and OpenGL data. Interestingly, when training on synthetic
data generated by BlenderProc we can unfreeze the backbone which even slightly
improves results.

Other tasks such as surface normal and depth prediction also showed improved
sim2real performance when trained on BlenderProc data, as shown in [163].

These results encouraged the extension of BlenderProc towards generating re-
alistic training data for all seven core datasets of the BOP Challenge 2020 [168]
to unfold the potential of learning-based 6D pose estimation. The BOP datasets
contain diverse model qualities and test settings which will extend our insights
into the factors driving sim2real transfer as described in the next Section 4.6.
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4.6 BOP Challenge 2020 & 2022 (ECCV 2020/2022)

The BOP Challenge 2020 & 2022 were organized in conjunction with the 6th/7th
International Workshop on Recovering 6D Object Pose at ECCV 2020/2022. They
follow the same 6D pose task definitions, evaluation methodology and list of core
datasets as the BOP Challenge 2019. However, they differ in the available training
data and the evaluated tasks. This section presents the results summarized in the
following reports on the BOP challenge 2020 [168] and 2022 [223].

4.6.1 BOP Challenge 2020 (ECCV 2020)

In the BOP challenge 2020 we provided participants with new synthetic training
images rendered with BlenderProc to tackle the sim2real gap which limited
learning-based methods in 2019 (Sec. 4.4). In the following we explain the
procedural training image generation and discuss their effect on detection and
pose estimation performance.

4.6.1.1 BlenderProc PBR Training Image Generation

Starting with the BOP Challenge 2020, we provided participants with 50K pho-
torealistic training images for each of the seven core datasets. The images were
generated and automatically annotated by BlenderProc [133, 163], an open-source
and light-weight physically-based renderer of procedurally generated scenes. Fig.
4.18 depicts examples of the training images.

BlenderProc implements a PBR synthesis approach similar to [139]. However,
to improve efficiency, objects are not rendered in 3D models of complete indoor
scenes but inside an empty cube, with objects from other BOP datasets serving as
distractors. To achieve a rich spectrum of the generated images, a random PBR
material from the CC0 Textures library [161] is assigned to the walls of the cube,
and light with a random intensity and color is emitted from the room ceiling and
from a randomly positioned point source. The number of rays traced per image
pixel is set to 50 and the Intel Open Image Denoiser [171] is applied to reduce
noise in the rendered image. This setup keeps the computational cost low – the
full generation of one 640× 480 RGB-D image takes 1–3 seconds on a standard
desktop computer with a modern GPU. A set of 50K images can be therefore
rendered on 5 GPU’s overnight.
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Instead of trying to accurately model the object materials, properties such as spec-
ularity, roughness and metallicness are randomized. Such physically plausible
domain randomization is important since objects in the challenge as well as in
real-world scenarios are typically not modeled perfectly. Realistic object poses
are achieved by dropping the 3D object models on the ground plane of the cube
using the PyBullet physics engine integrated in Blender [111]. This allows to
create dense but shallow piles of objects that introduce various levels of occlusion.
Since test images from the LineMOD Occluded (LM-O) dataset show the objects
always standing upright, the objects from LM-O are not dropped but instead
densely placed on the ground plane in upright poses using automated collision
checks.

Each object arrangement is rendered from 25 random camera poses. Instead of
fitting all objects within the camera frustum, each camera is pointed at a randomly
selected object close to the center, which allows generating more diverse camera
poses. The azimuth angles, elevation angles, and distances of the cameras are
uniformly sampled from ranges determined by the ground-truth 6D object poses
from the test images. In-plane rotation angles are generated randomly.

The generated data (object poses, camera intrinsics, RGB and depth) is saved in
the BOP format, allowing to interface with utilities from the BOP toolkit [167].
Open-source code to reproduce or modify the generation process for other models
is provided here7.

4.6.1.2 The Effect of PBR Training Images on BOP 2020

In the BOP challenge 2020, methods based on deep neural networks caught up
with methods based on point pair features, which were dominating previously.
Out of the 26 evaluated methods, the first-ranked method CosyPose-ECCV20-
SYNT+REAL-ICP [173] reaches 69.7 AR and is based on learning-based instance
segmentation, pose estimation and pose refinement all of which use RGB images
only, with a subsequent multi-hypotheses ICP refinement using the available
depth data. Without depth refinement the CosyPose method trained on PBR
and real RGB images still reaches the third rank with 63.7 AR and the fifth
rank when trained only on the synthetic PBR images, still reaching 57.0 AR. The
photorealism of PBR images as well as strong data augmentation were identified
as key components of the best performing methods.

7github.com/DLR-RM/BlenderProc/blob/master/README_BlenderProc4BOP.md
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Figure 4.18: BOP 2020 PBR Training Images. Participants were provided 350K photorealistic
training images procedurally generated and rendered using BlenderProc [133, 163].

In 2020, most DNN-based methods were trained either only on the photorealistic
(PBR) training images from BlenderProc, or also on real training images which
are available in datasets T-LESS, TUD-L, and YCB-V (Tab. 4.13). Two of the
CosyPose variants also added the “render & paste” synthetic images provided in
the original YCB-V dataset, but these images were later found to have no effect
on the accuracy score. Although adding real training images yields higher scores,
competitive results can be achieved with PBR images only, as demonstrated by
the overall fifth PBR-only variant of the CosyPose method. This is an important
result considering that PBR-only training does not require any human effort for
capturing and annotating real training images.

The PBR training images yield a noticeable improvement over the “render &
paste” synthetic images obtained by OpenGL rendering of the 3D object models
on real photographs that were commonly used in the BOP challenge 2019 [137].

As shown in Tab. 4.15, the CosyPose method improved by a significant 57.9%
(from 6.1% to 64.0%) on T-LESS, by 19.0% on TUD-L, and by 30.9% on YCB-V
when trained on 50K PBR images per dataset vs. 50K “render & paste v1” images
per dataset. The “render & paste v1” images used for training CosyPose were
obtained by imitating the PBR images, i.e. the 3D object models were rendered
in the same poses as in the PBR images and pasted on real backgrounds. The
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Method Detection Pose estim. T-LESS TUD-L YCB-V

CosyPose

PBR+Real PBR+Real 72.8 82.3 82.1
PBR PBR 64.0 68.5 57.4
PBR Render & paste v1 16.1 60.4 44.9
PBR Render & paste v2 60.0 58.9 58.5

Render & paste v1 Render & paste v1 6.1 49.5 26.5
Render & paste v2 Render & paste v2 45.3 42.4 25.7

AAE
Real PBR 36.1 49.5 51.5
Real Render & paste v0 30.4 40.1 44.6

Table 4.15: The effect of different training images. The table shows the ARCore scores achieved
by the CosyPose [173] and Augmented Autoencoder [124] methods when different
types of images were used for training their object detection (i.e. Mask R-CNN [90])
and pose estimation stages. The “render & paste v0” images were obtained by OpenGL
rendering the 3D object models in random poses pasted on random real photographs.
The “render & paste v1” images were obtained similarly but using the same physically
plausible object poses as the PBR images. The “render & paste v2” images were
obtained similarly, but the CAD models of T-LESS objects were assigned a random
surface texture instead of a random gray value, the background of most images was
assigned a synthetic texture, and 1M instead of 50K images were generated. The 50K
PBR images were obtained by BlenderProc. Interestingly, the increased photorealism
brought by the PBR images yields noticeable improvements despite the strong data
augmentation applied to the training images.

original Augmented Autoencoder (AAE) entry to BOP (Sec. 4.4.1) was trained on
similar images “render & paste v0”, but using random object orientations. When
training the AAEs on PBR data, we also observe a boost in performance on all
three datasets. Similar effects are also shown by the CDPN [142] method shown
in Tab. 4.16, indicating the generally better sim2real performance of the PBR data.

As an additional experiment, we have trained the CosyPose method on another
variant of the “render & paste” images, generated as in [173] and referred to
as “render & paste v2”. The main differences compared to the “render & paste
v1” variant described in the previous paragraph are: (a) the CAD models of
T-LESS objects were assigned a random surface texture instead of a random
gray value, (b) the background was assigned a real photograph in 30% images
and a synthetic texture in 70% images, and (c) 1M instead of 50K images were
generated. As shown in Tab. 4.15, “render & paste v2” images yield a noticeable
improvement of 39.2% over “render & paste v1” on T-LESS, but no improvement
on TUD-L (−7.1%) and YCB-V (−0.8%). This may suggest that randomizing the
surface texture of the texture-less CAD models of T-LESS objects improves the
generalization of the network by forcing the network to focus more on shape
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than on lower-level patterns, as found in [113]. However, when generating the
PBR images, which yield the highest accuracy on T-LESS, the CAD models
were assigned a random gray value, as in “render & paste v1”, but the effect of
randomizing the surface texture may have been achieved by randomizing the
PBR material (Sec. 4.6.1.1).

The importance of both the objects and the background being synthetic, as sug-
gested in [136], has not been confirmed in this experiment – “render & paste v1”
images with only real backgrounds achieved higher scores than “render & paste
v2” images on TUD-L and YCB-V. The benefit of having 1M vs. 50K images is
unclear since 50K PBR images were sufficient to achieve high scores.

Both types of “render & paste” images are far inferior compared to the PBR
images, which yield an average improvement of 35.9% over “render & paste v1”
and 25.5% over “render & paste v2” images for CosyPose(Tab. 4.15). Interestingly,
the increased photorealism brought by the PBR images is important despite the
strong data augmentation that CosyPose and AAEs apply to the training images.
Since object poses in the PBR and “render & paste v1” images are identical, the
ray-tracing rendering technique, PBR materials and objects realistically embedded
in synthetic environments seem to be the decisive factors for successful “sim2real”
transfer [163].

We have also observed that the PBR images are more important for training
DNN models for object detection/segmentation (e.g. Mask R-CNN [90]) than for
training DNN models for pose estimation from the detected regions (Tab. 4.15).
In the case of CosyPose, if the detection model is trained on PBR images and
the later two models for pose estimation are trained on the “render & paste v2”
instead of the PBR images, the accuracy drops moderately (64.0% to 60.0% on
T-LESS, 68.5% to 58.9% on TUD-L) or does not change much (57.4% vs. 58.5% on
YCB-V). However, if also the detection model is trained on the “render & paste
v1” or “render & paste v2” images, the accuracy drops severely. This shows that
photorealism is even more important for distinguishing object instances than
distinguishing object viewpoints.

