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A B S T R A C T

Larger and more complex models have consistently raised the performance bar in

most Natural Language Processing (NLP) applications, exhibiting a growing presence

in society and decision-making processes. However, their black-box nature raises

significant concerns regarding their trustworthiness, as their scale and complexity

hinder our ability to understand and control them. In response to this challenge, the

development of human-centric NLP models has emerged as a priority, with European

regulations defining key requirements to ensure that deployed systems align with

human values and ultimately benefit society. This dissertation presents eight studies

investigating the usage of model explanations to address the three key requirements

of (1) interpretability, (2) robustness, and (3) human oversight. Specifically, we contribute

by reviewing existing explainability methods, assessing their applicability to NLP, and

developing approaches tailored to (multi-modal) NLP inputs in context-dependent

applications. We show that model explanations carry strong signals enabling the

explicit and model-agnostic detection of adversarial text attacks. Finally, we propose

a human-model interaction platform, enabling annotators to influence and control

deployed models by editing model explanations and thus providing human feedback.

The insights and findings of these studies contribute towards more interpretable,

robust, and controllable models—fundamental pillars for fostering a more human-

centric development of NLP systems.
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Z U S A M M E N FA S S U N G

Größere und komplexere Modelle haben die Messlatte in den meisten Anwendungen

der Natural Language Processing (NLP) immer höher gelegt und sind in gesellschaft-

lichen Entscheidungsprozessen zunehmend präsent. Ihr Blackbox-Charakter wirft

jedoch erhebliche Bedenken hinsichtlich ihrer Vertrauenswürdigkeit auf, da ihre

Größe und Komplexität uns daran hindern, Modelle zu verstehen und zu kontrollie-

ren. Als Antwort auf dieses Problem hat sich die Entwicklung von Human-Centric

NLP-Modellen als Lösungansatz herauskristallisiert. Hierbei definieren europäische

Verordnungen wichtige Anforderungen, um sicherzustellen, dass die eingesetzten

Systeme mit menschlichen Werten übereinstimmen und letztendlich der Gesellschaft

zugute kommen. In dieser Dissertation werden acht Studien vorgestellt, die die Ver-

wendung von Modellerklärungen untersuchen, um die drei Schlüsselanforderungen

der (1) Interpretierbarkeit, (2) Robustheit und (3) menschliche Überwachung von Modellen

zu erfüllen. Konkret leisten wir einen Beitrag, indem wir bestehende Explainability-

Methoden überprüfen, ihre Anwendbarkeit auf NLP bewerten und Ansätze entwi-

ckeln, die auf (multimodale) NLP-Eingaben in kontextspezifischen Anwendungen

zugeschnitten sind. Wir zeigen, dass Modellerklärungen starke Signale enthalten, die

eine explizite und modellagnostische Erkennung der Manipulation auf Text-Eingaben

ermöglichen. Schlussendlich stellen wir eine Plattform für die Interaktion zwischen

Mensch und Modell vor, die es Annotatoren ermöglicht, die eingesetzten Modelle

zu beeinflussen und zu kontrollieren, indem sie Modellerklärungen bearbeiten und

so menschliches Feedback geben können. Die Erkenntnisse und Ergebnisse dieser

Studien tragen zu besser interpretier- und kontrollierbaren, sowie robusteren Model-

len bei. Diese Eigenschaften sind Grundpfeiler für eine stärker auf den Menschen

ausgerichtete Entwicklung von NLP-Systemen.
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1
I N T R O D U C T I O N

1.1 overview and motivation

Artificial Intelligence (AI) systems are at the core of the current technological and societal

revolution (European Commission, 2020; West, 2018). In particular, technologies based

on Natural Language Processing (NLP) have witnessed a tremendous growth thanks to

an increase in data availability, computational resources, research efforts, and funding

(Ignat et al., 2023). Transformers, diffusion architectures, and more in general Large

Language Models (LLMs) are the undisputed protagonists of the latest developments

in the field (Brown et al., 2020; Scao et al., 2022). They are setting new standards in

performance and versatility, solving tasks previously deemed challenging or even

unapproachable (B. Min et al., 2021; W. X. Zhao et al., 2023). At the same time, they

can produce natural language artifacts that rival—and occasionally even surpass—

human-level quality (OpenAI, 2022).

Employing large models, however, has also considerable drawbacks concerning

their interpretability and trustworthiness (Arrieta et al., 2020; Zachary C Lipton,

2016; W. James Murdoch et al., 2019). Indeed, the high number of parameters and

architectural complexity make them behave like black-boxes, hindering our ability to

understand and control them. This lack of transparency stands as a major obstacle

regarding their adoption and integration into human and societal processes (Molnar,

2019).

Working towards transparent and trustworthy NLP has thus become a priority,

with even European regulations setting “a human-centric approach to AI” (European

1



2 introduction

Commission, 2019, section 2) as the primary goal to ensure that intelligent algorithms

act in line with human values and ultimately benefit society at large.

It is crucial to act timely, as current research progress plays a pivotal role in shaping

how AI and human society will coexist in the future. In this context, research and

insights from eXplainable Artificial Intelligence (XAI) (Arrieta et al., 2020; Molnar, 2019)

warrant attention as they offer the potential to overcome model opacity—enabling us

to trust, interpret, and productively control NLP models.

1.2 problem statement

In the context of NLP models, human-centricity is not a monolithic concept. It is

instead a complex notion, entailing a wide range of factors and criteria that need

to be fulfilled. Current European regulations also steer away from a single precise

definition, opting instead to provide a list of (seven) key requirements for the future

design, development, and deployment of AI systems (European Commission, 2019,

2020). This dissertation focuses on three of these aspects: i.e. (1) interpretability, (2)

robustness, and (3) human oversight.

Interpretability refers to the ability to understand and explain the decisions made

by an NLP model (more details in 2) (Arrieta et al., 2020; Molnar, 2019). Despite the

impressive capabilities of state-of-the-art architectures, their decision-making process

is opaque, hard to comprehend, and often diverging from human reasoning (Guidotti

et al., 2019; Madsen, Reddy, and Chandar, 2022). Lacking interpretability can lead to

mistrust and hinder the adoption of such systems in various sectors. This is especially

true in high-stakes domains—e.g. medicine (Locke et al., 2021; Yuqing Wang, Y. Zhao,

and Petzold, 2023)—where understanding the reasoning behind decisions is crucial

(Molnar, 2019). Furthermore, the inability to interpret these models may pose ethical

and legal challenges as it becomes difficult to hold anyone accountable for wrong

decisions and model misbehavior (European Parliament, 2016; Wachter, Mittelstadt,

and Floridi, 2017).
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The second aspect, robustness, is about ensuring that NLP models perform reliably

under different conditions and are resilient to attacks and manipulated inputs (W. E.

Zhang et al., 2020). Although recent advancements have made models less reliant

on small domain-specific corpora and specific input patterns, they are still sensitive

to slight input changes (Xuezhi Wang, H. Wang, and Yang, 2022). This sensitivity

can be exploited by adversarial third parties, who can craft inputs with the intention

of fooling deployed models, leading to unpredictable and erroneous outputs (Garg

and Ramakrishnan, 2020; Ren et al., 2019). Lacking robustness is thus not a viable

option when safety is paramount, making developing defense mechanisms essential

for deployment (European Commission, 2020; Yuan et al., 2019).

Finally, human oversight refers to the necessity for human involvement and control

in the decision-making process of NLP models (Monarch, 2021; Z. J. Wang et al., 2021).

While intelligent systems have the potential to automate and streamline many tasks,

it is vital that humans remain in the loop to ensure that the outcome aligns with our

values and societal norms (European Commission, 2020). Human oversight can be seen

as an extension of interpretability. Beyond making the models more transparent and

understandable, it also involves designing interfaces and workflows that allow humans

to interact with the models in a meaningful and productive way (Lertvittayakumjorn

and Toni, 2021). Moreover, it places humans back in a position of control, therefore

restoring human agency in NLP processes and enhancing accountability.

1.3 contribution and research objectives

This dissertation investigates methods and strategies to improve (1) interpretability, (2)

robustness, and (3) human oversight—ultimately working towards a more human-centric

development of NLP models. Our methodology is deeply rooted in the field of XAI

and employs model explanations to pursue all three goals. As such main goals are

broad and complex, we break them down into five more specific objectives. The first

three work towards enhancing interpretability, whereas the fourth and fifth contribute

to improving robustness and human oversight respectively.
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Developing Human-Centric NLP Models

Improving Interpretability Improving
Robustness

Improving
Human Oversight

1 2 3

Assessing the
Applicability of
Explainability

Approaches to NLP

A
Tailoring Explainers

 to NLP Inputs

B
Extending

Explanations to
Context-Aware

Applications

C
Detecting

Adversarial Attacks
via Model

Explanations

D
Enabling Model

Controllability through
Human Explanation

E

Figure 1.1: Breakdown of this work into its three main goals and their corresponding objec-

tives.

(a) - assessing the applicability of explainability approaches to nlp :

As XAI extends beyond the NLP field, this objective aims at investigating existing

XAI methods to understand their underlying principles, limitations, and effectiveness

for NLP models and text data. This can shed light on the landscape of available

approaches and their potential added value for NLP while simultaneously aiding in

the discovery of lesser-known, more suitable interpretability techniques.

(b) - tailoring explainers to nlp inputs : This objective focuses on cus-

tomizing explainability approaches to better suit the unique characteristics of NLP

inputs. It involves developing or modifying existing explainability techniques to

account for the particularities of language data—such as sequential structure, context-

dependency, and semantic complexity.

(c) - extending explanations to context-aware applications : In

many real-world NLP use cases context is paramount and the best-performing models

rely on multiple input modes rather than just text. This objective addresses the

challenge of providing meaningful explanations for (often multi-modal) NLP models

operating in context-aware applications. Furthermore, it aims at providing deeper

insights into how different data sources interact and how context shapes the deployed

models’ behavior.
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(d) - detecting adversarial attacks via model explanations : This

objective involves leveraging model explanations to mitigate the issue of adversarial

text attacks. Beyond making the model more robust, the aim is to develop methods

that can explicitly identify attacking attempts and thus build an additional layer of

defense against adversarial agents.

(e) - enabling model controllability through human explanations :

The aim is to build pipelines and approaches that utilize explainability to facilitate

human oversight and control over NLP models. More specifically, (non-technical)

stakeholders should be able to understand the “why” behind the model’s predictions

and effectively provide human feedback to steer its behavior.

We take these five objectives as the foundation for the eight studies conducted in

the context of this dissertation, collectively contributing to more interpretable, robust,

and controllable NLP models.

1.4 structure

We structure the rest of this dissertation as follows. Chapter 2 revolves around the

background of this work, i.e. a broad and comprehensive overview of the field of XAI.

Chapter 3, instead, organizes and presents the eight studies that contribute to this work

together with their motivation, contribution, methodology, and limitations. For clarity,

we mark with • studies that are relevant for the examination. The remaining ones,

marked with †, are not formally relevant to the examination but still contributed to

this thesis. Chapter 4 provides an overarching discussion—highlighting our successes,

limitations, and key takeaways for future work. Finally, Chapter 5 summarizes and

concludes this work.





2
B A C K G R O U N D ( X A I )

eXplainable Artificial Intelligence (XAI) is an emerging research field concerned with

understanding the "why" behind the behavior of otherwise opaque AI systems. In

practice, XAI primarily focuses on interpreting decisions and predictions from Machine

Learning (ML) algorithms—in particular deep learning models.

In the following sections, we discuss the current state of XAI regarding its crucial

role in AI’s societal adoption (section 2.1), the currently used terminology and existing

taxonomies (section 2.2), the main explanation types for NLP models (section 2.3),

as well as approaches and challenges w.r.t. evaluating explanations (section 2.4).

Furthermore, we take a brief look at the current literature on XAI for human-in-the-

loop systems (section 2.5) and model robustness (section 2.6).

As we progress through the chapter, we will reference instructive examples of XAI

approaches. We do so without delving into details as they are not central to our

methodology and do not contribute to this chapter’s intended scope. We do however

highlight the significance of the SHAP framework (S. M. Lundberg and Lee, 2017) in

the context of our research, which is comprehensively described in our first study

(Study I, Appendix A.1). The sections 2.1, 2.2, and 2.4 draw inspiration from Mosca

(2020).

2.1 on its crucial role in human society

The growing presence of AI systems in human society, particularly in decision-making

processes, is closely tied to research efforts in XAI (Arrieta et al., 2020). As AI solutions

are increasingly being adopted in sensitive sectors—e.g. legal (Marques et al., 2019),

7
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medical (A. S. Lundervold and A. Lundervold, 2019), and mobility (Z. Zhang, 2021)—

the literature identifies several contexts that render XAI essential:

societal acceptance : AI systems that do not offer a human-interpretable

rationale for their conclusions are unlikely to be accepted by society (Goodman

and Flaxman, 2017; Molnar, 2019). Neglecting the "why" behind a decision strongly

challenges key components of human nature—curiosity and desire to learn and

understand (Molnar, 2019). Thus, XAI fosters societal acceptance and trust in AI as

explanations help us make sense of how an artificial agent produced a specific output

(Kim, Rudin, and J. A. Shah, 2014; Rudin and Ustun, 2018).

alignment with scientific objectives : The black-box nature of many ML

algorithms can also impede discovering the underlying mechanisms behind observed

phenomena (Arrieta et al., 2020). We feed large amounts of data and we observe lots

of outputs, yet we do not comprehend the transformation process in between. XAI

has the potential to transform models into a source of knowledge and thus align the

field with the main goal of science: understanding (Molnar, 2019).

compliance with legal guidelines : The European Union General Data

Protection Regulation (GDPR) (European Parliament, 2016), White Paper on Artificial

Intelligence (European Commission, 2020), and the commission’s communication on

Building Trust in Human-Centric Artificial Intelligence (European Commission, 2019)

are key examples of regulatory frameworks regarding the interpretability of AI. The

former, for instance, introduces the highly debated “right to an explanation” (Edwards

and Veale, 2017; Wachter, Mittelstadt, and Floridi, 2017; Wachter, Mittelstadt, and

Russell, 2017), whereas the latter strongly advocates to use interpretability in AI as a

means to ensure transparency, accountability, and human oversight.

identifying and debugging faulty systems : Machine learning models are

renowned for picking up—and at times even amplifying—biases. At the same time,

they can produce hallucinations and other unintended artifacts (Bolukbasi et al., 2016;
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Z. Ji et al., 2022). Explanations can expose these unwanted behaviors (Mosca, Wich,

and Groh, 2021), shed light on their causing factors, and in some cases help mitigate

or even correct them (Lertvittayakumjorn and Toni, 2021).

2.2 terminology and taxonomies

Various terms such as Explainability, Transparency, Comprehensibility, and Interpretability

are often used interchangeably in the literature. However, they do not carry the same

meaning (Zachary C Lipton, 2016).

Interpretability is quite clearly not a monolithic concept in machine learning. It is

instead an umbrella term that encompassess a variety of ideas (Zachary C Lipton,

2016). Within the literature, we often encounter broad definitions offering limited

practical utility. For instance, Arrieta et al. (2020, Page 5) defines it as "the ability to

explain or to provide the meaning in understandable terms to a human".

However, other works such as W. James Murdoch et al. (2019) and Zachary C

Lipton (2016) prefer to distinguish between two classes of interpretable systems, i.e.

transparent models and post-hoc explainability (see Figure 2.1). The former describes

ML models that were specifically designed to be interpretable. The latter, instead,

encompasses all techniques actively explaining algorithms that are not inherently

interpretable. Also the term post-hoc—i.e. “after the fact”—precisely describes the

explainability process occurring after the model has already been designed and

trained for its intended task.

Concerning transparent models, the literature defines several levels to which a

model is inherently interpretable. These range from being entirely simulatable or

replicable by a human at once (i.e. simulability) to at least being understandable in

each of its single components (i.e. decomposability) (Arrieta et al., 2020; Zachary C

Lipton, 2016).

Post-hoc explainability, instead, is not a model property and refers to utilizing

an additional explanation method to explain the behavior of non-transparent models

(Arrieta et al., 2020). While this setting can convey useful—and at times essential—
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Figure 2.1: Comparative illustration of the information flow in transparent models versus

post-hoc explainability settings. When the model is transparent, stakeholders can

directly interpret the model and understand the outcome. When the model is black-

box and thus not inherently interpretable, an external explainability technique is

used subsequently to produce reasons for the model’s output.

information about the model, it usually does not suffice to fully comprehend the inner

workings of complex architectures. Nevertheless, opting to use post-hoc approaches

has the major advantage of not implying any restriction for the model’s architecture

and hence can be used without any sacrifice in model performance.

The literature categorizes post-hoc approaches under a variety of aspects—e.g.

which models they can be applied to, the input and model components that the

produced explanations refer to, and the format in which explanations are presented to

humans (Arrieta et al., 2020; Doshi-Velez and Kim, 2017; Guidotti et al., 2019; Madsen,

Reddy, and Chandar, 2022; Mittelstadt, Russell, and Wachter, 2019; W. James Murdoch

et al., 2019). A visual summary for such categorization is illustrated in Figure 2.2.

model specific or model agnostic : Model-specific explainability tech-

niques are only applicable to specific architectures or a specific class of models. They

often offer higher accuracy and computational efficiency by taking advantage of

assumptions specific to the model type they are tailored to. Two examples are Tree-

SHAP (S. M. Lundberg, G. Erion, et al., 2020) and DeepSHAP (S. M. Lundberg and

Lee, 2017), which are built exclusively for decision trees and deep neural networks

respectively. Model-agnostic methods, instead, do not prescribe any requirements for

the model they explain and can therefore provide explanations about any architecture
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without making any assumption on its characteristics. LIME (M. T. Ribeiro, S. Singh,

and Guestrin, 2016) is a framework with a strong focus on model agnosticism that

has gained great popularity thanks to its “plug and play” design.

Post-Hoc
Explanations

can be..

Local  OR Global

Model
Specific OR Model

Agnostic

Natural
Language

Feature
Attribution

Adversarial
Examples

Expressed as:

Concepts

Decision
Trees

Linear
Regressors

Transformers

Graph
Neural Nets

Figure 2.2: Visual sketch of the taxonomy for post-hoc explainability methods. The various

parts of the figure represent the key aspects of post-hoc explainability methods,

including their scope (global or local), model applicability (agnostic or specific), and

a few examples for the diverse range of options in terms of explanation format.

local or global : These terms refer to prediction-level and dataset-level ex-

planations respectively (Zachary C Lipton, 2016). Local approaches provide reasons

regarding one specific model prediction. For instance, LIME (M. T. Ribeiro, S. Singh,

and Guestrin, 2016) and DeepLIFT (Shrikumar, Greenside, and Kundaje, 2017) quan-

tify the relevance of each feature w.r.t. a single input instance. On the other hand,

global methods aim at producing information regarding the overall model’s behavior

in terms of what patterns and rules it has learned. SAGE (Covert, S. M. Lundberg,

and Lee, 2020), for instance, can quantify the predictive power of each feature in the

dataset for a given model.
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explanation format : Interpretability techniques vary significantly in terms of

how the produced explanations are presented (Doshi-Velez and Kim, 2017). Among

the most common types we can find input feature attribution, influential samples, coun-

terfactuals, and natural language rationales (Bhatt et al., 2020; Madsen, Reddy, and

Chandar, 2022). See the following section (2.3) for further details about common

formats in NLP.

As for this work’s scope, we observe that the most widely used models are

inherently black-box (Ignat et al., 2023), making it unlikely for stakeholders to accept

sacrificing performance when introducing interpretability features. Therefore, our

primary focus is centered on post-hoc explainability techniques as they provide a

larger utility within this context. While our studies predominantly involve local

explanations, it’s worth noting that, in certain instances, we have also incorporated

global approaches as a complement.

As for the terminology used, we refrain from using the term model transparency as its

definition does not describe our methodology. Instead, we adopt post-hoc explainability,

at times either shortened to explainability or encompassed by the broader term of

interpretability (Arrieta et al., 2020).

2.3 interpretability in natural language processing

Although XAI initially gained its popularity in computer vision, the advent of complex

neural NLP models (Brown et al., 2020; Devlin et al., 2019; Y. Liu et al., 2019) has

driven the demand for interpretability methods also for text-focused applications

such as dialog systems, text classification, and summarization.

Several surveys (Belinkov and Glass, 2019; Danilevsky et al., 2020; Sun et al.,

2021)—as well as scientific tutorials at leading conferences (Belinkov, Gehrmann, and

Pavlick, 2020; E. Wallace, Gardner, and S. Singh, 2020)—offer a broad overview of

the application of XAI methods to NLP. Following a similar motivation to this work,

Madsen, Reddy, and Chandar (2022) focuses on post-hoc explainability approaches
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in NLP. As one can observe, in practice, certain explanation types have attracted

substantially more attention than others (Bhatt et al., 2020).

feature attribution : They are also known as saliency maps and feature relevance

scores. These explanations address the question “which input tokens are most important

for the prediction?” (Madsen, Reddy, and Chandar, 2022) and are by far the most

commonly employed techniques (Bhatt et al., 2020). Notorious examples are LIME

(M. T. Ribeiro, S. Singh, and Guestrin, 2016) and SHAP (S. M. Lundberg and Lee,

2017). More NLP-focused variants also exist, such as HEDGE (H. Chen, Zheng, and

Y. Ji, 2020) and LS-Tree (J. Chen and Jordan, 2020).

Feature attribution approaches are highly adaptable as the input features are

always available and generally meaningful to humans. However, they are usually

limited to producing a score for each feature and for a single class (Madsen, Reddy,

and Chandar, 2022). This often implies the necessity of repeating the procedure at

each time step in sequence-to-sequence applications (Jiwei Li et al., 2016).

influential samples : Such approaches select samples from the dataset that—

at least from the model’s perspective—are closely related to the current input and

thus should lead to a similar output (Madsen, Reddy, and Chandar, 2022). Methods

such as influential functions (Koh and Liang, 2017) and TracIn (G. Pruthi et al., 2020)

are part of this category and indeed answer “which training examples are most influential

for the outcome?”

Influential samples explanations are also particularly useful for uncovering

dataset-level artifacts such as mislabeled samples or incorrectly pre-processed texts.

adversarial examples : Generating adversarial examples addresses the ques-

tion “what input would fool the model into producing an incorrect prediction?” and can

expose model weaknesses—revealing that even highly-performing architectures suf-

fer from a lack of robustness. Popular adversarial attack methods to generate such
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examples are HotFlip (Ebrahimi et al., 2018) and PWWS (Ren et al., 2019). Further

details on robustness and adversarial attacks for NLP can be found in section 2.6.

counterfactuals : “What (small) change in the input would cause a change of pre-

diction to a predefined output?” (Molnar, 2019) is the core of counterfactual explanations.

They describe a hypothetical variation of the current input that would cause a change

in prediction from the model. Polyjuice (Wu et al., 2021) and MiCe (Ross, Marasović,

and Peters, 2021) are popular frameworks applicable to NLP use cases.

Counterfactual explanations—also sometimes referred to with the term con-

trastive—are highly praised by works coming from the social sciences given their

similarity with the human’s usage of causal implications (Byrne, 2019; P. Lipton,

1990; Miller, 2019). They are also extremely relevant for applications where model

predictions should allow some form of recourse for the affected parties. For instance,

if a job application is rejected due as a result of an automatic check, counterfactual

explanations can point out what could be changed in order to revert the outcome.

natural language rationales : Explanations are directly generated as nat-

ural text. They do not answer any specific question, although Madsen, Reddy, and

Chandar (2022) claim they address “what would a generated natural language explanation

be?”. We argue that such question is rather general and does not prescribe any useful

content guidelines. CAGE (Rajani et al., 2019) constructs rationales for a model by

fine-tuning an additional GPT-2 instance (Radford et al., 2018)) on a dataset of human

explanations.

Explanations in the form of natural language are very accessible and easier to

understand for users not coming from the ML field. Indeed, the given explanation

can be interpreted without needing to analyze numerical scores or other abstract

elements—e.g.feature attributions or linguistic concepts.

Natural language explanations can also be used in a non-post-hoc system without

sacrificing model performance. Several works enable the use of such rationales to
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intrinsically force the model to explain itself and generalize better (Camburu et al.,

2018; S. Kumar and Talukdar, 2020; Hui Liu, Yin, and W. Y. Wang, 2019). However,

we refrain from considering them in the model transparency category as the model’s

inner workings are still opaque.

concepts : Concepts are an abstraction of the input that groups and describes

a class or a cluster of samples sharing common characteristics. For instance, black

and white stripes can be a concept for zebras in images, while the adjectives "happy"

and "glad" can function as concepts for the positive class in a sentiment analysis task.

In other words, they provide an answer to “what concepts can best represent a class?”

(Madsen, Reddy, and Chandar, 2022) by generating a list of traits and features that

act as a summary for similar input instances. The overall set of concepts conveys an

approximate description of the strongest themes and patterns identified by the model

in the training dataset. Popular techniques are TCAV (Kim, Wattenberg, et al., 2018),

NIE (Vig et al., 2020), and ACE (Ghorbani, Wexler, et al., 2019).

Some concept-explanation methods e.g. TCAV require a pre-compiled list of

concepts and they quantitatively test for their representational power within the

dataset. However, methods like ConceptSHAP (Yeh et al., 2020) are able to operate

in an unsupervised manner and can directly produce concepts without any human

guidance. Yeh et al. (2020) also defines completeness, a quantity measuring how well a

given set of concepts is in explaining the model’s behavior w.r.t. the entire dataset.

Works like Madsen, Reddy, and Chandar (2022) view concept explanations neither

as local nor global, but rather belonging to their own category. While not entirely

disagreeing with this view, we argue that such approaches possess a strong global

character as they mostly summarize conceptual features learned at the dataset level

and do not really focus on specific instances.

ensemble : Ensemble explanations are a broad category of methods that construct

global explanations by combining local ones. In other words, the model behavior

at the dataset level is expressed by grouping explanations referring to single pre-
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diction utterances. An instructive example is SP-LIME (M. T. Ribeiro, S. Singh, and

Guestrin, 2016), which computes the overall importance of each feature by summing

its relevance for every instance in the dataset or subset thereof.

Data Shapley (Ghorbani and J. Zou, 2019) and SAGE (Covert, S. M. Lundberg,

and Lee, 2020) are for instance global variants for influential samples and feature

attribution respectively. Indeed, they respectively identify the most valuable training

samples and input features contributing to the model’s predictive performance.

attention based : Attention is a key component of modern neural NLP archi-

tectures, most notoriously in transformers (Vaswani et al., 2017)—offering substantial

improvements in performance and interpretability of s.o.t.a architectures. Despite the

large debate on its validity as an explanation (Bastings and Filippova, 2020; Bibal et al.,

2022; Jain and Byron C Wallace, 2019; Serrano and N. A. Smith, 2019; Wiegreffe and

Pinter, 2019), some attention-based approaches have improved on using raw attention

scores and are used for interpretability purposes (Abnar and Zuidema, 2020).

2.4 evaluating explanations

Measuring the validity and quality of an explanation is arguably one of the most

arduous challenges currently faced by XAI research. Interpretability is defined as

providing information in understandable terms to humans (Arrieta et al., 2020).

Hence—unlike classical ML benchmarks (Japkowicz and M. Shah, 2011)—explanations

and their evaluations can often only be expressed in a qualitative form (Doshi-Velez

and Kim, 2017; Madsen, Reddy, and Chandar, 2022). Quantitative evaluations are

viable only in specific cases (Bastings, Ebert, et al., 2021; Hao, 2020; Poerner, Schütze,

and Roth, 2018), and there is no general agreement on how to measure interpretability

in the broader case.

What makes distinguishing poor explanations from high-quality ones so challenging

is the co-existence of two different criteria against which explanations are evaluated:
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plausibility and faithfulness. Plausibility, as the name suggests, refers to whether it

looks convincing to humans. Faithfulness, instead, refers to how accurately it reflects

the model’s true reasoning (Jacovi and Goldberg, 2020).

It’s quite straightforward to notice that plausibility and faithfulness can be highly

uncorrelated. Indeed, plausibility does not provide any guarantee that what the expla-

nation conveys faithfully describes the logic of the ML model. The same holds vice-

versa; even the most faithful explanation could look—and often does—implausible to

humans.

When it comes to plausibility, we do not actually judge whether we believe the

explanation is plausible in terms of how the model operates, but rather its similarity to

the explanations we would produce as humans (Herman, 2017; Jacovi and Goldberg,

2020). Hence, we evaluate mostly based on personal beliefs and are thus affected by

our cognitive bias (Miller, 2019; Nickerson, 1998).

Doshi-Velez and Kim (2017) build a standard for methods measuring interpretability—

also adopted by later works (Madsen, Reddy, and Chandar, 2022; Poerner, Schütze,

and Roth, 2018). The authors claim that evaluation approaches generally fall into

three settings: application grounded, human grounded, and functionally grounded.

application grounded (real humans , real tasks): This category refers

to the direct application and evaluation of an explainability system within its intended

use case (Doshi-Velez and Kim, 2017). This often implies the need to involve domain

experts, e.g. lawyers or other professionals in law in the case of an explainable legal

NLP framework (Shukla et al., 2022).

human grounded (real humans , simplified tasks): The evaluation takes

place in a simplified setting compared to the target application (Doshi-Velez and Kim,

2017). Naturally, to ensure that the conducted experiments are a good evaluation

proxy, the character and goals of the simpler setting should remain aligned with the

original use case. For instance, Mohseni and Ragan (2018) employ non-experts to rank

explanations produced for simple text classifiers.



18 background (xai)

While they are rarely able to replicate the specificity of application-grounded

settings, human-grounded evaluations allow us to relax strong constraints—such

as the availability of domain experts, high costs, and setup time—often required by

testing directly on the target use case. Moreover, human-grounded experiments can

at times provide great flexibility in terms of design factors such as task complexity

(Doshi-Velez and Kim, 2017; Kim, Chacha, and J. A. Shah, 2015).

functionally grounded (no humans , proxy tasks): These approaches

rely on some formal definition of model interpretability and then design a proxy

task to evaluate explanation quality without involving humans (Doshi-Velez and

Kim, 2017). For instance, Poerner, Schütze, and Roth (2018) evaluate explanations for

text classifiers using hybrid documents. Briefly, they concatenate inputs belonging

to different classes and then measure how often feature attribution methods deem

relevant the part of the input corresponding to the predicted class.

Functionally-grounded approaches are the ideal scenario in terms of scalability

and cost-effectiveness as they bypass the need for humans. However, good definitions

for explanation quality and proxy tasks that reflect those concepts are hard to construct

formally (Doshi-Velez and Kim, 2017). Hence functionally-grounded experiments are

particularly challenging to design and are usually applicable only to a very restricted

set of use cases.

Figure 2.3 visually summarizes and compares the described settings across different

dimensions. Doshi-Velez and Kim (2017) claim that application-grounded settings

are well-aligned with the goals of interpretability, i.e. ensuring that the ML system

delivers on its intended purpose. However, we argue that this is only guaranteed for

explanation plausibility and utility as long as the assessment is made by humans,

even if they are domain experts (Herman, 2017; Jacovi and Goldberg, 2020). The same

can be argued for most human-grounded assessments.

Functionally-grounded settings, on the other hand, are more prone to evaluate

faithfulness as long as the proxy is well-designed. At the same time, no human

involvement can result in assessments that are highly uncorrelated with plausibility
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Figure 2.3: Evaluating explanations: a practical overview of the three settings described

by Doshi-Velez and Kim (2017), compared across different metrics. The x-axis

represents the amount of human resources required to conduct the experiments,

while the y-axis indicates the level of specificity associated with the evaluation

task. Naturally, both dimensions also have a direct impact on implementation costs

and scalability. Figure inspired by Mosca (2020, Figure 5).

measurements. Ultimately, deciding on which setting is the most appropriate to use

should strongly consider factors like costs, application constraints, need for human

resources, ease of generating proxy tasks/metrics, and priority of either faithfulness

or plausibility.

2.5 xai for human-in-the-loop

As already discussed in 2.1, XAI research plays a key role in societal acceptance,

alignment with scientific objectives, and compliance with legal guidelines and re-

quirements. Moreover, explanations naturally foster the interaction between humans
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and ML systems. Indeed, they have been utilized to support decision making (Knapič

et al., 2021; Lertvittayakumjorn, Petej, et al., 2021), promote trust in AI systems (Jacovi,

Marasović, et al., 2021; Ras, Gerven, and Haselager, 2018), and even teach humans

how to improve in performing challenging tasks (Lai, Han Liu, and Tan, 2020).

Especially when it comes to human oversight on AI systems, interpretability can shed

light on models’ unwanted behavior and whether they serve the purpose intended by

the designers. Hence, explanations benefit humans w.r.t. understanding the model

and making sure that its employment is beneficial rather than harmful (Ribera and

Lapedriza, 2019). Beyond that, research has also explored whether interacting with

humans can also be beneficial for ML algorithms.

The field of Human-in-the-Loop (HitL) studies methods for humans and machines to

work together effectively (Monarch, 2021). More specifically, in the context of ML, it

explores how continuous human-model interactions—even after deployment—can

help improve systems and their predictions.

While a large chunk of the literature deals with classical active learning aspects

such as sampling, collecting annotations, and online data augmentation, some works

explore how human explanations can provide useful feedback to models (Lertvit-

tayakumjorn and Toni, 2021). In fact, works like Ray et al. (2019), Selvaraju et al. (2019),

and Strout, Y. Zhang, and Mooney (2019) show improvements in performance and

interpretability when models are provided with human rationale during learning or

at later stages of deployment.

Combining explanations with HitL to debug and improve models (Han, Byron C.

Wallace, and Tsvetkov, 2020; Z. J. Wang et al., 2021) is referred to as Explanation-Based

Human Debugging (EBHD) by Lertvittayakumjorn and Toni (2021). The authors also

thoroughly review existing approaches within NLP and categorize them based on

multiple aspects. These are visually organized in Figure 2.4 and include:

(bug) context : It refers to the situation that the HitL mechanism is aiming to

fix or improve. This includes the inspected model, the bug source, and its intended

NLP task—e.g. natural language inference (Zylberajch, Lertvittayakumjorn, and Toni,

2021) or question answering (M. T. Ribeiro, S. Singh, and Guestrin, 2018).
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workflow : It describes the procedure adopted to refine the model in its context

which consists of three sequential steps: (1) explanations are presented to the human

annotators, (2) human feedback is collected, and (3) the model is updated based on

the human rationale. The debugging workflow can be applied iteratively to further

improve the model. In this case, the explanations are expected to change as the model

gets updated multiple times.

experimental setting : The mode in which humans have been involved to

provide annotations and feedback. This ranges from experiments being carried out

with annotators in-person (Kulesza et al., 2009) to leveraging crowdsourcing platforms

(Smith-Renner et al., 2020) or even simulating human feedback (Teso and Kersting,

2019).

As a concrete example, Yao et al. (2021) uses explanations to debug a BERT (Devlin

et al., 2019) and a RoBERTa (Y. Liu et al., 2019) instance. Specifically, annotators are

presented with hierarchical feature attributions to which they provide refinement

suggestions as natural language. The feedback is transformed into first-order logic

rules used to condition learning for new (unlabeled) samples.

Lertvittayakumjorn, Specia, and Toni (2020) propose FIND, a framework using

global explanations to extract and display the most relevant lexicon features used by

the model. Human annotators can disable irrelevant hidden features to reduce predic-

tion artifacts in text classifiers. FIND was shown to be particularly effective against

significant bugs—such as gender bias in language detection (Lertvittayakumjorn and

Toni, 2021).

SEARs from M. T. Ribeiro, S. Singh, and Guestrin (2018) is suitable instead to

find more subtle model-specific bugs. It can construct universal replacement rules

that result in adversarial samples—and thus wrong predictions on several instances.

The utility of SEARs has been shown on multiple NLP tasks, ranging from machine

comprehension to visual question-answering.

When it comes to human annotators, several factors play a role in the quality of the

feedback—model understanding, willingness (to contribute), trust, frustration (especially
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Figure 2.4: General EBDH pipeline for NLP models, including the potentially faulty model,

the human annotators offering feedback, and the three-step workflow. For clarity,

a (colored) box is provided for all components, enumerating examples typically

encountered in practice. Figure originally from Lertvittayakumjorn and Toni (2021,

Figure 1).

when interacting with poor models), and expectations (in seeing the model improving)

(Amershi et al., 2014; Lertvittayakumjorn and Toni, 2021). Analogously to evaluation

frameworks for explainability, there is a clear trade-off between feedback quality

and scalability of a setting in terms of how many annotations can be collected. In-

person subjects are naturally more committed and involved but only allow for small

experiments (Lertvittayakumjorn and Toni, 2021). Crowdsourcing and simulation

offer substantially open the door to larger experiments but they imply risks and

drawbacks in terms of the meaningfulness of the responses (Lertvittayakumjorn and

Toni, 2021). Nonetheless, there are good practices to improve feedback quality also at

a larger scale. For instance, specifying required qualifications (Smith-Renner et al.,

2020), using multiple annotators for each sample (Lertvittayakumjorn, Specia, and

Toni, 2020), and having an initial training phase (Egelman, Chi, and Dow, 2014) are

common strategies applicable prior to the feedback experiments.

AdaTest (M. T. Ribeiro and S. Lundberg, 2022) is particularly interesting as it

addresses limitations in HitL caused by the high variability in human creativity to

imagine and interpret bugs as well as the extensive labor necessary to fix them. Their

work leverages LLMs like GPT-3 (Brown et al., 2020) to automatically write unit tests

highlighting model bugs which are then fixed through an iterative test loop with
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humans. The authors test AdaTest on eight different NLP tasks and claim it is 5-10x

more effective than previous methods.

2.6 xai for model robustness

The increasing adoption of NLP models in real-world scenarios necessitates robustness

against adversarial text attacks, a requirement underscored by current legislative

guidelines (European Commission, 2020). However, the literature shows that even

the latest models remain vulnerable to input manipulations, which can mislead them

effectively (Belinkov and Glass, 2019; W. Wang et al., 2019; W. E. Zhang et al., 2020).

Failure at handling attacks hinders the safe deployment of such systems and has a

detrimental impact on user trust and progress in the field (Xuezhi Wang, H. Wang,

and Yang, 2022).

Although not yet formally understood, there is a clear connection between robust-

ness and interpretability (Bhatt et al., 2020). First of all, adversarial samples are a

widely used form of explanation to inspect for model weaknesses (see 2.3) and also

share common traits with counterfactuals. At the same time, models which are more

robust tend to produce better explanations (Etmann et al., 2019). For instance, Tsipras

et al. (2019) show that enhancing model robustness via adversarial training leads to

more accurate feature saliency maps.

Measuring feature attribution scores is also of great guidance when searching for

the most effective adversarial perturbation (Ren et al., 2019). It feels quite intuitive

as the features on which the model relies the most are the most profitable to target

when trying to produce an incorrect prediction. Explanations carry strong signals for

creating and thus identifying adversarial attacks. This is also confirmed by several

works (Fidel, Bitton, and Shabtai, 2020; Tao et al., 2018; Ye et al., 2020) which leverage

model explanations to detect manipulated inputs in computer vision. More in detail,

Fidel, Bitton, and Shabtai (2020) uses SHAP signatures—i.e. SHAP features attribution

explanations—from input images and feeds them to an ad-hoc classifier. Tao et al.

(2018) improve robustness in face detection models by utilizing attributions at the
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neuron level to identify and amplify neurons critical for recognizing interpretable

facial attributes. Finally, Ye et al. (2020) leverage saliency maps to recognize when

the image classifier is focusing on unusual regions of the input and thus the input is

likely manipulated. The authors test their approach successfully on popular object

classification benchmarks such as ImageNet (J. Deng et al., 2009)

This hidden yet clearly existent relationship between adversarial attacks and model

explanations is a substantial inspiration for two of the studies presented in this work

(see 3). Indeed, both Mosca, Agarwal, et al. (2022) and Huber et al. (2022) further

explore the robustness-interpretability connection in NLP and show that explanations

in NLP also carry strong signals for adversarial detection.
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This work presents eight scientific studies. All of them have been conducted within

the time window (Aug. 2020 to Mar. 2023) of Edoardo Mosca’s doctoral degree and

work towards the objectives defined in section 1.3. Once again, we explore the usage

of post-hoc explanations to improve the development of NLP models w.r.t. three

aspects: interpretability, robustness, and controllability (also known as human oversight).

Figure 3.1 extends Figure 1.1 and connects each study to the research objectives

it addresses. Based on the same structure, the studies are divided and presented

accordingly in the following sections.

3.1 assessing the applicability of explainability

approaches to nlp

3.1.1 Motivation

Research efforts in interpretability extend well beyond the field of NLP (Bhatt et

al., 2020; Madsen, Reddy, and Chandar, 2022). Plenty of post-hoc explainability ap-

proaches can be found in other application fields and for different data types—e.g.

images, speech, graphs, tabular data, and time series (Guidotti et al., 2019; Nagahis-

archoghaei et al., 2023). In practice, domain-agnostic frameworks often become the

most widely utilized to produce explanations.

Popular frameworks such as SHapley Additive exPlanations (SHAP) (S. M. Lundberg

and Lee, 2017), LIME (M. T. Ribeiro, S. Singh, and Guestrin, 2016), and IG (Sundarara-

jan, Taly, and Yan, 2017) have received significant attention also for NLP applications.

The SHAP framework in particular has become a gold standard for local explanations

thanks to its solid theoretical foundation and broad applicability across different types

of models.

Nevertheless, domain-agnostic frameworks come with their sets of challenges and

limitations when applied to NLP. The unique nature of text data, with its inherent

contextual information and complex structure, cannot be properly exploited by

frameworks with a rather general-purpose design.
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It becomes crucial to understand such limitations and investigate how subsequent

research has sought to overcome them. This not only sheds light on the shortcomings

of current approaches but also delivers a practical utility to identifying less-known

and potentially more NLP-tailored interpretability methods.

3.1.2 Study I •

In our study "SHAP-Based Explanation Methods: A Review for NLP Interpretability"

(Mosca, Szigeti, et al., 2022), we thoroughly examine and review the SHAP framework

(S. M. Lundberg and Lee, 2017) and its derived variants in the context of NLP.

