
Technische Universität München
TUM School of Computation, Information and Technology

A Fully Coupled Model for Petascale
Earthquake-Tsunami and Earthquake-Sound

Simulations

Lukas Daniel Sidney Krenz

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Stephan Günnemann

Prüfende der Dissertation:

1. Prof. Dr. Michael Georg Bader

2. Prof. Dr. Alice-Agnes Gabriel

Die Dissertation wurde am 20.09.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology
am 29.01.2024 angenommen.

Acknowledgments

First, I want to thank my advisor, Michael, for allowing me to work on this topic, for his
support, and for providing an environment full of opportunities.

The “old” generation of our group taught me the basics. Thanks to Leo for introducing
me to numerical methods and HPC during my Master’s thesis and for – somehow –
convincing me to pursue a PhD. Thanks to Carsten for showing me most of what I know
about SeisSol: the good and especially the bad parts. Finally, I want to thank Anne, with
whom I had the pleasure of designing and teaching a new lab course, and for showing me
how tactical stubbornness can overcome nearly any obstacle.

I am grateful to have shared my office with Sebastian, who had to endure a fair bit of
complaining. Thanks to Ravil for hours of technical discussions, from which I’ve learned
a lot.
I particularly enjoyed collaborating with other people. For the earthquake-tsunami

coupling project, I want to thank Alice, Aniko, and Thomas of LMU and Lauren and Eric
from Stanford University. Both groups tremendously impacted this thesis. The LMU
group contributed interesting application examples, and the Stanford group introduced
me to the fully coupled model. I want to thank Gregor, who taught me a lot about
seismology during our earthquake-sound coupling project and invited me to visit Helsinki
for multiple weeks.
Thanks to Marc, David, and Vanessa for their feedback on the drafts of this thesis.

All remaining errors are solely my fault.
Thanks to my friends and family for their continuous support and for distracting me

from work whenever necessary. Finally, I want to thank my wife, Vanessa, for tolerating
my PhD-induced bad moods and for her relentless support, without which this thesis
may not exist.

iii

Abstract

We introduce an ADER Discontinuous Galerkin discretization for fully coupled elastic-
acoustic earthquake simulations. The multiphysics model combines dynamic earthquake
rupture, wave propagation in elastic and acoustic media, and tsunami propagation
modeled by a linearized gravitational free surface condition. We show an ADER-DG
discretization of this model that uses an exact Riemann solver. The gravitational boundary
condition results in an element-local ODE, which we integrate with an ADER-based
Taylor series approach. We prove that the resulting scheme is stable.

We introduce an actor model for clustered local time-stepping (LTS), which groups
elements with similar time step sizes in clusters and updates them together. Our
scheduling algorithm combines state machines, which track the local status, with explicit
message passing, which informs other clusters of updates. This model includes shared
and distributed memory parallelization, resulting in an elegant abstraction that manages
computations and communication. Furthermore, we introduce two features that can
automatically fine-tune the clustering: a wiggle factor, which moves the cluster boundaries,
and the capability to automatically merge clusters with large time step sizes.

We discuss earthquake-tsunami coupling strategies and explain where the fully coupled
model fits in. We demonstrate with carefully selected scenarios that our discretization
reaches a high-order convergence rate. We introduce three applications. The first
shows that the fully coupled model gives reasonable results for an earthquake-tsunami
benchmark scenario. The second applies the fully coupled model to the Palu, Sulawesi,
2018 earthquake-tsunami event. We introduce large-scale models (89 and 518 million
elements), which capture this event with great detail. A comparison with one-way linking
reveals that the overall tsunami is captured correctly; however, the fully coupled model
results in a more complex wavefield. The third scenario is an elastic-acoustic scenario
for an earthquake induced by the stimulation of an enhanced geothermal system in the
metropolitan region of Helsinki. We model the earthquake and the sound it generates.
Our results match the observations to first order. We generate maps highlighting areas
of high velocity or high sound pressure levels. LTS led to a speedup of 30 for the largest
Palu setup and 65 for the fully coupled Helsinki setup.

We discuss single-node performance, non-uniform memory access, and mesh partitioning
for the fully coupled model. Finally, we show strong scaling results for the Palu scenario.
The largest setup achieves a parallel efficiency of 83% when scaling from 500 to 6000
nodes of the cluster Frontera. When using the wiggle factor, the time-to-solution at the
largest scale is 74.7% of the simulation without.

These results show that the resulting solver is stable, reaches high-order convergence,
scales to large machines, and can be used for multiple applications.

v

Contents

1. Introduction 1

2. Equations 7
2.1. Earthquakes . 8

2.1.1. Linear Elasticity . 8

2.1.2. Earthquake Sourcing . 14

2.2. Fluid Mechanics . 16

2.2.1. Euler Equations . 16

2.2.2. Linear Acoustics with Gravity . 18

2.3. Fully Coupled Model . 24

2.3.1. Interface Conditions . 24

2.3.2. Energy . 25

2.3.3. Discussion . 26

3. Riemann Problems & Boundary Conditions 29
3.1. Rotational Invariance . 30

3.2. Characteristic Variables . 33

3.3. Rankine-Hugoniot Jump Condition . 35

3.4. The Acoustic Riemann Problem . 37

3.4.1. Boundary Conditions . 39

3.4.2. Discussion . 41

3.5. The Elastic Riemann Problem . 41

3.6. Elastic-Acoustic & Acoustic-Elastic Riemann Problems 45

3.7. Computational Aspects . 48

3.8. Discussion . 50

4. Discretization 51
4.1. Discontinuous Galerkin . 51

4.1.1. Mesh . 51

4.1.2. Basis Functions . 53

4.1.3. Weak Form . 57

4.1.4. Surface Terms . 58

4.1.5. Summary . 61

4.2. ADER . 62

4.2.1. Cauchy-Kowalevski Procedure . 62

4.2.2. One-Step Update . 64

4.3. Gravitational Free Surface . 66

vii

Contents

4.4. Summary & Computational Aspects . 68

5. Energy Stability 71
5.1. Energy . 72

5.2. Energy Rate from Faces . 75

5.3. Energy Rate from Gravity . 76

5.4. Proof . 77

6. Local Time-Stepping 79
6.1. Clustered LTS . 80

6.2. Numerical Considerations . 81

6.3. The Time-Stepping Algorithm . 82

6.4. The Actor Model . 84

6.5. Computations & Shared Memory Parallelization 91

6.6. Distributed Memory Parallelization . 92

6.6.1. Ghost Clusters . 92

6.6.2. MPI Progression . 96

6.6.3. Dynamic Rupture . 97

6.7. Scheduling . 98

6.8. Wiggle Factor & Cluster Merging . 99

6.9. Discussion . 104

7. Earthquake-Tsunami Coupling 107
7.1. Shallow Water Equations . 108

7.2. One-Way Coupling Approaches . 109

7.3. The Sea Surface Height . 112

7.3.1. Tanioka . 112

7.3.2. Filtering & Transfer Functions . 112

7.4. Discussion . 115

8. Verification 117
8.1. Planar Waves . 118

8.2. Snell’s Law at an Elastic-Acoustic Interface 120

8.3. Scholte Waves . 122

8.4. Compressible Ocean . 125

8.5. Discussion . 128

9. Scenarios 129
9.1. Earthquake-Tsunami Benchmark . 129

9.2. Palu, Sulawesi 2018 . 132

9.3. Helsinki Metropolitan Area . 137

9.3.1. Numerical Experiments . 140

9.3.2. Results . 144

9.3.3. Conclusion . 152

viii

Contents

9.4. Summary . 152

10.High-Performance Computing 155
10.1. Single Node Performance . 155
10.2. Pinning . 157
10.3. Mesh Partitioning . 159
10.4. Strong Scaling . 160
10.5. Discussion . 164

11.Conclusion 167

A. Simulations 171

Bibliography 173

ix

Chapter 1.

Introduction

A devastatingMW 7.5 earthquake and a resulting tsunami hit Palu, Sulawesi, in September
2018, causing thousands of deaths and displacing hundreds of thousands of people [117].
This is an example of the devastating effect of large earthquakes. Most earthquakes are
smaller events; however, they can still affect people.

Consider the Otaniemi project, an enhanced geothermal system (EGS) in the Helsinki
metropolitan region. In 2018 and 2020, the operator of this project, St1 Deep Heat Oy,
pumped millions of liters of water down the EGS’s injection well. Such stimulations are
necessary to increase the reservoir flow rate, but, as a side-effect, they lead to seismicity.
For example, the 2018 stimulation induced thousands of small earthquakes [90]. These
earthquakes were not dangerous, but they annoyed the public. The macroseismic
questionnaire of the Institute of Seismology, University of Helsinki, collected over 300
reports of felt or heard effects from these earthquakes [4, 64, 91, 128].

Even though both events were of vastly different sizes, both impacted human lives.
They have in common that they illustrate that effects from the coupling between solids
(earthquakes) and fluids (ocean and air) can endanger and discomfort the public. We can
model the solid as an elastic medium and the fluids as an acoustic medium. This thesis
introduces a fully coupled elastic-acoustic model and its realization as high-performance
software that runs on large supercomputers and can simulate both events mentioned
above.

But what does the term “fully coupled” mean? A fully coupled model simulates the
entire physical process that drives an event. For earthquake-tsunami coupling, this
includes earthquake rupture, wave propagation in elastic and acoustic media and tsunami
propagation. The earthquake rupture process should be modeled by a dynamic rupture
model, a physics-based description that couples the fracture mechanics with the wave
propagation [123]. Furthermore, the coupling should be bi-directional. For example,
elastic waves should be able to influence the acoustic medium and vice versa. These
properties allow us to capture wave types that other methods cannot, which is essential
when comparing with measurements. The available data is continuously growing as more
related sensors are being deployed. For example, the DONET in Nakai Trough [74] or the
S-net in the Japan trench [184] are arrays of seafloor sensors. An increasingly popular
class of sensors is distributed acoustic sensing (DAS), which uses fiber-glass cables and
can measure the strain over a long distance with high spatiotemporal accuracy [45, 96,
116]. They can use pre-existing fiber networks, which makes it easy to deploy and surveil
a large area. Hence, DAS can provide economical sensors on the seafloor [129, 143]. They

1

Chapter 1. Introduction

can record ocean waves with an increasingly high resolution. Acoustic waves, which move
much faster than tsunami waves and thus arrive earlier, could be used for tsunami early
warning. Another type of wave, T Waves, propagate for long distances because they
are trapped in the SOFAR channel, a low-velocity ocean layer. They can be used to
detect small earthquakes [115]. Another type of interesting acoustic signal emitted by
earthquakes is infrasound [42, 60, 112, 140].

We extend a two-dimensional model, first published by [97]. The critical insight of this
approach is that tsunami propagation can be included by an elegant linearization of the
free surface condition on the moving seafloor, which is computationally efficient. In [97],
the model was discretized with a summation-by-parts finite difference method. It was
used to investigate the validity of initial conditions used for tsunami simulations [99] and
to simulate megathrust earthquakes and tsunamis in the Japan trench, the Nakai Trough
and the Cascadia subduction zone [98]. The same physical model was also discretized
by a finite element method in [177] and was used to run fully coupled simulations in
the Cascadia subduction zone. Another fully coupled model, which uses a body force
instead of a boundary condition and a finite difference discretization, was used to provide
three-dimensional fully coupled simulations [103].
Our implementation [79] was the first to simulate a real-world event in 3D. We

use the ADER-DG discretization, which consists of two parts. The first part is the
Discontinuous Galerkin (DG) space discretization. Initially developed for the neutron
transport equation [124], it was later extended to hyperbolic partial differential equations
(PDEs) [16]. It combines capabilities for complex geometries, high-order accuracy, and
an explicit semi-discrete form. As the DG method ensures local conservation, it is
well suited for the simulation of conservation laws [61]. These properties make it very
attractive for the simulation of earthquakes. Because of these advantages, the DG
method is now widely used for elastic [35] and coupled acoustic-elastic simulations [7,
43, 175], and many other applications [20, 61]. Still, other numerical methods such as
the finite difference method [97, 98], the finite volume method [36], and the continuous
finite element method [10, 76, 177] can also be used for earthquake simulations. The
second ingredient of the ADER-DG method is the Arbitrary Derivative (ADER) time
discretization [156, 157, 159]. It uses a local expansion of the numerical solution to
predict the time evolution and later corrects for neighboring elements. This results in a
one-step numerical method of arbitrary order in both time and space. It was originally
developed for linear problems but was later extended to non-linear equations and used
for a large class of hyperbolic equations [33, 125].
We use and extend the software SeisSol in this thesis. SeisSol is a high-performance

computing (HPC) earthquake dynamics and wave propagation solver that uses an ADER-
DG discretization. It was developed in two phases. In the first phase, it was a research
software for numerical methods, which included many physical models but was not tuned
for performance. In the second phase, SeisSol’s core was rewritten as an optimized HPC
software with less functionality. In fact, in 2020, [164] observed that there has never been
a SeisSol code base that combines the functionality of the first phase with the performance
of the second phase. However, as of now, this statement is increasingly less true. SeisSol
currently supports isotropic [35] and anisotropic [30, 180] elastic materials. Further

2

materials are poroelasticity [29, 181], viscoelasticity [70, 165] and off-fault plasticity [182].
It also supports elastic-acoustic coupled materials [3, 69, 79, 82], which is the main focus
of this thesis. As earthquake sources, it supports kinematic [72] and dynamic earthquake
rupture [27, 118, 119]. Finally, it has been tuned for CPU [14, 15, 57, 58, 79, 166, 168] and
GPU [32] architectures. SeisSol makes use of asynchronous output [126]. We integrated
all features discussed in this thesis into version 1.0.1 [167] of SeisSol.

SeisSol is heavily optimized for modern hardware architectures. But how long can
we expect the performance of our software to increase? Moore’s law is the name of
the observation that the number of transistors in an integrated circuit doubles every
few years [107, 111]. Initially postulated in 1965, the exact rate of doubling has been
revised many times. At some point, the doubling has to stop due to physical limits.
While other factors contribute to the increase in the performance of hardware, such as
microarchitectural improvements, the future of Moore’s law is increasingly uncertain.
However, there is another way of improving the performance of HPC applications:
improve the algorithms. We can state an “algorithmic Moore’s law”, as named by [24]:
Algorithmic advances can provide exponential speedup! This has been shown empirically
for certain applications [107].

This law also applies to earthquake simulations. Especially in elastic-acoustic simula-
tions, we observe strong differences in the wave speeds between materials. As we use
explicit time-integration and thus must adhere to the CFL condition [22], this leads to
an equally strong heterogeneity of the legal time step sizes. Using local time-stepping
(LTS) can lead to significant speedups. The clustered LTS approach of [13] fuses HPC
performance with the time-to-solution speedup of LTS. However, during the work on the
fully coupled simulations, we noticed that this implementation of LTS was not robust:
Some simulations did not finish. Hence, we present a novel LTS formalism based on
an actor approach that combines state machines to keep track of the local state, with
explicit message passing, which propagates the updates.

This thesis presents an efficient and robust solver for a fully coupled earthquake-tsunami
model. In detail, we make the following contributions:

• In chapter 2, we derive models for wave propagation in the Earth and ocean.
We show how both models can be elegantly coupled to achieve a fully coupled
model that encompasses earthquake rupture, elastic (Earth), and acoustic wave
propagation (ocean), and tsunami propagation.

• Chapter 3 introduces Riemann problems and their solution for coupled and elastic
media. This includes discussing how we can include boundary conditions in our
model.

• We present an ADER-DG discretization of our fully coupled model in chapter 4.
This extends the state-of-the-art with a discussion on efficiently computing the
gravitational boundary condition.

• In chapter 5, we prove the semi-discrete stability of the discretization of the ocean
part of our fully coupled model, including the gravitational boundary condition.

3

Chapter 1. Introduction

• In chapter 6, we present a novel formulation of local-time-stepping that uses the
actor model to schedule updates.

• Chapter 7 briefly summarizes how we can combine earthquake and tsunami sim-
ulations. We introduce common approximations used in tsunami modeling and
compare standard one-way linking strategies with our fully coupled approach.

• In chapter 8, we verify the correctness of our implementation. To do this, we discuss
analytical solutions targeting specific parts of our model. We start by investigating
planar waves in acoustic and elastic media and evaluate which order of convergence
our model achieves. We use two scenarios for wave propagation in coupled media
(Snell’s law and Scholte wave) and one model for tsunami generation in acoustics.

• We verify the performance of our model with multiple scenarios in chapter 9. We
start with a simple benchmark scenario for tsunami generation. We apply our fully
coupled model to the Palu, Sulawesi, 2018 earthquake-tsunami event. Furthermore,
we show how we can use our method to simulate elastic and sound waves emitted
from an earthquake induced by the stimulation of an enhanced geothermal system
(EGS) in the metropolitan area of Helsinki.

• In chapter 10, we discuss high-performance computing aspects such as single node
performance for AMD Rome and Fujitsu A64FX CPUs, how to pin threads to
accommodate non-uniform memory access (NUMA), and modifications to the mesh
partitioning scheme necessitated by the fully coupled scheme. We evaluate the
parallel efficiency of our Palu scenario by running a strong scaling test.

• Chapter 11 summarizes the thesis and mentions further research avenues.

Several contributions of this thesis were published in peer-reviewed journals and
conference proceedings. They are the result of two significant collaborations: The first
one considered earthquake-tsunami coupling. It resulted in two papers. The first, Krenz,
Uphoff, Ulrich, Gabriel, Abrahams, Dunham, and Bader “3D Acoustic-Elastic Coupling
with Gravity: The Dynamics of the 2018 Palu, Sulawesi Earthquake and Tsunami”
SC’ 21: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (2021) [79], introduced our implementation of the
fully-coupled model (chapters 2 to 4) and used it to simulate an earthquake-tsunami
benchmark (section 9.1) and the Palu, Sulawesi, 2018 earthquake and tsunami (section 9.2).
Furthermore, it investigated HPC aspects, which I explain in sections 10.1 to 10.3. The
second paper, Abrahams, Krenz, Dunham, Gabriel, and Saito “Comparison of Methods
for Coupled Earthquake and Tsunami Modelling” Geophysical Journal International
(2023) [3], discussed geophysical aspects of earthquake-tsunami coupling. Chapter 7
summarizes this paper, which also introduces the test case that I describe in section 8.4
The second collaboration investigated earthquake-sound coupling. It resulted in the

paper Krenz, Wolf, Hillers, Gabriel, and Bader “Numerical Simulations of Seismoacoustic
Nuisance Patterns from an Induced M 1.8 Earthquake in the Helsinki, Southern Finland,
Metropolitan Area” Bulletin of the Seismological Society of America (2023) [82], which

4

applied the fully-coupled model to simulate an EGS-induced earthquake in the Helsinki
metropolitan area (section 9.3). Furthermore, it used but did not describe the LTS
scheduling scheme introduced in chapter 6.
In this thesis, I present multiple as of now unpublished results. This includes a new

discretization of the gravitational boundary condition (section 4.3) and a proof of the semi-
stability of the discretization (chapter 5). Furthermore, as an algorithmic contribution, I
describe a new LTS scheduling scheme in chapter 6. The convergence studies in chapter 8
use established scenarios. The results for the acoustic and acoustic-elastic test cases
are new. Additionally, I simulated both earthquake-tsunami scenarios with the new
implementation of the gravitational boundary and LTS to verify their correctness and
performance (sections 9.1 and 9.2). Finally, I present single node performance results for
the A64FX architecture in section 10.1 and show new strong-scaling results in section 10.4.

5

Chapter 2.

Equations

Earth

Ocean

z = η(x, y, t)z

Fault

Figure 2.1.: Two-dimensional slice of our three-dimensional setup. It uses two coupled
models: In the Earth (shaded gray), we use the elastic wave equation to
describe the propagation of seismic waves and a separate model for earthquake
rupture at the fault. We use the acoustic wave equation to model acoustic
waves in the ocean and include tsunami propagation by modeling a moving
sea surface (blue) with height η(x, y, t). The black line on top of the ocean
illustrates the unperturbed ocean at z = 0.

This chapter describes the physical laws governing wave propagation in coupled elastic-
acoustic media with gravity. Figure 2.1 depicts the resulting setup. In section 2.1, we
describe the equations that govern the solid part of our setup, including earthquake
rupture along a fault. Section 2.2 explains how we model the fluid. In section 2.2.1, we
detail the Euler equations and the physical boundary conditions required for tsunami
propagation. We linearize the Euler equations around a hydrostatic background stress in
section 2.2.2 to create an efficient model. Finally, section 2.3 shows how we can combine
both models.

Throughout this thesis, we work in a Cartesian coordinate system with three-dimensional
space coordinates x = (x, y, z)T and the time coordinate t. The sea surface is initially
at z = 0 and is later perturbed to z = η(x, y, t). Similarly, the seafloor is located
initially at z = −H(x, y) and is perturbed by an uplift b(x, y, t) to z = −h(x, y, t) with
h(x, y, t) = H(x, y) + b(x, y, t). We use the convention that z points upwards.

7

Chapter 2. Equations

2.1. Earthquakes

In this section, we describe the linear elastic wave equations, which govern wave prop-
agation in elastic solids for small perturbations. They are a system of linear PDEs.
Furthermore, we briefly introduce how earthquakes are sourced. This gives us the the-
oretical background to describe the entire dynamics of an earthquake from rupture to
wave propagation.

2.1.1. Linear Elasticity

This part of the description follows [141] and [95, Cha. 22]. We consider a Lagrangian
approach. A particle initially at p0 that moved to p at time t has a displacement of

u(p0, t) =

u1(p0, t)
u2(p0, t)
u3(p0, t)

 = p− p0. (2.1)

From the displacement, we define the velocity and acceleration vectors

v(x, t) =

v1(x, t)v2(x, t)
v3(x, t)

 =
∂u

∂t
, a(x, t) =

a1(x, t)a2(x, t)
a3(x, t)

 =
∂v

∂t
. (2.2)

Now, we consider a particle that moved from a reference position x0 to a nearby new
position x. We linearize equation (2.1) around x0, which results in

u(x0 + x′, t) ≈ u(x0, t) + Jx′, (2.3)

where we introduced the Jacobian of the displacement

Jij =
∂ui
∂j

. (2.4)

This linearization assumes that the space derivatives of the displacement are small, which
is typically true in seismology [141].

Following [95], we split the Jacobian into the symmetric strain matrix ε and the
skew-symmetric rotation matrix Ω, leading to

Jij = εij +Ωij , (2.5)

with

εij =
1

2
(Jij + Jji) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.6)

Ωij =
1

2
(Jij − Jji) =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (2.7)

8

2.1. Earthquakes

0 10 20 30 40 50 60 70 80 90 100 110

t0

t1

x[m]

T
im

e

Figure 2.2.: This figure gives an example of extensional strain, which is the length change
relative to the length. It is inspired by an example in [141]. Assume that a
string had an initial length of 100m at t = t0. It is fixed at x = 0. At t = t1,
it was stretched to 110m. The red dots indicate the position of particles on
this string. We can see that the displacement of a particle depends on its
position on the string. At x = 0, the displacement is zero and at x = 100m,
the particle is displaced 10m to the new position at 110m. However, the
strain is 0.1 at every position.

In the following, we ignore solid-body rotations and only consider the strain matrix.
Off-diagonal entries of ε lead to shear strain, while the trace

Θ = tr(ε) = ε11 + ε22 + ε33 = ∇ · u (2.8)

measures the volume change and is called the dilation. As Figure 2.2 shows, the
displacement measures the absolute change of particle positions, while the strain is a
measure of the relative deformation.

The strain results in internal forces called stress. Our description follows [141]. Assume
that we have an infinitesimal plane defined by its normal vector n = (nx, ny, nz)

T . The

traction T (n) = (t1(n), t2(n), t3(n))
T gives the force per unit area in the direction of n.

We have the point symmetry T (−n) = −T (n). The traction normal to the plane is called
normal stress, and the traction parallel to the plane is called shear stress. Figure 2.3
visualizes how traction acts on the surfaces of an infinitesimal cube. The stress tensor σ
maps the normal vector to tractions. It is defined as

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =

t1(x̂) t1(ŷ) t1(ẑ)
t2(x̂) t2(ŷ) t2(ẑ)
t3(x̂) t3(ŷ) t3(ẑ)

 , (2.9)

which uses the tractions acting on each face of our cube that have the normal vectors
x̂, ŷ and ẑ.

We assume that our solid is in static equilibrium. Hence, there can be no net rotation,
and thus, the tensor σ = σT is symmetric. Finally, the traction across an arbitrary plane
with normal n is given by

Ti(n) =
∑
j

σjinj = σjinj , (2.10)

where we used the Einstein summation notation, meaning repeated free indices indicate
an implied summation. We will use this notation throughout this work.

9

Chapter 2. Equations

t(x̂)

t(ŷ)

t(ẑ)

x
y

z

Figure 2.3.: An infinitesimal cube. Its yz, xz and xy planes have the normal vectors
x̂, ŷ, ẑ, respectively. The forces acting on the faces of this cube are given by
the tractions t(x̂), t(ŷ) and t(ẑ). Figure reproduced from [141].

Next, we discuss the relationship between stress and strain. We assume a linear
stress-strain relation

σij = Cijklεkl (2.11)

with the tensor C. Equation (2.11) is also called generalized Hooke’s law [141]. It is a
good assumption for small perturbations, which are typical in seismology. Note, however,
that the relation discussed here does not apply to large background stresses [141], as the
linearity assumption is not valid in this regime.
Out of 81 entries of C, only 21 are independent due to symmetry, which follows

directly from the symmetry of the stress σ and strain tensor ε, and thermodynamical
considerations [5, 92]. For further details, we refer the interested reader to the discussion
in [92, §4]. We make the additional assumption of an isotropic material, for which C
does not depend on rotation. This assumes that the speed of a wave does not depend on
its direction. By introducing the Kronecker delta

δij =

{
1 if i = j,

0 else,
(2.12)

we can express the isotropic stress-strain relation as

cijkl = λδijδkl + µ (δilδjk + δikδjl) . (2.13)

Then, the stress tensor further simplifies to

σij = λδijεkk + 2µεij (2.14)

which we can express in terms of the dilation (equation (2.8)) as

σ = λΘI + 2µε. (2.15)

10

2.1. Earthquakes

The quantities λ and µ are called Lamé parameters and have, like the stress, dimensions of
force per unit area, which in SI units corresponds to Pascal (Pa), defined as 1Pa = 1Nm−2.
The shear modulus µ measures the resistance of a material to shearing, as the relation

µ =
σ12
2ε12

=
σ13
2ε13

=
σ23
2ε23

, (2.16)

which is a direct consequence of equation (2.14), demonstrates. In a fluid, there are no
shear stresses; thus, µ = 0 vanishes.

As λ does not have a convenient physical interpretation, the bulk modulusK = λ+2/3µ
is often used instead. It relates the mean normal stress, defined as one-third of the trace
of σ, to the dilation (equation (2.8))

1

3
tr(σ) = KΘ, (2.17)

which follows from equation (2.14) [95, Sec. 22.1.2]. In a fluid, as a direct consequence of
equation (2.15), the stress tensor is given by σ = KΘI. Defining the pressure as

p = −KΘ, (2.18)

the stress tensor in a fluid can be written as σ = −KpI.1 The bulk modulus K relates
the pressure to the volume change. Hence, it measures the incompressibility of the
material [141]. Furthermore, the density of our material is called ρ and has dimensions
of mass per length cubed and thus SI units of kgm−3.

We can now give the wave speeds of the two body wave types in seismology. The faster
wave is called primary or pressure wave (P wave) and has a speed of

cp =

√
λ+ 2µ

ρ
, (2.19)

and the secondary or shear wave (S wave) has a speed of

cs =

√
µ

ρ
. (2.20)

Shear waves do not propagate in fluids and thus cs = 0 there.
Next, we derive the momentum equation for elastic solids. Our derivation follows [5].

We consider an arbitrary three-dimensional domain Ω with boundary ∂Ω. The momentum
equation is simply Newton’s second law, often stated as F = ma: The force F is equal
to mass m times the acceleration a. In our case, the mass m =

∫
Ω ρ dx can be written as

the volume integral of the density, and the forces are given in terms of the traction and a
vector f that summarizes the body forces. As total force has units of Newton N, it is
clear that the traction has units of force per unit area (Pa), while f has units of force
per volume (Nm−3).

1Note this leads to a different sign convention: pressure is positive in compression; stress is negative.

11

Chapter 2. Equations

The rate of change of the momentum of particles is balanced with the forces acting on
this particle, resulting in

∂

∂t

∫
Ω
ρ
∂u

∂t
dx =

∫
∂Ω

T (n) dS +

∫
Ω
f dx. (2.21)

After using equation (2.10) and the divergence theorem, we arrive at∫
∂Ω
Ti dS =

∫
∂Ω
σjinj dS =

∫
Ω

∂σji
∂j

dx, (2.22)

for each component i, thus turning the surface integral into a volume integral. From this,
the relation

∂

∂t

∫
Ω
ρ
∂ui
∂t

dx−
∫
Ω

∂σji
∂j

dx =

∫
Ω
fi dx (2.23)

follows. As ρ stays constant, we are allowed to write the integral as∫
Ω
ρ
∂ui
∂t2
− ∂σji

∂j
dx =

∫
Ω
fi dx. (2.24)

Because we follow a Lagrangian description, the domain and its boundary move with the
particles. We, as usually done in seismology, ignore this and equate the total derivative
of the displacement u with the partial derivative [5, 141].
Finally, this is equivalent to

ρ
∂2ui
∂t2

=
∂σik
∂xk

+ fi, (2.25)

as the domain Ω is arbitrary.2 Equation (2.25) can be written for the velocity v = ∂u
∂t as

ρ
∂vi
∂t

=
∂σik
∂xk

+ fi. (2.26)

Inserting the strain-stress relation (equation (2.11)) and the definition of the strain
tensor (equation (2.6)) into equation (2.26) would result in the second order formulation
of the elastic wave equation. In this work, however, we consider the velocity-stress
formulation. We can derive it by differentiating the strain-stress relation (equation (2.11))
in time and combining it with equation (2.26). Assuming an isotropic material, we arrive
at

∂σij
∂t
− λδij

∂vk
∂xk
− µ

(
∂vi
∂xj

+
∂vj
∂xi

)
= 0, (2.27)

ρ
∂vi
∂t
− ∂σij
∂xj

= fi. (2.28)

2This follows from the vanishing theorem: Let
∫ b

a
f(x) dx = 0 for a continuous function f(x) in the

closed interval [a, b]. Then, f(x) is identically zero. For a proof, see for example [149, Sec. A.1].

12

2.1. Earthquakes

The material parameters µ, λ, ρ may depend on space. We collect the unknowns in
the vector q = (σ11, σ22, σ33, σ12, σ23, σ13, v1, v2, v3) [35]. We summarize equations (2.27)
and (2.28) in the form

∂q

∂t
= −A(x)

∂q

∂x
−B(x)

∂q

∂y
−C(x)

∂q

∂z
, (2.29)

with the flux matrices3 given by

A =

0 0 0 0 0 0 −λ− 2µ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −µ
−1

ρ 0 0 0 0 0 0 0 0

0 0 0 −1
ρ 0 0 0 0 0

0 0 0 0 0 −1
ρ 0 0 0

,

B =

0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 0 −λ− 2µ 0
0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 −µ 0 0
0 0 0 0 0 0 0 0 −µ
0 0 0 0 0 0 0 0 0
0 0 0 −1

ρ 0 0 0 0 0

0 −1
ρ 0 0 0 0 0 0 0

0 0 0 0 −1
ρ 0 0 0 0

,

C =

0 0 0 0 0 0 0 0 −λ
0 0 0 0 0 0 0 0 −λ
0 0 0 0 0 0 0 0 −λ− 2µ
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 −µ 0 0
0 0 0 0 0 −1

ρ 0 0 0

0 0 0 0 −1
ρ 0 0 0 0

0 0 −1
ρ 0 0 0 0 0 0

.

(2.30)

As a direct consequence of the isotropic material, all matrices share the same set of
eigenvalues, (−cp,−cs,−cs, 0, 0, 0, cs, cs, cp). Further, note that the eigenvalues ±cs have
a multiplicity of 2 while the eigenvalues ±cp have a multiplicity of 1. Hence, the wave
structure consists of two S waves and one P wave in each direction. Equation (2.29) is
the general form of a non-conservative linear hyperbolic PDE. A PDE of this form is

3These are often called Jacobians, which is incorrect because the equations are not conservative [169].

13

Chapter 2. Equations

hyperbolic if the plane-wave operator

Â(x,n) = nxA(x) + nyB(x) + nzC(x) (2.31)

is diagonalizable with real eigenvalues for every unit vector n and for all x [95, Def.
18.7.1]. In addition, as the material can be inhomogeneous, leading to spatially varying
flux matrices, we call equation (2.29) a variable coefficient equation.
We have described thus far how we can set up the elastic wave equations to describe

wave propagation in the interior of our domain. To close the problem, we need to
introduce boundary conditions. In the elastic part, we can prescribe the traction T ·n or
the velocity at the boundary [95]. In practice, we are only interested in two special cases.

The first is called the free surface boundary condition. It models the interface between
the Earth and a fluid with negligible density. Physically, we enforce the condition

T · n = 0, (2.32)

i.e., the traction should be zero.
The second is the absorbing boundary condition. It allows us to use a simulated region

that is smaller than the physical region. We set it up such that waves can exit the domain
but cannot enter it. We are using a naive but imperfect approach: While it allows waves
to exit the domain, it leads to reflections coming from the boundary for waves that
arrive non-planarly, which is a known problem [95]. It can be fixed by expensive and
complicated boundary conditions such as the perfectly matched layer. As a discussion of
these and alternatives is out of scope for this thesis, we refer the interested reader to the
discussion in [46].

2.1.2. Earthquake Sourcing

Earthquakes can be triggered by different sourcing mechanisms. We assume that we have
a displacement discontinuity—called slip—along a fault, which is embedded in Earth.
This discontinuity leads to a problem: On the fault, our PDEs do not hold anymore.
Hence, we need to define separate models for this.
In this section, we briefly discuss two different earthquake sourcing models. The first

one, kinematic point sources, collapses the entirety of the source into single points. This
assumption results in a body force that summarizes the displacement, which is valid
only under certain assumptions [5]. The second one, dynamic rupture (DR), describes
earthquake ruptures based on the physics of frictional contact. This results in an interior
boundary condition along the fault. It is a physics-based model that requires more
information about the source. Furthermore, it complicates the mesh generation, as the
geometry of the fault now needs to be integrated into the mesh. Finally, it necessitates
more complicated numerical solvers. For both methods, including multiple sources in the
model is possible.

Kinematic sources The idea behind point sources is to collapse the entire earthquake
sourcing to one point. This assumes that the wavelength of the observed waves is longer

14

2.1. Earthquakes

than the fault surface. Our description of the source follows [72]. A point source adds a
source term of the form

S(x, t) = s(t)δ(x− xc), (2.33)

where s(t) is some source time function. Due to the delta function, equation (2.33) acts
on a single point xc.

We use the symmetric moment tensor

Mpq(t) = ASi(t)cijpqnj (2.34)

which is a collection of the force couples Mpq, i.e., pairs of opposing forces separated
in direction q acting towards the direction p [141]. Here, n is the normal of the fault
surface. The moment tensor depends on the area of the fault A and a slip rate function
S(t) that summarizes the time-dependent behavior of the source function. For a detailed
explanation of the theory of point sources, we refer the interested reader to [5]. This
force is typically applied to Newton’s second law, i.e., it modifies the velocities. SeisSol’s
implementation instead modifies the stress tensor directly, resulting in

σ̂ij = σij(x, t)−Mji(t)δ(x− xc), (2.35)

which is numerically more convenient [72, 164]. We can plug this term into equation (2.27),
which results in a body force for the stresses. It is possible, and for large events necessary,
to split the faults into sub-faults and use a separate point source for each subfault [72].

Dynamic rupture Our description follows [26] and the notation follows [164]. Across
the fault, we assume that the traction is continuous, but the displacement is not. The
jump in velocity across the fault is called the slip rate. It is defined as [[v]] = vR − vL.
Here, the superscripts R and L indicate the right and left sides of the fault. We denote
the tangential part of [[v]] as s. The shear traction τ is defined as the tangential part of
the traction t. Finally, we call the normal stress at the fault σn.

The conditions

∥τ∥ ≤ τs,
τss− τ∥s∥ = 0,

(2.36)

with frictional strength τs have to hold at the fault. The frictional strength is evolved by

τs = max(0,−σnf(∥s∥, ψ)),
dψ

dt
= g(∥s∥, ψ),

(2.37)

where f and g define a possible non-linear friction law.
Hence, dynamic rupture models the frictional contact at a fault. As a consequence

of equation (2.36), as long as the fault strength is larger than the shear traction, the
fault remains locked and slip is not initiated. The fault breaks after the shear traction
grows larger than the fault strength. The friction law (equation (2.37)) interacts with
the wavefield, which can lead to complex, non-linear patterns. We refer the interested
reader to [26, 38], which explains the interface conditions in more detail.

15

Chapter 2. Equations

2.2. Fluid Mechanics

In this section, we describe the equations governing fluid flow. We start by introducing
the non-linear Euler equations in section 2.2.1 together with boundary conditions that
govern tsunami propagation. We then linearize the resulting system in section 2.2.2.

2.2.1. Euler Equations

The description and derivation of the Euler equations follows [149, Sec. 13.2] We consider
a fluid in a region Ω with boundary ∂Ω. The fluid has a density ρ and a velocity v.

We can describe the mass in our region by the integral

m(t) =

∫
Ω
ρdx. (2.38)

It is a conserved quantity that can only change due to the flux at the boundaries of the
domain ∫

Ω

∂ρ

∂t
dx = −

∫
∂Ω
ρv · n dS. (2.39)

We use the divergence theorem to turn the surface integral into a volume integral, arriving
at the conservation law ∫

Ω

∂ρ

∂t
+∇ · (ρv) dx = 0. (2.40)

As the domain Ω is arbitrary, we have that

∂ρ

∂t
+∇ · (ρv) = 0, (2.41)

which is called the continuity equation of fluid mechanics.

For a fluid, the momentum is another conserved quantity. Here, similar to the discussion
for elastic bodies, we consider forces on the fluid, given by the pressure p and external
forces. We summarize them in the vector f . Again, a change of momentum can only
come in from the boundaries, leading us to

d

dt

∫
Ω
ρvi dx+

∫
∂Ω
ρviv · ndS︸ ︷︷ ︸

momentum flux

+

∫
∂Ω
pni dS︸ ︷︷ ︸

net pressure

=

∫
Ω
fi dx, (2.42)

for the ith component. Once again, we apply the divergence theorem, resulting in∫
Ω

∂(ρvi)

∂t
+∇ · (ρviv) +

∂p

∂xi
− fi dx = 0. (2.43)

Using the fact that the domain Ω is arbitrary and after collecting terms in vectors, we
arrive at

∂ρv

∂t
+∇ · (v ⊗ ρv + Ip) = f . (2.44)

16

2.2. Fluid Mechanics

Here, I is an identity matrix of appropriate size and

(a⊗ b)ij = aibj (2.45)

denotes the Kronecker product. It takes two vectors a and b and creates a dyadic tensor.

In our case, we use the external force f = (0, 0,−ρg), where g = 9.81m s−2 is the
gravitational acceleration on Earth. This results in the conservation of momentum

∂ρv

∂t
+∇ · (v ⊗ ρv + Ip) =

 0
0
−ρg

 . (2.46)

The units are consistent with section 2.1: Pressure has units of force per area (Pa), and
the external force −ρg has units of force per volume (Nm−3).

Finally, the equation of state relates the pressure to the density. In our case, we assume
a relation of the form

p = p(ρ), (2.47)

i.e., the pressure is a function of only the density, which assumes isentropic flows [86].
More general equations of state can also depend on other variables, such as temperature.
For isentropic flows, we do not need to consider the conservation of energy equation [95].
Hence, we neglect it.

We now consider the steady state, consisting of the hydrostatic pressure p0(z), density
ρ0(z), and velocity v0 = 0. Because the velocity is zero, the pressure gradient exactly
balances the gravitational force. Hence, equation (2.46) reduces to the ordinary differential
equation (ODE)

dp0
dz

= −ρ0g, (2.48)

with initial condition

p0(z = 0) = pa, (2.49)

where pa is the atmospheric pressure. Using the equation of state (equation (2.47)) and
the chain rule, we can write equation (2.48) as

dp0
dz

=
dp0
dρ0

(ρ0(z))
dρ0
dz

. (2.50)

Defining the bulk modulus in the equilibrium as

K0(z) = ρ0
dp0
dρ0

(ρ0(z)), (2.51)

we can give the pressure gradient as

dp0
dz

=
K0

ρ0

dρ0
dz

(z). (2.52)

17

Chapter 2. Equations

Solving this for the density, we arrive at

dρ0
dz

(z) =
ρ0
K0

dp0
dz

. (2.53)

We have introduced the Euler equations for isentropic flow, which describe the fluid
flow in the interior of our domain. To close the system, we need to introduce boundary
conditions. For tsunami propagation, we enforce boundary conditions on the sea surface.
First, we have the free surface boundary condition. It consists of two parts that are
enforced on the moving sea surface with height η(x, y, t). The first part is the dynamic
boundary condition

p = pa at z = η(x, y, t). (2.54)

The second part is the kinematic boundary condition

v3 =
∂η(x, y, t)

∂t
+ v1

∂η(x, y, t)

∂x
+ v2

∂η(x, y, t)

∂y
at z = η(x, y, t), (2.55)

which relates the motion to the shape of the surface [131].4 This boundary condition
assumes that the ocean surface is continuous and thus that no wave breaking can occur.

On the seafloor, which is at −h(x, y, t), we assume that the normal velocity

v · n = 0 at z = −h(x, y, t) (2.56)

vanishes. We call this a rigid boundary. Following [131], we also have the kinetic boundary
condition at the sea bottom

v3 = −v1
∂h(x, y)

∂x
− v2

∂h(x, y)

∂y
at z = −h(x, y, t). (2.57)

2.2.2. Linear Acoustics with Gravity

This section derives the acoustic wave equation from the Euler equations. The resulting
equations will accompany us for the rest of this thesis. We follow the derivation in [97]
but provide more detail. We split the variables

v(x, y, z, t) = v0(x, y, z) + v′(x, y, z, t),

ρ(x, y, z, t) = ρ0(x, y, z) + ρ′(x, y, z, t),

p(x, y, z, t) = p0(x, y, z) + p′(x, y, z, t),

(2.58)

into a background state (v0, p0, ρ0) and perturbations (v′, p′, ρ′) The background state
stays constant over time. Furthermore, we assume that the background is in hydrostatic
equilibrium, implying a zero background velocity v0 = 0. This also means that the
background pressure p0(z) and density ρ0(z) only vary vertically but not horizontally.
Finally, we assume that we only have small perturbations. The following derivation is

4In other words, the level set f(x, y, z, t) = z − η(x, y, t) = 0 defines the shape of the free surface.

18

2.2. Fluid Mechanics

straightforward and consists of linearizing the equation of state, the conservation of both
mass and momentum, and the boundary conditions.

We begin by linearizing the equation of state (equation (2.47)) around the background
density ρ0. For a small density perturbation, we have

p(ρ) ≈ p(ρ0) + (ρ− ρ0)
dp

dρ
(ρ0)

= p(ρ0) +
ρ− ρ0
ρ0

ρ0
dp

dρ
(ρ0).

(2.59)

Introducing the bulk modulus5

K(ρ0) = ρ0
dp

dρ
(ρ0), (2.60)

and noticing that ρ− ρ0 = ρ′, we arrive at the linearized equation of state

p(ρ) ≈ p0 +
ρ′

ρ0
K(ρ0). (2.61)

Finally, after splitting the pressure with equation (2.58), we can solve for the density
perturbation

ρ′(p′) = p′
ρ0
K
. (2.62)

Hence, the concrete choice of the non-linearized equation of state is only reflected in
K. However, the equation of state must have the form of equation (2.47), i.e., that the
density only depends on the pressure.

Next, we look at the linearization of the mass conservation. Inserting our split variables
(equation (2.58)) into equation (2.41) and realizing that the background state does not
depend on time,

∂ρ0
∂t︸︷︷︸
=0

+
∂ρ′

∂t
+∇ ·

(ρ0 + ρ′)(v0︸︷︷︸
=0

+v′)

 = 0, (2.63)

we arrive at

∂ρ′

∂t
+∇ ·

(
(ρ0 + ρ′)(v′)

)
= 0. (2.64)

After inserting our linearized equation of state (equation (2.62)), we get

ρ0
K

∂p′

∂t
+∇ · (ρ0v′) +∇ · (ρ0

K
p′v′) = 0. (2.65)

5In general, it can be different than the one from the hydrostatic equilibrium (equation (2.51)), but, as
in [97], we assume in the following that K0 = K.