4.6.1.3 Multi-Path Encoder Experiment

In BOP 2020 most pose estimation networks were trained per object or per dataset.
To scale 6D pose estimation to a large number of objects, it is necessary to train
a single network on many objects at once. The MP-Encoder [180] introduced in
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Sec. 4.2 has shown to generalize pose estimation over multiple objects including
unseen ones. Given the promising results on 80 ModelNet [68] instances, we
attempted for the first time to train a single MP-Encoder on all 108 BOP objects
using only RGB data. The 108 decoders were split over 4 GPUs to fit into memory
and were discarded after training. The joint MP-Encoder has double the channel
size but is otherwise identical to the AAE [181] encoders. The purely RGB-
based MP-Encoder reaches 18.6 ARCore which almost equals the 19.6 ARCore of
108 AAEs [181] that were trained separately on every single BOP object. To
keep the comparison fair, both AAEs and MP-Encoder were not trained on the
newly provided PBR data but the same “render & paste v0” data described in
the previous section. While the MP-encoder trained on all BOP objects is not
competitive to state-of-the-art approaches, it demonstrates that scaling learning-
based object pose estimation to large numbers of objects is in fact possible.

4.6.2 BOP Challenge 2022 (ECCV 2022)

This section presents the results of the BOP Challenge 2022 that are published in
[223], compares them with the results from 2019/20, and condensates the main
messages for our field.

Starting with the BOP challenge 2022, we additionally evaluate methods on the 2D
object detection and 2D object segmentation tasks, using metrics from the COCO
challenge [51]. These tasks were introduced to address the design of many recent
methods for 6D object pose estimation, which start by detecting/segmenting
objects and then estimate the object poses from the predicted regions. Evaluating
the detection/segmentation stage and the pose estimation stage separately enables
to better understand advances in the two stages and allows researchers to focus
on only one of the stages. Participants of the challenge were provided detection
and segmentation predictions from Mask R-CNN [90] trained for the first stage
of CosyPose [173], the winning method from 2020. These predictions not only
serve as baseline results but also as a starting point for participants who want to
focus only on the pose estimation stage and, finally, as an opportunity for a direct
comparison of pose estimation methods that rely on detections/segmentations.

In total, 49 methods were evaluated on all seven core datasets, see Tab. 4.16 for
results and Tab. 4.17 for their settings. Additionally, 9 methods were evaluated
on the new object segmentation task (Tab. 4.18) and 8 methods on the new object
detection task (Tab. 4.19).
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# Method LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Avg. Recall Time

1 GDRNPP-PBRReal-RGBD-MModel [200, 209] 77.5 87.4 96.6 72.2 67.9 92.6 92.1 83.7 6.263
2 GDRNPP-PBR-RGBD-MModel [200, 209] 77.5 85.2 92.9 72.2 67.9 92.6 90.6 82.7 6.264
3 GDRNPP-PBRReal-RGBD-MModel-Fast [200, 209] 79.2 87.2 93.6 70.2 58.8 90.9 83.4 80.5 0.228
4 GDRNPP-PBRReal-RGBD-MModel-OfficialDet [200, 209] 75.8 82.4 96.6 70.8 54.3 89.0 89.6 79.8 6.406
5 Extended_FCOS+PFA-MixPBR-RGBD [206] 79.7 85.0 96.0 67.6 46.9 86.9 88.8 78.7 2.317
6 Extended_FCOS+PFA-MixPBR-RGBD-Fast [206] 79.2 77.9 95.8 67.1 46.0 86.0 88.0 77.1 0.639
7 RCVPose3D-SingleModel-VIVO-PBR [219] 72.9 70.8 96.6 73.3 53.6 86.3 84.3 76.8 1.336
8 ZebraPoseSAT-EffnetB4+ICP(DefaultDet) [215] 75.2 72.7 94.8 65.2 52.7 88.3 86.6 76.5 0.500
9 Extended_FCOS+PFA-PBR-RGBD [206] 79.7 80.2 89.3 67.6 46.9 86.9 82.6 76.2 2.631
10 SurfEmb-PBR-RGBD [205] 76.0 82.8 85.4 65.9 53.8 86.6 79.9 75.8 9.048
11 GDRNPP-PBRReal-RGBD-SModel [200, 209] 75.7 85.6 90.6 68.0 35.6 86.4 81.7 74.8 0.556
12 Coupled Iterative Refinement (CIR) [208] 73.4 77.6 96.8 67.6 38.1 75.7 89.3 74.1 -
13 GDRNPP-PBRReal-RGB-MModel[200, 209] 71.3 78.6 83.1 62.3 44.8 86.9 82.5 72.8 0.229
14 ZebraPoseSAT-EffnetB4 [215] 72.1 80.6 85.0 54.5 41.0 88.2 83.0 72.0 0.250
15 ZebraPoseSAT-EffnetB4(DefaultDet) [215] 70.7 76.8 84.9 59.7 41.7 88.7 81.6 72.0 0.250
16 ZebraPose-SAT [215] 72.1 78.7 86.1 54.9 37.9 84.7 82.8 71.0 -
17 Extended_FCOS+PFA-MixPBR-RGB [206] 74.5 77.8 83.9 60.0 35.3 84.1 80.6 70.9 3.019
18 GDRNPP-PBR-RGB-MModel [200, 209] 71.3 79.6 75.2 62.3 44.8 86.9 71.3 70.2 0.284
19 CosyPose-ECCV20-SYNT+REAL-ICP [173] 71.4 70.1 93.9 64.7 31.3 71.2 86.1 69.8 13.743
20 ZebraPoseSAT-EffnetB4 (PBR_Only) [215] 72.1 72.3 71.7 54.5 41.0 88.2 69.1 67.0 -
21 PFA-cosypose [206, 173] 71.4 73.8 83.7 59.6 24.6 71.2 80.7 66.4 -
22 Extended_FCOS+PFA-PBR-RGB [206] 74.5 71.9 73.2 60.0 35.3 84.1 64.8 66.3 3.497
23 SurfEmb-PBR-RGB [205] 66.3 73.5 71.5 58.8 41.3 79.1 64.7 65.0 8.891
24 Koenig-Hybrid-DL-PointPairs [172] 63.1 65.5 92.0 43.0 48.3 65.1 70.1 63.9 0.633
25 CosyPose-ECCV20-SYNT+REAL-1VIEW [173] 63.3 72.8 82.3 58.3 21.6 65.6 82.1 63.7 0.449
26 CRT-6D 66.0 64.4 78.9 53.7 20.8 60.3 75.2 59.9 0.059
27 Pix2Pose-BOP20_w/ICP-ICCV19 [149] 58.8 51.2 82.0 39.0 35.1 69.5 78.0 59.1 4.844
28 ZTE_PPF 66.3 37.4 90.4 39.6 47.0 73.5 50.2 57.8 0.901
29 CosyPose-ECCV20-PBR-1VIEW [173] 63.3 64.0 68.5 58.3 21.6 65.6 57.4 57.0 0.475
30 Vidal-Sensors18 [128] 58.2 53.8 87.6 39.3 43.5 70.6 45.0 56.9 3.220
31 CDPNv2_BOP20 (RGB-only & ICP) [142] 63.0 46.4 91.3 45.0 18.6 71.2 61.9 56.8 1.462
32 Drost-CVPR10-Edges [26] 51.5 50.0 85.1 36.8 57.0 67.1 37.5 55.0 87.568
33 CDPNv2_BOP20 (PBR-only & ICP) [142] 63.0 43.5 79.1 45.0 18.6 71.2 53.2 53.4 1.491
34 CDPNv2_BOP20 (RGB-only) [142] 62.4 47.8 77.2 47.3 10.2 72.2 53.2 52.9 0.935
35 Drost-CVPR10-3D-Edges [26] 46.9 40.4 85.2 37.3 46.2 62.3 31.6 50.0 80.055
36 Drost-CVPR10-3D-Only [26] 52.7 44.4 77.5 38.8 31.6 61.5 34.4 48.7 7.704
37 CDPN_BOP19 (RGB-only) [142] 56.9 49.0 76.9 32.7 6.7 67.2 45.7 47.9 0.480
38 CDPNv2_BOP20 (PBR-only & RGB-only) [142] 62.4 40.7 58.8 47.3 10.2 72.2 39.0 47.2 0.978
39 leaping from 2D to 6D [175] 52.5 40.3 75.1 34.2 7.7 65.8 54.3 47.1 0.425
40 EPOS-BOP20-PBR [166] 54.7 46.7 55.8 36.3 18.6 58.0 49.9 45.7 1.874
41 Drost-CVPR10-3D-Only-Faster [26] 49.2 40.5 69.6 37.7 27.4 60.3 33.0 45.4 1.383
42 Félix&Neves-ICRA2017-IET2019 [151, 103] 39.4 21.2 85.1 32.3 6.9 52.9 51.0 41.2 55.780
43 Sundermeyer-IJCV19+ICP [152] 23.7 48.7 61.4 28.1 15.8 50.6 50.5 39.8 0.865
44 Zhigang-CDPN-ICCV19 [142] 37.4 12.4 75.7 25.7 7.0 47.0 42.2 35.3 0.513
45 PointVoteNet2 [135] 65.3 0.4 67.3 26.4 0.1 55.6 30.8 35.1 -
46 Pix2Pose-BOP20-ICCV19 [149] 36.3 34.4 42.0 22.6 13.4 44.6 45.7 34.2 1.215
47 Sundermeyer-IJCV19[152] 14.6 30.4 40.1 21.7 10.1 34.6 44.6 28.0 0.196
48 SingleMultiPathEncoder-CVPR20 [180] 21.7 31.0 33.4 17.5 6.7 29.3 28.9 24.1 0.186
49 DPOD (synthetic) [159] 16.9 8.1 24.2 13.0 0.0 28.6 22.2 16.1 0.231

Table 4.16: BOP 2022 results on the seven core datasets. Significant improvements can be observed
on all datasets, most notably on the challenging ITODD dataset [88]. However,
challenging sensor data, objects and occlusions can still deceive current methods.
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# Method Year Type Models per Det./seg. Refinement Train im. ...type Test im.