After providing a concise summary of the necessary background around Shapley

values (Shapley, 1953) and techniques for their estimations, our work’s contribution

is organized around three principal objectives:

(1) We identify five significant research streams that have emerged from the SHAP

framework (S. M. Lundberg and Lee, 2017). These different yet overlapping

directions categorize approaches working towards tailoring explanations to dif-

ferent input data, explaining specific models, improving the framework’s flexibility via

modifying core assumptions, producing different explanation types, and estimating

Shapley values more efficiently.

(2) We conduct a detailed review of 41 distinct SHAP- and Shapley-value-based

methods, each of which falls within one or more of the categories mentioned

in the previous point. This review encompasses an assessment of the unique

assumptions, input/model prerequisites, forms of explanation, and existing

implementations for each method.

(3) Lastly, and crucially, we assess the suitability of each approach for NLP models

and tasks. Approaches are ranked in four tiers ranging from ready off-the-shelf to

not relevant. Based on the assessment’s results, we also provide use-case-based

recommendations and instructive examples for NLP researchers.

In an effort to maximize the practicality of our study for both practitioners and

newcomers to the fields of XAI and NLP, we compile our findings, evaluations, and
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Figure 3.2: Instructive explanation examples provided in Mosca, Szigeti, et al. (2022, Figure

2-5) for sentiment analysis.

classifications of the 41 reviewed methodologies into a concise yet comprehensive

overview table (Mosca, Szigeti, et al., 2022, Table 1). This table serves as a reference

tool that encapsulates the essence of our research contribution, offering a quick yet

holistic perspective on the diverse SHAP-based interpretability methods.

In the same spirit, we add visual examples throughout the work. Indeed, such

visualizations—collected in Figure 3.2—sketch prototypical explanation outputs from

the main reviewed approaches and help the reader to develop a practical understand-

ing in terms of what kind of information output to expect when applying a certain

method.

Subfigure (a) depicts a KernelSHAP-generated explanation, where each word

contributes to the overall sentiment prediction, justifying the deviation from the

model’s average prediction (base value) to the current output (S. M. Lundberg and

Lee, 2017). Subfigure (b), instead, shows a hierarchical explanation from HEDGE (H.

Chen, Zheng, and Y. Ji, 2020), where Shapley values—negative (red), neutral (yellow),

and positive (green)—are calculated for different levels of feature granularity.
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Subfigure (c) sketches a Neuron Shapley (Ghorbani and J. Y. Zou, 2020) explanation

for the neurons belonging to a BERT output layer (Devlin et al., 2019). Analogous to

SHAP for input features, each neuron is assigned a Shapley value indicating their

contribution towards or against the prediction. Lastly, Subfigure (d) illustrates an

example of a SAGE explanation (Covert, S. M. Lundberg, and Lee, 2020), where the

bars’ length measures the global predictive power of each feature group, i.e. how

useful those features are for the model’s performance.

Study I’s review serves as a beneficial guide, helping practitioners and researchers to

navigate the landscape of SHAP-based interpretability and make informed decisions

about which method is most adequate for their specific NLP use case. Furthermore,

the analysis uncovers less-known SHAP-based approaches that have the potential to

offer a more suitable solution for the target application. The full study can be found

in Appendix A.1.

3.1.3 Discussion

Our work reviews a total of 41 SHAP-based methods for NLP interpretability. While

this high number underscores the popularity and wide-ranging applicability of the

SHAP framework (S. M. Lundberg and Lee, 2017), it also necessitated filtering steps

to make the literature search process more manageable (Mosca, Szigeti, et al., 2022,

Section 3). As expected, most of the methods fell into more than one of the five

identified categories, reflecting the overlapping nature of these research streams.

The included examples and the overview table have been well received by fel-

low researchers and peer reviewers for the inherent practical utility they provide.

Nonetheless, our review also highlighted some limitations of employing Shapley

values in general (I. E. Kumar et al., 2020; Merrick and Taly, 2020; Sundararajan and

Najmi, 2020). Moreover, while we were able to provide meaningful recommenda-

tions for a variety of NLP tasks, we acknowledge that SHAP-based methods—and

feature attribution approaches in general—may not be the best option for some

sequence-to-sequence tasks, which are becoming more prevalent in recent times.
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3.2 tailoring explainers to nlp inputs

3.2.1 Motivation

Feature attribution explanations have emerged as one of the predominant explainabil-

ity tools (Arrieta et al., 2020; Bhatt et al., 2020). They highlight input components that

significantly influence the resulting output. Yet, existing methods have predominantly

focused on attributing relevance scores to individual words (Madsen, Reddy, and

Chandar, 2022).

Treating words independently overlooks the context-dependency and structured

nature of natural language (Mosca, Demirtürk, et al., 2022). In many cases, a word’s

meaning and carried sentiment can be dramatically reshaped by its surrounding

context, position within a sentence, and relationship to other words. This highlights a

gap in explainability research and motivates the need for explainers able to account

for the sentence’s structure and the words’ interdependencies.

Some recent works focus on phrase-level and hierarchical explanations to address

such limitations. Techniques to identify structure and dependencies include exhaustive

search (Tsang et al., 2018), combining contextual decomposition scores (C. Singh, W

James Murdoch, and Yu, 2018), using Shapley interactions or Bahnhaf values from

predefined tree structures (J. Chen and Jordan, 2020; S. M. Lundberg, G. G. Erion,

and Lee, 2018), and breaking down text iteratively based on the (directly detected)

weakest words’ interaction (H. Chen, Zheng, and Y. Ji, 2020).

Nonetheless, there remains a pressing need for further research and development

of methods that can fully capture the complexity and nuances of natural language.

Approaches can also be built as extensions of existing popular frameworks, thereby

leveraging the properties and advantages for which they are renowned.
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3.2.2 Study II †

In our study "GrammarSHAP: An Efficient Model-Agnostic and Structure-Aware

NLP Explainer" (Mosca, Demirtürk, et al., 2022), we work towards explanations that

align with the input instance’s linguistic structure. We do so by building hierarchical

explanations which attribute relevance scores to sentence constituents across multiple

levels. In contrast with preceding studies tackling similar issues (J. Chen and Jordan,

2020; Tsang et al., 2018), we directly extend the SHAP framework and take advantage

of the theory backing it (S. M. Lundberg and Lee, 2017).

Figure 3.3 sketches an overview of our study’s proposed methodology, whose

primary contributions include:

(1) We propose GrammarSHAP, a model-agnostic hierarchical explainer accounting

for the sentence constituents and their interdependencies. In particular, we

couple a constituency parsing layer for merging multi-word tokens with a

custom KernelSHAP adapted for efficiency at run-time.

(2) We advocate for the removal of the standard SHAP background dataset, opting

instead to utilize masking tokens. This modification speeds up the pipeline and

reduces unwanted explanation anomalies.

(3) We perform a qualitative comparison of our technique with existing ones, focus-

ing on the quality of explanations produced and the computational resources

required.

GrammarSHAP leverages the Berkeley Neural Parser (Kitaev and Klein, 2018) to

iteratively merge multi-word tokens and reflect the sentence grammar’s structure.

Starting from the single-word level (depth = 0) and proceeding until the entire

sentence is a single token (depth = N), we can retrieve word groups and constituents

at any depth. Our implementation resolves inconsistencies between BERT’s sub-word

tokens for OOV words and Berkeley Parser’s requirement for full words.

To retain model agnosticism, we pick KernelSHAP from the SHAP framework

as a baseline to build upon (S. M. Lundberg and Lee, 2017). Directly extending to
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Figure 3.3: Overview of GrammarSHAP’s pipeline (Mosca, Demirtürk, et al., 2022, Figure 1).

The input instance is parsed in its constituents in parallel to the model prediction.

These are used as a base for multi-token masking and thus enable creating feature

attribution scores at multiple granularity levels.

multi-word scores—and thus multi-word input perturbations—leads to challenges

such as (i) computational inefficiency, (ii) unidirectional explanations, and (iii) high

attributions for [SEP] tokens due to its alteration of sentence length when used as a

substitute from the background data (Mosca, Demirtürk, et al., 2022). We mitigate

these issues by replacing sampling from background samples with simple [MASK]

tokens, which accelerates the explainer process by ∼ 60x and eliminates [SEP] related

explanation artifacts as it is no longer part of the background data.

Figure 3.4 showcases qualitative comparisons for explanations generated for a

sentiment analysis task. Specifically, the first image compares explanations gener-

ated by GrammarSHAP and other baseline explainers, while the second showcases

GrammarSHAP’s explanations obtained at different hierarchical levels.

GrammarSHAP is proficient in identifying both positive and negative contribu-

tions at various granularity levels, also where other explainers struggle to do so

(Mosca, Demirtürk, et al., 2022). Nevertheless, despite delivering a substantial speed
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(a) Comparison with Baseline Explainers

(b) Output at different hierarchical levels

Figure 3.4: Explanation comparison between (a) three explainers for grouped features rele-

vance (5th level) (Mosca, Demirtürk, et al., 2022, Figure 3) and (b) three Grammar-

SHAP’s outputs for different hierarchical levels—2nd, 4th, and 8th.

up compared to trivially extending KernelSHAP (additive KernelSHAP), it is still

considerably slower than PartitionSHAP (S. M. Lundberg and Lee, 2017).

The full study can be found in Appendix B.1.

3.2.3 Discussion

Study II introduces GrammarSHAP, extending the SHAP framework to build hier-

archical explanations that meaningfully reflect the sentence structure. In line with

the findings from the related work, we observe the challenges raised by considering

interactions between words and calculating the importance of multi-word tokens
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due to the combinatorial explosion it presents (H. Chen, Zheng, and Y. Ji, 2020; S. M.

Lundberg and Lee, 2017).

While our adaptations mitigate such issues and considerably speed up the ex-

ecution time, the explainer may prove to be too slow for applications involving

particularly long texts. Still, we maintain that GrammarSHAP is efficient considering

the granularity of feature contributions it can detect (Mosca, Demirtürk, et al., 2022).

When assessing the explanations’ quality, our evaluation process revolves around

the introduced methodological strategies along with a qualitative analysis of the

produced explanations. Although evaluation metrics for explanations are difficult

to establish and lack standardization as of now (see 2.4), future work should set

quantitative diagnostics as a priority for their comparison (Atanasova et al., 2020).

3.3 extending explanations to context-aware

applications

3.3.1 Motivation

In many real-world NLP use cases, models solely dependent on textual data may

encounter limitations in both performance and generalizability—often neglecting the

social context in which a natural language utterance was produced. This is especially

true in applications where context is paramount, such as hate speech detection

(Mishra et al., 2018), opinion mining (Sundermann et al., 2019), and other tasks

probing personal traits, intentions, and opinions (Gencheva et al., 2019).

In these scenarios, NLP models exploiting context through multiple input modes

show notable success compared to their text-based counterparts (Fehn Unsvåg and

Gambäck, 2018). However, a simple performance comparison does not fully reveal

the implications of incorporating additional context and user information into these

models.

Employing explainability provides an opportunity to extract deeper insights into

how different data sources interact and hence how context shapes the deployed
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models’ workings. Especially when different post-hoc approaches are used comple-

mentarily, we can gain a holistic perspective on the trained model, which becomes an

additional source of knowledge and further enhances our understanding of the data.

3.3.2 Study III •

Our study "Understanding and Interpreting the Impact of User Context in Hate

Speech Detection" (Mosca, Wich, and Groh, 2021) leverages post-hoc explainability to

investigate the effect that contextual features have on hate speech classifiers.

Previous works were able to improve detection performance by adding user features

such as the gender (Waseem, 2016), geolocation (Galán-Garcıa et al., 2016), and the

number of followers/friends (Fehn Unsvåg and Gambäck, 2018) as well as modeling

online interactions and relationship (Mishra et al., 2018, 2019; M. H. Ribeiro et al., 2018).

Yet, beyond accuracy, little attention has been given to the additional changes that

such features bring to the models.

Study III demonstrates that including such features can significantly alter the

behavior and characteristics of the recognition algorithms (Mosca, Wich, and Groh,

2021). Its contribution can be summarized as follows:

(1) Our study validates that incorporating user and social context into the models is

indeed the reason for performance gains. Concurrently, we examine the feature

space learned by the models to comprehend how these additional features are

leveraged for detection purposes.

(2) We find that models with context exhibit reduced bias from the text itself.

However, such incorporation unfortunately introduces new forms of bias, which

is characterized in our explainability analysis.

The experimentation focuses on capturing the behavioral differences between two

simple detection models, one that solely relies on text features—i.e. text model—and

one that instead also incorporates context features—i.e. social model. For training and

testing, we choose to utilize two popular Twitter-based datasets from Waseem (2016)
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Figure 3.5: Architectures for the text model (top branch only) and social model (all branches)

(Mosca, Wich, and Groh, 2021, Figure 1 and 2). The three input streams are initially

processed separately and then their intermediate representations from the different

branches are concatenated together and fed to two more layers to compute the

output probabilities.

and Davidson et al. (2017) due to their diverse speech categories and widespread

use as detection benchmarks. Both datasets have three classes—racism/sexism/none

and hate/offensive/none respectively—and our models achieve a satisfactory perfor-

mance (Mosca, Wich, and Groh, 2021, Table 1 and 2). For each dataset, based on

the anonymized user metadata provided, the additional context features are then

retrieved via the Twitter API.

Figure 3.5 sketches the detection architectures, including the three input sources

and how they are processed together. The text model is only composed of the top

branch, i.e. the tweet’s content itself. The social model, on the other hand, learns
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also from two additional modes—the user’s overall language use and their follower

network. The former is obtained by combining the bag-of-words representations from

all their tweets. The latter—similarly to prior state-of-the-art hate speech detectors

(Mishra et al., 2018, 2019)—is sourced from the adjacency matrix of the retrieved

community graph.

Results stemming from feature attribution via Shapley values and embedding of

artificially crafted tweets into the model’s learned embedding space (Mosca, Wich,

and Groh, 2021, Figure 3-6) underline the different behavior that the two models

present. The integrated context—especially the user vocabulary—plays a key role

in the social model’s performance gains, otherwise not justifiable by architectural

differences with the text model (Mosca, Wich, and Groh, 2021, Figure 3). Moreover,

the social model learns a cluster-like landscape based on user traits that simplifies the

classification process (Mosca, Wich, and Groh, 2021, Figure 4).

While the text model’s prediction can be easily altered by changing the hate target,

the social model demonstrates greater resilience to text manipulations. On the other

hand, swapping the tweet’s author provokes unwanted output changes for the social

model (Mosca, Wich, and Groh, 2021, Figure 5-6). Hence, although user-derived

features can reduce text bias, they can also introduce a new bias that excessively

discriminates against users based on past behavior, thus complicating accurate hate

content classification.

The full study can be found in Appendix A.2.

3.3.3 Study IV †

In the same spirit as study III, our work "Explainable Abusive Language Classification

Leveraging User and Network Data" (Wich, Mosca, et al., 2021) identifies limitations in

utilizing models purely based on text. Hence, it further explores extending detection

pipelines to also leverage user and network data as well as post-hoc explainability for

multi-modal models and inputs.

More in detail, the contribution of study IV can be summarized as follows:
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(1) We propose a state-of-the-art hate speech detector composed of three input

modes, each handled by a different sub-model:

– Text Model: Uses DistilBERT (Sanh et al., 2019) with a classification head

to process the tweet text meant for classification. Usernames are stripped

from tweets prior to tokenization to prevent classifier bias.

– History Model: Implements bag-of-words to model the user’s tweet history,

reflecting the 500 top dataset terms based on TF-IDF appearing in the user’s

tweets.

– Network Model: Utilizes the GraphSAGE (Hamilton, Ying, and Leskovec,

2017) inductive representation learning framework to model the user’s

social network. By training on the undirected network graph of social

relations, it is able to generate embedding for new users.

(2) We extend SHAP explanations (S. M. Lundberg and Lee, 2017) to operate also

with multi-modal inputs. In particular, we can produce visualizations based on

Shapley values for the text, user history, and network streams.

Our multimodal model is trained and evaluated on three datasets—those provided

by Davidson et al. (2017), Waseem (2016), and Wich, Breitinger, et al. (2021). Results

from our ablation study (Wich, Mosca, et al., 2021, Table 3) indicate once more that

user and network data enhance abusive language detection. Nonetheless, the leap in

F1 score performance is somewhat more modest compared to study III (Mosca, Wich,

and Groh, 2021, Table 1) and ranges from 0.1pp to 2.4pp. This modest improvement

can be attributed to two factors. Firstly, leveraging DistilBERT for text classification

provides a stronger baseline compared to the one used in Mosca, Wich, and Groh

(2021). Second, the network data of the datasets is noticeably sparse as their collection

was not performed on a connected subnetwork of users (Wich, Mosca, et al., 2021).

Concerning explainability, the insights extracted reveal the individual roles of each

submodel and contribute significantly to the comprehensibility of the prediction for

human understanding. Figure 3.6 illustrates an example of a tweet incorrectly labeled

as neutral by the text submodel (weights of neutral words, marked in blue, surpasses

the score of other groups, in red). However, this misclassification was rectified by the
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(a) Tweet’s Text

(b) User’s History (c) User’s Network (each node repre-

senting a community)

Figure 3.6: Explanations produced by the (a) text, (b) history, and (c) network submodels

(Wich, Mosca, et al., 2021, Figure 4). These are presented as Shapley Values.

Red—i.e. positive values—favors a classification as abusive. Blue—i.e. negative

values—supports favor a classification as non-hateful.

other two submodels, whose explanations show red (=abusive) features prevailing in

importance.

The full study can be found in Appendix B.2.

3.3.4 Study V •

Our study "Explaining Neural NLP Models for the Joint Analysis of Open- and

Closed-Ended Survey Answers" (Mosca, Hermann, et al., 2022) investigates using

NLP transformers in conjunction with post-hoc explainability to automatically extract

knowledge and interpret correlations in large-scale surveys’ answers.

Including both open- and closed-ended questions is challenging as models have to

simultaneously deal with structured and unstructured data. Given the limitations of

the currently dominant practices (Eichstaedt et al., 2021)—heavily based on human

labor or shallow NLP pipelines—our work contributes the following:
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(1) We employ the widely-used DistilBERT (Sanh et al., 2019) transformer model to

tackle open-ended queries, surpassing the precision of traditional methods in

capturing contextual correlations in the text.

(2) We apply several variants of SHAP (S. M. Lundberg and Lee, 2017) to examine

both instance-level feature importance as well as high-level concepts learned by

the model (Yeh et al., 2020). Combining such approaches at several granularity

levels contributes to a holistic understanding of what our model has learned.

(3) Our methodology delivers promising results on the EMS 1.0 dataset—which

explores factors impacting students’ career aspirations (Gilmartin et al., 2017).

Indeed, it identifies and reveals relevant factors from both closed-ended and

open-ended text responses.

To automatically analyze a survey with an NLP pipeline, we convert the structured

questions/answers format into a predictive task. For instance, for the case of the

EMS 1.0 dataset, we utilize answers regarding the student’s contextual situation—e.g.

background, learning experiences, current influences and values—as input to predict their

answers about career goal aspirations—i.e. scores regarding working in a startup,

large company, university, etc. (Gilmartin et al., 2017; Mosca, Hermann, et al., 2022,

Appendix A).

Figure 3.7 depicts the overall model architecture. We test various alternatives to

process the text coming from open-ended answers (left) and pick DistilBERT + mean

as the best-performing choice (Mosca, Hermann, et al., 2022, Table 2). Closed-ended

answers are instead fed to fully connected layers (right) and then processed jointly

with the extracted text contextual representation. Our performance experiments and

ablation study across all output objectives show our models using both text answers

(however, not all) and numerical inputs to achieve the highest scores (Mosca, Hermann,

et al., 2022, Table 1).

Concerning interpretability, we combine low-level features and neuron explanations

with high-level concept ones. For the former, we (1) compute and compare SHAP

values for both textual and numerical value embeddings’ neurons, (2) extract text

segments triggering the neurons with the highest activation, and (3) determine input
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Figure 3.7: Multi-modal model classification architecture—combining both text and numerical

(i.e. categorical) features (Mosca, Hermann, et al., 2022, Figure 1). XOR symbols

denote the various options tested for different sub-component models.

SHAP values w.r.t. model output. Concerning the latter, we extract concepts via

ConceptSHAP (Yeh et al., 2020) to capture how the model organizes higher-level

information. After extraction, we (1) describe each concept via its K nearest neighbors,

(2) measure the influence of each concept for single predictions, and (3) report

completeness scores - i.e. how well the set of extracted concepts describes the model’s

behavior (Yeh et al., 2020).

Results show that low-level explanations offer key insights about overall question

relevance and student-specific factors that influence their entrepreneurial aspirations.

The automated high-level analysis instead identifies relevant concepts—such as clarity

of career plans, career characteristics, and plan timeline—that are in line with earlier

research based on human judgment (Grau et al., 2016).

The full study can be found in Appendix A.3.
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3.3.5 Discussion

The centrality of context is a recurrent theme for many NLP use cases as models often

operate in an ecosystem rather than in isolation. Integrating the surrounding context

of a specific text instance can be pivotal for accurate predictions and conclusions.

On the same line, findings from studies III, IV, and V consistently demonstrate the

performance advantages of utilizing models leveraging context through multiple

input modes.

Each of these studies works on combining and occasionally expanding existing

post-hoc explainability frameworks. The goal is to build a holistic understanding of

the trained models and hence exploit them as an additional resource for insights and

knowledge about the data.

Study III and IV work on hate speech detection. The first work shows the insuffi-

ciency of performance metrics for the sake of model comparison. As an intriguing

insight from explanations, incorporating context helps to counterbalance biases found

within the text, but can potentially introduce novel forms of bias derived from the con-

text itself. The second, instead, carries out further ablation studies for a context-aware

model and extends explanations to also function on the different input modes.

Finally, study V works on survey answers and looks at how explainability can serve

us when models have to deal with both structured (i.e. multiple-choice answers) and

unstructured data (text or open-ended answers). It showcases the potential of merging

feature attribution with concept analysis, which ultimately facilitates the automated

analysis of survey—a process that would traditionally necessitate a considerable

amount of human effort.

While all works contribute to the objective, it generally remains hard to find one-

fits-all pipelines. Therefore, the introduced methodologies are often limited to the

specific use cases they’re designed for.



3.4 detecting adversarial attacks via model explanations 43

3.4 detecting adversarial attacks via model

explanations

3.4.1 Motivation

Adversarial attacks were discovered roughly a decade ago and are input samples

artificially manipulated to trick the model into making a wrong prediction (Szegedy

et al., 2014). To this day they remain effective against machine learning models despite

advancements in architectures, data quality, and training methods (Yuan et al., 2019).

NLP is unfortunately no exception to the rule (W. Wang et al., 2019; Xuezhi Wang,

H. Wang, and Yang, 2022; W. E. Zhang et al., 2020).

Adversarial samples in NLP differ substantially from their computer vision coun-

terpart. Thus, despite the large amount of study that has been carried out for attacks

and defenses with images, most ideas cannot be directly reapplied to the text domain

(Xuezhi Wang, H. Wang, and Yang, 2022). Most notably, images are continuous inputs

that remain valid if they undergo a continuous perturbation. This is not the case

for natural language, where the discrete nature of the text space limits the usage of

gradient-based techniques and other continuous transformation (Lei et al., 2019).

Furthermore, text inputs need to fulfill lexical, grammatical, and semantic constraints

to properly convey meaning.

Numerous attacks manipulate samples at the character level and capitalize on visual

similarity—e.g. DeepWordBug (J. Gao et al., 2018), HotFlip (Ebrahimi et al., 2018), and

VIPER (Eger et al., 2019). However, they lead to non-existing terms and introduce

syntactical inconsistencies (D. Pruthi, Dhingra, and Zachary C. Lipton, 2019; W. E.

Zhang et al., 2020). Conversely, word-level attacks are effective at maintaining semantic

coherence without noticeable discrepancies, thereby eluding spell check detection

(Garg and Ramakrishnan, 2020; Ren et al., 2019).

Without effective defense strategies against adversarial instances, systems are likely

to fail when attacked, thus jeopardizing safe model deployment and undermining

public trust. In this regard, a fruitful strategy to tackle this challenge is adversarial
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detection—where the goal is not only to defend the model, but also to explicitly

identify attacking attempts (Fidel, Bitton, and Shabtai, 2020; Mozes et al., 2021; Ye

et al., 2020; Y. Zhou et al., 2019).

3.4.2 Study VI †

Our study "Detecting Word-Level Adversarial Text Attacks via SHapley Additive

exPlanations" (Huber et al., 2022) investigates utilizing model explanations to detect

manipulated text inputs explicitly. It builds on the intuition that—even if adversarial

and original inputs look indistinguishable—the model still reacts differently to them

and this can be captured by explainability (Fidel, Bitton, and Shabtai, 2020; Mosca,

Agarwal, et al., 2022).

Our work draws inspiration from an analogous idea from computer vision (Fidel,

Bitton, and Shabtai, 2020) and contributes the following:

(1) We propose an adversarial detector harnessing SHAP (S. M. Lundberg and Lee,

2017) to recognize text attacks. The approach outperforms the previous state of

the art (Mozes et al., 2021; Y. Zhou et al., 2019) on four datasets.

(2) We evaluate our method w.r.t. data efficienty and generalization capabilities. It

continues to perform competitively with little training data and is comparable

to the prior when tested on unseen datasets.

(3) Alongside quantitative experiments, we project the space of generated SHAP

explanations to two dimensions via UMAP (McInnes, Healy, and Melville, 2020).

The resulting visualization shows most explanations corresponding to attacks

to be easily separable from the remaining samples, which sheds light on the

reason behind the method’s success.

Figure 3.8 summarizes the proposed methodology. Given an input instance x and a

task-specific classifier f potentially targeted by text attacks, we take the input/output

pair to compute a SHAP explanation (S. M. Lundberg and Lee, 2017). The resulting
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Figure 3.8: Overview of (a) the overall pipeline once the adversarial detector is ready to be

deployed with the target classifier and (b) the steps required to train it (Huber

et al., 2022, Figure 1).

Shapley values are then fed to the detector, which predicts whether the input is

adversarial or not.

To train the detector, we utilize the classifier to craft a large number of attacks

with PWWS (Ren et al., 2019). Then, both original and adversarial samples are fed to

SHAP to generate explanations and train the detector. Please note that (i) the training

procedure is only necessary once and (ii) the approach is model-agnostic as there are

no assumptions on f .

We evaluate our approach on PWWS-generated samples attacking a Bi-LSTM

(Schuster and Paliwal, 1997) model on four datasets. A few simple detector archi-

tectures such as SVM and Random Forests were tested; all reported similar (and

satisfactory) results (Huber et al., 2022, Table 1). Further experiments show that ad-

versarial detectors learn to perform the discrimination tasks accurately with as little

as ∼ 2, 500 samples (Huber et al., 2022, Figure 4). Generalization experiments—i.e.

training and testing on attacks coming from different datasets—report promising

results (Huber et al., 2022, Table 4). However, we can still observe a steep decline in

performance when compared to settings with no dataset mismatch.

The full study can be found in Appendix B.3.
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3.4.3 Study VII •

Following the path of study VI, our work " ’That Is a Suspicious Reaction!’: Interpret-

ing Logits Variation to Detect NLP Adversarial Attacks" (Mosca, Agarwal, et al., 2022)

further investigates measuring the model’s reaction to explicitly detect adversarial

input instances. Furthermore, it also builds its methodology based on the success of

prior work using logits-based explanations and metrics to discriminate manipulated

images (Aigrain and Detyniecki, 2019; Hendrycks and Gimpel, 2016; Yaopeng Wang

et al., 2021).

The study contributes as follows:

(1) We present a model-agnostic logits-based metric, termed Word-level Differential

Reaction (WDR), identifying words having a suspiciously high influence on the

prediction. Moreover, this metric is not dependent on the amount of output

classes.

(2) Leveraging WDR scores, we develop an adversarial detector capable of differen-

tiating between original and syntactically-correct adversarial text inputs. Our

methodology significantly outperforms the current state of the art in NLP.

(3) We show WDR-based detectors to possess full transferability capabilities and

to generalize across various datasets, attacks, and target models without any

need for retraining. Our test settings encompass transformers as well as both

contextual and genetic attack techniques.

(4) Our primary hypothesis is validated via post-hoc explainability. i.e., the detector

identifies adversarial patterns through the WDR scores. As an interesting insight,

only a small portion of these scores actually carry a strong signal for adversarial

detection.

Semantically similar adversarial attacks substitute a small number of words to

transform the output, implying that the replaced words significantly affect the output

(Alzantot et al., 2018). The WDR metric describes the reaction of a target model f to a
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given input x. To elaborate, the effect of removing an input word xi on the prediction

is quantified by the formula:

WDR(xi, f ) = f (x\xi)y∗ − max
y ̸=y∗

f (x\xi)y

where y∗ is the predicted class and f (x\xi)y indicates the output logit for class

y when the input sample x is presented without the word xi. Often, when x is

adversarial, we can expect to find perturbed words to have a negative WDR(xi, f ) as

their removal should restore the original prediction.

We feed the list of all WDR(xi, f )—i.e. one score for each word xi—as inputs to a

machine learning detector and label it as either original or adversarial. The training

follows analogous steps to study VI: i.e. (i) generation of a large number of adversarial

attacks, (ii) computation of WDR scores for both original and adversarial samples,

and (III) detector training via feeding WDRs.

After initial experiments to pick the best performing detector architecture (Mosca,

Agarwal, et al., 2022, Table 2)—i.e. XGBoost (T. Chen and Guestrin, 2016)—we evaluate

our pipeline against the state of the art from Mozes et al. (2021). With a collection of

28 configurations, i.e. 28 target model/dataset/attack triplets, the detector is exclusively

trained on a pair of these configurations and subsequently tested on the remaining

ones without any fine-tuning or retraining. Besides four different datasets, these

configurations include target models like BERT (Devlin et al., 2019), DistilBERT (Sanh

et al., 2019), and LSTM (Hochreiter and Schmidhuber, 1997) as well as adversarial

examples generated with greedy attacks (Ren et al., 2019, PWWS), contextual attacks

(Garg and Ramakrishnan, 2020, BAE), and genetic algorithms (W. Wang et al., 2019,

IGA).

We outperform Mozes et al. (2021) in 22 out of 28 configurations (equal in 1, worse

in 5), with an overall average F1 score improvement of 8.96pp (Mosca, Agarwal,

et al., 2022, Table 3). Additionally, our method demonstrates a high adversarial recall,

indicating a minimal number of false negatives, i.e. undetected attacks. Concerning

generalization, the detector performs well across several attacks and target models,

with noticeable drops in performance only on one dataset. Notably, the baseline FGWS

struggles against text attacks from BAE, able to introduce context-aware perturbations.
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Our study additionally assesses different decision threshold choices for the detector.

A lower threshold implies a more cautious approach, increasing the likelihood of

identifying an input as adversarial. Reducing the threshold probability from the

default of 0.5 to 0.15 can boost adversarial recall above 98% with only a minor loss in

F1-score (< 2%) (Mosca, Agarwal, et al., 2022, Table 4). This is beneficial in scenarios

where overlooking attacks (false negatives) has severe implications and attacks are

infrequent or false positives only have a minimal impact.

Plotting the detector’s SHAP values in relation to WDR scores indicates that only

the highest scores significantly influence the adversarial detector (Mosca, Agarwal,

et al., 2022, Figure 3). This aligns with our initial assumption that only a few word

replacements significantly alter output logits, making their variation a useful measure

for detecting input manipulations.

The full study can be found in Appendix A.4.

3.4.4 Discussion

Word-level adversarial examples are particularly challenging as they can deceive the

target model while preserving semantics and without introducing grammatical and

lexical inconsistencies. Both studies VI and VII show that instance-level explanation

signatures carry rich signals. These signals can be harnessed to detect word-level

adversarial attacks at scale, employing model-agnostic methodologies. While the

first study investigates the usage of Shapley value for this purpose, the second one

introduces a custom metric measuring the model’s reaction when specific words are

removed from the input.

Study VI already shows promising performance and generalization results com-

pared to the state of the art. Moreover, the study reveals that the explanations

space—as opposed to the input space—is simpler to navigate when it comes to

discriminating maliciously manipulated samples. However, the evaluation process

only examined a limited number of configurations, which may not comprehensively

represent real-world scenarios.
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On the other hand, study VII expands on the previous work and scales up the

number of experiments, which consider a wider range of target models and text

attack methods. Performance results show the approach to significantly outperform

the state of the art and demonstrate superior generalization capabilities.

Despite improvements, there are still limitations that are not solved by study VII. In

fact, the detection approach primarily focuses on word-level attacks and may struggle

against adaptive attacks and newer adversarial strategies operating at the sentence

level. Such attacks might not need to rely on a few token replacements to induce

an output change. At the same time, handling particularly long texts could lead to

extended computation times to calculate WDR scores.

3.5 enabling model controllability through human

explanations

3.5.1 Motivation

The opacity of LLMs—and more generally of complex NLP models—not only hampers

our ability to interpret and understand their inner workings, but also limits the

influence we can exert over them. Human oversight is an essential safeguard to create

highly-performing models that also align with ethical goals and values.

Especially as models’ capability and autonomy increase, it becomes vital to research

and develop tools and practices to control models effectively. The recent literature in

XAI and HitL has therefore seen increased research effort (Monarch, 2021; Z. J. Wang

et al., 2021), also contributing toolkits and frameworks for analyzing and improving

complex NLP models (P. Liu et al., 2021; E. Wallace, Tuyls, et al., 2019).

Some works also offer low-code interfaces for stakeholders with no technical profi-

ciency. Popular examples are ExplainaBoard from P. Liu et al. (2021), an interactive

leaderboard providing detailed diagnostics of NLP models, LIT from Tenney et al.

(2020), an open-source platform that visualizes NLP models and facilitates inter-

pretability, and AdapterHub Playground from Beck et al. (2022), a user-friendly
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platform for few-shot learning with language models. Nevertheless, we still observe

limited options to collect human rationale and use it as feedback to improve a given

model. This is especially true when it comes to tools that provide a visual UI for users

without field expertise.

3.5.2 Study VIII †

In our study "IFAN: An Explainability-Focused Interaction Framework for Humans

and NLP Models" (Mosca, Dementieva, et al., 2023), we investigate using explanations

to enhance oversight on deployed models and align them more closely with human

reasoning. Our work introduces a low-to-no-code framework that facilitates real-time

explanation-based interaction with NLP models.

The Interaction Framework for Artificial and Natural intelligence (IFAN) web interface1

is currently live and a quick video demo is available on YouTube2. Study VIII refers

to the framework’s state as of February 2023 (Mosca, Dementieva, et al., 2023) and its

contribution can be summarized as follows:

(1) IFAN presents an interface that allows users without strong technical proficiency

to contribute feedback to chosen NLP model explanations to rectify anomalies

and unwanted behaviors. This feedback is subsequently incorporated through

the use of efficient adapter layers.

(2) Additionally, our live platform provides a visual administration system and an

API for managing models, datasets, and users, along with their respective access

permissions.

(3) We showcase the effectiveness of our framework in reducing bias in a hate

speech classifier and propose a feedback-rebalancing step to counteract the

model’s forgetfulness across multiple updates.

As illustrated in Figure 3.9, the platform comprises three main blocks (Mosca,

Dementieva, et al., 2023, Section 3). The Backbone encompasses all machine learning

1 https://ifan.ml/

2 https://www.youtube.com/watch?v=BzzoQzTsrLo

https://ifan.ml/
https://www.youtube.com/watch?v=BzzoQzTsrLo
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Figure 3.9: Overall structure of IFAN (Mosca, Dementieva, et al., 2023, Figure 2): (i) Users

select a dataset or write a personalized input and (ii) select a model to be inspected.

(iii) Through the user interface, annotators have the ability to review the model’s

prediction along with two kinds of explanations – local and global. (iv) Whenever

the model exhibits irregular behavior, annotators have the opportunity to offer

feedback. (v) The collected feedback is stored and subsequently utilized to fine-

tune the model according to the human edits.

development elements, including datasets and models. We adhere to HuggingFace

standard formats (Wolf et al., 2020) and encapsulate the entire backbone within a

Docker3 image for fast deployment.

The User Interface serves as the visual component of the platform, facilitating all

human-machine interactions. It comprises of four main pages: landing page (home),

documentation, feedback, and configuration. While the first three are available to all users,

at least with limited functionalities, the last one is only accessible by authenticated

developers. Here, developers can make use of additional visual resources to create

and manage settings about models, datasets, users, and access rights.

Lastly, the Admin component manages the connection between the backbone and

the user interface. It stores all user data, rights, and feedback-receiving samples in a

3 https://www.docker.com

https://www.docker.com
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Figure 3.10: Hierarchical access tiers to platform functionalities (a) (Mosca, Dementieva, et al.,

2023, Table 1), and architecture of the NLP models integrated into IFAN (b).

Adapter layers are added to each language model block and are trainable with

human feedback (Mosca, Dementieva, et al., 2023, Figure 3).

PostgreSQL4 database instance. Communication is handled through Python Django5,

which integrates all aspects related to user authentication, API calls/responses, state

logs, and backbone resource locations.

Users are categorized into three tiers: developers, annotators, and unauthorized users

(see Figure 3.10a). Unauthorized users have limited access and are able to view model

predictions and explanations, however their feedback is not considered. Annotators,

with login credentials, can interact with the model, test it, view explanations, and pro-

vide feedback. Developers have full control over the platform, additionally managing

users, roles, API access, models, and datasets.

At any time, IFAN specifies an active dataset and an active model. Feedback is

incorporated into models using adapter layers (Houlsby et al., 2019), an emerging

fine-tuning technique. Adapters are parameter-efficient layers added on top of each

language model unit and are trained while freezing all other weights. If necessary,

they can also be disabled to retrieve the original model state (see Figure 3.10b).

Users can evaluate the active model on the active dataset and correct any misclassifi-

cations. The platform provides local and global explanations, attributing scores using

the LIME framework (M. T. Ribeiro, S. Singh, and Guestrin, 2016) and highlighting

4 https://www.postgresql.org
5 https://www.djangoproject.com

https://www.postgresql.org
https://www.djangoproject.com
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the most relevant tokens. Annotators can edit the highlighted tokens and send the

updated explanation as feedback, which is then used to fine-tune the adapter layers.

(a) Fine-tuning without Rebalancing (b) Fine-tuning with Rebalancing

Figure 3.11: Comparison between fine-tuning with and without feedback rebalancing: valida-

tion accuracy (top) and samples confidence (bottom). Samples receiving feedback

are in red while the others are in blue. Rebalancing the feedback dataset provides

a more stable run, without significantly impacting the overall learned knowledge

of the model.

We apply the platform to a hate speech detection case study. Here, our aim is to

debias a BERT model (Devlin et al., 2019) trained on the HateXplain dataset (Mathew

et al., 2021), which showed bias towards samples targeting the Jewish subgroup.

Results reveal that directly incorporating the feedback leads to model forgetfulness

and thus to a substantial decrease in performance (Mosca, Dementieva, et al., 2023,

Table 3). However, rebalancing the fine-tuning set by mixing the feedback with original

samples mitigates the issue and allows us to effectively incorporate feedback while

minimizing performance loss. Indeed, Figure 3.11 shows how the confidence of all

samples goes down when the model is fine-tuned. Introducing rebalancing, instead,
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affects only samples receiving feedback (in red), while the performance on original

texts (in blue) remains largely unchanged.

The full study can be found in Appendix B.4.

3.5.3 Discussion

The interpretability and controllability of modern NLP models are crucial for their

ethical and safe use (European Commission, 2020). Study VIII contributes to these

aspects by introducing IFAN—a real-time, explanation-based interaction framework

designed for NLP models and human annotators. Its development is also driven

by the need for tools that are more accessible by stakeholders without technical

proficiency.

The framework incorporates feedback through adapter layers for efficient and

iterative fine-tuning of models on specific tasks. Use case tests highlight IFAN’s effec-

tiveness in debiasing a hate speech classifier with minimal impact on performance.

As for the limitations, the feedback system is only designed for sequence-to-class

applications. It is worth noting that the focus on classification settings is a common

limitation among most XAI and EBHD approaches (Lertvittayakumjorn and Toni,

2021; Madsen, Reddy, and Chandar, 2022). At the same time, it still offers a limited

range of explanations and feedback options. Lastly, our experiments have not yet

identified clear patterns regarding the relationship between performance and feedback

hyperparameters. Further research and testing are needed to determine the optimal

number of feedback samples, fine-tuning epochs, and rebalancing ratio.

We remind the reader that study VIII refers to IFAN’s state in February 2023, after

which the team has continued working on addressing limitations as well as developing

new features. We advocate for continuing research in this area, as it promotes broader

and more diverse participation, enhancing fairness, transparency, and accountability.
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D I S C U S S I O N

The studies presented in this work contribute towards developing more interpretable,

robust, and controllable models. This section provides an overarching discussion for

each aspect together with key takeaways for the reader. At the same time, we reflect

on our methodology’s assumptions, successes, limitations, and learnings for future

work.

4.1 interpretability

Improving the interpretability of NLP models is the first aspect addressed by this

dissertation. Section 1.3 breaks down the broader goal into three specific objectives—

i.e. (A) assessing the applicability of explainability approaches to NLP, (B) tailoring explainers

to NLP inputs, and (C) extending explanations to context-aware applications.

Five studies address these objectives. Specifically, study I provides a thorough

review of 41 SHAP-based explainability approaches. All methods are organized

across five identified research directions and are examined under several criteria.

Most importantly, for each method, the study contributes a concise yet comprehensive

assessment regarding its suitability for NLP. Study II develops GrammarSHAP, a

model-agnostic hierarchical explainer that can account for the sentence structure and

dependencies between multi-word constituents. Finally, studies III, IV, and V work

on applying explainability to NLP models that account for context in the form of

additional input modes. The first two carry out experiments on hate speech detection

for tweets coupled with user and network data, whereas the third works on survey

data presenting both structured and unstructured answer formats.
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Our methodology’s successes are evident as it provides valuable guidelines for

those involved in NLP research and practice (study I), demonstrates the adaptability

of explainers for natural language inputs (study II), and extends current approaches

to context-sensitive multi-modal applications (studies III, IV, and V). Nonetheless, it

remains important to acknowledge its limitations.