19

Chapter 2. Equations

The second term only contains products of perturbations and is zero after linearization.
Hence, we focus on the first term and expand it into its components

∇ ·
(
ρ0v

′) = ∂ρ0v
′
1

∂x
+
∂ρ0v

′
2

∂y
+
∂ρ0v

′
3

∂z
(2.66)

= ρ0
∂v′1
∂x

+ v′1
∂ρ0
∂x︸ ︷︷ ︸

=0

+ρ0
∂v′2
∂y

+ v′2
∂ρ0
∂y︸ ︷︷ ︸

=0

+ρ0
∂v′3
∂z

+ v′3
∂ρ0
∂z

(2.67)

= ρ0∇ · v′ − ρ0
K0

ρ0gv
′
3. (2.68)

Equation (2.67) follows from the chain rule and equation (2.68) from the definition of
the hydrostatic equilibrium (equations (2.48) and (2.53)). Inserting equation (2.67) into
equation (2.65) results in

ρ0
K

∂p′

∂t
+ ρ0∇ · (v′) =

ρ0
K
ρ0gv

′
3, (2.69)

which, after dividing by ρ0, leads us to

1

K

∂p′

∂t
+∇ · (v′) =

ρ0
K
gv′3. (2.70)

Finally, we look at the conservation of momentum. For this, it is convenient to
introduce the unit vectors

ex = (1, 0, 0)T , ey = (0, 1, 0)T , ez = (0, 0, 1)T . (2.71)

By inserting our perturbations equation (2.58) into equation (2.46), we get

∂(ρ0 + ρ′)(v0 + v′)

∂t
+∇ ·

((
(v0 + v′)⊗

(
(ρ0 + ρ′)(v0 + v′)

))
+ I(p0 + p′)

)
= −(ρ0 + ρ′)gez.

(2.72)

We now look at this term by term. The time derivative is simplified to

∂(ρ0 + ρ′)(v0 + v′)

∂t
=
∂ρ0v0
∂t

+
∂ρ0v

′

∂t
+
∂ρ′v0
∂t

+
∂ρ′v′

∂t

=
∂ρ0v

′

∂t
+
∂ρ′v′

∂t

≈ ρ0
∂v′

∂t

(2.73)

because the background is in a steady state and hence, v0 = 0 and ∂ρ0
∂t = 0. In the final

step, we have made the approximation that we can ignore products of perturbations. For
the same reasons, the term(

(v0 + v′)⊗
(
(ρ0 + ρ′)(v0 + v′)

))
= ∇ ·

(
v′ ⊗ ((ρ0 + ρ′)v′)

)
≈ 0

(2.74)

20

2.2. Fluid Mechanics

vanishes completely, as every term of the product contains two multiplied velocity pertur-
bations. We simplify the pressure term by inserting the hydrostatic background (equa-
tion (2.48))

∇ ·
(
I(p0 + p′)

)
= ∇ ·

(
Ip′
)
+
∂p0
∂x

ex +
∂p0
∂y︸ ︷︷ ︸

=0

ey +
∂p0
∂z

ez

= ∇ ·
(
Ip′
)
− ρ0gez,

(2.75)

which used the fact that the background pressure does not vary horizontally. We insert
the equation of state (equation (2.62)) into the gravitational source term

−(ρ0 + ρ′)gez = −ρ0gez −
ρ0
K
p′gez. (2.76)

Finally, we insert equations (2.73) to (2.76) into equation (2.72) and arrive at

ρ0
∂v′

∂t
+∇ ·

(
Ip′
)
− ρ0gez = −ρ0gez −

ρ0
K
p′gez. (2.77)

After simplifying, we get

ρ0
∂v′

∂t
+∇ ·

(
Ip′
)
= −ρ0

K
p′gez. (2.78)

Combining equations (2.70) and (2.78) leads to the acoustic wave equation in velocity-
pressure formulation, given by

∂p

∂t
+K

∂vk
∂xk

= ρgv3,

ρ
∂vi
∂t

+
∂p

∂xi
= −δi2

ρg

K
p.

(2.79)

For simplicity, we dropped the prime that marked variables as perturbations and wrote ρ
instead of ρ0. Equation (2.79) is essentially equal to the elastic wave equations (equa-
tions (2.27) and (2.28)) with µ = 0: With this, the shear stresses vanish. Thus, the stress
tensor collapses into a scalar, which is the negative of the pressure (equation (2.18)). As
in [3, 97], we neglect the source terms, leading to errors of size O(gH/c2), where H is
the depth of the ocean and

c =

√
K

ρ
(2.80)

is the acoustic wave speed. This type of error only has a negligible effect on the solution,
assuming material parameters typical for Earth’s oceans.

Again, equation (2.79) is a linear hyperbolic PDE of the same form as equation (2.29).
Hence, in contrast to the Euler equations, the acoustic wave equation is non-conservative
for spatially varying materials. We can thus rewrite equation (2.79) as

∂qac

∂t
+Aac∂q

ac

∂x
+Bac∂q

ac

∂y
+Cac∂q

ac

∂z
= 0, (2.81)

21

Chapter 2. Equations

with the vector of quantities qac = (p, v1, v2, v3)
T and the flux matrices

Aac =

0 K 0 0
1
ρ 0 0 0

0 0 0 0
0 0 0 0

 , Bac =

0 0 K 0
0 0 0 0
1
ρ 0 0 0

0 0 0 0

 , Cac =

0 0 0 K
0 0 0 0
0 0 0 0
1
ρ 0 0 0

 . (2.82)

Their eigenvalues are given by (−c, 0, c). Hence, the acoustic equation does not allow the
propagation of shear waves in contrast to the elastic wave equation. Equation (2.81) has
the same form as equation (2.29) but different flux matrices.
It is common to write the acoustic wave equation (equations (2.81) and (2.82)) in

second-order formulation, which we can do either for the pressure or the velocity field [95].
To get the second-order form for the pressure, we have to differentiate the conservation
of momentum in space, resulting in

∂2vi
∂t∂xi

= −1

ρ

∂2p

∂(xi)
2

(2.83)

for the ith component. Next, we differentiate the mass conservation

∂2p

∂t2
= −K ∂2vk

∂t∂xk
(2.84)

in time. By inserting equation (2.83) into equation (2.84), we arrive at

∂2p

∂t2
= −c2

∑
k

∂2p

∂(xk)
2
= −c2∆p. (2.85)

We have seen how to linearize the Euler equations around a hydrostatic background
state. However, we have not yet discussed the linearization of the boundary conditions,
which is a crucial step to including tsunami propagation in our model. Tsunamis are
caused by gravity [131], but we decided to neglect the gravitational source term. Hence,
we need to choose our boundary conditions carefully. In the acoustic region, we can
prescribe either the pressure or the normal velocity [95]. We are interested in four cases:
The first is the rigid boundary condition, which sets the normal velocity to zero. The
second is the free surface condition (without gravity) that sets the pressure to zero. The
third is the absorbing boundary condition, where waves can only exit but not enter the
domain. The fourth is the gravitational free surface boundary condition. We want to
enforce the moving free surface boundary condition equation (2.54), which is problematic:
The surface level η is time-dependent, so we must impose this boundary condition on
a moving mesh! We do not want to do this and instead follow the approach from [97].
Figure 2.4 shows a two-dimensional view of our three-dimensional setup and visualizes
how we treat the boundary condition in our linear model.

It is important to note that the pressure at some point z is not, as we may naively think,
equal to p0(z) + p′(x, y, z, t). The reason lies in the difference between the Lagrangian
and Eulerian descriptions. Consider a particle at position z = z0 + u3(x, y, z0, t). The

22

2.2. Fluid Mechanics

Ocean

p(x, y, η(x, y, t)) = 0

linearize
Ocean

p(x, y, 0) = ρgη(x, y, t)

Figure 2.4.: Two-dimensional slice of our gravitational boundary condition. On the
left, we see the non-linearized boundary condition equation (2.54). After
linearizing, we enforce the boundary condition at the unperturbed sea surface
z = 0. The blue lines in both figures indicate where we enforce the boundary
condition.

particle has moved from its original position at z0 due to the displacement. Then, we
linearize the pressure at position z around the unperturbed position z0, arriving at the
first-order approximation

p(x, y, z = z0 + u3, t) ≈ p(x, y, z0, t) + u3(x, y, z0, t)
∂p

∂z

∣∣∣∣
z=z0

= p0(z0) + p′(x, y, z0, t) + u3(x, y, z0, t)

(
∂p0
∂z

∣∣∣∣
z=z0

+
∂p′

∂z

∣∣∣∣
z=z0

)

≈ p0(z0) + p′(x, y, z0, t) + u3(x, y, 0, t)
∂p0
∂z

∣∣∣∣
z=z0

= pa + p′(x, y, 0, t)− ρ0(z0) g (z0 + u3(x, y, z0, t)). (2.86)

Here, we neglected the higher-order term u3
∂p′

∂z

∣∣∣
z=z0

, which is usual for this kind of

problem [97, 131].

But how does this help us with the free surface condition? Consider a particle on the
free surface that moved from its unperturbed location at z = 0 to z = η. We linearize
the dynamic pressure boundary condition (equation (2.54)) around this position using
equation (2.86), leading us to the boundary condition for the total pressure of

pa = p(x, y, z = 0 + η(x, y, t), t)

≈ p(x, y, z0, t) + η(x, y, t)
∂p

∂z

∣∣∣∣
z=0

≈ pa − ρ0(0)gη(x, y, t) + p′(x, y, 0, t).

(2.87)

This linearization assumes that η is small, typical for tsunami propagation sufficiently
far from the coast [131]. Canceling out the common term pa, we arrive at the first-order
approximation for the boundary condition on the pressure perturbation

p′(x, y, z, t) = ρ0gη(x, y, t) at z = 0. (2.88)

23

Chapter 2. Equations

This is a remarkable trick: We have turned a computationally costly boundary condition
on a moving mesh into a relatively cheap static pressure boundary condition! To close
the boundary condition, we need to relate the surface displacement η to the velocities
at the boundary. For this, following [97, 131], we linearize the kinematic boundary
condition (equation (2.55)) to

∂η

∂t
= v3(x, y, z, t) at z = 0. (2.89)

Note that neglecting gravitational effects at the boundary (i.e., setting g = 0) results in
the standard free surface boundary condition.

When we specify a displacement b on the seafloor, following [3], we require the linearized
version of the kinematic boundary condition on the seafloor (equation (2.57)) given by

∂b

∂t
= v1

∂H

∂x
+ v2

∂H

∂y
+ v3 at z = −H(x, y). (2.90)

2.3. Fully Coupled Model

We discussed the elastic and acoustic wave equations in the previous sections. This
section explains how we can combine both into a fully coupled model.

To do this, we use the fact that, as mentioned in section 2.2.2, the acoustic wave
equations are a special case for the elastic wave equations for µ = 0. Hence, we set the
stress tensor for the acoustic part to

σ11 = σ22 = σ33 = −p,
σ12 = σ23 = σ13 = 0.

(2.91)

The definition of the stress tensor follows directly from equation (2.14), the equivalence
to the pressure from equation (2.18). With this, both equations can use the same vector
of quantities. In the following, we will call this set of quantities the embedded set. The
PDEs then only differ in the choice of flux matrices and boundary conditions. We can
obtain the acoustic ones by setting µ = 0 in the elastic matrices (equation (2.30)). For
the rest of this thesis, we will use both sets of variables in our descriptions, as each is
advantageous for some situations. However, we always use the extended variable set in
our implementation. This introduces significant overhead but allows us to use the same
computational kernels for both.

2.3.1. Interface Conditions

We have seen how to model wave propagation in both elastic and acoustic media. However,
we have not yet discussed how we handle the material discontinuities and the interface
between solids and fluids. We assume that our material is defined as a piece-wise constant
function. This section discusses how to deal with the discontinuities and couple elastic
and acoustic media. We do this by introducing conditions that have to hold at material

24

2.3. Fully Coupled Model

interfaces. Our discussion follows [144, 164, 175], which describe the interface conditions
for elastic-elastic, acoustic-acoustic, acoustic-elastic, and elastic-acoustic interfaces.

Along an interface, parameterized by its outer normal n, we denote values on the left
with an L superscript and values on the right with an R. For an elastic-elastic interface,
the velocity v and traction σ · n must be continuous

vL = vR,

σL · n = σR · n.
(2.92)

At an acoustic-acoustic interface, we must ensure only the continuity of the normal
velocity v · n and of the pressure

vL · n = vR · n,
pL = pR.

(2.93)

Finally, the normal velocity and traction are continuous for an elastic-acoustic or acoustic-
elastic interface. Using the embedding (equation (2.91)) for these coupled interfaces is
beneficial. Hence, we have

vL · n = vR · n,

σL · n = σR · n =

−pR −pR
−pR

 · n, (2.94)

for an elastic-acoustic interface and

vL · n = vR · n,−pL −pL
−pL

 · n = σL · n = σR · n,
(2.95)

for an elastic-acoustic interface.
Observe that this means that the traction depends on the shear stress in the elastic

part.

2.3.2. Energy

Finally, we can describe the energy of our complete system. The definition of energy
follows [164, 175] for the elastic and acoustic region and [97] for the gravitational boundary
condition. We define the energy as

E(q) =

∫
Ω

1

2
ρvivi dx︸ ︷︷ ︸

kinetic energy

+

∫
E

1

2
σijεij dx︸ ︷︷ ︸

strain energy

+

∫
A

1

2K
p2 dx︸ ︷︷ ︸

acoustic energy

+

∫
SO

1

2
ρgη2 dS︸ ︷︷ ︸

gravitational energy

, (2.96)

where the region Ω = E ∪ A is divided into the elastic E ⊆ Ω and the acoustic region
A = Ω \E. The acoustic energy is a special case of the strain energy, which follows from

25

Chapter 2. Equations

applying equation (2.18). The sea surface is denoted by SO. It is the only contributor to
the gravitational energy, which corresponds to the energy of the tsunami [131]. For more
details, we refer the interested reader to [97, 131], which contains a derivation of this
energy. The kinetic energy has contributions from both elastic and acoustic parts.
It is important to note that we only discuss energy perturbations in this thesis. Let

q = q0 + q′ be the state of the simulation, which is split into the background state q0
and the perturbation q′, which our PDEs model. Then, the total energy E(q) can be
bounded by

E(q) ≤ E(q0) + E(q′), (2.97)

which is the triangle inequality.6 However, this only affects the strain and acoustic
energies, as the background velocity and sea surface height are assumed to be zero.

2.3.3. Discussion

In this chapter, we derived and discussed the partial differential equations that form
the basis for the model we use throughout this thesis. We obtained a fully coupled
model covering the entire dynamics from earthquake rupture to wave propagation in
both elastic and acoustic media and tsunami propagation at the free surface. Earthquake
rupture (section 2.1.2) can be included by kinematic point sources or dynamic rupture.
The wave propagation uses the PDE (equation (2.29)) with flux matrices (equation (2.30))
for the elastic part. The acoustic region uses the flux matrices (equation (2.82)), which
are implemented as elastic flux matrices through the embedding given by equation (2.91).
Finally, equations (2.88) and (2.89) include tsunami propagation efficiently as a linearized
boundary condition. To our knowledge, our model, initially published in [79], is the first
model capable of simulating large-scale, three-dimensional, fully coupled earthquake-
tsunami simulations.
[103] introduced another way of modeling fully coupled simulations. They derived

a global source term that includes tsunami propagation in the wavefield. Here, we
summarize this method and compare it with our strategy. The equations in this section
differ slightly from those in [103], which uses a different sign convention. Briefly, they
decompose the normal stresses

σii = σDii + p, (2.98)

into a dynamic part and a pressure that is in hydrostatic equilibrium (equation (2.48)).
The sea surface height is

η(x, y, t) =

∫ t

0
v3(x, y, z = 0, τ) dτ. (2.99)

The pressure at some position z is given by integrating equation (2.48)

p(x, y, z, t) = pa −
∫ z

η(x,y,t)
ρ(x, y, z′)g dz′. (2.100)

6We can interpret equation (2.96) as a norm for the extended variable set obtained by concatenating q
with η.

26

2.3. Fully Coupled Model

Assuming that variations in ρ are negligible, we have for the x-derivative that

∂p

∂x
= ρ (x, η(x, y, t), z) g

∂η

∂x
(x, y, t)− g

∫ z

η(x,y,t

∂ρ

∂x
(x, y, z) dz′

≈ ρ (x, η(x, y, t), z)︸ ︷︷ ︸
=ρw

g
∂η

∂x
(x, y, t).

(2.101)

Splitting the stress tensor in the equations of motion (equation (2.28)) with equa-
tion (2.98) and evaluating the pressure derivatives (equation (2.101)) leads us to

ρ
∂v1
∂t
− ∂σD11

∂x
− ∂σ12

∂y
− ∂σ13

∂z
= ρwg

∂η

∂x
,

ρ
∂v2
∂t
− ∂σ12

∂x
− ∂σD22

∂y
− ∂σ23

∂z
= ρwg

∂η

∂y
,

ρ
∂v3
∂t
− ∂σ13

∂x
− ∂σ23

∂y
− ∂σD33

∂z
= 0.

(2.102)

There is no source term for v3 because the z-derivative of the hydrostatic pressure p
cancels out the gravitational source term of −ρg.
Many of the concepts used to derive this model are similar to ours. Both approaches

lead to a fully coupled model that allows the simulation of elastic and acoustic wave
propagation in the ocean together with tsunami propagation. But how they include
gravitational effects differs. The source terms ∂η

∂x and ∂η
∂y depend only on the derivative of

the sea surface height, which is inexpensive to compute. However, because this derivative
is used in the entire domain, it must be communicated globally for every time step, which
is—especially in a distributed memory environment—prohibitively expensive. In contrast,
our model’s computational costs are constrained to a two-dimensional boundary condition.
Hence, it requires no additional communication, which renders it computationally far
more economical.

27

Chapter 3.

Riemann Problems & Boundary Conditions

In this chapter, we describe how we can solve Riemann problems for the PDEs introduced
in chapter 2. A Riemann problem is composed of a hyperbolic PDE with a piece-wise
discontinuous initial condition [160]. Riemann solvers provide a solution for this problem.
They are fundamental for analyzing and interpreting hyperbolic PDEs because they
provide insight into the wave structure of our model. Furthermore, we will use them as a
critical component of our numerical scheme.

Our introduction to Riemann problems follows [61, 95]. We are interested in solving
the Riemann problem along an interface. The interface is parametrized with a local
coordinate system, given by the orthonormal basis

n =
(
nx ny nz

)T
, s =

(
sx sy sz

)T
, t =

(
tx ty tz

)T
. (3.1)

In this set of vectors, n is the unit vector pointing outward from a face, and s and t are
tangential vectors. Figure 3.1 shows a two-dimensional visualization of the setup. We
define the scalar

d(x,n) = x · n, (3.2)

which is the signed distance of a point with coordinates x along the normal to the
interface. The flux matrix in normal direction is given by

Â(x,n) = nxA(x) + nyB(x) + nzC(x). (2.31 revisited)

n

qL, ÃL(n)

qR, ÃR(n)

Figure 3.1.: Two-dimensional visualization of the setup of a Riemann problem. The
interface is parametrized by its outer normal vector n. In the unshaded
area, the state is given by qL, and the wave propagation is governed by the
flux matrix in normal direction ÂL. In the gray area, the state and the flux
matrix are given by qR and ÃR.

29

Chapter 3. Riemann Problems & Boundary Conditions

Definition 1. For an arbitrary hyperbolic PDE, the problem of computing the solution of

∂q

∂t
+ Ã(d)

∂q

∂d
= 0,

q(d, t = 0) =

{
qL if d < 0,

qR otherwise,

Ã(d) =

{
ÃL if d < 0,

ÃR otherwise,

(3.3)

at d = 0 is called the Riemann problem. The initial condition and the material may be
discontinuous along an interface. We assume a piece-wise constant initial condition and
material. Because the flux matrix Ã depends on the material, it can also be discontinuous.

We are interested in solving the problem given by definition 1 at t → 0, i.e., at a
moment in time directly after the initial discontinuity. This chapter explains how we can
achieve this. The resulting Riemann solver itself is not novel as it has been published
before, for example, in [164, 175]. However, we will take a more detailed look into how
this solver is constructed, focusing on the elastic-acoustic coupling. Furthermore, we
investigate all boundary conditions required for our fully coupled model, which is not
done in the literature.

We begin by summarizing the rotational invariance properties in section 3.1, which we
use to reduce the three-dimensional problem given by definition 1 into an equivalent one-
dimensional form. Next, we introduce theoretical aspects: The technique of characteristic
variables (section 3.2) allows us to transform our PDEs from the set of variables (v,σ)
into a new set of variables that decompose the solution into waves. Section 3.3 introduces
the Rankine-Hugoniot jump conditions, which reduce the Riemann problem into an
eigenproblem. Both techniques only work directly for homogeneous material. We,
however, are interested in the more general variable coefficient case: The flux matrices
A(x),B(x) and C(x) may vary across element interfaces. Section 3.4 shows how we
can combine physical interface conditions, initially introduced in section 2.3.1, with the
techniques mentioned above. This not only provides a solution for the acoustic-acoustic
Riemann problem but also gives us a strategy that we can use as a blueprint to devise the
solution for the elastic-elastic (section 3.5), and elastic-acoustic (section 3.6) problems.
We additionally describe how we can include boundary conditions for elastic and acoustic
materials. Finally, section 3.7 explains how we can compute the solution of our Riemann
problems efficiently.

3.1. Rotational Invariance

Definition 1 depends on the orientation of the interface, making it harder to find a general
solution. We can use the rotational invariance of the elastic wave equation to simplify
the problem [35].

30

3.1. Rotational Invariance

x

q̃L,AL q̃R,AR

Figure 3.2.: The one-dimensional Riemann problem, obtained after applying lemma 2.
Similar to figure 3.1, we have an interface parametrized by an outer normal
vector n. However, this time, we are considering a one-dimensional problem.
In the unshaded area, the state is q̃L and the one-dimensional flux matrix
governs the wave propagation in x-direction AL. In the gray area, the state
and flux matrix are given by q̃R and AR. Now, the meaning of the indices
L and R becomes clear: They mean left or right from the interface.

Lemma 1. The plane wave operator (equation (2.31)) is rotationally invariant for the
elastic wave equation. Let T be a (specifically defined) rotation matrix, which depends on
the orientation of the face and thus on the face-aligned basis vectors n, s and t. Then,

Ã = nxA+ nyB + nzC = T AT −1. (3.4)

The rotational invariance of the acoustic wave equation follows directly from our
embedding (equation (2.91)) and lemma 1. For the sake of brevity, we do not include a
proof of lemma 1 here but we refer the interested reader to [164, Lemma 1] for an explicit
proof of the invariance of the elastic wave equation and to [175] for a discussion of the
rotational invariance for the elastic and acoustic wave equations.
The rotation matrix is defined in [35, 164]. We derive the rotation matrix T here as

neither source explicitly constructs it. We define the three-dimensional rotation matrix

T =

 | | |
n s t
| | |

 . (3.5)

and use ṽ and σ̃ for the rotated velocities and stresses. As the velocity is a column
vector, it transforms as

v = T ṽ. (3.6)

The stress tensor transforms as
σ = T σ̃T T , (3.7)

which is a similarity transform [141]. Now, we apply the well-known identity

(B ⊗A) vec(X) = vec
(
AXBT

)
, (3.8)

which allows us to write the change of basis as a product with a single matrix [120,
Sec. 10.2]. In this equation, vec(C) denotes the vectorization of C, i.e., it is the operator

31

Chapter 3. Riemann Problems & Boundary Conditions

that returns a vector with the entries given by stacking the columns of C. We can then
use it to rewrite equation (3.7) as

vec(σ) = (T ⊗ T) vec(σ) = vec
(
T σ̃T T

)
, (3.9)

which describes the linear transformation as a matrix. As the Kronecker product of two
orthogonal matrices results in an orthogonal matrix, the rotation operator for the entries
of the stress tensor

T ⊗ T =

n2x nxsx nxtx nxsx s2x sxtx nxtx sxtx t2x
nxny nxsy nxty nysx sxsy sxty nytx sytx txty
nxnz nxsz nxtz nzsx sxsz sxtz nztx sztx txtz
nxny nysx nytx nxsy sxsy sytx nxty sxty txty
n2y nysy nyty nysy s2y syty nyty syty t2y

nynz nysz nytz nzsy sysz sytz nzty szty tytz
nxnz nzsx nztx nxsz sxsz sztx nxtz sxtz txtz
nynz nzsy nzty nysz sysz szty nytz sytz tytz
n2z nzsz nztz nzsz s2z sztz nztz sztz t2z

(3.10)

is also orthogonal. However, our coefficient vector q only contains the six independent
entries of σ. Hence, we need to combine rows and columns of equation (3.10), leading to
the rotation matrix

Tσ =

n2x s2x t2x 2nxsx 2sxtx 2nxtx
n2y s2y t2y 2nysy 2syty 2nyty
n2z s2z t2z 2nzsz 2sztz 2nztz
nxny sxsy txty nxsy + nysx sxty + sytx nxty + nytx
nynz sysz tytz nysz + nzsy sytz + szty nytz + nzty
nxnz sxsz txtz nxsz + nzsx sxtz + sztx nxtz + nztx

 . (3.11)

Finally, we can define the rotated coefficient vector q̃ as

q =

(
Tσ 0
0 T

)
︸ ︷︷ ︸

=T

q̃, (3.12)

where the combined rotation matrix T agrees with the rotation matrix presented in [35,
164]. For the acoustic wave equation, this reduces to

qac =

(
1 0
0 T

)
︸ ︷︷ ︸

=T ac

q̃ac, (3.13)

as the pressure is scalar and thus rotation-invariant. Due to their block-orthogonal
structure, T and T ac are orthogonal.

32

3.2. Characteristic Variables

Lemma 2. After applying the rotational invariance property (lemma 1), the three-
dimensional Riemann problem (definition 1) reduces to the one-dimensional Riemann
problem

∂q̃

∂t
+A

∂q̃

∂x
= 0,

q̃(x, t = 0) =

{
q̃L if x < 0,

q̃R otherwise,

A(x) =

{
AL if x < 0,

AR otherwise.

(3.14)

Proof. This derivation follows directly from applying lemma 1. Inserting equation (3.4)
into the Riemann problem (equation (3.3)), leads us to

∂q

∂t
+ T AT −1∂q

∂d
= 0. (3.15)

Next, we left multiply with T −1, leading us to

T −1∂q

∂t
+ T −1T AT −1∂q

∂d
= 0. (3.16)

Inserting the rotated quantities (equation (3.12)) and simplifying leads us directly to
equation (3.14).

Lemma 2 allows us to split the solution of the Riemann problem into a rotation,
which depends on the orientation of the interface, and the solution of a one-dimensional
Riemann problem, which, crucially, does not depend on the orientation. The resulting
one-dimensional Riemann problem is depicted by figure 3.2. In the following, we thus
only consider solving one-dimensional Riemann problems. To simplify the notation, we
will always assume that the quantities have already been rotated. Hence, we will drop
the tilde.

3.2. Characteristic Variables

In this section, we explain how we can cast our PDE into a basis in which the wave
structure becomes directly apparent. This is a standard technique called characteristic
variables. Our discussion follows [95]. This strategy gives us a direct way of directly
solving Riemann problems for homogeneous material. Furthermore, it shines a light on
the difficulties arising when considering variable coefficient equations

In the following, we assume that we have a one-dimensional hyperbolic system of PDEs
with a flux matrix A. By definition of (strong) hyperbolicity, we can diagonalize A and
thus write it as

A = RΛR−1, (3.17)

33

Chapter 3. Riemann Problems & Boundary Conditions

where R has the eigenvectors of A as columns and Λ has the corresponding eigenvalues
on its diagonal:

R =

 | | | |
r1 r2 . . . rm
| | | |

 ,

Λ =

λ1

λ2
. . .

λm

 .

(3.18)

Both Λ and R depend on the material and can thus in general vary in space. For now,
we assume that we have a homogeneous material.

Using equation (3.18), we define the characteristic variables as

w = R−1q. (3.19)

We can use this to turn our hyperbolic system into a system in terms of the characteristic
variables. We start by inserting equations (3.17) and (3.19) into our one-dimensional
PDE (equation (3.14)), which results in

R
∂w

∂t
+RΛR−1R

∂w

∂x
= 0. (3.20)

Next, we left-multiply by R−1 and simplify, arriving at a system of uncoupled advection
equations

∂w

∂t
+Λ

∂w

∂x
= 0, (3.21)

which describes the time evolution of the characteristic variables. In other words,
equation (3.21) describes the propagation of the waves directly.

Let w0
i (x) denote the initial condition for the ith component ofw. Then, equation (3.21)

is solved exactly by
wi(x, t) = w0

i (x− λit), (3.22)

which is the direct solution of the advection equation [95]. From this, a solution strategy
for the rotated Riemann problem (equation (3.14)), assuming homogeneous material,
directly follows: First, convert the initial condition to the characteristic variables using
equation (3.19). Second, write the solution in terms of the characteristic variables using
equation (3.22). Third, convert back to the original set of variables using the inverse
mapping (equation (3.19)).

However, this approach does not work for variable coefficient equations. Following [95,
Sec. 9.8], we see that in this case R varies in space and thus, by the product rule

R−1(x)
∂q

∂x
=
∂R−1(x)q

∂x
− ∂R−1

∂x
(x)q

=
∂w

∂x
− ∂R−1

∂x
(x)q.

(3.23)

34

3.3. Rankine-Hugoniot Jump Condition

This happens because ∂R−1

∂x (x) is no longer zero. Now, when we follow the same derivation
as before and apply equation (3.23), we arrive at

∂

∂t
w +Λ

∂w

∂x
= Λ

∂R−1

∂x
(x)R(x)w. (3.24)

The structure of the PDE is similar to equation (3.21), as we still have advection equations
for the characteristic variables. However, they are now coupled by a source term. Hence,
equation (3.23) does not admit a solution like equation (3.22) in the general case.1 Thus,
we need to follow a different solution strategy.

3.3. Rankine-Hugoniot Jump Condition

q = qL q = qR

x1 x2 = x1 +∆x

t1

t2 = t1 +∆t

Figure 3.3.: The control volume [x1, x2]× [t1, t2] is divided by a wave moving with a speed
λ < 0. The x-axis describes space and the y-axis time. The wave divides the
rectangle into two halves. We assume that the solution inside each half is
constant. Figure recreated from [95].

In this section, we derive and explain the Rankine-Hugoniot jump conditions, which we
use to inspect shock waves resulting, in our case, from a discontinuous initial condition.
They are powerful as they allow us to separate a jump into waves, and hence, they
directly reveal the wave structure. The derivation of them is simple and follows directly
from a conservation statement.

First, following [160, Sec. 2.4], we use the integral form of our one-dimensional
PDE (equation (3.14)) in the control volume [x1, x2]× [t1, t2].

d

dt

∫ x2

x1

q(x, t) dx = Aq(x1, t)−Aq(x2, t). (3.25)

1An interesting special case results from the fact that the source term can become uncoupled. This is
the case for homogeneous material and, for example, constant-impedance acoustic material [95]. In
this case, the eigenvectors are identical, even though the material varies.

35

Chapter 3. Riemann Problems & Boundary Conditions

We derive this by integrating the differential form, given by equation (3.14), from x1 to
x2 and assuming that A is constant in our control volume. This integral form has the
advantage that it does not require q to be smooth in contrast to the differential form.
We integrate equation (3.25) from t1 ≤ t2 to t2∫ t2

t1

d

dt

(∫ x2

x1

q(x, t) dx

)
dt =

∫ t2

t1

Aq(x1, t) dt−
∫ t2

t1

Aq(x2, t) dt. (3.26)

After applying the fundamental theorem of calculus to the left side, we get∫ t2

t1

(
d

dt

∫ x2

x1

q(x, t) dx

)
dt =∫ x2

x1

q(x, t2) dx−
∫ x2

x1

q(x, t1) dx.

(3.27)

Inserting this into equation (3.26), leads us to the conservation statement∫ x2

x1

q(x, t2) dx−
∫ x2

x1

q(x, t1) dx =

∫ t2

t1

Aq(x1, t) dt−
∫ t2

t1

Aq(x2, t) dt. (3.28)

Next, we use this form of our PDE to investigate the behavior of our PDE in the
situation of a shock. The derivation follows [95, Sec. 11.9]. Figure 3.3 depicts the setup.
We consider a wave, moving with a speed of λ, that divides our control rectangle into two
triangles, inside which the solution is approximately constant. In our case of a Riemann
problem for a linear PDE, the shock speed does not depend on time.
We consider an infinitesimal control region [x1, x2]× [t1, t2] where x2 = x1 +∆x and

t2 = t1 +∆t. Here, ∆x > 0 is a space increment, and ∆t > 0 is a small (∆t≪ 1) time
increment. Without loss of generality, we assume that the wave moves leftward, i.e.,
λ < 0. We call the state in the left triangle qL and in the right triangle qR. Because q
is constant in each triangle, equation (3.28) simplifies to

∆x qR −∆x qL = ∆tAqL −∆t qR +O(∆t2), (3.29)

where the term O(∆t2) takes the variation of q with respect to time into account. Dividing
by ∆t, results in the relation

∆x

∆t
qR − ∆x

∆t
qL = AqL −AqR +O(∆t2) (3.30)

If the shock propagates with speed λ, ∆x = −λ∆t. Inserting this and taking the limit
∆t→ 0, we arrive at the Rankine-Hugoniot conditions

λ(qR − qL) = A(qR − qL), (3.31)

which state that the shock speed λ is an eigenvalue corresponding to the eigenvector
(qR − qL). This is often written in the short form

λ[[q]] = A[[q]], (3.32)

with [[q]] = qR − qL. In other words, they decompose the jump into waves.

36

3.4. The Acoustic Riemann Problem

x

t

acoustic
KL, ρL

acoustic
KR, ρR

cRp−cLp q∗L q∗R

qL qR

Figure 3.4.: This figure shows the acoustic-acoustic Riemann problem. The black lines
correspond to characteristic waves that separate the constant states. We use
the convention that the states left and right from the interface are qL and
qR. The states in the middle, also called star states, are the solution of the
Riemann problem. They are called q∗L and q∗R. They are not separated by
a wave but rather by the discontinuous material.

3.4. The Acoustic Riemann Problem

In the previous sections, we have seen two different ways of analyzing the wave structure of
the homogeneous version of our problem. We combine them with the interface conditions
defined in section 2.3.1 to construct a Riemann solver for the variable coefficient acoustic
wave equation.

Equation (2.82) defines the acoustic flux matrix in x-direction, which we can diagonalize
as

Aac(x) = R(x)Λ(x)R−1(x), (3.33)

with

Λ(x) = diag([−c(x), c(x), 0, 0]), (3.34)

R(x) =

−Z(x) Z(x) 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

 . (3.35)

Here Z = ρ
√
Kρ = cρ is the impedance. The eigenvectors can be arbitrarily scaled. Here,

we use the scaling from [95], which allows us to describe the Riemann problem in terms
of the impedances.

Figure 3.4 shows the wave structure of the Riemann problem. We have a left-moving
wave with speed cL and a right-moving wave with speed cR. Due to the inhomogeneous
material, we have two intermediate states q∗L and q∗R. These states are called “star
states”. We only need to consider the pressure and the velocity in x-direction, as the
other quantities are in the nullspace of Aac. Therefore, they do not contribute to the
waves.

Now, we can apply our methods to derive a solution of a Riemann problem. We define

37

Chapter 3. Riemann Problems & Boundary Conditions

the matrix

RLR =

rL︸︷︷︸ rR︸︷︷︸
ZL ZR 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

, (3.36)

which uses material from the left side for right-going waves and from the right side for
left-going waves.
The jumps between waves are governed by the Rankine-Hugoniot conditions (sec-

tion 3.3)

Aac
(
q∗L − qL

)
= −cL

(
q∗L − qL

)
,

Aac
(
qR − q∗R

)
= cR

(
qR − q∗R

)
,

(3.37)

which are valid because in each region the matrix Aac is constant. Hence, similar to the
homogeneous case discussed in section 3.2, we can describe the jumps in the characteristic
variables, i.e., in the eigenvector basis, using the respective flux matrix. From this, we
obtain the additional relations

q∗L − qL = αLrL, (3.38)

qR − q∗R = αRrR. (3.39)

The quantities αL and αR are the wave strengths. Note that they depend on the
normalization of the eigenvectors. However, the Rankine-Hugoniot conditions do not hold
over the jump in the material. Hence, we need to use the physical interface conditions
(equation (2.93)) to connect the states q∗L and q∗R.(

p∗L

v∗L1

)
=

(
p∗R

v∗R1 .

)
(3.40)

This does not give us any information about the velocities v2 and v3 in the star states, as
they can be discontinuous. Adding equations (3.38) and (3.39) and using equation (3.40),
we arrive at

q∗L − qL + qR − q∗R = qR − qL = αLrL + αRrR. (3.41)

Here, all vectors should be understood as being restricted to pressure and velocity. This
is an abuse of notation; however, as mentioned before, the other values are irrelevant.
We can convert equation (3.41) to the linear system(

−ZL ZR

1 1

)(
αL

αR

)
=

(
pR − pL
vR1 − vL1

)
. (3.42)

Solving this results in

αL =
1

ZL + ZR

(
pL − pR + ZR(vR1 − vL1)

)
, (3.43)

αR =
1

ZL + ZR

(
pR − pL + ZL(vR1 − vL1)

)
. (3.44)

38

3.4. The Acoustic Riemann Problem

We can compute the left star state by inserting equation (3.43) into equation (3.38), and
the right one by inserting equation (3.43) into equation (3.39). This leads us to(

p∗L

v∗L1

)
=

(
pL

vL1

)
+ αL

(
ZL

−1

)
,(

p∗R

v∗R1

)
=

(
pR

vR1

)
− αR

(
ZR

1

)
.

(3.45)

Due to the interface condition (equation (3.40)), both states are identical and are given
by

q∗ =

(
p∗L

v∗L1

)
=

(
p∗R

v∗R1

)
=

1

ZL + ZR

(
ZRpL + ZLpR + ZLZR

(
vL1 − vR1

)
ZLuL + ZRuR + pL − pR

)
. (3.46)

This provides an exact solution to our Riemann problem. In the constant impedance
case, i.e., Z = ZL = ZR, equation (3.46) simplifies to

q∗ =
1

2

((
pL + pR

)
+ Z

(
vL1 − vR1

)(
vL1 + vR1

)
+
(
pL − pR

)
/Z

)
. (3.47)

Hence, the star state is not simply the average of the quantities on both sides but also
includes a correction term for the difference in the other quantity.

3.4.1. Boundary Conditions

We have not yet discussed what happens at the boundaries of our domain where we do
not have a neighbor state because no physical neighbor exists. We adapt the Riemann
problem to this situation by adding a fictitious neighbor, commonly called the ghost
cell. Then, we compute the state of this neighbor by solving an “inverse Riemann
problem” which is constrained such that the solution of the Riemann problem with the
fictitious neighbor on the right (qR) and the solution of our local cell (qL), which is on
the left, results in the boundary state (q∗). At first glance, this seems to be a useless
exercise. However, in practice, we typically only want to prescribe a part of the solution,
for example, the velocity, on the boundary. This approach then gives us the values of
the other quantities like the pressure. Finally, it provides us with a direct avenue to
implement boundary conditions in a numerical code.
In the following, we assume that the material is continuous across the boundary, i.e.,

that the material just outside of the domain is extrapolated from the inside. Hence, we
drop the indices and, e.g., use Z = ZL = ZR in this section.

Velocity inlet

The first boundary condition type is the velocity inlet. We prescribe a velocity given
by some function v∗1 = f(x) and assume that the pressure is continuous, i.e., pL = pR.
Equating the star state (equation (3.47)) for the velocity to f(x) leads to the equation

1

2
(vL1 + vR1) +

1

2Z
(pL − pR)︸ ︷︷ ︸

=0

= f(x), (3.48)

39

Chapter 3. Riemann Problems & Boundary Conditions

which we can solve for the velocity vR1 . This results in the ghost state(
pR

vR1

)
=

(
pR

2f(x)− vL1

)
. (3.49)

Inserting equation (3.49) into equation (3.47) leads us to the state at the boundary(
p∗

v∗1

)
=

(
pL + Z(vL1 − f(x))

f(x)

)
. (3.50)

Hence, the velocity at the boundary is exactly equal to the prescribed velocity, and
the pressure is equal to the pressure next to the boundary with a correction term that
counteracts the jump in velocity. An important special case of this boundary condition
is the rigid boundary, given by equation (2.56), where f(x) = 0.

Pressure inlet

The second type of boundary condition is the pressure inlet. Here, we prescribe a
pressure given by some function p∗ = f(x) and assume that the velocity is continuous,
i.e., vL1 = vR1 . We can compute it in the same way as the velocity inlet. We equate the
star state (equation (3.47)) for the pressure to f(x), resulting in the equation

1

2
(pL + pR) +

Z

2
(vL1 − vR1)︸ ︷︷ ︸

=0

= f(x), (3.51)

which we solve for the pressure pR. Hence, we have the ghost state(
pR

uR

)
=

(
2f(x)− pL

vL1

)
. (3.52)

Finally, we insert equation (3.52) into equation (3.47) to compute the star state(
p∗

u∗

)
=

(
f(x)

vL1 + 1
Z (p

L − f(x))

)
. (3.53)

The pressure at the boundary is prescribed exactly, and the velocity is modified by a
term that corrects for the jump in the pressure.

The free surface boundary condition is a special case for p∗ = 0. This results in the
states

qR =

(
−pL
vL1

)
,

q∗ =
(

0
vL1 + 1

Z p
L

)
.

(3.54)

40

3.5. The Elastic Riemann Problem

Gravitational free surface

Another important special case of the pressure inlet boundary condition is the gravitational
free surface boundary condition, given by equation (2.88). For this, we impose a pressure
at the boundary of p∗ = ρηg, which we insert into equations (3.52) and (3.53), resulting
in the ghost state (

pR

vR1

)
=

(
2ρgη − pL

vL1

)
(3.55)

and the boundary state (
p∗

v∗1

)
=

(
ρgη

vL1 + 1
Z

(
pL − ρgη

)) . (3.56)

This concludes the dynamic part of this boundary condition. To close the boundary
condition, we require the kinematic part, defined by equation (2.89). Hence, we define
the displacement by the ODE

∂η

∂t
= v∗1 = vL1 +

1

Z

(
pL − ρgη

)
, (3.57)

where it is important to note that v∗1 is the state at the boundary. Thus, we must solve
an ODE to compute η. This boundary condition reduces to the classical free surface
boundary condition (equation (3.54)) in the case of vanishing gravity g = 0.

3.4.2. Discussion

We have seen in this section how we can solve an inhomogeneous Riemann problem using
the example of acoustic-acoustic interfaces. The solution strategy consisted of using the
Rankine-Hugoniot conditions and the technique of characteristic variables to describe the
jumps inside each material. We then used the physical interface conditions to close the
system. We solved the resulting linear systems for the wave strengths, which we inserted
into the jump conditions.

Furthermore, we discussed how we can investigate boundary conditions by computing
an inverse Riemann problem. This results in the exact state at the boundary for the
quantity we want to prescribe and a penalty term for the other. A further aspect that
becomes clear from the inverse Riemann approach is that we can only prescribe either
the pressure or the velocity at the interface. We cannot prescribe both, as it would be
impossible to derive a boundary state that fulfills equation (3.47).
We have not only learned how to solve one specific type of Riemann problem, but

we can apply the solution strategy to other linear Riemann problems and boundary
conditions.

3.5. The Elastic Riemann Problem

In this section, we solve the Riemann problem for elastic-elastic interfaces by applying
techniques from section 3.4. The flux matrix in x-direction (equation (2.30)) has the

41

Chapter 3. Riemann Problems & Boundary Conditions

x

t

elastic
λL, µL, ρL

elastic
λR, µR, ρR

cRp−cLp

cRs−cLs
q∗∗L q∗∗Rq∗L q∗R

qL qR

Figure 3.5.: The elastic-elastic Riemann problem. The black lines correspond to charac-
teristic waves that separate the constant states. The left (qL) and right state
(qL) are the initial condition. We have four star states, which are called,
from left to right, q∗∗L, q∗L, q∗R and q∗∗R.

eigenvalues (−cp(x),−cs(x),−cs(x), 0, 0, 0, cs(x), cs(x), cp(x)). Hence, we have two wave
types and three non-propagating modes. We define the matrix

RLR =

rLp︸︷︷︸ rLs1︸︷︷︸ rLs2︸︷︷︸ rRs1︸︷︷︸ rRs2︸︷︷︸ rRp︸︷︷︸
ZL2

ρ 0 0 0 0 0 0 0 ZR2

ρ

λL 0 0 1 0 0 0 0 λR

λL 0 0 0 1 0 0 0 λR

0 µL 0 0 0 0 µR 0 0
0 0 0 0 0 1 0 0 0
0 0 µL 0 0 0 0 µR 0
cLp 0 0 0 0 0 0 0 −cRp
0 cLs 0 0 0 0 −cRs 0 0
0 0 cLs 0 0 0 0 −cRs 0

, (3.58)

which collects the eigenvectors for the left and right material. Here, we used the P wave
impedance Zp = ρcp and S wave impedance Zs = ρcs. We have one eigenvector per
S wave per direction, resulting in the wave structure shown in figure 3.5. We only consider
the quantities (σ11, σ12, σ13, v1, v2, v3), as all others lie in the null-space of A and hence
do not contribute to propagating wave modes.