1 GDRNPP-PBRReal-RGBD-MModel [200, 209] 2022 DNN Object YOLOX ∼CIR RGB-D PBR+real RGB-D
2 GDRNPP-PBR-RGBD-MModel [200, 209] 2022 DNN Object YOLOX ∼CIR RGB-D PBR only RGB-D
3 GDRNPP-PBRReal-RGBD-MModel-Fast [200, 209] 2022 DNN Object YOLOX Depth adjust. RGB PBR+real RGB-D
4 GDRNPP-PBRReal-RGBD-MModel-OfficialDet [200, 209] 2022 DNN Object Default (synt+real) ∼CIR RGB-D PBR+real RGB-D
5 Extended_FCOS+PFA-MixPBR-RGBD [206] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB-D
6 Extended_FCOS+PFA-MixPBR-RGBD-Fast [206] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB-D
7 RCVPose3D-SingleModel-VIVO-PBR [219] 2022 DNN Dataset RCVPose3D ICP RGB-D PBR+real RGB-D
8 ZebraPoseSAT-EffnetB4+ICP(DefaultDet) [215] 2022 DNN Object Default (synt+real) ICP RGB PBR+real RGB-D
9 Extended_FCOS+PFA-PBR-RGBD [206] 2022 DNN Dataset Extended FCOS PFA RGB PBR only RGB-D
10 SurfEmb-PBR-RGBD [205] 2022 DNN Dataset Default (synt+real) Custom RGB-D PBR only RGB-D
11 GDRNPP-PBRReal-RGBD-SModel [200, 209] 2022 DNN Dataset YOLOX Depth adjust. RGB PBR+real RGB-D
12 Coupled Iterative Refinement (CIR) [208] 2022 DNN Object Default (synt+real) CIR RGB-D PBR+real RGB-D
13 GDRNPP-PBRReal-RGB-MModel[200, 209] 2022 DNN Object YOLOX - RGB PBR+real RGB
14 ZebraPoseSAT-EffnetB4 [215] 2022 DNN Object FCOS - RGB PBR+real RGB
15 ZebraPoseSAT-EffnetB4(DefaultDet) [215] 2022 DNN Object Default (synt+real) - RGB PBR+real RGB
16 ZebraPose-SAT [215] 2022 DNN Object FCOS - RGB PBR+real RGB
17 Extended_FCOS+PFA-MixPBR-RGB [206] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB
18 GDRNPP-PBR-RGB-MModel [200, 209] 2022 DNN Object YOLOX - RGB PBR only RGB
19 CosyPose-ECCV20-SYNT+REAL-ICP [173] 2020 DNN Dataset Default (synt+real) DeepIm+ICP RGB PBR+real RGB-D
20 ZebraPoseSAT-EffnetB4 (PBR_Only) [215] 2022 DNN Object FCOS - RGB PBR only RGB
21 PFA-cosypose [206, 173] 2022 DNN Dataset MaskRCNN PFA RGB-D PBR+real RGB
22 Extended_FCOS+PFA-PBR-RGB [206] 2022 DNN Dataset Extended FCOS PFA RGB PBR only RGB
23 SurfEmb-PBR-RGB [205] 2022 DNN Dataset Default (synt+real) Custom RGB PBR only RGB
24 Koenig-Hybrid-DL-PointPairs [172] 2020 DNN/PPF Dataset Retina/MaskRCNN ICP RGB Synt+real RGB-D
25 CosyPose-ECCV20-SYNT+REAL-1VIEW [173] 2020 DNN Dataset Default (synt+real) ∼DeepIm RGB PBR+real RGB
26 CRT-6D 2022 DNN Dataset Default (synt+real) Custom RGB PBR+real RGB
27 Pix2Pose-BOP20_w/ICP-ICCV19 [149] 2020 DNN Object MaskRCNN ICP RGB PBR+real RGB-D
28 ZTE_PPF 2022 DNN/PPF Dataset Default (synt+real) ICP RGB PBR+real RGB-D
29 CosyPose-ECCV20-PBR-1VIEW [173] 2020 DNN Dataset Default (pbr) ∼DeepIm RGB PBR only RGB
30 Vidal-Sensors18 [128] 2019 PPF - - ICP - - D
31 CDPNv2_BOP20 (RGB-only & ICP) [142] 2020 DNN Object FCOS ICP RGB Synt+real RGB-D
32 Drost-CVPR10-Edges [26] 2019 PPF - - ICP - - RGB-D
33 CDPNv2_BOP20 (PBR-only & ICP) [142] 2020 DNN Object FCOS ICP RGB PBR only RGB-D
34 CDPNv2_BOP20 (RGB-only) [142] 2020 DNN Object FCOS - RGB Synt+real RGB
35 Drost-CVPR10-3D-Edges [26] 2019 PPF - - ICP - - D
36 Drost-CVPR10-3D-Only [26] 2019 PPF - - ICP - - D
37 CDPN_BOP19 (RGB-only) [142] 2020 DNN Object RetinaNet - RGB Synt+real RGB
38 CDPNv2_BOP20 (PBR-only & RGB-only) [142] 2020 DNN Object FCOS - RGB PBR only RGB
39 leaping from 2D to 6D [175] 2020 DNN Object ??? - RGB Synt+real RGB
40 EPOS-BOP20-PBR [166] 2020 DNN Dataset - - RGB PBR only RGB
41 Drost-CVPR10-3D-Only-Faster [26] 2019 PPF - - ICP - - D
42 Félix&Neves-ICRA2017-IET2019 [151, 103] 2019 DNN/PPF Dataset MaskRCNN ICP RGB-D Synt+real RGB-D
43 Sundermeyer-IJCV19+ICP [152] 2019 DNN Object RetinaNet ICP RGB Synt+real RGB-D
44 Zhigang-CDPN-ICCV19 [142] 2019 DNN Object RetinaNet - RGB Synt+real RGB
45 PointVoteNet2 [135] 2020 DNN Object - ICP RGB-D PBR only RGB-D
46 Pix2Pose-BOP20-ICCV19 [149] 2020 DNN Object MaskRCNN - RGB PBR+real RGB
47 Sundermeyer-IJCV19[152] 2019 DNN Object RetinaNet - RGB Synt+real RGB
48 SingleMultiPathEncoder-CVPR20 [180] 2020 DNN All MaskRCNN - RGB Synt+real RGB
49 DPOD (synthetic) [159] 2019 DNN Dataset - - RGB Synt RGB

Table 4.17: BOP 2022 entry setting details. Note that the top 18 results are new submissions all
based on DNNs.
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In 2020, we provided participants with 350K pre-rendered PBR training images
for the seven core datasets as described in Sec. 4.6.1.1. As a result, DNN-based
methods achieved noticeably higher accuracy scores when trained on PBR training
images than when trained on “render & paste” images. The DNN-based methods
finally caught up with the PPF-based methods and the single-view variant of
CosyPose [173] reached the best overall performance. However, König and
Drost [172], a hybrid method using a DNN for object detection and PPF for
pose estimation was still awarded the best method below one second inference
time and also performed best on the industrial ITODD dataset [88]. A major
goal of the BOP challenge 2022 was therefore to find out whether the gains of
DNN-based pose estimation are significant enough to justify their increased
deployment complexity. Specifically, are DNN-based methods able to achieve a
competitive accuracy also in difficult industrial settings, while training only on
synthetic data and while satisfying strict constraints on the inference speed? Do
DNN-based methods scale with an increasing number of objects?

4.6.2.1 2D Object Detection and Segmentation Tasks

Training input: At training time, a detection/segmentation method is provided
a set of training images showing objects annotated with ground-truth 2D bound-
ing boxes (for the detection task) and binary masks (for the segmentation task).
The boxes are amodal (covering the whole object silhouette, including the oc-
cluded parts) while the masks are modal (covering only the visible object part).
The method can also use 3D mesh models that are available for the objects (e.g.
to synthesize extra training images).

Test input: At test time, the method is given an image showing an arbitrary
number of instances of an arbitrary number of objects from a considered dataset.
No prior information about the visible object instances is provided.

Test output: The method produces a list of an arbitrary number of amodal 2D
bounding boxes (for detection) and modal binary masks (for segmentation) with
confidences.

Metrics: Following the evaluation methodology from the COCO 2020 Object
Detection Challenge [51], the detection/segmentation accuracy is measured by the
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Average Precision (AP). Specifically, for each object we first average the precision
at multiple Intersection over Union (IoU) thresholds ([0.5, 0.55, . . . , 0.95]). The AP
score is then calculated by averaging over objects from the same dataset and then
averaging over the seven core datasets (Sec. 4.3.3).

Analogous to the 6D localization task, only object instances for which at least 10%
of the projected surface area is visible need to be detected/segmented. Correct
predictions for objects that are visible from less than 10% are filtered out and
not counted as false positives. Up to 100 predictions with the highest scores per
image are considered.

4.6.2.2 6D Pose Localization Results

In BOP 2020 the winning method CosyPose [173] reached 69.8 Average Recall
(AR) by performing RGB-based deep iterative refinement [119] followed by an
exhaustive ICP on depth data that strongly contributed to the 13.3s inference
time. Omitting the unoptimized ICP on top of CosyPose reduced the time
per image to 0.45s while reducing performance to 63.7 AR. Consequently, the
best method taking less than 1 second per image was still a hybrid approach
(Koenig-Hybrid [172]) consisting of a DNN for instance segmentation, point pair
features (PPFs) [26] for pose estimation and an optimized ICP for pose refinement,
reaching 63.9 AR at 0.63s per image.

In BOP 2022, 18 of the 23 new submissions outperformed the previous winner
CosyPose [173]. All of these submissions use DNNs in their 6D pose local-
ization pipeline. The winning entry GDRNPP [200] is purely learning-based
and achieves 83.7 AR which corresponds to a large gain of +∆13.9 AR com-
pared to CosyPose [173]. An overview of the 6D pose localization results of
all methods is shown in Tab. 4.17. The performance gains are most notable on
the industrial ITODD dataset [88] where GDRNPP reaches 67.9 AR (+∆36.6 AR
wrt. CosyPose [173]). This result is significant since ITODD reflects harsh real
world conditions given only untextured CAD models and noisy, monochrome
test images of metallic parts. This scenario was previously better tackled using
PPF-based methods such as KoenigHybrid [172] that yielded 48.3 AR.

GDRNPP: There are a total of seven variants of the GDRNPP method – includ-
ing the top four entries in BOP 2022 – tailored towards different BOP awards.
Specifically, these variants are trained and tested on different data domains and
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modalities and are combined with different detection and pose refinement meth-
ods. These variants are crucial to analyze the relevance of individual factors in
existing complex, multi-stage pipelines.