First and foremost, the proposed methodology is predominantly tailored to sequence-

to-class tasks. Such a focus reflects the existing literature and provides a useful

simplification for research. However, it also reveals a gap between XAI and more

complex sequence-to-sequence tasks. While many feature attribution methods can be

applied iteratively and thus extended to more complex tasks, the necessary steps are

often not straightforward and mark an underexplored area of this work and—more

generally—XAI research.

Secondly, our studies heavily rely on the SHAP framework. This choice is motivated

by SHAP’s solid theoretical foundation, its general applicability, and its popularity

across several domains. However, we recognize that this reliance on SHAP may limit

the scope of our research. Future research could benefit from scrutinizing alternative

frameworks and considering new emerging ideas as a foundation for their work.

Lastly, several of our reviewed or proposed approaches may lead to high computa-

tional efforts, particularly when dealing with long texts. This is due to their iterative

nature, which involves processing one token (or a few) at a time. In practice, this may

result in slower running times despite scaling linearly with the input length.

Takeaways:

• Model interpretability is necessary and leads to a much deeper understanding

than merely inspecting performance metrics.

• Based on the existing literature, looking at XAI approaches beyond the NLP

field is a must (and very fruitful) to keep progressing in the field.

• Post-explainability frameworks can be adapted and extended to fit NLP applica-

tions and relevant input characteristics thereof—text structure, word interactions,

multi-modality, and context-dependency.
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• XAI can turn models into a source of knowledge, but we are far from one-fits-all

interpretability approaches. Combining complementary explanation approaches

and formats is a great alternative so far.

• There is a strong focus on sequence-to-class applications, making the extension

to sequence-to-sequence the priority for future work.

4.2 robustness

Section 1.3 narrows down the broad scope of improving robustness to the objective

of (D) detecting adversarial attacks via model explanations. We argue that adversarial

detection is more profitable than standard defenses as attacking attempts can be

recognized explicitly. Such ability enables developers to collect valuable manipulated

samples as well as identify adversarial third parties. This dissertation presents two

studies contributing to this objective.

Both study VI and study VII investigate the usage of instance-level model expla-

nations to detect word-level adversarial text attacks. Both works train detectors on

a large number of original and manipulated samples alongside their explanation

signatures. Such detectors learn to recognize patterns signaling adversarial perturba-

tions, therefore creating an additional layer of defense when deployed together with

the targeted model. The first work extracts such signals through SHAP explanations

whereas the second proposes an ad-hoc custom metric (WDR) to quantify the model’s

reaction to the input.

Our works further demonstrate the strong link between model interpretability and

robustness discussed in section 2.6. Furthermore, especially with the improvements

introduced by study VII, our proposed methodology substantially outperforms exist-

ing methods and contributes to progress in the field. One of the main successes is the

strong generalization capabilities that XAI-based adversarial detectors show. At the

same time, they are model- and dataset-agnostic while allowing for a high degree of

customization.
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As partially discussed already in the methodology, among the limitations we

acknowledge the primary focus on word-level attacks or rather on attacks relying on

a few token replacements. Also, our approaches’ running time scales linearly with the

input length, which may be undesirable when dealing with particularly long texts.

Finally, while our studies stand out in performance, future work could benefit from a

more thorough comparison using a wider array of metrics specifically designed for

this purpose.

Viewed from a broader standpoint, defense strategies can potentially inspire and

stimulate novel and improved attack techniques. A case in point is BAE (Garg and

Ramakrishnan, 2020), capitalizing on more resilient architectures like BERT to generate

highly-effective contextual attacks. In the context of our work, the proposed defense

strategies could lead to novel adaptive attacks operating at the sentence level.

Takeaways:

• Interpretability and robustness are deeply connected. Anomalous behavior in

one aspect has direct implications on the other.

• Model explanations carry strong and easy-to-read patterns to explicitly detect

adversarial examples. Following this intuition, model/task-agnostic detectors

can be trained and deployed alongside models.

• Looking beyond feature attribution explanations is necessary for future research

to avoid overspecializing on word-level attacks and overlooking sentence-level

manipulations.

4.3 human oversight

In the context of this work, we narrow down the aspect of controllability to the

objective of (E) enabling model controllability through human explanations (see section 1.3).

More in detail, we work on human-model interaction pipelines enabling annotators

to influence and control deployed models via feedback. Special consideration is given
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to stakeholders with no technical proficiency and thus to the user-friendliness of the

framework’s design.

We contribute one study (and a prototype) to this objective. Study VIII proposes

IFAN—a real-time explanation-based framework for the interaction between models

and human annotators. Through its UI, users can evaluate an active model, inspect

predictions and explanations, and edit them to provide feedback and steer the model’s

behavior accordingly. Beyond that, IFAN’s live platform provides a visual admin

system and API to effectively manage models, datasets, as well as users and their

access rights.

Overall, results show the methodology to be effective at iteratively incorporating

feedback into models through adapter layers. Experiments in debiasing a hate speech

classifier show that mixing feedback samples with original ones mitigates the issue

of model forgetfulness and drastically reduces the impact on performance. However,

while preserving performance as we update and control the model is a success, human

feedback is rarely capable of further improving predictive capabilities in terms of

standard metrics.

From a broader perspective, there are also other challenges and aspects that should

be considered for future development of frameworks like IFAN. Preserving high-

quality of human feedback is complex and vulnerable to misuse by adversarial agents,

especially when a small group of annotators can influence the model significantly (Al

Kuwatly, Wich, and Groh, 2020). Future work should incorporate a strict management

system like IFAN’s and track annotators’ impact to increase trustworthiness.

Poor models and interfaces can also lead to user frustration and affect feedback

quality (Lertvittayakumjorn and Toni, 2021). The issues can be mitigated by using

state-of-the-art models and through user studies to design suitable interfaces. On

the other hand, convincing explanations may lead to an overestimation of a model’s

capabilities, causing misplaced trust. To address this, we suggest providing a diverse

range of explanations for users (Madsen, Reddy, and Chandar, 2022) and detailed

model reports for developers, offering a comprehensive understanding of the models

to be deployed.
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Takeaways:

• Explanations are a great channel for models and humans to interact.

• Incorporating feedback with parameter-efficient tuning can positively influence

a model to be in line with our rationale, but is unlikely to improve the overall

performance by much.

• Model controllability is a challenge that needs to be addressed holistically and

requires efforts from many perspectives: meaningful explanations, effective

feedback incorporation, user-friendly interface design, strict security features,

and ad-hoc resources management tools.

• When developing an interaction framework, accurate models and well-designed

interfaces are not negotiable—even at the inception stage.



5
C O N C L U S I O N

This dissertation is a step towards a more human-centric development of NLP models,

emphasizing the key requirements of (1) interpretability, (2) robustness, and (3) human

oversight. We place explainable artificial intelligence at the core of our methodology,

leveraging model explanations to pursue all three goals.

A total of eight studies were presented in this work. Five studies (I-V) contribute to

the aspect of model interpretability across three objectives. The first study reviews

SHAP-based methods with the aim of (A) assessing the applicability of explainability

approaches to NLP. The second study proposes GrammarSHAP as an instance of (B)

tailoring explainers to NLP inputs. The remaining three studies work on (C) extending ex-

plainability to context-aware applications by interpreting multi-modal models leveraging

context in conjunction with text.

Two studies (VI-VII) contribute to improving model robustness. This is achieved

by developing state-of-the-art model-agnostic approaches for (D) detecting adversarial

attacks via model explanations. Finally, one study (VIII) contributes to improving human

oversight. To this end, it develops IFAN, an interaction framework between NLP

models and human annotators with the aim of (E) enabling model controllability through

human explanations.

Our work shows the potential in terms of post-hoc explainability approaches avail-

able and how they can add value to NLP research. At the same time, methods can

be adapted and extended meaningfully for NLP applications, even when these en-

tail context through multi-modal inputs. Our methodology also reveals that model

explanations connect interpretability, robustness, and controllability as interacting

dimensions of human-centricity. We demonstrate that anomalies in model explana-

tions are directly correlated with adversarial manipulations. Based on this principle,
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our work develops state-of-the-art model-agnostic adversarial detectors, providing

future research with a strong baseline to defend models against word-level attacks.

Finally, results collected from IFAN show that editing explanations can be utilized

to incorporate feedback into NLP models—fixing undesired outputs and effectively

controlling their behavior according to human intentions.

We strongly encourage future research to continue work on the key requirements

to achieve human-centric NLP systems. Our findings suggest to not explore the

various aspects in isolation, but rather keep investigating their interconnections while

incorporating additional ones—e.g. fairness, privacy, and accountability. Following a

human-centric approach should be at the heart of future AI research. By focusing on

the needs and values of human users, we can develop systems that not only perform

well, but are also trusted and accepted by the people they serve.
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Abstract

Model explanations are crucial for the transpar-
ent, safe, and trustworthy deployment of ma-
chine learning models. The SHapley Additive
exPlanations (SHAP) framework is considered
by many to be a gold standard for local explana-
tions thanks to its solid theoretical background
and general applicability. In the years following
its publication, several variants appeared in the
literature—presenting adaptations in the core
assumptions and target applications. In this
work, we review all relevant SHAP-based inter-
pretability approaches available to date and pro-
vide instructive examples as well as recommen-
dations regarding their applicability to NLP use
cases.

1 Introduction

Several methods have been proposed to address
the issue of opacity in modern machine learning
models. Most notoriously, explanations are funda-
mental for Deep Neural Networks (DNNs) (Devlin
et al., 2019; Madsen et al., 2021; Mosca et al.,
2021) as these automatically learn millions of pa-
rameters and behave like black-boxes. Lundberg
and Lee (2017) proposes SHapley Additive exPla-
nations (SHAP), a unified local-interpretability
framework with a rigorous theoretical foundation
on the game-theoretic concept of Shapley values
(Shapley, 1953).

SHAP is nowadays considered a core contri-
bution to the field of eXplainable Artificial Intel-
ligence (XAI). Following its publication, a vari-
ety of explainability approaches based on SHAP’s
methodology has populated the literature and this

Shapley
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Inputs

SHAP

Framework (2017)
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Efficiency
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Figure 1: This work identifies five research directions
pursued by Shapley- and SHAP-based approaches in
XAI. Each direction, together with a few notable meth-
ods as examples, has been indicated by a different color.

trend continues to grow. Some present a new ver-
sion of SHAP tailored to a certain type of input
data—e.g. graphs (Yuan et al., 2021) and text
(Chen et al., 2020)—or to specific models such
as random forests (Lundberg et al., 2018). Others,
instead, modify SHAP’s underlying assumptions—
e.g. features independence—to increase the origi-
nal framework’s flexibility for cases in which they
are too strict or overly simplistic (Frye et al., 2019).

In this work, we (1) identify five broad research
directions inspired by SHAP, (2) review available
SHAP-based (or Shapley-value-based) approaches
as members of such categories, and (3) investigate
their applicability in the domain of Natural Lan-
guage Processing (NLP).

Our work reviews 41 methods with a particu-
lar focus on their core assumptions, input require-
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ments, explanation form, and available implemen-
tations. Furthermore, we provide NLP researchers
with use-case-based recommendations and instruc-
tive examples.

2 Background

For the sake of clarity, we provide a gentle intro-
duction to Shapley values and the methods for their
estimation, most notably SHAP. All concepts will
be explained informally, resorting to formalities
when necessary.

2.1 Shapley Values
Shapley Values are a concept from game theory,
originally developed as a measure to fairly dis-
tribute a reward among a set of players contribut-
ing to a certain outcome (Shapley, 1953). In the
context of machine learning models, the players in-
volved are the input features and the outcome is the
model’s decision, Shapley values attribute an im-
portance score to each part of the input (Lundberg
and Lee, 2017).

Given the set of input features F =
{1, 2, . . . , p}, all features in a certain coalition
S ⊆ F cooperate towards the outcome val(S)—
with the default val(∅) = 0. Shapley values re-
distribute the total outcome value val(F) among
all features based on their average marginal con-
tribution across all possible coalitions S. More
specifically, feature i’s marginal contribution w.r.t.
a coalition S:

∆val(i, S) = val(S ∪ {i})− val(S)

is averaged across all S ⊆ F \ {i}. Hence, the
corresponding Shapley values ϕval(i) measures its
contribution based on the formula:

ϕval(i) =
∑

S⊆F\{i}

|S|!(p− |S| − 1|)!
p!

∆val(i, S)

Here, the coefficient |S|!(p−|S|−1|)!
p! is used as nor-

malization term based on the number of choices
for the subset S. This redistribution of the total
outcome val(F) respects the four properties of:

Efficiency: All features contributions add up to
the total outcome, i.e.

∑
i∈F ϕval(i) = val(F) .

Symmetry: If val(S ∪ {i}) = val(S ∪ {j}) for
all S ⊆ F \ {i, j}, then ϕval(i) = ϕval(j)

Dummy: If val(S ∪ {i}) = val(S) for all S ⊆
F, then ϕval(i) = 0

Additivity: In the presence of a single game with
two outcomes val1 and val2, then Shapley val-
ues are additive w.r.t. the combined outcome, i.e.
ϕval1+val2(i) = ϕval1(i) + ϕval2(i)

2.2 Shapley Values Approximation and SHAP
The idea of utilizing Shapley values to compute fea-
ture attribution scores precedes the SHAP frame-
work (Lipovetsky and Conklin, 2001; Song et al.,
2016). In this case, the outcome val of the game
is the prediction of a machine learning model f
and Shapley values ϕf (i) measure the influence
that each feature i has based on its current value.
The early literature also worked on approximation
strategies, as the exponential number of coalitions
renders the exact estimation of Shapley values un-
feasible (Štrumbelj and Kononenko, 2014; Datta
et al., 2016). The main idea from these works is to
compute ϕf (i) only for a smaller selection of sub-
sets S ⊆ F and to estimate the effect of removing
a feature by integrating over training samples. This
eliminates the need to retrain the model for each
choice of S.

The work from Lundberg and Lee (2017) in-
troduces a new perspective that unifies Shapley
value estimation with popular explainability meth-
ods such as LIME (Ribeiro et al., 2016), LRP
(Binder et al., 2016), and DeepLIFT (Shrikumar
et al., 2017). Furthermore, they propose SHAP val-
ues as a unified measure of feature importance and
prove them to be the unique solution respecting the
criteria of local accuracy, missingness, and consis-
tency. The authors contribute a library of methods
to efficiently approximate SHAP values in a variety
of settings:

KernelSHAP: Adaptation of LIME—hence
model-agnostic—to approximate SHAP values. As
it works for any model f , it cannot make any as-
sumption on its structure and is thus the slowest
within the framework.

LinearSHAP: Specific to linear models, uses
the model’s weight coefficients and optionally ac-
counts for inter-feature correlations.

DeepSHAP: Adaptation of DeepLIFT—hence
specific to neural networks–to approximate SHAP
values. Considerably faster than its model-agnostic
counterpart as it makes assumptions about the
model’s compositional nature.

While not initially presented in Lundberg and
Lee (2017), the following algorithms were later
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Figure 2: Example of explanation for sentiment analysis that can be generated with the SHAP library, e.g. with
KernelSHAP. The base value indicates the model’s average prediction. Each feature—i.e. word—contributes to the
outcome, thus justifying the difference between the average and the current outcome.

added as part of the framework:

PartitionSHAP: Faster version of KernelSHAP
that hierarchically clusters features. This hierarchy
defines feature coalitions based on their interac-
tions.

GradientSHAP: An extension of the Integrated
Gradients (IG) method (Sundararajan et al., 2017)—
again specific to neural networks—that aggregates
gradients over the difference between the expected
model output and the current output.

TreeSHAP: A fast method for computing exact
SHAP values for both trees and ensembles (Lund-
berg et al., 2020a). In comparison to KernelSHAP,
it also accounts for interactions among features.

Other minor approaches—PermutationSHAP,
SamplingSHAP, ExactSHAP, and MimicSHAP—
are also available in the official library1. To avoid
confusion, we point out that the implementations
have slightly different names: they use "Explainer"
instead of "SHAP". For instance, KernelSHAP and
DeepSHAP are implemented with the names of
KernelExplainer and DeepExplainer respectively.
Figure 2 sketches an explanation generated with
SHAP.

3 Search and Selection Criteria

As the popularity of SHAP increases, also the num-
ber of approaches based on it or directly on Shapley
values has been on the rise. In fact, ∼ 3, 200 of the
∼ 6, 900 papers citing Lundberg and Lee (2017)
are from 2021, an exponential increase when com-
pared to previous years (1563, 567, and 118)2.

Besides the papers already known to us, we
manually screened all works citing SHAP with at
least 15 citations2. This systematical search, based

1https://github.com/slundberg/shap
2All queries are performed with Google Scholar. Accessed

on 10.05.2022.

on the assumption that SHAP-based approaches
should at least reference Lundberg and Lee (2017),
helped us uncover several relevant contributions
and mitigate the selection bias induced by our pre-
vious knowledge. The threshold of 15 citations
was introduced to speed up our manual search and
to filter out works that have not received the re-
search community’s attention. To account for tem-
poral bias—i.e. that publications accumulate cita-
tions over time—we lowered the threshold to 10
for papers published in the most recent years (2021
and 2022)2. We only consider and review papers
that contributed new SHAP-based approaches and
exclude those—like (Wang, 2019) and (Antwarg
et al., 2019)—utilizing SHAP (almost) off-the-
shelf. Similarly, we exclude works such as Wang
et al. (2020) and Huber et al. (2022) utilizing Shap-
ley values for purposes not directly connected with
explainability.

4 Existing Reviews

Previous reviews like Linardatos et al. (2021),
Vilone and Longo (2020), and Madsen et al. (2021)
present extensive overviews of explainability meth-
ods, but only briefly mention SHAP and a few of
its derivates. Others—such as Covert et al. (2021),
Sundararajan and Najmi (2020), and Kumar et al.
(2020)—review some Shapley-based methods in
detail (between 5 and 9) but do not construct a
comprehensive review. Our work, in contrast, sig-
nificantly extends this range and covers more than
40 approaches.

5 Review: SHAP-Based Approaches

Several works proposed methods based on SHAP,
or more generally on Shapley values, following the
contribution from Lundberg and Lee (2017). While
the changes and variations introduced have been at
times criticized for not being as rigorous as SHAP
in following its core assumptions (Sundararajan
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and Najmi, 2020), SHAP-based methods continue
to increase in both quantity and popularity.

Our review categorizes SHAP-based approaches
available to date based on how they differ from and
how they improve on the original SHAP framework.
We identify five broad categories in the existing
literature, each one of them describing a different
research direction pursued by its members:

(C1) Tailored to Different Input Data: This cate-
gory contains approaches specialized on spe-
cific input data structures such as graphs
(Wang et al., 2021), structured text (Chen
et al., 2020), and images (Teneggi et al., 2021).
In some cases, approaches are used comple-
mentary for applications dealing with multi-
modal inputs (Wich et al., 2021; Mosca et al.,
2022b).

(C2) Explaining Different Models: Methods in
this class are specifically designed to explain
predictions from particular types of machine
learning models such as random forests (Lund-
berg et al., 2018; Labreuche and Fossier,
2018) and neural networks (Ghorbani and
Zou, 2021). Hence, these are model-specific.

(C3) Modifying Core Assumptions: SHAP treats
features as independent. Newer methods of-
fer the possibility to account for dependen-
cies between features (Frye et al., 2019) and
for causal structures behind their interactions
(Heskes et al., 2020).

(C4) Producing Different Explanations Types:
SHAP is a framework for local feature-
attribution explanations, i.e. it attributes
scores to input components based on their
instance-level contributions. Methods in this
category have a different scope and generate
explanations that convey a different type of
information. This can vary from global expla-
nations (Covert et al., 2020) to counterfactual
explanations (Singal et al., 2019) and concept
explanations (Yeh et al., 2020).

(C5) Estimating Shapley Values More Effi-
ciently: These approaches comprise alterna-
tive strategies for the approximation of Shap-
ley values. Their focus is on leveraging prior
knowledge about the data and model to im-
prove the approximation efficiency and accu-
racy (Messalas et al., 2019; Chen et al., 2018).

Clearly, these categories are not designed to be
exclusive. Therefore, an approach can fall in more
than one if it differs from SHAP in multiple aspects.
Table 1 provides an overview of all approaches with
their main characteristics. As one can observe, the
majority of approaches are identified as part of
more categories, i.e. research directions.

5.1 Approaches Tailored to Different Inputs

SHAP does not make strong assumptions on the
target model’s input. While this suggests that it is
suitable for all input types, its lack of specificity
results in limitations when applied directly to dif-
ferent inputs than tabular data.
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Figure 3: Example of hierarchical explanation that can
be generated with HEDGE (Chen et al., 2020) for a
sentiment analysis model. Each token is colored by
contribution: negative (red), neutral (yellow), and posi-
tive (green). Going one level lower represents a token-
breakdown step and thus more fine-grained Shapley
values.

For text data, only measuring each individual
feature’s effect is an oversimplification, as words
present strong interactions and their meaning and
contribution heavily rely on the context. Thus,
when it comes to text data, only considering single
words as features is quite restrictive and relevance
scores should be applied to multi-level tokens or
even to entire sentences. Hierarchical Explanation
via Divisive GEneration (HEDGE) (Chen et al.,
2020) is an example of a SHAP-based method ad-
dressing this issue for (long) texts. Based on the
weakest token interactions, it iteratively divides
the text into shorter phrases and words in a top-
down fashion. At each level, a relevance score is
attributed to each token, resulting in a hierarchical
explanation (Chen et al., 2020). PartitionSHAP,
recently added to the official SHAP repository3,
follows a similar strategy by creating hierarchical
features coalitions and measuring their interactions.

3https://github.com/slundberg/shap
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Method Categories Description NLP Applicability
/ Implementation

SHAP The original SHAP framework including the methods: Ready Off-the-Shelf
(Lundberg and Lee, 2017) KernelSHAP, LinearSHAP, DeepSHAP, etc. Python

AVA (C5) Combines the explanations of nearest Adaptable
(Bhatt et al., 2020) neighbors to explain a given instance n.a.

ASV (C1) (C3) Relaxes the symmetry axiom of Shapley values Potentially Applicable
(Frye et al., 2019) to incorporate causal structure into explanations R

BShap (C4) (C5) Baseline approach to facilitate comparison Adaptable
(Sundararajan and Najmi, 2020) between different Shapley value based methods n.a.

C- and L-Shapley (C3) (C5) Efficient feature attribution method that models data Ready Off-the-Shelf
(Chen et al., 2018) as a graph by considering only neighboring features TensorFlow

CASV (C1) (C2) Shapley value adaptation to account for counterfactuals Not Relevant
(Singal et al., 2019) (C3) (C4) by adhering to the Rubin Causal Model n.a.

Causal Shapley (C1) (C3) Computing feature importance on data with (partial) Potentially Applicable
(Heskes et al., 2020) causal ordering using Pearl’s do-calculus R

ConceptSHAP (C4) Unsupervised discover of concepts inherent to the data Ready Off-the-Shelf
(Yeh et al., 2020) and model based on Shapley values PyTorch

DASP (C3) (C5) Polynomial-time approximation of Adaptable
(Ancona et al., 2019) Shapley values in DNNs TensorFlow

Data Shapley (C4) Shapley-based importance attribution method Potentially Applicable
(Ghorbani and Zou, 2019) for individual data instances in the training set TensorFlow

DeepSHAP v2 (C2) (C5) Computes efficiently SHAP values for DNNs with Adaptable
(Chen et al., 2021) an extension to explain stacks of mixed model types n.a.

GrammarSHAP (C1) (C3) Hierarchical explanations for text inputs Adaptable
(Mosca et al., 2022a) based on the sentence grammatical structure n.a.

gSHAP (C4) Generates intuitive Shapley-based global Potentially Applicable
(Tan et al., 2018) by aggregating local explanations n.a.

h-SHAP (C1) (C5) Hierarchical implementation of Shapley values for Potentially Applicable
(Teneggi et al., 2021) their efficient computation in image data PyTorch

HEDGE (C1) (C3) Hierarchical explanations based on feature Ready Off-the-Shelf
(Chen et al., 2020) interaction detection specifically for text data PyTorch
Integrated Hessians (C5) Extension of Integrated Gradients to explain Ready Off-the-Shelf

(Janizek et al., 2021) pairwise feature interactions in NNs PyTorch
lossSHAP (C2) (C4) Obtain global explanations by aggregating Potentially Applicable

(Lundberg et al., 2020b) local explanations with TreeSHAP Python
MCDA Explainer (C1) (C2) Proposes the influence index, which is an Not Relevant

(Labreuche and Fossier, 2018) (C3) extension of Shapley values for MCDA tree models n.a.
Neuron Shapley (C2) (C4) Quantifies the contributions of single neurons to Adaptable

(Ghorbani and Zou, 2021) single predictions and overall model performance TensorFlow
R2 decomposition (C5) Feature importance attribution based on Potentially Applicable

(Redell, 2019) Shapley value variance decomposition R
Shapley Flow (C1) (C3) Enables the addition of a causal graph Potentially Applicable

(Wang et al., 2021) encoding relationships among input features Python
SAGE (C4) (C5) Efficiently quantifies each feature’s contribution to Potentially Applicable

(Covert et al., 2020) the model’s performance for global explainability Python
SealSHAP (C4) Shapley-based usefulness measure of individual Ready Off-the-Shelf

(Parvez and Chang, 2021) data sources for transfer learning TensorFlow
Shap-C (C4) (C5) Combination of computing counterfactuals and Potentially Applicable

(Ramon et al., 2019) Shapley Values Python
Shapley Residuals (C4) Captures information lost by KernelSHAP in Shapley Potentially Applicable

(Kumar et al., 2021) Residuals, which characterize feature dependence n.a.
Shapley Taylor index (C3) (C5) Generalization of the Shapley value that attributes Potentially Applicable

(Dhamdhere et al., 2020) the model’s prediction to interactions of subsets of features n.a.
Shapr (C3) Extends KernelSHAP to handle data with dependent Potentially Applicable

(Aas et al., 2021) features and produce more realistic explanations R
SPVIM (C4) (C5) Global variable importance measure using an efficient Not Relevant

(Williamson and Feng, 2020) regression-based Shapley value estimator Python and R
SubgraphX (C1) (C2) Explain GNNs by identifying important subgraphs Not Relevant

(Yuan et al., 2021) (C5) using Shapley values as importance measures PyTorch
SurrogateSHAP (C5) An XGBoost tree model is trained as a surrogate model Potentially Applicable

(Messalas et al., 2019) on the target model and TreeSHAP is applied to explain it n.a.
TreeSHAP (C2) (C5) Fast and exact method to estimate SHAP values Potentially Applicable

(Lundberg et al., 2018) for tree models and ensembles of trees Python
TimeSHAP (C1) (C2) Adapts KernelSHAP to sequential data and Potentially Applicable

(Bento et al., 2021) (C4 ) produces feature, event and cell-wise explanations n.a.

Table 1: Overview of available Shapley- and SHAP-based methods. For each method we also indicate the categories
it belongs to, its main idea and intuition, and its applicability to NLP together with the available implementations.
See 6.1 for more details about our NLP-applicability assessment.
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Figure 3 sketches an example of a hierarchical ex-
planation for text data.

For models trained on graph data, especially
graph DNNs, Yuan et al. (2021) proposed to ex-
plain predictions by using Shapley values as a
measure of subgraph importance. The resulting
method—named SubgraphX—also captures the in-
teractions between different subgraphs.

On images, SHAP can face computational lim-
itations as the number of features, i.e. pixels, can
become extremely large. h-SHAP (Teneggi et al.,
2021) efficiently retrieves exact Shapley values
by hierarchically excluding irrelevant image areas
from the computation. This is done following the
observation that, if a certain area in the image is un-
informative, so are its constituent sub-areas, which
are therefore not worth exploring.

5.2 Approaches Explaining Different Models

Explanation methods making fewer assumptions
on the target classifier benefit from better applica-
bility as they can explain a wider range of models.
However, this can hinder explanations in terms of
accuracy, information granularity, and computa-
tional efficiency. As we have already seen in 2.2:
KernelSHAP has the key advantage of being model-
agnostic, but it is drastically more inefficient than
its DNN-specific counterpart DeepSHAP (Lund-
berg and Lee, 2017).

An example of a highly-specialized explainabil-
ity method is TreeSHAP, presented by Lundberg
et al. (2018) as an extension of the SHAP frame-
work. This approach, only applicable to decision
trees or ensembles thereof, is a highly efficient
algorithm for exact SHAP values retrieval. Not
only the approach needs considerably less compu-
tational effort than the more general variants such
as KernelSHAP, but it leverages the decision tree
structure to compute SHAP interaction values and
thus captures pairwise interactions between fea-
tures.

Ghorbani and Zou (2021) proposes Neuron Shap-
ley, a framework targeting DNN models which
is able to quantify each individual neuron’s con-
tribution to single predictions and overall model
performance. An example of the kind of explana-
tion enabled by Neuron Shapley is visualized in
figure 4. By analyzing interactions between neu-
rons and picking those which exhibit the largest
Shapley value, this method is particularly suitable
for identifying neurons responsible for biases and
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Figure 4: Sketch of a Neuron Shapley explanation for
the 768 neurons of BERT output layer (Devlin et al.,
2019). A Shapley value is assigned to each neuron
depending depending on how they contribute towards
the prediction (green) or against it (red).

vulnerabilities (Ghorbani and Zou, 2021).

5.3 Approaches Modifying Core Assumptions

Assumptions made by SHAP can be at times too
restrictive or simplistic, which can prevent explana-
tions from accessing and leveraging crucial infor-
mation such as dependency relationships between
input features. For instance, already the symmetry
property of Shapley values treats features as inde-
pendent. While this can be true in some cases, for
instance when dealing with tabular data with uncor-
related variables, it is an oversimplification when it
comes to texts, images, and more structured data.

Frye et al. (2019) introduces Asymmetric Shapley
Values (ASV), which drops the symmetry assump-
tion and enables the generation of model-agnostic
explanations incorporating any causal dependency
known to be present in the data. Similar approaches
are:

• Causal Shapley (Heskes et al., 2020), addi-
tionally requiring a partial causal ordering of
the features as input.

• Shapley Flow (Wang et al., 2021), which lever-
ages a causal graph, encoding relationships
among input features.

• Shapr (Aas et al., 2021), an extension of Ker-
nelSHAP relaxing the feature independence
assumption.
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Figure 5: Example of SAGE explanation for a sentiment
analysis model. Since the number of global features is
as large as the vocabulary, words need to be grouped
together (e.g. by similarity) to reduce the number of
features to be explained.

5.4 Approaches Producing Different
Explanation Types

The SHAP framework and many of its deriva-
tives mainly focus on generating local explanations
based on feature importance. However, the general
applicability of Shapley values combined with its
strong foundations also offers potential for differ-
ent explainability settings. More recent works have
explored the usage of Shapley values to build other
types of explanations conveying different kinds of
information about the model and the available data.

For instance, Data Shapley (Ghorbani and Zou,
2019) estimates the importance of each training
sample for a given machine learning model. Sim-
ilarly, SealSHAP (Parvez and Chang, 2021) at-
tributes usefulness scores to data sources for trans-
fer learning.

Covert et al. (2020) introduces Shapley Addi-
tive Global importancE (SAGE), an explainability
method analogous to SHAP but with a core focus
on global explainability. More in detail, SAGE is a
model-agnostic method that quantifies the predic-
tive power of each input feature for a given model
while also accounting for their interactions. An
instructive example for NLP is shown in figure 5.

Alongside local and global explainability, works
like Yeh et al. (2020) adapt the notion of Shapley
values for concept analysis (Sajjad et al., 2021).
Given a set of concepts extracted from a model,
the authors define the notion of completeness as a
measure to indicate how sufficient such concepts

are in explaining the model’s predictive behavior.
Furthermore, they propose ConceptSHAP, an un-
supervised approach able to automatically retrieve
a set of interpretable concepts without needing to
know them in advance.

5.5 Approaches Proposed for Estimation
Efficiency

While Shapley values convey useful information
about the importance or contribution of a certain in-
put component, their computation quickly becomes
infeasible as coalitions grow exponentially w.r.t. in-
put size. The SHAP framework already addresses
this issue by providing more efficient estimation
techniques. Nevertheless, later works continued to
explore improvements to further decrease the com-
putational effort necessary to produce meaningful
explanations.

Chen et al. (2018) leverage features dependen-
cies in image and text data to build two efficient
algorithms, L-Shapley and C-Shapley, for Shapley
values estimation. Their methods only consider
a subset of the possible coalitions based on the
data’s underlying graph structure, which connects
for instance adjacent words and pixels in texts and
images respectively.

SurrogateSHAP (Messalas et al., 2019), instead,
trains an XGBoost tree as a surrogate for the origi-
nal model. The surrogate is then used to generate
SHAP explanations, which considerably reduces
the computational cost compared to directly apply-
ing SHAP to the original (more complex) model.

6 Relevance for NLP Research

Large and complex neural NLP models—such as
BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020)—are used extensively in research and
industry. The trend is justified by the strong corre-
lation between models’ size and their performance
(Madsen et al., 2021; Brown et al., 2020). Natu-
rally, increasing model complexity causes a higher
demand for NLP explainability. In this section, we
match this demand to the reviewed SHAP-based
methods and provide researchers with use-case-
based recommendations.

6.1 Applicability of the Approaches

In table 1 (rightmost column), we also evaluate
each SHAP-based explainability approach based
on its applicability to neural NLP models. In this
regard, our assessment considers availability of
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implementations, suitability for text data, and con-
ceptual complexity as relevant factors. We organize
all reviewed approaches into four tiers:

• Ready Off-the-Shelf : The code is available
and is ready to be used as-is.

• Adaptable: The code is available and there are
straightforward steps for its adaptation to NLP
use cases. Alternatively, no code is available
but there are clear instructions for an ad-hoc
implementation for the NLP domain.

• Potentially Applicable: Strong assumptions
and substantial implementation work are re-
quired to apply the method to NLP.

• Not Relevant: The method is only applicable
to other domains and it does not provide any
apparent value for explaining NLP models.

6.2 Recommendations for NLP Use Cases

To build feature attribution explanations, HEDGE
(Chen et al., 2020) is arguably the most suitable
choice, as hierarchical explanations can contain
more information than their non-hierarchical coun-
terpart, e.g. generated with SHAP. The strength of
HEDGE becomes even more apparent when deal-
ing with long texts, where sentence structure is
of major relevance for the model to be explained.
L-Shapley, C-Shapley (Chen et al., 2018) and Parti-
tionSHAP can also be considered where hierarchi-
cal explanations are not necessary and very compu-
tationally efficient methods are required instead.

For model debugging, Neuron Shapley is suit-
able to identify neurons that are responsible for
unintended biases or that are particularly vulnera-
ble to adversarial attacks (Ghorbani and Zou, 2021).
Pruning these neurons can be an effective method
of alleviating such model defects (Ghorbani and
Zou, 2021). To gain a global understanding of what
the model has learned in practice, SAGE (Covert
et al., 2020) combined with word grouping pro-
vides a summary of the features—e.g. words—that
are most relevant for the model’s performance. In
this case, pruning irrelevant features can be also
tested to improve model accuracy. A similar sum-
mary can be provided by ConceptSHAP (Yeh et al.,
2020), which can compile a comprehensive list of
the concepts identified by the model in an unsuper-
vised fashion. Furthermore, ConceptSHAP can be
used to determine the amount of model variance

covered by the whole set of identified concepts
(Yeh et al., 2020).

If causal structures or dependencies present in
the text are known and can be explicitly modeled,
then methods such as ASV (Frye et al., 2019), Shap-
ley Flow (Wang et al., 2021), and Causal Shapley
(Heskes et al., 2020) can leverage such informa-
tion. For use cases involving graphs as part of
multi-modal inputs—e.g. modeling a social net-
work (Wich et al., 2021)—any of the previous meth-
ods can be combined with SubGraphX (Yuan et al.,
2021) to also produce explanations for the graph
component of the input.

When it comes to sequence-to-sequence tasks
such as question answering and machine transla-
tion, the usage of SHAP-based methods has not
been explored in depth. With a few exceptions4,
available approaches seem particularly tailored
only to classification settings. We believe this is a
strong limitation and we encourage the reader to
look for alternatives.

7 Criticisms

The usage of Shapley values for generating model
explanations has also been criticized. For instance,
Kumar et al. (2020) shows that using Shapley val-
ues for feature importance leads to mathematical
inconsistencies which can only be mitigated by
introducing further complexity like causality as-
sumptions. Moreover, the authors argue that Shap-
ley values do not represent an intuitive solution to
the human-centric goals of model explanations and
thus are only suitable in a limited range of settings.

Sundararajan and Najmi (2020), on the other
hand, criticize some Shapley-value-based methods.
In fact, while a strong case for utilizing Shapley
values can be made thanks to their uniqueness re-
sult in satisfying certain properties (see 2.1), often
methods employing them operate under different
assumptions and hence the uniqueness results loses
validity in their context.

Merrick and Taly (2020) argues that existing
SHAP-based literature focuses on the axiomatic
foundation of Shapley values and their efficient
estimation but neglects the uncertainty of the expla-
nations produced. The authors illustrate how small
differences in the underlying game formulation can
lead to sudden leaps in Shapley values and can at-
tribute a positive contribution to features that do
not play any role in the machine learning model.

4https://shap.readthedocs.io/en/latest/text_examples.html
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8 Conclusion

SHAP is a core contribution to explainable artifi-
cial intelligence and one of the most popular frame-
works for local interpretability. A considerable
amount of recent works has proposed SHAP-based
approaches, which we identify as part of five dif-
ferent yet overlapping research directions. In par-
ticular, the recent literature has worked towards
(C1) tailoring explanations to different input data,
(C2) explaining specific models, (C3) improving
the framework’s flexibility via modifying core as-
sumptions, (C4) producing different explanation
types, and (C5) estimating Shapley values more
efficiently.

This work has reviewed a total of 41 approaches
and has organized them based on the introduced cat-
egories. As expected, given the overlapping nature
of the classification, the majority of existing meth-
ods fall into multiple categories and have therefore
each made distinct contributions to the field. While
most of them are not directly applicable to NLP
settings, we identified a few that can be beneficial
for current practitioners. Furthermore, we have
compiled a list of recommendations for each NLP
use case. We also observe a severe limitation of
SHAP-based methods in terms of applicability to
sequence-to-sequence NLP tasks.

We hope our work provides NLP/XAI practition-
ers and newcomers with a comprehensive overview
of SHAP-based approaches, with references to
stimulate further investigation and future advances
in academic and industrial research.
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Abstract

As hate speech spreads on social media and on-
line communities, research continues to work
on its automatic detection. Recently, recogni-
tion performance has been increasing thanks to
advances in deep learning and the integration
of user features. This work investigates the ef-
fects that such features can have on a detection
model. Unlike previous research, we show that
simple performance comparison does not ex-
pose the full impact of including contextual-
and user information. By leveraging explain-
ability techniques, we show (1) that user fea-
tures play a role in the model’s decision and
(2) how they affect the feature space learned
by the model. Besides revealing that—and
also illustrating why—user features are the rea-
son for performance gains, we show how such
techniques can be combined to better under-
stand the model and to detect unintended bias.

1 Introduction

Communication and information exchange be-
tween people is taking place on online platforms at
a continuously increasing rate. While these means
allow everyone to express themselves freely at any
time, they are massively contributing to the spread
of negative phenomenons such as online harass-
ment and abusive behavior. Among those, which
are all to discourage, online hate speech has at-
tracted the attention of many researchers due to its
deleterious effects (Munro, 2011; Williams et al.,
2020; Duggan, 2017).

The extremely large volume of online content
and the high speed at which new one is generated
exclude immediately the chance of content moder-
ation being done manually. This realization has
naturally captured the attention of the Machine
Learning (ML) field, seeking to craft automatic
and scalable solutions (MacAvaney et al., 2019;
Waseem et al., 2017; Davidson et al., 2017).

Methods for detecting hate speech and similar
abusive behavior have been thus on the rise, consis-
tently improving in terms of performance and gen-
eralization (Schmidt and Wiegand, 2017; Mishra
et al., 2019b). However, even the current state
of the art still faces limitations in accuracy and
is yet not ready to be deployed in practice. Hate
speech recognition remains an extremely difficult
task (Waseem et al., 2017), in particular when the
expression of hate is implicit and hidden behind
figures of speech and sarcasm.

Alongside language features, recent works have
considered utilizing user features as an additional
source of knowledge to provide detection mod-
els with context information (Fehn Unsvåg and
Gambäck, 2018; Ribeiro et al., 2018). As a gen-
eral trend, models incorporating context exhibit
improved performance compared to their pure text-
based counterparts (Mishra et al., 2018, 2019a).
Nevertheless, the effect, which these additional fea-
tures have on the model, has not been interpreted
or understood yet. So far, models have mostly been
compared only in terms of performance metrics.
The goal of this work is to shed light on the impact
generated by including user features—or more in
general context—into hate speech detection meth-
ods. Our methodology heavily relies on a combi-
nation of modern techniques coming from the field
of eXplainable Artificial Intelligence (XAI).

We show that adding user and social context to
models is the reason for performance gains. We
also explore the model’s learned features space to
understand how such features are leveraged for de-
tection. At the same time, we discover that models
incorporating user features suffer less from bias in
the text. Unfortunately, those same models contain
a new type of bias that originates from adding user
information.
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2 Related Work

2.1 Explainability for Recognition Models
A limited amount of research has focused on apply-
ing XAI techniques to the hate speech recognition
case. For instance, Wang (2018) adapts a number
of explainability techniques from the computer vi-
sion and applies them to a hate speech classifier
trained on Davidson et al. (2017). Feature occlu-
sion was used to highlight the most relevant words
for the final classifier prediction and activation max-
imization selected the terms that the classifier cap-
tured and judged as relevant at a dataset-level. Vija-
yaraghavan et al. (2019) constructs an interpretable
multi-modal detector that uses text alongside social
and cultural context features. The authors leverage
attention scores to quantify the relevance of differ-
ent input features. Wich et al. (2020) applies post-
hoc explainability on a custom dataset in German
to expose and estimate the impact of political bias
on hate speech classifiers. More in detail, left- and
right-wing political bias within the training data
is visualized via DeepSHAP-based explanations
(Lundberg and Lee, 2017).