We apply the Rankine-Hugoniot conditions to the jump between waves, arriving at

A
(
q∗∗L − qL

)
= −cLp

(
q∗∗L − qL

)
,

A
(
q∗L − q∗∗L

)
= −cLs

(
q∗L − q∗∗L

)
,

A
(
q∗∗R − q∗R

)
= cRs

(
q∗∗R − q∗R

)
,

A
(
qR − q∗∗R

)
= cRp

(
qR − q∗∗R

)
.

(3.59)

Again, this is an eigenproblem. Hence, we can expand the jumps in the eigenbasis which

42

3.5. The Elastic Riemann Problem

results in

q∗∗L − qL = αL
p r

L
p , (3.60)

q∗L − q∗∗L = αL
s1r

L
s1 + αL

s2r
L
s2, (3.61)

q∗∗R − q∗R = αR
s1r

R
s1 + αR

s2r
R
s2, (3.62)

qR − q∗∗R = αR
p r

R
p . (3.63)

We combine this with the interface conditions (c.f. equation (2.92))(
σL11, σ

L
12, σ

L
13, v

L
1 , v

L
2 , v

L
3

)T
=
(
σR11, σ

R
12, σ

R
13, v

R
1 , v

R
2 , v

R
3

)T
(3.64)

which closes the system.
Adding equations (3.60) to (3.63) together and applying equation (3.64) results in

αL
p r

L
p + αL

s1r
L
s1 + αL

s2r
L
s2 + αR

s1r
R
s1 + αR

s2r
R
s2 + αR

p r
R
p = qR − qL (3.65)

where, again, all vectors are assumed to be restricted to the relevant quantities. Equa-
tion (3.65) is equivalent to the linear system

(ZL
p)

2

ρL
0 0 0 0

(ZR
p)

2

ρR

0 µL 0 µR 0 0
0 0 µL 0 µR 0
cLp 0 0 0 0 −cRp
0 cLs 0 −cRs 0 0
0 0 cLs 0 −cRs 0

αL
p

αL
s1

αL
s2

αR
p

αR
s1

αR
s2

 =

σR11 − σL11
σR12 − σL12
σR13 − σL13
vR1 − vL1
vR2 − vL2
vR3 − vL3

 . (3.66)

While this system looks quite complicated, we can reorder it [164]. By introducing the
permutation matrices Pα and Pq, we can write the resulting system as

P−1
q PqRPα P−1

α α = qL − qR,

(PqRPα) (P−1
α α) = Pq (qL − qR).

(3.67)

In our case, this results in the system

(ZL
p)

2

ρL
(Zp)R

2

ρR
0 0 0 0

cLp −cRp 0 0 0 0

0 0 µL µR 0 0
0 0 cLs −cRs 0 0
0 0 0 0 µL µR

0 0 0 0 cLs −cRs

αL
p

αR
p

αL
s1

αR
s1

αL
s2

αR
s2

 =

σR11 − σL11
vR1 − vL1
σR12 − σL12
vR2 − vL2
σR13 − σL13
vR3 − vL3

 , (3.68)

which has a block structure. Therefore, only two variables are coupled together.
We can compute the star states by adding equations (3.60) and (3.61) and by adding

equations (3.62) and (3.63), which leads to the equations

q∗L = qL + αL
p r

L
p + αL

s1r
L
s1 + αL

s2r
L
s2,

q∗R = qR − αR
p r

R
p − αR

s1r
R
s1 − αR

s2r
R
s2.

(3.69)

43

Chapter 3. Riemann Problems & Boundary Conditions

Due to the interface conditions, both star states are identical.
Solving equation (3.68) for the wave strengths and inserting them into the jump

condition (equation (3.69)) leads to the star state of(
σ∗11
v∗1

)
=

1

ZL
p + ZR

p

(
ZR
p σ

L
11 + ZL

p σ
R
11 + ZL

p Z
R
p (v

R
1 − vL1)

ZL
p v

L
1 + ZR

p v
R
1 + σR11 − σL11

)
,(

σ∗12
v∗2

)
=

1

cRs µ
L + cLs µ

R

(
cLs µ

RσL12 + cRs µ
LσR12 + µLµR

(
vR2 − vL2

)
cRs µ

LvL2 + cLs µ
RvR2 + cLs c

R
s

(
σR12 − σL12

)) ,(
σ∗13
v∗3

)
=

1

cRs µ
L + cLs µ

R

(
cLs µ

RσL13 + cRs µ
LσR13 + µLµR

(
vR3 + vL3

)
cRs µ

LvL3 + cLs µ
RvR3 + cLs c

R
s

(
σR13 − σL13

)) ,
(3.70)

where we ignored variables that lie in the nullspace of A. We grouped the star states
to make it clear which quantities are coupled. Here, it is interesting that the star state
for the stress σ∗11 is similar to the one we derived earlier for the pressure in the acoustic
wave equation (equation (3.46)).

Similar to the boundary conditions for the acoustic case, we assume that the material
is continuous over the boundary. The same solution strategy works: We compute
the left state by solving the inverse Riemann problem and then the ghost state with
equation (3.70).

Free surface

We want to set the traction at the boundary to zero for the free surface condition. The
velocity is continuous. Formally, we have the following conditions

σ∗11 = σ∗12 = σ∗13 = 0,

vL = vR.
(3.71)

We equate these values for the stress tensor with the star state defined by equation (3.70).
Solving for the stress tensor, we arrive at the ghost state

qR =
(
−σL11 −σL12 −σL13 vL1 vL2 vL3

)T
. (3.72)

Inserting this state back into equation (3.70) leads us to the boundary state

σ∗11
σ∗12
σ∗13
v∗1
v∗2
v∗3

 =

0
0
0

vL1 − Z−1
p σL11

vL2 − Z−1
s σL12

vL3 − Z−1
s σL13

 . (3.73)

The traction is zero, as expected, and the velocities have acquired a penalty term that
counteracts the jump in pressure. This is, as expected, similar to the acoustic free surface
boundary condition (equation (3.54)).
We discussed in this section how we can solve the elastic-elastic Riemann problem.

This was done using the same techniques we derived for the acoustic wave equation.
Furthermore, we derived the star state for the free surface boundary condition.

44

3.6. Elastic-Acoustic & Acoustic-Elastic Riemann Problems

3.6. Elastic-Acoustic & Acoustic-Elastic Riemann Problems

x

t

elastic
λL, µL, ρL

acoustic
KR, ρR

cRp−cLp

−cLs
q∗∗L q∗L q∗R

qL qR

(a) The elastic-acoustic Riemann problem.

x

t

acoustic
KL, ρL

elastic
λR, µR, ρR

cRp−cLp

cLs

q∗∗Rq∗L q∗R

qL qR

(b) The elastic-acoustic Riemann problem.

Figure 3.6.: Riemann problems for coupled elastic and acoustic media. In each figure,
the black lines correspond to characteristic waves that separate the constant
states. The wave structure directly represents the underlying material. The
left (qL) and right state (qR) are the initial condition. Two states are
separated by an acoustic wave in each acoustic region, and in each elastic
region, three states are separated by the P and S waves. Figures adapted
from [79].

In this section, we tackle the elastic-acoustic and acoustic-elastic Riemann problems.
By now, our tool belt is well-equipped to handle this. However, in contrast to the
acoustic-acoustic and elastic-elastic Riemann problems, coupling acoustic and elastic
regions combines different materials and separate, albeit related, PDEs. This brings
additional challenges. It may seem obvious that we could treat the acoustic wave equation
as a special case of the elastic wave equation and then reduce the Riemann problem
to the elastic-elastic one. However, this leads to a loss of strong hyperbolicity as the
flux matrix is no longer diagonalizable [95, 175]. Hence, this approach does not work.
However, we can use the same strategy as before: We use the Rankine-Hugoniot jump
conditions together with the interface condition. The jump conditions govern the flux in
the elastic and acoustic regions, and the interface conditions are used to combine both.
Here, we use the embedding of the acoustic wave equation into the elastic wave equation
introduced by equation (2.91). Additionally, we also use the flux matrix embedding.

Figure 3.6 shows the wave structure of these problems. We invite the reader to compare
this with the structure of the acoustic-acoustic problem (figure 3.4) and of the elastic-
elastic problem (figure 3.5). It becomes immediately clear that the wave structure of the
coupled problem is simply the combination of both. We discuss both elastic-acoustic and
acoustic-elastic problems here for completeness.

45

Chapter 3. Riemann Problems & Boundary Conditions

Elastic-acoustic First, we discuss the elastic-acoustic Riemann problem, as shown in
figure 3.6a. We have the matrix of eigenvalues

REA =

rLp︸︷︷︸ rLs1︸︷︷︸ rLs2︸︷︷︸ rRp︸︷︷︸
(ZL

p)2

ρL
0 0 0 0 0 0 0 1

λL 0 0 1 0 0 0 0 1
λL 0 0 0 1 0 0 0 1
0 µL 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 µL 0 0 0 0 0 0
cLp 0 0 0 0 0 0 0 − 1

ZR
a

0 cLs 0 0 0 0 1 0 0
0 0 cLs 0 0 0 0 1 0

, (3.74)

which combines the elastic eigenvectors on the left and the acoustic eigenvector on the right.
The acoustic eigenvectors are extended using the embedding, given by equation (2.91).
We must be careful due to the difference in sign convention between stress and pressure.

The Rankine-Hugoniot conditions are given by

A
(
q∗∗L − qL

)
= −cLp

(
q∗∗L − qL

)
,

A
(
q∗L − q∗∗L

)
= −cLs

(
q∗L − q∗∗L

)
,

A
(
qR − q∗R

)
= cRp

(
qR − q∗R

)
.

(3.75)

We expand the jumps again in the basis of eigenvectors

q∗∗L − qL = αL
p r

L
p ,

q∗L − q∗∗L = αL
s1r

L
s1 + αL

s2r
L
s2,

qR − q∗R = αR
p r

R
p .

(3.76)

We combine them with the physical interface conditions (equation (2.94)), which require
v∗L1
σ∗L11
σ∗L12
σ∗L13

 =

v∗R1
σ∗R11
σ∗R12
σ∗R13

 . (3.77)

Hence, at this type of interface, the tangential velocities are allowed to be discontinuous!
Interestingly, the shear stresses, however, are continuous. Because they do not exist
in the acoustic medium, we can expect that they also vanish at the elastic part of the
interface. We can check this assumption by straightforward calculations. Here, it is again
convenient to use a reduced and reordered matrix, similar to equation (3.67), which we
used for the elastic wave equation [164]. We arrive at the linear system for the wave

46

3.6. Elastic-Acoustic & Acoustic-Elastic Riemann Problems

strengths
(ZL

p)2

ρL
1 0 0

cLp − 1
ZR
a

0 0

0 0 µL 0
0 0 0 µL

αL
p

αR
p

αL
s1

αL
s2

 =

σR11 − σL11
vR1 − vL1
σR12 − σL12
σR13 − σL13

 . (3.78)

The P waves of both media are coupled; however, the S waves of the elastic part are
uncoupled. Because the shear stresses are zero in the fluid, we can directly read the
strength of the S waves

αL
s1 = −

σL12
µ
, αL

s2 = −
σL13
µ
. (3.79)

In contrast to the previously discussed numerical fluxes, the elastic-acoustic Riemann
problem admits two different star states separated by the material discontinuity. This is
because the tangential velocities are allowed to be discontinuous. Hence, for the elastic
medium, we have the state

σ∗L11
σ∗L12
σ∗L23
v∗L1
v∗L2
v∗L3

 =

σL11
σL12
σL23
vL1
vL2
vL3

+ αL
p r

L
p + αL

s1r
L
s1 + αL

s2r
L
s2

=

(
ZR
p Z

L
p +

(
ZL
p

)2)−1 (
ZR
p Z

L
p σ

L
11 +

(
ZL
p

)2
σR11 + ZR

p

(
ZL
p

)2 (
vR1 − vL1

))
0
0(

ZR
p Z

L
p +

(
ZL
p

)2)−1 ((
ZL
p

)2
vL1 + ZR

p Z
L
p v

R
1 + ZL

p

(
σR11 − σL11

))
vL2 −

(
ZL
s

)−1
σL12

vL3 −
(
ZL
s

)−1
σL13

,

(3.80)

where we can see that the tangential velocities include a term that penalizes existing
shear traction. The shear traction is, as we expected, zero at the interface. On the
acoustic side, we have the state(

σ∗R11
v∗R1

)
=

(
σR11
vR1

)
− αL

p r
R
p

=

(ZR
p Z

L
p +

(
ZL
p

)2)−1 (
ZR
p Z

L
p σ

L
11 +

(
ZL
p

)2
σR11 + ZR

p

(
ZL
p

)2 (
vR1 − vL1

))(
ZR
p Z

L
p +

(
ZL
p

)2)−1 ((
ZL
p

)2
vL1 + ZR

p Z
L
p v

R
1 + ZL

p

(
σR11 − σL11

))

(3.81)

where we have ignored the tangential velocities and shear stresses as they lie in the null
space of the flux matrix.

47

Chapter 3. Riemann Problems & Boundary Conditions

Acoustic-elastic This case is very similar to the elastic-acoustic case. We build the
combined eigenvector matrix as

rLp︸︷︷︸ rRs1︸︷︷︸ rRs2︸︷︷︸ rRp︸︷︷︸
1 0 0 0 0 0 0 0

(ZR
p)2

ρR

1 0 0 1 0 0 0 0 λR

1 0 0 0 1 0 0 0 λR

0 1 0 0 0 0 µR 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 µR 0
1
ZL 0 0 0 0 0 0 0 −cRp
0 0 0 0 0 0 −cRs 0 0
0 0 0 0 0 0 0 −cRs 0

. (3.82)

The jumps are depicted in figure 3.6b. For the sake of brevity, we skip directly to the
linear system for the wave speeds

1

Z2
R

ρR
0 0

1
ZL

−cRp 0 0

0 0 µR 0
0 0 0 µR

αL
p

αR
p

αR
s1

αR
s2

 =

σR11 − σL11
vR1 − vL1
σR12 − σL12
σR13 − σL13

 . (3.83)

It has the same structure as the system for the elastic-acoustic case, given by equa-
tion (3.78). Again, we can directly read the strengths of the S waves propagating
rightward into the elastic medium. From this, it is trivial—but laborsome—to compute
the star states. Hence, we skip this here.

In this section, we discussed how we can solve coupled Riemann problems. We were
able to apply the same solution strategies as before. The resulting wave structure and
the star states followed our intuition that the shear stresses at the boundary are also
zero at the elastic side of the boundary. A jump in the shear stresses leads to a velocity
that counteracts it. This has also been observed in [164].

3.7. Computational Aspects

In this section, we discuss the computational aspects of the exact Riemann solver. For
this, we return to the notation used in section 3.1 and mark vectors that are in the
face-oriented coordinate system with a tilde, such as q̃.

We can write the computation in a more concise form by collecting operations in
matrices. This is similar to the notation in [164]. First, we define the characteristic

48

3.7. Computational Aspects

matrices

χL
ij =

{
1 if λi < 0,

0 else,

χR
ij =

{
1 if λi > 0,

0 else,

(3.84)

which select the left and right-going waves, respectively. In the following, we use R to
denote the matrix of eigenvectors that considers the material of both sides. With this,
we can write the star state as

q̃∗ = q̃L +RχLα, (3.85)

or equivalently as

q̃∗ = q̃R −RχRα. (3.86)

Both definitions lead to the same result.2 This works for all considered Riemann
problems, which can be shown by inspecting the corresponding jump conditions given by
equations (3.45), (3.69), (3.80), and (3.81). The wave strengths can be computed by

α = R−1(q̃R − q̃L). (3.87)

In the following, we substitute χR = I − χL, which works because while we select
additional waves, these waves are not propagating. With this, we can split the computation
of the star state with the identity

q̃∗ = q̃L +RχLR−1(q̃R − q̃L)

= R(I − χL)R−1q̃L +RχLR−1q̃R

= RχRR−1︸ ︷︷ ︸
=GL

q̃L +RχLR−1︸ ︷︷ ︸
=GR

q̃R
(3.88)

This is convenient because the first and second summands only depend on the left and
right state, respectively. We can precompute the matrices GL and GR as they do not
depend on the state.

Finally, our original three-dimensional Riemann problem, stated in definition 1, can be
solved by combining equation (3.88) with lemma 1. This leads us to

q∗ = T GLT −1qL + T GRT −1qR. (3.89)

Hence, the solution of the plane-wave Riemann is given by a sum of matrix-vector
products. It uses two matrices that depend on the orientation of the interface and the
material but not on the states qL or qR.

2Caveat: The values for quantities that lie in the nullspace of the flux matrix can differ.

49

Chapter 3. Riemann Problems & Boundary Conditions

3.8. Discussion

In this chapter, we derived a method to solve the acoustic-acoustic, elastic-elastic,
acoustic-elastic, and elastic-acoustic Riemann problems for inhomogeneous materials.
Our Riemann solver considers the materials from both sides of the interface. It is
essentially identical to the one presented in [175]. Only taking the material from one side
into account, as done, for example, in [69], leads to an inconsistent scheme [175].
We used the rotational invariance of our PDEs to reduce the three-dimensional Rie-

mann problem to a one-dimensional one (section 3.1). Then, we discussed two solution
strategies for this reduced Riemann problem: First, section 3.2 introduced the technique
of characteristic variables, which allows us to directly solve the Riemann problem for
homogeneous materials. Second, we derived the Rankine-Hugoniot jump conditions in
section 3.3. They enable us to consider the jump over individual waves as an eigenprob-
lem. Together with the physical interface conditions, we successfully solved Riemann
problems that cover all possible combinations of acoustic and elastic media (sections 3.4
to 3.6). Our discussion included a derivation of all necessary boundary conditions. Finally,
section 3.7 showed us that we can compute the solution of these problems efficiently.

50

Chapter 4.

Discretization

In this section, we discuss the Arbitrary DERivatives Discontinuous Galerkin (ADER-
DG) discretization for our fully coupled model that we presented in chapter 2. We first
introduce the DG space discretization (section 4.1) followed by the ADER time-stepping
method (section 4.2). Both sections summarize the work from [35, 164]. Our main
contribution is discussed in section 4.3: an efficient arbitrary high-order discretization
of the gravitational boundary condition, which combines a nodal basis with ADER
integration. Finally, section 4.4 discusses computational aspects of our ADER-DG
scheme.

4.1. Discontinuous Galerkin

The Discontinuous Galerkin method was introduced in [124] for the neutron transport
equation and was later extended to systems of hyperbolic conservation laws [16]. For
a brief history of the method, we refer the interested reader to [20]. In this section,
following the description of the DG discretization of the elastic wave equation in [69],
we derive a DG space discretization of our fully coupled model on an unstructured
tetrahedral mesh. We assume in the following that we use the coupling strategy discussed
in section 2.3. Briefly, we consider a variable-coefficient hyperbolic PDE of the form given
by equation (2.29). We embed the acoustic wave equation in the elastic wave equation
with equation (2.91). Thus, the flux matrices A,B,C and the vector of unknowns q have
the same shape in the entire domain. Section 4.1.1 discusses how the tetrahedral mesh is
built and introduces the concept of reference elements. In section 4.1.2, we introduce
high-order polynomial bases defined on these reference elements. We use these tools
to derive and discretize the weak form of our PDE (section 4.1.3). This results in an
entirely local scheme. Section 4.1.4 discusses how elements are coupled to each other
using surface integrals and a numerical flux. Finally, section 4.1.5 presents a semi-discrete
discretization of our PDE.

4.1.1. Mesh

In this section, we describe the construction of our computational mesh, which follows [35].
We assume that our computational geometry was tessellated into a conforming mesh
of non-overlapping tetrahedra. Formally, we have the domain Ω =

⋃
m Tm, where Tm

denotes a tetrahedron. Furthermore, we use the function N (T) that takes a tetrahedron

51

Chapter 4. Discretization

T and returns the set of its neighbors. For each tetrahedron, the cardinality of N is
equal to the number of neighbors not at the boundary of the domain.

1 2

3

4

ξ

η

ζ

(a) The reference tetrahedron T̂ . It is defined in
the local coordinate system ξ = (ξ, η, ζ). The
numbers correspond to vertices.

1 2

3

χ1

χ2

(b) The reference triangle ε2. It is defined in the
local coordinate system χ = (χ1, χ2). The
numbers correspond to vertices.

Figure 4.1.: Our reference elements.

To simplify our computations, we use the reference tetrahedron T̂ , as shown in
figure 4.1a. First, we introduce the connectivity function c(T , i) that returns the ith
vertex of the tetrahedron T . The reference element is defined by

c(T̂ , 1) =

0
0
0

 , c(T̂ , 2) =

1
0
0

 , c(T̂ , 3) =

0
1
0

 , c(T̂ , 4) =

0
0
1

 . (4.1)

We can map from an arbitrary tetrahedron T to the reference element by using a
linear-affine mapping. First, following [164] we define the mapping matrix

Γ(T) =

 | | |
c(T , 2)− c(T , 1) c(T , 3)− c(T , 2) c(T , 4)− c(T , 3)

| | |

 . (4.2)

Next, we use this in the mappings

Ξ−1(T , ξ) = Γ(T)ξ + c(T , 1),
Ξ(T ,x) = (Γ(T))−1 (x− c(T , 1)) ,

(4.3)

where Ξ(T ,x) maps the coordinates of a point x that is in a tetrahedron T to the
reference coordinate ξ = (ξ, η, ζ).1 The mapping Ξ−1(T , ξ) is the inverse mapping, i.e.,
it takes a reference coordinate and transforms it into the global coordinates.

1It should be clear from the context whether η refers to the displacement or the reference coordinates.

52

4.1. Discontinuous Galerkin

Using the transformations and their Jacobians for our mapping, we can transform
integrals over the physical cells to integrals over a reference cell∫

T
f(x) dx =

∫
T̂
f(Ξ−1(ξ))|J |dξ, (4.4)

which uses the determinant of the Jacobian of the mapping J = det(Γ), which is constant
throughout the element. J is equal to six times the volume of the tetrahedron T .

The derivatives transform as

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
+
∂ζ

∂x

∂

∂ζ
,

∂

∂y
=
∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η
+
∂ζ

∂y

∂

∂ζ
,

∂

∂z
=
∂ξ

∂z

∂

∂ξ
+
∂η

∂z

∂

∂η
+
∂ζ

∂z

∂

∂ζ
,

(4.5)

which is a direct result of the chain rule and the definition of our mapping (equa-
tion (4.3)) [35].

Furthermore, as shown in 4.1b, we define the reference triangle ε2 with local coordinates
χ = (χ1, χ2). It has the vertices {(0, 0), (1, 0), (0, 1)}. We define the function Ψf

that maps coordinates on the reference triangle to coordinates on the fth face of a
tetrahedron T . With this, we can express integrals over the surface ∂T of a tetrahedron
by ∫

∂T
f(x) dS =

∑
f

∫
ε2

f(Ψf (χ))

∥∥∥∥∂Ψf

∂χ1
× ∂Ψf

∂χ2

∥∥∥∥︸ ︷︷ ︸
=:|Sf |

dχ (4.6)

where |Sf | is twice the area of the surface [164]. In addition, we need the mapping
ξf = Ξ(Ψf (χ)) that maps coordinates on the reference triangle to coordinates on the fth
face of our reference tetrahedron T̂ . Following [35, 164], this function does not depend
on the geometry of the element and is given by table 4.1.
When integrating over the boundary of a tetrahedron, we often need to integrate

over the face from the perspective of the neighboring tetrahedron. For this, we need to
consider the different orientations of this face relative to the tetrahedra. As discussed
in [35, 164], this can be summarized by the function χ̃h, where h is an index that takes
the three possible rotations into account. Table 4.2 defines this function.
This section discussed how to map from physical triangles and tetrahedra, out of

which our mesh is composed, to reference triangles and tetrahedra. With these, we
can transform integrals over our element and its surface to integrals over the reference
elements.

4.1.2. Basis Functions

In this subsection, we discuss the three types of basis functions that we need for our
numerical scheme. We consider modal bases for tetrahedra and triangles. Additionally,

53

Chapter 4. Discretization

Table 4.1.: Mapping from the reference triangle coordinates to the reference tetrahedral
coordinate system. Modified from [164].

ξ η ζ

ξ0(χ) χ2 χ1 0
ξ1(χ) χ1 0 χ2

ξ2(χ) 0 χ2 χ1

ξ3(χ) 1− χ1 − χ2 χ1 χ2

Table 4.2.: Mapping from the coordinates of a triangle to the coordinates from the triangle
in the other face. This deals with possible rotations. Table taken from [35,
164].

χ χ̃0(χ) χ̃1(χ) χ̃2(χ)

χ̃1 χ2 1− χ1 − χ2 χ1

χ̃2 χ1 χ2 1− χ1 − χ2

0 1

0

1

χ1

χ
2

Figure 4.2.: Warp-and-blend nodes on our reference triangle ε2, as described in [61]. Here,
we show nodes for a nodal basis of polynomial order of five.

54

4.1. Discontinuous Galerkin

we introduce a nodal basis for triangles. All of these bases have in common that they are
not continuous across elements, i.e., they are only defined within one element. This is the
reason why the Discontinuous Galerkin method is called discontinuous. For convenience,
we define all bases on the reference elements.

First, we discuss the modal bases. For both triangles and tetrahedra, we use the modal
Dubiner basis. It is based on Jacobi polynomials and consists of orthogonal polynomials.
Their construction is explained in [20]. The version that we are using is tabled in [28,
Appendix A]. We call the basis ϕk for our reference tetrahedron and ψk for the reference
triangle. For a polynomial order of N we have 1/2N(N + 1) and 1/6N(N + 1)(N + 2)
basis functions for triangles and tetrahedra respectively.
For example, we can expand the solution q on a tetrahedron Tm as

qmp (x, t) = qmlp(t)ϕl(Ξ(Tm,x)) (4.7)

using the mapping from a physical element to the reference element, which is required
because the basis ϕl is defined only on the reference element. This introduced the index l
for the basis function and the index p for the quantity. The vector of coefficients qm(t) is
defined for each element and depends on time but not on space. We mark all coefficients
with an underbar. In the following, we drop the index for the element for convenience. As
we always integrate over one single element, its index should be clear from the context. In
addition to the expansion on tetrahedra (equation (4.7)), we can also expand quantities
that are defined on the reference triangle in the two-dimensional basis

fmp (χ, t) = flp(t)ψl(χ). (4.8)

As is well known (see e.g. [122, Cha. 10]), we can approximate any function f(x) by
expanding it in a basis of orthogonal polynomials. This is called the generalized Fourier
series. We typically truncate the series after N+1 terms. For example, for our orthogonal
modal tetrahedral basis, we can write

f(ξ) ≈ flϕl(ξ), (4.9)

where we compute the coefficients

fl =

∫
T̂ f(ξ)ϕl(ξ) dξ∫
T̂ ϕl(ξ)ϕl(ξ) dξ

(4.10)

by a least-squares projection. This gives us the best (on average in the Euclidean norm)
approximation with our chosen basis. The same is also possible for functions defined on
our reference triangle, leading us to the expansion

f(χ) ≈ flψl(χ), fl =

∫
ε2
f(χ)ϕl(χ) dχ∫

ε2
ϕl(χ)ϕl(χ) dχ

. (4.11)

Some boundary conditions presented in this thesis make it necessary to prescribe a
space-dependent state at the boundary, i.e., on a triangle. As the coefficients in the modal

55

Chapter 4. Discretization

basis do not correspond to specific locations in space, we need to project a function to
this basis. An alternative and more convenient perspective is describing this function
directly in a nodal basis. For this, we expand a function as

fmp (χ, t) = f̂lp(nl, t)Ll(χ), (4.12)

where n is a set of interpolation nodes and Ll is the lth Lagrange polynomial on the
triangle. We have the same number of nodes as we have modal basis functions. This
setting is very convenient, as the coefficients f̂ depend on the space coordinates. Hence, to
interpolate a function, we can use the point-wise value of our function at the interpolation
nodes directly as coefficients. However, this type of basis opens two questions: Which
nodes do we choose, and how do we define the functions Ll?

Choosing a suitable set of nodes is essential because equidistant points lead to the
famous Runge phenomenon, manifesting in strong oscillations and a correspondingly large
interpolation error [122]. Furthermore, this choice would lead to ill-conditioned operators
for higher orders. Hence. we choose the warp-and-blend nodes described in [61, Sec.
6.1]. They can be easily pre-computed and lead to well-behaved interpolation. Figure 4.2
shows the resulting nodes for N = 5.

Finally, we need to define the Lagrange basis on our triangle. However, there is no
known analytical expression for it on triangles. We need to take a detour and use the
modal basis to evaluate the nodal basis. The nodal and modal bases span the same
function space. Hence, we can equate both expansions (equations (4.8) and (4.12)). Then,
we can compute the nodal coefficients from the modal coefficients by

f̂lp = Vlnfnp, (4.13)

where the Vandermonde matrix

Vln = ψn(nl) (4.14)

evaluates the modal basis at the nodes defined by the nodal basis. As this matrix is
invertible, we can use

fln = V −1
ln f̂np (4.15)

to compute the modal coefficients from the nodal representation [61] on triangles. This
gives us a way of evaluating the two-dimensional Lagrange polynomials: We use equa-
tion (4.15) to compute a modal representation and then evaluate the resulting expan-
sion (equation (4.8)) at new nodes.

We defined a modal basis for the reference tetrahedron and the reference triangle in
this section. Additionally, we introduced a nodal basis on triangles and demonstrated
how to convert between the modal and nodal. Furthermore, we showed how we can
approximate functions in all bases.

56

4.1. Discontinuous Galerkin

4.1.3. Weak Form

In this section, we use the results from the previous sections to take the first steps to
discretize our PDEs. We begin with a general linear variable coefficient PDE

∂q

∂t
= −A(x)

∂q

∂x
−B(x)

∂q

∂y
−C(x)

∂q

∂z
. (2.29 revisited)

In this section, we only consider a single tetrahedron. We assume that the material and
therefore the flux matrices do not vary in this element.

We multiply equation (2.29) by a test function ϕk and integrate over a tetrahedron T ,
leading to ∫

T
ϕk
∂q

∂t
dx = −

∫
T
ϕk

(
A
∂q

∂x
+B

∂q

∂y
+C

∂q

∂z

)
dx. (4.16)

Note that we have as many test functions as we have basis functions. In our case, we use
the same function space that we used to expand the numerical solution (equation (4.7)).
This is called the Galerkin approach. For the sake of brevity, here and in the following,
we neglect the space and time dependency of the solution and the basis functions if it is
clear from the context. As the basis functions depend on the reference element, we must
use equation (4.3) to map from the tetrahedron to the reference tetrahedron. Then, we
apply integration by parts to transfer the space derivatives to the test function, resulting
in ∫

T
ϕk
∂q

∂t
dx =

(∫
T

∂ϕk
∂x

Aq +
∂ϕk
∂y

Bq +
∂ϕk
∂z

Cq dx

)
−
∫
∂Ω
ϕkf

∗ dS (4.17)

Equation (4.17) is called the weak form, as it relaxes the smoothness requirements on
q. It now allows solutions that are not differentiable, i.e., that only fulfill the PDE in
the weak sense. We refer the interested reader to the discussion in [95]. The weak form
includes an integral over the surface ∂Ω of our element. Our basis is only piece-wise
continuous, so the solution on the faces shared with other elements is not uniquely defined.
Hence, we introduce the numerical flux

f∗ = nxAq + nyBq + nzCq, (4.18)

where nT = (nx, ny, nz) is the outer normal of the face.
We first deal with the volume integrals in equation (4.17). For this, moving our

computations to the reference basis is convenient. We start by defining the flux matrices
on the reference elements. They are given by

A∗
pq = Apq

∂ξ

∂x
+Bpq

∂ξ

∂y
+ Cpq

∂ξ

∂z
,

B∗
pq = Apq

∂η

∂x
+Bpq

∂η

∂y
+ Cpq

∂η

∂z
,

C∗
pq = Apq

∂ζ

∂x
+Bpq

∂ζ

∂y
+ Cpq

∂ζ

∂z
,

(4.19)

57

Chapter 4. Discretization

i.e., they are linear combinations of the flux matrices in the x, y, z coordinate system, which
follows directly from equation (4.5) [35]. These matrices are defined for each element, as
the derivatives of the reference coordinate with respect to the global coordinates depend
on the tetrahedron.
We expand the numerical solution with the expansion given by equation (4.7) in

our modal basis. We transform all volume integrals to the reference tetrahedron with
equations (4.4) and (4.5). After moving constant terms out of the integrals, this leads us
to

|J |
∂qlp
∂t

∫
T̂
ϕkϕl dξ = −

∫
∂T
ϕkf

∗ dS

+A∗
pq qlq|J |

∫
T̂

∂ϕk
∂ξ

ϕl dξ

+B∗
pq qlq|J |

∫
T̂

∂ϕk
∂η

ϕl dξ

+ C∗
pq qlq|J |

∫
T̂

∂ϕk
∂ζ

ϕl dξ.

(4.20)

Here, we can directly identify the mass matrix

Mkl =

∫
T̂
ϕkϕl dξ (4.21)

and the stiffness matrices

Kξ
kl =

∫
T̂

∂ϕk
∂ξ

ϕl dξ,

Kη
kl =

∫
T̂

∂ϕk
∂η

ϕl dξ,

Kζ
kl =

∫
T̂

∂ϕk
∂ζ

ϕl dξ,

(4.22)

which can be precomputed. The mass matrix is diagonal due to the orthogonality of
the Dubiner basis and hence it can be trivially inverted. Both mass matrix and stiffness
matrices are defined on the reference element and thus can be pre-computed.
We have now covered the efficient computation of all volume integrals. For this, we

used our careful definition of the reference elements and modal basis.

4.1.4. Surface Terms

In this section, we discuss how to compute the surface integral∫
∂T
ϕkf

∗ dS (4.23)

in equation (4.17). We expand it as a sum over all faces of our tetrahedron T , denoted
by the set F , and apply equation (4.6) to describe the resulting face integrals as integrals

58

4.1. Discontinuous Galerkin

over the reference triangle ε2, leading us to∫
∂T
ϕkf

∗ dS =
∑
f∈F

∫
ε2

ϕk(ξ
f (χ))f∗(Ψf (χ)) |Sf | dχ. (4.24)

Equation (4.18) introduced the numerical flux f∗, which is the only mechanism that
connects neighboring elements. Hence, it weakly enforces the continuity between elements
and is thus a crucial part of the DG method. The numerical flux depends on the value of
the flux matrices and the state q at the boundary. However, neither is uniquely defined,
as we allow the material and basis functions to be discontinuous between elements. In
this work, we use the Godunov flux, which we compute by multiplying the star state, i.e.,
the solution of the Riemann problem (definition 1), with by the flux matrix in normal
direction.2 We use the Riemann solver discussed in chapter 3. Equation (3.89) gives
us a way of computing the solution of the plane-wave Riemann problem (definition 1)
by matrix-vector multiplications. We can combine this with lemma 1, which states the
rotational invariance of the flux matrix, leading us to

f∗ = T AGLT −1︸ ︷︷ ︸
=:A∗Lf

qL + T AGRT −1︸ ︷︷ ︸
=:A∗Rf

qR, (4.25)

where the index f corresponds to the face, which is necessary because the rotation
matrices depend on its orientation. Equation (4.25), similar to equation (3.89), reduces
to the sum of two matrix-vector products. We use the convention in the following that
the current element is left with state qL, and the neighboring element is right with state
qR. Conveniently, the numerical flux matrices A∗Lf and A∗Rf can be pre-computed
and depend only on the orientation of the interface and the material properties.
Furthermore, equation (4.25) allows us to split the flux computation into two parts:

the local integration, which requires contributions only from the current element, and the
neighboring integration, which requires contributions only from the neighboring element.
Additionally, we split the neighboring part into a sum over interior (F int) and exterior
(Fext) faces, i.e., faces at the boundary. We apply this to equation (4.24) and insert our
numerical flux (equation (4.25)). After expanding the numerical solution in our basis, we
arrive at

∑
f∈F

|Sf |A∗Lf
pq qlq

∫
ε2

ϕk(ξ
f (χ))ϕl(ξ

f (χ)) dχ︸ ︷︷ ︸
=:FLf

kl

+ (4.26)

∑
f∈F int

|Sf |A∗Rf
pq qflq

∫
ε2

ϕk(ξ
f (χ))ϕl(ξ

g(χ̃h(χ))) dχ︸ ︷︷ ︸
=:FRfgh

kl

+ (4.27)

2This is why the solution of the Riemann problem is often also called the Godunov state.

59

Chapter 4. Discretization

∑
f∈Fext

|Sf |A∗Rf
pq q̂lq

∫
ε2

ϕk(ξ
f (χ))Ll(χ) dχ︸ ︷︷ ︸
=:F̂Rf

kl

 . (4.28)

Here, the indices g and h consider the face-local coordinates of the face in the neighboring
element with orientation h. We denote the numerical solution in the neighboring element
that shares the face f with our element by qf . We can pre-compute the integrals, as we
did for the volume terms.

Following [168], we use the change of basis

ϕk(ξ
f (χ)) = Rf

klψl(χ), (4.29)

which changes from the tetrahedral modal basis evaluated at the face to the face modal
basis (equation (4.8)).
We can define the matrix Rf that converts the coefficients from the volume basis to

the face basis. Using a least-squares projection, as defined by equation (4.11), leads to

Rf
kl =

∫
ϕl(ξ

f (χ))ψk(χ) dχ∫
ψk(χ)ψk(χ) dχ

. (4.30)

In our cases, as the face basis is of the same degree as the volume basis, this projection
is exact [164, Lemma 4].
Next, we use this to compute our surface integral matrices. We follow the notation

from [164]. We start with the integral for the local contributions used in equation (4.26).
It can be computed as

FLf
kl =

∫
ε2

ϕk(ξ
f (χ))ϕl(ξ

f (χ)) dχ = Rf
knR

f
lm

∫
ε2

ψn(χ)ψm(χ) dχ︸ ︷︷ ︸
=:M2

nm

(4.31)

For the neighboring flux, given by equation (4.27), we apply the same principle and arrive
at

FRfgh
kl =

∫
ε2

ϕk(ξ
f (χ))ϕl(ξ

g(χ̃h(χ))) dχ = Rf
knR

g
lm

∫
ε2

ψn(χ)ψm(χ̃h(χ)) dχ (4.32)

For high orders, it is more efficient to not pre-multiply the matrices [168]. Furthermore,
we only need to consider four versions of the face projection matrices (one for each
face), one face mass matrix and three face configuration matrices. This replaces up to
(3× 4× 4 = 48) different versions of FRfgh and thus leads to better cache behavior [168].
We believe this is also a more natural approach, as quantities defined on a face are
expanded in a basis that is defined on this face.

In addition, we need to incorporate boundary conditions through surface integrals. We
treat them as local contributions. As discussed before, it is often easier to prescribe these

60

4.1. Discontinuous Galerkin

boundary values in a nodal basis. As we have learned in the discussion of the modal face
basis, it suffices to only consider a face basis for the surface terms. This allows us to avoid
defining a nodal basis for volume data. Assuming that we have boundary values that are
defined on a face in the nodal basis, we can expand the integral in equation (4.28) as

F̂Rf
kl =

∫
ε2

ϕk(ξ(χ))Ll(χ) dχ = Rf
knM

2
nmVml, (4.33)

which is essentially the same as the local flux matrix (equation (4.31)) but with an addi-
tional Vandermonde matrix that converts the nodal into modal representation, as defined
in equation (4.15). Hence, we only need to project the test function to the triangle basis.
In contrast to the neighboring flux matrix used for interior neighbors (equation (4.32)),
we do not need to consider the face parametrization, simplifying the implementation. We
set q̂ to correspond to the state of a ghost element such that the solution of the Riemann
problem results in the correct state at the boundary. In section 3.4 and section 3.5, we
derived these states for boundary conditions for acoustic and elastic materials. As the
boundary conditions typically depend on the numerical solution of our element, we convert
it to a nodal basis using the Vandermonde matrix given by equation (4.13). Furthermore,
boundary conditions are typically stated directly in the face-aligned coordinate system.
Hence, we use the rotation matrix defined by equation (3.12) to rotate the degrees of
freedom from the global coordinate system to the face-aligned coordinate system and
vice versa.

In previous works, the boundary conditions were imposed in the modal basis or by
modifying the numerical flux directly [35, 168]. For example, the absorbing boundary
condition is obtained by setting the incoming numerical flux from the neighboring elements
to zero [35]. The dynamic rupture source is treated as an internal boundary condition,
which uses the state of two neighboring elements. A discussion of the treatment of
dynamic rupture boundary conditions is out of the scope of this thesis. We refer the
interested reader to the detailed discussion in [27, 118, 164].
We derived a discretization of the surface integral in this section. We used the exact

Riemann solver (chapter 3) to couple elements and include boundary conditions using a
nodal numerical flux.

4.1.5. Summary

Now we can put everything together by combining the volume discretization (equa-
tion (4.20)) with the surface discretization (equations (4.26) to (4.28)). For a single
element, we arrive at the space-discretization of

|J |
∂qlp
∂t

Mkl = A∗
pq qlq|J |K

ξ
kl +B∗

pq qlq|J |K
η
kl + C∗

pq qlq|J |K
ζ
kl

−
∑
f∈F

(
|Sf |A∗Lf

pq qflqF
Lf
kl

)
−
∑

f∈F int

(
|Sf |A∗Rf

pq qlqF
Rfgh
kl

)
−
∑

f∈Fext

(
|Sf |A∗Rf

pq q̂lqF̂
Rf
kl

)
,

(4.34)

61

Chapter 4. Discretization

which allows us to pre-compute most matrices. These are defined by equations (4.21),
(4.22), and (4.31) to (4.33). This results in a high-order discretization in space, where a
numerical flux couples elements. Boundary conditions are weakly enforced. Hence, the
DG discretization combines the high-polynomial order of finite element methods with
the numerical flux of finite volume methods [61].

4.2. ADER

In this section, we discuss the ADER time-stepping method, which is a predictor-corrector
scheme [156, 157, 159]. In the first step, the predictor evolves the PDE locally in one
element by expanding the numerical solution as a Taylor series in time. In the second
step, the corrector, we time-integrate our space discretization, which couples elements
through surface integrals, and insert the Taylor expansion. This results in a high-order
method in both space and time.

4.2.1. Cauchy-Kowalevski Procedure

The predictor gives us a solution of our PDE “in the small” [55], i.e., only considering
one element without its neighbors. [47] gives an overview of possible local predictors. For
linear problems without source terms, the most popular predictors lead to the same result.
This section follows the approach taken by [35], which develops the solution locally as
a Taylor series and computes time derivatives by manipulating the PDE directly. It is
called the Cauchy-Kowalevski procedure.
We begin by reminding ourselves of the order N Taylor-expansion of a vector-valued

function q in time, expanded around t0, which is given by

q(t) ≈
N∑
i=0

(t− t0)i
i!

∂ iq

∂ti
(t0). (4.35)

In our case, q is the solution of our PDE (equation (2.29)). Hence, it is not trivial to
compute its time derivatives. Let us first look at the continuous case in one dimension.
We start with the PDE

∂q

∂t
= −A∂q

∂x
. (4.36)

Differentiating by t leads us to

∂2q

∂t2
=

∂

∂t
(−A∂q

∂x
)

=
∂

∂x
(−A∂q

∂t
)

=
∂

∂x
(−A(−A∂q

∂x
))

= A2∂
2q

∂x2

, (4.37)

62

4.2. ADER

where we used the definition of the PDE (equation (4.36)) to replace the time derivative
of q with a space derivative. For derivatives of order i, we arrive at

∂ iq

∂ti
= (−1)iAi∂

iq

∂xi
. (4.38)

We can do the same thing for the discrete solution. As a detailed derivation can be
found in [35, 164], we only present a quick derivation. We follow the approach of [35].
The idea is the same that we demonstrated for the continuous case. First, we approximate
the ith time derivative of the discrete solution in our basis

∂ iqp
∂ti
≈ Di

lpϕl (4.39)

where we use the numerical solution as the zeroth derivative

D0
lp = qlp. (4.40)

We use this to expand our degrees of freedom in time around t = t0,

qlp(t) ≈
N∑
i=0

(t− t0)i
i!