The common ground is the Geometrically-Guided Direct Regression Network
(GDR-Net) [200] which takes in an amodal RGB object crop from which it predicts
dense 2D-3D correspondence maps, ambiguity-aware surface regions [166] and
object masks. Then, instead of applying PnP+RANSAC [166], all maps are con-
catenated and fed into a small CNN with a fully connected head that regresses a
scale-invariant translation [142] and 3D rotation using the allocentric 6D repre-
sentation [117]. The loss on 3D rotations takes into account symmetric shapes
that are pre-computed for the BOP datasets using the bop toolkit 8. For the BOP
challenge 2022, GDR-Net [200] was adapted to predict both visible and amodal
masks as intermediate representations, exchanging the ResNet34 backbone with
ConvNext [210] and applying stronger domain randomization.

The winning GDRNPP entry trains YOLOX [195] for object detection and GDR-
Net for pose estimation on the provided PBR and real RGB data. On top, a multi-
hypothesis pose refinement method inspired by Coupled Iterative Refinement
(CIR) [208] is trained on PBR and real RGB-D data.

Training on depth: In BOP 2022, pose estimation and refinement methods
[208, 206] started benefiting from learning from depth in addition to RGB and
outperform traditional depth-based refinements such as ICP. On the flip side,
especially the multi-hypothesis refinements can be time-intensive – the CIR
approach [208] takes an average of ∼ 6s per image.

Efficiency: As an alternative the third placed entry of GDRNPP deploys a fast
and simple depth-based adjustment that only refines 3D translation and still
achieves 80.5 AR in just 0.23s per image. In comparison, the best method under
one second runtime per image in BOP 2020 was KoenigHybrid [172] with 63.9
AR in 0.63s per image.

RGB only: The efficiency gains are also due to the strongly increased perfor-
mance of the initial RGB-based pose estimates. Without any pose refinement the
purely RGB-based GDRNPP variant reaches 72.8 AR, i.e +∆9.1 AR compared

8https://github.com/thodan/bop_toolkit
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to CosyPose [173] that applies RGB-based pose refinement and still +∆3.0 AR
compared to the overall best method from BOP 2020, i.e. CosyPose [173] with an
exhaustive, depth-based ICP.

Sim2real gap: Another highly relevant result of the BOP 2022 challenge is the
GDRNPP variant that was only trained on the provided synthetic PBR data
rendered with BlenderProc [133, 163]. With 82.7 AR it achieved the second-
highest overall performance. On the datasets with real pose-annotated training
data, i.e. T-LESS, YCB-V and TUD-L, the synthetically trained variant is only
−∆2.5 AR behind the winning method that was additionally trained with the
provided real training data. In the RGB-only setting, the sim2real gap on these
three datasets has reduced from ∆15.8 AR with CosyPose [173] to ∆6.2 AR with
GDRNPP [200]. The experiments in the BOP 2020 paper [168] have demonstrated
the importance of training on the provided PBR data over rasterized images on
random backgrounds. The results in BOP 2022 confirm this observation and
additionally reveal that the sim2real gap monotonically shrinks with increasing
overall performance, see e.g. [173, 215, 206, 200] in Tab. 4.17.

Scalability: The advancements in sim2real transfer are crucial for increasing the
scope of applications. In addition, real world applications require methods whose
computational and memory resources scale gracefully with the amount of target
objects. The top four entries of GDRNPP are all trained with at least one pose
network per object. This means inference memory and training time rise linearly
with the number of objects. When GDRNPP is trained with one pose network
per BOP dataset containing 2–33 objects (Tab. 4.13) it achieves only 74.8 AR and
is outperformed by methods such as Extended_FCOS+PFA [206] that reaches
78.7 AR with one pose network per dataset. This also begs the question of how
results would change if the PFA [206] method had been trained per object.

Detector agnostic results: Almost all submissions use a 2D detection or in-
stance segmentation method to distinguish objects and narrow the search space
for a subsequent pose estimation stage. The amodal 2D bounding box estimates
are also frequently used for estimating 3D translation [200, 152]. This poses the
question of where the performance gains of GDRNPP are actually coming from,
better pose estimation or simply better detection? To answer this question we
provided participants of the BOP 2022 challenge with a set of default MaskRCNN
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# Method ...based on Year Data ...type AP Time (s)

1 GDRNPPDet YOLOX [195] 2022 RGB PBR+real 77.3 0.081
2 GDRNPPDet YOLOX [195] 2022 RGB PBR only 73.8 0.081
3 Extended_FCOS FCOS [153] 2022 RGB PBR+real 72.1 0.030
4 Extended_FCOS FCOS [153] 2022 RGB PBR only 66.7 0.030
5 DLZDet DLZDet 2022 RGB PBR only 65.6 -
6 CosyPose-ECCV2020 MaskRCNN[90] 2020 RGB PBR+real 60.5 0.054
7 CosyPose-ECCV2020 MaskRCNN[90] 2020 RGB PBR only 55.7 0.055
8 FCOS-CDPN FCOS [153] 2022 RGB PBR only 50.7 0.047

Table 4.18: 2D object detection: Average Precision (AP)

detections and instance segmentations from the previous winning method Cosy-
Pose [173] and offered a BOP award for the best pose estimation results on top
of them. Among the ten submissions that used the default detections GDRNPP
again came out on top with 79.8 AR. Therefore, we can conclude that the pure
pose estimation performance of the GDRNPP pipeline is performing the best
independent of the used detection or instance segmentation method. However,
the performance gap to other methods such as PFA [206] and SurfEmb [205] that
were trained per dataset and not per object shrinks in this setting.

4.6.2.3 2D Object Detection Results

Object detection and segmentation performance do have a strong influence on
pose estimation results. For example, the YOLOX detector [195] employed by the
GDRNPP pipeline increased pose estimation performance by + ∆3.9 AR compared
to when using the default detections from the last competition winners CosyPose.
To further disentangle the gains of the detection and pose estimation stage, we
began measuring object detection and segmentation performance following the
COCO metrics in BOP 2022 as described in Sec. 4.6.2.1. As shown in Tab. 4.18
the GDRNPP pipeline reached the best detection performance of 77.3 AP by
training a YOLOX [195] detector with ConvNext [210] backbone, strong data
augmentation and the ranger optimizer[156] on each dataset. In comparison the
MaskRCNN from the previous winners CosyPose resulted in a detection score of
60.5AP (−∆16.8 AP) which explains the ∆3.9 AR difference in pose estimation
performance. With only PBR data the GDRNPP entry achieves 73.8 AP (−∆3.5
AP) which shows that the sim2real gap in object detection is also narrowing. For
all methods the sim2real gap is highest in TUD-L, moderate in YCB-V and lowest
in T-LESS. Potential reasons are the lower model texture quality in TUD-L, noisy
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# Method ...based on Year Data ...type AP Time (s)

1 ZebraPoseSAT CosyPoseDet+ZebraPose[215] 2022 RGB PBR+real 58.7 0.080
2 ZebraPoseSAT CDPNv2Det+ZebraPose[215] 2022 RGB PBR+real 57.8 0.080
3 ZebraPoseSAT CosyPoseDet+ZebraPose[215] 2022 RGB PBR only 53.8 0.080
4 ZebraPoseSAT CDPNv2Det+ZebraPose[215] 2022 RGB PBR only 52.3 0.080
5 DLZDet-PBRREAL DLZDet 2022 RGB PBR+real 49.6 -
6 DLZDet-PBR+Real DLZDet 2022 RGB PBR+real 43.3 -
7 DLZDet-PBR1 DLZDet 2022 RGB PBR only 42.9 -
8 CosyPose-ECCV20 MaskRCNN[90] 2020 RGB PBR+real 40.5 0.054
9 CosyPose-ECCV20 MaskRCNN[90] 2020 RGB PBR only 36.2 0.055

Table 4.19: 2D object segmentation: Average Precision (AP). Note that CosyPoseDet corresponds
to the provided default detections and DLZDet is not associated to any publication.

test images in both TUD-L and YCB-V or the specific scene structure and lighting
in TUD-L, but these effects need to be further de-correlated. While we still expect
and encourage further improvements, the best detection results will again be
made public to facilitate focusing on pose estimation approaches and obtaining
better comparisons among them.

4.6.2.4 2D Object Segmentation Results

Tab. 4.19 shows the results of the submitted object segmentation methods. We
see an improvement from 40.5 AP of the default MaskRCNN segmentations from
CosyPose to 58.7 AP (+∆18.2 AP) of the ZebraPoseSAT method. Interestingly, Ze-
braPoseSAT simply predicts better masks on top of the detections from CosyPose
using the ZebraPose [215] network. This implies that the full potential of object
segmentation methods is not yet reflected as ZebraPose on top of GDRNPP’s
YOLOX detections would likely yield better results. It is also apparent that in
the BOP challenge most pose estimation pipelines including CosyPose [173],
Extended_FCOS+PFA [206], GDRNPP [200] and ZebraPose [215] rely on 2D
detections from which they extract a rectangular scene crop in their first stage.
Only in subsequent stages they distinguish the object from background and
foreground pixels. An exception is the RCVPose3D [219] method which segments
the point cloud in the first stage followed by pose estimation using a 3D point
cloud network based on PointNet++. Performing object segmentation in the first
stage has the advantage of avoiding overlapping bounding boxes corresponding
to intersecting instances as present in ITODD [88] (Fig. 4.15) and iShape [201].
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4.6.2.5 Conclusions

The BOP challenge 2022 has seen major breakthroughs in performance, efficiency
and sim2real transfer of 6D pose estimation pipelines. These advancements are
driven by neural network architectures and training schemes that manage to
generalize effectively from the provided PBR training data. The accuracy and
speed of these networks now clearly surpass the traditional PPF-based methods
which lays the basis for new applications in robotics and Augmented Reality.
Variations of the winning method GDRNPP [200, 209] allowed us to analyze the
importance of different factors related to training data, domain and efficiency.
On top, we separately measured detection and segmentation performance and
could thereby determine where the gains in multi-stage pose estimation pipelines
originate from. Despite the progress, pose and detection scores have not been
saturated on most BOP datasets. Furthermore, new challenges such as transparent
objects, multi-view or model free few-shot pose estimation are on the horizon
and the pose refinement stage also deserves a closer inspection. Therefore, the
evaluation system stays open, and we are looking forward to the improvements
on current and future tasks in the next BOP challenge.
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Approach AAEs [181] ICG pose refinement ICG tracking (GT)
Data RGB Depth Region+Depth Region+Depth

ADD-S 72.8 76.9 80.3 94.7
ADD 50.5 57.5 61.2 86.4

Table 4.20: Results using ICG as pose refinement on AAE initialization on every frame of YCB-V.
As a comparison we show ICG used as

4.7 Combining 6-DoF Object Pose Estimation and

Tracking (CVPR 2022)

Single frame 6D object pose estimation neglects temporal information that is
often available in the form of sensor streams in robotic applications. Temporal
information allows exploiting object permanency, i.e. the low probability of
drastic changes in object pose between subsequent frames. This is especially
useful in dynamic scenes if the object or the camera are in motion. By constraining
the potential 6D solution space to neighboring poses the pose retrieval problem
is strongly simplified. Consequently, low-level features such as point cloud
distances and color histograms are often sufficiently expressive for the 6D tracking
task. At the same time, those methods are extremely efficient which is necessary
to process camera streams at 30 frames per second. At CVPR 2022, we proposed
Iterative Corresponding Geometry (ICG) [214], a highly efficient probabilistic
tracker that fuses low-level region and depth features and reaches state-of-the-art
results on benchmarks such as YCB-V.