MacAvaney et al. (2019) combines together mul-
tiple simple classifiers to assemble a transparent
model. Risch et al. (2020) reviews and com-
pares several explainability techniques applied to
hate speech classifiers. Their experimentation in-
cludes popular post-hoc approaches such as LIME
(Ribeiro et al., 2016) and LRP (Bach et al., 2015)
as well as self-explanatory detectors (Risch et al.,
2020).

For our use case, we apply post-hoc explainabil-
ity approaches (Lipton, 2018). We use external
techniques to explain models that would otherwise
be black-boxes (Arrieta et al., 2020). In contrast,
transparent models are interpretable thanks to their
intuitive and simple design.

2.2 Context Features for Hate Speech
Detection

Models have been continuously improving since
the first documented step towards automatic hate
speech detection Spertus (1997). The evolution
of recognition approaches has been favored by ad-
vances in Natural Language Processing (NLP) re-
search (Mishra et al., 2019b). For instance, s.o.t.a
detectors like Mozafari et al. (2020) exploit high-
performing language models such as BERT (Devlin
et al., 2019).

A different research branch took an alternative

path and explored the inclusion of social context
alongside text. These additional features are usu-
ally referred to with the terms user features, context
features, or social features. Some tried incorporat-
ing the gender (Waseem, 2016) and the profile’s ge-
olocation and language (Galán-Garcı́a et al., 2016).
Others instead utilized the user’s number of follow-
ers or friends (Fehn Unsvåg and Gambäck, 2018).

Modeling users’ social and conversational in-
teractions via their corresponding graph was also
shown to be rewarding (Mishra et al., 2019b; Ce-
cillon et al., 2019). Ribeiro et al. (2018) creates
additional features by measuring properties like
betweenness and eigenvector centrality. Mishra
et al. (2018) and Mishra et al. (2019a) instead fed
the graph directly to the model either embedded
as matrix or via using graph convolutional neural
network (Hamilton et al., 2017).

While previous work explored the usage of a
wide range of context features (Fehn Unsvåg and
Gambäck, 2018), detection models have only been
compared in terms of performance metrics. Besides
accuracy, researchers have not focused on other
changes that such features could have on the model.
Our work shows that indeed this addition entails a
large impact on the recognition algorithm’s behav-
ior and substantially changes its characteristics.

3 Experimental Setup

In this section, we describe in detail the different
datasets and detection models that we include in
our interpretability-driven analysis.

3.1 Data and Preprocessing

Previous research has produced several datasets to
support further developments in the hate speech
detection area (Founta et al., 2018; Warner and
Hirschberg, 2012). Some became relatively popu-
lar to benchmark and test new ideas and improve-
ments in recognition techniques. For our experi-
mentation, we pick the DAVIDSON (Davidson et al.,
2017) and the WASEEM (Waseem and Hovy, 2016)
datasets. The choice was motivated by their vari-
ety of speech classes and popularity as detection
benchmarks.

Both benchmarks consist of a collection of
tweets coupled with classification tasks with three
possible classes. DAVIDSON contains ∼ 25, 000
tweets of which 1, 430 are labeled as hate, 19, 190
as offensive, and 4, 163 as neither (Davidson et al.,
2017). As classification outcomes in WASEEM in-
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stead, we have racism, sexism, and neither. The
three classes contain 3, 378, 1, 970, and 11, 501
tweets respectively (Waseem and Hovy, 2016). We
were not able to retrieve the remaining 65 of the
original 16, 914 samples.

We follow the same preprocessing steps for both
datasets. First, terms belonging to categories like
url, email, percent, number, user, and time are
annotated via a category token. For instance, “341”
is replaced by “<number>”. After that, we apply
word segmentation and spell correction based on
Twitter word statistics. Both methods and statistics
were provided by the ekphrasis 1 text preprocessing
tool (Baziotis et al., 2017).

In addition to the tweets that represent the text
(or content) component of our input features, we
also retrieve information about the tweet’s authors
and their relationships. In a similar fashion as done
in Mishra et al. (2018), we construct a community
graph G = (V,E) where each node represents a
user and two nodes are connected if at least one of
the two users follows the other one. We were able
to retrieve |V | = 6, 725 users and |E| = 19, 597
relationships for DAVIDSON, while for WASEEM

we have |V | = 2, 024 and |E| = 9, 955.
The respective average node degrees are 2, 914

and 4, 918 and the overall graphs’ densities:

D =
2 · |E|

|V |(|V | − 1)

are 0.00087 and 0.00486 respectively.
We immediately notice that both graphs are

very sparse. In particular, we have 3, 393 users
not connected to anyone in DAVIDSON and 927
in WASEEM. For reference, Mishra et al. (2018)
achieves a graph density of 0.0075 on WASEEM,
with only ∼ 400 authors being solitary, i.e. with
no connections. We assume the difference is rea-
sonable as data availability considerably decreases
over time.

3.2 Detection Models

Our experimentation and findings are based on
the comparison of two detection models, one that
solely relies on text features and one that instead
incorporates context features. To better capture
their behavioral differences, we build them to be
relatively simple and also to not differ in the text-
processing part.

1https://github.com/cbaziotis/ekphrasis

The first model, shown in figure 1, computes the
three classification probabilities only based on the
tweets’ content. The input text is fed to the model
as Bag of Words (BoW), which is then processed by
two fully connected layers. We refer to this model
as text model.
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to

disgrace

Tweet (BoW)
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0
1

1
0
1

5000
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Figure 1: Architecture of the text model.

The second model instead leverages the informa-
tion coming from three input sources: the tweet’s
text, the user’s vocabulary, and the follower net-
work. The first input is identical to what is fed to
the text model. The second is constructed from all
the tweets of the author in the dataset and aims to
model their overall writing style. Concretely, we
merge the tweets’ BoW representations, i.e. we
apply a logical-OR to their corresponding vectors.
The third is the author’s follower network and de-
scribes their online surrounding community. On
a more technical note, this can be extracted as a
row from the adjacency matrix of our community
graph described in section 3.1. Note that s.o.t.a
hate speech detector used similar context features
(Mishra et al., 2018, 2019a). We refer to this model
as social model.

As sketched in figure 2, the different input
sources are initially processed separately in the
model’s architecture. After the first layer, the inter-
mediate representations from the different branches
are concatenated together and fed to two more lay-
ers to compute the final output. Note that the text-
and social models have the same dimensions for
their final hidden layer and can be seen as equiva-
lent networks working on different inputs.

4 Proposed Analysis

We now describe our methodology in detail. Recall
that our models differ precisely on the usage of
user features. As we will see shortly, their com-
parison beyond accuracy measurements sheds light
on the different model properties and hence on the
potential impact of incorporating context features.
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Figure 2: Architecture of the social model.

4.1 Training and Performance
We apply the same training and testing procedure
to all models and datasets. We keep the 60% of
the data for training while splitting the remaining
equally between validation and test set, i.e. 20%
each.

Tables 1 and 2 report our results in terms of F1
scores for WASEEM (Waseem and Hovy, 2016) and
DAVIDSON (Davidson et al., 2017) respectively. To
increase our confidence in their validity, we aver-
age the performance over five runs with randomly
picked train/validation/test sets. We observe differ-
ent trends for the two datasets.

Speech Class Text Model Social Model
Racism 0.711 0.735
Sexism 0.703 0.832
Neither 0.881 0.907
Overall 0.829 0.872

Table 1: F1 Scores on Waseem and Hovy (2016).

On WASEEM, the social model considerably out-
performs (by 4.3%) our text model. The perfor-
mance gain is general and not restricted to any
single class. Quite surprisingly, our text model
performs better on racist tweets than sexist ones, al-
though the sexism class is almost twice as big. This
suggests that sexism is, at least in this case, some-
what harder to detect by just looking at the tweet
content. On the contrary, our social model shows
an impressive improvement in the sexism class (al-

most 13%), suggesting the presence of detectable
patterns in sexist users and their social interactions.

Speech Class Text Model Social Model
Hate 0.154 0.347
Offensive 0.939 0.939
Neither 0.809 0.815
Overall 0.876 0.886

Table 2: F1 Scores on Davidson et al. (2017).

On DAVIDSON, we only observe a contained
improvement (1%). Moreover, the jump in perfor-
mance is restricted to the hate class, containing
a tiny amount of samples. We believe the differ-
ence between the two datasets should be expected
due to the lower amount of user data available for
DAVIDSON. Considering these results, we focus
on applying our technique on the WASEEM dataset
in the remainder of this paper. Nevertheless, the re-
spective results on DAVIDSON can be found in the
appendix A. While on both datasets we do not out-
perform the current s.o.t.a—Mishra et al. (2019a)
on WASEEM and Mozafari et al. (2020) on DAVID-
SON—our results are comparable and thus satisfac-
tory for our purposes.

4.2 Shapley Values Estimation

We now apply a first post-hoc explainability
method. For each feature we calculate its corre-
sponding Shapley value (Shapley, 1953; Lundberg
and Lee, 2017). That is, we quantify the relevance
that each feature has for the prediction of a specific
output. Shapley values have been shown—both the-
oretically and empirically—to be an ideal estimator
for feature relevance (Lundberg and Lee, 2017).

As exact Shapley values are exponentially com-
plex to determine, we use accurate approxima-
tion methods as done in (Lundberg and Lee, 2017;
Štrumbelj and Kononenko, 2014). Figure 3 shows
concrete examples in which Shapley values are cal-
culated for both models on two test tweets from
WASEEM.

For our social model, we consider the user vocab-
ulary and the follower network as single features
for simplicity. Notably, the context is used by the
social model and can play a significant role in its
prediction. Hence, we can confirm the context fea-
tures to be the reason for the performance gains.
We can empirically exclude that the differences be-
tween the text- and the social model architectures
justify the jump in performance.



95

0.1 0.0 0.1 0.2 0.3 0.4

<user>
.
i

a
not

is
it

who
think

lies
believes

valenti

(a) Sexism, Text Model

0.3 0.2 0.1 0.0 0.1 0.2

.
the

,
#mkr

a
of

are
<number>

girls
these

well
years
done

ago
couple

equivalent
asian

irritating

(b) Racism, Text Model

0.1 0.0 0.1 0.2 0.3 0.4

<user>
.
i

a
not

is
it

who
think

lies
believes

valenti
VOCABULARY

NETWORK

(c) Sexism, Social Model

0.3 0.2 0.1 0.0 0.1 0.2

.
the

,
#mkr

a
of

are
<number>

girls
these

well
years
done

ago
couple

equivalent
asian

irritating
VOCABULARY

NETWORK

(d) Racism, Social Model

Figure 3: Example of features contribution, computed via Shapley value approximation, for our text and social
models. In (a) and (c) we use as input the tweet “<user> I think Arquette is a dummy who believes it. Not
a Valenti who knowingly lies.”. The sexist tweet refers to the actress Patricia Arquette, who spoke in favour of
gender equality, and the feminist writer Jessica Valenti. Some words are missing in the plot as our BoW dimension
is limited during preprocessing. In (b) and (d), we use the racist tweet “These girls are the equivalent of the
irritating Asian girls a couple of years ago. Well done, 7. #MKR”. The hashtag refers to the Australian cooking
show “My Kitchen Rules”.

4.3 Feature Space Exploration

We have seen that detection models can benefit
from the inclusion of context features. We now
focus on understanding why this is the case. Shap-
ley values and more in general feature attribution
methods can quantify how much single features
contribute to the prediction. Yet, alone, they do not
give us any intuition to answer our why-question.

We look at the feature space learned by our mod-
els, which can be considered a global explainability
technique. For our text model, we remove the last
layer and feed the tweets to the remaining architec-
ture. The output is a 50-dimensional embedding for
each tweet. We employ the t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) (Van der Maaten
and Hinton, 2008) to reduce the embeddings to two
dimensions for visualization purposes.

The resulting plot, in figure 4d, shows all the
tweets in a single cluster. Racist tweets look more
concentrated in one area than sexist ones, suggest-

ing that sexism is somewhat harder to detect for the
model. This result is coherent with our per-class
performance scores.

We apply the same procedure to the social model.
In this case, we visualize the hidden layer of each
separate branch as well as the final hidden layer
analogous to the text model. Not surprisingly, the
tweet branch (figure 4a) looks very similar to the
feature space learned by our text model. The user’s
vocabulary branch (figure 4b) instead shows the
samples distributed in well-separated clusters. No-
tably, racist tweets have been restricted to one clus-
ter and we can also observe pure-sexist and pure-
neither clusters. The follower network branch (fig-
ure 4c) looks similar though cluster separation is
not as strong. Once more, we notice racism more
concentrated than sexism, which is considerably
more mixed with regular tweets. To some extent,
this result is in line with the notion of homophily
among racist users (Mathew et al., 2019).
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Figure 4: WASEEM tweets, colored by label, in the features space learned by our text model (d) and social model
(a,b,c for the independent branches, e combined).

Intuitively, being able to divide users into dif-
ferent clusters based on their behavior should be
helpful for classification at later layers. This is con-
firmed by the combined feature space plot (figure
4e). Indeed, tweets are now structured in multi-
ple clusters instead of a single one as for our text
model. Also in this case, we observe several pure
or almost-pure groups.

The corresponding visualizations and results for
DAVIDSON can be found in appendix A.

4.4 Targeted Behavioral Analysis:
Explaining a Novel Tweet

We have seen how different explainability tech-
niques convey different types of information on
the examined model. Computing Shapley values
and visualizing the learned feature space can also
be used in combination as they complement each
other. If used together, they can both quantify the
relevance of each feature as well as show how cer-
tain types of features are leveraged by the model to
better distinguish between classes.

So far, our explanations are relative to the
datasets used for model training and testing. How-
ever, to better understand a classifier it should also
be tested beyond its test set. This can be sim-

ply done by feeding the model with a novel tweet.
Via artificially crafting tweets, we can check the
model’s behavior in specific cases. For instance,
we can inspect how it reacts to specific sub-types
of hate.

Let us consider the anti-Islamic tweet “muslims
are the worst, together with their god”. If fed to
our model, it is classified as racist with a 75% con-
fidence following our expectations. Figures 5a and
5c show explanations for the tweet. We can see that
the word “muslim” plays a big role by looking at
its corresponding Shapley value. At the same time,
the projection of the novel tweet onto the feature
space shows how the sample is collocated together
with the other racist tweets by the text model.

If we now change our hypothetical tweet to be
anti-black—“black people are the worst, together
with their slang”—we observe a different model
behavior (figures 5b and 5d). In fact, now the tweet
is not classified as racist. No word has a substan-
tial impact on the prediction. We can also notice
a slight shift of the sample in the features space,
away from the racism cluster. If changing the tar-
get of the hate changes the prediction, then the
model/dataset probably contains bias against that
target. Model interpretability further reveals how
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Figure 5: Features contribution (Shapley values w.r.t. the racism class) and embedding in the text model’s latent
space of an islamophobic and a anti-black racist tweets. The two sentences had, according to our text model, the
75% and 24% probability of being racist respectively.

its behavior reacts to different targets.

We run the same experiment with our social
model. This time, it correctly classifies the anti-
black tweet as racist (55% confidence). This sug-
gests that text bias could be mitigated by using
models that do not only rely on the text input. How-
ever, the social model is much more sensitive to
changes in the user-derived features. To test this,
we feed the model the same tweet and only change
the author that generated it. For a fair comparison,
we pick one random user with other racist tweets,
one random user with other sexist tweets, and one
random user with no hateful tweets in the dataset.
We refer to these users as racist, sexist, and regular
users respectively.

Our crafted tweet is classified as racist when
coming from a racist user (64%). However, it is
instead judged non-hateful in both the other cases
(12% and 19% for a sexist and user with no hate
background respectively). Evidently, racist tweets
also need some contribution from the social fea-
tures to be judged as racist.

A very informative explanation comes again
from both the Shapley values and the feature space
exploration (figure 6). On the left side, we can see
the Shapley value for the racist and regular users.
Results relative to the sexist user are analogous to
the regular user and reported in the supplementary
material (A.3). All the words have a similar con-
tribution to the racism class in all cases. However,
the difference in the authors plays a substantial role
in the decision. Only the racist user positively con-
tributes to the racism class. On the right side of
6, we can see the embedding in the latent space
for each case. Different input authors cause the
tweet to be embedded in different clusters. Only
in the first one the model actually considers the
possibility of the tweet being racist.

Hence, while adding user-derived features might
mitigate the effects of bias in the text, it generates
a new form of bias that could discriminate users
based on their previous behavior and hinder the
model from classifying correctly hateful content.
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Figure 6: Features contribution (w.r.t. racism class) and embeddings of the islamophobic tweet in the social
model’s latent space. The two pairs of plots are w.r.t. two predictions done with different users as input: a racist
one (a,b, 64%), and a regular one (c,d, 19%).

5 Conclusion and Future Work

In our work, we investigated the effects of user
features in hate speech detection. In previous stud-
ies, this was done by comparing models based on
performance metric. We have shown that post-hoc
explainability techniques provide a much deeper
understanding of the models’ behavior. In our case,
when applied to two models that differ specifically
on the usage of context features, the in-depth com-
parison reveals the impact that such additional fea-
tures can have.

The two utilized techniques—Shapley values es-
timation and learned feature space exploration—
convey different kinds of information. The first one
quantifies how each feature plays a role but does
not tell us what is happening in the background.
The second one illustrates the model’s perception
of the tweets but does not provide any quantita-
tive information for the prediction. Furthermore,
we have seen that artificially crafting and modify-
ing a tweet can be useful to examine the models’
behavior in particular scenarios. In concrete exam-

ples, the two approaches worked as bias detectors
present in the text as well as in the user features.

We believe that analyzing detection models is
vital for understanding how certain features shape
the way data is processed. Accuracy alone is by no
means a sufficient metric to decide which model
to prefer. Our work shows that even models that
perform significantly better can potentially lead
to new types of bias. We urge researchers in the
field to compare recognition approaches beyond
accuracy to avoid potential harm to affected users.

Data scarcity is still a main issue faced by current
researchers, especially when it comes to context
features. We believe that larger and more complete
datasets will improve our understanding of how cer-
tain features interact and will help future research
in advancing both in accuracy and bias mitigation.
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A Results on the Davidson Dataset

A.1 Feature Space learned by the Text Model
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Figure 7: DAVIDSON tweets, colored by label, in the
feature space learned by the text model.

Figure 7 shows the feature space learned by our
text model on DAVIDSON. Overall, the distribution
looks similar as the one of WASEEM visualized
in figure 4d. We can notice that hate tweets are
extremely sparse and mixed with the offensive ones.
This is reflected by the poor model performance on
the hate class, possibly caused by the conceptual
overlap that these two classes have. On the other
hand, non-harmful tweets are mostly concentrated
in one area of the plot, confirming the satisfactory
F1 scored achieved.

A.2 Feature Space learned by the Social
Model

Figure 8 shows the feature space learned by our so-
cial model on DAVIDSON. As done for WASEEM,
we report the plots both for the single branches as
well as for their combination. The tweet branch
(figure 8a) has a similar structure to figure 7. How-
ever, hateful tweets are also concentrated in a small
portion of the space. This reflects the improved
performance that the social model had on the hate
class. This suggests that the information coming
from the other input sources reinforces the signal
backpropagated to the tweet branch, resulting in a
less chaotic mixture of hateful and offensive tweets.
The user vocabulary (figure 8b) and the follower
network branch (figure 8c) do not present the same
characteristics as seen on WASEEM. In this case,
we do not have the data points separated into multi-
ple clusters. The same goes for the overall learned
feature space (figure 8d), where all the tweets are
contained in one single cloud. This is consistent
with what we observed in terms of F1 Scores. In

contrast to what occurred on WASEEM, user fea-
tures did not cause a substantial impact on the fea-
ture space on DAVIDSON and thus did not produce
a large leap in performance.

A.3 Complement to Figure 6
Figure 6 compares the model’s behavior on the
same tweet but with different authors, one racist
and one regular. For completeness, figure 9 shows
the corresponding plots—Shapley values and em-
bedding onto the features space—for the same
tweet when generated by a sexist user. The result
is analogous to the one obtained with the regular
user. Also in this case the tweet is not classified
as racist (12% confidence). The estimated Shap-
ley values show a substantial impact of the user
vocabulary against the racism class. The embed-
ding onto the latent space shows once more that
changing the author caused the tweet to embed in
a different cluster, hence excluding the possibility
of the content being classified correctly.
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Figure 8: Latent space visualization of our social model on DAVIDSON, colored by label. The features are extracted
from the single branches before the concatenation: tweet (a), user’s vocabulary (b), follower network (c). The last
plot (d) shows instead the final learned features space, after all branches are combined and processed together.
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Abstract

Large-scale surveys are a widely used instru-
ment to collect data from a target audience.
Beyond the single individual, an appropriate
analysis of the answers can reveal trends and
patterns and thus generate new insights and
knowledge for researchers. Current analy-
sis practices employ shallow machine learn-
ing methods or rely on (biased) human judg-
ment. This work investigates the usage of
state-of-the-art NLP models such as BERT to
automatically extract information from both
open- and closed-ended questions. We also
leverage explainability methods at different
levels of granularity to further derive knowl-
edge from the analysis model. Experiments
on EMS—a survey-based study researching in-
fluencing factors affecting a student’s career
goals—show that the proposed approach can
identify such factors both at the input- and
higher concept-level.

1 Introduction

Surveys and questionnaires are prevalent tools to
inquire about an audience and collect ideas, opin-
ions, and thoughts. Common examples are request-
ing user feedback concerning a specific product or
service, regular reports for scientific studies that
involve human subjects, and census questionnaires
directed to a certain demographic population.

Carrying out an appropriate and thorough analy-
sis of the collected answers is of major relevance
for researchers both in the industry and academia.
However, the generated data are often a combi-
nation of open-ended and closed-ended questions.
While the former gathers a participant’s thoughts
in text form, the latter consists in selecting one
(or more) of the options specified by the survey
designer. Utilizing both types remains a popular
choice as closed-ended questions are very suitable
to derive statistical conclusions but may lack details
which are in turn provided by open-ended answers.

Currently, the two dominant analysis prac-
tices comprise traditional closed-vocabulary and
open-vocabulary methods (Eichstaedt et al., 2021).
Whereas the former introduces human biases and
is resource-intensive, the latter overcomes these
challenges with the help of Natural Language Pro-
cessing (NLP) techniques. Nonetheless, both ap-
proaches fail to consider contextual information
and do not leverage currently available NLP archi-
tectures to deal with more complex patterns.

In this work, we bridge the gap in research and
investigate the usage of deep-learning-based meth-
ods from NLP and explainability techniques to ex-
tract knowledge and interpret correlations from sur-
veys presenting both structured and unstructured
components. Our contribution can be summarized
as follows:

(1) We apply a popular transformer architecture
(DistilBERT) (Sanh et al., 2019) to open-ended
questions. This enables our approach to extract
contextual correlations from the text with high pre-
cision compared to traditional methods.

(2) Due to the model’s black-box characteristics,
we utilize post-hoc explainability methods to in-
terpret the extracted correlations. Specifically, we
utilize several variants of SHapley Additive exPla-
nations (SHAP) (Lundberg and Lee, 2017) to ana-
lyze both instance-level feature importance as well
as high-level concepts learned by the model (Yeh
et al., 2020). These methods are applied to several
components to generate a holistic understanding of
the model used for the analysis.

(3) Our approach delivers promising results on
the EMS 1.0 dataset - studying influencing factors
in students’ career goals (Gilmartin et al., 2017).
First, it identifies the most relevant factors from
closed-ended responses with high precision. Sec-
ond, it also automatically reveals influencing fac-
tors from the open-ended text answers.
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2 Related Work

2.1 The EMS Study and Entrepreneurial
Behavior Predictors

In this paper, we work with the Engineering Major
Survey (EMS) longitudinal study of students’ ca-
reer goals by Gilmartin et al. (2017). Analysis of
the contents of this study was previously conducted
mainly by the social sciences with a focus on qual-
itative approaches to extract the most influential
variables on career goals (Grau et al., 2016; Levine
et al., 2017). Quantitative correlation between vari-
ables was previously explored by Atwood et al.
(2020) relating Social Cognitive Career Theory
(SCCT) (Lent et al., 1994) to different predefined
topics for the purpose of survey design, such as
students demographics, first-generation status, and
family background. Schar et al. (2017) meanwhile
focused on the variables Engineering Task Self-
Efficacy and Innovation Self-Efficacy through ex-
plainable regression models.

2.2 Analysis of Open-ended Survey Question
in the Social Sciences

In the social sciences, textual analysis has a long
history of utilizing manual analysis methods such
as Grounded Theory Method (GMT) Bryant and
Charmaz (2007). However recently, automated text
analysis has been used for both open- and closed-
vocabulary methods.

Closed-vocabulary methods: Analysis is done
by working with a hand-crafted closed-vocabulary
such as LIWC (Pennebaker et al., 2001) and calcu-
lating the relative frequencies of dictionaries with
respect to the text (Eichstaedt et al., 2021).

Open-vocabulary methods: Following the
GMT method, these approaches aim to discover
topics from data, rather than from a predefined
word list (Roberts et al., 2014). For instance,
Guetterman et al. (2018) uses NLP techniques
such as topic modeling and clustering for textual
analysis of survey questions. These approaches
were mostly utilizing well-known bag-of-words
methods such as Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and Latent Semantic
Analysis (LSA) (Deerwester et al., 1990). Further
work included clustering semantic distances in
adjectives for situation-taxonomies (Parrigon et al.,
2017).

2.3 Post-Hoc Explainability

Methods from eXplainable Artificial Intelligence
(XAI) (Arrieta et al., 2020; Mosca et al., 2021) have
recently gained popularity as deep architectures—
such as transformers—behave like black-boxes
(Brown et al., 2020; Devlin et al., 2019). In partic-
ular, post-hoc explainability techniques are able to
explain the why behind a certain prediction even if
the model is not inherently interpretable.

The literature has classified existing interpretabil-
ity approaches in structured taxonomies depending
on their core characteristics (Madsen et al., 2021;
Doshi-Velez and Kim, 2017). We identify the fol-
lowing two broad categories as the most relevant
for our research objectives and methodology.

Feature attribution methods: They assign each
input feature with a relevance score describing its
importance for the model prediction. Approaches
such as SAGE (Covert et al., 2020) and GAM
(Ibrahim et al., 2019) produce global explanations,
i.e. at the dataset level. Others, instead, focus on
generating insights at the instance-level, i.e. about
a specific model prediction. Prominent local meth-
ods are LIME (Ribeiro et al., 2016) and SHAP
(Lundberg and Lee, 2017).

Concept-based methods: Concept-oriented
techniques aim at extracting human-interpretable
concepts, consisting of sets of (text) features from
several input samples sharing similar activation
patterns within the model. Prominent approaches
are TCAV (Kim et al., 2018), ACE (Ghorbani
et al., 2019), and ConceptSHAP (Yeh et al., 2020).
The latter is unsupervised—i.e. it does not require
a predefined list of concepts to test for—and thus
particularly relevant for our methodology.

Please note that these explainability techniques
can be applied to the whole model—i.e. from in-
put to output—or sub-components of it, such as
(groups of) layers and neurons (Sajjad et al., 2021).

3 Methodology

3.1 EMS Data

We use the EMS 1.0 data as our data source and pre-
diction target. The EMS study 1.0 from 2015 con-
sists of data from 7,197 students enrolled across 27
universities in the United States. The study poses
a mix of closed and free-text questions across 8
different topics, ranging from background charac-
teristics to self-efficacy and career goals. More de-
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Figure 1: Model architecture combining both text and numerical (i.e. categorical) feature classification architec-
tures. The XORs indicate different model choices for various sub-components.

tailed descriptions of these questions can be found
in Gilmartin et al. (2017) or in a more condensed
form in Appendix A of this paper.

While most of the questions in the survey are
multiple-choice, referred to as numerical or cate-
gorical, two questions require open-text answers.
Q22 asks about the short-term plans of students
within five years of graduating while the Inspire
question, asks how the survey itself influenced the
thought process of the students towards their career
goals.

The independent variable we are trying to pre-
dict is Q20 also named Career goal in the survey
and asks for the likelihood of a person to pursue
a career in 8 distinct circumstances, ranging from
corporate employee to non-profit founder. Each of
these cases is given a Likert score from 0 to 4 repre-
senting the likelihood from highly unlikely to very
likely. In our model, we use both the numerical
responses from the 8 topics as well as the free-text
answers to predict career preferences.

3.2 Model Architecture

The architecture for the prediction task is illustrated
in Figure 1 and can be split into three logical parts.
The first section (top left) deals with the open text
variables and is based on DistilBERT and embed-
ding layers. The second input section (top right),
processes the numerical features pertinent to each

topic through a series of Fully Connected (FC) lay-
ers.

After being processed in parallel, the latent rep-
resentations of each open-text question and each
topic are concatenated and processed through an-
other FC block, before generating the final predic-
tion.

The output is generated by two distinct heads: a
regression task trained on mean absolute error loss
approximating the numerical values of the subques-
tions of Q20 and a classification output trained with
a cross-entropy loss, predicting general favorable
or unfavorable tendencies. In each case, there are
eight individual outputs for each prediction, one
for each task.

Open-end text variables: The main part of the
text processing architecture is based on DistilBERT
(Sanh et al., 2019), which is utilized without fine-
tuning to create text representations for the follow-
ing layers. The four branching architecture choices
in this part include (1) the use of the embedding
vector encoding the CLS token, (2) mean averaging
over word token embedding vectors (Wolf et al.,
2020), (3) feeding the word token vectors through
a BiLSTM layer (Graves and Schmidhuber, 2005)
and (4) a single eight-dimensional embedding layer
trained on the free-text task data.
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Figure 2: Explainability experiments with SHAP values for different parts of the model. (1) Global and local
SHAP values from prediction to intermediate layer with embeddings and numerical features as inputs, (2) local
SHAP values from embeddings to text input, (3) local SHAP values from prediction to text input

Numerical feature variables: This part of the
architecture takes all recorded numerical features
(minus the covariate) as input and groups them by
topic according to the SCCT framework. Each
topic is fed through separate FC layer model
streams before being concatenated with the rep-
resentation from the text variables. While most
features can be input directly as a single value,
some represent nominal choices and are input as
one-hot encoding vectors instead.

3.3 Model Explanations

We apply several post-hoc explainability methods
to both explain specific model predictions and gain
a holistic understanding of what our model has
learned.

Low-level feature and neuron explanations
We employ SHAP (Lundberg and Lee, 2017) to
compute local and global feature relevance expla-
nations. This enables us to quantify the most im-
portant input components in terms of overall model
accuracy, but also to identify the features domi-
nating a specific prediction (Wich et al., 2021).
Specifically, we (1) calculate and compare SHAP
values for both the text and numerical value em-
beddings. Then, we (2) look at which parts of the
text input trigger the neurons presenting the highest
activation in the previous analysis. Finally, we (3)
compute SHAP values for the input text w.r.t. the

final model prediction. Figure 2 shows a detailed
overview of all SHAP explanation experiments and
how they relate to the various model inputs and
inner components.

High-level concept explanations: We utilize
ConceptSHAP (Yeh et al., 2020) to understand
how the model captures and organizes higher-level
information for its predictions. This information
is extracted in the form of concepts, i.e. clusters
of embedding vectors each summarized by a con-
cept vector ci which acts as the cluster’s centroid.
Beyond their extraction, we (1) use the K near-
est neighbors of ci to describe each concept, (2)
measure the influence of each concept for a sin-
gle prediction, and (3) report completeness scores -
i.e. how well the set of extracted concepts describe
the model’s behavior (Yeh et al., 2020). Analo-
gous to Figure 2 for SHAP experiments, Figure 12
(See Appendix C) shows a detailed overview of all
ConceptSHAP explanation experiments and how
they relate to the various model inputs and inner
components.

4 Results

Results are presented in two distinct sections.
Firstly, we present the numerical results for the
prediction task in the case of both the regression
and the classification heads for the whole architec-
ture. The performance here is evaluated through
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Architecture T1 T2 T3 T4 T5 T6 T7 T8

Q22 no T
C 51.66 60.10 56.89 44.61 48.40 51.85 52.50 63.70
R 53.82 51.36 50.82 58.75 43.63 42.24 46.71 62.40

Ins. no T
C 46.66 38.20 40.68 42.20 50.21 43.48 46.08 42.69
R 42.26 39.79 36.07 37.77 37.10 41.79 41.88 35.48

Q22+Ins. no T
C 45.69 59.87 52.31 53.11 47.92 59.71 50.91 51.12
R 63.48 47.46 50.59 45.20 41.06 41.29 39.86 58.73

No text all T
C 50.85 53.34 61.03 52.40 57.03 67.88 61.02 72.65
R 50.79 54.17 61.58 57.33 58.94 56.91 59.08 74.65

Q22 all T
C 63.01 60.74 63.53 60.87 50.77 57.76 54.90 73.64
R 59.69 63.64 59.59 55.84 56.62 56.03 62.66 76.23

Ins. all T
C 57.23 59.08 57.63 54.22 54.68 57.48 65.30 69.24
R 48.33 47.00 51.49 50.45 48.92 46.12 58.49 72.47

Q22+Ins. all T
C 58.71 57.52 59.86 55.51 55.16 58.56 62.40 71.55
R 59.49 54.62 63.27 55.50 56.83 49.58 56.60 73.61

Table 1: F1 Scores for the combined model, utilizing different parts of the input data. Architectures differ based
on which parts of the input they use. Question 22 (Q22) and Question Inspire (Ins.) are free text questions, tabular
data (T) is counted separate. All numbers are reported for performance on classification (C) and regression (R)
tasks. Best model for each task (T1 to T8) in bold.

macro F1 score for all eight individual topic pre-
dictions. Secondly, we show explanations for these
model predictions through explainability frame-
works SHAP and ConceptSHAP.

4.1 Task Performance
We conducted a variety of experiments on different
sub-parts of the architecture and finally on different
overall combinations of features for the architecture
presented in Figure 1.

Text-based prediction We tested four different
configurations of the free-text part of the model
architecture, each with a different mode to generate
embeddings as described in section 3.2. Results
are taken individually for each of the eight tasks
and for both regression and classification heads. A
stripped-down version of these results for task 8
Founding for-profit can be found in Table 2. The
full table of results can be found in Appendix D.

CLS Mean BiLSTM Embedding
C 60.66 63.70 37.88 49.66
R 53.96 62.40 58.18 50.27

Table 2: F1 Scores for the Q22 text input, predicting
task 8 (T8) for each architecture. Best model in bold.

In summary, the mean average model performed
best on the label 8 task, scoring an F1 score of
63.70% for the classification and 62.40% for the

regression task. On six of the other tasks, the mean-
model performed better than the other models. The
classification task was overall easier to achieve,
yielding higher scores across all tasks with the no-
table exception of task 4.

Numerical variable-based prediction In this
part of the evaluation, we ran the numerical vari-
able part of the architecture without any text inputs
to compare results on the 8 tasks (T1 to T8). We
evaluated the input of each of the 8 SCCT topics
individually, as well as on the combination of all
topics for prediction.

The best performing model utilized all available
topics concatenated directly before processing with
a mean F1 score of 72.65% (C) for the classification
and 74.65% (R) for the regression head on task 8.
The full list of results is available in Appendix D.
Based on the numerical variables only, it is unclear
whether the classification or the regression head
performed better overall since performance turned
out to be highly task and architecture-dependent.

Combined performance The overall perfor-
mance of the model is evaluated for a variety of
feature combinations. For all the cases we chose
the best performing combinations of the architec-
ture for text-based prediction and the concatenated
input of all SCCT topics for the numerical variable
input. The combination of possible features is then
for text input either no text, Q22, the Inspire ques-
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(a) Global expl., embedding and numerical feature inputs (b) Global expl., text embeddings only

(c) Local explanation: all features (d) Local explanation: text embeddings only

Figure 3: SHAP values for all features (left) and text embedding only (right). Global explanations (top) and local
explanations (bottom). The higher in magnitude the value is, the more important a feature is for the model, while
a positive value contributes to a prediction value of 1 and a negative value to a class value of 0. See appendix E for
a larger scale version of (c) and (d).

tion, as well as all numerical topic variables or none
of them resulting in 8 total possible combinations.

The full evaluation of these input variations is
shown in Table 1. Best results are achieved by the
model combining Q22 text input with the full set
of SCCT topics, resulting in a macro F1 score of
73.64% (C) for classification and 76.23% (R) for
regression. The Inspire text variable instead con-
tributes negatively across tasks as well as scoring
the worst for singular performance at 42.69% (C)
and 35.48% (R) F1 score. Our best model thus
uses all available numerical features, as well as
the free-text input from Q22 as input, processing
the DistilBERT embedding into a mean sentence
embedding vector and a regression head output for
prediction.

4.2 Interpretability examples

For simplicity, we present explanations for the
model reporting the best performance (see Table
1). For the first set of feature attribution explana-
tions, we focus on the eighth head—capturing the
likelihood of starting a for-profit company. For
the concept-based explanations, instead, we exam-
ine all heads as concepts describe the information
captured by the model overall.

Low-level feature and neuron explanations
We begin by looking at the global importance of

numerical features and text embeddings w.r.t. the
model prediction. As one can see in Figure 3, the
ten most important features are numerical features
and no single embedded word is as relevant for the
model. This is coherent with the observation in sec-
tion 4.1 that additionally considering text led only
to a slight performance improvement. Moreover,
we can observe that the four most relevant features
are q14new, q17give, q18sell, and q30aparr, which
are particularly related with entrepreneurial behav-
ior.

Figure 3 also shows two local explanations re-
sulting from the first experiment. These again show
the SHAP values for the text embeddings and the
numerical features. The colors indicate whether the
features push the prediction in a positive (pink for
class 1) or negative (blue for class 0) direction. The
strength of each feature’s contribution is indicated
by the length of its corresponding segment. Taking
variable q14cnew as an example, low feature values
impact the model negatively, while high values im-
pact it positively, while in-between feature values
land in between those values.

Examples of local explanations generated by the
second and third experiments are visualized in Fig-
ure 4. In particular, we can observe the text fea-
tures’ influence both on the most influential neuron
identified in the first experiments (4a) and on the
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Concept Nearest neighbors Word cloud

1

want to be successful. software (5), my (6),
find a job no (17), thanks (6),
my own business idea (5), company (5),
no thanks have (6), work (7)
work hard
ill do whatever.
no concrete plans yet
run my own business.
no comments
no idea

2

i want to attend medical school I (63), my (13),
i plan to find a mechanical work (10), plan (24),
i am planning to be a product find (5), graduate (8),
i plan on working as a will (17), be (17),
i would like to go into manufacturing go (7), am (5), career (6),
and continue education with goal get (6), job (7), would (13),
i would first like to pursue doctoral degree like (14), engineering (7),
having my own company working (13)
i will be starting a career as an
seeking law degree, to move into

3

business learn skills, turn hobbies into company (19), my (13),
i hope to run my own business industry (14), work (22),
start a company overseas engineering (18), start (12),
earn experience in a small I (21), business (6), go (12),
.. either go into industry or go own (6), job (9), pursue (5),
gain experience in the industry. will (8), plan (6),
would like to get into management engineer (5), get (7),
own company when i have the expertise degree (6), masters (5),
my feet in a start up company early working (13), be (5)
a good paying job at a company that

4

school within the next two years. at (19), my (13),
work there for 3 years go (12), industry (14),
in the next five years i hope work (22), engineering (18),
work abroad at some point. start (12), I (21), business (6),
5 to 6 years. engineer (5), be (5),
at least the next two years, i own (6), job (9), pursue (5),
there for at least three years. tentative will (8), plan (6),
at that point in time i want get (7), degree (6),
in the next five years i masters (5), working (13)
field at least once.

Table 3: The four concepts with 10 examples from the top 100 nearest neighbors and the word clouds containing
the most frequent words from the nearest neighbors

model’s output (4b). It is instructive to notice that—
in contrast to the model as a whole—SHAP values
w.r.t. to this specific neuron are all non-negative.
This indicates that this unit has specialized in cap-
turing only positive features, i.e. desire to start a
for-profit company.

Higher-level concept explanations While Con-
ceptSHAP (Yeh et al., 2020) does not require a
predefined list of concepts, we still need to manu-
ally set how many we want to model. We choose
four as we are seeking to extract broad and general
concepts.

For each concept, we look at the 100 nearest
neighbors’ word embeddings. We then map these
back to their corresponding word token and include
four neighboring tokens from their corresponding

sentence. Furthermore, we count the word tokens
appearing in the top 100 nearest neighbors and
construct a word cloud with the ones occurring
more than five times.

Once the concepts have been extracted automati-
cally, they can be inspected manually by humans
who can look for a common theme in the word
cloud and the nearest neighbors. Table 3 presents
an overview of the extracted concepts via showing
the ten nearest neighbors in addition to the word
cloud extracted from the top 100.

The first concept mainly contains nearest neigh-
bors describing a lack of orientation and concrete
career plans. Indeed, "no" is one of the words dom-
inating this word cloud. The second, in contrast,
captures a strong sense of having a clear path for
the own future career. Here, most sentences start
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(a) Local explanation: text relevance w.r.t. specific neuron

(b) Local explanation: text relevance w.r.t. model output

Figure 4: Local SHAP values describing the impact of
the embedding layer and numerical feature inputs on
the model’s prediction for 4 different samples, 2 be-
longing to class 0 (not wanting to start a for-profit com-
pany) and 2 belonging to class 1 (wanting to start a
for-profitcompany). See E for a larger scale version.

with "I" and contain words like "will" and "plan",
indicating strong traits of self-centeredness and de-
termination. Both these concepts match what also
discovered by Grau et al. (2016, p.8): i.e. the clar-
ity of plans.

The third concept revolves around the plan type
rather than its certainty or concreteness. For in-
stance, we find general words like "company",
"work", and "engineering", which indicate the goal
of founding a company, joining a startup, or work-
ing in the industry. This matches the idea of career
characteristics, also found in Grau et al. (2016,
p.8). Finally, the last concept is the most distinc-
tive as it captures the plan timeline, clearly present
in all the nearest neighbors listed. This concept,
connecting career plans to the time dimension, can-
not be found in previous works such as Grau et al.
(2016). The completeness scores achieved by these
concepts are reported in the appendix (see C).

5 Discussion and Comparison

We employed several architectures to solve the the
problem of career choice prediction to improve
over prevailing closed and open-vocabulary meth-
ods. While for some survey responses correlations
were strenuous, we found general success in pre-
dicting variables relating to entrepreneurial aspira-
tions.