Di
lp, (4.41)

similar to equation (4.35). This leaves us with the question: How can we compute the
coefficients of the time derivatives?
The first step is to consider our PDE in the reference coordinate frame. This can be

done by using the chain rule (equation (4.5)) and the element-local flux matrices (equa-
tion (4.19)), leading us to

∂q

∂t
= −A∗∂q

∂ξ
−B∗∂q

∂η
−C∗∂q

∂ζ
. (4.42)

Next, we differentiate in time recursively, arriving at

∂ iq

∂ti
=

(
−A∗ ∂

∂ξ
−B∗ ∂

∂η
−C∗ ∂

∂ζ

)
∂ i−1q

∂ti−1
, (4.43)

which gives us the solution for the ith order derivative in time. The second step is

expanding the derivative ∂ i−1q
∂ti−1 in our basis

∂ iqp
∂ti

=

(
−A∗

pq

∂

∂ξ
−B∗

pq

∂

∂η
− C∗

pq

∂

∂ζ

)
Di

qlϕl (4.44)

Finally, in the third step, we compute the coefficient with a least-squares projection (equa-
tion (4.10)), resulting in(∫

T̂
ϕlϕk dξ

)
Di

lp ≈
∫
T̂
ϕk

(
−A∗

pq

∂

∂ξ
−B∗

pq

∂

∂η
− C∗

pq

∂

∂ζ

)
Di−1

ql ϕl dξ. (4.45)

63

Chapter 4. Discretization

Here, we recognize the mass and stiffness matrices. Simplifying, we arrive at the recursive
scheme

MklD
i
lp = Kξ

lkD
i−1
lq A∗

pq +Kη
lkD

i−1
lq B∗

pq +Kζ
lkD

i−1
lq C∗

pq, (4.46)

which can be computed efficiently because the matrices can be pre-computed. Due to the
sparsity of the involved matrices, the coefficient vectors Di also become increasingly sparse
for higher order derivatives [15], which is unsurprising, as differentiating a polynomial
leads to a lower-order polynomial. SeisSol’s implementation automatically tunes the
kernels for the resulting sparsity pattern [166]. Finally, equations (4.41) and (4.46) allow
us to expand the numerical solution in time without considering neighboring elements.

4.2.2. One-Step Update

Now, we combine the Taylor expansion of the numerical solution with our space-
discretization (section 4.1.3) to create a fully discrete high-order method. We consider a
time step between t = t0 and t = t1. As we use an explicit time-stepping method, we
must adhere to the Courant-Friedrichs-Lewy (CFL) condition [22]. In our case, each
element has a time step size of

∆t ≤ C(N)h(|λmax|)−1, (4.47)

where h is the insphere of the tetrahedron and λmax is the maximum eigenvalue of the flux
matrix (i.e., the fastest wave speed) [35]. The constant C(N) ≤ (2N + 1)−1 depends on
the polynomial order N . A necessary but not sufficient condition for it is given by the von
Neumann stability analysis conducted in [34]. Note that this stability analysis assumes
periodic boundary conditions and a simpler homogeneous advection PDE without any
sources. Hence, the time step size can be even more restricted in practice.

Integrating a Taylor series (equation (4.35)), expanded at t = te, between t0 and t1
leads to ∫ t1

t0

q(t) dt ≈
N∑
i=0

(t1 − te)i+1 − (t0 − te)i+1

(i+ 1)!

∂ iq

∂ti
(te). (4.48)

The time step size (equation (4.47)) can differ between elements due to their size or
material. Fortunately, the ADER scheme can handle this elegantly. First, we define the
function

I(t0, t1, te) =
N∑
i=0

(t1 − te)i+1 − (t0 − te)i+1

(i+ 1)!
Di(te), (4.49)

which integrates the coefficient of our discrete solution (equation (4.41)), which was
expanded in a Taylor series around the expansion point te, from time t = t1 to t = t2
in one element. This is the discrete equivalent of equation (4.48). The expansion point
te ≤ t1 does not have to be identical to the start of the interval; however, we assume that

64

4.2. ADER

t1e t2e t3e t4e

t0 t1

1 2 3

Figure 4.3.: Sub-intervals when integrating between times t0 and t1. We assume that we
have the expansion points tie. In this case, we need to consider three intervals.
The first is the integration of the series with expansion point te1 from t0 to
t2e, given by the function I(t0, t

2
e, t

e
1). The second integral is computed by

I(t2e, t
3
e, t

2
e) and the third by I(t3e, t1, t

3
e).

the expansion point is before the start of the interval for reasons of causality. Due to the
aforementioned element-dependent time step size, we need to consider the case that we
have multiple Taylor series with different expansion points. For example, this can happen
when we compute the surface integral (equation (4.27)), which requires information from
neighboring elements with possibly different time step sizes.
We assume that the expansion points tie are ordered such that tie < ti+1

e . The clamp
function

clamp(x, a, b) = max(a,min(x, b)), (4.50)

gives the closest point to its input x that is in the interval [a, b]. We define a family of
intervals indexed by i

(ti0, t
i
1) := (clamp(tie, t0, t1), clamp(ti+1

e , t0, t1)) (4.51)

which gives us all partitions of our integration intervals with expansion points. The
function

J (t0, t1) =
∫ t1

t0

q(x, t) dt =
∑
i

I(ti0, t
i
1, t

i
e) (4.52)

integrates the coefficient of our numerical solution between t0 and t1 using all available
expansion points. In practice, the integrals of intervals of length zero are not computed,
as they have a value of zero. Figure 4.3 shows an example of the integration of an integral
that contains multiple expansion points. Analogously, we use J f (t0, t1) to denote the
integral of the solution of the neighboring element connected by the face f .

Next, we integrate equation (4.34) from t0 to t1, leading to

|J |Mklqlp(t1) = |J |Mklqlp(t0)

+A∗
pq Jlq(t0, t1)|J |Kξ

kl +B∗
pq Jlq(t0, t1)|J |Kη

kl + C∗
pq Jlq(t0, t1)|J |Kζ

kl

−
∑
f∈F

(
|Sf |A∗Lf

pq Jlq(t0, t1)FLf
kl

)
−
∑

f∈F int

(
|Sf |A∗Rf

pq J f
lq(t0, t1)F

Rfgh
kl

)
−
∑

f∈Fext

(
|Sf |A∗Rf

pq

(∫ t1

t0

q̂lq(τ) dτ

)
F̂Rf
kl

)
.

(4.53)

65

Chapter 4. Discretization

In this way, the time derivative of our coefficients vanishes, and we have achieved a fully
discrete one-step update that can compute the solution coefficients at time t1. This
requires the inversion of the mass matrix, but, as mentioned before, this is trivial because
it is diagonal.
We need to be careful with the nodal boundary condition in this framework. The

coefficients of the nodal boundary condition can depend on the time evolution of the
interior degrees of freedom. Additionally, some boundary conditions, for example, the
velocity inlet, prescribe time-dependent functions. Hence, in our ADER scheme, they
take the coefficients of the numerical solution, the coefficient of its derivative, and t as
arguments. After the boundary condition has been computed in the time interval, we
have to integrate it in time between t0 and t1. In the case of simple boundary conditions
that linearly depend on the interior values, we can directly define the integral of the
boundary values solely in terms of the time integral of the interior values.

Furthermore, dynamic earthquake rupture, as described in section 2.1.2, is implemented
as an interior boundary condition. This adds complexity, as the numerical flux is no
longer linear. Formally, the neighboring integral in equation (4.53) requires the solution
of a Generalized Riemann Problem, i.e., solving a Riemann problem with piece-wise
polynomial initial data. For linear numerical fluxes, we can replace it with a standard
Riemann problem as the time integration and the Riemann solver commute in this
case. As non-linear fluxes are out of the scope of this thesis, we refer the interested
reader to [164, Sec. 3.3]. We can add a point source by using the formulation given by
equation (2.35), integrating it in time, and adding it to equation (4.53)[72].3

To summarize, combining the Cauchy-Kowalevski expansion with our DG discretization
leads to equation (4.53), a one-step update scheme with a high convergence order in time
and space.

4.3. Gravitational Free Surface

We introduced the gravitational boundary condition in section 3.4.1. However, we have
not yet discussed how we can compute it efficiently. Our fully discrete scheme, as stated
by equation (4.53), requires the integral of the boundary values. This section presents
a novel and efficient numerical scheme to integrate this boundary condition into our
numerical scheme. The scheme is inspired by the ADER framework outlined in section 4.2.
We consider a time step from t0 to t1.

We remind ourselves of the pressure at the boundary

p′(x, y, z, t) = ρ0gη(x, y, t) at z = 0 (2.88 revisited)

and the displacement

∂η

∂t
= v3(x, y, z, t) at z = 0 (2.89 revisited)

3It is not added to the predictor. This implementation style uses Godunov splitting, i.e., treating the
PDE and source term separately. It can lead to a lower convergence order in time. Nevertheless,
schemes of this type tend to work well in practice [95].

66

4.3. Gravitational Free Surface

Together with the boundary state(
p∗

v∗1

)
=

(
ρgη

vL1 + 1
Z

(
pL − ρgη

)) (3.56 revisited)

this defines an ordinary differential equation (ODE) for η at the boundary, given by

∂η

∂t
= v∗1 = vL1 +

1

Z

(
pL − ρgη

)
(3.57 revisited)

As this is a linear ODE, we could solve it semi-analytically. This requires a time
integral of the numerical velocity vL1 and pressure pL. Furthermore, as we need the time
integral of η, we would need to use a nested quadrature rule, which is computationally
expensive.

Another approach is integrating equation (3.57) with a numerical ODE solver, for
example, a Runge-Kutta solver [97]. We can compute the integral of η (called H in the
following) by the ODE

∂H

∂t
= η,

H = 0 at t = t0,

η = η0 at t = t0,

(4.54)

at the same time as computing η itself! We used this approach in our first implementation
of this boundary condition [79]. However, it is very expensive, as we need to compute
multiple Runge-Kutta stages for each time step. Each Runge-Kutta stage requires the
computation of the values of uL and pL at multiple times and the projection of these
variables at the boundary. A further downside is that this requires the implementation
(and verification) of a different ODE solver for each polynomial order to achieve an
economical scheme. Especially for high-orders (≥ 5), after the Butcher barrier has been
breached, the number of required stages grows faster than the achieved order [19].

In this work, we take an alternative approach and compute the boundary condition
with the ADER method. As we will see, this is not only truly of arbitrary order but
also much more efficient than the Runge-Kutta approach. We expand the solution of our
ODE as a Taylor-Series,

η(t) ≈
N∑
i=0

(t− t0)i
i!

∂ iη

∂ti
(t0), (4.55)

similar to equation (4.35). We obtain the coefficients as in equation (4.38). Differentiating
equation (3.57) in time, we arrive at

∂2η

∂t2
=
∂vL

∂t
+

1

Z
(
∂pL

∂t
− ρg∂η

∂t
). (4.56)

67

Chapter 4. Discretization

Iteratively differentiating results in

∂0η

∂t0
= η,

∂ iη

∂ti
=
∂ ivL

∂ti
+

1

Z

(
∂ ipL

∂ti
− ρg∂

i−1η

∂ti−1

)
,

(4.57)

which is a simple recursive computation.

This algorithm requires the time derivatives of vL1 and pL evaluated at the beginning
of the time interval. They can be computed by the ADER scheme discussed earlier (equa-
tion (4.46)). As we use them for the time-stepping of our PDE, this requires no additional
effort. However, we need to project them from the three-dimensional modal basis to
the two-dimensional nodal face matrix, using the least-squares projection defined by
equation (4.11) followed by the Vandermonde matrix given by equation (4.13). Note that
this is cheaper than projecting the numerical solution, as we require fewer coefficients to
store derivatives in our modal basis as they are of lower polynomial degree.

The expansion as a Taylor series has the advantage that it is trivial to compute the
integral of η over the time step, as we can use equation (4.48) to integrate our series. We
also need to keep track of the new displacement at the end of the time step, which we
use as the initial displacement for the next time step. We can compute it by evaluating
the Taylor series (equation (4.55)) at t = t1. The recursion (equation (4.57)) for the ith
derivative only depends on the coefficients of the (i− 1)th derivative. Hence, we do not
need to store all coefficients. Algorithm 1 shows a pseudo-code implementation of this
method, which computes the displacement and its integral simultaneously. For simplicity,
we assume that the current displacement is already given in the face-aligned basis. In
practice, most degrees of freedom are stored in the global coordinate system but can be
easily rotated using equation (3.12).

In this section, we described a numerical scheme that computes both η and its integral
efficiently by expanding it as a Taylor series. This results in a high-order ODE solver
that reuses the derivatives of the numerical solution from the ADER time-stepping, as
described in section 4.2.

4.4. Summary & Computational Aspects

We derived a fully discrete high-order ADER-DG method, resulting in the one-step
update given by equation (4.53). We split this into a two-step scheme involving the
predictor p and corrector c update, resulting in

|J |Mklqlp(t1) = |J |Mklqlp(t0) + pkp + ckp. (4.58)

68

4.4. Summary & Computational Aspects

Algorithm 1 ADER integration of the gravitational free surface boundary condition
from t = t0 to t = t1. The displacement from the previous time step is η0 = η(t0),
and ∆t = t1 − t0 is the size of the current time step. For i = 0, . . . , N , we use the
derivatives vectors Di to reconstruct the pressure and velocity. This is accomplished
by the function projectAndRotateDerivatives, which projects the derivative vector
of order i at time t = t0 to the face basis and rotates it to the face-aligned coordinate
system. For simplicity, we assume that the displacement and its integral are stored in
the face-aligned coordinate system. We use equation (4.57) to compute the coefficients of

the Taylor series equation (4.55). The function returns both η(t1) and H =
∫ t1

t0
η(τ) dτ .

1: function ComputeDisplacement(η0, ρ, g, Z,∆t,D)
2: ηprevt ← η0 ▷ Initialize previous coefficient
3: H ← ∆tη0 ▷ Initialize integral of η
4: fη ← 1 ▷ Constant factor in Taylor series for η
5: fH ← ∆t ▷ Constant factor in Taylor series for H
6: for i ∈ 1 . . . N + 1 do
7: fη ← ∆t

i fη ▷ Update constant factor in Taylor series for η
8: fH ← ∆t

i+1fH ▷ Update constant factor in Taylor series for H

9:
∂ i−1v1
∂ti−1 |t=t0

, ∂
i−1p

∂ti−1 |t=t0
← projectAndRotateDerivatives(Di−1)

10: ηt ← ∂ i−1v1
∂ti−1 |t=t0

+ 1
Z

(
∂ i−1p
∂ti−1 |t=t0

− ρgηprevt

)
▷ Evaluate equation (4.57)

11: ηprevt ← ηt
12: η ← η + fηηt ▷ Update η
13: H ← H + fHηt ▷ Update H

14: return η,H

The predict kernel first computes the Taylor expansion of the solution using equa-
tion (4.46). Then, it computes the update

pkp = A∗
pq Jlq(t0, t1)|J |Kξ

kl +B∗
pq Jlq(t0, t1)|J |Kη

kl + C∗
pq Jlq(t0, t1)|J |Kζ

kl

−
∑
f∈F

(
|Sf |A∗Lf

pq Jlq(t0, t1)FLf
kl

)
−
∑

f∈Fext

(
|Sf |A∗Rf

pq

(∫ t1

t0

q̂lq(τ) dτ

)
F̂Rf
kl

)
,
(4.59)

consisting of the volume and local surface integrals. The correct kernel

ckp =−
∑

f∈F int

(
|Sf |A∗Rf

pq J f
lq(t0, t1)F

Rfgh
kl

)
(4.60)

computes the contributions of the numerical flux from the neighbors. The predictor
requires only element-local data, and the corrector requires only data from the neighbors.
In SeisSol, we add p and c directly to the vector of coefficients q once we compute the
updates, which avoids using additional storage. The resulting scheme is now a two-step
update. We will later discuss why this split is beneficial. In contrast to our ADER-DG

69

Chapter 4. Discretization

scheme, a standard Runge-Kutta DG method requires a mesh traversal for each stage.
Hence, for higher orders, the ADER-DG method is more efficient.

As we iterate over our elements, we solve the Riemann problem twice for each interior
face. This can lead to better performance than iterating over the faces individually [85].
The friction law required for dynamic rupture faces can be expensive, and thus, it is only
computed once per face [168].
We used and extended the ADER-DG implementation in the software SeisSol. It

achieves high efficiency by pre-computing all matrices and using the code generation
software YATeTo [166]. YATeTo maps the tensor expressions to general matrix mul-
tiplication (GEMM) kernels. As our matrices are small, SeisSol relies on optimized
backends such as LIBXSMM [59] or PSpaMM [172]. We refer the interested reader
to [164], which explains how the SeisSol implementation of the ADER-DG scheme can
be optimized and implemented with YATeTo. This framework was especially beneficial
for our implementation of algorithm 1 because it automatically inferred the sparsity of
the derivative coefficients.

We embedded the acoustic wave equation into the elastic wave equation, which allowed
us to use the same PDE. The physical interface conditions are included in the numerical
flux, as discussed in chapter 3. However, this embedding leads to a computational
overhead.

In this chapter, we derived a one-step upgrade scheme for variable linear PDEs of the
form given by equation (2.29). We achieved a high order in space with the Discontinuous
Galerkin approach (section 4.1.3). Combining this with the ADER predictor-corrector
scheme gave us a scheme that is also high-order in time (section 4.2). Finally, we used
both components to derive a novel high-order scheme for the gravitational boundary
condition (section 4.3).

70

Chapter 5.

Energy Stability

In this section, we prove the semi-discrete stability of the numerical scheme as outlined
in chapter 4 with the numerical flux discussed in chapter 3 for the acoustic wave equation
with gravity (section 2.2.2). We follow the approach of [50] and prove that our method is
Gustafsson-Kreiss-Sundström (GKS) stable or, more descriptively, energy stable. The
idea is that the norm of the numerical solution q(x, t) should not increase during the
simulation. We prove this by showing for all time t that the energy rate

∂∥q∥
∂t
≤ 0, (5.1)

does not increase, which implies that the norm ∥ · ∥ of the solution does not grow [175].
We define the physical energy, similar to equation (2.96), as

E(q) =

∫
Ω

1

2
ρv · v dx︸ ︷︷ ︸

kinetic energy

+

∫
Ω

1

2K
p2 dx︸ ︷︷ ︸

acoustic energy

+

∫
SO

1

2
ρgη2 dS︸ ︷︷ ︸

gravitational energy

=

∫
Ω

1

2
(Pq) · q +

∫
SO

1

2
ρgη2 dS

=

(
1

2
Pq, q

)
Ω

+

〈
1

2
ρgη, η

〉
SO

,

(5.2)

where we used the matrix

P =

1
K 0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 ρ

 (5.3)

and the shorthand notation (·, ·)Ω for the interior product over the volume Ω, which has
the boundary ∂Ω. The surface SO ⊂ ∂Ω defines the ocean surface on which we apply the
gravitational free surface boundary condition. We use the shorthand notation ⟨·, ·⟩SO

for
inner products over this surface. Equation (5.2) defines a norm of the extended solution
(q and η), as it is a positive symmetric transformation of the solution.

The energy rate, i.e., the derivative of the energy (equation (5.2)), is given by

dE

dt
=

(
Pq,

∂q

∂t

)
Ω

+

〈
ρgη,

∂η

∂t

〉
SO

(5.4)

71

Chapter 5. Energy Stability

which follows directly from the product rule.

The main result of this section is theorem 1.

Theorem 1. Assuming exact integration, the numerical scheme described in chapters 3
and 4 for the acoustic wave equation with gravity is energy stable because the energy E(q)
is non-increasing as

∂E(q)

∂t
≤ 0. (5.5)

Similar results have been proven in the literature: Uphoff proved the energy stability
for a DG discretization of the elastic part of the fully coupled model [164]. Wilcox,
Stadler, Burstedde, and Ghattas showed the stability for elastic-acoustic coupling for an
essentially identical Riemann solver [175]. Lotto and Dunham proved the energy stability
of a summation-by-parts finite difference discretization of a two-dimensional version of
the acoustic wave equation, including the gravitational boundary condition [97]. Hence,
we restrict this chapter to proving the stability of our DG discretization of the acoustic
part, including gravitational effects. To the best of our knowledge, this result is novel.

In the following, we will attack the problem in simple steps. We compute the energy
rate in section 5.1 and insert our discretization. Section 5.2 computes the energy flux
across all element interfaces and boundary conditions. We compute the gravitational
energy rate in section 5.3. Finally, section 5.4 completes the proof.

5.1. Energy

In this section, we derive the energy rate for our numerical flux. We use the hyperbolic
PDE

∂q

∂t
= −A(x)

∂q

∂x
−B(x)

∂q

∂y
−C(x)

∂q

∂z
(2.29 revisited)

with the flux matrices defined by equation (2.82). To simplify the notation, we denote
the flux matrices by (A,B,C) instead of (Aac,Bac,Cac). In the same spirit, we use T
for the acoustic rotation matrix defined by equation (3.13).

The total energy for our problem is not conserved in the L2 norm; however, when
ignoring boundary conditions, it is conserved in the norm defined by equation (5.2),
which we motivated by considering the physical energy. There is an additional argument
in favor of this norm: The flux matrices must be symmetric to apply the energy method,
as seen in the discussion in [113]. As our flux matrices are not symmetric, we need to
symmetrize them. The products of the matrix P with the flux matrices

Aij = (PA)ij = (PA)ji = δi2δj1 + δi1δj2,

Bij = (PB)ij = (PB)ji = δi3δj1 + δi1δj3,

Cij = (PC)ij = (PC)ji = δi4δj1 + δi1δj4,

(5.6)

72

5.1. Energy

are symmetric and do not depend on the material parameters. In other words, the matrix
P simultaneously symmetrizes the flux matrices. With this, we can follow the approach
discussed in [77] and write our PDE in the form

P (x)
∂q

∂t
= −A∂q

∂x
−B

∂q

∂y
−C

∂q

∂z
, (5.7)

where the matrix P captures the (potentially) discontinuous coefficients and thus depends
on space. The flux matrices (A,B,C) of this modified form are symmetric and do not
depend on space. Equation (5.7) defines a class of variable-coefficient hyperbolic PDEs for
which stability can be proven directly by applying the energy method [77]. In detail, their
energy (assuming dissipative homogeneous boundary conditions) is bounded in the norm
defined by the inner product

(
1
2Pq, q

)
T . We can interpret the energy

〈
1
2ρgη, η

〉
SO

of the
sea surface as a weighted norm of the displacement that has the correct unit. We will use
the form equation (2.29) in the following proof because it mirrors our implementation.

We split the energy rate (equation (5.4)) into a sum over all tetrahedra T by writing

dE

dt
=

(∑
T

(
Pq,

∂q

∂t

)
T︸ ︷︷ ︸

= ∂ET
∂t

)
+

(〈
ρgη,

∂η

∂t

〉
SO︸ ︷︷ ︸

= ∂EG

∂t

)
, (5.8)

where the inner product (·, ·)T denotes the inner product restricted to a tetrahedron T .
We now ignore the product over the gravitational surface (∂E

G

∂t) and focus on the other
interfaces and boundary conditions.
We compute the weak form of the energy rate by inserting the PDE, given by equa-

tion (2.29), into equation (5.8) and integrating by parts(
Pq,

∂q

∂t

)
T
= −

(
Pq, A

∂q

∂x
+B

∂q

∂y
+C

∂q

∂z

)
T

=

(
P
∂q

∂x
, Aq

)
T
+

(
P
∂q

∂y
, Bq

)
T
+

(
P
∂q

∂z
, Cq

)
T
− ⟨Pq, f∗⟩∂T ,

(5.9)

where we introduced the numerical flux f∗ in the inner product on the tetrahedron’s
surface, which we denote by ⟨·, ·⟩∂T .1 By integrating the volume term by parts again, we
arrive at the strong form(

Pq,
∂q

∂t

)
T
= −

(
Pq, A

∂q

∂x

)
T
−
(
Pq, B

∂q

∂y

)
T
−
(
Pq, C

∂q

∂z

)
T

+ ⟨Pq, f − f∗⟩∂T ,
(5.10)

with f = Ãq, where we used the rotated flux matrix Ã defined by equation (3.4). The
name “strong form” comes from the strict smoothness assumptions on q [84]. This form

1Equation (5.9) is equivalent to using Pq as a test function in equation (4.17).

73

Chapter 5. Energy Stability

has the attractive property that we can interpret the surface integral as a penalty term
that vanishes when q is continuous between elements.
Next, we consider the volume integrals in equation (5.9). We compute(

P
∂q

∂x
, Aq

)
T
+

(
P
∂q

∂y
, Bq

)
T
+

(
P
∂q

∂z
, Cq

)
T

(5.11)

=

(
ATP︸ ︷︷ ︸
=PA

∂q

∂x
, q

)
T

+

(
BTP︸ ︷︷ ︸
=PB

∂q

∂y
, q

)
T

+

(
CTP︸ ︷︷ ︸
=PC

∂q

∂z
, q

)
T

(5.12)

=

(
A
∂q

∂x
, Pq

)
T
+

(
B
∂q

∂y
, Pq

)
T
+

(
C
∂q

∂z
, Pq

)
T

(5.13)

=

(
Pq, A

∂q

∂x

)
T
+

(
Pq, B

∂q

∂y

)
T
+

(
Pq, C

∂q

∂z

)
T
. (5.14)

They are now identical to the negative of the volume integrals of equation (5.10).
We add the weak (equation (5.9)) and strong form (equation (5.10)) of the energy rate,

leading to

2

(
Pq,

∂q

∂t

)
T
= ⟨Pq, f − 2f∗⟩∂T . (5.15)

This is a crucial step of our proof, as it eliminates the volume term, leaving us only with
the contributions from the faces. Dividing by two and inserting the fluxes, we arrive at(

Pq,
∂q

∂t

)
T
=

〈
Pq, Ã

(
1

2
q − q∗

)〉
∂T
, (5.16)

where q∗ is the solution of the Riemann problem as described in chapter 3. The matrix
P fulfills the rotational invariance property

P = T −1PT , (5.17)

which follows from a straightforward computation.
The remaining surface integral is expressed in the global coordinate system; however,

we described our Riemann solver (chapter 3) in the face-aligned coordinate system. We
can rotate the surface integral with the manipulations

∂ET

∂t
=

〈
q, PÃ

(
1

2
q − q∗

)〉
∂T

(5.18)

=

〈
q, PT AT −1

(
1

2
q − q∗

)〉
∂T

(5.19)

=

〈
T −1q, T −1PT AT −1

(
1

2
q − q∗

)〉
∂T

(5.20)

=

〈
q̃, PA

(
1

2
q̃ − q̃∗

)〉
∂T
. (5.21)

74

5.2. Energy Rate from Faces

Equation (5.19) follows from inserting the rotational invariance of the flux matrix, given
by lemma 1 on page 30, and equation (5.20) from multiplying with the matrix T −1,
which is valid because the rotation matrix is orthogonal, i.e., T T = T −1. In the final
step, equation (5.21), we inserted the rotated degrees of freedom (equation (3.13)) and
used the rotational invariance of the matrix P (equation (5.17)).
To summarize, we have shown in this section that the energy contribution from any

tetrahedron only depends on the contribution of the surface integrals. Furthermore, we
can directly work in the face-aligned coordinate system.

5.2. Energy Rate from Faces

In this section, we discuss the contributions coming from the face integrals in more detail.
We switch the perspective: We split the contributions over tetrahedra in the previous
section; in this section, we consider the effect of the faces. This approach is more natural
as two elements contribute to an interior face. Thus, we can see how contributions
are balanced. For each pair of neighboring tetrahedra with indices m and n, we define
an interior face E intmn as their intersection. We must ensure that we include each face
only once and thus only consider faces with m < n. The exterior faces Eextl , indexed
by l = 0, . . ., are boundary faces. They intersect with exactly one tetrahedron. The
numbering of all faces is arbitrary and does not affect the overall analysis.
We again use the inner product notation ⟨a, b⟩E int

mn
to denote the inner product over

the face E intmn. An interior face has an energy contribution of

EE int
mn =

〈
q̃L, PLAL

(
1

2
q̃L − q̃∗

)〉
E int
mn

−
〈
q̃R, PRAR

(
1

2
q̃R − q̃∗

)〉
E int
mn

, (5.22)

which we get by summing the contributions of the tetrahedra Tn and Tm, which are given
by equation (5.21) [164]. Without loss of generality, we denote the element with index m
as the left (L) and the other with index R. The negative sign in equation (5.22) comes
from the definition of the normal vector. The matrices P and A can differ on both sides
of the face. However, the product PA does not depend on the material parameters as
seen in equation (5.6). Hence, it is identical for all elements.
The contribution of an exterior face is given by

EEext
l =

〈
q̃L, PLAL

(
1

2
q̃L − q̃∗

)〉
Eext
l

. (5.23)

In contrast to the interior faces, only one tetrahedron Tm contributes to this face. We
use the star states derived in section 3.4.1 for the boundary faces. We are now ready to
summarize the contributions from all faces.

Interior faces After inserting the star state, given by equation (3.46), into the energy
contribution of an interior face (equation (5.22)), we arrive at

EE int
mn =

∫
E int
mn

−Z
LZR

(
uL − uR

)2
+
(
pL − pR

)2
ZL + ZR

dS ≤ 0. (5.24)

75

Chapter 5. Energy Stability

For a smooth solution, the right and left sides are identical. In this case, the energy
contribution is zero.

Velocity inlet We insert equations (3.49) and (3.50) into equation (5.23) and arrive at
the energy rate contribution for a velocity inlet

EEv
l =

∫
Eext
l

Z
(
v∗1v

L
1 −

(
vL1
)2)− pLv∗1 dS (5.25)

which reduces to

EEv=0
l =

∫
Eext
l

−Z
(
vL1
)2

dS ≤ 0 (5.26)

for the zero-velocity boundary condition, where we set v∗1 = 0.

Pressure inlet We insert equations (3.52) and (3.53) into equation (5.23) and arrive at
the energy contribution

EEp
l =

∫
Eext
l

−Zp
∗vL1 − p∗pL + (pL)2

Z
dS. (5.27)

For the free surface condition, we set p∗ = 0. Hence, equation (5.27) reduces to

EEp=0
l =

∫
Eext
l

−(pL)2

Z
dS ≤ 0. (5.28)

5.3. Energy Rate from Gravity

In the previous section, we discussed how to compute the energy flux across most boundary
conditions. We have not yet discussed how to compute the energy rate resulting from
the gravitational surface. This is more challenging, as acoustic energy converts to
gravitational energy and vice versa. Hence, to achieve an energy-stable scheme, we also
need to consider the energy captured on the surface.

We begin with the contribution from the boundary condition. By inserting the states
for the modified free surface condition (equations (3.55) and (3.56)) into equation (5.27),
we arrive at a contribution of

E
Eg
l

1 =

∫
Eext
l

ρgη

(
pL

Z
− vL1

)
−
(
pL
)2

Z
dS, (5.29)

which may be positive.
Next, we look at the change in gravitational energy. We combine the definition of the

displacement

∂η

∂t
= v∗1 = vL1 +

1

Z

(
pL − ρgη

)
(3.57 revisited)

76

5.4. Proof

with the gravitational energy rate

∂EG

∂t
=

〈
ρgη,

∂η

∂t

〉
SO

. (5.30)

Focusing on one face of the gravitational surface, we arrive at a contribution of

E
Eg
l

2 =

∫
Eext
m

−ρ
2g2η2 − ρgη(ZvL1 + pL)

Z
dS, (5.31)

which, similarly to equation (5.29), is not necessarily negative.
Finally, we look at the overall energy rate of the gravitational part of our system.

By adding the energy rate of the gravitational boundary face (equation (5.29)) and
equation (5.31), we get an overall energy rate for each gravitational face of

EEg
l = E

Eg
l

1 + E
Eg
l

2 =

∫
Eext
m

−
(
ρgη − pL

)2
Z

dS ≤ 0. (5.32)

This is non-positive!

5.4. Proof

This section combines our partial results to prove that the energy rate for the acoustic
wave equation without source term and with free surface, zero-velocity, and gravitational
free surface boundary conditions is non-positive.

Proof of theorem 1. We collect all interior, zero velocity, free surface, and gravitational
faces in the sets E int,Ev=0,Ep=0 and Eg. Then, by combining the results for interior
faces (equation (5.24)), zero-velocity (equation (5.26)) and free surface (equation (5.28))
boundary conditions, with the total gravitational energy contribution (equation (5.32)),
we arrive at the total energy rate of

∂E

∂t
=

 ∑
E int
mn∈E int

EE int
mn

+

 ∑
Ev=0
l ∈Ev=0

EEv=0
l

+

 ∑
Ep=0
l ∈Ep=0

EEp=0
l

+

 ∑
Eg
l ∈Eg

EEg
l

 , (5.33)

which is non-positive because all contributions are non-positive. This proves theorem 1!

The DG method is not strictly energy preserving because it weakly enforces the
boundary condition and the continuity between elements. The resulting energy dissipation
stabilizes the DG method [84]. To summarize, our numerical flux (chapter 3) combined

77

Chapter 5. Energy Stability

with the DG discretization (chapter 4) leads to a numerical scheme for which we can
guarantee that the energy of the numerical solution cannot increase, assuming exact
time-integration. Therefore, our numerical scheme is semi-discrete stable. This result is
especially interesting for the gravitational boundary condition, as it reveals why we must
define η by equation (3.57), which requires solving an ODE: Other choices would lead to
an unstable method.

78

Chapter 6.

Local Time-Stepping

As we use ADER-DG (chapter 4), an explicit numerical scheme, we must adhere to a
CFL-type (equation (4.47)) condition for the time step size. The standard method is to
use global time-stepping (GTS): It updates all elements together and uses the smallest
global time step size. While this works well for simple cases, in realistic scenarios, we
often have vastly different element sizes. We compute regions of interest with greater
detail and—to save computational costs—compute less relevant regions with a coarser
resolution. For example, we use elements with larger physical sizes to avoid spurious
reflections from our not perfectly absorbing boundary conditions. The solution in these
elements does not produce relevant outputs. Another reason for heterogeneous time
step sizes is that wave speeds vary spatially. For elastic-acoustic coupling, the wave
speeds in the fluid (e.g., for ocean water c ≈ 1.5 km s−1) are far smaller than in the Earth
(e.g., in the crust cp ≈ 6 km s−1) [39]. We can avoid the latter issue to some extent by
adapting the element sizes to the wavelength of the medium [175]. A more significant
problem stems from the imperfectness of meshing software. When resolving intersections
between parts of the mesh, such as the fault and the ocean floor, meshing software can
create ill-shaped elements called slivers. Even a single sliver can drastically reduce the
time-to-solution [13]!

But we can do better: We use local time-stepping (LTS), where elements are updated
with different time step sizes [37]. The ADER-DG scheme laid out in chapter 4 allows
us to use heterogeneous time step sizes directly. In this chapter, we explore an elegant,
performant, and robust implementation of local time-stepping for ADER-DG. As we
consider linear PDEs, the time step size depends only on the material parameters and
on the size of each element but not on the numerical solution. Hence, we only need to
consider static load balancing, which simplifies the algorithms.

We begin by explaining the overall structure of our local time-stepping scheme in
section 6.1. We use a clustered LTS method [13], which groups elements with similar time
step sizes in clusters that are updated together. Section 6.2 follows with an explanation
of the necessary changes to the numerical scheme and the resulting constraints on the
updates. In section 6.3, we describe a simplified algorithm that updates all elements.
We introduce an actor model, which combines a state machine, which keeps track of
each cluster’s state, with message passing, which explicitly manages the communication
between clusters and thus makes the information flow clearer. This abstraction allows us
to elegantly encode the scheduling constraints. In section 6.5, we describe how we can map
our numerical scheme, as described in chapter 4, to our abstractions. Additionally, we

79

Chapter 6. Local Time-Stepping

briefly describe how we can add shared memory parallelism. We explain the distributed
memory parallelism in section 6.6. Section 6.7 combines everything to create an elegant
and stable scheduling algorithm optimized for parallelism. Finally, in section 6.8, we
show how to automatically fine-tune the LTS clustering to decrease the time-to-solution.
We summarize the resulting numerical scheme in section 6.9.

6.1. Clustered LTS

While it is possible to use a separate time step size for each element [37], this leads to a
complicated update scheduling, which is hard to parallelize. The theoretical speed-up,
which comes directly from reducing the number of total updates, is optimal, but the
practical speedup is not. Hence, this approach is not attractive for HPC applications.

Instead, we use the clustered LTS method developed in [13]. The idea is to use time
clusters: We update all elements in a cluster with the same time step, which is not
larger than the time step required by the CFL condition. Therefore, the resulting scheme
is stable but updates some elements more often than strictly required. Each element
should thus belong to the cluster with the highest possible time step size because this
reduces the computational cost. Let (∆t)min be the globally minimal time step size. We
consider a clustering strategy following [13] for which the ith cluster has a time step size
of ri(∆t)min, where r ∈ N, r > 0 is the time step rate.

Consider, for example, a rate-2 scheme with three clusters and a minimum time step
size of (∆t)min = 0.25:

Cluster 0 has ∆t = 20 (∆t)min = 0.25 and a rate of 20.

Cluster 1 has ∆t = 21 (∆t)min = 0.5 and a rate of 21.

Cluster 2 has ∆t = 22 (∆t)min = 1 and a rate of 22.

We note that cluster 0 has the smallest and cluster 2 has the largest time step. In this
case, all elements with a time step size between 0.25 and 0.5 belong to the zeroth cluster,
all elements with a time step between 0.5 and 1 belong to the first cluster, and all other
elements belong to the second cluster.

We use the constant λ ∈ (0.5, 1.0]. For now, we assume that λ = 1, but we will return
to this parameter later. The first cluster contains elements with time step sizes in the
interval

[λ(∆t)min, 2λ(∆t)min) , (6.1)

the second cluster has elements of size

[2λ(∆t)min, 4λ(∆t)min) , (6.2)

and so on. We assume that we have m clusters. The last cluster can be open, meaning it
contains all elements with a time step size larger than the lower end of the last cluster,

80

6.2. Numerical Considerations

as done in [12]. Formally, we define the ith cluster as the cluster that collects elements
with time steps in the interval

Ci =
{[

2iλ(∆t)min, 2
i+1λ(∆t)min

)
if i < m− 1,[

2iλ(∆t)min, ∞
)

otherwise.
(6.3)

We call i the cluster id. Next, we define the operator clusterId that matches an element
with time step size ∆t to a cluster. Formally, the function

clusterId(∆t) = argmini {Ci | ∆t ∈ Ci} , (6.4)

returns the id i of the time cluster that contains the time step size ∆t.
We assume that our clustering obeys the maximum difference invariance, which

tremendously simplifies our implementation by reducing the number of possible cases [13].

Definition 2. A clustering obeys the maximum difference invariance if for all elements l1
and all of its neighbors l2 ∈ N (l1) we have that | clusterid(l1)− clusterid(l2)| ≤ d, where
d is the maximum allowed distance.
In our case, d = 1 unless l1 shares a dynamic rupture face with l2, in which case we

set d = 0, as in [168].

6.2. Numerical Considerations

As the previous section showed, setting up our LTS clustering is straightforward. However,
we must change the numerical scheme, including what data we store. As outlined in
section 4.4, we split our computations into predictor and corrector kernels. The predictor
is an element-local process. Hence, it requires only data from one element. The corrector
kernel requires time-integrated face data of the element’s neighbors in addition to its own
data. The neighbors may have different time step sizes, in which case the computations
involve data from multiple time steps. Our one-step update equation (4.53) already
includes this. However, we must ensure that all required data is available before computing
a correction and that the predictor does not override any data necessary to correct other
clusters.

The predictor computes a Taylor expansion of the numerical solution in time, which is
then used by the corrector of this and all neighboring elements. As discussed earlier, the
function defined by equation (4.52) allows us to integrate the degrees of freedom between
the beginning of a time step t0 and its end t1 by summing up a Taylor series.

To efficiently implement local time-stepping, we need to compute the data while keeping
the storage overhead as small as possible. In the following, we assume that our element
i has a time step size of (∆t)i and that we have an r-rate scheme. We must consider
all neighbor elements k, which potentially have a different time step size than i, for the
data storage. We only need to differentiate three cases thanks to the maximum difference
invariance (definition 2).
The first case is the simplest one. Both our element and the neighbor have the same

time step. In this case, both elements are in the GTS configuration. No additional data

81

Chapter 6. Local Time-Stepping

is needed to reconstruct the solution, as the neighbor k can directly use the integrated
quantities of our element i for the correction step. However, the current element must
not overwrite its integrated quantities before the neighbor consumes them.

In the second case, the neighboring cell has a time step of 1
r (∆t)k = (∆t)i. Our element

i takes one time step for every r time steps that the neighbor takes. After we perform a
prediction, we must store the resulting derivatives in a buffer. The neighbor k then uses
these data to compute the integrated solution from the derivatives of i by evaluating
equation (4.52). Here, the neighbor must keep track of the expansion point of the Taylor
series, i.e., the time at which we evaluated the derivatives of i. Thus, the element i must
not perform further predictions until the neighbor has consumed the derivatives.

In the third case, the neighboring element has a time step of r(∆t)k = (∆t)i. Our
element i takes r time steps for each time step of the neighbor k. In the prediction, our
element i computes the integral of the solution over multiple time steps by summing
up the integrated solutions. The neighbor k directly uses these integrated values in its
correction step. Additionally, the element i must reset its buffer every r time steps—after
ensuring that the neighbor has already consumed the data.

As we have seen in this section, while ADER-DG allows for local time-stepping without
extensive modifications, data dependencies introduce constraints for the scheduling of
the operations. The storage overhead is relatively small. If the elements have a different
time step size, we need to store a buffer for the derivatives of one time step or the
integral of the solution over multiple time steps. In some cases, for example, when we
have one neighbor with a smaller and one with a higher time step rate, we store the
derivatives and the integrated solution. We organize the data in our implementation
so that each element manages all data it generates. Furthermore, we always store the
volume data, even though the corrector only requires the solution at the faces. Thus,
each element only writes local data in the predictor step, reducing the necessary memory
transfer. However, we move the cost to the correction step, which accesses data from
other elements and must compute the face projection. If required, it must reconstruct
the integrated numerical solution from the derivatives.

6.3. The Time-Stepping Algorithm

In this section, we show a simplified version of our time-stepping algorithm. We assume
we have an arbitrary number of time clusters but do not use distributed memory
parallelization. We define a function advanceInTime that advances our simulation to the
next synchronization point tsync. Examples of synchronization points are the end of the
simulation or moments when we want to output data. At these points, all time clusters
must reach the same simulation time.

Algorithm 2 shows a possible implementation of advanceInTime. It is a simplified
version of the algorithm that we use in practice. The pseudocode does not define all
operations. Briefly, setSyncTime followed by reset primes the cluster to start the
time-stepping anew with the final goal of reaching the new synchronization time tsync.
The function act steps the cluster forward in time—but only if it is currently possible.

82

6.3. The Time-Stepping Algorithm

1.
p:4
c:0

p:2
c:0

p:1
c:0

2.
p:4
c:0

p:2
c:0

p:1
c:1

4.
p:4
c:0

p:2
c:2

p:2
c:2

5.
p:4
c:0

p:4
c:2

p:3
c:2

6.
p:4
c:4

p:4
c:2

p:3
c:3

7.
p:4
c:4

p:4
c:2

p:4
c:3

8.
p:4
c:4

p:4
c:4

p:4
c:4

3.
p:4
c:0

p:2
c:0

p:2
c:1

Figure 6.1.: This figure shows how clusters are updated in a rate-2 LTS scheme with
three clusters. The left-most cluster has a rate of 4, the center of 2, and the
right-most of 1. Each panel shows all updates that are currently possible.
Rectangles with dashed borders correspond to planned updates. Solid borders
represent already finished updates. Unfilled boxes are predictions, and filled
boxes are corrections. Above each cluster, p and c correspond to the number
of predictions and corrections, multiplied by the cluster’s rate, that the
cluster has computed after the planned updates have taken place. We can
interpret p, c as the simulation time in the unit of (∆t)min. For example,
in the first panel, each cluster may predict. In the second panel, only the
cluster with the smallest time step size can correct.

83

Chapter 6. Local Time-Stepping

Algorithm 2 Simple time-stepping algorithm using our local time-stepping method. We
update all clusters in the set C until t = tsync.