The downside of such 6D pose trackers is that they need to be initialized and
re-initialized once they lose track of the object pose, occlusion or leaving the field
of view. Therefore, in the context of a master thesis [212] we also investigated the
challenge of detecting tracking loss and the necessary re-initialization through
6D pose detectors which is an important practical application.

Trackers such as ICG can also be used for 6D pose refinement and we performed
experiments where ICG is initialized with AAE [181] pose estimates on the YCB-
Video sequences. The results in Tab. 4.20 show that ICG refinement improves
upon AAE pose estimates and region and depth information are shown to be
complementary. Similarly, in [224] we demonstrate the effectiveness of using ICG
as a multi-hypothesis pose refinement in the context of satellite pose estimation.
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Figure 4.19: Multi-body objects included in the RTB dataset [222].

4.7.1 Robot Tracking Benchmark (RTB)

Previously, we have considered pose estimation and tracking of rigid objects.
However, in robotic applications we often face articulated structures such as
robotic arms and grippers where large parts of the structure can be occluded
or reside outside the image. Here, it is crucial to exploit not only temporal
constraints but also lateral and rotational kinematic constraints. In [222] we
propose such a framework for multi-body object tracking and a corresponding
benchmark based on BlenderProc [133].

In the past, evaluations of multi-body tracking and pose estimation considered
only a very limited number of sequences and experiments were typically of a
more qualitative nature [33, 42, 44, 61, 62, 65]. The main reason is that real-world
data from diverse camera angles with high-quality pose annotations is often hard
to obtain even if object configurations can be measured. However, for a reliable
evaluation, a sufficient number of realistic sequences with accurate ground truth
is essential. We, therefore, introduce the Robot Tracking Benchmark (RTB). It is
a novel synthetic dataset, which we developed using the procedural rendering
pipeline BlenderProc. Example images of the dataset are shown in Fig. 4.19.

To enable the creation of the dataset, we extended BlenderProc to load robot
models from URDF files. For the generation of articulated motions, forward and
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backward kinematics were integrated. Our open-source pipeline produces photo-
realistic sequences with HDRi lighting9 and physically-based materials. Perfect
ground truth annotations for camera and robot trajectories are provided in the
BOP format [168]. Many physical effects such as motion blur, rolling shutter, and
camera shaking are accurately modeled to reflect real-world conditions. For each
frame, we also generate four depth qualities to simulate sensors with different
characteristics. While the first quality provides perfect ground truth, the second
considers measurements with the distance dependent noise characteristics of the
Azure Kinect time-of-flight sensor [199]. We also model smoothed depth using
random Gaussian shifting, as well as missing measurements at very dark surfaces.
Finally, for the third and fourth quality, two stereo RGB images with and without
a pattern from a simulated dot projector are rendered. Depth images are then
reconstructed using SGM[18]. The dataset can be found here10.

The benchmark features six robotic systems with different kinematics, ranging
from simple chain and tree topologies to structures with complex circular de-
pendencies. Example images of the included multi-body objects are shown in
Fig. 4.19.

For each robotic system, we provide three difficulty levels easy, medium, and
hard. In all sequences, the kinematic system is in motion. However, while for
easy sequences the camera is mostly static with respect to the robot, medium and
hard sequences feature faster and shakier motions for both the robot and camera.
Consequently, motion blur increases, which also reduces the quality of stereo
matching. Finally, for each object, difficulty level, and depth image quality, 10
sequences with 150 frames are rendered. In total, this results in 108.000 frames
that feature different kinematic structures, motion patterns, depth measurements,
scenes, and lighting conditions. In summary, our RTB allows to extensively
measure, compare, and ablate the performance of multi-body tracking algorithms,
which is a basis for further progress in the field.

9https://polyhaven.com/hdris
10https://zenodo.org/record/7548537
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5 Contributions: Unknown Object
Manipulation

In the previous Chapter 4 we have covered the task of 6-DoF object pose estimation
where the object instance or category is known in advance. Access to 3D models is
a valid assumption in the manufacturing context and even in other cases meshes
can be often acquired using 3D reconstruction pipelines [83, 204].

However, autonomous robots in the wild also need to be able to manipulate
completely unknown objects with no geometrically consistent categories and
potentially non-rigid parts. While the sim2real transfer techniques presented in
Section 4.2.3.6 allow scaling 6-DoF pose estimation methods to infer fine-grained
3D world models at a factory level, it is hardly possible to generate 3D meshes
for every object on earth and train corresponding pose estimation networks.

In contrast, humans are able to locate and pick up objects from a single view and
place them elsewhere without precise knowledge about their 3D geometry. They
are able to infer the necessary information from visual data, tactile feedback and
their prior experience with similar shapes in the physical world.

For robots, grasping arbitrary objects without access to their 3D meshes given
a single image from an arbitrary 6-DoF viewpoint is a very challenging task, as
discussed in Section 1.2. Therefore, most existing methods are either limited to
top-down 2D grasps [97] or can only deal with singulated objects [147].

In the following Section 5.1, the results of my publication on Contact-GraspNet [198]
are presented where we learn to predict distributions of 6-DoF parallel-jaw grasps
in cluttered scenes of unknown objects from single depth images.
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5.1 Contact-GraspNet: Efficient 6-DoF Grasp Generation

in Cluttered Scenes (ICRA 2021)

Martin Sundermeyer1,2,3, Arsalan Mousavian1, Rudolph Triebel2,3, Dieter Fox1,4

1NVIDIA, 2German Aerospace Center (DLR), 3Technical University of Munich
(TUM), 4University of Washington (UW)

5.1.1 Motivation

The ability to grasp objects is one of the fundamental capabilities required in most
robot manipulation tasks. Grasping involves reasoning about the 3D geometry
and physics properties of the object such as mass and friction, and also reasoning
about complex contact physics. It is studied in two main directions: Model-
based grasping where the 3D model or category of the object is known and
model-free grasping where there is no prior knowledge about the object. Model-
based grasping circumvents reasoning about the physics of contact and grasp
generation by pre-defining a set of grasps in the object frame and transform
those grasps according to the 6-DoF object pose [132, 181, 162, 154] or detected
keypoints of the objects [146, 112]. The downside of model-based approaches is
that they only work on a limited subset of known objects or categories, and any
errors in detecting 6-DoF object pose or object keypoints degrade the grasping
performance.

Model-free approaches do not make any strong assumptions about the category
or shape of the object, and they learn a shared representation for all object shapes
and sizes. However, having one shared representation for all objects in addition
to the large SE(3) space for the grasp poses makes the learning problem quite
challenging. As a result, a large body of work in data-driven grasping constraints
the space of possible grasps to planar grasping, where grasps are represented
by oriented rectangles around each pixel that define the grasp frame [97, 144,
59]. Such a representation needs the camera to view the scene perpendicularly
and thus limits 3D reasoning and applications significantly. A large number of
possible grasps and the full kinematic capabilities of the robot are also neglected.
To address the limitations of planar grasping, there has been a recent interest in
tackling the problem of 6-DoF grasping of unknown objects [100, 147, 176, 179,
165]. In this paper, we tackle 6-DoF grasping of unknown objects in cluttered
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Figure 5.1: Contact-GraspNet efficiently predicts diverse and stable grasps in cluttered scenes
while avoiding collisions.

space from a partial point cloud observation of the scene.

Grasping objects from cluttered scenes with structure introduces extra challenges.
The target objects must be grasped successfully, while at the same time any
collision with other objects must be avoided to prevent damages or transforma-
tions into other undesired states. This is particularly important in home robotics
and healthcare applications. Additionally, it is crucial to generate a diverse set
of grasps for the object due to robot kinematic constraints. Depending on the
relative pose between the object and the robot, a different subset of grasps is
kinematically feasible.

Our method is closely related to the work of Murali et al. [176], where the goal
is to generate collision-free diverse grasps for a designated target object from a
partial point cloud of the scene, and the objects are segmented using a pre-trained
unknown object instance segmentation model [183, 157]. Murali et al. [176] use
a multi-stage process that synthesizes grasps for the target objects from the
segmented object point cloud with no context around it, and then filters out
the colliding grasps using another learned model. This leads to three issues: 1)
Sensitivity to instance segmentation errors. 2) Grasps are generated just from
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the target object point cloud and do not leverage geometric cues in the scene
such as table points and surrounding object points. 3) Grasps are predicted in
the large, unconstrained 6-DoF pose space. To address these issues, our method
instead directly processes a full scene point cloud or a local region around a
target object. Therefore, the quality of our generated grasps is not depending
on an accurate mask and collisions can be directly taken into account during
generation. Instance segmentation can then subsequently be used to filter grasps
belonging to a target object. Thus, our main contributions are the following:

• A new end-to-end method for 6-DoF grasping of unknown objects in clut-
tered real world scenes where we achieve 90% grasp success rate. This is
10% higher than [176] in equal settings.

• A new grasp pose representation that projects 6-DoF grasps to their contact
points in an observed point cloud. Our representation has only 4-DoF which
facilitates the learning problem significantly.