We see an overall increase in performance by
combining textual and numerical input data. While
numerical data is generally more predictive in our
experiments, the 119 numerical variables are also
a lot more nuanced than the free-text answers Q22
and Inspire. Despite this, prediction from text alone
still manages to perform relatively well across dif-
ferent tasks. The negative impact on performance
of including the Inspire variable in models is likely

due to the limited amount of text in the answers to
the question.

To back up our model findings with explanations,
we applied SHAP and ConceptSHAP as post-hoc
approaches. The first confirmed what we observed
in terms of model performance and provided us
with a good understanding of the global and local
relevance of each component: numerical features,
text features, and embeddings. The second, in-
stead, led to the identification of relevant concepts
—clarity of plans, career characteristics, and plan
timeline—in line with the human judgment of pre-
vious works.

6 Conclusion and Future Work

This work investigated the usage of state-of-the-
art NLP and XAI techniques for analyzing user-
generated survey data. Instead of manually exam-
ining individual answers, our methodology heav-
ily relies on analyzing and interpreting a predic-
tor model trained to extract correlations and pat-
terns from the whole data set. We proposed a
multi-modal architecture consisting of a Distil-
BERT transformer architecture and FC layers. The
former is used to extract information from open-
ended textual answers while the latter process the
numerical features representing closed-ended an-
swers. The model achieves satisfactory accuracy in
predicting students’ career goals and aspirations.

We leveraged SHAP and ConceptSHAP to gen-
erate both instance-level and concept-level expla-
nations. These methods were applied at different
levels of granularity to assemble a holistic under-
standing of the model’s reasoning. Experiments on
the EMS survey show promising results in predict-
ing the students’ entrepreneurial ambition. More-
over, local explanations provide us insights about
the most relevant questions overall as well as rele-
vant factors w.r.t. a single student. The automatic
high-level concept analysis also led to insightful
findings which were very similar to what was found
in previous research including human judgment.

We release our code to the public to facilitate
further research and development 1.
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A Appendix: Details on the EMS 1.0
survey data

The longitudinal Engineering Major Survey (EMS)
by Gilmartin et al. (2017) consists of three surveys
in total, conducted between 2015 and 2019. In this
paper we only focus on the EMS 1.0 data from
2015 consisting of 7197 surveyed students of engi-
neering enrolled at 27 universities in the US. The
study is based on the Social Cognitive Career The-
ory (SCCT) framework (Lent et al., 1994) about
how a students decision making is influenced by 8
specific topics.

These topics are:

• Topic 1: Learning experiences

• Topic 2: Self-efficacy (Engineering task, pro-
fessional/interpersonal, innovation)

• Topic 3: Innovation outcome expectations

• Topic 4: Background characteristics / influ-
ences (gender, ethnicity, family background)

• Topic 5: Innovation interests

• Topic 6: Career Goals: Innovative work

• Topic 7: Job Targets

• Topic 8: Current contextual influences (major,
institutional, peer)

Independent variables: Our independent vari-
ables come from topic 7 and surmise the following
question Q20: "How likely is it that you will do
each of the following in the first five years after
you graduate?". It provides eight career possibili-
ties which constitute our tasks 1 through 8 for each
of the prediction heads:

1. Work as an employee for a small business or
start-up company.
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2. Work as an employee for a medium- or large-
size business.

3. Work as an employee for a non-profit
organization (excluding a school or col-
lege/university).

4. Work as an employee for the government, mil-
itary, or public agency (excluding a school or
college/university).

5. Work as a teacher or educational professional
in a K-12 school.

6. Work as a faculty member or educational pro-
fessional in a college or university.

7. Found or start your own for-profit organiza-
tion.

8. Found or start your own non-profit organiza-
tion.

Each entry can be answered with a Likert scale
score ranging from 0 ’Definitely will not’ to 4 ’Def-
initely will’.

For classification, the 5 classes (0 through 4)
are binned into a binary label: low interest and
high interest. The binning is done depending on
the median of each label as illustrated in Figure
5. However this strategy ultimately still leads to
unbalanced classes in some cases.

Lastly, we also analyze Pearson Correlation be-
tween all remaining labels after list-wise dele-
tion, to determine whether they can be considered
unique tasks. Our analysis illustrated in Figure 6
illustrated this point with most classes showing low
correlation (less than 0.5).

Numerical variables: There are 119 numerical
feature variables that operate on a categorical or
five-point scale split across 30 distinct questions.
Scale design, as well as the order of questions was
based on minimizing bias in survey response.

An additional test of correlation between numer-
ical features and task labels showed only weak
linear correlation, indicating that solving the task
is more complex.

Open text variables: We consider two open text
variables, which are the following:

1. Q22: "We have asked a number of questions
about your future plans. If you would like to
elaborate on what you are planning to do, in

the next five years or beyond, please do so
here."

2. Inspire: "To what extent did this survey in-
spire you to think about your education in
new or different ways? Please describe."

While these questions nominally fall under topic
7 in the SCCT framework, we treat them as disjoint
topics during processing.

We additionally evaluated text length and corre-
lation between the description of tasks of our target
variable and the contents of the free text fields. Text
length does not correlate with our label classes as
shown in Figure 7. At the same time we could
detect some correlation through keyword match-
ing with Q22, especially relating to a lower score.
Meanwhile there is no strong correlation between
keywords for the Inspire variable. Results of the
correlation analysis can be found in Figure 8 and
Figure 9.

B Appendix: Non-combined
architectures

This appendix shows the schematics for both archi-
tectures which omit either the textual or numeri-
cal variable part which was used for the detailed
experiments listed in Appendix D. The text-only
architecture can be found in Figure 10 while the
numerical-only model can be found in Figure 10.

C Appendix: Higher-Level
ConceptSHAP Experiments

Figure 12 shows an overview of the experiments
involving ConceptSHAP (Yeh et al., 2020). Com-
pleteness scores for the retrieved concepts are re-
ported in Table 4.

D Appendix: Detailed experiment results

This section lists the full results for the text-only
classification and regression tasks across topics in
table 5 as well as the results for the numerical vari-
able prediction in table 6.

E Further SHAP Examples

To improve their readability, we now present again
the SHAP force plots already included in 4.2. We
also present further examples not previously in-
cluded.
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Figure 5: Splits binning 5 classes into two by median for each task.

Figure 6: Pearson Correlation between each of the 8 labels. Values range from 0.0 to 1.0.

Figure 7: Overall text length distribution of Q22 and distribution grouped by classes per label.

Figure 8: Model architecture for numerical features with FC layers.
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Figure 9: Model architecture for numerical features with FC layers.
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Figure 10: Model architecture for prediction through text processing. The XOR signifies different model choices
w.r.t. different embedding processing steps and different output heads.
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Figure 11: Model architecture for numerical features with FC layers. The XOR indicates the different model
choices w.r.t. different output heads choices.

L1 L2 L3 L4 L5 L6 L7 L8

-0.66 -0.79 0.17 -0.59 0.18 0.93 0.89 0.73

Table 4: The completeness scores for each of the 8 prediction heads measuring how well the concepts can be used
to recover predictions from the original model (3)
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Figure 12: Explainability experiments with a concept-based method called ConceptSHAP. The original model is
extended to a surrogate model to train concept vectors cj , which function as the centroids of the concepts. These
concepts are then being formed by the top k nearest neighbour tokens embeddings to the concept vectors (1). In
addition to the pure concept extraction, we can measure their importance for the prediction of the model by using
the principle of SHAP, (2).

T1 T2 T3 T4 T5 T6 T7 T8

CLS
C 57.12 58.05 48.49 48.17 42.26 46.42 44.74 60.66
R 54.05 51.26 36.41 44.24 35.21 42.74 43.44 53.96

mean
C 51.66 60.10 56.89 44.61 48.40 51.85 52.50 63.70
R 53.82 51.36 50.82 58.75 43.63 42.24 46.71 62.40

BiLSTM
C 42.75 38.74 39.17 37.73 35.36 43.11 42.18 37.88
R 52.82 54.49 36.70 49.77 34.91 42.38 42.62 58.18

embedding
C 54.57 47.62 50.52 50.06 48.31 48.05 46.45 49.66
R 52.21 47.68 47.83 43.04 48.06 43.56 51.22 50.27

Table 5: F1 Scores for the Q22 text input, predicting all tasks. Best model for each task in bold.

(a) Local explanation: all features

(b) Local explanation: text embeddings only

Figure 13: Larger scale version of plots (c) and (d) from Figure 3
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T1 T2 T3 T4 T5 T6 T7 T8

topic 1
C 44.39 41.74 57.46 41.36 52.21 49.62 58.07 66.83
R 41.63 40.48 44.78 42.77 44.04 44.92 46.51 64.92

topic 2
C 48.42 44.83 54.36 42.51 40.32 42.60 42.74 62.39
R 43.56 39.98 36.46 38.16 35.17 43.68 43.09 55.41

topic 3
C 42.74 46.80 48.03 42.17 54.85 46.05 48.10 50.18
R 43.33 39.68 45.84 38.02 48.54 46.42 47.09 48.60

topic 4
C 42.28 39.33 45.18 47.16 45.22 44.94 44.71 54.37
R 42.17 40.39 44.03 51.85 41.54 48.91 48.24 48.06

topic 5
C 44.94 51.00 58.68 45.98 55.64 46.77 43.44 64.33
R 44.33 48.75 53.58 41.33 51.86 43.06 43.51 62.98

topic 6
C 49.26 40.35 44.68 47.18 38.39 42.71 42.57 57.70
R 44.36 44.39 37.53 38.89 35.85 42.46 43.16 61.96

topic 7
C 46.40 61.60 56.66 46.20 54.11 58.03 43.02 44.29
R 47.32 62.69 50.31 51.28 52.65 60.86 43.59 48.98

topic 8
C 46.41 44.39 52.06 51.84 45.58 45.68 44.04 48.69
R 48.92 56.72 49.96 53.97 49.65 53.29 43.37 38.91

all topics sep.
C 51.41 60.80 60.90 57.35 61.06 60.79 59.29 70.25
R 51.81 55.66 52.38 56.31 52.84 55.83 53.32 67.74

dir.
C 50.85 53.34 61.03 52.40 57.03 67.88 61.02 72.65
R 50.79 54.17 61.58 57.33 58.94 56.92 59.08 74.65

Table 6: F1 Scores for the numerical data differing on inputs only. Best model for each task in bold.

(a) Local explanation: text relevance w.r.t. specific neuron

(b) Local explanation: text relevance w.r.t. model output

(c) Local explanation: text relevance w.r.t. specific neuron

(d) Local explanation: text relevance w.r.t. model output

Figure 14: Larger scale version of SHAP plots presented in Figure 4. Two additional examples have also been
added - i.e. (c) and (d).

63



A.4 study vii 109

a.4 study vii

©2022 Association for Computational Linguistics, published under Creative Commons

CC-BY 4.0 License4.

Edoardo Mosca, Shreyash Agarwal, Javier Rando Ramırez, and Georg Groh (May

2022). ““That Is a Suspicious Reaction!”: Interpreting Logits Variation to Detect NLP

Adversarial Attacks.” In: Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for

Computational Linguistics, pp. 7806–7816. doi: 10.18653/v1/2022.acl-long.538.

url: https://aclanthology.org/2022.acl-long.538

4 https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.18653/v1/2022.acl-long.538
https://aclanthology.org/2022.acl-long.538
https://creativecommons.org/licenses/by/4.0/


110 publications
•

Publication Summary

"Adversarial attacks are a major challenge faced by current machine learning research.

These purposely crafted inputs fool even the most advanced models, precluding

their deployment in safety-critical applications. Extensive research in computer vision

has been carried to develop reliable defense strategies. However, the same issue

remains less explored in natural language processing. Our work presents a model-

agnostic detector of adversarial text examples. The approach identifies patterns in the

logits of the target classifier when perturbing the input text. The proposed detector

improves the current state-of-the-art performance in recognizing adversarial inputs

and exhibits strong generalization capabilities across different NLP models, datasets,

and word-level attacks." (Mosca, Agarwal, et al., 2022, p. 1)

Author Contributions

Edoardo Mosca contributed to the study as follows:

• Conception, development, and lead of the research project 100%

• Literature review and feasibility study 80%

• Setup and implementation of experiments 20%

• Analysis and interpretation of results. 30%

• Drafting of the manuscript 70%

• Submission, peer review, and publication process 100%



Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7806 - 7816

May 22-27, 2022 c©2022 Association for Computational Linguistics

"That Is a Suspicious Reaction!": Interpreting Logits Variation to Detect
NLP Adversarial Attacks

Edoardo Mosca
TU Munich,

Department of Informatics,
Germany

edoardo.mosca@tum.de

Shreyash Agarwal
TU Munich,

Department of Informatics,
Germany

shreyash.agarwal@tum.de

Javier Rando-Ramirez
ETH Zurich,

Department of Computer Science,
Switzerland

jrando@student.ethz.ch

Georg Groh
TU Munich,

Department of Informatics,
Germany

grohg@in.tum.de

Abstract
Adversarial attacks are a major challenge
faced by current machine learning research.
These purposely crafted inputs fool even the
most advanced models, precluding their de-
ployment in safety-critical applications. Ex-
tensive research in computer vision has been
carried to develop reliable defense strategies.
However, the same issue remains less explored
in natural language processing. Our work
presents a model-agnostic detector of adver-
sarial text examples. The approach identi-
fies patterns in the logits of the target classi-
fier when perturbing the input text. The pro-
posed detector improves the current state-of-
the-art performance in recognizing adversarial
inputs and exhibits strong generalization capa-
bilities across different NLP models, datasets,
and word-level attacks.

1 Introduction

Despite recent advancements in Natural Language
Processing (NLP), adversarial text attacks continue
to be highly effective at fooling models into mak-
ing incorrect predictions (Ren et al., 2019; Wang
et al., 2019; Garg and Ramakrishnan, 2020). In par-
ticular, syntactically and grammatically consistent
attacks are a major challenge for current research
as they do not alter the semantical information and
are not detectable via spell checkers (Wang et al.,
2019). While some defense techniques addressing
this issue can be found in the literature (Mozes
et al., 2021; Zhou et al., 2019; Wang et al., 2019),
results are still limited in performance and text at-
tacks keep evolving. This naturally raises concerns
around the safe and ethical deployment of NLP
systems in real-world processes.

Previous research showed that analyzing the
model’s logits leads to promising results in dis-
criminating manipulated inputs (Wang et al., 2021;
Aigrain and Detyniecki, 2019; Hendrycks and Gim-
pel, 2016). However, logits-based adversarial de-
tectors have been only studied on computer vi-
sion applications. Our work transfers this type
of methodology to the NLP domain and its contri-
bution can be summarized as follows:

(1) We introduce a logits-based metric called
Word-level Differential Reaction (WDR) captur-
ing words with a suspiciously high impact on the
classifier. The metric is model-agnostic and also
independent from the number of output classes.

(2) Based on WDR scores, we train an adversar-
ial detector that is able to distinguish original from
adversarial input texts preserving syntactical cor-
rectness. The approach substantially outperforms
the current state of the art in NLP.

(3) We show our detector to have full transferabil-
ity capabilities and to generalize across multiple
datasets, attacks, and target models without need-
ing to retrain. Our test configurations include trans-
formers and both contextual and genetic attacks.

(4) By applying a post-hoc explainability method,
we further validate our initial hypothesis—i.e. the
detector identifies patterns in the WDR scores. Fur-
thermore, only a few of such scores carry strong
signals for adversarial detection.

7806



2 Background and Related Work

2.1 Adversarial Text Attacks
Given an input sample x and a target model f ,
an adversarial example x′ = x + ∆x is gener-
ated by adding a perturbation ∆x to x such that
arg max f(x) = y 6= y′ = arg max f(x′). Al-
though this is not required by definition, in practice
the perturbation ∆x is often imperceptible to hu-
mans and x′ is misclassified with high confidence.
In the NLP field, ∆x consists in adding, remov-
ing, or replacing a set of words or characters in the
original text. Unlike image attacks—vastly studied
in the literature (Zhang et al., 2020) and operating
in high-dimensional continuous input spaces—text
perturbations need to be applied on a discrete in-
put space. Therefore, gradient methods used for
images such as FGSM (Goodfellow et al., 2014)
or BIM (Kurakin et al., 2017) are not useful since
they require a continuous space to perturb x. Based
on the text perturbation introduced, text attacks can
be distinguished into two broad categories.

Visual similarity: These NLP attacks generate
adversarial samples x′ that look similar to their
corresponding original x. These perturbations usu-
ally create typos by introducing perturbations at the
character level. DeepWordBug (Gao et al., 2018),
HotFlip (Ebrahimi et al., 2018) , and VIPER (Eger
et al., 2019) are well-known techniques belonging
to this category.

Semantic similarity: Attacks within this cate-
gory create adversarial samples by designing sen-
tences that are semantically coherent to the origi-
nal input and also preserve syntactical correctness.
Typical word-level perturbations are deletion, in-
sertion, and replacement by synonyms (Ren et al.,
2019) or paraphrases (Iyyer et al., 2018). Two main
types of adversarial search have been proposed.
Greedy algorithms try each potential replacement
until there is a change in the prediction (Li et al.,
2020; Ren et al., 2019; Jin et al., 2020). On the
other hand, genetic algorithms such as Alzantot
et al. (2018) and Wang et al. (2019) attempt to find
the best replacements inspired by natural selection
principles.

2.2 Defense against Adversarial Attacks in
NLP

Defenses based on spell and syntax checkers
are successful against character-level text attacks
(Pruthi et al., 2019; Wang et al., 2019; Alshemali

and Kalita, 2019). In contrast, these solutions are
not effective against word-level attacks preserving
language correctness (Wang et al., 2019). We iden-
tify methods against word-level attacks belonging
to two broad categories:

Robustness enhancement: The targeted model
is equipped with further processing steps to not
be fooled by adversarial samples without identify-
ing explicitly which samples are adversarial. For
instance, Adversarial Training (AT) (Goodfellow
et al., 2014) consists in training the target model
also on manipulated inputs. The Synonym Encod-
ing Method (SEM) (Wang et al., 2019) introduces
an encoder step before the target model’s input
layer and trains it to eliminate potential perturba-
tions. Instead, Dirichlet Neighborhood Ensemble
(DNE) (Zhou et al., 2020) and Adversarial Sparse
Convex Combination (ASCC) (Dong et al., 2021)
augment the training data by leveraging the convex
hull spanned by a word and its synonyms.

Adversarial detection: Attacks are explicitly
recognized to alert the model and its developers.
Adversarial detectors were first explored on im-
age inputs via identifying patterns in their corre-
sponding Shapley values (Fidel et al., 2020), acti-
vation of specific neurons (Tao et al., 2018), and
saliency maps (Ye et al., 2020). For text data, pop-
ular examples are Frequency-Guided Word Substi-
tution (FGWS) (Mozes et al., 2021) and learning
to DIScriminate Perturbation (DISP) (Zhou et al.,
2019). The former exploits frequency properties of
replaced words, while the latter uses a discrimina-
tor to find suspicious tokens and uses a contextual
embedding estimator to restore the original word.

2.3 Logits-Based Adversarial Detectors
Inspecting output logits has already led to promis-
ing results in discriminating between original and
adversarial images (Hendrycks and Gimpel, 2016;
Pang et al., 2018; Kannan et al., 2018; Roth et al.,
2019). For instance, Wang et al. (2021) trains a re-
current neural network that captures the difference
in the logits distribution of manipulated samples.
Aigrain and Detyniecki (2019), instead, achieves
good detection performance by feeding a simple
three-layer neural network directly with the logit
activations.

Our work adopts a similar methodology but fo-
cuses instead on the NLP domain and thus text
attacks. In this case (1) logits-based metrics to
identify adversarial samples should be tailored to
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Figure 1: Overview of the proposed method.

the new type of input and (2) detectors should be
tested on currently used NLP models such as trans-
formers (Devlin et al., 2019).

3 Methodology

The defense approach proposed in this work be-
longs to the category of adversarial detection. It
defends the target model from attacks generated
via word-level perturbations belonging to the se-
mantic similarity category. The intuition behind
the method is that the model’s reaction to original-
and adversarial samples is going to differ even if
the inputs are similar. Hence, it relies on feature
attribution explanations coupled with a machine
learning model to learn such difference and thus
identify artificially crafted inputs.

Figure 1 shows the overall pipeline of the ap-
proach. Given a text classifier f trained on the task
at hand, the pipeline’s goal is to detect whether the
currently fed input x is adversarial. In 3.1, we ex-
plain in greater detail how we measure the model
f ’s reaction to a given input x. This quantity—
later indicated with WDR(x, f)—is then passed
to the adversarial detector, whose training proce-
dure is described in 3.2. Finally, in 3.3, we provide
detailed information about the setup of our experi-
ments such as target models, datasets, and attacks.

3.1 Interpreting the Target Model and
Measuring its Reaction: Word-Level
Differential Reaction

Adversarial attacks based on semantic similarity
replace the smallest number of words possible
to change the target model’s prediction (Alzantot
et al., 2018). Thus, we expect the replacements
transforming x into x′ to play a big role for the out-
put. If not, we would not have f(x′) substantially
different from f(x). To assess the reaction of the

target model f to a given input x, we measure the
impact of a word via the Word-level Differential
Reaction (WDR) metric. Specifically, the effect of
replacing a word xi on the prediction

y∗ = arg max
y
p(y|x)

is quantified by

WDR(xi, f) = f(x\xi)y∗ −max
y 6=y∗

f(x\xi)y

where f(x\xi)y indicates the output logit for
class y for the input sample x without the word xi.
Specifically, xi is replaced by an unknown word
token. If x is adversarial, we could expect to find
perturbed words to have a negative WDR(xi, f)
as without them the input text should recover its
original prediction. Table 1 shows an example pair
of original and adversarial text together with their
corresponding WDR(xi, f) scores. The original
class is recovered after removing a perturbed word
in the adversarial sentence. This switch results in a
negative WDR. However, even if the most impor-
tant word is removed from the original sentence
(’worst’), the predicted class does not change and
thus WDR(xi, f) > 0.

Our adversarial detector takes as input
WDR(x, f), i.e. the sorted list of WDR scores
WDR(xi, f) for all words xi in the input sentence.
As sentences vary in length, we pad the list with
zeros to ensure a consistent input length for the
detector.

3.2 Adversarial Detector Training
The adversarial detector is a machine-learning clas-
sifier that takes the model’s reaction WDR(x, f) as
input and outputs whether the input x is adversarial
or not. To train the model, we adopt the following
multi-step procedure:
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Original sentence: Neg. Review (Class 0) Adversarial sentence: Pos. Review (Class 1)
This is absolutely the worst trash I have ever This is absolutely the tough trash I have ever
seen. It took 15 full minutes before I realized seen. It took 15 full minutes before I realized
that what I was seeing was a sick joke! [...] that what I was seeing was a silly joke! [...]
Removed Logit Logit WDR Removed Logit Logit WDR
Word xi Class 0 Class 1 WDR(xi, f) Word xi Class 0 Class 1 WDR(xi, f)

∅ 3.44 -3.46 6.89 ∅ -1.85 2.17 4.02
worst 1.68 -1.75 3.43 tough 2.14 -1.50 -3.64
sick 3.34 -3.42 6.76 silly 1.38 -1.37 -2.75
absolutely 3.40 -3.45 6.86 absolutely -0.31 0.48 0.79
realized 3.41 -3.47 6.89 realized -1.07 1.36 2.43

Table 1: WDR(xi, f) scores computed for an original sentence and its corresponding adversarial perturbation.
Results show how when removing adversarial words such as tough or silly, the original class is recovered and the
WDR becomes negative. ∅ corresponds to the prediction without any replacements

(S1) Generation of adversarial samples:
Given a target classifier f , for each original sample
available x, we generate one adversarial example
x′. This leads to a balanced dataset containing
both normal and perturbed samples. The labels
used are original and adversarial respectively.

(S2) WDR computation: For each element of
the mixed dataset, we compute the WDR(x, f)
scores as defined in Section 3.1. Once more, this
step creates a balanced dataset containing the WDR
scores for both normal and adversarial samples.

(S3) Detector training: The output of the sec-
ond step (S2) is split into training and test data.
Then, the training data is fed to the detector for
training along with the labels defined in step (S1).

Please note that no assumption on f is made. At
the same time, the input of the adversarial detector—
i.e. the WDR scores—does not depend on the num-
ber of output classes of the task at hand. Hence,
the adversarial detector is model-agnostic w.r.t. the
classification task and the classifier targeted by the
attacks.

In our case, we do not pick any particular ar-
chitecture for the adversarial detector. Instead, we
experiment with a variety of models to test their
suitability for the task. In the same spirit, we test
our setting on different target classifiers, types of
attacks, and datasets.

3.3 Experimental Setup

To test our pipeline, four popular classification
benchmarks were used: IMDb (Maas et al., 2011),
Rotten Tomatoes Movie Reviews (RTMR) (Pang

and Lee, 2005), Yelp Polarity (YELP) (Zhang et al.,
2015), and AG News (Zhang et al., 2015). The first
three are binary sentiment analysis tasks in which
reviews are classified in either positive or negative
sentiment. The last one, instead, is a classification
task where news articles should be identified as one
of four possible topics: World, Sports, Business,
and Sci/Tech.

As main target model for the various tasks we
use DistilBERT (Sanh et al., 2020) fine-tuned on
IMDb. We choose DistilBert—a transformer lan-
guage model (Vaswani et al., 2017)—as trans-
former architectures are widely used in NLP ap-
plications, established as state of the art in several
tasks, and generally quite resilient to adversarial
attacks (Morris et al., 2020). Furthermore, we
employ a Convolutional Neural Network (CNN)
(Zhang et al., 2015), a Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997), and
a full BERT model (Devlin et al., 2019) to test trans-
ferability to different target architectures. All mod-
els are provided by the TextAttack library (Morris
et al., 2020) and are already trained1 on the datasets
used in the experiments.

We generate adversarial text attacks via
four well-established word-substitution-based tech-
niques: Probability Weighted Word Saliency
(PWWS) (Ren et al., 2019), Improved Genetic Al-
gorithm (IGA) (Jia et al., 2019), TextFooler (Jin
et al., 2020), and BERT-based Adversarial Exam-
ples (BAE) (Garg and Ramakrishnan, 2020). The
first is a greedy algorithm that uses word saliency

1textattack.readthedocs.io/en/latest/3recipes/models.html,
released under MIT License
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and prediction probability to determine the word
replacement order (Ren et al., 2019). IGA, instead,
crafts attacks via mutating sentences and promot-
ing the new ones that are more likely to cause a
change in the output. TextFooler ranks words by
importance and then replaces the ones with the
highest ranks. Finally, BAE, leverages a BERT
language model to replace tokens based on their
context (Garg and Ramakrishnan, 2020). All at-
tacks are generated using the TextAttack library
(Morris et al., 2020).

We investigate several combinations of datasets,
target models, and attacks to test our detector in a
variety of configurations. Because of its robustness
and well-balanced behavior, we pick the average
F1-score as our main metric for detection. How-
ever, as in adversarial detection false negatives can
have major consequences, we also report the recall
on adversarial sentences. Later on, in 4.3, we also
compare performance with other metrics such as
precision and original recall and observe how they
are influenced by the chosen decision threshold.

4 Experimental Results

In this section, we report the experimental results
of our work. In 4.1, we study various detector ar-
chitectures to choose the best performing one for
the remaining experiments. In 4.2, we measure our
pipeline’s performance in several configurations
(target model, dataset, attack) and we compare it
to the current state-of-the-art adversarial detectors.
While doing so, we also assess transferability via
observing the variation in performance when chang-
ing the dataset, the target model, and the attack
source without retraining our detector. Finally, in
4.3, we look at how different decision boundaries
affect performance metrics.

4.1 Choosing a Detector Model

The proposed method does not impose any con-
straint on which detector architecture should be
used. For this reason, no particular model has
been specified in this work so far. We study six
different detector architectures in one common set-
ting. We do so in order to pick one to be utilized
in the rest of the experiments. Specifically, we
compare XGBoost (Chen and Guestrin, 2016), Ad-
aBoost (Schapire, 1999), LightGBM (Ke et al.,
2017), SVM (Hearst et al., 1998), Random For-
est (Breiman, 2001), and a Perceptron NN (Singh
and Banerjee, 2019). All models are compared

on adversarial attacks generated with PWWS from
IMDb samples and targeting a DistilBERT model
fine-tuned on IMDb. A balanced set of 3, 000
instances—1, 500 normal and 1, 500 adversarial—
was used for training the detectors while the test
set contains a total of 1360 samples following the
same proportions.

Model F1-Score Adv. Recall
XGBoost 92.4 95.2
AdaBoost 91.8 96.0
LightGBM 92.0 93.7
SVM 92.0 94.8
Random For-
est

91.5 93.7

Perceptron
NN

90.4 88.1

Table 2: Performance comparison of different detec-
tor architectures on IMDb adversarial attacks generated
with PWWS and targeting a DistilBERT transformer.

As shown in Table 2, all architectures achieve
competitive performance and none of them clearly
appears superior to the others. We pick XGBoost
(Chen and Guestrin, 2016) as it exhibits the best
F1-score. The main hyperparameters utilized are
29 gradient boosted trees with a maximum depth of
3 and 0.34 as learning rate. We utilize this detector
architecture for all experiments in the following
sections.

4.2 Detection Performance

Tables 3a and 3b report the detection performance
of our method in a variety of configurations. In
each table, the first row represents the setting—i.e.
combination of target model, dataset, and attack
type—in which the detector was trained. The re-
maining rows, instead, are w.r.t. settings in which
we tested the already trained detector without per-
forming any kind of fine-tuning or retraining.

We utilize a balanced training set of size 3, 000
and 2, 400 samples respectively for the detectors
trained on IMDb adversarial attacks (Table 3a) and
on AG News attacks (Table 3b). All results are
obtained using balanced test sets containing 500
samples. The only exceptions are the configura-
tions (DistilBERT, RTMR, IGA) and (DistilBERT,
AG News, IGA) which used test sets of size 480
and 446 respectively due to data availability.

To the best of our knowledge, the FGWS method
from Mozes et al. (2021) is the best detector avail-
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Configuration WDR (Ours) FGWS (Mozes et al., 2021)
Model Dataset Attack F1-Score Adv. F1-Score Adv.

Recall Recall
DistilBERT IMDb PWWS 92.1 ± 0.5 94.2 ± 1.1 89.5 82.7
LSTM IMDb PWWS 84.1 ± 3.4 86.8 ± 8.5 80.0 69.6
CNN IMDb PWWS 84.3 ± 3.1 90.0 ± 6.2 86.3 79.6
BERT IMDb PWWS 92.4 ± 0.7 92.5 ± 1.8 89.8 82.7
DistilBERT AG News PWWS 93.1 ± 0.6 96.1 ± 2.2 89.5 84.6
DistilBERT RTMR PWWS 74.1 ± 3.1 85.1 ± 8.6 78.9 67.8
DistilBERT IMDb TextFooler 94.2 ± 0.8 97.3 ± 0.9 86.0 77.6
DistilBERT IMDb IGA 88.5 ± 0.9 95.5 ± 1.3 83.8 74.8
DistilBERT IMDb BAE 88.0 ± 0.9 96.3 ± 1.0 65.6 50.2
DistilBERT RTMR IGA 70.4 ± 5.5 90.2 ± 6.9 68.1 55.2
DistilBERT RTMR BAE 68.5 ± 4.3 82.2 ± 9.0 29.4 18.5
DistilBERT AG News BAE 81.0 ± 4.3 95.4 ± 3.8 55.8 44.0
BERT YELP PWWS 89.4 ± 0.6 85.3 ± 1.7 91.2 85.6
BERT YELP TextFooler 95.9 ± 0.3 97.5 ± 0.6 90.5 84.2

(a) Performance results for detector trained on (DistilBERT, IMDb, PWWS).

Configuration WDR (Ours) FGWS (Mozes et al., 2021)
Model Dataset Attack F1-Score Adv. F1-Score Adv.

Recall Recall
DistilBERT AG News PWWS 93.6 ± 1.5 94.8 ± 2.4 89.5 84.6
LSTM AG News PWWS 94.0 ± 1.0 94.2 ± 2.2 88.9 84.9
CNN AG News PWWS 91.1 ± 1.4 91.2 ± 2.6 90.6 87.6
BERT AG News PWWS 92.5 ± 0.9 93.0 ± 1.8 88.7 83.2
DistilBERT IMDB PWWS 91.4 ± 0.6 93.0 ± 1.9 89.5 82.7
DistilBERT RTMR PWWS 75.8 ± 0.9 78.5 ± 4.8 78.9 67.8
DistilBERT AG News TextFooler 95.7 ± 0.7 97.3 ± 1.2 87.0 79.4
DistilBERT AG News BAE 86.4 ± 1.1 94.5 ± 1.8 55.8 44.0
DistilBERT AG News IGA 86.7 ± 1.5 93.6 ± 2.1 68.6 58.3
DistilBERT RTMR IGA 73.7 ± 1.5 85.4 ± 5.2 68.1 55.2
DistilBERT RTMR BAE 71.0 ± 1.1 75.2 ± 6.0 29.4 18.5
DistilBERT IMDB BAE 88.1 ± 0.9 97.0 ± 1.0 65.6 55.2
BERT YELP PWWS 86.2 ± 1.4 77.2 ± 3.1 91.2 85.6
BERT YELP TextFooler 95.4 ± 0.3 94.7 ± 0.9 90.5 84.2

(b) Performance results for detector trained on (DistilBERT, AG News, PWWS).

Table 3: Adversarial detection performance of our defense against the state of the art FGWS under several setups.
Results were obtained with a detector trained on two different configurations as indicated in the first row of each
table. For all other rows, i.e. test configurations, differences w.r.t the training setup have been highlighted. To in-
crease the results’ statistical significance, we average the performance across 30 different data-splits of the training
configuration. Additionally, we report the corresponding 95% confidence intervals. Given the deterministic nature
of FGWS, different data-splits lead to the same performance and hence confidence intervarls are not reported as
they are trivial (±0).

able and was already proven to be better than DISP
(Zhou et al., 2019) by its authors. Hence, we utlize
FGWS as baseline for comparison in all config-
urations. Analogously to our method, FGWS is

trained on the configuration in the first row of each
table and then applied to all others. More in detail,
we fine-tune its frequency substitution threshold
parameter δ (Mozes et al., 2021) until achieving a
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best fit value of δ = 0.9 in both training settings.
From what can be seen in both tables, the pro-

posed method consistently shows very competi-
tive results in terms of F1-score and outperforms
the baseline in 22 configurations out of 28 (worse
in 5) and is on average better by 8.96 percentage
points. At the same time, our methods exhibits a
very high adversarial recall, showing a strong ca-
pability at identifying attacks and thus producing a
small amount of false negatives.

Generalization to different target models:
Starting from the training configurations, we vary
the target model while maintaining the other com-
ponents fixed (rows 2-4 of each table). Here, the
detector achieves state-of-the-art results in all test
settings, occasionally dropping below the 90% F1-
score on a few simpler models like LSTM and CNN
while not exhibiting any decay on more complex
models like BERT.

Generalization to different datasets: Analo-
gous to the previous point, we systematically sub-
stitute the dataset component for evaluation (rows
5-6 of each table). We notice a substantial decay in
F1-score when testing with RTMR (74.1 - 75.8%)
since samples are short and, therefore, may contain
few words which are very relevant for the predic-
tion, just like adversarial replacements. Neverthe-
less, removing adversarial words still result in a
change of prediction to the original class thereby
preserving high adversarial recall."

Generalization to different attacks: Results
highlight a good reaction to all other text attacks
(rows 7-9 of each table) and even experiences a con-
siderable boost in performance against TextFooler.
In contrast, the baseline FGWS significantly suffers
against more complex attacks such as BAE, which
generates context-aware perturbation.

Besides testing generalization properties via sys-
tematically varying one configuration component
at the time, we also test on a few settings present-
ing changes in multiple ones (rows 10-14 of each
table). Also in these settings, the proposed method
maintains a very competitive performance, with
noticeable drops only on the RTMR dataset.

4.3 Tuning the Decision Boundary

Depending on the application in which the detector
is used to monitor the model and detect malicious
input manipulations, different performance metrics
can be taken into account to determine whether it

is safe to deploy the model. For instance, in a very
safety-critical application where successful attacks
lead to harmful consequences, adversarial recall
becomes considerably more relevant as a metric
than the F1-score.
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Figure 2: Performance metrics w.r.t. different decision
thresholds for our XGBoost classifier on the configura-
tion (IMDb, DistilBERT, PWWS). Input sentences are
classified as adversarial when their probability is higher
than the decision threshold.

We examine how relevant metrics change in re-
sponse to different choices for the discrimination
threshold. Please note that a lower value corre-
sponds to more caution, i.e. we are more likely to
output that a certain input is adversarial.

DT Precision F1 Adv. Orig.
Recall Recall

0.5 92.5 92.4 95.2 89.5
0.4 92.3 92.0 96.4 87.5
0.3 92.4 91.8 97.6 85.9
0.15 91.5 90.3 98.4 82.3

Table 4: Performance comparison using different Deci-
sion Thresholds (DT) for our XGBoost classifier on the
configuration (IMDb, DistilBERT, PWWS). The used
default value is 0.5.

Figure 2 and Table 4 show performance results
w.r.t. different threshold choices. We notice that
decreasing its value from 0.5 to 0.15 can increase
the adversarial recall to over 98% at a small cost
in terms of precision and F1-score (< 2 percent-
age points). Applications where missing attacks—
i.e. false negatives—have disastrous consequences
could take advantage of this property and consider
lowering the decision boundary. This is particularly
true if attacks are expected with a low frequency
and an increase in false positive incurs only minor
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costs.

5 Discussion and Qualitative Results

Section 4 discussed quantitative results and em-
phasized the competitive performance that the pro-
posed approach achieves. Here, instead, we focus
on the qualitative aspects of our research findings.
For instance, we try to understand why our pipeline
works while also discussing challenges, limitations,
ethical concerns, and future work.

5.1 Understanding the Adversarial Detector
The proposed pipeline consists of a machine
learning classifier—e.g. XGBoost—fed with the
model’s WDR scores. The intuition behind the
approach is that words replaced by adversarial at-
tacks play a big role in altering the target model’s
decision. Despite the competitive detection perfor-
mance, the detector is itself a learning algorithm
and we cannot determine with certainty what pat-
terns it can identify.

To validate our original hypothesis, we apply a
popular explainability technique—SHAP (Lund-
berg and Lee, 2017)—to our detector. This allows
us to summarize the effect of each feature at the
dataset level. We use the official implementation2

to estimate the importance of each WDR and use a
beeswarm plot to visualize the results.
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Figure 3: WDR scores with the highest impact (SHAP
value) on the detector’s prediction. Please recall that
the WDR scores are sorted by magnitude. For instance,
WDR 1 is the first and largest WDR score.

Figure 3 shows that values in the first positions—
i.e. 1, 2, and 3—of the input sequence are those

2https://github.com/slundberg/shap, released under MIT
License

influencing the adversarial detector the most. Since
in our pipeline WDR scores are sorted based on
their magnitude, this means that the largest WDR
of each prediction are the most relevant for the
detector. This is consistent with our hypothesis
that replaced words substantially change output
logits and thus measuring their variation is effective
for detecting input manipulations. As expected,
negative values for the WDR correspond to a higher
likelihood of the input being adversarial.

We also notice that features after the first three
do not appear in the naturally expected order. We
believe this is the case as for most sentences it is
sufficient to replace two-three words to generate an
adversarial sample. Hence, in most cases, only a
few WDR scores carry important signals for detec-
tion.

5.2 Challenges and Limitations

While WDR scores contain rich patterns to identify
manipulated samples, they are also relatively expen-
sive to compute. Indeed, we need to run the model
once for each feature—i.e. each word—in the input
text. While this did not represent a limitation for
our use-cases and experiments, we acknowledge
that it could result in drawbacks when input texts
are particularly long.

Our method is specifically designed against
word-level attacks and it does not cover character-
level ones. However, the intuition seems to some
extent applicable also to sentences with typos and
similar artifacts as the words containing them will
play a big role for the prediction. This, like in the
word-level case, needs to happen in order for the
perturbations to result in a successful adversarial
text attack and change the target model’s prediction

5.3 Ethical Perspective and Future Work

Detecting—or in general defending against—
adversarial attacks is a fundamental pillar to de-
ploy machine learning models ethically and safely.
However, while defense strategies increase model
robustness, they can also inspire and stimulate new
and improved attack techniques. An example of
this phenomenon is BAE (Garg and Ramakrish-
nan, 2020), which leverages architectures more
resilient to attacks such as BERT to craft highly-
effective contextual attacks. Analogously, defense
approaches like ours could lead to new attacks that
do not rely on a few words to substantially affect
output logits.
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Based on our current findings, we identify a few
profitable directions for future research. (1) First
of all, the usage of logits-based metrics such as the
WDR appears to be very promising for detecting
adversarial inputs. We believe that a broader explo-
ration and comparison of other metrics previously
used in computer vision could lead to further im-
provements. (2) We encourage future researchers
to draw inspiration from this work and also test
their defenses in settings that involve mismatched
attacks, datasets, and target models. At the same
time, we set as a priority for our future work to
also evaluate the efficacy of adversarial detection
methods on adaptive attacks (Tramer et al., 2020;
Athalye et al., 2018). (3) This work proves the
efficacy of WDR in a variety of settings, which
include a few different datasets and tasks. How-
ever, it would be beneficial for current research to
understand how these techniques would apply to
high-stakes NLP applications such as hate speech
detection (Mosca et al., 2021; Wich et al., 2021).

6 Conclusion

Adversarial text attacks are a major obstacle to the
safe deployment of NLP models in high-stakes ap-
plications. However, although manipulated and
original samples appear indistinguishable, inter-
preting the model’s reaction can uncover helpful
signals for adversarial detection.

Our work utilizes logits of original and adver-
sarial samples to train a simple machine learning
detector. WDR scores are an intuitive measure of
word relevance and are effective for detecting text
components having a suspiciously high impact on
the output. The detector does not make any as-
sumption on the classifier targeted by the attacks
and can be thus considered model-agnostic.

The proposed approach achieves very promis-
ing results, considerably outperforming the previ-
ous state-of-the-art in word-level adversarial detec-
tion. Experimental results also show the detector
to possess remarkable generalization capabilities
across different target models, datasets, and text
attacks without needing to retrain. These include
transformer architectures such as BERT and well-
established attacks such as PWWS, genetic algo-
rithms, and context-aware perturbations.