1: function advanceInTimeSimple(C, tsync)
2: for cluster ∈ C do
3: cluster.setSyncTime(tsync)
4: cluster.reset()

5: hasFinished ← false
6: while ¬hasFinished do
7: hasFinished ← true
8: for cluster ∈ C do
9: cluster.act()

10: hasFinished ← hasFinished ∧ cluster.synced()

Hence, it needs to ensure that all required data for the update is available and that we
do not overwrite data before a neighboring cluster has used it. If the update is legal, act
computes it. Otherwise, act does not perform any action. Hence, this method abstracts
both the update and its scheduling. Finally, the method synced returns true if and only
if the cluster has reached the sync point at t = tsync.

To appreciate the simplicity of this algorithm, we invite the reader to compare it to the
original implementation of [13], which iteratively checks which clusters can be updated and
then schedules the updates manually. We will later arrive at a more complicated algorithm
necessitated by the parallelization strategy and resulting optimizations. However, the
spirit of the implementation stays the same.

6.4. The Actor Model

In this section, we set up our time cluster scheduling by defining the missing operations
from algorithm 2. Again, we restrict ourselves to the sequential case. The key difference
of our implementation to [13] is that we use a state machine approach. We introduce
the abstraction of an actor: An actor manages exactly one cluster. Every actor manages
its scheduling on its own. Thus, no global scheduling step is necessary. Actors commu-
nicate their status to their neighbors directly, resulting in a more robust and simpler
implementation compared to [13].

Each actor can be in exactly one of the following states:

Synced (S) This actor has reached the next synchronization point. It lies dormant until
a new synchronization point is set.

Predicted (P) The actor has computed a local prediction.

Corrected (C) The actor has computed a correction using information from its neighbors.

We also define a set of actions that an actor can perform. Correct and Predict perform
a correction and prediction, respectively. Sync moves an actor into the synchronized

84

6.4. The Actor Model

Synced Corrected Predicted
Predict | mayPredict()

Correct | mayCorrect()

RestartAfterSync

Sync | maySync()

Figure 6.2.: The states (represented by nodes) are connected by actions (edges). Synced
is both the start and the only accepting state. Only legal actions are shown.
The notation for the edges reads as “Action | Requirement”. RestartAfter-
Sync can be considered as an action that is triggered from outside of the
cluster by the scheduler.

state, which can be left by restarting it, as indicated by the RestartAfterSync action.
We define the Nothing pseudo-action for convenience: It does not do anything.

Figure 6.2 shows by which actions a cluster can move from one state to another. This
diagram is already enough to eliminate a large category of possible bugs: For instance,
it is impossible to move from Predicted directly to Synced without passing through
Corrected. Furthermore, a prediction cannot follow another prediction but only a
correction.
However, as mentioned in section 6.2, there are other constraints on the actions that

we need to consider. To keep track of these constraints, we introduce counters and
other state variables that keep track of each cluster’s progress. Each cluster (indexed by
i = 0, . . . ,m− 1) has a time step rate of

(∆s)i = ri. (6.5)

For example, if we have a rate-2 LTS scheme with a minimum time step size of 1/2 and
our cluster has a time step size of 1, it has a cluster index of i = 1 and thus a rate of
(∆s)1 = 21. Hence, each cluster measures its progress by the number of time steps that
the cluster with the smallest time step would have needed. This allows us a simpler
notation because we can compare the progress of clusters directly, even if they have a
different time step size. Each cluster i counts the predictions spi and corrections sci since
the last synchronization point. The variable ssi counts the total number of corrections
until the next synchronization point. We reset this counter after each synchronization
point. It is computed for a cluster i by

ssi =

⌈
(∆s)i

tsyncn+1 − tsyncn

(∆t)i

⌉
, (6.6)

where tsyncn is the time of the nth synchronization point, (∆t)i is time step size of the
cluster and ⌈·⌉ denotes the ceiling function.1 This is the only part of the scheduling that
directly depends on the simulation time. Furthermore, we store the last correction time in

1This can lead to some time steps with a time step size of zero. However, this simplifies the implementation
drastically and does not lead to significant overhead for typical simulations.

85

Chapter 6. Local Time-Stepping

the counter tci . It is needed for the computation of integrals and for other time-dependent
kernels.

The counter
sni = max (sci + (∆s)i, s

s
i) (6.7)

gives the number of corrections that the ith cluster has computed after it has completed
the next correction. From this, we can extract the adjusted time step rate(

∆s
)
i
= max (sni − sci , (∆s)i) , (6.8)

which is the maximum time step rate such that the cluster i does not step over the next
sync point.
Each cluster stores these counters for itself but also keeps “shadow counters” that

keep track of the state of its immediate neighbors. We denote these by an underbar.
For example, the shadow counter of sci is denoted by sci . We simplify our notation by
assuming that each cluster stores all relevant counters in the tuple Ωi. Furthermore,
we often drop the underbar whenever we do not need to differentiate between real and
shadow counters.
We define Boolean functions that evaluate the necessary conditions to change into a

new state. They only depend on Ωi. We consider a cluster i with neighbors with indices
k ∈ Ni. The function

maySync(Ω) = sci ≥ ssi (6.9)

checks whether we have reached the next synchronization point. This is the case if the
number of corrections we performed is at least equal to the number of steps until a
synchronization point. The function

mayPredict(Ω) =

{
¬maySync(Ω) ∧ spi < argmink∈Ni

snk if |Ni| > 0,

¬maySync(Ω) else,
(6.10)

checks whether we can compute a local prediction. If the cluster has no neighbors, this
is always the case. Otherwise, the cluster needs to ensure that it has not predicted
past the next correction time of all neighbors. This avoids overwriting data that a
neighboring cluster requires. Furthermore, we only allow a prediction if we are not yet
past a synchronization point. The function

mayCorrect(Ω) = ∀k ∈ Ni : (s
p
i ≥ s

p
k) ∨ (ssk ≤ spk) (6.11)

verifies that we can perform a correction. The first condition checks that we have
predicted at least as far as all neighbors k. The second condition considers the case
that the neighbor has predicted to the next synchronization point. If at least one of
these criteria is fulfilled for all neighbors, we can safely correct as all necessary data are
available.

Again, note that we stated all criteria in terms of the number of time steps instead of the
absolute simulation time. The latter method was used in the original implementation [13].
It can lead to problems due to floating point inaccuracies, especially when we have

86

6.4. The Actor Model

Algorithm 3 Function that returns the next legal action of a cluster. The tuple Ω stores
the counters for the current cluster and all relevant neighbors. If no action is legal, it
returns Nothing. The action RestartAfterSync is triggered when the scheduler resets
the counter sci .

1: function getNextLegalAction(Ω)
2: processMessages() ▷ Update shadow states
3: switch state do
4: case Corrected
5: if maySync(Ω) then
6: return Sync
7: else if mayPredict(Ω) then
8: return Predict
9: case Predicted

10: if mayCorrect(Ω) then
11: return Correct
12: case Synced
13: if sci = 0 then ▷ Check if this is the first step after sync point
14: return RestartAfterSync

15: return Nothing ▷ No action is legal currently

many clusters (leading to a high maximal rate) and a small minimal time step size. In
contrast, the only place where the simulation time is taken directly into account in our
scheduling method is for handling synchronization points. This is natural and necessary
because synchronization points are defined with respect to the simulation time and not
the number of time steps.

With these definitions, writing a function that returns the next legal action is trivial.
Algorithm 3 defines such a function. Only a maximum of one action is legal at any time.
Otherwise, the algorithm would not be deterministic. Here, Nothing is treated as a
pseudo-action: It is a signal that no action is legal at this moment.

The action is then performed by unsafePerformAction, as illustrated in algorithm 4.
The functions enterCorrected and enterPredicted, defined in algorithm 5, are called
before the cluster enters the Corrected or Predicted state, respectively. For now, we
treat the concrete implementation of the functions predict and correct, which perform
the actual computations, as black boxes.

We described the necessary state transitions but have not clarified how to update Ω.
The local part of Ωi, i.e., the part that describes the progress of the current cluster, is
updated after we compute a correction or prediction. The shadow counters that track
the state of the neighboring clusters are updated via message passing. This has the
advantage that we directly model the flow of information between clusters. We must
ensure that each cluster updates its shadow states before deciding on the next action.

Due to the maximum invariance property (definition 2), each cluster is only connected
to a maximum of two other clusters whose time step size differs by a factor of exactly

87

Chapter 6. Local Time-Stepping

Algorithm 4 A function that performs one action of one cluster. The naming unsafe
indicates that it does not verify that the action is legal. The functions enterCorrected
and enterPredicted are defined by algorithm 5. The function start initializes the
cluster.

function unsafePerformAction(action, Ω)
switch action do

case Correct
enterCorrected()
state ← Corrected

case Predict
enterPredicted()
state ← Predicted

case Sync
state ← Sync

case RestartAfterSync
start()
state ← Corrected

r. This is shown by figure 6.3. We implement the message passing by using message
queues. Each cluster manages one queue per neighbor. Consider, for example, the cluster
with id i = 2 that is connected to clusters 1 and 3. Cluster 2 maintains a queue for
incoming messages from cluster 1 and cluster 3. It also holds a reference to the incoming
queues of cluster 1 and 3. From the perspective of cluster 2, these are called outgoing
queues. Hence, for each pair of connected clusters, we have two queues. As clusters hold
a reference to the queues of their neighbors, they can directly push messages to them.

We define Boolean functions that determine whether we should send a message. These
functions are evaluated for each neighbor k after we have updated the local parts of Ωi.
A cluster i sends a message to a neighbor k if

justBeforeSync(Ω, i) = ssi ≥ spi
maySendMessagePrediction(Ω, i, k) = justBeforeSync(Ω, i) ∨ spi ≥ snk ,
maySendMessageCorrection(Ω, i, k) = justBeforeSync(Ω, i) ∨ sci ≥ spk.

(6.12)

Each message consists of a tag and an update for the shadow counters. Possible tags
are AdvancedPrediction and AdvancedCorrection, sent after a successful prediction
and correction, respectively. Algorithm 6 processes incoming messages. The methods
handleAdvancedCorrectionMessage and handleAdvancedPredictionMessage can be
used to update the internal states when receiving a message from a neighbor. As updated
counters often result in new legal actions, updating the shadow counters as quickly
as possible is crucial for good performance. Hence, before evaluating the transition
conditions, we process all messages in line 2 of algorithm 3.
With these ingredients, we can finally state algorithm 7, which updates a cluster if

possible. This method has only two self-explanatory lines: First, find the legal action.
Second, the function unsafePerformAction, defined by algorithm 4, performs this action.

88

6.4. The Actor Model

Algorithm 5 The functions enterCorrected and enterPredicted perform an action,
update the local part of Ω, and send messages to all neighboring clusters. The func-
tions maySendAdvancedCorrectionMessage and maySendAdvancedPredictionMessage

are defined by equation (6.12). The functions correct and predict compute a correction
or prediction, respectively. The functions sendAdvancedCorrectionMessage(k, sci , t

c
i)

and sendAdvancedPredictionMessage(k, spi) send a message to the message queue of
the cluster with index k. Note that we send the last correction time but do not send the
last prediction time, as it is not required by our algorithm. The message contains the
updated counter. We define all functions for a cluster with index i.

function enterCorrected(Ω, i)
correct()
sci ← sci + (∆s)i
tci ← tci + (∆t)i
for k ∈ Ni do

if maySendAdvancedCorrectionMessage(Ωi, i, k) then
sendAdvancedCorrectionMessage(k, sci , t

c
i)

function enterPrediced(Ω, i)
predict()
spi ← spi + (∆s)i
for k ∈ N do

if maySendAdvancedPredictionMessage(Ωi, i, k) then
sendAdvancedPredictionMessage(k, spi)

We have seen how we can describe our state machine algorithmically. Now, we briefly
describe how it could be formalized. It is convenient to describe our framework as a state
machine. However, state machines typically do not provide strong enough abstractions to
be used as a model for complex algorithms where the state transitions depend on multiple
factors. We take inspiration from the state chart framework introduced in [53], which
extends the finite state machine approach for event-driven algorithms. Our notation
deviates from the state chart formalism and follows the standard notation of finite state
machines with minor additions. Thus, our notation follows mostly the standard notation
for state machines, described, for example, in [142]. The set of actions corresponding to
the state machine’s alphabet is given by

Σ = {RestartAfterSync, Sync,Predict,Correct} (6.13)

and the set of states as

S = {Synced,Corrected,Predicted}. (6.14)

The initial state is s0 = Synced and the set of accepting states is F = {Synced}.

89

Chapter 6. Local Time-Stepping

Algorithm 6 A function that processes messages and updates Ω accordingly. Here, we
marked the shadow counters, i.e., a counter for a neighbor that needs to be manually
synchronized, with an underbar. For example, spk is the shadow counter for spk. We
assume that the message variable is an object that contains counter updates.

function processMessages(Ω)
for k ∈ Ni do

if k.inbox.hasMessages() then
message ← k.inbox.pop() ▷ Get a message from message queue
switch typeof(message) do

case AdvancedPredictionMessage
spk ← message.spk
handleAdvancedPredictionMessage(k, message)

case AdvancedCorrectionMessage
tck ← message.tck
sck ← message.sck
handleAdvancedCorrectionMessage(k, message)

C0-I C1-I C2-I

Figure 6.3.: Connection between clusters when we do not use a distributed memory
parallelization. The nodes represent clusters. The node labels correspond
to the clusters, e.g., “C0-I” is the zeroth cluster, which is connected to the
first but not the second cluster. A cluster only communicates with clusters
that are directly connected to it. Hence, it does not use data from other
clusters and does not need to consider other clusters for its scheduling. This
directly reveals that our LTS scheme only requires local constraints and local
communication.

Furthermore, we define the higher-order function

e(s) =

enterSync if s = Synced,

enterCorrect if s = Corrected,

enterPredict if s = Predicted,

(6.15)

that maps a state s ∈ S to a function. Whenever we enter a state s, we evaluate the
function returned by e(s). The function should be considered a non-pure function, i.e.,
it is allowed to perform arbitrary side effects, including, but not limited to, updating
the state of the cluster. This extension was also introduced in [53]. We define the
state-transition function δ : S × Ω→ Σ that, given a state and cluster status description
Ω, returns the next state for this cluster. We can define this implicitly by looking at

90

6.5. Computations & Shared Memory Parallelization

Algorithm 7 Function that moves one time cluster forward in time. It is always safe
to call it, as it checks which action is legal. If no action is legal, the function does not
perform any action.

1: function act(Ω)
2: nextAction ← getNextLegalAction(Ω)
3: unsafePerformAction(nextAction)

figure 6.2, or more concretely, as

δ(Synced,Ω) =
{
Corrected if restartAfterSync(Ω),

δ(Corrected,Ω) =

{
Synced if maySync(Ω),

Predicted if mayPredict(Ω),

δ(Predicted,Ω) =
{
Corrected if mayCorrect(Ω).

(6.16)

It is a partial function because, sometimes, no action is legal. Re-entering a state is illegal
as we omitted the Nothing action. Hence, the resulting state graph is deterministic:
Only up to one action is legal at any point. Finally, we can define the state machine
describing one cluster with the tuple (S,Σ, δ, s0, F, e), which is identical to a standard
state machine description with two significant differences: First, the state-transition
function δ depends on the state of the cluster. Second, the description contains the
function e responsible for the side effects.

To summarize, the actor model combines state machines with message passing to
manage the states of the clusters.

6.5. Computations & Shared Memory Parallelization

We have discussed under which conditions we can move between states. In this section,
we finally discuss how we perform the actual computations.

As mentioned before, algorithm 6 calls the methods handleAdvancedCorrectionMes-
sage and handleAdvancedPredictionMessage whenever an actor receives a message
that a neighboring cluster has finished a correction or prediction. For a correction
message, a cluster does not need to do anything. Whenever the cluster i receives a
prediction message from a neighbor k with a higher time step rate, it must store k’s
last correction time tck in the shadow counter tck. As k has a higher time step rate, it
provides the coefficients of the Taylor series of its solution. The coefficients are given
by the derivative of the solution of k, evaluated at tck. The cluster i must integrate the
numerical solution of all elements in the cluster k with equation (4.52), which requires
the expansion time of the Taylor series.

We compute the kernels in the methods correct and predict. The implementation
follows the description in section 4.4. As discussed, our computations are grouped in
two mesh traversals. In our implementation, which follows the strategy outlined in [13,

91

Chapter 6. Local Time-Stepping

168], we parallelize on this level: We update the clusters sequentially and execute the
correction and prediction kernels separately. Each mesh traversal is parallelized using
OpenMP [23], requiring a single #pragma omp parallel for for each loop.

The method predict computes the prediction kernel, which consists of using ADER to
expand the solution as a Taylor series in time (equation (4.46)), and local updates (equa-
tion (4.59)). The method correct performs the correction, which consists of solving
the Riemann problem between the current element and all of its neighbors on their
time-integrated data (equation (4.60)). Hence, the neighbor may need to integrate the
Taylor series to reconstruct the time-integrated data if they are not already available.
Thus, we only need to store derivatives if a neighboring cluster requires them. In the
corrector, we also consider faces with a dynamic rupture boundary condition, as described
in [168]. For details about how we store the data, refer to section 6.2 and the description
in [13, 164].

Finally, we note that the actor model would allow for another level of parallelism: We
could execute actors in parallel, which would require adding mutexes in the message
queues and using a parallelism framework that supports nested parallelism. As the
naive approach leads to good performance for most scenarios, we restrict ourselves to
parallelism on the kernel level.

6.6. Distributed Memory Parallelization

Up to this point, we only discussed the shared memory case. In this section, we describe
how we can extend our LTS scheme with distributed memory parallelization. We subdivide
our mesh and distribute the work over multiple ranks. Each rank thus handles a subset
of the data. We manually synchronize data between ranks by explicit message passing,
using the Message Passing Interface (MPI) [109]. The resulting data dependencies are
more complex and require modifying our scheme.

For this, we introduce the abstraction of ghost clusters (section 6.6.1). We discuss in
section 6.6.2, how we can use them to enable MPI progression. Finally, in section 6.6.3,
we briefly describe the challenges generated by elements with a dynamic rupture boundary
condition.

6.6.1. Ghost Clusters

For the distributed memory parallelization, we further partition each actor. We divide
them into three layers:

Interior (I) These clusters contain all elements for which all neighbors are on the same
MPI rank.

Copy (C) These clusters contain all elements for which at least one neighbor is on
another MPI rank. We duplicate elements with neighbors on multiple ranks once
per neighboring rank [13], simplifying our implementation.

92

6.6. Distributed Memory Parallelization

Algorithm 8 Functions for the ghost clusters. Calls that are defined by the superclass
AbstractTimeCluster are prefixed by super::. The functions receiveGhostLayer and
sendCopyLayer create all necessary asynchronous receives and sends and push them to
the respective message queues.

function act(Ω)
testForGhostLayerReceives(Ω)
testForCopyLayerSends(Ω)
return super::act(Ω)

function start(Ω)
receiveGhostLayer()

function predict() ▷ Do nothing

function correct() ▷ Do nothing

function mayCorrect(Ω)
return testForCopyLayerSends() ∧ super::mayCorrect(Ω)

function mayPredict(Ω)
return testForGhostLayerReceives() ∧ super::mayPredict(Ω)

function maySync(Ω)
return testForCopyLayerSends() ∧ testForGhostLayerReceivers() ∧

super::maySync(Ω)

function handleAdvancedPredictionTimeMessage(k, message)
sendCopyLayer() ▷ To all relevant MPI neighbors

function handleAdvancedCorrectionTimeMessage(k,message)
s ← sci ▷ Number of corrections after next correction
if state = Predicted then

s ← sni
if s < ssi then ▷ Avoid sending duplicate receive before sync point

receiveGhostLayer() ▷ From all relevant MPI neighbors

function testForGhostLayerReceives(Ω)
return testQueue(receiveQueue)

function testForCopyLayerSends(Ω)
return testQueue(sendQueue)

function testQueue(queue)
for request ∈ queue do

if MPI Test(request) then ▷ Check if request is finished
remove(queue, request)

return empty(queue)

93

Chapter 6. Local Time-Stepping

C0-I

C1-I

C2-I

C0-C

C1-C

C2-C

C0-G

C1-G

C2-G

Figure 6.4.: Connection between clusters for the distributed memory parallelization.
Actors are represented by nodes. Their labels begin with the character ‘C’,
followed by the cluster id. They end with a suffix, which can be either ‘I’,
‘C’, or ‘G’ for interior, copy, or ghost layers. For instance, the label “C2-C”
refers to the copy cluster with the id 2.

Ghost (G) These clusters are located on neighboring ranks. They do not perform any
computations but rather synchronize with other ranks by sending and receiving
data required for computations.

It is important to discuss how these actors are connected. For a visual explanation, refer
to figure 6.4. We give each cluster a name of the format “Ci−[I|C|G]”, where i is the
cluster id. The suffixes I, C, and G denote interior, copy, and ghost clusters. All interior
and copy clusters are connected to all interior and copy clusters with an id that differs
by at most one. Due to the maximum difference property (definition 2), no further data
are required. The ghost clusters are only connected to copy clusters of the same rate but
not to any interior cluster, as no element in the ghost cluster is next to an element in
the interior cluster. No other clusters are connected. Hence, it is directly visible that
communication and scheduling are strictly local. If we have only one MPI rank, the copy
and ghost clusters are empty, and the cluster connections essentially reduce to the simpler
version shown by figure 6.3. We include these empty clusters in our implementation;
however, this does not add much overhead as they do not perform any computations.

Furthermore, we duplicate the counters that we introduced for the LTS scheduling. We
introduce the additional index l ∈ {int, copy, ghost}. For example, in the sequential case,
the counter spi counted the predictions for the cluster with id i. Now, for the distributed
parallelism case, the cluster i is split into the interior cluster Ci−I with counter spint,i the

copy cluster Ci−C with spcopy,i, and the ghost cluster Ci−G with spghost,i. We summarize

the counters in the set Ωl,i. The sets Cint, Ccopy, and Cghost contain all interior, copy,
and ghost clusters, respectively. Hence, the set of all clusters C = Cint ∪ Ccopy ∪ Cghost is
defined as their union.

We are now ready to reap the rewards from our modeling: Both interior and copy
clusters follow the same logic and implementation outlined before! Due to their different

94

6.6. Distributed Memory Parallelization

AbstractTimeCluster

#state : ActorState
#ct : ClusterTimes
#neighbors : vector<NeighborCluster>

#mayPredict() : bool
#mayCorrect() : bool
#maySync() : bool
#processMessages()
#predict()
#correct()
#start()
#handleAdvancedPredictionMessage(neigh
: NeighborCluster)
#handleAdvancedCorrectionMessage(neigh
: NeighborCluster)
#unsafePerformAction(action: actorAction)
+getNextLegalAction()
+act()
+synced() : bool
+reset()
+setSyncTime(syncTime : double)

TimeCluster

- data : SimulationData
- lastSubTime : double

#predict()
#correct()
#handleAdvancedPredictionMessage(neigh
: NeighborCluster)
#handleAdvancedCorrectionMessage(neigh :
NeighborCluster)

GhostTimeCluster

-meshStructure : MeshStructure
-sendQueue : queue<Request>
-receiveQueue : queue<Request>

-testForCopyLayerSends() : bool
-testForGhostLayerReceives() : bool
#mayPredict() : bool
#mayCorrect() : bool
#maySync() : bool
#start()
#handleAdvancedPredictionMessage(neigh
: NeighborCluster)
#handleAdvancedCorrectionMessage(neigh
: NeighborCluster)
+act()

Figure 6.5.: UML class diagram that shows the structure of the TimeCluster and Ghost-

TimeCluster classes, which inherit their functionality from the superclass
AbstractTimeCluster. The attribute ct stores the local counters (Ω), and
the vector neighbors contains the shadow counters for neighboring clusters
and the message queues. The variable data is a placeholder for the simulation
data (e.g., the numerical solution and buffers required by LTS), and the
variable meshStructure stores how neighboring ranks are connected. We
assume the abstract superclass provides empty implementations for methods
such as predict and correct. Note that both subclasses share the logic for
act. Hence, they follow the same state machine. Note that the ghost time
cluster tests for sends and receives in act to ensure MPI progression.

95

Chapter 6. Local Time-Stepping

purpose, only the ghost clusters use a slightly different logic. However, the overall
structure, as shown in figure 6.2, stays the same. Thus, the same state diagram describes
interior, copy, and ghost clusters, simplifying the implementation. Figure 6.5 shows how
we can describe this abstraction in an object-oriented manner. We define the superclass
AbstractTimeCluster, which has two implementations: The class TimeCluster is used
for both interior and copy clusters; the class GhostTimeCluster is used for ghost clusters.
The superclass provides an implementation of the counters and the scheduling, as described
in algorithms 3 to 7. The inheritance-based approach clarifies that both cluster types
follow the same state machine. However, some methods are different. We describe the
methods of the ghost time clusters in algorithm 8. As the ghost clusters do not perform
any computations, the methods for predict and correct are trivial: Both do nothing.
The method start posts the initial receive for the ghost layer. The entire logic happens
after receiving a message. As the only neighbor of a ghost cluster is a single copy cluster,
any message directly corresponds to an update of the copy cluster. When the ghost cluster
receives an AdvancedPrediction message, it sends the prediction of the connected copy
layer to all relevant MPI neighbors. The logic for an AdvancedCorrection message is
slightly more complicated. For this, the cluster posts a receive for the ghost layer but only
if the next correction does not lead us to a synchronization point. At synchronization
points, start is called again, which would create a duplicate receive. Furthermore, if the
synchronization point marks the end of the simulation, this avoids a dangling receive.

We use non-blocking communication methods to hide the communication behind the
computations. For example, we compute the prediction of a copy cluster, which sends
an AdvancedPredictionTimeMessage to the corresponding ghost cluster. We can then
compute a prediction or correction (if available) of another interior or copy cluster. At
some point, the ghost cluster uses processMessages, and after processing the incoming
message, it sends the new prediction to a neighboring MPI rank. As send and receives
are now asynchronous, they do not block but rather create a Request object that is put
into a message queue. Each ghost cluster has two queues, one for its receives and one
for its sends. The methods mayPredict and mayCorrect have the additional constraint
that the queues for sends and receives are empty, respectively. We require both queues
to be empty for maySync. These requirements again stem from the idea that we must
not overwrite data that is still required by another operation.

6.6.2. MPI Progression

Using asynchronous message passing is crucial to achieving good performance on modern
HPC systems. However, most standard MPI runtimes only transfer data whenever an
MPI operation is called. This lack of progression can lead to higher communication delays
when using asynchronous requests. Hence, deliberately calling MPI operations can be
helpful to ensure communication progress. In our case, we enhance the method act of our
ghost clusters by running testForGhostLayerReceives and testForCopyLayerSends

on both queues to facilitate a quick MPI progression by calling MPI Test. Furthermore,
the methods mayCorrect and mayPredict also test for sends and receive, respectively.

For example, the issue of MPI progression is discussed in [31, 65], which evaluate

96

6.6. Distributed Memory Parallelization

using a dedicated communication thread for MPI progression. Multiple studies [13, 168]
demonstrated that this improves the performance of SeisSol. Hence, we want to add
this to our LTS framework. We introduce the abstraction of a communication manager,
whose interface is described by an AbstractCommunicationManager. A communication
manager contains all ghost clusters in an array. It has a private method poll which checks
for updates. Its implementation is trivial and reveals the elegance of our abstraction
model: It simply calls the method act of each ghost cluster, which checks the status
of the pending receives and sends and thus leads to MPI progression. The abstract
communication manager defines the public method progression, which the application
can call to indicate that an MPI progression should be done. However, it should be
considered a hint, as it may or may not perform this progression directly.

We introduce two different communication strategies: serial and threaded. In the serial
case, we use the SerialCommunicationManager. Its progression method calls poll

directly, thus ensuring communication.

In the parallel case, we use the ThreadedCommunicationManager. Its progression
method does nothing. Here, progression is realized by a separate communication thread
that calls poll in an infinite loop. While both variants guarantee that the communi-
cation progresses eventually, the threaded version does this quicker and even during
computations.

6.6.3. Dynamic Rupture

The dynamic rupture (DR) boundary condition involves the computation of a friction
law (equation (2.37)), which requires information from two adjacent faces. We compute
it by iterating over all relevant faces. As described in [164, 168], the faces with a dynamic
rupture boundary condition are partitioned into copy and interior layers. To avoid
confusion, we use the names DR-copy and DR-interior when referring to the partitions of
the DR faces. Faces belong to the DR-interior layer if they connect two elements that
are in a copy or interior layer. Otherwise, they belong to the DR-copy layer. We can
compute the DR-interior before receiving data for the ghost layer. Only the DR-copy
layer faces depend on data from neighboring MPI ranks. We require only the DR-interior
faces to compute a correction for an interior cluster but require both DR-interior and
DR-copy faces to compute a correction for a copy cluster. However, we only want to
compute the friction law for the DR-interior faces once. Additionally, we sometimes want
to compute information for the fault output, which requires data from the friction law
computation of both DR-interior and DR-copy faces.

To introduce these constraints, we use a DynamicRuptureScheduler. Each pair of
interior and copy clusters with the same cluster id share one scheduler. We keep track of
three counters for each pair with cluster id i. We note the last number of correction steps
for which the dynamic rupture elements were computed for the interior part (sdrint,i) and

the copy layer (sdrcopy,i). Finally, we use the counter sdr,fi to keep track of the last number
of corrections for which the fault output was written. Again, to simplify the notation, we
include the DR counters in the state Ωl,i, where interior and copy clusters with the id i
share the same counters. With these counters, the constraints can be formalized by the

97

Chapter 6. Local Time-Stepping

functions

mayComputeInterior(Ωl,i) = scl,i > sdrint,i, (6.17)

mayComputeFaultOutput(Ωl,i) = scl,i = sdrint,i ∧ scl,i = sdrcopy,i ∧ scl,i > sdr,fi , (6.18)

where l ∈ {copy, int} is an index for the layer type. We compute the DR-interior faces
before a correction whenever mayComputeInterior is true. Additionally, we compute
the DR-copy faces before every copy layer correction. The fault output is computed
whenever mayComputeFaultOutput is true.

Alternatively, we could include the dynamic rupture constraints in mayPredict and
mayCorrect. However, we would then need to strictly order copy and interior updates,
which our approach avoids because it allows updating copy and interior clusters in any
order, which gives us more scheduling flexibility.

6.7. Scheduling

We already discussed the time-stepping loop in section 6.3, where we arrived at algorithm 2.
However, we introduced a distributed memory parallelization scheme for which we split
each cluster into interior and copy parts. When should we update each cluster?
First, we consider why the order of updates is irrelevant for the shared memory case.

We have to compute all predictions and corrections for every time step for every cluster,
which is obvious even without considering cluster dependencies. If we skip a time step,
we do not arrive at the correct solution. Furthermore, the dependencies are structured
such that it is impossible to reach a state where no action is legal for any cluster. And,
by construction, it is always possible to execute a legal action without reaching an illegal
state. Hence, the order of updates does not matter for the shared memory case.

The same is true to a limited degree when considering distributed memory communi-
cation. In whichever order we execute the actions, we are guaranteed to reach the end
of the simulation. However, the order in which we process the clusters is essential for
good performance, as sending data to neighboring ranks comes with a latency. Without
taking special care, this latency could dominate the cost of the actual computations!
Here, we follow the ideas introduced by [13]. We want to hide the communication

behind the computation, i.e., we want to keep updating clusters while other clusters
wait to send or receive data. We can do this by computing the copy layers first, as they
contain all data required by neighboring ranks. Furthermore, we prefer the computation
of predictions, as they generate data neighbors require. We prefer clusters with a smaller
time step rate, as they require more time steps in total and are thus executed more
often. Note that as long as we manage to keep performing computations without blocking
for sending or receiving neighboring data, the actual order of updates does not matter.
This results in algorithm 9, which performs the same task as algorithm 2 but is more
efficient. We first compute all available copy layer predictions, followed by all available
copy layer corrections. Next, we compute up to one interior prediction, followed by up to
one interior correction. We call the progression method of the communication manager
to ensure MPI progression.

98

6.8. Wiggle Factor & Cluster Merging

Algorithm 9 Function to move clusters forward in time until the synchronization point
tsync. It executes the same kernels as algorithm 2 but with a scheduling that is better
suited for distributed memory parallelization: We prioritize copy clusters over interior
clusters and predictions over corrections.

1: function AdvanceInTime(C, communicationManager, tsync)
2: for cluster ∈ C do
3: cluster.setSyncTime(tsync)
4: cluster.reset()

5: hasFinished ← false
6: while ¬hasFinished do
7: for cluster ∈ Ccopy do
8: if cluster.getNextLegalAction() = Predict then
9: communicationManager.progression()

10: cluster.act()

11: for cluster ∈ Ccopy do
12: if cluster.getNextLegalAction() = Correct then
13: communicationManager.progression()
14: cluster.act()

15: for cluster ∈ Cint do
16: if cluster.getNextLegalAction() = Predict then
17: cluster.act()
18: break
19: for cluster ∈ Cint do
20: if cluster.getNextLegalAction() = Correct then
21: cluster.act()
22: break
23: hasFinished ← true
24: for cluster ∈ C do
25: hasFinished ← hasFinished ∧ cluster.synced()

6.8. Wiggle Factor & Cluster Merging

We included a parameter λ ≤ 1, introduced in [12] to improve the LTS clustering, in
the definition of the clusters (equation (6.3)) but have not yet described how we can
use it. The parameter λ, which we call the wiggle factor, scales both time step limits
of all clusters by a constant. For example, the zeroth cluster contains all elements
with a time step size of [(∆t)min, 2(∆t)min) when not using a wiggle factor. When we
use a wiggle factor, the cluster contains all elements with a time step size between
[λ(∆t)min, 2λ(∆t)min).

2 Hence, elements in this cluster are updated more often. Thus,
at first glance, this seems to reduce the efficiency of our time stepping. In the context

2There are, by definition, no elements with a time step size smaller than (∆t)min, so the lower limit of
the zeroth cluster is (∆t)min.

99

Chapter 6. Local Time-Stepping

Algorithm 10 Compute the minimal number of clusters while keeping the cost below the
admissible cost. It takes the inputs C,W, r, cmax, λ, (∆t)min which are the LTS clustering,
the cost of each element, the LTS rate, the maximum admissible cost, the wiggle factor, and
the minimum time step size. It uses the function computeGlobalCostOfClustering,
which computes the cost of the given clustering using equation (6.19). For this, it sums
up the local costs of all MPI ranks. The function enforceMaxClusterId takes the
arguments C and imax, and returns a new clustering where the maximum cluster id is
imax.

1: function computeMaxClusterIdAfterAutoMerge(C,W, r, cmax, λ, (∆t)min)
2: imax ← max(C)
3: imax ← allReduce(imax)
4: if r = 1 then return imax ▷ There can only be one cluster

5: for icur = imax, imax − 1, . . . , 1 do
6: Cnew ← enforceMaxClusterId(C, imax)
7: c ← computeGlobalCostOfClustering(Cnew, W, r, λ, (∆t)min)
8: if c > cmax then return icur + 1

9: return 0 ▷ GTS is acceptable

of LTS, however, a smaller λ can lead to a speed-up because it allows us to move some
elements to a cluster with a larger time step, thus saving us some cost.

To illustrate, let us consider a simple example. We assume a 2-rate LTS scheme with
four elements with time steps ∆t = 1, 1.6, 1.6, 3. We compare two cases:

Without wiggle factor The minimal time step is (∆t)min = 1. We set λ = 1. Hence, we
have two clusters with time steps [1, 2) and [2, 4). After clustering, the elements
are now updated every 1, 1, 1, and 2 seconds, respectively. On average, for 1 s
simulation time, we need 1 + 1 + 1 + 1/2 = 3.5 updates.

With wiggle Let the wiggle factor be λ = 0.8. This results in clusters with time steps of
[0.8, 1.6) and [1.6, 3.6). After clustering, the elements have time steps of 0.8, 1.6,
1.6, and 1.6. Now, for 1 s simulation time, we need 1.25 + 0.625 + 0.625 + 0.625 =
3.125 < 3.5 updates.

Hence, even though it may be unintuitive, reducing the time step limits of all clusters
may lead to fewer required updates!

We define the cost of a clustering C as

cost(C,W) =
∑

i=1,...,|C|

Wi

λ(∆s)Ci(∆t)min
(6.19)

where Ci is the cluster id of the ith element and Wi is its cost [79]. For now, it is not
important how we compute the cost. We will discuss it in section 10.3. Note that C
depends on the the wiggle factor λ. Hence, the equation (6.19) depends on the clustering
because it includes the number of expected updates.

100

6.8. Wiggle Factor & Cluster Merging

Computing an optimal wiggle factor is difficult. Here, we follow the approach from [12]
and perform a simple grid search. We specify a minimum wiggle factor λmin and a step
size s, resulting in a list of candidates

L = λmin, λmin + s, . . . , 1. (6.20)

Note that for a rate-r LTS scheme, only values 1/r < λ ≤ 1 are reasonable. We denote
the clustering resulting from a wiggle factor of λ by Cλ. Then, we simply choose

argminλ {cost(Cλ) | λ ∈ L} (6.21)

as our wiggle factor.

Furthermore, we want to be able to enforce a maximum cluster id. For this, the last
cluster has a maximum time step size of ∞, as realized in equation (6.3). The advantage
of larger clusters is that they can be parallelized more efficiently. Merging the clusters
with the highest time steps does not incur a significant additional computational cost.
Thus, it can improve the performance. [12] presents a scheme that allows the user to
manually set the maximum cluster id. We propose an extension to this: merging clusters
automatically. Our method allows the user to define an upper limit by how much the total
cost of all clusters (equation (6.19)) is allowed to increase. This results in a maximum
admissible cost. We then, as shown in algorithm 10, simply merge clusters until this
performance loss is realized.

Finally, we combine the wiggle factor and automatic merging of clusters into one
algorithm. However, this is not straightforward. We consider two possible goals of the
user: The first is that they start from a simulation with neither wiggle factor nor cluster
merging. They then want to find the configuration with the smallest number of time
clusters that lose up to a certain percentage of the original performance. The second
possible goal is that the user wants to find the best configuration with the smallest
number of clusters such that the performance is by a certain percentage smaller than
the cost of the optimal wiggle factor without auto-merging. The difference between both
models is the baseline used for computing the admissible cost.

We explain how we can realize the first goal and then describe a simple algorithm
for the second goal, which uses the first as a subroutine. We start by computing the
baseline cost, which is the cost without using either cluster merging or a wiggle factor
(i.e., λ = 1). We compute the cost of this clustering and use it to define the maximum
admissible cost by multiplying it with a user-defined factor. Then, we perform the grid
search for the wiggle factor λ as outlined. We perform the automatic group merging
process for each wiggle factor while staying within the cost limit. This results in tuples
(imax

λ , λ, cλ), where i
max
λ = max (Cλ) is the maximum cluster id of the clustering Cλ and

cλ is its cost. We use a map data structure that maps the number of clusters to the best
cost and the wiggle factor λ with which it was achieved. Finally, we choose the wiggle
factor with the lowest number of clusters from this map. For this number of clusters, we
found the best wiggle factor. Algorithm 11 summarizes this procedure. It contains the
search for the best λ without auto-merging as a special case.

101

Chapter 6. Local Time-Stepping

Algorithm 11 Function to find the best wiggle factor using automatic merging of LTS
clusters (if useAutomerge is true). Input arguments are the cost of each element (W),
the LTS rate (r), the maximum admissible cost (cmax), and the minimal time step size
((∆t)min). The parameters for the grid search are the smallest wiggle factor (λmin > 1/r)
and the step size s. Additionally, the user may give a maximum cluster id imax. The
function returns a tuple consisting of the number of clusters, the best wiggle factor and
the resulting cost. We use the functions computeClustering to compute the clustering
according to equation (6.3) and enforceMaximumDifference to enforce the maximum
difference invariance (definition 2).

1: function ComputeBestWiggleFactor(W, r, cmax, (∆t)min, λ
min, s, imax, useAu-

tomerge)
2: Mimax 7→c ← map() ▷ Map from max cluster id to best cost
3: Mimax 7→λ ← map() ▷ Map from max cluster id to best wiggle factor
4: for λ = λmin, λmin + s, . . . , 1 do ▷ Grid search for λ with step size s
5: C ← enforceMaximumDifference(computeClusterIds(r, λ, (∆t)min))
6: if useAutomerge then
7: i ← min(imax, computeMaxClusterIdAfter-

AutoMerge(C,W, r, cmax, λ, (∆t)min))
8: else
9: i ← imax

10: C ← enforceMaxClusterId(C, i)
11: i ← allReduce(max(C), max) ▷ Global maximum cluster id
12: c ← computeGlobalCostOfClustering(C, W, r, λ, (∆t)min)
13: if imax /∈Mimax 7→c ∨ c ≤Mimax 7→c [i] then
14: Mimax 7→c [i] ← c
15: Mimax 7→λ [i] ← λ

16: if useAutomerge then ▷ Choose minimal max cluster id with admissible cost
17: iadmissible ← ∞
18: for (i, c) ∈Mimax 7→c do
19: if c < cmax ∧ i < iadmissible then
20: iadmissible ← i
21: else ▷ Choose minimal cost
22: iadmissible ← argmin(Mimax 7→c) ▷ Maximum cluster id with smallest cost

23: return
(
iadmissible, Mimax 7→λ

[
iadmissible

]
, Mimax 7→c

[
iadmissible

])

102

6.8. Wiggle Factor & Cluster Merging

Algorithm 12 Function to find the best wiggle factor using automatic merging of LTS
clusters (if useAutomerge is true). This algorithm uses algorithm 11 as a sub-routine.
The difference is that this algorithm automatically computes the admissible cost cmax

by using a baseline cost and a factor m that states how much more expensive the
clustering with group merging can be, compared to the baseline. There are two supported
baseline models. The first, “bestWiggleFactor”, computes the best wiggle factor without
automatic merging. The second, “maxWiggleFactor”, uses the clustering with λ = 1 and
without automatic merging as the baseline. Other input arguments are the cost of each
element (W), the LTS rate (r), the minimal time step size ((∆t)min), the smallest wiggle
factor (λmin > 1/r) and the step size s. Additionally, the user may give a maximum
cluster id imax. The function returns a tuple consisting of the number of clusters, the best
wiggle factor, and the resulting cost. The implementation is not optimal if automatic
cluster merging is not used. In practice, we avoid these computations.

1: function findBestWiggle(W, r,m, (∆t)min, λ
min, s, imax, isAutomergeUsed, base-

lineCost)
2: if baselineCost = bestWiggleFactor then ▷ Find best λ without merging
3: (imax, λ, c) ← computeBestWiggleFactor(W, r,∞, (∆t)min, λ

min, s, imax,
useAutomerge = false)

4: else ▷ Compute clustering with λ = 1 as baseline
5: C ← enforceMaximumDifference(computeClusterIds(r, λ, (∆t)min))
6: C ← enforceMaxClusterId(C, imax)
7: c ← computeGlobalCostOfClustering(C, W, r, λ, (∆t)min)

8: cmax ← cm
9: return computeBestWiggleFactor(W, r, cmax, (∆t)min, λ

min, s, imax, useAu-
tomerge)

Next, we use the strategy that we devised for goal 1 to compute the best wiggle
factor for goal 2: We want to find the best wiggle factor, and then we are willing to
give up a certain percentage of this optimal performance for auto-merging. This can be
easily accomplished by algorithm 12: We first search for the best wiggle factor without
automatically merging clusters, using algorithm 11. Then, we use the resulting optimal
cost as a baseline cost for a second search in which we now enable the auto-merging of
clusters. This strategy may sound wasteful: In a naive implementation, we would need to
compute the clustering twice, including enforcing the maximum difference. However, with
a small modification in line 5 of algorithm 11, we can reduce the cost of the second search
to almost zero: We store all computed clusterings after enforcing the maximum difference
in a map data structure for each considered λ. This simple memoization strategy requires
a small space overhead but turns our naive and expensive algorithm into a performant
one.

Another computational challenge arises from the need to enforce the maximum differ-
ence between neighboring elements, as described by definition 2. This is computationally
expensive, especially with a distributed memory parallelization, because it requires com-

103

Chapter 6. Local Time-Stepping

munication with neighboring ranks. Especially with the cluster merging feature, we would
need to compute this for every iteration of algorithm 10. We can prove that enforcing a
maximal cluster id does not destroy the maximum difference property.

Theorem 2. Let C be a clustering that satisfies the maximum difference property (def-
inition 2). We enforce a maximum cluster id of m, for example, using the function
enforceMaxClusterId. The resulting clustering is Ĉ. It again satisfies the maximum
difference property.

Proof. Let l1, l2 ∈ C be the original cluster id of two elements that are in arbitrary
neighboring clusters. After enforcing the maximum cluster id of m, the cluster ids are
given by l̂1 = min(l1,m) and l̂2 = min(l2,m). We denote the resulting clustering by Ĉ.