• Comprehensive ablation studies in a physics simulator to evaluate the
effects of different loss functions and training data.

Contributions: I proposed and implemented the approach during a research
internship at the NVIDIA AI Robotics Research Lab. Prof. Dieter Fox supervised
me and discussed the main ideas in weekly meetings and gave valuable feedback
on the paper and video. Arsalan Mousavian helped significantly with his prior
experience and works in object grasp estimation, the ACRONYM dataset, paper
writing and implementation on the Franka Panda Robot. Prof. Rudolph Triebel
made this collaboration possible and contributed to the paper.

5.1.2 Abstract

Grasping unseen objects in unconstrained, cluttered environments is an essential
skill for autonomous robotic manipulation. Despite recent progress in full 6-
DoF grasp learning, existing approaches often consist of complex sequential
pipelines that possess several potential failure points and run-times unsuitable
for closed-loop grasping. Therefore, we propose an end-to-end network that
efficiently generates a distribution of 6-DoF parallel-jaw grasps directly from
a depth recording of a scene. Our novel grasp representation treats 3D points
of the recorded point cloud as potential grasp contacts. By rooting the full
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Figure 5.2: Training Data Pipeline. We place object meshes with dense grasp annotations from
the ACRONYM dataset [194] at random stable poses in scenes. Grasp poses that
produce gripper model collisions are removed. Resulting grasps are mapped to
their contacts on the mesh surface. During training, we sample virtual cameras to
render point clouds from the scenes. We consider recorded points (yellow) as positive
contacts if there exists a mesh contact (blue) in a 5mm radius and associate the
grasp transformation belonging to the closest mesh contact to them. These per-point
annotations are used to supervise the Contact Grasp Network.

6-DoF grasp pose and width in the observed point cloud, we can reduce the
dimensionality of our grasp representation to 4-DoF which greatly facilitates the
learning process. Our class-agnostic approach is trained on 17 million simulated
grasps and generalizes well to real world sensor data. In a robotic grasping study
of unseen objects in structured clutter we achieve over 90% success rate, cutting
the failure rate in half compared to a recent state-of-the-art method. Video of the
real world experiments and code are available here 1.

5.1.3 Method

We consider the problem of generating 6-DoF grasps from any viewpoint on
structured clutter consisting of unknown objects. Our approach takes in a raw
depth image, optionally with object masks, and generates 6-DoF grasp proposals
together with corresponding grasp widths. Our goal is to predict grasps that are
robust, diverse and non-colliding from an only partially observable scene.

From a learning perspective, generating the distribution of successful 6-DoF
grasps is quite challenging, because the distribution is multi-modal, discontinu-
ous, imbalanced and ambiguous due to (self-) occlusions. Furthermore, direct
regression in high dimensional output spaces like SE(3) has been shown to be
difficult in grasping [147] and also in related fields such as object pose estimation
[124].

1https://research.nvidia.com/publication/2021-03_Contact-GraspNet%3A--Efficient
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Figure 5.3: Our grasp representation: c depicts an observed contact point. a and b constitute the
3-DoF rotation, w is the predicted grasp width, d the distance from baseline to base
frame. In pink we show the five gripper points v that we used in the ladd−s loss.

5.1.3.1 Grasp Representation

For these reasons, finding an efficient grasp representation is crucial to solve this
task using learning-based methods. This representation should generalize well to
unseen objects and handle the high-dimensional output space well.

Contact Grasp Representation: We observe that for most predictable two-finger
grasps at least one of the two contacts is visible prior to grasping. In contrast,
grasps without any visible contact are often ambiguous or do not preserve the
initial object pose after grasping. Therefore, we map a distribution of successful
6-DoF ground truth grasps g ∈ G to their corresponding contact points c ∈ R3.
Since visible contact points are bound to lie on surfaces that we can observe with
a depth sensor, we can represent their 3D location by nearby points in a recorded
point cloud.

Given that we can predict whether observed points are suitable grasp contacts,
we can thus reduce the 6-DoF grasp learning problem to estimating the 3-DoF
grasp rotation Rg ∈ R3×3 and grasp width w ∈ R of a parallel-yaw gripper.

Starting from a contact point c ∈ R3, where the gripper baseline intersects the
mesh, we depict a 6-DoF grasp pose g ∈ G defined by (Rg, tg) ∈ SE(3) and grasp
width w ∈ R as

tg = c +
w
2

b + da (5.1)
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Rg =

 | | |
b a× b a
| | |

 , (5.2)

where a ∈ R3, ||a|| = 1 is the approach vector, b ∈ R3, ||b|| = 1 is the grasp
baseline vector, and d ∈ R is the constant distance from the gripper baseline to
the gripper base. Our grasp representation is depicted in Figure 5.3.

The reduced dimensionality greatly facilitates the learning process compared
to methods that estimate grasp poses in unconstrained SE(3) space. It also
increases the pose accuracy of predicted grasps as they are bound to the geometry
of the observed scene. In contrast to axis-angle representations, our rotation
representation has neither ambiguities nor discontinuities. Moreover, at test time
we can sample grasp proposals by sampling contact points that cover the whole
observable surface of the scene/object and thus represent the modes of the 6-DoF
grasp distribution well. While a 3D view on the scene is preferable, even a frontal
view on a box produces reasonable grasps due to the radial mapping.

Point Set Networks such as PointNet++ [101] effectively process point clouds
and hierarchically aggregate points and their feature representations in local 3D
neighborhoods. Their predictions can be directly associated to 3D points in the
input point cloud and our proposed grasp representation exploits this ability.

5.1.3.2 Data Generation

To learn the full distribution of stable 6-DoF grasps, diverse and dense grasp
pose annotations are required. We used the ACRONYM dataset [194], which
consists of 8872 meshes from the Shapenet dataset [56] and 17.7 million simulated
grasps under varying friction. An overview of our offline and online training
data generation is given in Fig. 5.2.

During training, we render a scene point cloud P = {p1, . . . , pn} ⊂ R3 and
assign a point-wise grasp success

∀i = 1, . . . , n si =

1 minj ||pi − cj||2 < r

0 otherwise,
(5.3)

where cj ∈ P are the mesh contact points of non-colliding ground truth grasps
gj ∈ G in camera coordinates and r ∈ R is their maximum propagation radius.
Thus, P can be split into points P− := {pi|si = 0}, where no feasible grasp
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contact is found within a radius of r = 5mm, and P+ := {pi|si = 1}, containing
points suitable for a contact. To the latter ones p+

i ∈ P
+ we assign the closest

grasp as

wg,i

Rg,i

tg,i

 =

 wg,j

Rg,j

p+
i +

wj
2 bj + daj

 (5.4)

with

j = arg min
k
|| p+

i − ck||2 (5.5)

Given sufficient coverage we can thereby project the ground truth distribution of
6-DoF grasps densely on the recorded point cloud.

5.1.3.3 Network

We employ the set abstraction and feature propagation layers proposed in Point-
Net++ [101] to build an asymmetric U-shaped network. The network takes
n=20000 random points p ∈ R20000×3 as input and predicts grasps for only
m=2048 farthest points of the input to make sure the inference fits in GPU
memory and predicted grasps have good coverage over the scene. The net-
work has four heads with two 1D-Conv layers each and per-point outputs
s ∈ R, z1 ∈ R3, z2 ∈ R3, o ∈ R10, from which we form our grasp represen-
tation. The predicted grasp width ŵi ∈ [0, wmax] is split into 10 equidistant grasp
width bins ô ∈ R10 to counteract data imbalance. Then, ŵi is represented by the
center value of the bin(s) with the highest confidence. The approach direction
a ∈ R3 and the baseline direction b ∈ R3 are orthonormal by definition. We inject
this property into training by coupling the predictions â, b̂ through an in-network
Gram Schmidt orthonormalization

b̂ =
z1

||z1||
â =

z2 − 〈b̂, z2〉b̂
||z2||

(5.6)

Thus, we perform a projection and only predict â as the component that is
orthonormal to b̂. The orthonormalization further reduces the dimensionality of
our predicted grasp representation and facilitates the regression of 3D rotations
[160].
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optional region of interest

} Grasp Contact 
Filtering

Unknown Object Segmentation

Contact GraspNet

Figure 5.4: Full Inference Pipeline: We segment unknown objects from an RGB-D image using
[183]. Our Contact-GraspNet processes the full scene point cloud or a local region of
interest around a target object. Predicted 6-DoF grasps are then associated to object
segments by filtering their contact points. On the right we show the predicted 6-DoF
grasp distribution and, in bold, the most confident grasp per segment.
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Figure 5.5: Loss Ablations: Without weighted binning in the grasp width loss lwidth both, success
rate and coverage decrease. The ladd−s loss leads to increased success rates at high
confidence contacts (Coverage ∈ [0, 0.1]) and to slightly decreased success rate in the
low-confidence regime. This confidence calibration is important, since it determines
which grasp is eventually executed.

5.1.3.4 Target Losses

The contact grasp success predictions ŝ ∈ R are evaluated at all output points
pi ∈ R3 : ∀i ∈ [0, m] using binary cross entropy. We only backpropagate the
top-k point predictions with the largest errors lbce,k, with k=512, to counteract
data imbalance. The other predictions concerning the geometry of grasps are
only evaluated at positive contact points p+

i . Instead of supervising all network
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Figure 5.6: Data Ablations: Training with Gaussian noise has similar performance in simulation
but helps generalization to noisy sensor data. Predicting grasps directly on full
scenes without extracting local regions yields a similar average success rate, but
significantly lowers grasp coverage. Training on the small grasp dataset from [147]
with 5 categories is not sufficient to generalize to arbitrary objects and shows the
importance of ACRONYM [194]

heads in isolation, we propose to combine the predictions to the 6-DoF grasp
pose ĝ ∈ G given in Eq. (5.1) and (5.2) already during training. We define five
3D points v ∈ R5×3 representing the 6-DoF gripper pose, as shown in Fig. 5.3,
and transform these using all ground truth and predicted grasp poses defined in
Eq. (5.4)

vgt
i =vRT

g,i + tg,i vpred
i = vR̂T

g,i + t̂g,i (5.7)

We formulate the 6-DoF grasp loss ladd−s as a weighted minimum average distance
between gripper points vgt and vpred where we take the symmetry of the gripper
into account.

ladd−s =
1

n+

n+

∑
i

ŝi min
u
||vpred

i − vgt
u ||2, (5.8)

where n+ is the size of P+. We weight each distance to the closest ground truth
grasp points with the predicted contact success confidence ŝi.