We believe our work sets a strong baseline on
which future research can build to develop better
defense strategies and thus promoting the safe de-
ployment of NLP models in practice. We release

our code to the public to facilitate further research
and development 3.
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Abstract

Interpreting NLP models is fundamental for
their development as it can shed light on
hidden properties and unexpected behaviors.
However, while transformer architectures ex-
ploit contextual information to enhance their
predictive capabilities, most of the available
methods to explain such predictions only pro-
vide importance scores at the word level. This
work addresses the lack of feature attribution
approaches that also take into account the sen-
tence structure. We extend the SHAP frame-
work by proposing GrammarSHAP—a model-
agnostic explainer leveraging the sentence’s
constituency parsing to generate hierarchical
importance scores.

1 Introduction

Deep learning models have raised the bar in terms
of performance in a variety of Natural Language
Processing (NLP) tasks (Vaswani et al., 2017; De-
vlin et al., 2019). However, also model complexity
has been steadily increasing, which in turn hin-
ders the interpretability of their predictions. This
is particularly true for transformer architectures,
currently established as the state of the art in var-
ious applications but at the same time containing
billions of parameters (Brown et al., 2020).

Local explanations have become a popular tool
to understand and interpret models’ decisions
(Madsen et al., 2021; Arrieta et al., 2020). These—
besides increasing the public’s trust in machine
learning systems—can uncover unwanted behav-
iors such as unintended bias (Madsen et al., 2021;
Dixon et al., 2018).

Feature attribution explanations are the most
commonly used and can highlight parts of the in-
put text that are relevant for the obtained outcome
(Lundberg and Lee, 2017; Ribeiro et al., 2016).
Almost all available methods, however, can only
attribute a relevance score to single words. This
is highly unintuitive as natural language in human
communication can be very articulated and context-
dependent. Indeed, a word’s neighborhood can
drastically alter its intended message and senti-
ment.

Our work focuses on generating explanations
that account for the language structure. More
specifically, we build hierarchical explanations that
attribute relevance scores to sentence constituents
at multiple levels. In contrast to previous work ad-
dressing the same issue (Chen et al., 2020; Chen
and Jordan, 2020), we build our approach as an
extension of SHAP (Lundberg and Lee, 2017)—a
local explainability framework renowned for its
solid theoretical background. Our contribution can
be summarized as follows:

(1) We design GrammarSHAP, a model-agnostic
approach for generating multi-level explanations
that consider the text’s structure and its constituents.
More specifically, a constituency parsing layer for
multi-word tokens selection is added before an
adapted KernelSHAP explainer.

(2) We propose to drop the SHAP standard back-
ground dataset and use masking tokens instead.
This reduces unwanted artifacts in the generated ex-
planations and speeds up the approach’s run time.
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(3) We qualitatively compare our method to ex-
isting ones in terms of explanation quality and nec-
essary computational effort.

2 Related Work

Several local explainability techniques exist to in-
terpret predictions produced by NLP models (Arri-
eta et al., 2020). Among them, features attribution
(or feature relevance) approaches quantify each
input component’s contribution to the model’s out-
put, i.e. how each feature affects the observed
prediction. Methods in this category are avail-
able in a large variety: gradient-based (Simonyan
et al., 2014; Sundararajan et al., 2017), neural-
network specific e.g. LRP (Bach et al., 2015) and
DeepLIFT (Shrikumar et al., 2017), and model-
agnostic e.g. LIME (Ribeiro et al., 2016). SHAP
(Lundberg and Lee, 2017)—particularly relevant
for our methodology—is by many considered to be
a gold standard thanks to its solid theoretical back-
ground and broad applicability. This framework
builds a unified view of methods like LIME, LRP,
and DeepLIFT and the game-theoretic concept of
Shapley values (Shapley, 1953).

More recent works address the limitations of
word-level relevance scores by focusing on phrase-
level and hierarchical explanations. The proposed
approaches analyze and quantify words’ interac-
tions through exhaustive search (Tsang et al., 2018),
combining their contextual decomposition scores
(Singh et al., 2018), or via measuring SHAP in-
teraction values along a predefined tree structure
(Lundberg et al., 2018). Chen and Jordan (2020)
combines a linguistic parse tree with Banzhaf val-
ues (Banzhaf III, 1964) to capture meaningful inter-
actions in text inputs. (Chen et al., 2020), instead,
propose to detect directly feature interaction with-
out resorting to external structures. They propose
a hierarchical explainability method that, in a top-
down fashion, breaks down text components in
shorter phrases and words based on the weakest
detected interactions.

3 Methodology

We extend the SHAP framework (Lundberg and
Lee, 2017) by proposing a model-agnostic ex-
plainer that considers the text’s structural depen-
dencies to generate importance scores at multiple
levels. In particular, we couple a constituency
parsing layer to hierarchically select multi-word
tokens with a custom version of KernelSHAP

Input: e.g. review on IMDB

This movie was ok. The storytelling was

amazing and the plot was really intense...

Preprocessing

Black Box Model:

e.g. DistilBERT

....

....

....

....

....

....

....

....

Prediction: e.g.
"Negative Sentiment"

Constituency
Parsing 

This movie was ok. The storytelling was amazing...

Multi-level Explanation

This movie was ok. The storytelling was amazing...

This movie was ok. The storytelling was amazing...

Figure 1: Overview of the proposed methodology.

adapted for improved efficiency and run-time. Fig-
ure 1 presents an overview of the methodological
pipeline proposed in this work.

3.1 Token Selection via Constituency Parsing

To hierarchically construct multi-word tokens in a
way that reflects the sentence structure, we leverage
constituency parsing to group together tokens based
on their grammatical interactions. To this end, we
choose a state-of-the-art constituency parser: the
Berkeley Neural Parser (Kitaev and Klein, 2018).

We iterate over parsed sentences from the single-
word level (depth = 0) until the complete sen-
tences are grouped up as a single token (depth =
N ). Additionally, we provide a library to re-
trieve groups of words at any depth, constituents,
and combinations thereof. Our implementation
also handles inconsistencies between the word-
tokenization of the constituency parser and BERT.
This is necessary as BERT’s tokenizer uses sub-
word tokens to represent OOV words and the
Berkley Neural Parser1 only allows full words as
input.

3.2 Efficient Multi-Token Explainer

Our GrammarSHAP explainer directly extends
the KernelSHAP method from Lundberg and Lee
(2017). As parsed sentences already provide a
hierarchical structure of grammatically coherent
tokens, our extension is not required to compute
tokens interaction to construct importance scores
for multi-word tokens.

1spacy.io/universe/project/self-attentive-parser
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Figure 2: Example of sentence parsed with the Berke-
ley Neural Parser (Kitaev and Klein, 2018). Tokens
are hierarchically grouped from single words (bottom
level) to the whole sentence (top level)

KernelSHAP takes an input sample x, a predict-
ing model f , and a background set of samples to
be used when replacing tokens to compute feature
importance. Tokens belonging to the background
dataset are fed to the explainer during initializa-
tion. At explanation time, a linear system of all
perturbed sentences and their corresponding model
predictions is solved to determine the effect of each
single feature.

The extension to multi-word tokens consists in
feeding the explainer—i.e. KernelSHAP—with the
indices corresponding to the features to be grouped.
In the case of constituency parsed sentences, in-
dices representing multi-token groups are always
adjacent in the input sentence. However, this is
not a strict requirement for the following steps of
our extension. To obtain group-level feature im-
portance, we constrain the extended explainer to
always replace a complete group of words with
elements of the background dataset. Analogous to
KernelSHAP, the expected effect of each feature
group—i.e. its (multi-token) SHAP value—is cal-
culated by solving the linear system of all perturbed
sentences with their corresponding outcomes. In
summary, our extension behaves like KernelSHAP
but treats groups of tokens as single features.

While the calculation of SHAP values on multi-
words tokens is a straightforward extension, it leads
to several issues:

• Computationally Expensive: Computing
importance scores for multiple levels fur-
ther slows down the already inefficient Ker-

nelSHAP.

• Unidirectional: The explainer only high-
lights groups with the same sentiment as the
overall sentence.

• High Attribution for [SEP]: The separation
token changes the sentence length when used
as replacement from the background data.
This causes it to have high relevance for the
classifier.

We address these limitation by replacing the
background data with [MASK] tokens. This leads
to a 60-folds speed up of the explainer that is not
required to iterate over the background data. More-
over, [SEP] does causes explanation artifacts as it
is excluded from the background data.

4 Empirical Findings

4.1 Data and Model to be Explained
To test and compare our method in practice, we
pick a DistilBERT model (Sanh et al., 2019). Our
choice is motivated by transformer architectures
being established as the current state of the art in a
variety of NLP applications.

Concerning the data, we pick the IMDb movie
reviews (Maas et al., 2011) and the SST-2 datasets
(Socher et al., 2013). For both, the Hugging
Face2 library provides a version of DistilBERT
pre-trained on the task of binary sentiment anal-
ysis. The accuracy achieved is 93.7% and 91.3%
respectively.

4.2 Existing SHAP Baselines
We compare explanations generated with Grammar-
SHAP with two existing baselines from the SHAP
framework (Lundberg and Lee, 2017):

(1) PartitionSHAP, i.e. the library’s current rec-
ommended method for sentiment analisys on text
data. Similarly to our method, it also utilizes
[MASK] tokens for efficient word removal. How-
ever, features are only grouped via a binary tree
and thus only token pairs are considered at a given
hierarchical level.

(2) KernelSHAP, i.e. the library’s standard for
model-agnostic explanations. KernelSHAP only
produces word-level explanations by default. But
thanks to the additive nature of Shapley values,

2https://huggingface.co/textattack/distilbert-base-
uncased-imdb
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these can be added together according to the con-
stituency parsing tree. We will refer to this custom
hierarchical version of KernelSHAP as Additive
KernelSHAP.

4.3 Comparison

The three methods substantially differ both in terms
of generation times and explanation quality. Table
1 reports the average running time to produce an ex-
planation. Figures 3 and 4 show—starting from the
same input text—the explanations generated with
each method. The text sample is particularly in-
structive as it contains both positive- and negative-
sentiment sentences.

Method Running Time
PartitionSHAP 2

Add. KernelSHAP 3554 (∼1h)
GrammarSHAP 183 (∼3min)

Table 1: Average running time (in seconds) for Gram-
marSHAP compared to the existing SHAP baselines.
The running time has been measured on 20 randomly
selected samples (10 from IMDb and 10 from SST-2).
Results were measured on a laptop machine: AMD
Ryzen 5 CPU, Nvidia GPU GeForce GTX 1650, 16
GB DDR4 RAM.

PartitionSHAP is very efficient and the fastest
method among the compared ones. However, it
is quite coarse in grouping together tokens and
fails to identify fine-grained contributions at the
sub-sentence level. Additive KernelSHAP has an
extremely long execution time and is the slowest of
the three approaches. Moreover, it does not iden-
tify contributions opposite to the sample’s over-
all sentiment. In contrast, GrammarSHAP is able
to identify both negative and positive sentiments
at different (hierarchical) levels of granularity. In
terms of efficiency, GrammarSHAP does not match
the performance of PartitionSHAP. However, its
running time is still reasonable and does not raise
issues for most applications.

More examples of hierarchical GrammarSHAP
explanation on (long) texts are provided in the ap-
pendix (see A). There, we also focus on presenting
the explanations at different levels of granularity.

5 Limitations and Future Work

GrammarSHAP meaningfully extends the SHAP
framework by providing efficient hierarchical ex-
planations that reflect the sentence structure. How-
ever, limitations of our methodology and experi-

Figure 3: Comparison of three explanation methods for
grouped features relevance (5th level). DistilBERT pre-
dicted the sample’s sentiment as negative with a 79.5%
confidence.

Figure 4: Comparison of three explanation methods for
grouped features relevance (5th level). DistilBERT pre-
dicted the sample’s sentiment as negative with a 81.8%
confidence.

mentation need to be acknowledged and motivate
our future work.

Regarding the explanation quality, our evalua-
tion process is based on the introduced methodolog-
ical improvements and on a qualitative analysis
of the produced explanations. Although evalua-
tion metrics for explanations are complex to define
and have not been standardized yet, our compari-
son would considerably benefit from the usage of
quantitative diagnostic properties (Atanasova et al.,
2020) and word-level level metrics (Nguyen, 2018;
Samek et al., 2016).

In terms of execution time, our method is still
reasonable considering the granularity of contri-
butions that it can detect. However, the necessity
for further improvements in terms of efficiency
becomes apparent when producing real-time expla-
nations on the large scale.

6 Conclusion

In this work we proposed GrammarSHAP: a model-
agnostic explainer for text data that accounts for the
sentence structure and the existing grammatical re-
lationships between the text tokens. Our approach
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leverages constituency parsing to extend the SHAP
framework by providing hierarchical explanations
that go beyond word-level attribution scores.

Our qualitative analysis of the produced expla-
nation yields promising results as GrammarSHAP
appears to identify more fine-grained contribution
in structured text than its existing SHAP counter-
parts. At the same time, the usage of masking to-
kens instead of a background dataset considerably
speeds up its execution in comparison with Kernal-
SHAP. These properties make GrammarSHAP also
suitable for long texts, especially if they contain
sentences carrying different types of sentiment. As
a first priority for our future work, we will focus
on the quantitative evaluation the produced expla-
nation.
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Figure 5 shows an example of hierarchical Gram-
marSHAP explanation on a long text while 6 rather
focuses on a shorter text. More examples can be
found in the code repository attached to our sub-
mission. These are in the Graphics Interchange

Format (GIF) format to visualize the transforma-
tion of the relevance scores through the various
hierarchical levels.
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Figure 5: Explanation generated with GrammarSHAP on a long IMDB review with negative-sentiment prediction
of 91.7%. From top to bottom, relevance scores at the 1st, 5th and 8th hierarchical level.

Figure 6: Explanation generated with GrammarSHAP on a short SST-2 review with negative-sentiment prediction
of 91.6%. From top to bottom, relevance scores at the 2nd, 4th and 8th hierarchical level.
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Abstract. Online hate speech is a phenomenon with considerable con-
sequences for our society. Its automatic detection using machine learning
is a promising approach to contain its spread. However, classifying abu-
sive language with a model that purely relies on text data is limited in
performance due to the complexity and diversity of speech (e.g., irony,
sarcasm). Moreover, studies have shown that a significant amount of hate
on social media platforms stems from online hate communities. Therefore,
we develop an abusive language detection model leveraging user and
network data to improve the classification performance. We integrate
the explainable AI framework SHAP (SHapley Additive exPlanations) to
alleviate the general issue of missing transparency associated with deep
learning models, allowing us to assess the model’s vulnerability toward
bias and systematic discrimination reliably. Furthermore, we evaluate our
multimodel architecture on three datasets in two languages (i.e., English
and German). Our results show that user-specific timeline and network
data can improve the classification, while the additional explanations
resulting from SHAP make the predictions of the model interpretable to
humans.

Keywords: Hate speech · Abusive language · Classification model ·
Social network · Deep learning · Explainable AI

Warning: This paper contains content that may be abusive or offensive.

1 Introduction

Hate speech is a severe challenge that social media platforms such as Twitter and
Facebook face nowadays. However, it is not purely an online phenomenon and can
spill over to the offline world resulting in physical violence [36]. The Capitol riots
in the US at the beginning of the year are a tragic yet prime example. Therefore,
the fight against hate speech is a crucial societal challenge.

The enormous amount of user-generated content excludes manual monitoring
as a viable solution. Hence, automatic detection of hate speech becomes the
key component of this challenge. A technology to facilitate the identification
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is Machine Learning. Especially in recent years, Natural Language Processing
(NLP) has made significant progress. Even if these advances also enhanced hate
speech classification models, there is room for improvement [29].

However, gaining the last points of the F1 score is a massive challenge in
the context of hate speech. Firstly, abusive language has various forms, types,
and targets [32]. Secondly, language itself is a complex and evolving construct;
e.g., a word can have multiple meanings, people create new words or use them
differently [29]. This complexity exacerbates classifying abusive language purely
based on textual data. Therefore, researchers have started to look beyond pure
text-driven classification and discovered the relevance of social network data [10].
Kreißel et al. [11], for example, showed that small subnetworks cause a significant
portion of offensive and hateful content on social media platforms. Thus, it is
beneficial to integrate network data into the model [3, 22, 15, 5, 6]. However, to
the best of our knowledge, no one has investigated the impact of combining the
text data of the post that is meant to be classified, the user’s previous posts, and
their social network data.

An issue with such an approach is its vulnerability to bias, meaning that a
system ”systematically and unfairly discriminate[s] against certain individuals or
groups of individuals in favor of others” [7, p. 332]. Deep Learning (DL) models
often used in NLP are particularly prone to this issue because of their black-box
nature [17]. Conversely, a system combining various data sources and leveraging
user-related data has a more considerable potential of discriminating individuals
or groups. Consequently, such systems should integrate eXplainable AI (XAI)
techniques to address this issue and increase trustworthiness.

We address the following two research questions in our paper concerning the
two discussed aspects:

RQ1 Can abusive language classification be improved by leveraging users’ previ-
ous posts and their social network data?

RQ2 Can explainable AI be used to make predictions of a multimodal hate
speech classification model more understandable?

To answer the research questions, we develop an explainable multimodal
classification model for abusive language using the mentioned data sources1. We
evaluate our model on three different datasets—Waseem [33], Davidson [4],
and Wich [35]. Furthermore, we report findings of integrating user and social
network data that are relevant for future work.

2 Related Work

Most work in the abusive language detection domain has focused on developing
models that only use the text data of the document to be classified [29, 16,
24].Other works, however, have started to integrate context-related data into
abusive language detection [29, 24, 18]. One promising data source is the users’

1 Code available on https://github.com/mawic/multimodal-abusive-language-detection
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social network because it has been shown that hater networks on social media
platforms cause a considerable amount of online hate [11, 8]. Combining network
and text data from Twitter was already successfully applied to predict whether
an account is verified [2] or to identify extremist accounts [38]. In the case of
abusive language, Papegnies et al. [19] built a classification model using local and
global topological measures from graphs as features for cyberbullying detection
(e.g., average distance, betweenness centrality). A similar approach has been
applied by Chatzakou et al. [3], but they also integrated user-related data (e.g.,
number of posts, account age) and textual data (e.g., number of hashtags). This
approach was picked up and extended by other researchers [6, 5] (e.g., integrating
users’ gender, geolocation) who confirmed the usefulness of additional context-
related data sources. They all have in common that the network features are only
topological measures and do not contain any information about the relations.
Mishra et al. [15] addressed this downside and modeled the users’ follower network
with a node2vec embedding that serves as an additional input for the classification
model. Ribeiro et al. [22] developed a similar model; they, however, used the
graph embedding GraphSAGE to model the retweet network and combined it
with a document embedding for the text data [9]. For this purpose, they collected
a dataset that has a fully connected network. Unfortunately, they released only
the network data and the document embeddings but not the raw text. Recently,
Li et al. [12] refined this approach.

Another data source that supports abusive language detection is the user’s
history of previous posts. Qian et al. [20] improved a hate speech classifier for
tweets by adding the previous tweets of the author. Raisi and Huang [21] proposed
a model that leverages the user’s history of posts and the post directed to the
user to calculate a bully and victim score for each user. However, to the best of
our knowledge, no one has integrated user’s previous posts and social networks
into abusive language detection.

Besides multimodality, XAI in abusive language detection is another topic
that we have to consider in this section. Since XAI is a relatively new field, it has
not been frequently applied to abusive language detection with some exceptions
[14, 34, 31, 27, 30, 18]. All models use only the text as input, except [30]. Their
model also relies on network data. But the network submodel is very simple; it is
only a binary vector encoding whether the user follows pre-defined hater accounts.
Furthermore, the explanations for this submodel are not detailed. Hence, the
explainable model that we propose is an advancement.

3 Data

For our experiment, we use three abusive language datasets that are from Twitter.
Table 1 provides an overview of the datasets’ characteristics. Figure 1 visualizes
the social network graph of the datasets.

Davidson Davidson et al. [4] released an English abusive language dataset
containing 24,783 tweets annotated as hate, offensive, or neither. Unfortunately,
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Table 1. Overview of the datasets’ statistics

Davidson Waseem Wich

Number of tweets 14,939 16,907 68.443

Number of users 6,725 2,024 939

Avg. number of
tweets per user

2.22 8.35 72.9

Class hate offensive neither sexism racsim none offensive non-offensive
Class distribution 814 11,800 2,325 3,430 1,976 11,501 26,205 42,238

Network: avg. degree 1.85 3.44 1.63

Network: graph density 0.0005 0.0034 0.0002

the dataset does not contain any data about the user or the network. Therefore,
we used the Twitter API to get the original tweets and the related user and
network data. Since not all tweets are still available on Twitter, our dataset has
shrunk to 14,939 tweets.

Waseem Waseem et al. [33] published an English abusive language dataset
containing 16,907 tweets annotated as sexist, racist, or none. Similar to Davidson,
the dataset does not provide any user- or network-related data. The authors
of [15] shared their enriched Waseem dataset with us containing the user and
network data.

(a) Davidson (blue: hate-
ful users, red: offensive
users, green: standard
user)

(b) Waseem (blue: racist
user, red: sexist user,
green: standard user)

(c) Wich (red: offen-
sive user, green: standard
user)

Fig. 1. Visual comparison of the network topologies. Standalone nodes or very small
subnetworks that do not connect to the main graph for Davidson and Waseem are
excluded.

Wich Wich et al. [35] released a German offensive language dataset containing
4,647,200 tweets annotated as offensive or non-offensive. Most of the tweets are
pseudo-labeled with a BERT-based classifier; a smaller portion of the dataset
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is also manually annotated. The difference between this dataset and the other
two is the way it was collected. Wich et al. applied a snowball sampling strategy
focusing on users. Starting from seed users, the authors collected the connected
users and their tweets based on their offensiveness. Hence, the network graph has
a star-shaped network topology contrary to the other two, as depicted in Figure
1c. We select only 68,443 tweets and the related user and network information to
better handle the data. The manually annotated tweets are used as a test set.

4 Methodology

The section is split into two subsections. The first one deals with the model
architecture and training of the multimodal classification model. The second
one considers the XAI technique that we use to explain the predictions of our
multimodal model.

4.1 Multimodal Classification Model

Architecture The multimodal classification model for abusive language consists
of three submodels that process the different inputs:

1. Text model: It processes the text data of the tweet that is meant to be
classified. For this purpose, we use DistilBERT with a classification head.

2. History model: It processes the tweet history of the user.
3. Network model: It processes the social network data of the tweet’s user.

To model the network data, we use the vector embedding framework Graph-
SAGE.

The three models’ outputs are combined in a linear layer, which outputs the
prediction for the tweet to be classified.

Text model The text data of the tweet is fed into a pre-trained DistilBERT
model with a classification head. DistilBERT is a lighter and faster version of
the transformer-based model BERT [23]. Despite the parameter reduction, its
performance is comparable to BERT in general [23] and in the context of abusive
language detection [28]. In order to implement the model, we use the Transformers
library from Hugging Face2 and its implementation of DistilBERT [37]. As pre-
trained models, we use distilbert-base-uncased for the English datasets and
distilbert-base-german-cased for the German one. Before tokenizing the text
data, we remove username mentions from the tweets, but we keep the ”@” from
the mention3. The purpose of this procedure is to avoid the classifier memorizing
the username and associating it with one of the classes. But the classifier should
recognize that the tweet addresses another user.

2 https://huggingface.co/transformers/
3 If a user is mentioned in a tweet, an ”@” symbol appears before the user name.
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History model We use a bag-of-words model to model the user’s tweet history,
comprising the 500 most common terms from the dataset based on term frequency-
inverse document frequency (tf-idf). For each user, it is a 500-dimensional binary
vector that reflects which of the most common terms appear in the user’s tweet
history.

Network model In order to model the user’s social network, we apply the inductive
representation learning framework GraphSAGE [9]. The advantage of an inductive
learning framework is that it can be applied to previously unseen data, meaning
the model can generate an embedding for a new user in a network, which is a
desirable property for our use case. Our GraphSAGE model is trained on the
undirected network graph of the social relations. Furthermore, we assign to each
user/node a class derived from the labels of their tweets. The output of the model
is a 32-dimensional graph embedding for each user. The graphs are modeled as
follows:

– Davidson: An edge between two users exists if at least one follows the other.
A user is labeled as hater, if he or she has at least one hate tweet; as offensive,
if he or she has at least one offensive tweet, but no hate tweet; as neither, if
he or she has only neither tweets.

– Waseem: An edge between two users exists if at least one follows the other.
A user is labeled as racist, if he or she has at least one tweet labeled as racist;
same for sexist; as none, if he or she is neither racist nor sexist.

– Wich: An edge between two users exists if at least one has retweeted the
other. A user is labeled as offensive, if he or she has at least three offensive
tweets.

Users without network connections in their respective dataset, so-called
solitary users, do not receive a GraphSAGE embedding; their embedding vector
only contains zeros.

The output of the three models is concatenated to a 534 or 535 respectively
dimensional vector (DistilBERT: 2 or 3 dimensions depending on the output
speech classes; GraphSAGE: 32 dimensions; bag-of-words: 500 dimensions) and
fed into a hidden linear layer. This final layer with softmax activation reduces
the output to the number of classes according to the selected dataset.

Training Several challenges have to be faced when it comes to training the
model. In terms of sampling, we cannot randomly split the dataset: We have to
ensure that tweets of any user do not appear in the train and test set; otherwise,
we would have a data leakage. Therefore, sampling is done on the user level.
Users are categorized into groups based on their class and the existence of a
network. We gather six different categories for Waseem and Davidson and
four categories for Wich. The train, validation, and test set all contain users
from different classes by sampling these categories to prevent bias toward certain
user groups. Due to the different tweet counts per user, the train set size varies
between 60-70% depending on the dataset.
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We under- and oversample the classes during training since all datasets are
unbalanced. Moreover, we have to train the three submodels separately because
the unsupervised training process of GraphSAGE cannot be combined with the
supervised training of DistilBERT. DistilBERT is fine-tuned for two epochs with
a batch size of 64 and an Adam optimizer (initial learning rate of 5 × 10−5 and
a weight decay of 0.01). We train our GraphSAGE model, consisting of three
hidden layers with 32 channels each, for 50 epochs with an Adam optimzer (initial
learning rate of 5 × 10−3). The bag-of-words model does not require training.
After training the submodels, we freeze them and train the hidden layer (10
epochs; Adam optimizer with an initial learning rate of 1 × 10−3).

4.2 Explainable AI Technique

We set model interpretability as a core objective of our work. To this end,
we produce Shapley-values-based explanations at different levels of granularity.
Shapley values are an established technique to estimate the contribution of input
features w.r.t. the model’s output [25, 13]. Their suitability for this task has been
proven both on a theoretical as well as on an empirical level [13].

As computing exact Shapley values is exponentially complex w.r.t. the input
size and hence not feasible, accurate approximations are fundamental for their
estimation [13]. As shown in Algorithm 1, we compute them by iteratively
averaging each feature’s marginal contribution to a specific output class. We
find that 15 iterations are sufficient for Shapley values to converge. A random
sampling of features was used for reasons of simplicity. Finally, we can assign
each feature a Shapley value, representing its relative impact score. A similar
approximation approach has been used in [26].

There are two different granularity levels in terms of features: For instance, we
can treat each model component (tweet, network, history) as a single feature and
derive impact scores (Shapley values) for these components. Alternatively, each
model component input or feature (e.g., each token of a tweet) can be treated
separately on a more fine-grained level. As Shapley values are additive, they can
be aggregated to represent component-level Shapley values. The way feature and
components are excluded in order to compute their respective Shapley value
changes based on these two levels listed in Table 2. Thus, our multimodal model
can be explained on a single instance, and the role played by each model can
always be retrieved.

Additionally, we partition the network graph into communities using the
Louvain algorithm to derive Shapley values for individual network connections
[1]. All user edges in that community with the target user are disabled to obtain
the impact of a specific community, resulting in a new GraphSAGE generated
user embedding as input for the multimodal model. The embedding vectors of
solitary users that only contain zeros result in Shapley values equal to zero for
the network component of all these users.
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Result: Shapley value {φt}Mt=1 for every feature {xt}Mt=1

Input : p sample probability, x instance, f model, I number of iterations
for i = 0, ..., I do

for t = 1, ...,M do
sample a Bernoulli vector P = {0, 1}M with probability p
pick S a subset of the features {xt}Mt=1 \ {xt} according to P
build xS alteration of x with only features in S

φt ← φt
i−1
i

+
f(xS∪{xt})−f(xS)

i

end

end
Algorithm 1: Shapley value approximation algorithm. In our experiments,
p = 0.7 and I = 15 were used as parameters.

Table 2. Masking strategies for SHAP on component and feature level

Text Network History

Component
wise

Masking BERT output
with 0s

Setting GraphSAGE
embedding to 0

Setting all vocabulary
counts to 0

Feature
wise

Masking each token
individually

Disabling edges to user based
on community and generating
new embedding

Setting each vocabulary
token count to 0 individually

5 Results

In the first subsection, we deal with answering RQ1 based on the classification per-
formance of our architecture. The second subsection addresses the explainability
of the models and related findings to answer RQ2.

Table 3. Classification models’ performance by different architectures and datasets

Davidson Waseem Wich

Model P R F1 P R F1 P R F1

Text 75.3 77.1 76.1 77.5 84.1 80.3 89.8 91.7 90.7

Text + History 73.7 77.8 75.5 79.3 87.8 82.7 89.8 91.7 90.7

Text + Network 75.3 77.2 76.2 77.5 84.4 80.4 89.9 91.7 90.8

All 74.5 78.9 76.5 79.2 88.1 82.7 90.0 91.7 90.8

5.1 Classification Performance

Table 3 displays the different model architecture performance metrics for the
three datasets. We find that combining text, history, and network increases the
macro F1 score of Waseem by 2.4 pp and of Davidson by 0.4 pp. In the case of
Wich, we observe only a minor increase of the precision by 0.1 pp. We ascribe
these diverging increases to two aspects: Firstly, the network of Waseem is the
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densest one of all three, followed by Davidson and Wich, as depicted in Table
1. Secondly, Wich’s text model has a high F1 score, meaning that this submodel
presumably drives the predictions of the multimodal model. Our impact analysis
using SHAP to identify each submodel’s relevance confirms this hypothesis, as
depicted in Figure 2. It shows that the network and history data are less relevant
for Wich’s multimodal model than for the other two models.

In order to answer RQ1, these results signify that leveraging a user’s previous
posts and their social network data does improve abusive language classification.
Additionally, the improvement of the F1 score is proportional to the network’s
density – the higher the density, the higher the improvement.

1%

3%

2%

4%

35%

21%

95%

62%

77%

Wich

Waseem

Davidson

Tweet
Vocabulary
Network

(a) Complete test set

1%

8%

4%

4%

14%

19%

95%

79%

77%

Wich

Waseem

Davidson

Tweet
Vocabulary
Network

(b) Test data that contain network data

Fig. 2. Avg. impact of each classifier’s submodels on the respective test set based on
Shapley values

5.2 Explainability

In this subsection, we present the results of the XAI technique, SHAP, that we
applied to our multimodal model. Firstly, we further investigate the impact of
the network and history data added to the text model. Secondly, we show the
explanation of a single tweet.

Impact Analysis of the Submodels Figure 2 visualizes the impact of the
submodels on the multimodal model. We calculate the impact by aggregating
the Shapley values for each submodel based on the tweets in the test set. Figure
2a displays the impact on the complete test set of each dataset, while Figure 2b
shows the impact on test data that contains network data4.

Our first observation is that all classifiers are mainly driven by the text model,
followed by the history and network model. Comparing Figure 2a and 2b, we see
that network data, if available, contributes to the predictions of Waseem’s and
Davidson’s multimodal models. If we compare the network model’s impact of
both datasets in the context of network density (Davidson: 5 × 10−4; Waseem:
3.4 × 10−3), we can conclude that the denser the network is, the more relevant it
is for the classification. These findings confirm our answer to RQ1.

In the case of Waseem, we observe a large contribution of the history model
(35%) for the complete test set. We can trace it back to four users that produced a

4 Network data is not avaiable for all users.
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large portion of the dataset and mainly produced all abusive tweets. In general, the
number of tweets in the user’s history correlates positively with the Shapley value
for the history model, reflecting the impact of the history model on the prediction.
While the correlation within Wich’s dataset is only weak (rWich = 0.172), we
observe a moderate correlation for the other two datasets (rDavidson = 0.500 and
rWaseem = 0.501).

Regarding Wich’s dataset, the Shapley values indicate that the text model
dominates (95%) the multimodal model’s prediction, while the other two (4%
and 1%) play only a minor role. There are two reasons for this: First, the tweets
are pseudo-labeled by a BERT model. Since we use a DistilBERT model similar
to BERT, we achieve an outstanding F1 score of the text model (90.7%). The
downside of such a good classification performance is that the multimodal model
relies mainly on the text model’s output. Therefore, the history and network
model are less relevant. Furthermore, the dataset’s network is characterized by
a low degree of interconnectivity compared to the networks of the other two
datasets (cf. Table 1).

We established that aggregating the Shapley values of the test set with respect
to RQ2 helps us better understand the relevance of each submodel. The insights
gained by the applied XAI technique also confirmed our answer to RQ1 that
user’s network and history data contribute to abusive language detection.

Explaining a Single Tweet Classification After investigating the model on
an aggregated level, we focus on explaining the prediction of a single tweet. To
do so, we select the following tweet from the Davidson dataset that is labeled
and correctly predicted as hateful by our multimodal model:

@user i can guarantee a few things: you’re white. you’ve never been
anywhere NEAR a real ghetto. you, or a relative is a pig. 100%

In the following, we demonstrate the explainable capabilities of our multimodal
model based on the selected tweet. Figure 3 plots the Shapley values of the
tweet’s tokens and the user’s history and network (last two rows). These Shapley
values indicate the relevance of the feature on the multimodal model’s prediction
as hateful. A positive value (red-colored) represents a contribution favoring
the classification as hateful, a negative value (blue-colored) that favors the
classification as non-hateful.

We see that the most relevant word for the classification as hateful is ”white”,
which should not be surprising because of the racist context. Furthermore, the
@-symbol (representing a user mention) and ”you(’)re” are relevant for the
classification model, indicating that directly addressing someone is recognized
as a sign of hate for the classifier. In contrast, the punctuation of the tweet
negatively influences the classification as hateful. A possible explanation is that
correct spelling and punctuation are often disregarded in the context of abusive
language. Beyond the textual perspective, we observe that the history and network
submodels favor the classification as hateful. These inputs are relevant for our
multimodal model to classify the tweet correctly. Considering Figure 4a (an
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Fig. 3. Relevance of the different features in the form of Shapely values; positive, red
values represent favoring a classification as hateful; negative, blue ones the opposite;
Shapley values for history and network submodel are aggregated

alternative visualization of the Shapely values), we see that the text model
slightly favors the classification as non-hateful, represented by the negative sum
of Shapley values. Due to the input from the other two submodel, however, the
multimodal model classifies the tweet correctly, making this an excellent example
of how abusive language detection can profit from additional data.

Figures 4b and 4c break down the contribution of the history and network
model, where Figure 4b is a waterfall chart displaying the most relevant terms
that the user used in their previous posts—less relevant terms are summarized in
the column named REST. As in the previous charts, red represents a positive
contribution to the classification as hateful and blue vice versa. The last column,
called OVERALL, is the sum of all terms’ Shapley values. In this case, the
previous tweets of the user contain words words that are primarily associated
with hateful tweets; consequently, the history model favors a classification as
hateful. Figure 4c shows the user’s ego network and its impact on the classification.
The nodes connected to the user represent communities identified by the Louvain
algorithm. The first number of a node’s label is an identifier; the second number
is the number of haters in the community; the third number is the community’s
total number of users. The color of the nodes and edges have the same meaning
as in the other visualizations. In our case, two connected communities contribute
to a hateful classification, while the left-pointing community counteracts this.

The presented explanations of the complete model and its submodels provide
meaningful and reasonable information to understand better how the model
decides to make predictions. These findings extend our answer to RQ2 from the
previous section. Our explainable model provides explanations on an aggregated
level and a single prediction level to make the classification more understandable.
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(a) Text

(b) User’s history (c) User’s network (colored
nodes represent communi-
ties)

Fig. 4. Explanations for predictions of test, history, and network submodel in the form
of Shapely values (red, positive values favor a classification as hateful; blue, negative
values favor a classification as non-hateful)

6 Discussion

We demonstrated that leveraging a user’s history and ego network can improve
abusive language detection regarding RQ1, consistent with the findings from
other researchers [15, 22, 20]. Our multimodal approach is novel because we
combine text, users’ previous tweets, and their social relations in one model. The
additional data sources provide further indications for the classification model to
detect abusive language better. That can be helpful, especially when the classifier
struggles with a precise prediction, as in our example in Section 5.2. Other
examples are implicit language, irony, or sarcasm, which are hard to detect from
a textual perspective. The improvement, however, varies between the datasets.
We trace this back to the network density of the available data. Waseem has
the network with the highest density and exhibits the best improvement if we
integrate history and network data. In contrast, the classification model based
on Wich, the dataset with the least dense network, could be improved only
slightly. A further difficulty concerning Wich’s dataset is that the tweets are
pseudo-labeled with a BERT model, and our text submodel uses DistilBERT.
Hence, our text submodel performs so well that the multimodal model nearly
ignores the outputs of the history and network submodels. Therefore, it was
hard to identify any improvement. Relating to Davidson, we had the problem
of data degradation. Since the dataset does not contain any user or network
data, we used the Twitter API to obtain them. But not all tweets were still
available, causing us to use only 60% of the original dataset for our experiment.
We require more appropriate datasets to investigate the integration of additional
data sources in abusive language detection and refine this approach. For example,
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Riberio et al. [22] have released a comprehensive dataset containing 4,972 labeled
users. Unfortunately, they have not published the tweets of the users. We are
aware that releasing a dataset containing social relations and text might violate
the users’ privacy. Therefore, we suggest anonymizing the data by replacing all
user names with anonymous identifiers.

We proved that our multimodal model combined with the SHAP framework
provides reasonable and meaningful explanations of its predictions associated
with RQ2. These explanations allow us to gain a better understanding with
respect of the models in two different ways: (1) the influence of the different
submodels on the final predictions on an aggregated level; (2) the relevance of
individual features (e.g., word, social relationship) for a single prediction. These
explainable capabilities of our multimodal model are a further novelty. To our
best knowledge, no one has developed such an explainable model for abusive
language detection.

Even though the SHAP explanations are only an approximation, they are
necessary for the reliable application of a hate speech detection model, as we
have developed. It should be humanly interpretable how each of the three models
influences predictions since we combine various data sources, which is especially
true when one data source, such as the social network, is not fully transparent for
the user. The reason for the missing transparency is that our network submodel
learns patterns from social relations, which are more challenging to understand
without any additional information than the ones from the text model. Therefore,
these explainable capabilities are indispensable for such a system to provide a
certain degree of transparency and build trustworthiness.

After focusing on the individual research questions, we have to add an ethical
consideration regarding our developed model for various reasons. One may criticize
that we integrate social network data, which is personal data, into our model
and that the benefit gained by it bears no relation to the invasion of the user’s
privacy. However, we argue against it based on the following reasons: (1) We
use social network data to train embeddings and identify patterns that do not
contain any personal data. (2) The user’s history and network are shown to
enhance the detection rate, even if the used datasets are not the most appropriate
ones for this experiment because of the limited density. Furthermore, detecting
abusive language can be challenging if the author uses irony, sarcasm, or implicit
wording. Therefore, context information (e.g., user’s history or network) should
be included because its benefit outweighs the damage caused by abusive language.

Another point of criticism could be the possible vulnerability to bias and
systematic discrimination of users. In general, DL models are vulnerable to bias
due to their black-box nature. In the case of a multimodal model, however, the
issue is more aggravated because one submodel can dominate the prediction
without any transparency for the user. For example, a model that classifies a
user’s tweet only because of their social relations discriminates the user with a
high probability. We address this challenge by adding explainable capabilities
with SHAP. Therefore, we claim that our multimodal model is less vulnerable to
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bias than classical abusive language detection models applying DL techniques
without XAI integration.

7 Conclusion & Outlook

This paper investigated whether users’ previous posts and social network data
can be leveraged to achieve good, humanly interpretable classification results
in the context of abusive language. Concerning the classification performance
(RQ1), we showed that the additional data improves the performance depending
on the dataset and its network density. For Waseem, we increased the macro
F1 score by 2.4 pp, for Davidson by 0.4 pp, and Wich by 0.1 pp. We found
that the denser the network, the higher the gain. Nevertheless, the availability of
appropriate datasets is a remaining challenge.

The model’s interpretability (RQ2) demonstrated that our multimodal model
using the SHAP framework produces meaningful and understandable explanations
for its predictions. The explanations are provided both on a word level and
connections to social communities in the user’s ego network. The explanations
help better understand a single prediction and the complete model if relevance
scores are aggregated on a submodel level. Furthermore, explainability is a
necessary feature of such a multimodal model to prevent bias and discrimination.

Integrating a user’s previous posts and social network to enhance abusive
language detection produced promising results. Therefore, the research community
should continue exploring this approach because it might be a feasible way to
address the challenge of detecting implicit hate, irony, or sarcasm. Concrete
aspects that have to be addressed by future work are the following: (1) collecting
appropriate data (in terms of size and network density) to refine our approach,
(2) improving our model’s architecture.