As the clustering C fulfills the maximum difference invariance, the difference between
l1 and l2 can be at most one. Hence, we need to consider three cases.

Case 1: l1 = l2
We compare l1 to the maximum cluster id m.

Case 1.i: l1 ≥ m
The new cluster ids l̂1 = min (l1,m) = m and l̂2 = min (l2,m) = m are identical and

thus satisfy the invariance.

Case 1.ii: l1 < m

The new cluster ids l̂1 = min (l1,m) = l1 and l̂2 = min (l2,m) = l2 = l1 do not change
after enforcing the maximum cluster id.

Case 2: l2 = l1 + 1

Case 2.i: l1 ≥ m
The new cluster ids l̂1 = min (l1,m) = m and l̂2 = min (l2,m) = min (l1 + 1,m) = m

are identical and thus satisfy the invariance.

Case 2.ii: l1 < m

Here, l2 = l1 + 1 ≤ m and thus does change after enforcing the maximum cluster id.
The new cluster ids l̂1 = min (l1,m) = l1 and l̂2 = min (l2,m) = min (l1 + 1,m) = l1 + 1
satisfy the invariance.

Case 3: l1 = l2 + 1

This case follows from case 2 by swapping l1 and l2.

Hence, as the maximum difference invariance is preserved for all possible cases, we
conclude that enforcing a maximum cluster id respects the maximum difference invariant.
Furthermore, as the case 1 showed, if both elements were in the same cluster before
merging, they still share the same cluster (l̂1 = l̂2) after merging.

6.9. Discussion

In this chapter, we have presented a modern implementation of local time-stepping. We
followed a clustered approach (section 6.1), better suited for high-performance computing.

104

6.9. Discussion

We used the ADER-DG numerical scheme, which, as seen in section 6.2, can naturally
be used as part of an LTS scheme. Due to our modeling efforts, we have achieved a
simple yet efficient method. The simplified time-stepping loop, as shown in section 6.3,
resulted in a straightforward algorithm without manual scheduling. Our new LTS model
is state-machine based (section 6.4) and thus easy to understand. Furthermore, the state
machine (figure 6.2) excludes a category of bugs because it prevents illegal state transitions.
Clusters are synchronized by explicit message passing, which makes dependencies obvious
and clearly shows the flow of information. Our new model schedules clusters by comparing
the number of normalized time steps they take, which is more robust than comparing
the simulation time. Adding ADER-DG kernels to our scheduling with parallel mesh
traversals was simple (section 6.5) as we were able to use the same computational logic
that we presented in section 4.4. We have demonstrated (section 6.6) how our abstraction
can model both the scheduling of computations and the scheduling of the communication,
resulting in an elegant distributed memory parallelization. The introduction of copy and
ghost layers made it necessary to create a more complicated time-stepping loop. Even
with these added factors, the resulting algorithm is still relatively simple (section 6.7).
Furthermore, as described in section 6.8, we added functionality to automatically fine-tune
the LTS clustering by introducing a wiggle factor λ and by introducing the automatic
merging of LTS clusters.

105

Chapter 7.

Earthquake-Tsunami Coupling

Tsunamis are created by abrupt vertical perturbations of a body of water. Multiple
different sources, such as landslides or earthquakes, can cause this. In this thesis, we
focus on earthquakes as a source of tsunamis.

During an earthquake, the seafloor moves dynamically in response. This generates
seismic waves, ocean acoustic waves, and tsunami waves. Far away from the source,
these waves separate, but close to the source, they are superimposed. As the tsunami
wave is typically assumed to be the most interesting, many models focus only on this
wave [3, 131]. This restriction can become a problem, as instruments such as ocean
bottom pressure sensors and off-shore cabled sensor networks are deployed in regions
that are in the source area, potentially improving tsunami early warning systems [78,
143, 185].

The current state-of-the-art is using a separate model for earthquakes and tsunamis [102,
178]. The earthquake can be approximated by an analytical solution for the displacement,
which typically assumes a homogeneous elastic half-space [114]. For more complex
geometries or velocity models, simulations become necessary. For the tsunami, a two-
dimensional model and simulation code is typically used [131].

Recently, fully coupled models have emerged that consider the entire wavefield in
both Earth and ocean [3, 97, 98, 99, 103]. Chapter 2 described our three-dimensional
fully coupled model, which can resolve wavefield features, including tsunami dispersion
and acoustic waves in the ocean. As mentioned above, acoustic waves are increasingly
important when comparing with measurements. Furthermore, it is well known that
dispersion can affect tsunami propagation when the tsunami wavelength is not much
longer than the sea depth [131]. For an overview of this, we refer the interested reader to
the discussion and the case studies of [49]. Finally, the fully coupled model considers the
two-way interaction between earthquake and tsunami, i.e., wave propagation in the ocean
can influence wave propagation in the Earth. Hence, it can be used as a reference model
because it carries fewer assumptions. It is ideally suited to conduct detailed studies of
the complex wavefield close to the earthquake source.

This section gives a brief overview of one-way linked coupling strategies. First, we
derive the shallow water equations (section 7.1), a standard two-dimensional model for
tsunamis. Next, in section 7.2, we discuss strategies that can be used to couple earthquake
and tsunami solvers. Furthermore, we evaluate the strategies with example scenarios
and show when each coupling strategy is applicable. In section 7.3, we explain how to
approximate the sea surface height from the seafloor displacement. Finally, in section 7.4,

107

Chapter 7. Earthquake-Tsunami Coupling

we discuss the results and summarize the strengths and weaknesses of the approaches.

7.1. Shallow Water Equations

For tsunami simulations, one common approach is to use the linear long wave equations,
also called linear shallow water equations. They can be derived by starting from the
ocean part of our fully coupled model, given by section 2.2.2. Our derivation follows the
one in [3, 131]. We use the same coordinate system as introduced for the fully coupled
model (chapter 2), where the ocean floor is at height z = −H and the ocean surface at
rest is at z = 0.

First, we assume the ocean is incompressible, meaning K →∞. Then, equation (2.70)
reduces to ∇ · v = 0, which is the standard continuity equation for an incompressible
fluid. We integrate this in depth, using the linearized boundary conditions on the
seafloor (equation (2.90)) and sea surface (equations (2.88) and (2.89)). Introducing the
depth-integrated velocities

q1 =

∫ 0

−H
v1 dz, (7.1)

q2 =

∫ 0

−H
v2 dz, (7.2)

we arrive at the equation governing the sea surface perturbation

∂η

∂t
+
∂q1
∂x

+
∂q2
∂y

=
∂b

∂t
, (7.3)

where b is the time-dependent bathymetry.

Second, we assume that ρ∂v3
∂t = 0, i.e., that the vertical accelerations are negligible.

Inserting this into the vertical part of the momentum equation (equation (2.78)) gives the
pressure perturbations as p(x, y, z, t) = ρgη, i.e., the pressure is in hydrostatic equilibrium.
We then insert this pressure into the horizontal part of the momentum equation and
again integrate in depth. This results in the equations

∂q1
∂t

+ gH
∂η

∂x
= 0, (7.4)

∂q2
∂t

+ gH
∂η

∂y
= 0, (7.5)

which, together with equation (7.3) form the shallow water equations. They describe non-
dispersive tsunami propagation. Note that the pressure is still assumed to be hydrostatic
and thus depends on z. We can use this to reconstruct a three-dimensional pressure field.

The shallow water equations are often used to simulate tsunamis [102, 178]. When
non-linear effects are dominant, for example, near the shore, a non-linear version of the
shallow water equations must be used. They can contain terms that handle inundation
and run-up [3, 131]. However, this is not in the scope of this thesis. The non-linear version

108

7.2. One-Way Coupling Approaches

of the equations is obtained by depth-integrating the Euler equations (section 2.2.1) and
is, for example, described in [95, Sec. 18.7]. For the rest of this chapter, we only consider
the linear shallow water equations, but we will compare our fully coupled model with the
non-linear equations later.

7.2. One-Way Coupling Approaches

We introduced the shallow water equations in the previous section. Now, we discuss
how to source the tsunami. What kind of initial conditions and source terms do we
need? The earthquake simulation results in a moving seafloor, which we can model as
a time-dependent bathymetry perturbation b(x, y, t). Initially, the seafloor is at depth
−H(x, y), which is perturbed by the earthquake to z = −H(x, y)+b(x, y, t). This seafloor
displacement then causes a sea surface displacement. This section investigates how to set
these terms, following the discussion in [3] closely.
We first consider methods that work with the seafloor displacement, which can be

either computed by an analytical solution or with a numerical earthquake simulation. If
this displacement is available as a time series, we can include it as the source term ∂b

∂t in
equation (7.3).
When the displacement is only available at one point in time, e.g., given by the

static displacement of an earthquake simulation or from an analytical solution, we need
to assume that the earthquake happens instantaneously with a displacement of bstatic.
Formally, an instantaneous uplift corresponds to a change in bathymetry of

∂b

∂t
≈ bstatic(x, y) δ(t). (7.6)

Integrating equation (7.3) in time with equation (7.6) as the source term and assuming
zero velocities leads to the initial condition

η(x, y, t = 0) = bstatic(x, y)

q1(x, y, t = 0) = 0

q2(x, y, t = 0) = 0,

(7.7)

where we assumed that the time t is shifted such that t = 0 marks the start of the
tsunami simulation. Then, we can run the tsunami simulation with the initial condition
given by equation (7.7) and by setting the term ∂b

∂t = 0.
We need to discuss the validity of our initial conditions for the velocities and η. While

some studies [145, 146, 147] suggest that it is beneficial to include an initial horizontal
velocity, studies with a two-dimensional version of the fully coupled model revealed that
this leads to negligible differences [98, 99]. Furthermore, using the seafloor uplift as an
initial condition for the sea surface height assumes that the ocean does not affect the
waves. We will later discuss ways of including this effect in an appropriate manner. We
also need to make similar considerations for the time-dependent coupling.
Both approaches discussed thus far have the limitation that they neglect the com-

pressibility of the ocean. Hence, they do not permit the propagation of acoustic waves.

109

Chapter 7. Earthquake-Tsunami Coupling

Recently, [131, 133, 134] proposed a one-way coupling strategy to accomplish this. The
idea of this model is simple: Instead of recording the seafloor displacement, the method
records the sea surface displacement. For this, an earthquake solver must be used that
includes an acoustic layer to incorporate the effects of the ocean. The resulting model is
similar but not identical to our fully coupled model, which we proposed in section 2.3, as
it uses a standard free surface boundary condition on the sea surface, i.e., it assumes
that g = 0. Then, the displacement on the sea surface, which is generally different
from the seafloor displacement, is used as a source term in the shallow water simulation.
This approach is called the superposition approach because it decomposes the tsunami
into gravity waves (simulated by a two-dimensional shallow water solver) and acoustic
wave propagation in the ocean (simulated by a three-dimensional water layer). It follows
directly—assuming a linear shallow water solver—from our fully coupled model with a few
assumptions. We refer the interested reader to [3] for a derivation of this method. The
source term looks similar to the seafloor-based coupling discussed before. We replace the

term ∂b
∂t with the term ∂ηg=0

∂t in equation (7.3), where ηg=0 is the sea surface displacement
from an earthquake simulation without gravity.

An advantage of the superposition model over the fully coupled model is that it allows
more flexibility: The shallow water solver can also be a non-linear model. In this case,
the theoretical justification of the superposition decomposition does not hold anymore.
However, it works in practice [132]. A non-linear shallow water solver can also include
effects such as inundation. These effects, which the fully coupled model cannot resolve,
are essential to accurately describe tsunami propagation near the coast.

To summarize, following [3], we define four different modeling strategies:

Method 1 is our fully coupled model.

Method 2 is a one-way linking of an earthquake model with a two-dimensional non-
dispersive shallow water solver (equations (7.3) and (7.4)), using equation (7.7) as
initial conditions.

Method 3 is the same as method 2 but uses the seafloor displacement ∂b
∂t as the forcing

term instead of an initial condition.

Method 4 is the same as method 3 but uses the sea surface displacement ∂ηg=0

∂t as the
forcing term.

Next, following [3], we define three scenarios that can be used to compare the different
modeling strategies. For all scenarios, we prescribe a vertically moving seafloor with
velocity

∂b

∂t
=

1

σt
√
2π

exp

(
−(t− 4σt)

2

2σ2t

)
exp

(
−x

2 + y2

2σ2r

)
, (7.8)

where the width σr and the duration σt characterize the source. Equation (7.8) reaches
its maximum at time t = 4σt. At t = 0, the uplift rate is effectively zero, which allows
us to start with an initially unperturbed seafloor. We set the ocean depth H = 4km,

110

7.2. One-Way Coupling Approaches

Table 7.1.: Table recreated from [3]. Three scenarios prescribe a moving seafloor with
velocities given by equation (7.8). The source width σr and the source duration
σt vary between the scenarios. This results in different characteristics which
directly impact the validity of coupling methods. The criteria derived in [3]
characterize the properties of the source using non-dimensional values.

Source Source Instantaneous Negligible acoustic Shallow water
width duration source? wave excitation? limit?
σr [km] σt [s]

√
gHσt/σr ≪ 1 H/(cσt)≪ 1 H/σr ≪ 1

Scenario 1 12.5 125 ✗ ✓ ✓

Scenario 2 12.5 1.25 ✓ ✗ ✓

Scenario 3 1.25 1.25 ✓ ✗ ✗

Table 7.2.: Simulation parameters as used in [3]. The scenarios require a different domain
of size L×L in which the elements have a characteristic length of h. In a cube
of size Lr × Lr, centered at the origin, the mesh is refined to a characteristic
length hr. The simulations run until t = ts.

L[km] Lr[km] h[km] hr[km] ts[s]

Scenario 1 500 300 75 1.50 800
Scenario 2 200 110 75 1.00 400
Scenario 3 400 40 25 0.25 150

acoustic wave speed c = 1.5 km s−1 and gravitational acceleration g = 9.81m s−2 for all
scenarios. The scenarios differ only in the source parameters σr and σt, found in table 7.1.
Scenario 1 is a long-duration source requiring a time-dependent seafloor uplift. Scenario 2
is an impulse source with a wide source area leading to acoustic waves. Finally, scenario 3
is a narrow impulse source that produces short wavelengths and thus likely has significant
dispersion and filtering effects from the ocean response.

We vary the refinement, domain size, and simulation time for the scenarios so that
important features of the wavefield are visible. Each setup has a refinement zone in which
a uniform mesh size is used. Outside of the refinement region, the mesh is coarsened.
Table 7.2 shows the simulation parameters.

Figure 7.1 shows the results. For scenario 1, which uses a long-duration source, all
methods except method 2, which assumes an instantaneous source, are valid. Scenario 2
contains a source that generates acoustic waves. Only method 1 (fully coupled) and
method 4 (superposition) are valid, as they capture this wave type. Note that all methods
manage to capture the overall tsunami well. Finally, scenario 3 contains both acoustic
waves and dispersion effects. As for scenario 2, the former implies that methods 2 and 3
are no longer valid, as they do not include acoustic waves. Due to the latter, only the fully
coupled model (method 1) is valid, as only it includes dispersion effects during tsunami
propagation. However, the superposition method (4) could be used with a tsunami solver

111

Chapter 7. Earthquake-Tsunami Coupling

that includes approximate dispersion [3]. For this scenario, the methods result in strong
differences in tsunami amplitudes caused by the filtering of short wavelengths due to the
non-hydrostatic ocean response [68]. This example showed the limitations of each model.
For an extended discussion, we refer the interested reader to [3].

7.3. The Sea Surface Height

In this section, we discuss how to initialize the sea surface height from an earthquake
simulation. We introduce the Tanioka assumption in section 7.3.1, which includes the
effects of horizontal displacements into the vertical seafloor displacement. In section 7.3.2,
we present transfer functions that approximate the sea surface height from the seafloor
displacement. Furthermore, we show that our fully coupled model already includes these
approximations.

7.3.1. Tanioka

The coupling strategies that we have explained so far only consider the vertical part of
the displacement at the seafloor. However, when the bathymetry is not flat, horizontal
displacement can lead to vertical flow. This can have a strong effect on the resulting
tsunami, as shown, for example, by the 2011 Tōhoku-Oki earthquake, which excited
a large horizontal displacement [67]. Hence, we should also include the effect of this
horizontal displacement in the computation of the sea surface height.

We can approximate this effect with the Tanioka correction factor

b(x, y, t) ≈
(
u1
∂H

∂x
+ u2

∂H

∂y
+ u3

)
|z=−H , (7.9)

which assumes that the bathymetry varies smoothly, i.e., that
(
∂H
∂x

)2
+
(
∂H
∂y

)2
≪ 1 [152].

Equation (7.9) can be directly used to include the effect of horizontal displacements
for a sloping ocean floor. For a more detailed discussion and applications, we refer the
interested reader to the discussion in [131, Sec. 5.4.1] and the references therein.

This factor is automatically included in our fully coupled model, as equation (7.9)
follows directly from time-integrating the linearized kinematic boundary condition (equa-
tion (2.90)) on the ocean floor [3].

7.3.2. Filtering & Transfer Functions

The one-way coupling method requires approximating the sea surface height from the
seafloor displacement. The naive approach of using the same displacement for both
neglects the effect that the water has on the waves. A better solution is to use an
approximate model for the ocean response. We follow the framework described in [3]:
transfer functions. In the following, we denote the Fourier-transformed version of a
function f by f̂ . It changes the variables from the space-time coordinates (x, y, t) to the

112

7.3. The Sea Surface Height

-20 0 20
Distance (km)

0

50

100

150

Ti
m

e
(s

)

Method 2

-20 0 20
Distance (km)

0

50

100

150

Ti
m

e
(s

)

Method 3

-20 0 20
Distance (km)

0

50

100

150

Ti
m

e
(s

)

Method 4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

D
is

pl
ac

em
en

t (
m

)

-20 0 20
Distance (km)

0

50

100

150

Ti
m

e
(s

)

Method 1

-100 0 100
Distance (km)

0

50

100

150

200

250

300

350

400

Ti
m

e
(s

)

Method 2

-100 0 100
Distance (km)

0

50

100

150

200

250

300

350

400
Ti

m
e

(s
)

Method 3

-100 0 100
Distance (km)

0

50

100

150

200

250

300

350

400

Ti
m

e
(s

)

Method 4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D
is

pl
ac

em
en

t (
m

)

-100 0 100
Distance (km)

0

50

100

150

200

250

300

350

400

Ti
m

e
(s

)

Method 1

-100 0 100
Distance (km)

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

)

Method 2

-100 0 100
Distance (km)

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

)

Method 3

-100 0 100
Distance (km)

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

)

Method 4

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

D
is

pl
ac

em
en

t (
m

)

-100 0 100
Distance (km)

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

)
Method 1

Sc
en

ar
io

 1
a) b) c) d)

Sc
en

ar
io

 2

e) f) g) h)

Sc
en

ar
io

 3

i) j) k) l)

Figure 7.1.: Figure taken from [3]. Sea surface uplift from seafloor uplift given by equa-
tion (7.8) with parameters from table 7.1. Method 1 is our fully coupled
model, method 2 is one-way linking with an instantaneous source, method 3
is one-way linking with time-dependent sourcing, and method 4 is the super-
position coupling.

113

Chapter 7. Earthquake-Tsunami Coupling

set of coordinates (kx, ky, ω), consisting of the horizontal wavenumbers kx and ky, and
the angular frequency ω. We define the Fourier transform and its inverse as

f̂(kx, ky, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, t) exp (−i(kxx+ kyy − ωt)) dx dy dt, (7.10)

f(x, y, t) = (2π)−3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f̂(kx, ky, ω) exp (i(kxx+ kyy − ωt)) dkx dky dω.

(7.11)

Using the radial wavenumber k =
√
k2x + k2y, the transfer function

T (k, ω) =
η̂(k, ω)

b̂(k, ω)
, (7.12)

relates the Fourier transformed bathymetry b̂ to the Fourier-transformed sea surface η̂.
Note that the transfer function only depends on k, which is required by the translational
invariance of the ocean response. We can use the transfer functions to compute the
sea surface height from the bathymetry: First, we compute the Fourier transform of
the bathymetry using equation (7.10). Second, we use equation (7.12) to compute the
Fourier-transformed sea surface from the bathymetry. Third, we use equation (7.11) to
compute the sea surface displacement. Only one question remains: How do we choose
the transfer function?

The acoustic part of our fully coupled model, discussed in section 2.2.2, corresponds to
the transfer function

Tfc(k, ω) =
1

cosh(k∗H)− (gk∗/ω2) sinh(k∗H)
(7.13)

with k∗ =
√
k2 − ω2/c2 [3]. Starting from this, we can investigate several special cases.

We now assume the ocean is incompressible, corresponding to the k∗ → k limit. The
assumption of incompressibility removes acoustic waves entirely from the model. When
we make the further assumption that the ocean uplift is instantaneous, i.e., ω →∞, we
arrive at

Tinst(k) =
1

cosh(kH)
, (7.14)

which is called the Kajiura filter [68]. This filter is widely used to compute the initial
sea surface height for a tsunami simulation [131]. It is a low-pass filter that removes
short-wavelength components. Hence, the initial sea surface height is smoother than
the seafloor perturbation [131]. While this filter was derived for an ocean with uniform
depth, in practice, it can also be applied to scenarios with small depth variations.

When we assume incompressibility and the long wave limit, i.e., kH ≪ 1, equation (7.13)
reduces to the tranfer function for the linear shallow water equations

TLLW(k, ω) =
1

1− gHk2/ω2
, (7.15)

114

7.4. Discussion

which lacks the (cosh(kH))−1 filter. Hence, all wavelengths contained in the seafloor
displacement directly transfer to the sea surface. We can apply equation (7.14) before
using equation (7.15), which corresponds to the workflow of first applying a filter to the
bathymetry before using a tsunami simulation software.

Finally, as discussed earlier, the superposition model (method 4) runs a fully coupled
simulation without gravity, followed by a shallow water solver. Thus, due to the sequential
nature of the coupling, we can factor the transfer function of the superposition model.
The ocean part of the fully coupled simulation in the absence of gravity corresponds to
equation (7.13) with g = 0 and is given by

Tg=0(k, ω) =
1

cosh(k∗H)
. (7.16)

It is possible to include approximate models of dispersive tsunami propagation by using
a Boussinesq solver for the tsunami part. Here, we assume that a linear shallow water
equation solver is used for simplicity. We have that

Tsup(k, ω) =
1

cosh(k∗H)︸ ︷︷ ︸
=Tg=0(k,ω)

1

1− gHk2/ω2︸ ︷︷ ︸
=TLLW(k,ω)

. (7.17)

In the incompressible limit (k∗ → k), equation (7.16) reduces to the Kajiura filter given
by equation (7.14). Thus, the superposition model includes the non-hydrostatic ocean
response. We refer the interested reader to the extended discussion in [3].

These transfer functions give us an easy way of analyzing the coupling strategies and
result in a simple way of converting the seafloor displacement to an initial tsunami
height [131]. We can combine this approach with the Tanioka approximation discussed
in section 7.3.1 by convolving equation (7.14) with the result of equation (7.9). This
includes both the effect of a sloping seafloor and the effect of the non-hydrostatic ocean
response.

7.4. Discussion

We showed how we can derive the shallow water equations in section 7.1, and presented
and evaluated four different methods for earthquake-tsunami simulations (section 7.2).
Section 7.3 completed the workflow by providing approximations that can be used to
convert the seafloor displacement into an initial tsunami height.

What has become clear in these sections is that the fully coupled model is the most
general out of all considered models. It includes the full physical effect of the earthquake,
wave propagation in the compressible ocean, and tsunami propagation. While acoustic
waves often have a very small effect on the tsunami, they can dominate the measurements.
Hence, including them in our model allows us to compare better with measurements.
Furthermore, our model is fully three-dimensional and does not assume that the pressure
is in hydrostatic equilibrium. Thus, it gives us a complete three-dimensional wavefield.

115

Chapter 7. Earthquake-Tsunami Coupling

Simpler coupling strategies can capture critical parts of the tsunami. If acoustic waves
are relevant but dispersion is not, the superposition method can be an adequate choice.
However, its computational cost is not much smaller than the cost of the fully coupled
model, as both models require three-dimensional ocean simulation. The computational
overhead of the fully coupled model only stems from the gravitational boundary condition,
which we can discretize efficiently, as shown in section 4.3. The superposition coupling has
other advantages. It allows using an existing shallow water solver (with minimal additions
for sourcing) and a standard earthquake solver, assuming it can also simulate acoustic
waves. Hence, the superposition method is easier to implement than the fully coupled
model. Furthermore, as in all one-way coupling strategies, the shallow water model can
be non-linear and can thus include additional physical effects such as inundation, which
leads to better results near the coast.
We can use a seafloor displacement-based coupling strategy when acoustic waves are

irrelevant. As mentioned in section 7.3, it is advisable to use the Tanioka filter (equa-
tion (7.9)) and the Kajiura filter (equations (7.12) and (7.14)) to account for a sloping
seafloor and the non-hydrostatic ocean response. The resulting coupling is cheap and
can be used with a non-linear shallow water model.

To summarize, the fully coupled model should be considered as a reference model for
off-shore earthquake-induced tsunamis. Often, we can use a compromise between the
expensive fully coupled model and the cheaper one-way linking models. We use the fully
coupled model for the first part of the simulation until the earthquake has stopped and
after most acoustic waves have left the domain. Then, we switch to a shallow water solver
using the result of the fully coupled model as the initial condition. This gives us the best
of both worlds: We get an accurate result for the tsunami generation and then capture
the tsunami, which happens on a much longer time scale, with an approximate model.

116

Chapter 8.

Verification

In this chapter, we verify our fully coupled solver using a variety of analytical solutions.
It is well known that we can expect a convergence order of q = N + 1 for a DG scheme
with polynomial order N [61]. Hence, asymptotically, the error should be of size O(hq),
where h is the characteristic element length. We consider two meshes: A coarser one
with a characteristic length of hi that leads to an error of ei and a refined one with a
characteristic length of hi+1 and an error of ei+1. We measure the error between the
numerical solution qi and the analytical solution q with the integral

e =

(∫
Ω
|qi − q|2 dx

)1/2

, (8.1)

which is the standard L2 norm. We only consider the solution for σ11. The numerical
order of convergence converges to

qi ≈
log (ei+1/ei)

log (hi+1/hi)
(8.2)

for i→∞. We use the linear regression

log(e) ≈ m+ q̂ log(h), (8.3)

to predict the error e from h. The coefficients m, which summarizes constant factors,
and q̂, the average convergence order, can be found by a linear least squares procedure.
We exclude errors in this estimate which are not in the asymptotic region, i.e., h is
too small. We also exclude errors near the precision with which we can calculate the
analytical solution. In this chapter, we use the Python library statsmodels [139] to fit
equation (8.3).

We begin by showing a planar wave solution in section 8.1, demonstrating the conver-
gence of the elastic and acoustic solvers. This setup uses a periodic boundary condition,
showing that our scheme simulates the propagation over multiple wavelengths without
dissipating too much energy. Next, we show that the elastic-acoustic coupling works
using two test cases. The first, Snell’s law at the elastic-acoustic interface (section 8.2),
considers the reflection of an incoming wave at this material interface. The second, the
Scholte wave scenario (section 8.3), shows that our model can capture interface waves
correctly.

117

Chapter 8. Verification

64321684
10−11

10−8

10−5

10−2

101

Subdivision factor

L
2
er
ro
r
σ
1
1

N = 1
N = 2
N = 3
N = 4
N = 5

N q

1 1.9
2 3.0
3 4.3
4 5.0
5 5.9

Figure 8.1.: Convergence plot for the elastic planar wave. Solid lines indicate the range
of errors used to compute the average convergence order. For N = 2, we
included only subdivision factors larger than 8. The performance for larger
factors is an outlier and does not reflect the obtained error accurately. The
dashed lines indicate the optimal convergence. We achieved nearly optimal
numerical orders of convergence for all considered polynomial orders.

Finally, we use a three-dimensional ocean model (section 8.4) to show that our im-
plementation of the gravitational boundary condition is correct. Combining these
scenarios, we show that our implementation achieves high-order convergence for fully
coupled elastic-acoustic tsunami simulations. We use a time step size with a factor of
C(N) = 0.4(2N + 1)−1 in equation (4.47), a rate-2 LTS scheme, double precision, and
SeisSol version 1.0.1 [167].

8.1. Planar Waves

The plane wave ansatz is a simple analytical solution for constant coefficient linear partial
differential equations. The idea is to express the solution in a representation similar to
a Fourier basis [41, Sec. 4.2.1]. It has been applied to SeisSol to test the accuracy for
various rheological models, for example, in [35, 181]. We apply this approach to the
elastic and acoustic wave equations in this section. We assume an complex ansatz of

q(x, t) = exp (i(ωt− k · x)) q0. (8.4)

We need to find parameters for the angular frequency ω, and the initial state q0 for
an arbitrary direction k = (k1, k2, k3). We derive an equation for these parameters by
inserting equation (8.4) into our system of hyperbolic PDEs (equation (2.29)). Using the

118

8.1. Planar Waves

64321684

10−11

10−8

10−5

10−2

101

Subdivision factor

L
2
er
ro
r
σ
1
1

N = 1
N = 2
N = 3
N = 4
N = 5

N q

1 2.0
2 3.1
3 4.0
4 5.1
5 6.2

Figure 8.2.: Convergence plot for the acoustic planar wave. Solid lines indicate the range
of errors used to compute the average convergence order. For N = 2, we
included only subdivision factors larger than 4. The dashed lines indicate the
optimal convergence. We achieved the optimal numerical order of convergence
for all considered polynomial orders.

derivatives of equation (8.4),

∂q

∂t
= ωiq,

∂q

∂x
= −ik1q,

∂q

∂y
= −ik2q,

∂q

∂z
= −ik3q, (8.5)

we arrive at

(iω −Aik1 −Bik2 −Cik3) exp (i(ωt− k · x)) q0︸ ︷︷ ︸
=q

= 0. (8.6)

After dividing by exp (i(ωt− k · x)), we arrive at

(iω −Aik1 −Bik2 −Cik3) q0 = 0. (8.7)

Finally, multiplying with i and reordering results in the eigenproblem

(Ak1 +Bk2 +Ck3)︸ ︷︷ ︸
=Â

q0 = ωq0, (8.8)

where the goal is finding eigenvalues ω and their corresponding eigenvectors q0 of the
plane-wave operator Â which is the same plane-wave operator (equation (2.31)) that we
considered in the discussion of Riemann problems.
We only consider the real part of the solution, which reduces to

ℜ (exp(i(ωt− k · x))q0) = cos (ℜ (ω) t− k · x) exp (−ℑ (ω) t)ℜ (q0)

− sin (ℜ (ω) t− k · x) exp (−ℑ (ω) t)ℑ (q0) .
(8.9)

119

Chapter 8. Verification

We used the notation ℜ(·) for the real and ℑ(·) for the imaginary part of a complex
number. Equation (8.9) is a solution of the PDE because it is a linear combination of
solutions. The eigenvalues of the plane wave operator Â are real because our PDE is
hyperbolic [95]. Hence, we can normalize the eigenvectors such that they only have real
components. Thus, both ω and q0 can be assumed to be real and hence, equation (8.9)
reduces to

q(x, t) = cos (ωt− k · x) q0. (8.10)

Note that ω and q0 depend on the material properties. The eigenvalues ω correspond to
the waves of the PDEs. We use the solution for both acoustic and elastic materials. We
impose a linear combination of a left-going S wave and a right-going P wave for elastic
materials. We set λ = 2, µ = 1 and ρ = 1, leading to wave speeds of cp = 2, cs = 1.

For the acoustic material, we use a right-going acoustic wave. There, we set K = 4
and ρ = 1, which leads to a wave speed of c = 2. For the choice k = aπ, with a ∈ Z2,
the solution is periodic in the domain [−1, 1]3. Hence, the simulation returns to the
original condition for both materials every

√
3 time units. We run the setup for 10

wave propagations, leading to a simulation time of ≈17.32. The domain is divided into
4, . . . , 64 cubes, split into tetrahedra.

Figure 8.1 shows the observed errors for the elastic material and figure 8.2 for the
acoustic setup. We observe that we reach the optimal convergence order for all polynomial
orders. For N = 1, we require a subdivision factor of 16 to arrive in the asymptotic
region. Thus, our implementation achieves high-order convergence for both elastic and
acoustic wave propagation.

8.2. Snell’s Law at an Elastic-Acoustic Interface

Elastic ρe, cep, ces

Acoustic ρa, ca

ip rp

tpts

Figure 8.3.: Setup of Snell’s law. We have four waves: an incident acoustic wave (ip), a
reflected acoustic wave (rp), a transmitted P wave (tp), and a transmitted
S wave (ts). The direction vectors are the ones used in our simulation.

We have seen in the previous section that our solver works for both elastic and acoustic
media. This section presents a scenario that uses Snell’s law at the elastic-acoustic
interface to test the elastic-acoustic coupling. It was introduced in [73]. Our description

120

8.2. Snell’s Law at an Elastic-Acoustic Interface

follows [175]. The idea of this analytical solution is simple: We derive a solution for each
medium and combine them using interface conditions.

An incident pressure (ip) wave travels from the acoustic domain towards the interface.
Some parts are reflected as acoustic waves (rp). The residual energy enters the elastic
domain as a longitudinal wave (tp) and a transverse wave (ts). Each of these waves
has an angle (αip, αrp, αtp, αts) and strength (Cip, Crp, Ctp, Cts). Figure 8.3 visualizes the
structure of this problem.

Thus, we write the solution as

u(x, t) =

{
uip + urp if in acoustic domain,

utp + uts if in elastic domain.
(8.11)

We define the displacements

uip = Cipdip cos (kap (x sin(αip) + z cos(αip)− ωt)) ,
urp = Crpdrp cos (kap (x sin(αrp)− z cos(αrp)− ωt)) ,
utp = Ctpdtp cos (kep (x sin(αtp) + z cos(αtp)− ωt)) ,
uts = Ctsdts cos (kes (x sin(αts) + z cos(αts)− ωt)) ,

(8.12)

with directions

dip = (sin(αip), 0, cos(αip))
T ,

drp = (sin(αrp), 0,− cos(αrp))
T ,

dtp = (sin(αtp), 0, cos(αtp))
T ,

dts = (− cos(αts), 0, sin(αts))
T .

(8.13)

We set ω = 2π. The acoustic material has a density and wave speed of ρa = cap = 1.
The elastic material has a density of ρe = 1 and wave speeds of cep = 3 and ces = 2.

We assume that the incident pressure wave arrives at an angle of αip = 0.2. Next, we
apply Snell’s law to all waves and arrive at

sin(αip)/cap = sin(αrp)/cap,

sin(αrp)/cap = sin(αtp)/cep,

sin(αtp)/cep = sin(αts)/ces,

(8.14)

which defines all angles.

What is left is the computation of the factors C in equation (8.11). We apply the
elastic-acoustic interface condition (equation (2.94)). The interface is at z = 0 and has
the normal vector n = (0, 0, 1)T . With this, the interface conditions are

va(x, y, z = 0) · n = ve(x, y, z = 0) · n,
σa(x, y, z = 0) · n = σe(x, y, z = 0) · n. (8.15)

121

Chapter 8. Verification

We can choose the value for Cip freely. Here, we use Cip = 1. The solution of this
non-linear system of equations is approximated by

Crp = 0.480555914321673987,

Ctp = 0.433811888960301440,

Cts = 0.404562109533773730,

(8.16)

where all values linearly depend on Cip. We used the computer algebra system Sage [130]
to compute the constants. As we use the velocity-stress formulation, we compute the
stress tensor and the velocities by analytical differentiation of the displacements (equa-
tion (8.11)).

168421

10−8

10−6

10−4

10−2

100

102

Subdivision factor

L
2
er
ro
r
σ
1
1

N = 1
N = 2
N = 3
N = 4
N = 5

N q

1 2.1
2 3.2
3 4.1
4 5.3
5 6.0

Figure 8.4.: Convergence plot for Snell’s law at the elastic-acoustic interface. Solid lines
indicate the range of errors used to compute the average convergence order.
For N = 2, we included only subdivision factors larger than 2. The dashed
lines indicate the optimal convergence. We achieved the optimal numerical
orders of convergence for all considered polynomial orders.

We prescribe the analytical solution on all boundaries and let the simulation run until
t = 10. The domain has size [−1, 1] × [−1, 1] × [−2, 2]. We divide the domain into
cubes. Figure 8.4 shows the results. We achieve the optimal order of convergence for all
evaluated polynomial orders. Hence, this scenario shows that our solver can resolve the
elastic-acoustic interface satisfactorily.

8.3. Scholte Waves

We discuss an exact solution for Scholte waves in a coupled elastic-acoustic medium
in this section. Scholte waves are waves that travel along the elastic-acoustic interface.
They decay exponentially away from the interface. Our description follows [73, Sec. 5.2]

122

8.3. Scholte Waves

and [175]. Similarly to the previous section, we define an elastic material (z < 0) with
material λe, µe, ρe and an acoustic material (z > 0) with Ke, ρe.

We split the solution into one

ua1(x, y, z, t) = ℜ(ikB1 exp(−kbapz) exp(i(kx− ωt))),
ua2(x, y, z, t) = 0,

ua3(x, y, z, t) = ℜ(−1kbapB1 exp(−1kbapz) exp(i(kx− ωt))),
(8.17)

for the acoustic and one

uw1 (x, y, z, t) = ℜ ((ikB2 exp(kbepz)− kbesB3 exp(kbesz)) exp(i(kx− ωt))) ,
ue2(x, y, z, t) = 0,

ue3(x, y, z, t) = ℜ ((kbepB2 exp(kbepz) + ikB3 exp(kbesz)) exp(i(kx− ωt)))
(8.18)

for the elastic medium.
We have three body waves: The suffixes ap and ep denote the P wave in the acoustic

and elastic part, and es is the S wave in the elastic region. For each of these waves, we
define a wave speed

cap =

√
λa + 2µa

ρa
, cep =

√
λe + 2µe

ρe
, ces =

√
µe
ρe
, (8.19)

and a decay rate

bap =
√
1− (c2/c2ap), bep =

√
1− (c2/c2ep), bes =

√
1− (c2/c2es), (8.20)

where we introduced the Scholte wave speed c.
Now, we need to combine the solutions for both media. Following [175] inserting the

interface conditions (equation (2.94)) into equations (8.17) and (8.18) leads to the coupled
system

2i

(
1− c2

c2ep

)1/2

B2 −
(
2−

(
c2

c2es

)
B3

)
= 0,

c2

c2es
B1 +

(
ρe
ρa

(
2− c2

c2es

)
B2 + 2i

ρe
ρa

(
1− c2

c2es

)1/2

B3

)
= 0,

(
1− c2

c2ap

)1/2

B1 +

(
1− c2

c2ep

)1/2

B2 + iB3 = 0,

(8.21)

which we need to solve for the factors B1, B2, and B3. This system has, in principle, an
infinite number of solutions. Hence, following [73], we choose c such that equation (8.21)
has a determinant of 0 and thus a non-trivial solution. This requirement leads to the
equation (

ρa
ρe
bep + bap

)
r4 − 4bapr

2 − 4bap(bepbes − 1) = 0, (8.22)

123

Chapter 8. Verification

168421
10−7

10−5

10−3

10−1

101

103

Subdivision factor

L
2
er
ro
r
σ
1
1

N = 1
N = 2
N = 3
N = 4
N = 5

N q

1 2.0
2 2.6
3 3.5
4 4.3
5 5.2

Figure 8.5.: Convergence plot for the Scholte wave scenario. Solid lines indicate the
range of errors used to compute the average convergence order. The dashed
lines indicate the optimal convergence. We can only report the optimal
convergence rate for N = 2 for this scenario. However, we can still see
exponential convergence for all other orders. Higher orders lead to smaller
errors.

where r = c
ces

, which we can solve to find c. Note that in the case of ρa → 0, this equation
reduces to the one that determines the Rayleigh wave speed [73].

We use the material parameters λa = ρa = 1 for the acoustic and λe = ρe = µe = 1 for
the elastic region. We solved equations (8.21) and (8.22) with Sage [130], resulting in the
constants

c = 0.7110017230185816,

B1 = −0.35944998i,
B2 = −0.81946427i,
B3 = 1.

(8.23)

We compute the solution in velocity-stress formulation by differentiating equations (8.17)
and (8.18).

The domain has size [−1, 1]× [−20, 20]× [−1, 1] and is divided into cubes. We prescribe
the analytical solution on all boundaries and simulate until t = 1. Figure 8.5 shows the
results of our convergence study. Our implementation achieves high-order convergence;
however, we do not obtain optimal rates for N > 2. Nevertheless, higher orders for this
scenario have a clear advantage, as they lead to smaller errors.

124

8.4. Compressible Ocean

8.4. Compressible Ocean

We have seen in the previous sections that our implementation works well for simulations
of acoustic-elastic coupling. However, we have not yet evaluated the quality of our
boundary condition implementation. In this section, we describe a three-dimensional
verification test for the acoustic wave equation with gravity. The analytical solution, first
described in [3], can be obtained by rotating the two-dimensional solution of [97] around
the z axis. It follows from a standard eigenmode-based ansatz, similar to the solution
presented in section 8.1. Our derivation follows [3, 97]. We assume a solution of the form

p(x, y, z, t) =

(
sinh(k∗z) + g

k∗
ω2

cosh(k∗z)
)
sin(kxx) sin(kyy) sin(ωt),

v1(x, y, z, t) =

(
sinh(k∗z) + g

k∗
ω2

cosh(k∗z)
)
cos(kxx) sin(kyy) cos(ωt)

kx
ωρ
,

v2(x, y, z, t) =

(
sinh(k∗z) + g

k∗
ω2

cosh(k∗z)
)
sin(kxx) cos(kyy) cos(ωt)

ky
ωρ
,

v3(x, y, z, t) =

(
cosh(k∗z) + g

k∗
ω2

sinh(k∗z)
)
sin(kxx) sin(kyy) cos(ωt)

k∗
ωρ
,

(8.24)

where kx, ky, k∗ and ω are parameters.
Integrating the vertical velocity at the surface in time leads to the sea surface displace-

ment

η(x, y, t) =

∫ t

0
v3(x, y, z, τ) dτ =

k⋆ sin (ωt) sin (kxx) sin (kyy)

ω2ρ
. (8.25)

We use the following boundary conditions:

p = 0 at x = 0, and x = Lx,

p = 0 at y = 0, and y = Ly,
(8.26)

p = ρgη(x, y, t) at z = 0, (8.27)

n · v = 0 at z = −H. (8.28)

Here, Lx = Ly = 10 km are the lengths of the domain, and H = 1km is the water height.
Thus, we use a computational domain of size [0, Lx]× [0, Ly]× [−H, 0].

Now, we need to find parameters such that equation (8.24) fulfills the boundary
conditions (equations (8.26) to (8.28)). To fulfill the free surface boundary conditions on
the sides (equation (8.26)), we need to set the horizontal wavenumbers to

kx =
nπ

Lx
, ky =

nπ

Ly
, (8.29)

for arbitrary positive integers n. From the rigid body boundary condition (equa-
tion (8.28)), we get the dispersion relation

ω =
√
gk⋆ tanh(k⋆H), (8.30)

125

Chapter 8. Verification

Table 8.1.: Constants for the water tank test case for the gravity wave mode and the first
acoustic wave mode.

Mode ω k⋆

n = 0 Gravity 0.0425599572628432 0.4433813748841239
n = 1 Acoustic 2.4523337594491745 1.5733628061766445

which relates the angular frequency ω to the wavenumber k⋆. Finally, we get the definition
of k⋆ by inserting equation (8.27) into the pressure term of equation (8.24)

k⋆ =

√
k2x + k2y −

ω2

c2
. (8.31)

We can solve this for ω, leading to

ω2 = c2
(
k2x + k2y − k2⋆

)
. (8.32)

Combining equations (8.30) and (8.32), we can compute the values of k⋆ by solving

c2
(
k2x + k2y − k2⋆

)
− gk⋆ tanh(Hk⋆) = 0 (8.33)

We can write complex solutions for k⋆ as k⋆ = A+Bi. Using k2⋆ = A2 + 2iAB −B2, we
rewrite equation (8.33) as

c2
(
k2x + k2y −A2 − 2iAB +B2

)
− g(A+Bi) tanh (H(A+Bi)) = 0. (8.34)

We first look for the real solution. Thus, setting B = 0 and realizing that tanh(iB) =
i tan(B), results in

c2
(
k2x + k2y −A2

)
− gA tanh (HA) = 0. (8.35)

We do the same exercise for imaginary solutions by setting A = 0, which leads us to

c2
(
k2x + k2y +B2

)
+ gB tan (HB) = 0. (8.36)

Hence, we need to solve equations (8.35) and (8.36) for k∗. We compute ω by inserting
k∗ into equation (8.32). There are multiple solutions for these equations. We denote the
gravity wave mode, which is the solution of equation (8.35) as mode 0. The acoustic wave
modes, which are the solutions of equation (8.36), are numbered sequentially by their value.
Computing these constants with as much precision as possible is crucial, as the numerical
solution is quite sensitive to these values. Table 8.1 shows the resulting constants.
Furthermore, we set g = 9.81m s−2 and use a material with density ρ = 1000 kgm−3 and
acoustic wave speed c = 1.5 km s−1. Note that we set up the simulation in a unit system
that uses kilometers for lengths, which is numerically more stable than SI units.