Our proposed loss formulation has several advantages: (1) We can learn the
different modes of the ground truth grasp distribution, e.g. different predicted
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grasp approach directions â can produce a small error. (2) The point-wise
weighting with ŝi couples the contact point classification with the grasp pose
predictions. Contact confidence can only increase if the network predicts a 6-DoF
grasp pose close to a ground truth pose. (3) Wrongly predicted grasps in regions
far away from any ground truth grasp, e.g. at artificial edges from occlusions,
produce a high loss and are thus avoided.

On the grasp width bin predictions, we optimize a weighted, multi-label binary
cross entropy loss lwidth. Since small grasp widths are highly over-represented,
we weight the bin losses anti-proportional to bin size. Our total loss is l =

αlbce,k + βladd−s + γlwidth with α = 1, β = 10, γ = 1.

5.1.3.5 Implementation Details

We use the Adam optimizer with an initial learning rate of 0.001 and a step-wise
decay to 0.0001. Our set abstraction layers have 3 parallel branches with query
ball radii [0.02,0.04,0.08], [0.04,0.08.0.16] and [0.08,0.16,0.32]. For inference the
point cloud is centered at its mean in camera coordinates. For training, we
generate 10000 table top scenes by placing 8-12 grasp annotated ShapeNet models
[194] at random stable poses. We use rejection sampling to avoid collisions. We
train with a batch size of 3 for 144.000 iterations which takes ∼ 40 hours on a
single Nvidia V100 GPU. Convergence is significantly faster than on previous
methods [176, 165, 147] which take up to one week on a single GPU for training.
This also reflects the effectiveness of our proposed grasp representation.

5.1.4 Experimental Evaluation

We evaluate our method in a grasping study with a Franka robot where we pick
unknown objects in cluttered scenes. We also compare different variations of our
method and of our data by executing a large number of predicted grasps in the
FleX physics simulator [52].

5.1.4.1 Inference

Our inference pipeline is shown and described in Fig. 5.4. The Contact-GraspNet
can also be applied to raw depth images by itself, but most robotic tasks require
some kind of instance detection/segmentation to specify a target.
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Figure 5.7: One advantage of our method is that it does not rely on an accurate segmentation of
unknown objects. Here, successful grasp contacts are still found on the driller despite
severe under-segmentation.

Local regions of interest can be optionally extracted around the 3D centroid of
point cloud segments in order to maximize the number of potential contact points.
In our experiments, we extract cubes with an edge length set to twice the largest
spanning dimension, but at least 0.3m and at most 0.6m.

Run time: The Contact-GraspNet has a run time of 0.28s for a full scene or
∼ 0.19s for a local region around a target object. Compared to other 6-DoF grasp
generation methods this is quite fast and enables applications requiring reactive
closed loop grasping.

Grasp Selection: At test time we select grasps by setting a contact confidence
threshold of 0.23 and then use farthest point sampling on the (filtered) contact
points to ensure broad grasp coverage. If the number of predicted grasps for
an object is too low, we reduce the confidence threshold to 0.19. In the end we
execute the most confident grasp that is kinematically reachable and where the
robot does not collide with the scene [191].

5.1.4.2 Evaluation Metrics

In our robotic experiments we report the number of successful grasps and the
number of trials. The latter is often disregarded when picking small objects from
a bin. However, grasping in only one or two trials is crucial in cluttered scenes
(e.g. in households) with large, densely packed objects where collisions should be
avoided and stable grasp opportunities can vanish after objects tip over. We limit
ourselves to a maximum of two grasp trials per object without rearrangements
and report the success rate after a single trial as well.

112



5 Contributions: Unknown Object Manipulation

Our simulator experiments allow us to also evaluate the diversity of grasps and
ablate variations of our method. Here, we evaluate the success rate and coverage
of the generated grasps following [147]. A grasp is considered successful if (1) the
open gripper does not collide with the object/scene and (2) the object is still in
the gripper after grasping and a shaking motion. This is a conservative measure,
as most real world grasps can slightly collide and do not undergo a shaking
motion. Coverage is the percentage of ground truth grasps (including occluded
ones) whose base coordinates are within 2cm of any of the generated grasps.

5.1.4.3 Real robot grasp experiments

Setup: Our physical setup consists of a 7-DoF Franka Panda robot with a parallel-
jaw gripper. We closely replicate the 9 cluttered scenes defined in [176] with a
total of 51 unseen objects. The task is to pick the objects from the cluttered scene
and place them into a bin. We manually select target objects and grasp them in
the same random order as in [176]. In our experiments, we use the Intel Realsense
L515 LiDAR camera mounted on a tripod for both RGB and depth data. Robot
motions are generated using [191].

Results: Table 5.1 shows our grasp evaluation results on the robot. We observe a
significantly higher grasp success rate of our method compared to [147] and [176]
which themselves outperform other learning-based methods and analytic/heuris-
tic baselines. Furthermore, our method strongly improves the grasp success at
first trial and thereby reduces the number of re-grasps. We also addressed the
shortcomings of cropping objects from the point cloud using potentially imprecise
segmentation masks. Fig. 5.7 shows an imprecise segmentation example where
cropping would be catastrophic but where our grasp filtering method can still
extract successful grasps.

5.1.4.4 Ablations

Optimization Targets: In Fig. 5.5 we first investigate the effect of our loss
targets. The weighted loss on the grasp width bins lwidth is crucial to deal with
the imbalanced widths in our grasp dataset. Without weighting the bins, the
predictions mostly collapse into narrow grasp widths. Weighting also performs
better than oversampling in our experiments. The average distance loss ladd−s

improves the success rate of high confidence contacts which is important because
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Table 5.1: Cluttered Scene Grasping: We achieve a clear improvement over
recent state-of-the-art grasping pipelines

Success First attempt #Attempts

6-DOF GraspNet[147] 62.7 - -

[147] +CollisionNet[176] 80.39 68.63 67

Contact-GraspNet 90.20 84.31 59

most grasps that we execute lie in the first decimal of coverage. The connection of
contact confidence with the grasp pose results in an overall improved calibration.

Data: In Fig. 5.6 we examine the effects of different training and test data.
Zooming into local regions allows the network to concentrate potential contact
points on the object and thus increases coverage. We also show the importance
of a large and diverse grasp dataset like ACRONYM [194]. Training on a small
grasp datasets with 110 objects from 5 categories [147] is not sufficient for out-of-
category generalization irrespective of the method.

Failure Cases: We observe some failure cases for thick objects that only allow
grasps almost at maximum grasp width. Here, grasp predictions are less confi-
dent presumably because of the discontinuous decision boundary. Injecting noise
during training reduces this effect. Finally, small objects sometimes have contact
points with low confidence possibly because of their small impact on the total
loss.

5.1.5 Conclusions

We considered the fundamental problem of grasping unknown objects in struc-
tured clutter with a parallel jaw gripper. We proposed an efficient, accurate and
simplifying 6-DoF grasp generation method called Contact-GraspNet. By trans-
forming the hardly tractable 6-DoF grasp estimation problem into a grasp contact
point classification and a grasp rotation estimate, we greatly limit the predicted
pose space and facilitate the learning process. Through tailored optimization
targets that take into account the multi-modality, imbalance and sparsity of the
6-DoF grasp distribution, our network learns to generate diverse grasps covering
the whole graspable surface in a recorded scene. Gripper collisions are effectively
avoided by considering them during training and by predicting grasps directly in
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scenes. Our approach can incorporate segmentation predictions as well but is not
dependent on accurate masks itself. It is also complementary to grasp ranking
methods that use gripper and/or robot models as input. Grasping successfully
with a single attempt is crucial in sensible environments. Our method showed
strong advances in that regard and is a step towards reaching the required grasp
reliability.
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6 System Applications

In this chapter, I showcase several applications that were enabled in and outside
the robotic laboratory at DLR by the object pose estimation (Chapter 4) and grasp
pose estimation (Chapter 5) methods presented in the previous sections.

6.1 6-DoF Object Pose Estimation

6.1.1 Integration on Embedded Hardware

The presented AAEs were ported onto an embedded Nvidia Jetson TX2 board,
together with a small footprint MobileNet [94] for bounding box detection. The
low power consumption (7.5W) of such devices is crucial to the feasibility of
mobile robotic applications. A webcam was connected, and this setup was
demonstrated live at ECCV 2018, both in the demo session and during the oral
presentation. For this demo we acquired several of the T-LESS objects. As can
be seen in Figure 6.1, the lighting conditions are quite different from the test
sequences of the T-LESS dataset which validates the robustness and applicability
of our approach outside lab conditions. No ICP was used, so the errors in depth
resulting from the scaling errors of the MobileNet, were not corrected. However,
since small errors along the depth direction are less perceptible by humans as
well, our approach could be interesting for augmented reality applications. The
detection, pose estimation and visualization of the three test objects runs at over
13Hz on the Nvidia Jetson TX2.

6.1.2 Omnirob Integration

In Figure 6.1 (right), we also show an integration of our full 6-DoF object pose
estimation pipeline on the mobile Omnirob [110] robotic platform. A pan-tilt
mounted RC-visard stereo sensor with a random pattern projector captures an
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Figure 6.1: Left: MobileNetSSD [94] detection and AAE [124] pose estimation on T-LESS objects,
demonstrated live at ECCV 2018 on an Nvidia Jetson TX2; Right: RetinaNet [120]
detection and AAE [124] pose estimation on the mobile Omnirob platform visualized
on top of the point cloud from an RC-visard stereo sensor.

RGB-D image of four fuses. RetinaNet [120] with AAEs [181] and a subsequent
CUDA accelerated ICP [11] are applied to retrieve the 6-DoF object poses that are
used for functional manipulation.

6.1.3 Humanoid David Emptying a Dishwasher

Autonomous robots that can assist in household tasks involving manipulation
require a rich perception system. In this section, we walk through an end-to-end
application involving many of the proposed works that enable the humanoid
robot David [196] that was developed at DLR to empty a dishwasher.

In Section 4.7 we introduced the combination of 2D object detection, 6-DoF object
pose estimation and 3D tracking. Such a pipeline is well suited for autonomous
robotic manipulation tasks as it combines the consistency and accuracy of modern
3D tracking approaches [214] with the automatic global object pose estimation
from an AAE [181] based pipeline. The latter ensure that losing track of objects
when they are occluded or vanish from the field of view is not an issue anymore.