Acknowledgments

We would like to thank Anika Apel and Mariam Khuchua for their contribution
to this project. The research has been partially funded by a scholarship from the
Hanns Seidel Foundation financed by the German Federal Ministry of Education
and Research.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment 2008(10), P10008 (Oct 2008)

2. Campbell, W., Baseman, E., Greenfield, K.: Content + context networks for user
classification in twitter. In: Frontiers of Network Analysis, NIPS Workshop, 9
December 2013 (2013)



Explainable Multimodal Abusive Language Classifier 15

3. Chatzakou, D., Kourtellis, N., Blackburn, J., De Cristofaro, E., Stringhini, G.,
Vakali, A.: Mean birds: Detecting aggression and bullying on twitter. In: WebSci.
pp. 13–22 (2017)

4. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection
and the problem of offensive language. In: Proc. 11th ICWSM Conf. (2017)
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Countering hate on social media: Large scale classification of hate and counter
speech. In: Proc. 4th Workshop on Online Abuse and Harms. pp. 102–112 (2020)

9. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS. pp. 1024–1034 (2017)

10. Hennig, M., Brandes, U., Pfeffer, J., Mergel, I.: Studying Social Networks. A Guide
to Empirical Research. Campus Verlag (2012)

11. Kreißel, P., Ebner, J., Urban, A., Guhl, J.: Hass auf Knopfdruck. Rechtsextreme
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Abstract

State-of-the-art machine learning models are
prone to adversarial attacks: Maliciously
crafted inputs to fool the model into making
a wrong prediction, often with high confidence.
While defense strategies have been extensively
explored in the computer vision domain, re-
search in natural language processing still lacks
techniques to make models resilient to adver-
sarial text inputs. We adapt a technique from
computer vision to detect word-level attacks
targeting text classifiers. This method relies
on training an adversarial detector leveraging
Shapley additive explanations and outperforms
the current state-of-the-art on two benchmarks.
Furthermore, we prove the detector requires
only a low amount of training samples and, in
some cases, generalizes to different datasets
without needing to retrain.

1 Introduction

Adversarial examples are slightly perturbed input
samples purposely crafted to fool a target model
(Szegedy et al., 2014). Despite being similar to the
original samples, they are often misclassified with
high confidence (Goodfellow et al., 2015). With-
out effective defense techniques, machine learning
models become unusable in high-stakes situations
and safety-critical tasks (Sharma et al., 2019).

Research in computer vision has extensively
worked on better understanding adversarial image
attacks and developing more robust models (Madry
et al., 2018; Ozdag, 2018). However, the litera-
ture in Natural Language Processing (NLP) has
witnessed fewer advances concerning this issue

∗These authors contributed equally

(Mozes et al., 2021; Zhou et al., 2019; Wang et al.,
2019).

Text data needs to fulfill several properties such
as lexical, grammatical, and semantic constraints.
Thus, many efficient adversarial image attacks—
e.g. gradient-based ones—are not transferable as
they would lead to incorrect characters and non-
existing terms (Zhang et al., 2020). However, word-
level attacks that can preserve semantical infor-
mation without introducing noticeable inconsisten-
cies are particularly effective and not detectable via
spell checkers (Garg and Ramakrishnan, 2020; Ren
et al., 2019).

The lack of defense strategies against word-level
text attacks motivates our research as this is a major
obstacle to the safe deployment of NLP models.
This work’s contribution can be summarized as
follows:

(1) Based on an analogous idea from computer
vision (Fidel et al., 2020), we propose an adver-
sarial attack detector leveraging SHapley Additive
exPlanations (SHAP) to accurately recognize input
manipulations (Lundberg and Lee, 2017). Results
show that it outperforms the previous state of the
art in adversarial detection on multiple datasets
(Mozes et al., 2021).

(2) We analyze our method in terms of data effi-
ciency and generalization. The proposed approach
still offers competitive performance when trained
on very little data and can even be transferred to un-
seen datasets while almost matching the previous
state of the art.
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(3) Alongside the quantitative analysis and its re-
sults, we visualize the space of generated Shapley-
value-based explanations. This qualitative analysis
sheds light on the reasons behind our method’s high
performance and desirable properties.

2 Related Work

2.1 Adversarial Text Attacks

An adversarial text attack is an artificial input
obtained by modifying a sample from the avail-
able data. Normally, the altered text is similar—
syntactically, semantically, or both—to the original
one. However, their corresponding classification
output substantially differs. Attacks can be either
targeted or untargeted (Tao et al., 2018). Attacks
of the first type aim to create misclassification re-
sults w.r.t. a specific class whereas the latter type
wants to generate a misclassification regardless of
the exact class.

Methods like DeepWordBug (Gao et al., 2018)
or Hotflip (Ebrahimi et al., 2018) introduce
character-level noise to create typos and grammat-
ical inconsistencies in the sentence. These adver-
sarial examples appear very similar to the origi-
nal samples, but do not perfectly preserve their
meaning and can be recognized due to their lexical
incorrectness.

Other types of attacks instead alter the text at
the word level and produce semantically equivalent
and grammatically correct sentences to the initial
input. Examples of techniques using this strategy
are PWWS (Ren et al., 2019), TextFooler (Jin et al.,
2020), and BAE (Garg and Ramakrishnan, 2020).

2.2 Defense Strategies for Computer Vision

Robustness against adversarial attacks—and espe-
cially their automatic detection—has been more
exhaustively researched for computer vision ap-
plications rather than for text inputs. Hence, we
briefly present a selection of the most promising
approaches.

Xu et al. (2018) propose Feature Squeezing,
based on the assumption that feature spaces are
often unnecessarily large and leave extensive pos-
sibilities for an attacker to generate adversarial ex-
amples. Their approach leverages this fact by com-
paring the prediction of the original input image
with a simplified one. When this difference sur-
passes a specific threshold, the input is classified
as adversarial.

Roth et al. (2019) detect adversarial examples by
measuring statistical differences between original
and perturbed logits. According to their results,
output logits corresponding to adversarial examples
exhibit a much larger variation than normal samples
when the input is perturbed.

Integrating explainability to detect adversarial
examples has already been shown to be beneficial.
Fidel et al. (2020) detect patterns in the SHAP sig-
natures of input images (Lundberg and Lee, 2017).
For normal samples, the inter-class SHAP signa-
tures share common characteristics. For adversarial
examples, however, the SHAP signatures show a
mixture between two classes which can easily be
detected using an additional classification model.

2.3 Defense Strategies for Natural Language
Processing

Character-level attacks can be countered with de-
fenses based on spell checkers (Pruthi et al., 2019;
Huang et al., 2019). Nonetheless, those same de-
fenses are extremely vulnerable to word-level at-
tacks capable of preserving language coherence
(Wang et al., 2019). Effective methods against syn-
tactically correct attacks are Adversarial Training
(AT) (Goodfellow et al., 2015), Dirichlet Neighbor-
hood Ensemble (DNE) (Zhou et al., 2020), Adver-
sarial Sparse Convex Combination (ASCC) (Dong
et al., 2021) and Synonym Encoding Method (SEM)
(Wang et al., 2019). The first three leverage some
form of data augmentation to train the model on
perturbed samples as well. The last, instead, in-
troduces an encoder step before the target model’s
input layer and trains it to eliminate potential per-
turbations.

Particularly relevant for this work are adversar-
ial detection methods. In contrast to other defenses,
they can explicitly recognize manipulated inputs
and send an alert signal. For natural language
data, the available methods are Frequency-Guided
Word Substitution (FGWS) (Mozes et al., 2021)
and learning to DIScriminate Perturbation (DISP)
(Zhou et al., 2019). The first—exploiting frequency
properties of adversarial words—is the most recent
and accurate method. Its authors showed medium
to high F1 detection scores in a range from 62.2-
91.4%, varying on the type of attack and target
model.

2.4 Feature Relevance Explainability Methods
Among explainability techniques, feature relevance
methods are often used to explain predictions pro-
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Figure 1: Our detector for recognizing adversarial examples: the overall pipeline once the detector is trained (a) and
the necessary steps in order to train it (b). While generating many adversarial attacks and explanations is required
for training, the detector can then be simply "plugged in" and deployed together with the classifier f .

duced by black-box models (Arrieta et al., 2020;
Mosca et al., 2021). Their goal is to attribute a
relevance score to each input feature. Such value
should quantify the effect that the feature has on
the output, i.e. their contribution to the model’s
prediction (Wich et al., 2021).

Some of these methods rely on computing the
gradient of the output w.r.t. the input features (Si-
monyan et al., 2014; Sundararajan et al., 2017).
Others, such as LRP (Bach et al., 2015) and
DeepLIFT (Shrikumar et al., 2017), are specifi-
cally designed for neural networks and follow the
information flow in a backward fashion through the
model’s architecture. The procedure continues one
layer at a time until the input features are reached.
LIME (Ribeiro et al., 2016) explains black-box
models via a local surrogate that approximates their
behavior around a single instance. The surrogate
can be then interpreted directly to estimate each
feature’s relevance.

Lundberg and Lee (2017) prove that several pop-
ular feature relevance methods—including LIME,
LRP, and DeepLIFT—belong to a broader class
of approaches: additive feature relevance methods.
The authors propose a unified view of such meth-
ods that, combined with the game-theoretic concept
of Shapley values (Shapley, 1952), constitutes the
SHAP framework. SHAP-based explanations are
covered more in detail in Section 3.2 as they rep-
resent a fundamental component of our proposed

method.

3 Methodology

Our defense belongs to the adversarial detection
category and is strongly inspired by the work of
Fidel et al. (2020), which detects image-based ad-
versarial attacks for computer vision models by
using SHAP signatures. This work, instead, stud-
ies the application of this idea to text attacks for
NLP classifiers. As sketched in Figure 1a, our goal
pipeline consists of multiple stages. First, the input
is fed to a classifier trained on the task-at-hand,
which outputs a prediction. Shapley values are
then computed w.r.t. the outcome and passed onto
a machine-learning detector that predicts whether
the sample is an adversarial attack. Note that our
detector does not make any assumption on the clas-
sifier and is hence model-agnostic.

The classifier targeted by the attacks becomes
considerably more robust when used in combina-
tion with the adversarial detector. To achieve our
goal, we have to take several steps in order to train
our detector. These steps—also summarized in Fig-
ure 1b for the reader—are described in detail in the
next sections.

3.1 Crafting Adversarial Text Attacks

To train and test our detector, we choose to craft
attacks semantically similar to the original input.
This choice preserves lexical and grammatical co-
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Use synonym that causes most 
significant change

Replace word that causes most 
significant change in classification

US loses 140,000 jobs due to covid-
19 pandemic.

United States, United States of 
America, America, US, USA, …

Greedily iterate until classification changes

Figure 2: A simplified view of the generation of adversarial examples using PWWS (Ren et al., 2019)

herence also in adversarial sentences. We believe
that such attacks are more subtle as they cannot be
detected by spell checkers. In practice, for each
sample x in the dataset, we generate

x∗ = x+∆x, ∥∆x∥ < ϵ (1)

where ∆x is a semantic perturbation and the
classes predicted for x and x∗ are different. To
this end, we utilize the untargeted Probability
Weighted Word Saliency (PWWS) method by Ren
et al. (2019). This approach shows high effec-
tiveness with good transferability. According to
human evaluation, PWWS provides realistic ex-
amples with lexical correctness and only sporadic
grammatical errors or semantic shifting (Ren et al.,
2019).

The technique selects the word to be replaced
based on two factors. The first is the change in
the classification probability after substitution. The
second, called word saliency, measures the varia-
tion in the output probability of the classifier if the
word is set to unknown (out of vocabulary). The
chosen word is then replaced by a word from a syn-
onym set which causes the most significant change
of classification probability. The algorithm greed-
ily iterates until enough words have been replaced
to change the final classification label. Figure 2
sketches the core idea behind the method.

3.2 Generating Model Explanations
Whenever classifying an input sentence as either
regular or adversarial, our detector needs access to
its corresponding feature relevance explanation. In
other words, the detector takes its decision based on
how strong each feature—in our case each word—
influences the final model prediction. The assump-
tion is that the model’s reaction to original and
adversarial samples is different even if the inputs
look similar for a human. Thus, the model explana-
tions for the two samples should also substantially
differ from each other (Fidel et al., 2020).

We pick SHAP (Lundberg and Lee, 2017) to
produce instance-level explanations to train the
adversarial detector. This choice is motivated by
the empirical superiority proven by its developers
(Lundberg and Lee, 2017) and its previous success-
ful applications in detecting attacks in computer
vision. However, while Fidel et al. (2020) generate
SHAP signatures w.r.t. the penultimate layer of
the target model, we produce explanations directly
w.r.t. the input sentence as text perturbations are
introduced at the word level.

SHAP is based on a game theory concept—
called Shapley values (Shapley, 1952)—originally
used to fairly distribute a reward to a set of players
that contributed to a certain outcome. In our case,
the outcome is the model’s prediction whereas the
input features, i.e. the input words, are the players
involved. Since the players most likely contributed
differently to the turnout, their payout should differ
based on their impact. Given a text classifier f
and the set of all available features M , the Shapley
value corresponding to each feature i is computed
independently. More precisely, it is a weighted
average of the relative outcome differences

f(S ∪ {i})− f(S) (2)

across all feature subsets S ⊆ M \ {i}.
As there are 2|M | possible choices for S, exact

Shapley values are exponentially complex to com-
pute. However, the SHAP framework offers several
methods to approximate them accurately and effi-
ciently (Lundberg and Lee, 2017). In our work, we
utilize DeepSHAP as it is tailored to deep learn-
ing models, which we utilize as targets for the text
attacks (Lundberg and Lee, 2017). An official im-
plementation has been made publicly available by
the SHAP authors. 1

Figure 3 shows two examples of explanations
generated for IMDb, a movie review dataset (Maas

1https://github.com/slundberg/shap
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(a) Original SHAP signature

(b) Adversarial SHAP signature

Figure 3: Force plots generated for a sample of the IMDb dataset and its corresponding adversarial attack. The
base value indicates the average model’s prediction across the whole dataset and f(x) represents the model output
probability for the selected instance. Red attributes drive the predictions towards class 1 (i.e. a positive review)
and blue ones towards class 0 (i.e. a negative review). Starting from the base value (∼ 0.48) and adding up all
word contributions we reach the final prediction of 0.01. Hence, the original sample is classified as negative with
high confidence. In the adversarial SHAP signature, most negative words were replaced by synonyms such that the
prediction is now positive.

et al., 2011), with DeepSHAP. The first (Figure
3a) was generated from an original sample while
the second (Figure 3b) from its corresponding ad-
versarial attack generated with PWWS. As we can
see, the attack changes substantially the effect that
words have on the prediction. Hence, word-level
contributions are a major indicator for detecting
parts of a sentence that have a suspiciously high
impact on the model decision. This supports our
initial hypothesis that SHAP explanations do not
rely on image-only properties and therefore can
also serve as features for an adversarial detector in
the NLP domain.

3.3 Target Model and Detector Architectures

Our pipeline includes two machine learning mod-
els: the text classifier trained for the task-at-hand
and the adversarial detector.

For consistency with Mozes et al. (2021), used
later for performance comparison, we chose a Bidi-
rectional LSTM (Bi-LSTM) (Schuster and Paliwal,
1997) as architecture to be targeted by the adver-
sarial attacks. However, other NLP models can
also be utilized as the detector does not make any
assumption on the classifier. The text inputs are
first trimmed and padded to an equal length of 100.
Increasing the input length drastically increases
complexity along the pipeline while only yielding
minor accuracy gains. Tokens are transformed into
GloVe embeddings (Pennington et al., 2014) before
being fed to the Bi-LSTM core layer. We attach a
fully connected head layer to compute output prob-

abilities. We adjust the number of output neurons
based on the dataset currently in use.

SHAP values are extracted from the model for
all output classes. Therefore, the SHAP signatures
passed to the detector are numerical vectors of di-
mensionality [#classes × 100]. Here, each numer-
ical value corresponds to the impact of a single
word w.r.t. the model’s output. We do not pick any
particular architecture for our adversarial detector.
Instead, we experiment with a variety of relatively
simple machine learning models to test their per-
formance. We include a random forest (Breiman,
2001), a Support Vector Machine (SVM) (Boser
et al., 1992), and a simple two-layer-feed-forward
neural network (Rumelhart et al., 1985).

3.4 Overall Pipeline and Experimental Setup

With the methodology for the main steps outlined
in the previous sections, we now describe in greater
detail how those steps are combined, following
what we initially presented in Figure 1b. We repeat
the procedure for each text dataset utilized for test-
ing. These will be presented later in our evaluation
section (4).

To begin with, we train the Bi-LSTM model on
the given dataset. We consider this step concluded
once the model converges to a satisfactory accu-
racy. This is usually around 90% accuracy, depend-
ing on the dataset. After that, we utilize PWWS
as proposed by Ren et al. (2019)—implemented
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Method AG_News IMDb SST-2 Yelp Polarity Metric

Our
Neural Network 0.90 / 0.90 0.96 / 0.96 0.75 / 0.75 0.94 / 0.94 F1 score / Accuracy
Random Forest 0.91 / 0.91 0.87 / 0.87 0.77 / 0.77 0.84 / 0.84 F1 score / Accuracy
SVM 0.90 / 0.90 0.90 / 0.90 0.74 / 0.74 0.89 / 0.89 F1 score / Accuracy

SotA Detector FGWS (Mozes et al., 2021) - 0.77 0.63 - F1 score

Other Defenses
DNE (Zhou et al., 2020) 0.91 0.82 - - Accuracy
SEM (Wang et al., 2019) 0.76 0.85 - - Accuracy
ASCC (Dong et al., 2021) - 0.77 - - Accuracy

Table 1: Performance of different detector architectures on the AG_News, IMDb, SST-2 and Yelp Polarity datasets.
For comparison, we report also the defense performance of Frequency-Guided Word Substitutions (FGWS), Dirichlet
Neighbourhood Ensemble (DNE), Synonym Encoding Method (SEM) and Adversarial Sparse Convex Combinations
(ASCC).

in the TextAttack library 2—to produce adversar-
ial attacks targeting our trained NLP model. We
generate one attack for each sample in the dataset.
Instance-level explanations—i.e. Shapley value
approximations—are then created via SHAP, both
for normal and adversarial samples (Lundberg and
Lee, 2017).

We combine all explanations to compose a bal-
anced dataset for our adversarial detector. The
data is split into training and test sets following an
80/20-ratio. We further used the default hyperpa-
rameters for all models in the framework. To allow
for optimal reproducibility, we seeded all of our ex-
periments. For the neural network-based detector,
we pick layers of size 400 using a ReLU activation
and an L1 weight regularizer to avoid overfitting.
To further increase regularization, Dropout is used
(Srivastava et al., 2014). The model is then trained
for 10 epochs using the Adam optimizer with a
learning rate of 0.001 and β1, β2 set to their default
values of 0.9 and 0.99 respectively (Kingma and
Ba, 2015).

4 Evaluation

4.1 Performance Results

We evaluate our approach on four major datasets
often used in research, namely IMDb (Maas et al.,
2011), SST-2 (Socher et al., 2013), Yelp Polarity
and AG_News (Zhang et al., 2015). While the last
one classifies news articles into four distinct cate-
gories, the other three are binary sentiment analysis
tasks on movie review data. The reviews are not
fed into the detector directly but their correspond-
ing SHAP signatures are instead. The number of
samples in the datasets used for the experiment is
reported in Table 2. Every dataset consists of a
50:50 split between original and adversarial sam-

2https://github.com/QData/TextAttack

ples and the sizes are varying between 940 (Yelp
Polarity) and 100,000 (AG_News) samples.

Dataset Size #Normal #Adversarial
AG_News 100,000 50,000 50,000
IMDb 3,580 1,790 1,790
SST-2 3,162 1,581 1,581
Yelp Polarity 940 470 470

Table 2: Sizes of the individual SHAP signature datasets
used for training the adversarial detector. All datasets
consist of 50% normal and 50% adversarial signatures.

Table 1 shows the performance of various de-
tector architectures on the four datasets together
alongside results achieved by previously proposed
methods. To the best of our knowledge, the FGWS
method proposed by Mozes et al. (2021) is the
best detector currently available. With our SHAP-
based classifiers, we significantly outperform their
method on the IMDb dataset by 19% with an F1-
score of 96% and on the SST-2 dataset by 14% with
an F1-score of 77%. Relatively simple machine
learning models like a random forest or a support
vector machine are able to classify the data very
accurately. Both Mozes et al. (2021) and our work
evaluate their defenses against PWWS targeting a
Bi-LSTM model.

Besides adversarial detectors, we also outper-
form all other existing defenses to the best of our
knowledge. On IMDb, our approach improves by
11% accuracy compared to the best method (Wang
et al., 2019). On AG_News, it is matched only
by the DNE method from Zhou et al. (2020). For
each approach considered, we report the result w.r.t.
the configuration achieving the best performance
against PWWS from their corresponding original
work. For completeness, we mention that Zhou
et al. (2019) reports great results but their perfor-
mance is not comparable as they do not test their
method against any well-established attack.
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Figure 4: F1-scores for independent runs on the AG_News dataset using differently sized subsets of the training data.
The F1-score starts to plateau after a few thousand samples for all detectors which shows data efficiency.

Classifier Unnormalized
SHAP

Unnorm. SHAP +
Predicted Class

Normalized
SHAP

Neural Network 0.90 0.90 0.90
Random Forest 0.91 0.91 0.92
SVM 0.90 0.90 0.90
Linear SVM 0.67 0.67 0.65

Table 3: F1-scores of input modifications for the detec-
tors on the AG_News dataset.

To further improve the predictive performance
of the model, we also included the predicted class
coming from the base model as an input feature for
the detector. As shown in Table 3, this had neither
a positive nor a negative influence on the perfor-
mance of the model. Normalizing the SHAP signa-
tures only led to minor improvements for random
forests and neural networks. This can be explained
by the fact that all input features are Shapley values
and are therefore in the same range.

4.2 Transferability

Base-Model IMDb (Test) SST-2 (Test)
IMDb - 0.56
SST-2 0.42 -
Yelp Polarity 0.71 0.66

Table 4: F1-scores of the inference step with IMDb and
SST-2 datasets on neural network base-models which
were trained on IMDb, SST-2 and Yelp Polarity.

During our research the question arose whether
the detectors are agnostic to the dataset or highly
specialized. To evaluate this property, we trained
three base-models with a neural network backbone
on the IMDb, SST-2 and Yelp Polarity datasets.

Then, we performed the inference step with the
IMDb and SST-2 test sets on all three detectors and
observed how the performance varies with different
dataset combinations.

The results can be seen in Table 4. We report the
strongest results when the detector was tested on
the same dataset that was also used during training.
This resulted in our competitive F1-scores of 94%
on IMDb and 77% on SST-2. Interestingly, there
existed other combinations which also produced
results comparable to the state of the art, although
the performance dropped compared to our strongest
detectors. To be precise, the base-model which
was trained on Yelp Polarity achieved good F1-
scores on test sets of IMDb with 71.5% and of SST-
2 with 66%. In comparison, the state-of-the-art
detector tested with similarly generated adversarial
samples on a LSTM with PWWS by Mozes et al.
(2021) achieved F1-scores of 77.4% on IMDb and
of 63.4% on SST-2.

Such results are yet not strong enough to prove
full generalization capabilities. However, we find
them promising as they indicate that our detectors
are in some cases actually transferable to other
datasets once trained. Future research is crucial as
in practice it allows to reuse models for different
tasks.

4.3 Data efficiency

While our approach offers state-of-the-art detection
performance of adversarial attacks, the correspond-
ing detector model can be trained with a surpris-
ingly low amount of data. To evaluate this property,
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we trained a neural network and a random forest
on incremental subsets of the IMDb dataset where
all runs were conducted independently from each
other. We started with a dataset size of 100 and
incrementally increased the number of samples up
to 10,000. From Figure 4 one can directly observe
the limited amount of data needed for the model
to converge. For a neural network about 4,000
samples are needed before the F1-score starts to
plateau. For a random forest classifier even less
data is sufficient with around 3,000 samples.

4.4 Qualitative Results

UMAP: n_neighbors=500, min_dist=0.001

Adversarial
Normal

Figure 5: Visualization of the SHAP signatures of the
AG_News dataset using UMAP. We randomly selected
10% of the samples to avoid overplotting.

In order to understand how the detector is able
to distinguish between normal and adversarial in-
puts, we visualized the SHAP signatures in a two-
dimensional space. To project the samples we rely
on the UMAP dimensionality reduction algorithm
proposed by McInnes et al. (2020). It is based on
the fact that most high-dimensional data actually
lies on a much lower-dimensional manifold and
can be explained by a reduced number of variables.
Figure 5 clearly shows four distinct red clusters
corresponding to the four classes of the AG_News
dataset. Regardless of their original class, most of
the adversarial samples collapse into a single clus-
ter which is clearly separable from the others. This
explains why rather simple detector models are suf-
ficient to accurately differentiate between normal
and adversarial inputs. Our result is consistent with
the experiments done by Fidel et al. (2020) which
performed a similar analysis on SHAP signatures
for images from the CIFAR-10 dataset (Krizhevsky
et al., 2009).

4.5 Limitations

After the success in computer vision (Fidel et al.,
2020), this work shows that SHAP values are also
a valuable asset for discriminating between origi-
nal and adversarial text samples. However, while
word-level explanations are particularly effective at
detecting word-level attacks, it is unclear how they
would transfer to more sophisticated text manipu-
lations. We believe this is a vulnerability as future
attacks could involve using negations or paraphras-
ing whole sentences instead of unigrams.

While the approach’s pipeline is intuitive and the
results look promising, further research needs to
study transferability to more complex target mod-
els such as transformers architectures. At the same
time, we hope that future research also focuses on
creating standard benchmarks to facilitate perfor-
mance comparisons with previous defense meth-
ods.

5 Conclusion

Adversarial text examples are a major challenge
for current research and represent an obstacle for
safely deploying NLP models in high-stakes appli-
cations. While attacks are hard to be distinguished
from their corresponding originals, patterns in the
model’s reaction can be recognized and leveraged
using SHAP signatures for detecting manipulated
input samples.

Our work trains a machine learning detector us-
ing SHAP explanations of normal and adversar-
ial samples generated with PWWS. The proposed
method is both intuitive and effective since it al-
lows to detect parts of a sentence that have a sus-
piciously high impact on the model prediction and
therefore distinguishes between regular and ma-
nipulated samples. Furthermore, our detector is
model-agnostic as it does not make any assumption
on the classifier targeted by the attacks.

Our approach achieves high accuracy and consid-
erably outperforms the previous state of the art. In
terms of data efficiency, we prove that the method
can achieve nearly optimal performance also when
using a small portion of the available data for train-
ing. A qualitative analysis of the SHAP signature
landscape shows most adversarial samples con-
tained in a single cluster, suggesting that model
explanations explicitly encode information to sep-
arate attacks from their counterpart. We believe
this result explains why relatively simple detector
architectures suffice to achieve good performance
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results.
In terms of transferability to multiple datasets,

our results are promising but yet not sufficient to
prove full generalization capabilities. Although in
some cases we match state-of-the-art performance
even when training on one dataset and testing on
another, our results are highly dependent on the
dataset pair.

We encourage future research to continue work-
ing on generalization across multiple data sources
and to evaluate performance against multiple types
of attacks and models. We believe our contribu-
tion can help researchers to develop better defense
strategies against attacks and thus promoting the
safe deployment of NLP models in practice. We
release our code to the public to facilitate further
research and development 3.
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Abstract

Interpretability and human oversight are funda-
mental pillars of deploying complex NLP mod-
els into real-world applications. However, ap-
plying explainability and human-in-the-loop
methods requires technical proficiency. De-
spite existing toolkits for model understanding
and analysis, options to integrate human feed-
back are still limited. We propose IFAN, a
framework for real-time explanation-based in-
teraction with NLP models. Through IFAN’s
interface, users can provide feedback to se-
lected model explanations, which is then in-
tegrated through adapter layers to align the
model with human rationale. We show the
system to be effective in debiasing a hate
speech classifier with minimal performance
loss. IFAN also offers a visual admin system
and API to manage models (and datasets) as
well as control access rights. A demo is live at
ifan.ml.

1 Introduction

As Natural Language Processing (NLP) systems
continue to improve in performance, they are
increasingly adopted in real-world applications
(Khurana et al., 2022). Large Language Mod-
els (LLMs)—such as GPT-3 (Brown et al., 2020),
BLOOM (Scao et al., 2022), and T5 (Raffel et al.,
2020)—are without a shred of doubt the main pro-
tagonists of recent advances in the field. They are
able to substantially outperform previous solutions
while being directly applicable to any NLP task.

There are however strong concerns given the
black-box nature of such architectures (Madsen
et al., 2022; Mosca et al., 2022a). In fact, their large
scale and high complexity are substantial draw-
backs in terms of transparency, accountability, and
human oversight. Beyond ethical considerations,
even legal guidelines from the European Union
are now explicitly defining these interpretability
factors as essential for any deployed AI system
(European Commission, 2020).

NLP 

Models


1 2 3

- Predict

- Explain

Provide
Feedback

Developers

Users

Figure 1: IFAN in brief. The interface allows NLP
models and users to interact through predictions, expla-
nations, and feedback. IFAN also provides developers
with (1) a manager for models and datasets, (2) model
API access, and (3) reports about the model.

Research efforts in eXplainable Artificial Intel-
ligence (XAI) (Arrieta et al., 2020; Mosca et al.,
2022b) and Human-in-the-Loop (HitL) machine
learning (Monarch, 2021) have thus been on the
rise—producing solutions that aim at mitigating the
current lack of interpretability. Most notably, the
recent literature contains a number of toolkits and
frameworks to analyze, understand, and improve
complex NLP models (Wallace et al., 2019; Liu
et al., 2021). Some of them even offer low-code
interfaces for stakeholders who do not possess the
otherwise required technical proficiency. Nonethe-
less, current options to collect human rationale and
provide it as feedback to the model are still limited.

We propose IFAN, a novel low-to-no-code
framework to interact in real time with NLP models
via explanations. Our contribution can be summa-
rized as follows:

(1) IFAN offers an interface for users to pro-
vide feedback to selected model explana-
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tions, which is then integrated via parameter-
efficient adapter layers.

(2) Our live platform also offers a visual admin-
istration system and API to manage models,
datasets, and users as well as their correspond-
ing access rights.

(3) We show the efficiency of our framework in
debiasing a hate speech classifier and propose
a feedback-rebalancing step to mitigate the
model’s forgetfulness across updates.

IFAN’s demo is accessible at ifan1.ml together
with its documentation.2 Full access is available
with login credentials, which we can provide upon
request. A supplementary video showcase can be
found online3.

2 Related Work

2.1 HitL with Model Explanations
Human-in-the-Loop (HitL) machine learning stud-
ies how models can be continuously improved with
human feedback (Monarch, 2021). While a large
part of the HitL literature deals with label-focused
feedback such as active learning, more recent
works explore how explanations can be leveraged
to provide more detailed human rationale (Lertvit-
tayakumjorn and Toni, 2021).

Combining classical HitL (Wang et al., 2021)
with explanations to construct human feedback for
the model (Han et al., 2020) has been referred to
as Explanation-Based Human Debugging (EBHD)
(Lertvittayakumjorn and Toni, 2021). Good exam-
ples are Ray et al. (2019), Selvaraju et al. (2019),
and Strout et al. (2019), which show improvements
in performance and interpretability when iteratively
providing models with human rationale.

A more NLP-focused EBHD approach is
Yao et al. (2021), where the authors lever-
age explanations to debug and refine two trans-
former instances—BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). Concretely, word
saliency explanations at different levels of granu-
larity are provided to humans, who in turn provide
suggestions in the form of natural language. The
annotator’s feedback is converted into first-order
logic rules, which are later utilized to condition
learning with new samples.

1https://ifan.ml
2https://ifan.ml/documentation
3https://www.youtube.com/watch?v=BzzoQzTsrLo

2.2 Interactive NLP Analysis Platforms
In the recent literature, we can find strong contri-
butions in terms of software and digital toolkits to
analyze and explain NLP models (Wallace et al.,
2019; Hoover et al., 2020) as well as further refin-
ing them via parameter-efficient fine-tuning (Beck
et al., 2022).

For instance, Liu et al. (2021) proposes EX-
PLAINABOARD, an interactive explainability-
focused leaderboard for NLP models. More in de-
tail, it allows researchers to run diagnostics about
the strengths and weaknesses of a given model,
compare different architectures, and closely ana-
lyze predictions as well as recurring model mis-
takes. Similarly, the LANGUAGE INTERPRETABIL-
ITY TOOL by Tenney et al. (2020) is an open-
source platform and API to visualize and under-
stand NLP models. In particular, it provides a
browser-based interface integrating local explana-
tions as well as counterfactual examples to enable
model interpretability and error analysis.

Finally, Beck et al. (2022) releases ADAPTER-
HUB PLAYGROUND, a no-code platform to few-
shot learning with language models. Specifically,
the authors built an intuitive interface where users
can easily perform predictions and training of com-
plex NLP models on several natural language tasks.

3 IFAN

The Interaction Framework for Artificial and
Natural Intelligence (IFAN) is a web-based plat-
form for inspecting and controlling text processing
models. Its main goal is to decrease the opacity
of NLP systems and integrate explanation-based
HitL into their development pipeline. Through our
interface, stakeholders can test and explain mod-
els’ behavior and—when encountering anomalies
in predictions or explanations—they can fix them
onsite by providing feedback.

The main blocks of the platform are presented
in Figure 2. The Backbone part contains all ma-
chine learning development components—datasets
and models. We adopt HuggingFace formats (see
3.3 and 3.4) (Wolf et al., 2020) and wrap the en-
tire backbone as a Docker4 image for deployment.
The User Interface is the visual component of the
platform, where all the human-machine interac-
tion takes place. Here, developers have also access
to additional visual resources to configure details
about models, datasets, and users.

4https://www.docker.com



Datasets

+ dataset_train: dataset
+ dataset_validation: dataset
+ meta_data: json

+ get_samples_from_dataset(): List

IFAN Backbone

Models

+ model: AutoModel
+ pipeline: TextClassificationPipeline
+ adapters: List

+ predict(): List
+ missclasssified_samples(): List
+ explain(): List
+ run_evaluation(): List

IFAN UI

Step 1: Select a dataset
to sample texts. Step 2: Select a

model to inspect.

Local Feedback

You sample is toxic with prob. 99%

only  a   ret**d   would   think   that

Global Feedback

c*nt f*ggot n*gger wh*re f*cking

safety strong beauty amazing

Step 3: Analyze model's
behavior with explanations.

IFAN Admin

Feedback

 ConnectorStep 5: Retrain the model on
provided feedback.

Users

Step 4: Provide the feedback
on the model's behaviour.

Figure 2: Overall schema of IFAN idea: (i) The user selects a dataset or writes a customized input. (ii) Then the
user can select a model which should be inspected. (iii) With the UI, annotators can check the model’s prediction
on a sample and two types of explanations – local and global. (iv) If there is some misbehavior, the annotators can
provide feedback. (iv) The feedback is stored and then used to fine-tune the model.

The connection between the backbone and the
user interface is managed by the Admin compo-
nent. All the user data and rights as well as samples
receiving feedback are stored in a PostgreSQL5

database instance. The communication is handled
via Python Django6, which integrates everything
w.r.t. user authentication, API calls/responses, state
logs, and location of backbone resources. In the
next sections, we provide a more detailed descrip-
tion of the main platform components.

3.1 User Interface

Our frontend is built with Boostrap7 and
JavaScript8. Currently, the pages available in our
UI are the following:

Landing Page Here users can get a short intro-
duction to IFAN. We briefly explain our platform’s
goals, the concept of HitL, and how our framework
can be integrated into the development of NLP
models.

Documentation It provides a detailed descrip-
tion of all the UI components together with screen-
shots and guidelines. Here, users can find specific

5https://www.postgresql.org
6https://www.djangoproject.com
7https://getbootstrap.com
8https://www.javascript.com

instructions on how to configure and interact with
our platform.

Feedback This is the main interaction page.
Here, users can run a model on an input sample
either taken from the dataset or that they wrote
themselves. Then, they can load the model’s pre-
diction and explanations and provide feedback both
in terms of re-labeling and adjusting each feature’s
relevance.

Configuration This page has limited access (see
3.2). Here, developers can configure and manage
the platform, More specifically, users can be cre-
ated, modified, and deleted as well as upgraded or
downgraded in their roles and access rights. Also,
they can manage models and datasets as well as
specify the currently active ones.

Account Settings Each authorized user can view,
edit, export, and delete their account data as well
as reset their login password.

3.2 Users

The platform separates users in three tiers: develop-
ers, annotators, and unauthorized users (Table 1).

Unauthorized users do not possess login creden-
tials and have limited access to the platform. They
can visualize model predictions and explanations
but their feedback is not considered.



Dev Annotator Unauthorized
Classification

& Explanations
Smart Samples

Selection
Feedback

Active
Configuration

New Models &
Datasets Upload

New Users
Creation

Table 1: Different levels of access to IFAN functionali-
ties.

Normal users (or annotators) are known through
their credentials and can thus actively engage with
the model. During a HitL iteration, they can use
the feedback page with pre-configured datasets and
models, test the model on a text sample, view ex-
planations, and provide feedback if needed.

Developers have full access and can configure
all aspects of the platform. More specifically, they
have access to the configuration page (see 3.1) and
can thus manage anything regarding users, roles,
API access, models, and datasets.

3.3 Datasets

Before the model’s behavior exploration, the active
dataset should be specified via the configuration
page (see 3.1). This is the dataset from which the
text examples for the model testing are sampled.

Dataset Short Description
HateXplain (Mathew
et al., 2021)

A dataset for hate speech classi-
fication which has 3 classes for
hate type detection, the target
community classification, and
rationales.

GYAFC (Rao and
Tetreault, 2018)

Formality detection dataset
which corresponds to 2-class
classification: formal and
informal.

Table 2: Example of datasets available at IFAN for test-
ing.

We conform to a standard format by using the
HuggingFace Datasets library9. Developers inter-
acting with our platform are strongly encouraged
to adhere to this standard when uploading new
datasets and making them available to the interface.
Table 2 shows two examples of datasets already
available on our platform.

9https://huggingface.co/docs/datasets/index

3.4 Models

Analogous to datasets, our platform specifies an
active model at any time and the employed mod-
els adhere to the standard used by HuggingFace
Models10.

LM Block

Adapter

Classification
Head

IFAN Model

Human
Feedback i

.

.

.

Human
Feedback 2

Human
Feedback 1

Human
Feedback N

LM

LM Block

Adapter

Classification
Head

IFAN Model

LM

Figure 3: The proposed architecture for the models in-
tegrated into IFAN: addition of Adapter layer which is
trainable on provided human feedback.

To incorporate feedback into our models, we
utilize adapter layers (Houlsby et al., 2019), a
parameter-efficient fine-tuning technique. Fig-
ure 3 sketches an overview of the architecture used.
Adapters are integrated on top of each language
model unit (e.g. transformer block) and are trained
with the human feedback while we freeze the rest
of the model’s weights. Adapters can also be dis-
abled at any time to recover to the original state of
the model.

3.5 Explanations & Feedback Mechanism

Users can evaluate the active model on the active
dataset through the Feedback page. They may
input text in three ways: i) create a text sample
themselves; if authorized: ii) sample a random
text from the active dataset; iii) sample a random
misclassified text from the test part of the active
dataset. Users receive the classification results and
the model’s confidence. They can assess the result
and correct any misclassifications.

To further inspect the model’s behavior, we pro-
vide two types of explanations—local and global.
For local explanations on a text sample, we dis-
play relevant features to each output class (Fig-
ure 4). We attribute scores using the LIME frame-
work (Ribeiro et al., 2016) and—to filter weak
correlations—we highlight as relevant only tokens
with a score above the threshold θ = 0.1. On the
global side, we list the most influential unigrams

10https://huggingface.co/docs/transformers/main_classes/model



for each output class. These can be inspected to
extract insights about what keywords and patterns
the model focuses on at the dataset level. For all
1-grams present in a dataset, their corresponding
classification scores are calculated and the tokens
with top scores are displayed on the page.

Figure 4: The example of the results and local explana-
tions that annotators can obtain on the Feedback page.

Annotators can easily edit the highlighted tokens
and send the updated explanation as feedback. We
store the result—i.e. the highlighted relevant parts—
and use them to fine-tune the adapter layers (see
3.4).

Regarding the fine-tuning procedure, directly
using the highlighted feedback text for adapter
fine-tuning causes significant losses in the original
model performance. We propose to mix feedback
with original samples to mitigate this effect, which
allows effective feedback incorporation while re-
ducing model forgetfulness. See 4 for more details.

3.6 Backbone API

We expose our backbone’s API to make available
all essential dataset/model management functions.
These provide a high-level interface for additional
experiments dealing with model evaluation, expla-
nation, and feedback. The API was built with the
Python framework FastAPI11, detailed screenshots
can be found in the Appendix A.

4 Case Study

We carried out a case study to test the applicability
of IFAN. We chose a hate speech detection task
based on the HateXplain dataset (Mathew et al.,

11https://fastapi.tiangolo.com

2021). The goal of the experiment was to use our
framework to debias a given hate speech detector.

Firstly, we modified the original dataset for bi-
nary classification task—“toxic” and “non-toxic”—
and fine-tuned a BERT model (Devlin et al., 2019)
(BERT-Tiny uncased snapshot)12. We choose the
Jewish subgroup as a target for our debiasing pro-
cess.

We annotate 24 random misclassified samples,
12 with the most confidence and 12 with the least
confidence scores (see Appendix C.1). We invited
3 annotators to participate in the annotation process.
The n-grams that were modified by annotators were
saved and used to create a new training dataset for
the adapters. As a result, we collected 40 annotated
n-grams and repeated them to get 120 training sam-
ples. To complete the new training creation, we
balanced these samples with 500 original samples
(250 toxic, 250 non-toxic) randomly selected from
the HateXplain dataset.

Model Pr Re F1 PrJ
BERT (baseline) 0.80 0.78 0.79 0.95

Most Confident Missclassified
BERT+Feedback (non-bal.) 0.34 0.28 0.31 0.82
BERT+Feedback (bal.) 0.78 0.80 0.79 0.97

Least Confident Missclassified
BERT+Feedback (non-bal.) 0.83 0.73 0.78 0.96
BERT+Feedback (bal.) 0.79 0.78 0.78 0.96

Table 3: The results of the case study: hate speech
classification model debiasing. We compare different
strategies for feedback incorporation. PrJ states for the
Precision score on the Jewish target group.

The results are presented in Table 3. We observe
that the non-balanced training dataset, which only
contains feedback on the most confidently misclas-
sified samples, resulted in a significant decrease
in performance. While the inclusion of feedback
on least confident samples caused a slight decline
in the overall F1 score, Adapter training on the
balanced feedback led to an improvement in the
precision score for the Jewish target group.