The domain is discretized into cubes. We simulate for a time of 2π
ω , which corresponds to

approximately 147.6 s and 2.6 s for the gravity and first acoustic wave mode, respectively.
The results for the gravity wave mode (figure 8.6) show that our solver achieves an excellent

126

8.4. Compressible Ocean

168421
10−16

10−13

10−10

10−7

10−4

10−1

Subdivision factor

L
2
er
ro
r
σ
1
1

N = 1
N = 2
N = 3
N = 4
N = 5

N q

1 2.8
2 3.5
3 4.5
4 5.7
5 5.7

Figure 8.6.: Convergence plot for gravity wave mode of the ocean scenario. Solid lines
indicate the range of errors used to compute the average convergence order.
The dashed lines indicate the optimal convergence. Here, we achieve much
better convergence orders than expected; however, the solution becomes
worse for N ≥ 4 for higher subdivision factors.

168421
10−13

10−10

10−7

10−4

10−1

Subdivision factor

L
2
er
ro
r
σ
1
1

N = 1
N = 2
N = 3
N = 4
N = 5

N q

1 2.1
2 3.3
3 4.0
4 5.1
5 6.0

Figure 8.7.: Convergence plot for the first acoustic wave mode of the ocean scenario. Solid
lines indicate the range of errors used to compute the average convergence
order. The dashed lines indicate the optimal convergence. We obtain the
optimal order of convergence for all considered polynomial degrees.

127

Chapter 8. Verification

numerical order of convergence for up to N = 4. For N = 4 and especially N = 5, we note
that the results become worse after sufficient refinement. This was also observed in [3],
which used our old implementation of the gravitational boundary condition, detailed
in [79]. The reason for this probably lies in the numerical instability of the analytical
solution. However, the results for the first acoustic wave mode (figure 8.7) are much
better. We achieve the optimal order of convergence for all considered polynomial orders.
For order N = 5, we stop improving after an error of roughly 10−10 has been reached,
again most likely caused by the error of the computation of the analytical solution. The
results show that our implementation of the boundary conditions is correct and that we
achieved high-order convergence.

8.5. Discussion

We have seen in this chapter that the implementation of our numerical model is correct
by comparing it with multiple analytical solutions. Section 8.1 has shown that our
implementation can simulate both elastic and acoustic wave propagation. Sections 8.2
and 8.3 have shown that we can simulate coupled elastic-acoustic scenarios. Finally,
we have shown in section 8.4 that the implementation of the gravitational boundary
condition is correct. Thus, our numerical scheme achieves high-order convergence for
fully coupled earthquake-tsunami simulations.

128

Chapter 9.

Scenarios

In this section, we present large-scale fully coupled scenarios. We begin with an earthquake-
tsunami benchmark (section 9.1) that models an earthquake followed by a tsunami. For
this setup, we compare our fully coupled method with a standard two-way coupling
method and investigate the differences in the wave structure. We discuss a fully coupled
scenario for the Palu, Sulawesi earthquake-tsunami in section 9.2. This scenario models a
real-world event with a detailed multiphysics model. Finally, in section 9.3, we simulate
a small earthquake induced by the stimulation of an enhanced geothermal system. We
use the fully coupled model to compute the sound generated by this event.
In this and the following chapter, we use the following petascale clusters:

Frontera [154] 8368 dual-socket Intel Cascade Lake Xeon Platinum 8280 (28 cores each).
The nodes are organized in 101 racks and are connected by a Mellanox HDR
InfiniBand interconnect with a fat tree topology.

SuperMUC-NG [93] 6336 dual-socket nodes with Intel Skylake Xeon Platinum 8174 (24
cores each). The nodes are organized in 8 islands and connected by an OmniPath
network with a fat tree topology.

Shaheen-II [52] 6174 dual-socket nodes with Intel Haswell Xeon E5-2698v3 (16 cores
each). The nodes are connected with an Aries interconnect with Dragonfly topology.

Mahti [138] 1404 nodes with dual socket AMD Rome 7H12 (64 cores each). The nodes
are connected with a Mellanox HDR InfiniBand interconnect using a Dragonfly+
topology.

All clusters except Frontera use hyperthreading, i.e., they have two logical threads for
each physical core. In this section, we use the computational tools and optimal settings
described in chapter 10. We detail the used settings and SeisSol versions in appendix A.

9.1. Earthquake-Tsunami Benchmark

This section follows the discussion in [79, Sec. 6.1]. We extend an earthquake-tsunami
benchmark scenario, called “Scenario A”, from [102]. It models a megathrust earthquake
with an idealized dynamic rupture earthquake source on a planar fault. The tsunami
setup assumes a flat bathymetry and inundation on a linearly sloped beach. We use this
setup to compare our fully coupled method with a standard one-way linking method. We

129

Chapter 9. Scenarios

-325 0 425
-375

0

375

x [km]

y
[k

m
]

a) b)

−400 −200 0 200 400
−1

−0.5

0

0.5

1

1.5

x [km]

se
a

su
rfa

ce
he

ig
ht

[m
]

Fully coupled
SWE

se
a

su
rfa

ce
he

ig
ht

[m
]

Figure 9.1.: Figure taken from [79]. Sea surface height of (“Scenario A” of [102]). (a)
Snapshot of sea surface height (η) of our fully coupled model at t = 120 s.
(b) Comparison of our fully coupled model with the one-way linked model.
Cross section (black line in (a)) at y = 0km, also at t = 120 s. Shown in blue
is the sea surface height from our fully coupled model, and shown in red is
the reference solution using a one-way linking (by time-dependent sourcing)
with the non-linear shallow water solver sam(oa)2-flash. We used the same
earthquake simulation results, obtained with polynomial order 5, for both
methods.

do not expect our model to agree completely with the results presented in [102]. While
we should match the tsunami itself, we expect differences due to ocean acoustic waves
excited by the high-frequency seismic waves from the earthquake [3]. Furthermore, our
fully coupled model does not include the sloping beach.

We model the crust as a homogeneous medium, with density ρ = 3775 kgm−3 and
wave speeds cp = 7639.9m s−1 and cs = 4229.4m s−1, which represents a typical material
estimated for oceanic crusts in subduction zones [176]. We consider anMW 8.5 earthquake
and model the rupture by a dynamic rupture model with a linear slip-weakening friction
law [6]. This friction law is computationally relatively inexpensive, and the cost of the
friction solver is constant throughout the simulation. The fault lies at a depth of 35 km
and connects to the surface. It has a dip of 16°. The rupture stops when reaching the
surface, as we set a higher fault strength there. Notably, the mean rupture velocity
of 3.5 km s−1 is smaller than cs. Hence, the resulting earthquake is called a subshear
earthquake. However, the rupture transitions to supershear speed locally.

We added a water layer of depth 2 km with a density of ρ = 1000 kgm−3 and an
acoustic wave speed of c = 1500m s−1 to this Earth model. On top of the ocean, we
use the gravitational free surface boundary condition to include tsunami propagation.
Inside the crust, we use an element length of 400m at the fault and 250m at the
nucleation patch. The water layer is meshed with element lengths up to 2 km; however,
because we use conforming meshes, it is also automatically refined at the fault. As we
use higher-order polynomials, the actual resolved resolution is lower. In our case, we

130

9.1. Earthquake-Tsunami Benchmark

-320000 0
0

50

100

150

200

250

300

x [km] x [km]
-320000 0 400000400000

Ti
m

e
[s

]
a) b)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

ve
rt

ic
al

 d
is

pl
ac

em
en

t
[m

]

Figure 9.2.: Wave structure of the fully coupled simulation of “Scenario A”, from [102].
We used a line at y = 0km with a spatial resolution of 1 km and a time
resolution of 50Hz. a) shows the sea surface vertical displacement and b)
shows the seafloor displacement. The effect of the ocean response and the
tsunami are visible in a). We observe seismic waves in both a) and b).

consider N = 5 polynomials. Hence, the minimal resolution at the nucleation patch is
approximately 50m. The mesh for the earthquake (without the water layer) has roughly
16 million elements. Adding the water layer increases the mesh size to 29.5 million
elements. For all simulations with this setup, we use a CFL constant (equation (4.47)) of
C(N) = 0.35(2N + 1)−1.

In [79], we compared our fully coupled model with a two-step linking approach. For the
latter, the displacement from the earthquake simulation was interpolated to a Cartesian
grid using bi-linear interpolation. This seafloor displacement was used as a time-dependent
source term in the two-dimensional non-linear shallow water equations solver sam(oa)2-
flash, which uses a second-order Runge-Kutta DG method and dynamic adaptive mesh
refinement. For details, we refer the interested reader to [102]. The tsunami model
contains a linearly-sloping beach at x = 240 km, which we did not include in our fully
coupled model. We simulated this with a rate-2 LTS scheme up to 120 s.

It is clear from the results (figure 9.1) that both modeling strategies capture the same
tsunami. However, there are some differences. On the right, we can see that the beach in
the one-way linked model leads to slight differences close to the boundary, which do not
influence the tsunami elsewhere. On the left, we can see high-frequency oscillations (with
period < 5.3 s) in the fully coupled model. These oscillations have a small wavelength
and correspond to reverberating acoustic waves in the ocean. The one-way linked model
does not contain these waves, as they are not included in the used physical model, which
assumes that the ocean is incompressible.

To better investigate the wave structure, we placed receivers on a y = 0km slice on
the seafloor with a spacing of 1000m and used a longer simulation time of 300 s. We

131

Chapter 9. Scenarios

simulated this with SeisSol version 1.0.1 [167]. Figure 9.2 shows a space-time plot of the
vertical velocity of our fully coupled model. We compare the displacement at the sea
surface (a) with the seafloor (b). The seismic waves are clear in both figures. Acoustic
waves can be seen on the sea surface as transient waves. We can observe the beginning of
the tsunami propagation, moving with speed

√
gH ≈ 140m s−1 on the sea surface. Note

that we can see some reflections coming in from the boundary of our simulation; however,
they do not seem to affect the tsunami. We ran this on 256 nodes of SuperMUC-NG,
resulting in a sustained performance of 312.2 TFLOPS. The simulation took roughly 10
hours and 56 minutes. We used a rate-5 LTS scheme for this simulation and a wiggle
factor of λ = 1, which resulted in a clustering (figure 9.3) with an expected speedup of
5 compared to GTS. This LTS configuration demonstrates that our scheme can handle
rates other than 2.

1 5 25 125 625

104

106

108

(∆t)min

N
u
m
b
er

of
el
em

en
ts

Figure 9.3.: LTS clustering with rate-5 for the earthquake-tsunami benchmark mesh.
The y-axis (logarithmically scaled) shows the number of elements per cluster
while the x-axis shows their respective minimum time step sizes in terms of
the globally minimal time step size (∆t)min ≈ 107.22 µs.

To summarize, this experiment shows that our model captures a tsunami that is
identical to the one obtained from a standard one-way linked model. However, it also
shows that our model includes more waves than the classical coupling strategy because it
allows the ocean to be compressible. Furthermore, it demonstrates that we can use a
rate-5 LTS scheme.

9.2. Palu, Sulawesi 2018

A devastating MW 7.5 earthquake struck Palu Bay on the island of Sulawesi, Indonesia
on September 28, 2018. It triggered an unexpected local tsunami. In this section, we
present a fully coupled model of this event, following our paper [79, Sec. 6.2].

This event is interesting from a geophysical perspective for two main reasons. The first
is that the rupture happened with supershear speed, i.e., it moved faster than the shear
wave speed. The second is that it was a strike-slip earthquake that nevertheless induced
a tsunami. This type of mechanism leads to predominantly horizontal displacement. As

132

9.2. Palu, Sulawesi 2018

a) d)

se
a

su
rf

ac
e

he
ig

ht
 (

m
)

se
a

su
rf

ac
e

ve
rt

ic
al

 v
el

oc
ity

 (m
/s

)

earthquake
rutpure front

Palu Bay
water layer

north

sl
ip

 ra
te

 (m
/s

)

b) c)

ve
rt

ic
al

 v
el

oc
ity

 (m
/s

)

shear Mach front

Figure 9.4.: Figure taken from [79]. Results of our fully coupled model for the Palu
earthquake tsunami. a) Map view of the resulting tsunami. The vertical sea
surface velocity at t = 15 s is shown. The black lines indicate the location
of faults, and the star is the earthquake’s epicenter. b) 3D visualization of
the sea surface height in meters at t = 60 s. The sea surface is exaggerated
by a factor of 2000. c) 3D snapshot at t = 15 s. We show the slip rate on
the fault and the vertical velocity on the free surface. On the free surface,
the vertical velocity is shown. The earthquake rupture front is highlighted
and has a—for supershear earthquakes characteristic—trailing mach front.
d) Map view of sea surface height at t = 15 s.

tsunamis are typically induced by vertical displacement, this tsunami was unexpected.
The cause of the tsunami is highly debated [104].

[163] showed that the tsunami can be explained by displacements resulting from the
interplay of earthquake rupture and the complex geometry of the bay. However, this
paper used a standard one-way linking approach to model the tsunami. As we discussed
in chapter 7, this method of tsunami simulations makes strong assumptions. Hence, we
present a fully coupled model which can capture the full dynamics of the event, starting
from earthquake rupture, to wave propagation in both elastic (Earth) and acoustic (ocean)
media, to tsunami propagation. For this, we extended the model published in [163]
by adding a water layer on top of the Earth, corresponding to the ocean. We use our
gravitational free surface boundary condition to enable tsunami propagation.

Our meshes use a maximum element size of 5 km. We refine in a cuboid with coordinates
x = 5km± 70 km, y = 0km± 180 km and z = −8 km± 34 km, which includes our region
of interest and the water layer. We use the following two meshes:

M is a medium-sized mesh with roughly 89 million elements. It has a water layer
resolution of 100m and uses elements with 1 km length in the refinement zone.

L is our large mesh with roughly 519 million elements. It resolves the water layer with a
resolution of 50m and seismic waves in the refinement zone with 500m.

We run the M mesh for 100 s, which is enough to capture the entire earthquake dynamics.
The tsunami reaches the coast in this time frame. We run the L mesh for 30 s, which is

133

Chapter 9. Scenarios

enough to capture the earthquake mechanics, tsunamigenesis, and initial acoustic wave
propagation in the ocean. The water layer causes the majority of the computational
effort: In the L mesh, 453.7 million elements discretize the ocean, increasing the total
mesh size by a factor of 8.

We observe frequencies up to 30Hz for the L mesh in the acoustic receivers. Using the
heuristic that we require two elements per wavelength to reach an acceptable error, we
would expect to resolve frequencies up to 15Hz in the water layer [71]. The fast-moving
supershear dynamic rupture source produces a sharp Mach cone (figure 9.4). The velocity
wavefield is highly complex and is a superposition of elastic waves in Earth, acoustic
waves in the ocean, for which we expect periods shorter than 1.6 s, and the tsunami.
As figure 9.4b shows, the rupture arrives at Palu Bay at 15 s. While the seismic waves
strongly transiently affect the wavefield, they do not contribute to the tsunami generation,
as seen in the displacement field in figure 9.4d.

40s 60s 100s

se
a

su
rf

ac
e

he
ig

ht
 (s

sh
, m

)

3D
 fu

lly
 c

ou
pl

ed
 S

ei
sS

ol
 m

od
el

on
e-

w
ay

 li
nk

ed
 S

W
E

m
od

el

nearly planar tsunami
wavefronts parallel to
the earthquake fault trace

local tsunami extrema
along the coast due to
complex wave reflection,
refraction, funnel and
focusing effects

70s

Figure 9.5.: Figure taken from [79]. Comparison between one-way linking (lower row)
and fully coupled model (upper row). Both models capture the tsunami.
The main difference between both models is the sharpness of the wavefront.
Various factors, including the non-hydrostatic ocean response, may cause
these.

134

9.2. Palu, Sulawesi 2018

The results (figure 9.5) of our fully coupled model show several differences from a
one-way linking model. We compare the fully coupled model to one-way linking with
a non-linear shallow water solver. Southeast of the fault, we observe subsidence, and
northwest of the fault, we see the uplift of the ocean. Both are caused by the seafloor
displacement, visible in figure 9.4d. The wavefronts are parallel to the fault trace at 40 s.
As the water is shallower there, the tsunami propagates slower at the boundaries of the
bay where the fault enters or leaves. At 100 s, we no longer see these clear patterns: We
can observe more complex behavior, such as wave reflections, along the coast.

While both models result in mostly similar wavefields, there are some differences. The
most pronounced one is that the one-way linked model produces a sharper wavefront.
One possible reason might be the non-hydrostatic effect of the ocean, as discussed in
section 7.3.

We use a CFL constant of C(N) = 0.35(2N + 1)−1 for all simulations, as done in [79].
We activated a wiggle factor search for factors λ = 0.51, 0.52, . . . , 1.0 and allowed a
performance loss of 1% from the automatic merging of clusters. We deactivated the
automatic cluster merging for simulations without wiggle factor (λ = 1).

The best wiggle factor for the M mesh is λ = 0.65 with 8 time clusters. The resulting
clustering requires 91.3% of the updates of the clustering with λ = 1, which has 11
clusters. While the λ = 1 leads to a speedup of 24.7 compared to GTS, the λ = 0.65
clustering is 27 times faster than GTS.

The wiggle factor and automatic cluster merging have a stronger effect for the L
mesh. The rate-2 LTS scheme with λ = 1 (figure 9.6a) reduced the number of necessary
updates by a factor of 30.2, compared to GTS. Most elements, more than 86%, are in
the cluster with time step size 32(∆t)min. The optimal wiggle factor λ = 0.71 leads
to the clustering shown in figure 9.6b, which requires only 79.3% of the time steps of
the λ = 1 simulation. Compared to GTS, this optimized clustering is 38.1 times faster.
Additionally, the automatic cluster merging reduced the number of clusters from 12 to 8.
However, the number of elements in the cluster with time step (∆t)min decreased from 80
to just 8 elements, which could reduce the performance in practice because small clusters
are harder to parallelize.

In [79], we used an older version of SeisSol that uses a different implementation of LTS,
dynamic rupture, and the gravitational boundary condition. The results of [79] for the L
mesh were obtained on 3072 nodes of cluster SuperMUC-NG, resulting in approximately
3.14 PFLOPS of sustained average performance and a simulation runtime of 5 hours and
30 minutes. Running the same setup on 6144 nodes of Shaheen-II reached an estimated
performance of 2.3 PFLOPS.1 These performance numbers include free surface output
(every 0.1 s) and receiver output (every 0.01 s)

We simulated the M mesh simulation with version 1.0.1 of SeisSol [167], the version
presented in this thesis, on 1000 nodes of the cluster Frontera. The version with λ = 1
achieved a performance of 1.3 PFLOPS and took roughly 3 hours and 57 minutes. Using
λ = 0.65 led to a sustained performance of 1.2 PFLOPS and a time-to-solution of 3

1The simulation timed out after ≈16 s simulation time. Performance is an extrapolation from the number
of calculated FLOPS of the SuperMUC-NG simulation and from the execution time on Shaheen-II.

135

Chapter 9. Scenarios

1 2 4 8 16 32 64 128 256 512 1024 2048

102

104

106

108

(∆t)min

N
u
m
b
er

of
el
em

en
ts

(a) Reproduced from [79]. λ = 1, (∆t)min ≈ 6.7 µs

1 2 4 8 16 32 64 128

102

104

106

108

(∆t)min

N
u
m
b
er

o
f
el
em

en
ts

(b) λ = 0.71, automatic cluster merging with up to 1% performance loss. (∆t)min ≈ 4.7 µs

Figure 9.6.: Elements clustering for the L mesh. The y-axis (logarithmically scaled) shows
the number of elements per cluster while the x-axis shows their respective
minimum time step sizes in terms of the globally minimal time step size
(∆t)min.

hours and 48 minutes. As the performance of supercomputers can vary between runs,
this measurement is insufficient to decide which version is faster. The results of both
simulations agree with each other and with the results in [79].
To summarize, we have shown in this section how we can apply our fully coupled

model to a realistic model of an earthquake-tsunami event. Our results compare well to
one-way linking. However, the fully coupled model leads to a smoother tsunami. Our
fully coupled model relies on the significant speedup due to LTS, further enhanced by
the wiggle factor. Simulations with this setup have reached sustained performance in the
petascale range on the cluster Shaheen-II, SuperMUC-NG and Frontera.

136

9.3. Helsinki Metropolitan Area

9.3. Helsinki Metropolitan Area

This section summarizes [82]. The Otaniemi project is an enhanced geothermal sys-
tem (EGS) constructed by the company St1 Deep Heat Oy for district heating. It is a
geothermal doublet system, situated roughly 6 km below the campus of Aalto University
in Otaniemi, a district in Espoo, next to Helsinki. Induced seismicity is a necessary side
effect of EGSs, as fluid injection is used to increase the flow rate. The stimulation for this
project was done in two phases. We focus here on the first phase, in June and July 2018,
in which roughly 18 000m3 of water was pumped down. This induced thousands of small
earthquakes [90]. Figure 9.7 shows an overview of this. A second, smaller stimulation
occurred in May 2020, where 2900m3 water was used.

It is crucial to quantify the risk and discomfort caused by these events. Prior work
mainly focused on quantifying the risk of ground shaking [17, 75]. However, not only
ground shaking is relevant, as sounds such as rumbling have been reported for events of
various sizes [25, 40, 62, 151]. For the stimulation experiment conducted in the context
of the Otaniemi project, over 300 macroseismic events were collected in 2018 and 2020 [4,
64, 91, 128]. These reports correspond to a certain annoyance level of the public. The
association of EGSs with disturbances can lead to a lower acceptance level in the public,
as has been demonstrated, for example, in Switzerland [148]. Hence, research into ground
shaking and audible signals is required to better inform the public, ideally leading to a
higher acceptance for similar projects.

Limiting the strength of these induced events (e.g., measured by magnitude or peak
ground velocity) is important to control the hazard and nuisance. The current state of
the art is traffic light systems (TLSs) [11]. TLSs assume that real-time monitoring and
associated reactions are enough to avoid hazard [9]. However, this requires a fine-tuned
earthquake hazard forecasting tool as otherwise large events, such as the 2006 Basel,
Switzerland event, can still be excited [54]. These forecast models can be complex
multiphysics models [48] or probabilistic models [136, 137]. However, most of these TLS
have in common that they work under the belief that such induced earthquakes do not
typically lead to audible signals [105]. They thus do not consider noise [170], which is
at odds with the macroseismic reports [64] and the perception of the public [148]. In
Helsinki, a traffic light system was deployed [4], which, together with an adaptive fluid
injection protocol, successfully limited the magnitude of the events [4, 88, 89]: The largest
of these events with ML 1.8 did not exceed the maximum target magnitude of ML 2.1.

We focus on this event, which corresponds to event 13 of [64]. As it generated audible
noise, further research into the mechanism of sound excitation is required. Related work
includes research into inaudible sounds, such as infrasound, which can be excited by
coupled effects of P waves, S waves, and surface waves [42, 60, 112, 140]. However,
sound can also be generated by secondary sources (e.g., due to topography) [8, 91] or by
weather phenomena. The latter effect and the related influence of temperature can be
included in ray tracers [8] or other approaches [173, 174]. Infrasound can be measured by
a mature network of infrasound sensors [56, 66] or by temporarily deployed sensors [171].
On the other hand, measurement networks are not as mature for audible sound; hence,
observations are rather sparse. It is well known that small to medium-sized earthquakes

137

Chapter 9. Scenarios

-6 0 6
Epicentral distance Eastings [km]

-6

0

6

Ep
ic
en
tr
al
di
st
an
ce
N
or
th
in
gs
[k
m
]

FIN2

HE.HEL1

HE.HEL3

OT.PM00

OT.PK01

OT.KUN

OT.MKK

-0.25 0.0 0.25
Epicentral distance Eastings [km]

-0.75

0.0

Ep
ic
en
tr
al
di
st
an
ce
N
or
th
in
gs
[k
m
]

Simulation Domain
Refinement Zone
Borehole
Source
2018 Events
Sound
Shaking
Sound & Shaking
Acoustic Sensor
Seismometer

(b)

(d)

(a) (c)

Figure 9.7.: Figure taken from [82]. Overview of induced seismicity from the St1 Otaniemi
project and our simulation setup. This figure uses the Web Mercator coordi-
nate system, which differs from the simulation’s map projection. (a) Study
area location in Northern Europe, marked by a black symbol correspond-
ing to the black rectangle in (b) and (c). (b) Study area in the Helsinki
metropolitan area. The black square marks the computational domain. (c)
As in (b), the large black square denotes the 12 km× 12 km simulation do-
main. The circles represent 220 macroseismic reports stimulations in 2018:
Black-outlined circles indicate sound observations, gray-filled circles represent
shaking sensations, and gray circles with black outlines signify simultaneous
sound and shaking. The dashed red polygon marks the refinement area of
our simulation, which contains the source region and neighboring area. The
FIN2 microphone array location is shown by an inverted triangle [91], while
other triangles represent selected seismic stations used for data comparison.
The star marks the location of the largest induced ML 1.8 event 13 in [64].
We use its location as the origin of all maps. (d) Area surrounding the source.
The red line is the 2018 borehole trajectory, which is not perfectly vertical.
After it reached a depth of 5 km, it traveled northeast. The black dots are
203 large, manually revised event locations [64].

138

9.3. Helsinki Metropolitan Area

can also lead locally to audible noise [106, 150, 155].
These sound excitations are often approximated by the relationship between the vertical

ground motion and the sound pressure level [63, 91, 161]. We want to estimate the sound
pressure level (SPL) in the air induced by a seismic wave. Consider a plane wave moving
up in the z-direction and crossing the elastic-acoustic interface. Using the planar wave
ansatz (equation (8.10)),

p(z, t) = cos (ct− z) , v3(z, t) =
1

ρc
cos (ct− z) , (9.1)

is a solution to the acoustic wave equation (equation (2.79)). Furthermore, we know
from equation (2.95) that both traction and vertical velocity are continuous across the
elastic-acoustic interface. Using this assumption, we can write equation (9.1) as

∆p = ρcv3, (9.2)

where ρ and c are the density and acoustic wave speed in the air and v3 is the vertical
velocity measured in the solid. Equation (9.2) directly relates measurements done on Earth
(v3) to the pressure perturbation measured close to the surface in the air (∆p). Of course,
in practice, a realistic source never only generates strictly vertically propagating planar
waves. However, if the vertical distance to the source dominates the horizontal distance,
the incident angle of the P wave is nearly normal. For this situation, equation (9.2) is
approximately valid.
The human hearing range is limited to sounds in the range of 20Hz to 20 kHz [44].

Sound that is below this range is called infrasound [110]. It can be excited by various
anthropogenic sources or by natural phenomena such as earthquakes. Even though
infrasound is typically not heard, it can be perceived by humans as vibrations, given a
sufficiently high sound pressure level [110]. In this section, we focus on quantifying the
SPL and do not consider how humans perceive the sounds. However, we correlate the
spatial distribution of the SPL with reports of heard sounds.
For the earthquakes induced in the Helsinki metropolitan region, the macroseismic

reports show a strong spatial variation with fine-scale features [64], which figure 9.7
illustrates. These small scale features and the minimum frequency of 20Hz, which is
required to resolve audible sound, require a very fine resolution [71], which leads to a high
computational workload. Thus, we must use high-performance computing tools capable
of simulating elastic-acoustic wave propagation, such as the one developed in this thesis.
We compute high-resolution fully coupled elastic-acoustic simulations for the largest

ML1.8 earthquake event 13 in [64] that was induced during the stimulation phase of the
Otaniemi EGS. Our setup contains a 12 km× 12 km area with a sub-element refinement
of up to 2.3m. We use a local velocity model and realistic topography to set up our
simulation. We compare with measurements of both seismic and acoustic signals, and
we evaluate the agreement with the macroseismic reports. Furthermore, we use our
numerical laboratory to investigate the effect of the orientation of the moment tensor on
results.
In section 9.3.1, we discuss the setup of our numerical experiments and introduce a

novel workflow to compute high-resolution peak SPL maps. In section 9.3.2, we discuss

139

Chapter 9. Scenarios

Table 9.1.: This table (taken from [82]) shows the five investigated earthquake source
mechanisms. Event 13 is the reference ML 1.8 event induced during the
stimulation on the 16th of July 2018. We used the source mechanism described
in [64]. The mechanisms Strike + 90, Dip + 90, and Rake + 90 are constructed
by rotating the reference event by 90°. Finally, the slip vector of the Orthogonal
mechanism is orthogonal to Event 13 and Strike + 90.

Event Event 13 Strike + 90 Dip + 90 Rake + 90 Orthogonal

Strike (°) 328 58 148 328 216
Dip (°) 31 31 59 31 52
Rake (°) 71 71 289 161 91

Beachball

the results: We compare our synthetics with observations Furthermore, we discuss the
effect of the source orientation on the resulting peak ground velocity (PGV) and SPL
maps. Finally, in section 9.3.3, we summarize the application and discuss the implications
of our model and its limitations.

9.3.1. Numerical Experiments

Source

We focus on the ML 1.8 event 13 of [64], which happened on 2018-07-16 at 17:26:03 UTC.
Its hypocenter was located at 60.196°N, 24.837°E at a depth of 6.1 km. Following [90,
100], we convert the local magnitude to the seismic moment by the relation

M0 = 10(ML+7.98)/0.83. (9.3)

We model this event by a point source using the Brune source time function

S(t) =

{
exp (−(t− t0)/T) (t− t0)/T 2 (t− t0) > 0

0 else
, (9.4)

where t0 = 0.05 s is the onset time and T = 0.02 s governs the source duration [18,
101]. The source has a corner frequency of around 24Hz. Similar short source durations
have been reported for events of similar size [158]; however, it is difficult to constrain
the corner frequencies of such small events [1]. Hence, we must experimentally verify
whether our choice fits the data well. Furthermore, we created multiple rotations of this
source (table 9.1), which we use to perform a parameter study.

Mesh

We use a domain of size 12 km× 12 km× 15 km that is centered on the source location.
On top of the Earth, we put a 2 km thick air layer. We incorporated accurate topography

140

9.3. Helsinki Metropolitan Area

data with 2m resolution from the National Land Survey of Finland to model the elastic-
acoustic interface. We created two meshes, one that is fully coupled and includes an air
layer and one that only contains the Earth but has a higher resolution.

In the fully coupled mesh, we focus on a cone-shaped refinement region (figure 9.7),
which includes the earthquake source and the Munkkivuori neighborhood. We used
element sizes of 97m (Earth) and 14m (air) in this refinement region. This small
resolution is required to accurately resolve the high-frequency content of the solution [69].
We gradually decrease the mesh resolution outside the refinement area to a maximum
element size of 2 km. The larger domain size and the coarser resolution serve as a
cost-effective sponge layer that helps mitigate reflections from the imperfectly absorbing
boundary conditions. Near the elastic-acoustic interface, the mesh is automatically refined
to account for topography details, leading to smaller element sizes. Furthermore, we use
a conforming mesh, which restricts the flexibility of the mesh generation. Hence, some
elements may be much smaller than the target resolution: 1% of all element edges are
smaller than 7.04m! We use polynomials of degree five, achieving sixth-order accuracy in
space and time and leading to an effective resolution of 16.2m (Earth) and 2.3m (air) in
our refinement region. Our mesh comprises 40.9 million elements, with the computational
cost primarily attributed to modeling acoustic wave propagation in air, similarly as
observed for the Palu scenario (section 9.2).

In the Earth-only setup, which does not include an air layer, we use a uniform mesh
resolution of 70m in the Earth. This mesh consists of 32.5 million elements. Including
a high-resolution air layer for the entire domain would pose significant computational
challenges.

Velocity model

Below the surface, we adopt a one-dimensional seismic velocity model [94], obtained
by vertical seismic profiling at the injection well. It describes the P wave velocities,
which increase from 5.9 km s−1 at the surface to 6.5 km s−1 at 3 km depth, followed by
a decrease to 6 km s−1 at 6 km depth. The S wave speed is vP /vS = 1.71. We use a
constant density of 2700 kgm−3 in the Earth. In the air, we use a constant acoustic wave
speed (c = 340.5m s−1) and density (ρ = 1.225 kgm−3).

Output & post-processing

We placed a grid of receivers in the fully coupled simulation with a spacing of 100m within
the high-resolution refinement area at an elevation of 0.5m above the elastic-acoustic
interface, capturing synthetic acoustic fields. Additionally, we placed receivers just below
the acoustic grid at a depth of 0.05m to capture the seismic wavefield. Thus, we have a
grid of 1386 receiver pairs, which allows us to compare the seismic wavefield with the
acoustic wavefield. Furthermore, we added receivers at all ST1 borehole sensor locations
and the surface stations of the 2018 HE and OT networks [64]. We marked the subset of
these sensors used for data comparison as triangles in figure 9.7. We placed the FIN2
acoustic sensors [91], visualized as inverted triangles in figure 9.7, in our simulation at a

141

Chapter 9. Scenarios

height of 0.5m. All receivers record 200 times per second.

We write free surface output every 0.1 s unless we want to compute the horizontal
peak ground velocity with the Earth-only setup, in which case we write it every 1 µs. In
addition, we activate the volume output for some simulations, which we write every 0.1 s.

Calibration

We assume that we can approximate the peak pressure in the air by the peak ground
velocity measured directly below the interface, using the plane wave assumption given
by equation (9.2). We try to validate this rule of thumb and calibrate it using the
synthetics obtained from our fully coupled simulation. Hence, we assume that the
pressure perturbation ∆p follows the relationship

(∆p)peak = c0 + c1v
peak
3 + ε, (9.5)

where (∆p)peak is the peak SPL and vpeak3 is the peak velocity on the free surface.
The model parameters are the intercept c0, summarizing factors such as topography
or source effects, and the slope c1. Finally, ε is a normally distributed error term.
Equation (9.5) is a simple linear regression model and can thus be fit by a standard
least-squares minimization. If equation (9.2) were perfectly accurate, this would result in
the parameters c0 = 0Pa and c1 = ρc ≈ 417.1Pa sm−1 [21, 91, 161].

We compute the coefficients with the data obtained in the refinement zone of our fully
coupled simulation, which consists of the peak ground vertical velocity just below the
ground and the peak SPL just above the ground. Note that we must fit a model for
each source rotation (table 9.1). As a result, we get optimized values for c0 and c1 for
each source, which we can use to predict the peak SPL from the peak ground vertical
velocity. The resulting two-step workflow combines the results from the fully coupled
model with the high-resolution Earth-only model: First, we use the data obtained from
the refinement region of the fully coupled model to fit equation (9.5). Second, we use
the peak vertical ground velocity obtained from the high-resolution Earth-only model
to predict the peak SPL. This workflow results in highly accurate approximate sound
pressure levels without too much computational cost.

Phase estimation

We want to examine the influence of the P wave and S wave on the disturbance patterns.
To do this, we segment the wavefield into a part belonging to each wave. We assume
that the S wave arrives at a point with distance d to the source at tS(d) = d/cSmax, where
cSmax = 3.83 km s−1 is the fastest S wave speed in our velocity model. Using this, we
assume that at a location with distance d, seismic signals stem from the P wave for all
t ∈ (0, tS(d)) and from the S wave for all other times. As we use an upper bound for the
S wave arrival time, we underestimate the duration of the P wave. However, this does
not significantly bias our results because the P wave coda has a much smaller amplitude
than the S wave.

142

9.3. Helsinki Metropolitan Area

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

102

104

106

108

(∆t)min

N
u
m
b
er

of
el
em

en
ts

(a) LTS clustering for the fully coupled setup, (∆t)min ≈ 1.8 µs

1 2 4 8 16 32 64 128 256 512

102

104

106

108

(∆t)min

N
u
m
b
er

of
el
em

en
ts

(b) LTS clustering for the Earth-only setup, (∆t)min = 68.4 ns

Figure 9.8.: LTS clustering for the Helsinki setups. Note that this figure uses a log-log
axis.

LTS & computational aspects

We use a rate-2 LTS scheme and a CFL constant of C(N) = 0.2(2N + 1)−1 and
C(N) = 0.1(2N + 1)−1 for the fully coupled and Earth-only simulations respectively. For
this scenario, the newly developed LTS scheduling algorithm, as described in chapter 6,
was crucial because the simulations did not run with SeisSol’s older LTS implementation.
This is because the stark differences in resolution and wave speeds lead to a small
minimum time step and many clusters. In detail, the fully coupled mesh has a minimum
time step size of (∆t)min = 1.8 µs and a clustering, depicted in figure 9.8a, that leads to a
speedup of 64.8 compared to GTS. Even though we targeted a uniform mesh resolution
for the Earth-only model, it showcases the LTS speedup very well. Figure 9.8b shows the
resulting clustering, resulting in a speedup of 586.7 over the GTS scheme. The scenario
has a minimum time step size of only (∆t)min = 68.4 ns. We use a CFL constant of 0.1
and 0.2 for the Earth-only and fully coupled simulations, which are much smaller than
the CFL constants that we typically use. The small time step sizes, combined with the

143

Chapter 9. Scenarios

high LTS speedups, hint that the quality of the meshes is not optimal. Using a wiggle
factor of λ = 0.86 would lead to a minuscule speedup of 1.2% for the fully coupled model.
For the Earth-only model, a wiggle factor of λ = 0.51 leads to an even smaller speedup
of 0.2%. Hence, we did not use the wiggle factor for these simulations.

We simulated up to 3 s and used the clusters SuperMUC-NG and Mahti. Using 200
nodes of SuperMUC-NG, the fully coupled simulation took around 1.25 hours.

9.3.2. Results

(a)

(d)

(b)

(c)

Figure 9.9.: Figure taken from [82]. Shown are the vertical ground velocity (a,c) and the
surface velocity magnitude (b,d) for the ML 1.8 event 13. (a,b) are at 1.2 s,
which is the time where the effect of the P wave is clearly visible. (c,d) show
the effect of the S wave, at roughly 2 s.

We are now ready to discuss the results. Figure 9.9 shows the vertical velocity and
velocity magnitude at the Earth’s surface, showcasing source effects, radiation patterns,
and the maximum 10m high topography, which leads to scattering that does not cause
strong decoherence of the wavefronts but leads to visible coda effects [121, 153].

Additionally, we present the three-dimensional fully coupled wavefield (figures 9.10
and 9.11) at selected time steps. Figure 9.10a sketches the computational mesh used in
our simulation. We can see the P wave energy in figure 9.10b and the S wave energy in
figure 9.10c. Figure 9.11 highlights the interaction of elastic and acoustic waves at the
interface: While the P wave has already left the domain at 2 s, we still see the reflected
S waves in the Earth and the transmitted acoustic wave in the air.

144

9.3. Helsinki Metropolitan Area

(a) (b)

(c)

Figure 9.10.: Figure taken from [82]. a) shows the computational mesh with elastic
and acoustic layers and the refinement zone. b) and c) show the vertical
displacement at the surface and the velocity magnitude in the Earth at 1.2 s
and 2.0 s, respectively. The displacement in c), associated with the S wave,
is larger than in b), caused by the P wave.

Comparison with measurements

We compare two types of measurements: seismograms and acoustic data. We begin with
the former. Figure 9.12 shows three-component seismograms of selected stations (two
broadband, four short-period). We filtered both synthetics (red) and observations (black)
in the range of 1Hz to 10Hz, which allows us to focus on first-order features such as P
and S wave travel times and relative amplitude. Our synthetics are an excellent fit for the
observations, which shows that our model is reasonable. Additionally, the arrival times
at the stations indicate that the local velocity model is a good match for the geological
situation in the area. We manually aligned the synthetics and measurements in figure 9.12
such that the P arrival time matches. While we aligned each station separately, the
required time shift varies only by up to 0.02 s, again demonstrating that the velocities in
the region are mostly homogeneous.

Furthermore, we can see that the source moment tensor, obtained from first-order
polarity data [64] and waveform inversion [127], matches the true source well. This
leads to the observed nearly perfect consistency of the polarities and the P wave to
S wave amplitude ratio of synthetics and observations. However, some small structural
heterogeneities manifest in differences between measurements and synthetics. For this,
consider, for example, the difference in the S wave in the HEL1, PK01, KUN, and MKK
stations in the N channel.

We also compare our synthetics with acoustic measurements from [91] and focus on
the FIN2 array, as the FIN1 array had a lower data quality. Similarly to the elastic

145

Chapter 9. Scenarios

Figure 9.11.: Figure taken from [82]. Volume visualization showing the acoustic and
elastic wavefields within specific radii around the source at 2 s. The acoustic
wavefield is presented in a cylindrical region with a radius of 2 km, while the
seismic wavefield is displayed within a radius of 4 km. It shows two distinct
wavefronts in the acoustic layer: The upper wavefront corresponds to the
P wave excitation, and the lower wavefront represents the excitation caused
by the S wave. In the elastic layer, the visualization captures the reflected
S wave (S–S) and the reflected P wave (S–P). These reflections originate
from the interaction between the incident S wave and the elastic-acoustic
interface.

measurements, we are interested in the first-order properties of our acoustic data. Hence,
we consider waveform envelopes (figure 9.13) and spectrograms (figure 9.14). The FIN2
array comprises four sensors deployed within an 80m distance. In contrast to the
seismograms, the acoustic measurements have much higher inter-sensor variability, which
our synthetics do not match (figure 9.13). However, the (not normalized) envelopes are
consistent with the measurements as the absolute amplitudes of the P wave (≈0.005Pa)
and S wave (≈0.01Pa) obtained from our fully coupled simulation are in the range of the
observed values. The P wave and S wave arrival times match well, and both observations
and measurements show that the S wave has a higher amplitude than the P wave. The
main differences between synthetics and observed values are that we neither match the
intra-array difference nor the energy content of the P and S wave coda.

Figure 9.14 compares the spectrograms of synthetics and observations. Here, we
observe the same patterns: The difference between stations is significant, and we match
the P and S wave arrivals well but do not match the coda. Furthermore, the S wave
carries more acoustic energy than the P wave. We limit ourselves to frequencies of up
to around 25Hz, as these are resolved well by our simulation. The energy content in
higher frequency bands of our simulation is likely corrupted by numerical issues such as
dissipation and dispersion, which, in part, is caused by the Gibbs phenomenon due to
the high-order approximation scheme that we employed [61].

Hence, to summarize, we match the first-order properties of both seismic and acoustic

146

9.3. Helsinki Metropolitan Area

HE HEL1

E N

0.11 0.03

Z
Measured

mm/s
Simulated

mm/s

HE HEL3 0.06 0.02

OT PM00 0.08 0.04

OT PK01 0.05 0.02

OT KUN 0.03 0.01

OT MKK 0.06 0.01

Figure 9.12.: Figure taken from [82]. We compare observed (black) and synthetic (red)
velocity waveforms at two permanent broadband (HE) and four temporary
short-period seismic stations (OT). We processed the seismic records by
removing the instrument response using pre-filter corner frequencies of
0.5 and 40Hz, with a bandpass filter (1 to 10Hz) applied to both data
and synthetics. We manually aligned synthetic and observed waveforms
based on the P wave arrival time to account for the arbitrarily chosen
onset of our source time function. This alignment varies by up to 0.02 s
between stations to accommodate for velocity heterogeneities absent in our
one-dimensional velocity model. We normalized the synthetic and observed
velocity waveforms individually by the peak velocity indicated in the last
two columns.

measurements well. However, this analysis shows the limits of our computational setup.