We first 3D scan five IKEA objects using a laser scanner mounted on top of a
Faro arm. Next, we render 50K synthetic images using BlenderProc [133] and
save them in the BOP dataset format. We define a range of plausible object
materials including roughness, metallicness, specularity and coating. 25K images
are rendered from the IKEA and distractor object models dropped into an empty
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Figure 6.2: Left: Initial Yolov7 [225] + AAEs [181] 6-DoF pose estimates of various dishes. Right:
ICG [214] pose refinement and tracking from initial estimates.

textured cube using Blender’s physics engine as described in Section 4.6.1.1.
The other half is rendered from flying IKEA and distractor object models with
HDRi lighting and background maps [161]. We train both, a 2D object detector
Yolov7 [225] and AAEs [124] on the created synthetic data. We also extract
features for the sparse viewpoint model of ICG [214] from the 3D scanned IKEA
objects. The humanoid robot David can then continuously detect new IKEA
objects in the camera stream of a Kinect Azure RGB-D ToF sensor mounted to his
head. From the 2D detections, initial poses are estimated with AAEs [124] which
are then refined and tracked with ICG [124] until tracking loss occurs [212]. A
successful dish grasp is displayed in Figure 1.1 and a video can be found here.

6.1.4 EDAN at CYBATHLON 2023

The EDAN wheelchair robot [182] is an assistive robotics system for people with
severe motor impairments. A robot arm mounted on the wheelchair can be con-
trolled using EMG muscle signals or inputs from a 3D space mouse [24]. However,
since highly accurate steering in 6-DoF end-effector space is challenging, the
systems implements a shared-autonomy approach that helps the user executing
tasks with the assistance of a perception system. Specifically, a similar 6-DoF ob-
ject pose estimation pipeline as for the David robot (Section 6.1.3) is implemented
for EDAN as shown in Figure 6.3. This enables autonomous, functional grasping
of known objects and actions such as opening doors, fridges or drawers.

The CYBATHLON [82], a non-profit project of ETH Zurich, acts as a platform that
challenges teams from all over the world to develop assistive technologies suitable
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Figure 6.3: EDAN at CYBATHLON 2023. Left: 6-DoF object pose estimates from Yolov7 [225],
AAEs [181] and ICG [214] of the challenge objects. Right: Shared-autonomy pick and
place tasks during the CYBATHTLON challenge. Matthias steers the arm towards the
object and EDAN executes successful grasp using the estimated 6-DoF pose.

for everyday use with and for people with disabilities. In the 2023 CYBATHLON
challenges, DLR’s EDAN team won the assistant robot race with the pilot Mattias
Atzenhofer. During the challenge, the 6-DoF object pose estimation pipeline was
deployed to locate five different objects of various sizes in an IKEA shelf. All
training data is again synthetically generated using BlenderProc [133]. During
the challenge all objects were picked up and placed on top of the shelf with a
100% success rate in two subsequent rounds in a total of 4:29 minutes and the
team won the first place.

6.2 Unknown Object Manipulation

6.2.1 Stereo Grasp Pipeline on the RACE-LAB System

The RACE-LAB system consists of a 7-DoF robot arm with an RobotiQ gripper
mounted on a linear axis. A calibrated RC-Visard stereo sensor with a random
pattern projector captures the cluttered scene with unknown objects.

The goals for this experiment were: (1) Test our novel Instance Stereo Transformer
(INSTR) [193] for unknown object segmentation and replace the Unseen Cluster-
ing Network (UCN) [183] that is designed for RGB-D sensors and does less well
with stereo depth. Use the segmentation masks to set region of interest and filter
the grasps predicted by Contact-GraspNet [198]. (2) Test Contact-GraspNet’s
generalization to different depth data and different gripper types, i.e. RobotiQ.
(3) Grasp objects from more severe clutter and test the feasibility of grasping
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Figure 6.4: Top Left: Unknown instance masks predicted by INSTR [193]. Top Right: 6-DoF Grasp
distribution predicted by Contact-GraspNet [198]. Bottom: Executed grasps on the
Racelab system.

objects with metallic, dark and transparent materials.

While Contact-GraspNet [198] is trained on physics simulated grasps with a
Pandas gripper, the predictions can be adapted to other gripper models with
arbitrary gripper depth as well as equal or smaller gripper widths such as the
RobotiQ gripper. A simple method is to scale the input point-cloud proportionally
to the relative gripper widths and scale back the 6-DoF grasp predictions to match
the original point cloud. A retraining with collision checks for the target gripper
model instead of the original Panda model has shown to further improve results.
Figure 6.4 displays the successful unknown object segmentation by INSTR and
the subsequent 6-DoF grasp predictions. The whole scene could be cleared with
only one repeated grasp attempt.

As shown in Figure 7.1, INSTR [193] and Contact-GraspNet [198] show improved
robustness on transparent, dark and metallic objects over the original time-
of-flight RGB-D sensor based pipeline since stereo is less susceptible to such
materials. In fact, all objects were successfully picked up and placed in a bin in
two or fewer attempts.
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7 Conclusion and Future Work

In this dissertation we addressed the problem of 6-DoF Object Pose and 6-DoF
Grasp Pose estimation from visual sensor data. Specifically, we introduced
new learning-based methods that are not only fast and reliable but are also
scalable in terms of training data, test environments and number of target objects.
To achieve scalability in real world applications such as robotic manipulation
and Augmented Reality, we broke with the practice of training on real pose
annotated data and trained our approaches in simulation where abundant data
with steerable variation can be generated.

First, we introduced Augmented Autoencoders, one of the first deep learning
based methods that reached competitive performance in 6-DoF object pose estima-
tion and resolved the issue of pose ambiguities through an implicit, appearance
based training. The approach incorporates sim2real transfer techniques that help
it generalize to diverse environments and sensors despite being solely trained on
synthetic data. The approach won the Best Paper Award at ECCV 2018 where we
also showcased its real-time capabilities in a live demonstration on embedded
hardware.

Second, we introduced Multi-Path Encoders, an extension to the Augmented
Autoencoders where one joint encoder learns to extract view-sensitive features for
n objects at once while being supervised by n object-specific decoders. Thereby,
we were able to efficiently scale the number of objects and even estimate the pose
of objects unseen during training. Since decoders can be discarded after training,
the method preserves a small footprint at inference time.

Third, to encourage broader, more realistic and unified evaluations in the field,
we joined the organization of the Benchmark for 6D Object Pose Estimation
(BOP Challenge). In 2019, we also participated ourselves with the Augmented
Autoencoders that won the RGB-only track of the BOP challenge and were the
overall best method with an inference time below one second. However, despite
the progress achieved with domain adaptation and randomization techniques, we
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observed that the gap between synthetic training data and real test environments
limits the potential of all learning-based 6-DoF pose estimation methods. On
datasets without real pose annotated training data, classical methods such as PPF
based on depth data were still superior in 2019.

Fourth, in order to overcome the domain gap we developed BlenderProc, a
new open-source tool for realistic, procedural, synthetic data generation and
provided a total of 350K PBR training images of the seven core datasets to the
participants of the BOP challenge. As a result, learning-based methods could for
the first time outperform classical methods without real training data. In direct
comparison, the winning method in 2020, CosyPose [173], showed an absolute
improvement of 25.5% in Average Recall when trained on the PBR images from
BlenderProc over OpenGL rendered images. In 2022, the sim2real gap further
shrank to merely 2.5% when comparing training on BlenderProc PBR data to
training on both, real and PBR data. We also extended BlenderProc with forward
and inverse kinematics utilities to create the "Robot Tracking Benchmark (RTB)",
a photorealistic test dataset for articulated 6-DoF object tracking and provided a
strong baseline [222].

Fifth, along with the continual organization of the BOP challenges and parallel
workshops on "Recovering 6D Pose" at the ECCV / ICCV conferences, we have
reviewed and analyzed the results and developments in the field [223, 168]. In
the BOP challenge 2022, we evaluated the influence of object detection of and
segmentation methods on 6-DoF object pose estimation results. In the BOP
challenge 2023, we introduced three new tasks on evaluating unseen object
detection, segmentation and 6-DoF pose estimation. Similar to the Multi-Path
Encoder, submitted methods had to generalize to novel objects that had not been
seen during training but only in a short 5-minute onboarding phase. In practice
this allows robots to quickly adapt to novel objects without lengthy training or
synthetic data generation phases.

Sixth, we introduced Contact-GraspNet, an end-to-end network that efficiently
generates a distribution of 6-DoF parallel-jaw grasps directly from a single depth
view. In combination with unknown object segmentation, we showed over 90%
success rates in grasping unknown objects from cluttered scenes. We found a
representation that roots the 6-DoF grasps in the visible point cloud which ensures
high accuracy and coverage and at the same time reduces the dimensionality of
the learning problem.
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Figure 7.1: The use of stereo images and algorithms improves performance on transparent and
black materials over ToF images.

Finally, we showcased the presented methods in action on different robotic sys-
tems. For example, our 6-DoF object pose estimation enabled the humanoid robot
David to perform tasks such as emptying a dishwasher. They also empowered the
wheelchair robot EDAN during its winning run of the CYBATHLON 2023 [82],
where objects had to be located and picked up from shelves. The 6-DoF unknown
object grasping methods were applied e.g. to the Lightweight Rover Unit (LRU)
for collecting objects such as rock samples as well as on the industrial SARA arm
for picking up objects from a conveyor belt. Since all presented methods have
corresponding open source code, we hope to inspire other researchers and enable
practitioners to tackle more real-world applications outside the laboratory.

Of course, research always continues and there are exciting future directions
ahead. One emerging research area is few-shot object pose estimation, i.e. instead
of referencing test images with 3D object models, they are directly matched
against object template views [216, 213]. Based on this, we are currently devel-
oping a method to learn functional manipulation for unknown object from a
single kinesthetic demonstration and one or more template views. Other open
challenges are robust predictions on transparent [207], deformable or articulated
objects. To enable autonomous robotic manipulation outside the lab, global
6-DoF grasp predictions such as Contact-GraspNet could also be combined with
local, closed-loop, force-controlled grasping. Finally, extending object grasping to
multi-finger hands is another interesting avenue [218].
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