Figure 5 shows the changes in the detector while
fine-tuning with the collected feedback. When re-
balancing the feedback, only modified samples are
drastically changed while the performance on the
original texts is only slightly affected. A more
detailed comparison between fine-tuning on non-
balanced and balanced feedback can be found in
Appendix C.2.

12https://huggingface.co/google/bert_uncased_L-2_H-
128_A-2



(a) Training on feedback on the Jewish subgroup samples. (b) Training on feedback samples with “jewish” key-words.

Figure 5: The results of the domain case using IFAN platform. We can observe that for both experiments with
balanced training data, the overall model’s performance is only slightly changed while the model’s behavior on the
Jewish target group is improved.

5 Limitations & Future Work

As of now, our feedback system is limited to appli-
cations in the sequence-to-class format. However,
current and future work is already focusing on ex-
tending the pipeline to token-to-class and sequence-
to-sequence use cases.

At the same time, we currently offer a limited
set of explanation, feedback, and management op-
tions, which we plan to increase in the immediate
future. A small user study has been conducted (Ap-
pendix B) to collect feedback about the platform
and improve its user-friendliness. Our intent is to
continue iterating the development of new features
with trials with developers and laymen.

Finally, our experiments do not yet show clear
trends w.r.t. the correlation between performance
and feedback hyperparameters. Indeed, further re-
search and trials have to be carried out to establish
optimal choices for the number of feedback sam-
ples, fine-tuning epochs, and the rebalancing ratio.

6 Conclusion

This work proposes IFAN, a framework focusing
on real-time explanation-based interaction between
NLP models and human annotators. Our contribu-
tion is motivated by the limited options in terms of
existing tools to interpret and control NLP models.

IFAN is composed of three main units. The
Backbone unifies all the machine learning
pipelines and exposes an API for accessibility. The
User Interface—organized in landing page, docu-
mentation, feedback, and configuration—provides
an intuitive visual component to interact with mod-
els. Finally, the Admin controls the connection
between the two previous components.

Additionally, we introduce the feedback mech-
anism that takes advantage of adapter layers to
efficiently and iteratively fine-tune models on the
downstream task. Our experiments show the frame-
works’ credibility at debiasing a hate speech classi-
fier with minimal performance loss.

We believe IFAN to be a valuable step towards
enabling the interpretable and controllable deploy-
ment of NLP models—allowing users with no tech-
nical proficiency to interact and provide feedback
to deployed NLP systems. Regarding future work,
we set as a priority to extend the framework to more
NLP tasks as well as to integrate additional model
analysis features and feedback mechanisms.
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Ethical Considerations

Interpretability and controllability of modern NLP
models and systems are fundamental pillars for
their ethical and safe deployment (European Com-
mission, 2020). This works aims at having a pos-
itive impact on both aspects as it provides a tool
to explain models and provide them with feedback.
By reducing the technical proficiency required to
interact with NLP systems, we hope to facilitate
the process of providing valuable human rationales
to influence complex models. We strongly encour-
age future work to keep exploring this research
direction as it enables to involve a larger and more
diverse crowd, thus positively affecting also other
desiderata such as fairness, transparency, and ac-
countability. Nevertheless, there are potential pit-
falls worth considering.

Ensuring high quality for the human feedback is
challenging (Al Kuwatly et al., 2020), and exposing
models to external influence can be used as an
exploit by adversarial agents (Mosca et al., 2022a).
Especially with a very small crowd of annotators,
there’s potential for a few people to have a strong
influence on the model. A restrictive access rights
management system like IFAN’s already mitigates
these issues. We believe that additional security
features as well as tracking annotators’ impact are
key for future work to foster their trustworthiness.

Previous works mention that users can feel dis-
couraged and frustrated when interacting with poor
models and badly-designed interfaces, which can
also affect feedback quality (Lertvittayakumjorn
and Toni, 2021). This can be addressed by integrat-
ing user studies in the development process in order
to design more intuitive interfaces and improve the
overall user experience.

On the opposite end of the spectrum, plausible
explanations can make humans overestimate the
model’s capabilities and make them trust systems
that are still not ready for deployment. In this
case, a more diverse and complementary set of
explanations for users (Madsen et al., 2022) as well
as comprehensive model reports for developers are
core goals to provide a more complete picture of
the models to be deployed.
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A Backbone API Endpoints

Figure 6 shows the auto-generated docs for our backbone’s REST API, which serves as guidelines to
interact with our backbone. Endpoints are divided into functional groups—models, datasets, prediction,
explanation, and feedback). Currently, this page is only accessible within our institution’s network for
security reasons.

Figure 6: Screenshot of the Swagger UI for our backbone API endpoints.

Developers with direct API access (specifiable on the configuration page, see 3.1) can directly make
requests to this high-level interface for additional (larger-scale) experiments. Once again, the API has
been built with the Python framework FastAPI13.

Figure 7 shows the documentation for the explanation endpoint. Here, we can inspect the details about
the endpoint, such as the required parameters—i.e. the path to the model, the explainer to be used (e.g.
LIME), and the model’s prediction as body request.

13https://fastapi.tiangolo.com



Figure 7: Screenshot of the explanation endpoint from our backbone API’s Swagger UI.



B User Study

We performed a small user study evaluating the usability of our platform with users having different
backgrounds. We gathered a total of nine testers, which we organize into three different categories based
on their familiarity with the underlying methodologies. Users may be laymen, computer scientists, or
experts. For each of these categories, three testers are assigned. Laymen are general users with no
exposure to computer science. Computer scientists are those who studied computer science or a related
discipline and who work in corresponding fields, such as software development. People who also possess
knowledge in the domains of machine learning and NLP are considered experts.

We asked the users to try out to interact with IFAN and then answer several questions about the website’s
usability. The questionnaire was of the following structure:

• The first question is about the competency of the test person, which is categorized as computer
science, natural language processing expert, or layman.

• Users assign a score between 1 and 5 to the local explanation on the left side of the feedback page.

• A textual input field for the users to hand in more detailed feedback on the previous rating.

• Users assign a score between 1 and 5 to the global explanation on the right side of the feedback page.

• A textual input field for the users to hand in more detailed feedback on the previous rating.

• Users rate the overall usability of the website with a score between 1 and 5.

• A textual input field for the users to hand in more detailed feedback on the previous rating.

The average ratings given by users: (i) Local explanation: 3.88; (ii) Global explanation: 3.2; (iii) General
usability: 3.33. The problem that the users mentioned were insufficiency of only one form of explanations
and feedback, sometimes misleading interface for markup, and waiting time. While some of the problems
are already fixed in the current version of the platform, we are planning to consistently improve the usability
of the platform. At the same time, we note a positive result—the users with different backgrounds were
overall comfortable with IFAN usage and found it useful to increase the controllability of NLP models.
We believe this confirms the possibility of IFAN utilization for stakeholders, developers, and annotators in
future applications.



C Case Study

In this section, we provide additional information about the experiment conducted under Case Study
(Section 4).

C.1 Annotated Samples
Here, we provide the list of that were used for manual annotation (Section 4). These samples were
misclassified by hate speech detection model. In Table 4, we provide the misclassified samples with the
lowest confidence, in Table 5 – with the highest confidence.

Sample
Original

Label Prediction
Confidence

Score
speaking of does anyone know which goy group the jews inter-
marry with in the greatest numbers i was under the impression
it was either asians or catholics

toxic non-toxic 0.52

it not so much about the torah which is pretty innocuous and
ignored by many jews despite what is said it really about that
forbidden book the talmud or babylonian talmud which as
goyim cattle we are not permitted to even read good luck with
your research

non-toxic toxic 0.56

if memory serves ashkenazi jews and east asians have higher
average iqs

non-toxic toxic 0.57

<user> the jews faked the moon landing toxic non-toxic 0.52
<user> <user> she will blame it on jews or trump i bet toxic non-toxic 0.53
christianity role is historical protector of the jews it has af-
forded the tribe the time and space it needed to prepare white
genocide teamwhite

toxic non-toxic 0.54

the jews are gearing up to help usher in democrats in <num-
ber> twitter facebook msm google youtube all upping their
censorships of the right pro whites

toxic non-toxic 0.51

amusing to think that white people will never be given a
referendum on expelling the jews from our nations when you
think about things in such terms it becomes abundantly clear
that we are expected by our governments to suffer jewish
parasitism without the right to defend ourselves

toxic non-toxic 0.50

it all hehe haha until we show up at your local favorite hang
out spot and wait for you to come out in the van they go one
little heeb at a time whatever it takes

toxic non-toxic 0.53

<user> <user> jews and the stupid holocaust myth toxic non-toxic 0.52
<user> jews will never be on the blockchain because you can
not trust them

toxic non-toxic 0.51

<user> <user> it the jews not europeans stop shifting blame
on gentiles

toxic non-toxic 0.57

Table 4: Misclassified with the lowest confidence samples used for manual annotation.



Sample
Original

Label Prediction
Confidence

Score
it amazing how long <user> talked without giving any answers
i learned way more about <user> thoughts and life than sargon
i thought only jews could bloviate that hard hm

toxic non-toxic 0.95

would rather have terrorism over not being able to boycott an
allied country this talking point must be important because he
repeats it but i can not make out what on earth it supposed to
mean if you do not buy stuff from jews they will fake arabs
taking down more nyc landmarks

non-toxic toxic 0.72

<user> <user> um akshually star trek were the space commies
and star wars jedis are just space jews

toxic non-toxic 0.87

<user> apparently not so obvious to some esp the homosexual
jewish media that wants women to look like boys and people
who think that is traditional rather than feminist

toxic non-toxic 0.84

how long will jews be a majority in israel non-toxic toxic 0.88
sorry i was referring to the holocaust story i believe it to be a
lie

toxic non-toxic 0.89

what do you mean goes and buys their house not only predates
the ghetto it was there before ghetto people came to exist why
do you want white people to take a stand for their home but
jews to flee theirs

non-toxic toxic 0.77

i swear college is a hot house full of judaised professors with
white youth being indoctrinated into this nonsense or have
live there days out in fear of being ousted as racists and proud
members of white race

toxic non-toxic 0.90

the jews and muslims grew up together and the jews gave
birth to christianity catholicism and later on mormonism like
a big religion family

non-toxic toxic 0.78

calling me a kike is not an insult non-toxic toxic 0.97
greg susan frank rodrick and manny heffley are all jews non-toxic toxic 0.67
a few months ago i said that anti semitism doesnt exists nam-
ing a group of people is a branch of social sciences called
sociology well jews are at war with social sciences now you
simply cant name them

toxic non-toxic 0.74

Table 5: Misclassified with the highest confidence samples used for manual annotation.



C.2 Feedback Mechanisms Comparison
In Section 4, we report the results of the model trained on feedback in two setups: (i) without balancing
and (ii) with balancing via using original samples from HateXplain dataset. The comparison between
these two setups is visualized in Figures 8 and 9. We tested our approach on the local feedback on the
Jewish target group samples as well as samples containing the “Jewish” keyword. For both setups, with
balancing, the training procedure runs more stable. The model’s performance on other samples from
HateXplain dataset changes slightly and the adjustment of its behavior on the marked-up samples proceeds
more rapidly.

(a) Training without feedback balancing. (b) Training with feedback balancing.

Figure 8: The comparison of training procedure with and without feedback balancing. Here, the results of local
feedback on the least confident misclassified samples from the Jewish target group are shown. We can observe
that training with a balanced dataset runs more stable without significant influence on the overall model’s domain
knowledge.



(a) Training without feedback balancing. (b) Training with feedback balancing.

Figure 9: The comparison of training procedure with and without feedback balancing. Here, the results of local
feedback on misclassified samples with “jewish” keywords are shown. We can observe that training with balanced
dataset runs more stable without significant influence on overall model’s domain knowledge.

D Supplementary Video Demo

A supplementary video showcase can be found on Youtube14.

14https://www.youtube.com/watch?v=BzzoQzTsrLo
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Ross, Alexis, Ana Marasović, and Matthew Peters (Aug. 2021). “Explaining NLP

Models via Minimal Contrastive Editing (MiCE).” In: Findings of the Association for

Computational Linguistics: ACL-IJCNLP 2021. Online: Association for Computational

Linguistics, pp. 3840–3852. doi: 10 .18653 / v1 /2021 . findings - acl . 336. url:

https://aclanthology.org/2021.findings-acl.336.

https://doi.org/10.18653/v1/P19-1103
https://aclanthology.org/P19-1103
https://doi.org/10.18653/v1/2022.acl-long.230
https://aclanthology.org/2022.acl-long.230
https://doi.org/10.18653/v1/P18-1079
https://aclanthology.org/P18-1079
https://aclanthology.org/P18-1079
https://doi.org/10.18653/v1/2021.findings-acl.336
https://aclanthology.org/2021.findings-acl.336


198 bibliography

Rudin, Cynthia and Berk Ustun (2018). “Optimized scoring systems: Toward trust in

machine learning for healthcare and criminal justice.” In: Interfaces 48.5, pp. 449–466.

Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf (2019). “DistilBERT,

a distilled version of BERT: smaller, faster, cheaper and lighter.” In: 2019 5th

Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS

2019.

Scao, Teven Le et al. (2022). “BLOOM: A 176B-Parameter Open-Access Multilingual

Language Model.” In: CoRR abs/2211.05100. doi: 10.48550/arXiv.2211.05100.

arXiv: 2211.05100. url: https://doi.org/10.48550/arXiv.2211.05100.

Schuster, M. and K. K. Paliwal (1997). “Bidirectional recurrent neural networks.” In:

IEEE Transactions on Signal Processing 45.11, pp. 2673–2681. doi: 10.1109/78.650093.

Selvaraju, Ramprasaath R, Stefan Lee, Yilin Shen, Hongxia Jin, Shalini Ghosh, Larry

Heck, Dhruv Batra, and Devi Parikh (2019). “Taking a hint: Leveraging explanations

to make vision and language models more grounded.” In: Proceedings of the IEEE

International Conference on Computer Vision, pp. 2591–2600.

Serrano, Sofia and Noah A Smith (2019). “Is Attention Interpretable?” In: arXiv preprint

arXiv:1906.03731.

Shapley, Lloyd S (1953). “A value for n-person games.” In: Contributions to the Theory

of Games 2.28, pp. 307–317.

Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje (2017). “Learning impor-

tant features through propagating activation differences.” In: Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pp. 3145–3153.

Shukla, Abhay, Paheli Bhattacharya, Soham Poddar, Rajdeep Mukherjee, Kripabandhu

Ghosh, Pawan Goyal, and Saptarshi Ghosh (Nov. 2022). “Legal Case Document

Summarization: Extractive and Abstractive Methods and their Evaluation.” In:

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Com-

putational Linguistics and the 12th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers). Online only: Association for Computational

Linguistics, pp. 1048–1064. url: https://aclanthology.org/2022.aacl-main.77.

https://doi.org/10.48550/arXiv.2211.05100
https://arxiv.org/abs/2211.05100
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.1109/78.650093
https://aclanthology.org/2022.aacl-main.77


bibliography 199

Singh, Chandan, W James Murdoch, and Bin Yu (2018). “Hierarchical interpretations

for neural network predictions.” In: International Conference on Learning Representa-

tions.

Smith-Renner, Alison, Ron Fan, Melissa Birchfield, Tongshuang Wu, Jordan L. Boyd-

Graber, Daniel S. Weld, and Leah Findlater (2020). “No Explainability without

Accountability: An Empirical Study of Explanations and Feedback in Interactive

ML.” In: CHI ’20: CHI Conference on Human Factors in Computing Systems, Honolulu,

HI, USA, April 25-30, 2020. Ed. by Regina Bernhaupt et al. ACM, pp. 1–13. doi:

10.1145/3313831.3376624. url: https://doi.org/10.1145/3313831.3376624.

Strout, Julia, Ye Zhang, and Raymond Mooney (Aug. 2019). “Do Human Ratio-

nales Improve Machine Explanations?” In: Proceedings of the 2019 ACL Workshop

BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Florence, Italy:

Association for Computational Linguistics, pp. 56–62. doi: 10.18653/v1/W19-4807.

url: https://aclanthology.org/W19-4807.

Sun, Xiaofei, Diyi Yang, Xiaoya Li, Tianwei Zhang, Yuxian Meng, Han Qiu, Guoyin

Wang, Eduard Hovy, and Jiwei Li (2021). “Interpreting deep learning models in

natural language processing: A review.” In: arXiv preprint arXiv:2110.10470.

Sundararajan, Mukund and Amir Najmi (2020). “The many Shapley values for model

explanation.” In: International Conference on Machine Learning. PMLR, pp. 9269–9278.

Sundararajan, Mukund, Ankur Taly, and Qiqi Yan (2017). “Axiomatic attribution

for deep networks.” In: Proceedings of the 34th International Conference on Machine

Learning-Volume 70. JMLR. org, pp. 3319–3328.

Sundermann, Camila Vaccari, Marcos Aurélio Domingues, Roberta Akemi Sinoara,

Ricardo Marcondes Marcacini, and Solange Oliveira Rezende (2019). “Using Opin-

ion Mining in Context-Aware Recommender Systems: A Systematic Review.” In:

Information 10.2. issn: 2078-2489. doi: 10.3390/info10020042. url: https://www.

mdpi.com/2078-2489/10/2/42.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus (2014). “Intriguing properties of neural networks.”

In: 2nd International Conference on Learning Representations, ICLR 2014.

https://doi.org/10.1145/3313831.3376624
https://doi.org/10.1145/3313831.3376624
https://doi.org/10.18653/v1/W19-4807
https://aclanthology.org/W19-4807
https://doi.org/10.3390/info10020042
https://www.mdpi.com/2078-2489/10/2/42
https://www.mdpi.com/2078-2489/10/2/42


200 bibliography

Tao, Guanhong, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang (2018). “Attacks Meet

Interpretability: Attribute-Steered Detection of Adversarial Samples.” In: Proceedings

of the 32nd International Conference on Neural Information Processing Systems. NIPS’18.

Curran Associates Inc., pp. 7728–7739.

Tenney, Ian et al. (Oct. 2020). “The Language Interpretability Tool: Extensible, In-

teractive Visualizations and Analysis for NLP Models.” In: Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing: System Demonstrations.

Online: Association for Computational Linguistics, pp. 107–118. doi: 10.18653/v1/

2020.emnlp-demos.15. url: https://aclanthology.org/2020.emnlp-demos.15.

Teso, Stefano and Kristian Kersting (2019). “Explanatory Interactive Machine Learn-

ing.” In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES

2019, Honolulu, HI, USA, January 27-28, 2019. Ed. by Vincent Conitzer, Gillian K.

Hadfield, and Shannon Vallor. ACM, pp. 239–245. doi: 10.1145/3306618.3314293.

url: https://doi.org/10.1145/3306618.3314293.

Tsang, Michael, Youbang Sun, Dongxu Ren, and Yan Liu (2018). “Can I trust you more?

Model-agnostic hierarchical explanations.” In: arXiv preprint arXiv:1812.04801.

Tsipras, Dimitris, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-

sander Madry (2019). “Robustness May Be at Odds with Accuracy.” In: 7th Interna-

tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May

6-9, 2019. OpenReview.net. url: https://openreview.net/forum?id=SyxAb30cY7.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need.” In:

Advances in neural information processing systems, pp. 5998–6008.

Vig, Jesse, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron

Singer, and Stuart Shieber (2020). “Investigating gender bias in language models

using causal mediation analysis.” In: Advances in Neural Information Processing

Systems 33, pp. 12388–12401.

Wachter, Sandra, Brent Mittelstadt, and Luciano Floridi (2017). “Why a right to

explanation of automated decision-making does not exist in the general data

protection regulation.” In: International Data Privacy Law 7.2, pp. 76–99.

https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://aclanthology.org/2020.emnlp-demos.15
https://doi.org/10.1145/3306618.3314293
https://doi.org/10.1145/3306618.3314293
https://openreview.net/forum?id=SyxAb30cY7


bibliography 201

Wachter, Sandra, Brent Mittelstadt, and Chris Russell (2017). “Counterfactual expla-

nations without opening the black box: Automated decisions and the GDPR.” In:

Harv. JL & Tech. 31, p. 841.

Wallace, Eric, Matt Gardner, and Sameer Singh (Nov. 2020). “Interpreting Predic-

tions of NLP Models.” In: Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing: Tutorial Abstracts. Online: Association for Compu-

tational Linguistics, pp. 20–23. doi: 10.18653/v1/2020.emnlp-tutorials.3. url:

https://aclanthology.org/2020.emnlp-tutorials.3.

Wallace, Eric, Jens Tuyls, Junlin Wang, Sanjay Subramanian, Matt Gardner, and Sameer

Singh (Nov. 2019). “AllenNLP Interpret: A Framework for Explaining Predictions of

NLP Models.” In: Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP): System Demonstrations. Hong Kong, China: Association

for Computational Linguistics, pp. 7–12. doi: 10.18653/v1/D19-3002. url: https:

//aclanthology.org/D19-3002.

Wang, Wenqi, Run Wang, Lina Wang, Zhibo Wang, and Aoshuang Ye (2019). “Towards

a robust deep neural network in texts: A survey.” In: arXiv preprint arXiv:1902.07285.

Wang, Xuezhi, Haohan Wang, and Diyi Yang (July 2022). “Measure and Improve

Robustness in NLP Models: A Survey.” In: Proceedings of the 2022 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. Seattle, United States: Association for Computational Lin-

guistics, pp. 4569–4586. doi: 10.18653/v1/2022.naacl-main.339. url: https:

//aclanthology.org/2022.naacl-main.339.

Wang, Yaopeng, Lehui Xie, Ximeng Liu, Jia-Li Yin, and Tingjie Zheng (2021). “Model-

Agnostic Adversarial Example Detection Through Logit Distribution Learning.”

In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 3617–3621. doi:

10.1109/ICIP42928.2021.9506292.

Wang, Yuqing, Yun Zhao, and Linda Petzold (2023). “Are Large Language Models

Ready for Healthcare? A Comparative Study on Clinical Language Understanding.”

In: arXiv preprint arXiv:2304.05368.

https://doi.org/10.18653/v1/2020.emnlp-tutorials.3
https://aclanthology.org/2020.emnlp-tutorials.3
https://doi.org/10.18653/v1/D19-3002
https://aclanthology.org/D19-3002
https://aclanthology.org/D19-3002
https://doi.org/10.18653/v1/2022.naacl-main.339
https://aclanthology.org/2022.naacl-main.339
https://aclanthology.org/2022.naacl-main.339
https://doi.org/10.1109/ICIP42928.2021.9506292


202 bibliography

Wang, Zijie J., Dongjin Choi, Shenyu Xu, and Diyi Yang (Apr. 2021). “Putting Hu-

mans in the Natural Language Processing Loop: A Survey.” In: Proceedings of the

First Workshop on Bridging Human–Computer Interaction and Natural Language Pro-

cessing. Online: Association for Computational Linguistics, pp. 47–52. url: https:

//aclanthology.org/2021.hcinlp-1.8.

Waseem, Zeerak (Nov. 2016). “Are You a Racist or Am I Seeing Things? Annota-

tor Influence on Hate Speech Detection on Twitter.” In: Proceedings of the First

Workshop on NLP and Computational Social Science. Austin, Texas: Association for

Computational Linguistics, pp. 138–142. doi: 10.18653/v1/W16-5618. url: https:

//aclanthology.org/W16-5618.

West, Darrell M (2018). The future of work: Robots, AI, and automation. Brookings

Institution Press.

Wich, Maximilian, Melissa Breitinger, Wienke Strathern, Marlena Naimarevic, Georg

Groh, and Jürgen Pfeffer (2021). “Are your Friends also Haters? Identification of

Hater Networks on Social Media: Data Paper.” In: Companion Proc. Web Conference

2021. ACM.

Wich, Maximilian, Edoardo Mosca, Adrian Gorniak, Johannes Hingerl, and Georg

Groh (2021). “Explainable abusive language classification leveraging user and

network data.” In: Joint European Conference on Machine Learning and Knowledge

Discovery in Databases. Springer, pp. 481–496. url: https://2021.ecmlpkdd.org/wp-

content/uploads/2021/07/sub_663.pdf.

Wiegreffe, Sarah and Yuval Pinter (Nov. 2019). “Attention is not not Explanation.” In:

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP). Hong Kong, China: Association for Computational Linguistics, pp. 11–20.

doi: 10.18653/v1/D19-1002. url: https://aclanthology.org/D19-1002.

Wolf, Thomas et al. (Oct. 2020). “Transformers: State-of-the-Art Natural Language

Processing.” In: Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations. Online: Association for Computational

Linguistics, pp. 38–45. doi: 10 . 18653 / v1 / 2020 . emnlp - demos . 6. url: https :

//aclanthology.org/2020.emnlp-demos.6.

https://aclanthology.org/2021.hcinlp-1.8
https://aclanthology.org/2021.hcinlp-1.8
https://doi.org/10.18653/v1/W16-5618
https://aclanthology.org/W16-5618
https://aclanthology.org/W16-5618
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_663.pdf
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_663.pdf
https://doi.org/10.18653/v1/D19-1002
https://aclanthology.org/D19-1002
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6


bibliography 203

Wu, Tongshuang, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld (Aug. 2021).

“Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving

Models.” In: Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers). Online: Association for Computational Linguistics, pp. 6707–

6723. doi: 10.18653/v1/2021.acl-long.523. url: https://aclanthology.org/

2021.acl-long.523.

Yao, Huihan, Ying Chen, Qinyuan Ye, Xisen Jin, and Xiang Ren (2021). “Refining lan-

guage models with compositional explanations.” In: Advances in Neural Information

Processing Systems 34, pp. 8954–8967.

Ye, Dengpan, Chuanxi Chen, Changrui Liu, Hao Wang, and Shunzhi Jiang (2020).

“Detection Defense Against Adversarial Attacks with Saliency Map.” In: arXiv

preprint arXiv:2009.02738.

Yeh, Chih-Kuan, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep

Ravikumar (2020). “On completeness-aware concept-based explanations in deep

neural networks.” In: Advances in Neural Information Processing Systems 33, pp. 20554–

20565.

Yuan, Xiaoyong, Pan He, Qile Zhu, and Xiaolin Li (2019). “Adversarial examples:

Attacks and defenses for deep learning.” In: IEEE transactions on neural networks and

learning systems 30.9, pp. 2805–2824.

Zhang, Wei Emma, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li (2020). “Ad-

versarial Attacks on Deep-Learning Models in Natural Language Processing: A

Survey.” In: ACM Trans. Intell. Syst. Technol. 11.3.

Zhang, Zhuoren (2021). “ResNet-Based Model for Autonomous Vehicles Trajectory

Prediction.” In: 2021 IEEE International Conference on Consumer Electronics and Com-

puter Engineering (ICCECE), pp. 565–568. doi: 10.1109/ICCECE51280.2021.9342418.

Zhao, Wayne Xin, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,

Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. (2023). “A survey of

large language models.” In: arXiv preprint arXiv:2303.18223.

Zhou, Yichao, Jyun-Yu Jiang, Kai-Wei Chang, and Wei Wang (Nov. 2019). “Learning to

Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification.”

https://doi.org/10.18653/v1/2021.acl-long.523
https://aclanthology.org/2021.acl-long.523
https://aclanthology.org/2021.acl-long.523
https://doi.org/10.1109/ICCECE51280.2021.9342418


204 bibliography

In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process-

ing and the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP). Hong Kong, China: Association for Computational Linguistics, pp. 4904–

4913. doi: 10.18653/v1/D19-1496. url: https://www.aclweb.org/anthology/D19-

1496.

Zylberajch, Hugo, Piyawat Lertvittayakumjorn, and Francesca Toni (Aug. 2021).

“HILDIF: Interactive Debugging of NLI Models Using Influence Functions.” In:

Proceedings of the First Workshop on Interactive Learning for Natural Language Processing.

Online: Association for Computational Linguistics, pp. 1–6. doi: 10.18653/v1/2021.

internlp-1.1. url: https://aclanthology.org/2021.internlp-1.1.

https://doi.org/10.18653/v1/D19-1496
https://www.aclweb.org/anthology/D19-1496
https://www.aclweb.org/anthology/D19-1496
https://doi.org/10.18653/v1/2021.internlp-1.1
https://doi.org/10.18653/v1/2021.internlp-1.1
https://aclanthology.org/2021.internlp-1.1


Lizenzen / Reprint Permissions

Explainable AI for the Human-Centric Development of NLP Models

Edoardo Mosca

November 22, 2023

The dissertation ”Explainable AI for the Human-Centric Development of NLP Models” presents

eight studies. Here we provide all information regarding their reprint permissions, confirming that

such studies can be reused in the context of the dissertation.

1 Studies

• Study I: Mosca, Szigeti, et al. 2022

• Study II: Mosca, Demirtürk, et al. 2022

• Study III: Mosca, Wich, and Groh 2021

• Study IV: Wich et al. 2021

• Study V: Mosca, Harmann, et al. 2022

• Study VI: Huber et al. 2022

• Study VII: Mosca, Agarwal, et al. 2022

• Study VIII: Mosca, Dementieva, et al. 2023

1



2 Licences

2.1 Study I

Study I is published through a venue part of the Association for Computational Linguistics (ACL) and

is public on the ACL Anthology website1. All articles in the anthology are published under the Creative

Commons 4.0 Deed license (see Figure 1 at the bottom). Such license (CC BY 4.0 Deed) allows copying

and redistributing the material in any medium or format for any purpose, even commercially. We attach

the corresponding .pdf, retrieved from the website https://creativecommons.org/licenses/by/4.

0/.

Figure 1: Screenshot for Study I on the ACL anthology, accessed on 22/11/2023 at 15:00, publicly

available also at https://aclanthology.org/2022.coling-1.406/.

1https://aclanthology.org/

2

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://aclanthology.org/2022.coling-1.406/


11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 1/5

CC is a small nonprofit fighting for the open web. We need your support to

continue our work. DONATE TODAY!

See the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal code

You are free to:

Share — copy and redistribute
the material in any medium or

WHO WE ARE WHAT WE DO LICENSES AND TOOLS BLOG SUPPORT US

English Search Donate Explore CC

 

CC BY 4.0 DEED

Attribution 4.0 International



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 2/5

format for any purpose, even
commercially.

Adapt — remix, transform, and
build upon the material for any
purpose, even commercially.

The licensor cannot revoke
these freedoms as long as you
follow the license terms.

Under the following terms:

Attribution - You must give
appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit , provide a
link to the license, and indicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicate
if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made . You
may do so in any reasonable
manner, but not in any way
that suggests the licensor
endorses you or your use.

No additional restrictions -
You may not apply legal terms
or technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures that
legally restrict others from



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 3/5

doing anything the license
permits.

Notices:

You do not have to comply with the
license for elements of the material in the
public domain or where your use is
permitted by an applicable exception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception or
limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation .

No warranties are given. The license may
not give you all of the permissions
necessary for your intended use. For
example, other rights such as publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,
privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights may limit how you
use the material.

 Notice

This deed highlights only some of the
key features and terms of the actual
license. It is not a license and has no
legal value. You should carefully review
all of the terms and conditions of the



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 4/5

actual license before using the licensed
material.

Creative Commons is not a law firm and
does not provide legal services.
Distributing, displaying, or linking to
this deed or the license that it
summarizes does not create a lawyer-
client or any other relationship.

Creative Commons is the nonprofit behind
the open licenses and other legal tools that
allow creators to share their work. Our
legal tools are free to use.

Learn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our work
Learn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC Licensing
Support our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our work
Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.
Licenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses List
Public Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain List

Contact Newsletter Privacy Policies Terms



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 5/5

CONTACT US

Creative Commons PO Box 1866,
Mountain View, CA 94042

info@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.org

+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753

SUBSCRIBE TO OUR
NEWSLETTER

SUPPORT OUR
WORK

Our work relies on you!
Help us keep the
Internet free and open.

DONATE
NOW

Except where otherwise
noted noted noted noted noted noted noted noted noted noted noted noted noted , content on this site
is licensed under a CreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreative
Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0
International license International license International license International license International license International license International license International license International license International license International license International license International license . Icons
by Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome .

 

Your e SUBSCRIBE



2.2 Study II

Study II is published through a venue part of the Association for Computational Linguistics (ACL) and

is public on the ACL Anthology website2. All articles in the anthology are published under the Creative

Commons 4.0 Deed license (see Figure 2 at the bottom). Such license (CC BY 4.0 Deed) allows copying

and redistributing the material in any medium or format for any purpose, even commercially. We attach

the corresponding .pdf, retrieved from the website https://creativecommons.org/licenses/by/4.

0/.

Figure 2: Screenshot for Study II on the ACL anthology, accessed on 22/11/2023 at 15:00, publicly

available also at https://aclanthology.org/2022.lnls-1.2/.

2https://aclanthology.org/

8

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://aclanthology.org/2022.lnls-1.2/


11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 1/5

CC is a small nonprofit fighting for the open web. We need your support to

continue our work. DONATE TODAY!

See the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal code

You are free to:

Share — copy and redistribute
the material in any medium or

WHO WE ARE WHAT WE DO LICENSES AND TOOLS BLOG SUPPORT US

English Search Donate Explore CC

 

CC BY 4.0 DEED

Attribution 4.0 International



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 2/5

format for any purpose, even
commercially.

Adapt — remix, transform, and
build upon the material for any
purpose, even commercially.

The licensor cannot revoke
these freedoms as long as you
follow the license terms.

Under the following terms:

Attribution - You must give
appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit , provide a
link to the license, and indicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicate
if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made . You
may do so in any reasonable
manner, but not in any way
that suggests the licensor
endorses you or your use.

No additional restrictions -
You may not apply legal terms
or technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures that
legally restrict others from



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 3/5

doing anything the license
permits.

Notices:

You do not have to comply with the
license for elements of the material in the
public domain or where your use is
permitted by an applicable exception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception or
limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation .

No warranties are given. The license may
not give you all of the permissions
necessary for your intended use. For
example, other rights such as publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,
privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights may limit how you
use the material.

 Notice

This deed highlights only some of the
key features and terms of the actual
license. It is not a license and has no
legal value. You should carefully review
all of the terms and conditions of the



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 4/5

actual license before using the licensed
material.

Creative Commons is not a law firm and
does not provide legal services.
Distributing, displaying, or linking to
this deed or the license that it
summarizes does not create a lawyer-
client or any other relationship.

Creative Commons is the nonprofit behind
the open licenses and other legal tools that
allow creators to share their work. Our
legal tools are free to use.

Learn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our work
Learn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC Licensing
Support our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our work
Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.
Licenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses List
Public Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain List

Contact Newsletter Privacy Policies Terms



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 5/5

CONTACT US

Creative Commons PO Box 1866,
Mountain View, CA 94042

info@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.org

+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753

SUBSCRIBE TO OUR
NEWSLETTER

SUPPORT OUR
WORK

Our work relies on you!
Help us keep the
Internet free and open.

DONATE
NOW

Except where otherwise
noted noted noted noted noted noted noted noted noted noted noted noted noted , content on this site
is licensed under a CreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreativeCreative
Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0Commons Attribution 4.0
International license International license International license International license International license International license International license International license International license International license International license International license International license . Icons
by Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome .

 

Your e SUBSCRIBE



2.3 Study III

Study III is published through a venue part of the Association for Computational Linguistics (ACL)

and is public on the ACL Anthology website3. All articles in the anthology are published un-

der the Creative Commons 4.0 Deed license (see Figure 3 at the bottom). Such license (CC BY

4.0 Deed) allows copying and redistributing the material in any medium or format for any pur-

pose, even commercially. We attach the corresponding .pdf, retrieved from the website https:

//creativecommons.org/licenses/by/4.0/.

Figure 3: Screenshot for Study III on the ACL anthology, accessed on 22/11/2023 at 15:00, publicly

available also at https://aclanthology.org/2021.socialnlp-1.8/.

3https://aclanthology.org/
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2.4 Study IV

Study IV is reprinted with permission from ©2021 Springer Nature Switzerland AG. We attach the

.pdf confirmation in the following.
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10. 1. The License and all rights granted hereunder will continue until the end of the
applicable period shown in Clause 5.1 above. Thereafter, this license will be
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terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment is
not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be
construed, interpreted and determined in accordance with the laws of the Federal
Republic of Germany without reference to the stipulations of the CISG (United
Nations Convention on Contracts for the International Sale of Goods) or to Germany ́s
choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes arising
out of this License shall be decided exclusively by the courts of or having jurisdiction
for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the
benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues
please contact springernaturesupport@copyright.com or +1-855-239-3415 (toll free in
the US) or +1-978-646-2777. For questions on Springer Nature licensing please visit
https://www.springernature.com/gp/partners/rights-permissions-third-party-distribution

Other Conditions:

Version 1.4 - Dec 2022

Questions? customercare@copyright.com.



2.5 Study V

Study V is published through a venue part of the Association for Computational Linguistics (ACL) and

is public on the ACL Anthology website4. All articles in the anthology are published under the Creative

Commons 4.0 Deed license (see Figure 4 at the bottom). Such license (CC BY 4.0 Deed) allows copying

and redistributing the material in any medium or format for any purpose, even commercially. We attach

the corresponding .pdf, retrieved from the website https://creativecommons.org/licenses/by/4.

0/.

Figure 4: Screenshot for Study V on the ACL anthology, accessed on 22/11/2023 at 15:00, publicly

available also at https://aclanthology.org/2022.trustnlp-1.5/.

4https://aclanthology.org/
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format for any purpose, even
commercially.

Adapt — remix, transform, and
build upon the material for any
purpose, even commercially.

The licensor cannot revoke
these freedoms as long as you
follow the license terms.

Under the following terms:

Attribution - You must give
appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit , provide a
link to the license, and indicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicateindicate
if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made if changes were made . You
may do so in any reasonable
manner, but not in any way
that suggests the licensor
endorses you or your use.

No additional restrictions -
You may not apply legal terms
or technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures that
legally restrict others from
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doing anything the license
permits.

Notices:

You do not have to comply with the
license for elements of the material in the
public domain or where your use is
permitted by an applicable exception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception or
limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation .

No warranties are given. The license may
not give you all of the permissions
necessary for your intended use. For
example, other rights such as publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,
privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights may limit how you
use the material.

 Notice

This deed highlights only some of the
key features and terms of the actual
license. It is not a license and has no
legal value. You should carefully review
all of the terms and conditions of the



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 4/5

actual license before using the licensed
material.

Creative Commons is not a law firm and
does not provide legal services.
Distributing, displaying, or linking to
this deed or the license that it
summarizes does not create a lawyer-
client or any other relationship.

Creative Commons is the nonprofit behind
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2.6 Study VI

Study VI is published through a venue part of the Association for Computational Linguistics (ACL)

and is public on the ACL Anthology website5. All articles in the anthology are published un-

der the Creative Commons 4.0 Deed license (see Figure 5 at the bottom). Such license (CC BY

4.0 Deed) allows copying and redistributing the material in any medium or format for any pur-

pose, even commercially. We attach the corresponding .pdf, retrieved from the website https:

//creativecommons.org/licenses/by/4.0/.

Figure 5: Screenshot for Study VI on the ACL anthology, accessed on 22/11/2023 at 15:00, publicly

available also at https://aclanthology.org/2022.repl4nlp-1.16/.

5https://aclanthology.org/
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format for any purpose, even
commercially.

Adapt — remix, transform, and
build upon the material for any
purpose, even commercially.

The licensor cannot revoke
these freedoms as long as you
follow the license terms.

Under the following terms:

Attribution - You must give
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that suggests the licensor
endorses you or your use.

No additional restrictions -
You may not apply legal terms
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legally restrict others from
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doing anything the license
permits.

Notices:

You do not have to comply with the
license for elements of the material in the
public domain or where your use is
permitted by an applicable exception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception or
limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation .

No warranties are given. The license may
not give you all of the permissions
necessary for your intended use. For
example, other rights such as publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,
privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights may limit how you
use the material.

 Notice

This deed highlights only some of the
key features and terms of the actual
license. It is not a license and has no
legal value. You should carefully review
all of the terms and conditions of the



11/22/23, 3:30 PM CC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

https://creativecommons.org/licenses/by/4.0/ 4/5

actual license before using the licensed
material.
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2.7 Study VII

Study VII is published through a venue part of the Association for Computational Linguistics (ACL)

and is public on the ACL Anthology website6. All articles in the anthology are published un-

der the Creative Commons 4.0 Deed license (see Figure 6 at the bottom). Such license (CC BY

4.0 Deed) allows copying and redistributing the material in any medium or format for any pur-

pose, even commercially. We attach the corresponding .pdf, retrieved from the website https:

//creativecommons.org/licenses/by/4.0/.

Figure 6: Screenshot for Study VII on the ACL anthology, accessed on 22/11/2023 at 15:00, publicly

available also at https://aclanthology.org/2022.acl-long.538/.

6https://aclanthology.org/
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format for any purpose, even
commercially.

Adapt — remix, transform, and
build upon the material for any
purpose, even commercially.

The licensor cannot revoke
these freedoms as long as you
follow the license terms.

Under the following terms:

Attribution - You must give
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No additional restrictions -
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legally restrict others from
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doing anything the license
permits.

Notices:

You do not have to comply with the
license for elements of the material in the
public domain or where your use is
permitted by an applicable exception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception orexception or
limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation limitation .

No warranties are given. The license may
not give you all of the permissions
necessary for your intended use. For
example, other rights such as publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,publicity,
privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights privacy, or moral rights may limit how you
use the material.

 Notice

This deed highlights only some of the
key features and terms of the actual
license. It is not a license and has no
legal value. You should carefully review
all of the terms and conditions of the
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actual license before using the licensed
material.

Creative Commons is not a law firm and
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2.8 Study VIII

Study VIII is publicly available at https://arxiv.org/abs/2303.03124, and published under the

license Attribution-NonCommercial-ShareAlike 4.0 International (please notice the licensing button at

the bottom left of Figure 6). Such license (CC BY-NC-SA 4.0) allows copying and redistributing the

material in any medium or format for non-commercial purposes. We also attach the corresponding

.pdf, retrieved from https://creativecommons.org/licenses/by-nc-sa/4.0/.

Figure 7: Screenshot for Study VIII on the arXiv, accessed on 22/11/2023 at 15:00, publicly available

also at https://arxiv.org/abs/2303.03124.
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transform, or build upon the
material, you must distribute
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same license same license same license same license same license same license same license same license same license same license same license same license same license as the original.
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