Calibration

We fit the linear regression, given by equation (9.5), using the statistical library statsmod-
els [139]. Table 9.2 shows the obtained coefficients for all considered sources. The
intercept is non-zero for all sources, which implies that there are non-linear effects. The
slope is smaller than the theoretical prediction of equation (9.2). The intercept and the
slope are statistically significant at the p < 0.001 level. As the coefficient of determination
r2 indicates, the fit is good for all sources.
For the ML 1.8 event 13, the values c0 = 0.00118 ± 0.00036 and c1 = 393.64 ± 9.11,

where ± gives the uncertainty with respect to the 95% confidence interval, result in a
good approximation. Figure 9.15 shows the excellent agreement of the predicted SPL
with the SPL obtained from the fully coupled model. However, there are some outliers,

147

Chapter 9. Scenarios

0 1 2 3
Time [s]

0.000

0.005

0.010

0.015

0.020

Pr
es

su
re

 p
er

tu
rb

at
io

n
[P

a]

(a)

0 1 2 3
Time [s]

(b)
Sensor 1
Sensor 2
Sensor 3
Sensor 4

Figure 9.13.: Figure taken from [82]. (a) Envelope of the acoustic measurements of the
FIN2 stations [91]. Even though the distance between stations is only about
10m to 30m, we see stark differences between the stations. (b) shows the
envelopes of our synthetic measurements. Here, the data for all sensors
agree with each other. For both (a,b), we used a 1Hz high-pass filter and
afterward smoothed the envelope with a centered moving average filter with
a window size of 0.04 s, similarly as done in [91].

especially for high peak vertical velocities.

Table 9.2.: Results of the linear regression for all considered source rotations. The
symbol ± indicates a 95% Student-t confidence interval and r2 is the coefficient
of determination.

Source Intercept Slope r2

Event 13 0.001 18± 0.000 36 393.64± 9.11 0.839
Strike + 90 0.002 43± 0.000 48 356.22± 13.34 0.665
Dip + 90 0.001 55± 0.000 46 381.97± 12.30 0.728
Rake + 90 0.000 30± 0.000 19 414.62± 7.97 0.883
Orthogonal 0.002 65± 0.000 55 354.70± 14.24 0.633

P & S waves

While it is commonly assumed that the P wave is responsible for the sound generation [63],
the situation is more complex in our case. Figure 9.16 shows the ratio of the peak SPL
during the P wave and S wave, using the windows which we defined earlier. For areas
close to the epicenter, the P wave is the dominating wave. Especially up to around 1 km
epicentral distance, the S wave leads to a smaller SPL than the P wave. However, for
larger distances, the S wave becomes more dominant.

148

9.3. Helsinki Metropolitan Area

0
10
20
30
40
50

Fr
eq

ue
nc

y
[H

z]

(a) (b)

0
10
20
30
40
50

Fr
eq

ue
nc

y
[H

z]

0
10
20
30
40
50

Fr
eq

ue
nc

y
[H

z]

0 1 2 3
Time [s]

0
10
20
30
40
50

Fr
eq

ue
nc

y
[H

z]

0 1 2 3
Time [s]

Figure 9.14.: Figure taken from [82]. Spectrograms measured at the FIN2 stations [91]
(a) versus the synthetic spectrograms (downsampled by a factor of two) of
our simulation (b). We show weak and strong squared power densities as
light and dark colors. As we only resolve up to roughly 25Hz, the frequency
content in the upper half of our synthetic may be caused by numerical noise.

Maps

We now discuss the results of our two-step workflow. Using the calibration results, we
now show the approximate SPL for the simulation domain, depicted as the black square
in figure 9.7. In detail, we use the linear regression coefficients from table 9.2 to predict
the peak SPL from the measured peak vertical ground velocity. As mentioned before, this
combines the fully coupled simulations with the better-resolved Earth-only simulations.
Figure 9.17 depicts the such generated maps. All maps use the Web Mercator projection.
We interpolated the pointwise SPL values to an equidistant grid centered at the source.
With an area of 8 km× 8 km, it is smaller than the simulation domain, which helps to
minimize reflections stemming from our not perfectly absorbing boundary conditions.
Furthermore, the first row of figure 9.17 shows the macroseismic response distribution
associated with the ML 1.8 event 13. The markers correspond to reports of audible (‘x’),
shaking (diamonds), and combined (circles) sensations.

The first column shows the peak horizontal ground velocity (PGV) in mms−1. The
PGV is a standard measurement in earthquake engineering as it is a good proxy for
perceptible ground motion. We can see the effects of the source mechanism. Furthermore,
we observe topography effects.

149

Chapter 9. Scenarios

2 3 4 5 6 7
Peak vertical velocity [m/s] 1e 5

0.010

0.015

0.020

0.025

0.030

0.035

Pe
ak

 so
un

d
pr

es
su

re
 le

ve
l [

Pa
]

SPL = 0.0012 + 393.64 * PGV

Figure 9.15.: Figure taken from [82]. Comparison of the peak vertical velocity with the
peak sound pressure level for our fully coupled model of event 13 inside the
refinement zone. The red line shows the linear regression fit, also shown
as an equation in the box. We represent a 95% prediction interval by the
shaded area.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epicentral distance [km]

0.1

1.0

10.0

Ra
tio

 S
PL

 S
-w

av
e

/ S
PL

 P
-w

av
e

Figure 9.16.: Figure taken from [82]. Comparison of the epicentral distance (x-axis) with
the ratio between the peak sound pressure level for the S and P wave. The
black line marks a ratio of 1. Close to the epicenter, the P wave is primarily
responsible for sound generation, while further away, the effect of the S wave
is more dominant.

150

9.3. Helsinki Metropolitan Area

Horizontal
PGV

SPL SPL
P Wave

SPL
S Wave

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]

Epicentral
 Eastings [km]

40-4

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]
Ep

ic
en

tr
al

 N
or

th
in

gs
 [

km
]

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]
Ep

ic
en

tr
al

 N
or

th
in

gs
 [

km
]

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]
Ep

ic
en

tr
al

 N
or

th
in

gs
 [

km
]

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]
Ep

ic
en

tr
al

 N
or

th
in

gs
 [

km
]

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]
Ep

ic
en

tr
al

 N
or

th
in

gs
 [

km
]

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]
Ep

ic
en

tr
al

 N
or

th
in

gs
 [

km
]

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]
Ep

ic
en

tr
al

 N
or

th
in

gs
 [

km
]

Ep
ic

en
tr

al
 N

or
th

in
gs

 [
km

]

Epicentral
 Eastings [km]

40-4
Epicentral

 Eastings [km]

40-4
Epicentral

 Eastings [km]

40-4

0.0 0.05 0.1
peak horizontal
velocity [mm/s]

0.0 0.02 0.045
peak SPL [Pa]

0.0 0.01 0.02
P wave

peak SPL [Pa]

0.0 0.02 0.045
S wave

peak SPL [Pa]

St
rik

e
+

 9
0

Ev
en

t
13

Ra
ke

 +
 9

0
O

rt
ho

go
na

l
D

ip
 +

 9
0

Figure 9.17.: Figure taken from [82]. Five fully coupled simulations with variable source
geometries. Top row markers indicate observations and results tied to the
observed ML 1.8 event mechanism [64]: The symbols (‘x’, diamonds, circles)
denote audible, shaking, and combined sensations. The columns “Horizontal
PGV”, “SPL”, “SPL P wave”, and “SPL S wave” display peak ground
velocity (m s−1) and sound pressure level (Pa) estimates. Rows two to five
correspond to modified orientations of the original moment tensor point
source (table 9.1).

151

Chapter 9. Scenarios

The second column shows the reconstructed peak SPL in Pa. Again, the patterns
depend on the focal mechanism. Some regions have low sound excitation, which, due to
our linear approximation (equation (9.5)), implies that the peak vertical ground velocity is
small. However, the horizontal PGV is not necessarily zero in the same regions, which can
help explain why there are some regions where only audible disturbances were reported
without a corresponding shaking.

The last two columns show the peak SPL during the P and S wave windows. Here, we
use a different colormap for both waves, which hides the fact that the peak SPL induced
by the P wave is typically much smaller (compare also with figure 9.16).
The first row of figure 9.17 shows the ML 1.8 event 13. The source mechanisms are

governed primarily by the response to the stress condition in the reservoir [89]. Thus,
most observed induced events were similar to our reference event [64, 94, 127]. As
demonstrated, the PGV and peak SPL patterns are directly related to the resulting
faulting mechanism. We also considered (rows two to five) other source orientations,
illustrating that different reservoir structures would impact the induced events. While
these sources are unrealistic for the stimulations in the Otaniemi project context, they
can be considered a case study of different reservoir configurations. Hence, the subsurface
response is another potential variable to consider when planning EGSs.

9.3.3. Conclusion

This section presented a model for an earthquake induced by the stimulation of an
EGS. We showed how it can be modeled using a realistic velocity model, topography,
and a realistic point source. We presented two setups: a fully coupled elastic-acoustic
model that directly captures the sound generation and a more refined Earth-only model.
Our models resolve frequencies that overlap with the lower limit of human hearing.
Furthermore, we presented a novel workflow that uses the synthetic sound pressure levels
computed from the fully coupled model to fit a linear regression model, which we then
used to predict the peak sound pressure levels from the peak vertical ground velocity
obtained from our Earth-only model.

We demonstrated that our synthetic seismograms and acoustic time series match the
observations well. Contrasting the usual assumption, the S wave led to the most intense
sound generation. Our results show that our implementation of elastic-acoustic coupling
can be used for this application. It could become an essential tool for the planning,
execution, and analysis of future EGS stimulations.

9.4. Summary

We have shown three setups for elastic-acoustic coupling. We used the first, the earthquake-
tsunami benchmark (section 9.1), to discuss the effects of acoustic waves and to compare
our fully coupled model with one-way linking. The second, the Palu, Sulawesi, earthquake-
tsunami scenario (section 9.2), is a fully coupled setup for a real-life event. It showed that
our model can capture the entire dynamics of a tsunamigenic earthquake, from frictional
fault failure, to wave propagation in the Earth and the ocean, to tsunami propagation.

152

9.4. Summary

Our results compare well with the one-way linked reference model, and production runs
for this scenario achieved petascale performance on three supercomputers. The third
scenario, the St1 Otaniemi EGS in the Helsinki metropolitan area (section 9.3), showed
that we can use the elastic-acoustic coupling to simulate sound generated from small,
induced earthquakes. We presented a novel workflow to combine coarser fully coupled
simulations with highly resolved Earth-only models. These scenarios show that our fully
coupled model can be used to simulate realistic scenarios.
Furthermore, all scenarios used LTS to drastically reduce the time-to-solution. The

earthquake-tsunami benchmark used a rate-5 LTS to achieve a speedup of five compared
to GTS. The Palu scenario had an LTS speedup of 27 (M) and 38.1 (L). Finally, the
Helsinki scenario had a speedup of 64.8 and 586.7 for fully coupled and Earth-only setups,
respectively. The results show that our new LTS implementation works reliably for
different LTS rates, wiggle factors, and cluster merging configurations.

153

Chapter 10.

High-Performance Computing

In this chapter, we present high-performance computing aspects of our implementation.
We begin by discussing the single node performance on AMD Rome and Fujitsu A64FX
CPUs in section 10.1. Following these results, section 10.2 introduces an algorithm to
set the affinity of our computation and communication threads so that they respect
non-uniform memory access (NUMA). In section 10.3, we summarize how we can optimize
SeisSol’s graph-based mesh partitioning method for the fully coupled model: Elements
can have different computational costs, for example, due to the gravitational boundary
condition or dynamic rupture. We must include this cost in the mesh partitioning to
achieve good load balancing. Finally, we evaluate the scalability of the Palu scenario in
section 10.4 on the cluster Frontera.

10.1. Single Node Performance

predictor predictor+corrector

5325

4000

3000

2000

peak

63.1

38.6

64.3
56.5

G
F
L
O
P
S

on 8 NUMA nodes
extrapolated from one NUMA node

(a) Mahti, dual-socket AMD EPYC 7H12

predictor predictor+corrector

2765

2000

1000

peak

41 37.139.8 37.9

G
F
L
O
P
S

on 4 NUMA nodes
extrapolated from one NUMA node

(b) Isambard, Fujitsu A64FX

Figure 10.1.: Single node performance of SeisSol-proxy. The blue bars correspond to the
performance obtained on the entire node. For the red bars, we ran our
benchmark on one NUMA node and multiplied the resulting performance by
the number of NUMA nodes. Hence, this corresponds to the performance
in the absence of NUMA effects. The numbers above bars correspond to
the reached percentage of the peak performance.

155

Chapter 10. High-Performance Computing

In this section, we investigate single node performance on the AMD Rome and Fujitsu
A64FX architectures. We ported SeisSol to the AMD Rome architecture in [79]. As
mentioned in section 4.4, SeisSol uses the code generator YATeTo [166] to map the
computational kernels to efficient code. It maps tensor expressions to subroutines for
small GEMM operations, which are then executed by optimized backends. On the AMD
Rome architecture, we use the backend LIBXSMM [59]. As this backend does not support
the Rome architecture directly, we generate code for the Intel Haswell architecture, which
uses the AVX2 vector instruction set that is also supported by the Rome CPU. To
evaluate our success, we use a performance proxy, called “SeisSol-proxy”, which executes
the computational kernels used in the wave propagation part of the solver on random
data [168]. The kernels are split into predictor and corrector, as outlined in section 4.4.
The predictor is a strictly local computation; the corrector also depends on data from
neighboring elements. In this section, we ran the proxy for 100 loops, each with 300 000
elements.

Furthermore, we evaluate the effects of non-uniform memory access (NUMA). NUMA
architectures divide the CPU into multiple NUMA nodes. Each NUMA node owns a
part of the memory. Accessing nearby data, i.e., data directly connected to a NUMA
node, is fast, while accessing further away data is more expensive. Hence, the memory
bandwidth and latency depend on the location of the data. We expect these effects in
the corrector kernel but not in the predictor kernel. SeisSol uses the “first-touch policy”,
which allocates memory on the NUMA node where it is first accessed, ensuring that each
core processes elements located on the nearest NUMA node. However, this cannot help
us much with the corrector kernel, as data from other elements can be located on other
NUMA nodes.
In [79], we tested this hypothesis while simultaneously evaluating the single node

performance on the AMD Rome architecture. We used a single node of the Mahti cluster.
It is a dual-socket AMD Rome 7H12 system with a base frequency of 2.6GHz. Each
CPU has 64 cores and 4 NUMA nodes. We always use the entire node to ensure that
the clock rate does not increase to the turbo frequency of 3.3GHz. Hence, we assume a
peak performance of 5325 GFLOPS per node. Our results are shown in figure 10.1a. We
compare running the kernels on all available cores or on one single NUMA node. Scaling
the latter performance with the number of NUMA nodes results in the extrapolated
performance, i.e., the performance we would get without NUMA effects. When running
only the predictor, we achieved a performance of 3360 GFLOPS (63% of peak) on all nodes,
the extrapolated performance was 8× 428GFLOPS = 3424GFLOPS, corresponding to
64% of the peak performance. The difference between both results is insignificant, so
the predictor does not suffer from NUMA effects. The situation drastically differs for the
entire wave propagation kernel, i.e., running predictor and corrector. Here we achieved
2053 GFLOPS (38% of peak) on all codes and 8× 376GFLOPS = 3008GFLOPS (56%
of peak) extrapolated performance. Thus, the corrector kernel exhibits strong NUMA
effects.

Using one MPI rank per NUMA node may make sense for this architecture. Of course,
this only moves the NUMA effects to the message passing; however, the kernels will
not suffer from NUMA effects. As mentioned in sections 6.6 and 6.7, we can hide the

156

10.2. Pinning

communication behind the computations. Thus, it seems likely that we could also hide
the cost of NUMA data transfer.

Additionally, we ported SeisSol to the Fujitsu A64FX CPU, which uses an Arm instruc-
tion set with Scalable Vector Instructions (SVE). We used the just-in-time compilation
interface of LIBXSMM and a modified version of PSpaMM, which we extended to gen-
erate SVE instructions, as code generation backends. We investigated the resulting
performance on the cluster Isambard [51]. Each of its compute nodes has one A64FX
CPU at 1.8GHz with 48 threads, resulting in a peak performance of 2765 GFLOPS. The
CPU is divided into 4 NUMA nodes. An interesting detail about the A64FX CPU is
that it uses high-bandwidth memory, which should lead to faster memory access. To
check this, we measured the memory bandwidth with the software likwid [162]. Out
of five measurements, the best was a memory bandwidth of approximately 885GB s−1.
To contrast, on one Mahti node, we measured only 340GB s−1, less than half of the
bandwidth of one Isambard node. Considering that a Mahti node has a peak performance
that is roughly twice the peak performance of one Isambard node, it becomes clear that
the A64FX CPU has a significantly different machine balance.

The machine balance influences the performance of our kernels. To evaluate the
resulting effect, we repeated the experiment that we performed on Mahti: We ran
SeisSol-proxy on one A64FX CPU using 48 threads.1 Figure 10.1b shows the results. We
achieved a performance (best out of five runs) of 1134 GFLOPS for the predictor and
1027 GFLOPS for both kernels, corresponding to 41% and 37.1% of peak, respectively.
When running only on one NUMA node, we achieved an extrapolated performance of
4 × 274GFLOPS = 1099GFLOPS and 4 × 261GFLOPS = 1045GFLOPS. Thus, we
observe no significant NUMA effects on this architecture. Furthermore, the difference
between the performance of corrector and predictor kernels is smaller than on the AMD
Rome architecture, which is most likely caused by the different machine balance of the
A64FX CPU.

10.2. Pinning

SeisSol’s default operation mode used one MPI rank per node with NUMA-aware memory
initialization and a communication thread to ensure MPI progression. This approach,
combined with OpenMP for shared memory parallelism, led to good performance on
previous-generation supercomputers (see, e.g., the results in [13, 58, 168]). However, as
the single node results in section 10.1 suggest, running multiple MPI ranks per node
might increase the performance on some architectures.

We explained implementation strategies for the communication thread in section 6.6.
It runs an infinite loop that calls MPI Test, which is computationally expensive. Hence,
we need to ensure that the communication threads, realized as POSIX threads (pthreads),
do not run on cores used for the OpenMP workers.2 We also want to restrict the freedom
of the operating system scheduler to move worker threads to different cores, as this could

1We used the SeisSol version with commit hash 5a932232047967b4f4fbfa129855c699e5cd829f.
2The same principle also holds for threads used for asynchronous output by SeisSol [126].

157

Chapter 10. High-Performance Computing

Algorithm 13 Functions that pin all threads in a NUMA-aware manner. We assume
that the OpenMP threads are pinned to CPU threads by the OpenMP runtime. We
use the Linux functions sched getaffinity and sched setaffinity to get and set the
affinity of a process. The functions CPU SET and CPU ISSET set and check an entry of the
CPU mask. We use getZeroMask to get an empty CPU mask and CPU OR to compute
the logical or of two CPU masks. Finally, numa node of cpu returns the NUMA node
id of a thread. Note that we simplified the interface of these methods. We define the
functions getWorkerUnionMask and getNodeMask that create a mask that stores which
CPUs of the current MPI process or compute node, respectively, are used by an OpenMP
worker thread. We use getNodeCommunicator to communicate with all MPI ranks that
reside on the same compute node. The function getFreeCPUsMask returns a mask of
all unoccupied CPUs that share a NUMA node with any worker thread of this process.
Finally, we pin the current thread to this mask with pinToFreeCPUs.

function pinToFreeCPUs()
freeMask ← getFreeCPUsMask()
sched setaffinity(0, freeMask) ▷ Pin current thread

function getFreeCPUsMask()
openMPMask ← getWorkerUnionMask()
nodeOpenMPMask ← getNodeMask()
freeMask ← getZeroMask() ▷ Set mask to zero
numaNodesOfThisProcess ← set(int)
for cpu = 0, 1, . . . do

if CPU ISSET(cpu, openMPMask) then
insert(numaNodesOfThisProcess, numa node of cpu(cpu))

for cpu = 0, 1, . . . do
if ¬CPU ISSET(cpu, nodeOpenMPMask) then

numaNode ← numa node of cpu(cpu)
if numaNode ∈ numaNodesOfThisProcess then

CPU SET(cpu, &freeMask)

return freeMask
function getNodeMask()

workerMask ← getWorkerUnionMask()
return allReduce(workerMask, ∨, getNodeCommunicator())

function getWorkerUnionMask()
workerUnion ← getZeroMask()
parallel (shared(workerUnion)) do ▷ Run on all OpenMP workers

worker ← sched getaffinity(0, worker) ▷ Get affinity of current thread
critical do ▷ Perform sequentially

workerUnion ← CPU OR(workerUnion, worker)

return workerUnion

158

10.3. Mesh Partitioning

lead to performance degradation and, thus, to load balancing issues. Furthermore, if the
scheduler moves a thread to another NUMA node, this could create NUMA issues even
for the predictor kernel. Hence, we must manually pin worker and communication threads
to cores. We developed a simple and portable algorithm to correctly pin communication
threads using multiple ranks per node in [79].

In the following, we assume that our machine has p physical cores and a hyperthreading
factor of s. The latter factor determines how many logical threads are available per
physical core. We use hyperthreading for all clusters that support it. The first step is
pinning the worker threads, for which we rely on OpenMP’s mechanism for thread affinity.
In detail, we set the number of OpenMP threads to s(p − 1) with the environmental
variable OMP NUM THREADS = s(p − 1). Furthermore, we pin the OpenMP threads to
logical cores using OMP PLACES = p− 1.
Now, we need to find all cores that are still free, and that share a NUMA domain

with at least one worker thread. We first compute a CPU mask on each rank that stores
whether the worker threads use a core. We use MPI COMM TYPE SHARED to split the MPI
communicator. This communicator contains all ranks that share a compute node. Next,
we use this communicator to combine all masks of one node by using a logical or. Then,
we use libnuma to compute a list of all NUMA nodes used by our OpenMP threads
on this rank. Finally, we pin the communication thread to all free logical cores that
share a NUMA node with the compute threads of the current MPI rank. Note that this
relies on the MPI runtime to pin our program to the correct part of the compute node.
Alternatively, we can pin the entire program manually to a part of the node, e.g., using
numactl. We thus ensure, in a portable way, that pinning of pthreads is NUMA aware
and that they do not interfere with the worker threads. Algorithm 13 summarizes the
resulting algorithm.

10.3. Mesh Partitioning

We introduced the distributed memory parallelization for our actor model in section 6.6.
For this to work well, we must distribute the work fairly between processors when using
distributed memory parallelism. The approach in SeisSol is to use static load balancing.
We facilitate this by using the graph-based partitioning software parMETIS [135]. Hence,
we create a dual graph of our mesh by defining a vertex for each element and an edge
for all elements connected by a face. We can use vertex weights, which model the
cost per element, and edge weights, which model the communication cost. Selecting
well-approximated weights is crucial because each element’s expected cost can vary. The
most significant factor is the LTS, which results in some elements being updated more
often than others. Another factor is the increasingly complex multiphysics models that
we are using: dynamic rupture and the gravitational boundary condition. In this section,
we summarize our work in [79]

We define the total weight of an element by

welement = 2cmax−cv︸ ︷︷ ︸
time step factor

(wbase + nDRwDR + nGwG) , (10.1)

159

Chapter 10. High-Performance Computing

which is consistent with the cost we assumed for the clustering, defined by equation (6.19).
It contains multiple weights. First, we compute the (integer) cost per time step. It
consists of a base weights wbase, which we assume to be constant for all elements. The
cost of faces with dynamic rupture boundary conditions is reflected in the number of such
faces nDR, and the cost of each face wDR [164]. We do the same for the nG faces with
gravity, which each are assumed to have a cost of wG. Second, we compute a factor that
considers how often the element needs to be updated. We weigh each element with the
update rate, given by the term 2cmax−cv , where cv is the cluster number of the element v
and cmax is the id of the largest time cluster [13]. Hence, elements in the cluster with the
highest time step size have a factor of one, as they are most seldom updated.

It is a common observation that modern supercomputers exhibit strong performance
fluctuations. The performance of each node can change during the simulation, and the
performance of nodes can differ. While the first problem would require dynamic load
balancing, the second problem can be solved by static load balancing. The critical insight
is that we must treat supercomputers as heterogeneous hardware [108, 183]. Hence, we
assign node weights to each node, as discussed in [164]. This is done by benchmarking
our computational kernels with a simple proxy application. We use the (normalized)
inverse computational time as a node weight, which we feed into ParMETIS (tpwgts).

10.4. Strong Scaling

In this section, we evaluate the strong scaling of the fully coupled Palu scenario (section 9.2)
using our implementation of elastic-acoustic coupling and our new LTS scheme. SeisSol
has been shown to scale well for large-scale dynamic-rupture simulations [58, 168]. Here,
we present an extension of the strong scaling section of [79]. We begin by summarizing
the effect of NUMA for the strong scaling on the cluster Mahti and then demonstrate the
strong scaling of the implementation presented in this thesis. Additionally, we compute
the load balancing weights introduced in section 10.3.

We measure the performance in the unit hardware GFLOPS per node. This includes
multiplications with zeros because we embed the acoustic wave equation in the elastic wave
equation and because some matrices are sparse. To compute the performance in GFLOPS,
we divide the total number of floating point operations by the time between the first and
last time step. Hence, we do not include time spent to initialize the simulation. In this
section, we write GFLOPS for the performance in GFLOPS normalized with the number
of nodes. We used order five polynomials for all simulations and deactivated all output.

Figure 10.2 shows the strong-scaling results we obtained on Mahti, as described in [79].
The results use an older version of SeisSol, available at [80].3 As discussed in section 10.1,
we notice strong NUMA effects on modern architectures. Hence, we also want to evaluate
how many MPI ranks we should use per node. We evaluated four different configurations:
One MPI rank per node, one per socket (2 per node) and one per NUMA node (4 per
node). Note that we sacrifice one OpenMP thread per MPI rank to facilitate asynchronous

3We cannot re-run this setup with the current version, as our “grand-challenge” cluster allocation on
Mahti has expired.

160

10.4. Strong Scaling

70040020010050
0

500

1000

1500

2000

2500

Nodes

G
F
L
O
P
S
p
er

n
o
d
e

1 rank / node

2 ranks / node

8 ranks / node

Figure 10.2.: Figure reproduced from [79]. Parallel efficiency for the M Palu mesh
on the cluster Mahti for 50 to 700 nodes and 1,2 or 8 MPI ranks per
node. Note that this uses an older version of SeisSol and, thus, a different
implementation of the gravitational boundary condition and a different LTS
implementation.

output and MPI progression due to the communication thread (sections 6.6.2 and 10.2)
and the output thread [126].

For this test, we report the maximal performance over multiple runs to avoid perfor-
mance fluctuations. We run the M setup for the Palu earthquake-tsunami (section 9.2)
for 0.03 s. As figure 10.2 shows, we achieved the best performance using 8 MPI ranks
per node. For this case, we achieved 2322 GFLOPS on 50 nodes and 1689 GFLOPS on
700 nodes. This translates to a parallel efficiency of approximately 73% and a maximum
total performance of ≈1.18 PFLOPS on Mahti.

We performed strong scaling simulations on the cluster Frontera with SeisSol version
1.0.1 [167], which includes all features presented in this thesis. We simulated the first
0.1 s of the Palu scenario and conducted experiments with and without wiggle factor
(introduced in section 6.8). For the wiggle factor experiments, we used a minimum wiggle
factor of 0.51, a grid search step size of 0.01, and automatic cluster merging with an
allowed cost overhead of 0.01. The optimal settings for this are λ = 0.65 and eight
clusters for the M mesh and λ = 0.71 and eight clusters for the L mesh, as described in
section 9.2.

Before we continue with the strong scaling, we must find an optimal set of element
weights, which we introduced in section 10.3. To set them, we ran a grid search on
Frontera for the weights in the range of wG = 0, . . . , 100, using fixed weights of wbase = 100
and wDR = 200. We used 50 nodes and the M Palu mesh. We ran five simulations, each
for 0.1 s simulated time. First, we consider the best performance reached out of all five
simulations. The best choice, wG = 50, led to a performance 1693 GFLOPS, and the
worst choice, wG = 25, resulted in 1654 GFLOPS. However, the difference between the
best and worst performance of all runs with wG = 50 is 154 GFLOPS, which is larger
than the difference between all considered weights! Additionally, we performed a similar
grid search on SuperMUC-NG, which resulted in a similar performance with an optimal
weight of 75 or 100. Hence, we decided to use a weight of wG = 75 as a compromise.

161

Chapter 10. High-Performance Computing

160080040020010050
0

500

1000

1500

2000

Nodes

G
F
L
O
P
S
p
er

n
o
d
e

No wiggle, 2 ranks / node

Wiggle, auto-merge, 2 ranks / node

(a) Parallel efficiency

160080040020010050
5

10

20

40

80

160

320

Nodes

el
a
p
se
d
ti
m
e
[s
]

No wiggle, 2 ranks / node

Wiggle, auto-merge, 2 ranks / node

(b) Time-to-solution. Note: We use a log-log scale.

Figure 10.3.: Performance using theMmesh on Frontera. The solid lines indicate the best
achieved performance. The dashed lines are the worst-case performance.

Note, however, that this is an approximate weight.

To contrast this, for the implementation in [79], we used a weight of wG = 300. This
hints that the implementation of the gravitational boundary condition presented in this
thesis is more efficient than the one described in [79]. Further problems arise with wDR:
First, we only simulate for a short period, but the cost of dynamic rupture varies with
the numerical solution as we need to compute the slip across the fault, which involves
solving a non-linear system with Newton’s method. The number of Newton iterations
and, thus, the computational cost typically increases after the fault ruptured. Second,
we compute the fault slip rate twice when a dynamic rupture face is adjacent to two
partitions. Hence, the cost of a dynamic rupture face also depends on the partitioning.
Thus, perfect load balancing would require dynamic load balancing. A similar grid search
procedure for the parameter wDR in [79] did not reveal a clear choice. The results of [79]
were obtained with a weight of wDR = 200. Considering both grid searches, we set the
values wG = 75 and wDR = 200, which results in an adequate parallel efficiency. However,
the performance results could be tuned even further by adjusting these weights. This is,
as demonstrated, challenging and a procedure that would need to be repeated for every

162

10.4. Strong Scaling

cluster and every setup.
Using these settings, we performed a strong scaling study on Frontera. We started with

the M mesh and scaled from 50 nodes to 1600 nodes, similarly as done in our original
experiments on SuperMUC-NG and Mahti, described in [79]. For this, we performed
three simulations each. We report the result of the best runs; however, figure 10.3
also shows the worst performance. First, we consider the performance in GFLOPS per
node (figure 10.3a). Without a wiggle factor, we achieved 1727 GFLOPS per node on 50
nodes and 1268 GFLOPS on 1600 nodes, equivalent to a parallel efficiency of roughly 73%.
When using the optimal wiggle factor and auto-merging of clusters, we achieved 1672
GFLOPs on 50 nodes and 1365 GFLOPS on 1600 nodes, resulting in a parallel efficiency
of 81.6%. We further note that the simulation performance decreased much more slowly
than when using no wiggle factor. While the simulation without wiggle factor incurred a
significant slowdown when moving from 50 to 100 nodes (1576 GFLOPS) and from 100 to
200 nodes (1474 GFLOPS), the wiggle factor, and especially the auto-merging seems to
have a stabilizing effect: Moving to 100 nodes (1665 GFLOPS) and 200 (1654 GFLOPS)
for this simulation barely changed the performance!
The wiggle factor has the additional effect of decreasing the time-to-solution (fig-

ure 10.3b). On 50 nodes, the simulation with wiggle factor took 202.8 s and thus required
94.1% of the runtime of the simulation without wiggle factor (215.4 s). A similar situation
occurred for 1600 nodes, where the simulation with wiggle factor took 7.8 s, which is
only 84.7% of the time of the simulation with wiggle factor (9.2 s) Hence, increasing the
number of nodes from 500 to 1600 (a factor of 32) decreased the time-to-solution by a
factor of 26.0 and 23.4 with and without wiggle factor, respectively.
In addition, we performed scaling runs on up to 8000 nodes for the L mesh. As this

has been done during a large-scale allocation, the number of runs we could perform was
restricted to a smaller number. We ran three simulations each for all runs with up to
4000 nodes. For the simulations using a wiggle factor, we ran two simulations for 6000
nodes and one simulation for 8000 nodes. We repeated the simulations without a wiggle
factor three times for 6000 nodes and two times for 8000 nodes. Figure 10.4 shows the
results. First, the results for 8000 nodes are poor for both mesh sizes. They are likely
an outlier and might be caused by cluster configuration issues. We thus focus primarily
on scaling up to 6000 nodes. Without wiggle factor, we achieve a performance of about
1443 GFLOPS on 500 nodes and 1201 GFLOPS on 6000 nodes. This is equivalent to a
parallel efficiency of 83%. When using both wiggle factor and auto-merging, we have a
performance of 1392 GFLOPS on 50 nodes and 1227 GFLOPS on 6000 nodes, leading
to a parallel efficiency of 91.8%. The difference between both settings is not necessarily
significant, as system jitter effects can be quite pronounced at this scale. These effects
translate directly to unreliable performance estimates for SeisSol [164]. However, we
achieved an excellent parallel performance.
The strength of the wiggle factor is even more apparent when we consider the time-

to-solution, as shown in figure 10.4b. With the optimal wiggle factor, the simulation
took 218.1 s on 500 nodes and 19.8 s on 6000 nodes. Without a wiggle factor, it took
264.7 s on 500 nodes and 26.6 s on 6000 nodes. Hence, the simulation with a wiggle factor
required only 82.4% and 74.7% of the runtime of the simulation without a wiggle factor

163

Chapter 10. High-Performance Computing

80006000400020001000500
0

500

1000

1500

Nodes

G
F
L
O
P
S
p
er

n
o
d
e

No wiggle, 2 ranks / node

Wiggle, auto-merge, 2 ranks / node

(a) Parallel efficiency

80006000400020001000500

20

40

80

160

320

Nodes

el
a
p
se
d
ti
m
e
[s
]

No wiggle, 2 ranks / node

Wiggle, auto-merge, 2 ranks / node

(b) Time-to-solution. Note: We use a log-log scale.

Figure 10.4.: Performance using the L mesh on Frontera. The solid lines indicate the best
achieved performance, and the dashed lines are the worst-case performance.

on 500 and 6000 nodes, respectively. Furthermore, increasing the number of nodes from
50 to 6000 (a factor of 12) decreased the time-to-solution by 11 and 10 with and without
wiggle factor, respectively.

To summarize, we achieved an excellent scaling of both M and L mesh. The setups
that used a wiggle factor resulted in a significantly better time-to-solution and scalability
for both mesh sizes.

10.5. Discussion

In this section, we discussed HPC aspects. We optimized SeisSol on the AMD Rome and
Fujitsu A64FX architectures. On AMD Rome, we achieved a single node performance
of 56.5% of the peak when neglecting NUMA effects. When considering NUMA effects,
we only achieved a performance of 38% of the peak. However, for the Fujitsu A64FX
architecture, we achieved a similar performance with (37.1% of peak) or without NUMA
effects (41% of peak). These results clarified that we must use multiple MPI ranks per
node on some architectures to combat the strong NUMA effects. Hence, section 10.2

164

10.5. Discussion

introduced an algorithm to automatically pin threads to NUMA nodes. Furthermore, the
fully coupled scenarios are complex multiphysics simulations that include many moving
parts with different costs. As demonstrated in section 10.3, we can expand the static
mesh partitioning with element weights, allowing us to handle varying element costs.
We evaluated this in section 10.4 and noticed that it is hard to get robust estimates for
the optimal parameters due to the machine jiggle. However, we explained how we set
the parameters heuristically. The strong scaling study demonstrated that this simple
strategy resulted in excellent parallel scalability on up to 6000 nodes. Furthermore,
the wiggle factor allowed us to gain a significant speedup due to better scalability and
better time-to-solution: For example, scaling the L Palu setup from 500 to 6000 nodes of
Frontera led to a parallel efficiency of 91.8%.

165

Chapter 11.

Conclusion

In this thesis, we introduced a scalable and stable three-dimensional fully coupled elastic-
acoustic model discretized with the numerical method ADER-DG. Furthermore, we
presented a novel local-time-stepping framework that is elegant and efficient.

We began by establishing the physical model (chapter 2). For this, we derived equations
that govern the elastic and acoustic parts of the domain. The former uses the standard
elastic wave equations, while the latter uses a linearized acoustic model that includes
tsunami waves with a linearized free surface condition. We embed the acoustic equations
in the elastic PDE, simplifying the implementation.

Chapters 3 and 4 introduced the ADER-DG discretization using an exact Riemann
solver. The resulting method has a high-order of convergence in both space and time.
We introduced a Taylor-series-based ADER-integration approach for our gravitational
boundary conditions. As chapter 5 showed, the combination of boundary conditions,
Riemann solver, and space-discretization culminated in a semi-discrete stable scheme
as the energy of the numerical solution is guaranteed to decrease, assuming exact time-
integration.

In earthquake simulations, it is typical to have different wave speeds as the material
is inhomogeneous. Furthermore, meshing software can lead to small element sizes,
especially at the intersection between layers. Both effects are more apparent in fully
coupled scenarios. For example, the wave speed in the acoustic layer (1500m s−1 in the
ocean or 343m s−1 in the air) is much smaller than the wave speed in the Earth (around
6000m s−1). This leads to the need for local time-stepping.

SeisSol’s original LTS implementation did not work for these scenarios, as it used
a scheduling method based on absolute time differences. We presented a new actor
model (chapter 6), which combines a state-machine to handle the state of each cluster, with
explicit message passing, to make the communication of the cluster states more obvious.
This resulted in an elegant abstraction that describes computations and communication.
We introduced a wiggle factor to the LTS method, which automatically fine-tunes the
cluster distribution by automatically shifting the boundaries of the clusters. Furthermore,
we added a feature that automatically merges clusters with large time steps. Both
features can be enabled at the same time.

We presented multiple applications for the fully coupled model and the new local time-
stepping algorithm. Chapter 7 introduced and compared multiple earthquake-tsunami
coupling workflows. We demonstrated the strengths and weaknesses of our fully coupled
model and presented standard approximations for the sea surface height, including the

167

Chapter 11. Conclusion

Tanioka approximation and the Kajiura filter. As we showed, these directly result from
the fully coupled model. Hence, our proposed model can serve as a reference model for
the simulation of off-shore tsunami generation and propagation.

Chapter 8 used a carefully curated selection of analytical solutions to verify our model.
We tested the wave propagation in uncoupled media using elastic and acoustic planar
waves and the propagation in coupled waves using two elastic-acoustic coupling test cases.
The first one, Snell’s law, demonstrated that we correctly simulate the interaction of
body waves with the elastic-acoustic interface. The second, a Scholte wave, showed that
our model correctly handles an elastic-acoustic surface wave. Finally, we verified our
discretization of the gravitational boundary condition by comparing it with an exact
solution for wave propagation in the ocean. All scenarios achieved high-order convergence
up to certain limits imposed by floating-point accuracies. Hence, we are confident that
the implementation of our physical model is correct.
In chapter 9, we introduced three scenarios. The first, an earthquake-tsunami bench-

mark, compared the fully coupled method with a one-way linked method: The fully
coupled method captures the tsunami correctly but leads to a more detailed wave struc-
ture than one-way linking. The second scenario, our first real-world application, the
Palu scenario, models a MW 7.5 supershear earthquake, which triggered a localized and
unexpected tsunami. We created large fully coupled models (81 million for the M and
518 million elements for the L mesh) for this earthquake-tsunami event. While our
results compare well with one-way linking, the resulting tsunami differed slightly. We
achieved sustained petascale performance for this scenario on the clusters Shaheen-II,
SuperMUC-NG, and Frontera. The third scenario showed that our model can also
simulate earthquake-sound coupling. We considered a small earthquake induced by an
enhanced geothermal system in the metropolitan region of Helsinki. Our novel workflow
used linear regression to approximate peak sound pressure level from peak ground vertical
velocity. This can be considered a calibrated version of a common rule of thumb. We
achieved good results: The first-order features of our results, such as arrival times and
the P to S wave ratio, compare well for both elastic and acoustic measurements. Finally,
we created maps for the peak ground velocity and the sound pressure distribution. We
evaluated the difference between P and S wave: The S wave leads to higher peak sound
pressure levels, contrasting the typical observation that the P wave dominates the sound
field.

Finally, for all considered scenarios, LTS led to a significant speedup. In detail, for the
L Palu setup, LTS is roughly 30 times faster than GTS. For the fully coupled Helsinki
scenario, LTS requires 64.8 times fewer updates than LTS. Hence, LTS is required to
simulate both setups!

Finally, chapter 10 detailed the high-performance computing aspects required for using
our fully coupled model on modern clusters. First, we discussed optimizations and the
resulting performance for AMD Rome and Fujitsu A64FX CPUs. On AMD Rome, we
achieved 38% of the peak performance when running on all NUMA nodes and up to 56%
when running on one NUMA node. For the Fujitsu A64FX architecture, we achieved
a similar performance with (37.1% of peak) or without NUMA effects (41% of peak).
These results showed that we must consider NUMA effects on some architectures. Hence,

168

we introduced a new way of automatically pinning all threads to the correct NUMA
nodes. We discuss modifying the mesh partitioning to accommodate new constraints
from the fully coupled model. Finally, we showed strong scaling results demonstrating
excellent parallel performance on Frontera for both Palu scenarios. We scaled the M
mesh from 50 nodes to 1600. Using neither wiggle factor nor cluster merging led to
a parallel efficiency of 73%; using both led to a parallel efficiency of 81.6%. As an
additional effect, the wiggle factor improved the time-to-solution, which was only 84.7%
of the one without the wiggle factor when using 1600 nodes. We did the same for the L
mesh, which we scaled from 500 to 6000 nodes. Again, using neither wiggle factor nor
cluster merging led to a parallel efficiency of 83%, while enabling both features led to a
parallel efficiency of 91.8%. Similarly to the smaller setup, the time-to-solution when
using both features is only 74.7% of the run without wiggle factor when running on 6000
nodes. This demonstrates that our implementation is highly scalable and that the wiggle
factor can drastically reduce the time-to-solution of real-world setups.

To summarize, we presented a three-dimensional fully coupled model and have shown
that it is stable and achieves a high order of convergence for multiple scenarios. Together
with the validation for multiple application scenarios, this proves that our model works.
Our local time-stepping implementation is reliable, and we used it for all application
scenarios. Finally, our strong scaling study proved that our implementation works on
large supercomputers.
Our implementation of the three-dimensional fully coupled model is used for other

applications. [87] applies it to model the Húsav́ık-Flatey fault zone in North Iceland. A
fully coupled model for a tsunami in the Hellenic Arc is a work in progress [179]. Both
scenarios extend dynamic rupture models to include a water layer, resulting in models
that comprehensively describe the process of tsunamigenesis. These recent applications
demonstrate that the model and its implementation, developed in this thesis, are a
valuable contribution to the field.

It would be possible to further improve the performance of our implementation by
directly simulating the acoustic part of the domain with the acoustic wave equation,
i.e., not using the embedding presented in section 2.3. Computational costs often lie
primarily in the acoustic layer, for example, for the Palu scenario (section 9.2). Thus,
using computations with fewer degrees of freedom in the acoustic region would directly
translate to a significant speedup of the entire simulation. However, supporting multiple
PDEs within a single simulation poses several challenges, such as load balancing and
local time-stepping. Therefore, significant alterations to SeisSol would be necessary. This
thesis presented a significant building block for this: We could extend the concept of LTS
clusters to differentiate not only between time step sizes but also between PDEs. While
our strong scaling experiments demonstrated excellent parallel performance, computing
clusters in parallel could enhance the performance and scalability further. The actor
model can accommodate this as the clusters manage their respective constraints. However,
a challenge remains in carefully fine-tuning this added parallelism layer.

169

Appendix A.

Simulations

This appendix briefly describes the configuration we used for our production runs.
Table A.1 summarizes parameters used to obtain the results in chapter 9.

Table A.1.: SeisSol parameters used for our production runs. If the name column contains
a citation, we used the results of this citation. Otherwise, the results are new.
We used time step sizes of C(N) = CFL(2N + 1)−1. We control the mesh
partitioning by the weights wG and wDR, which we introduced in section 10.3.
Both are zero for the HEL setups, as neither uses the gravitational boundary
or dynamic rupture. We describe the LTS configuration (chapter 6) by
the rate r, the wiggle factor λ, and merging, which indicates whether the
simulation used the automatic merging of LTS clusters.

Name CFL wG wDR r λ Merging

Earthquake-tsunami benchmark [79] 0.35 300 100 2 1 ✗

Earthquake-tsunami benchmark, v1.0.1 0.35 100 100 5 1 ✗

Palu [79] 0.35 300 200 2 1 ✗

Palu, no wiggle, v1.0.1 0.35 75 200 2 1 ✗

Palu, wiggle, v1.0.1 0.35 75 200 2 0.65 ✓

Helsinki, fully coupled [82] 0.2 0 0 2 1 ✗

Helsinki, Earth-only [82] 0.1 0 0 2 1 ✗

The setups for the earthquake-tsunami benchmark and the Palu earthquake are avail-
able in the supplement [80] to [79]. An updated version of these setups that supports
SeisSol version 1.0.1 can be found in [81]. The setup for the Helsinki EGS earthquake is
available in [83], which is the supplement to [82]. Parameter files for the convergence stud-
ies presented in chapter 8 are available in the GitHub repository (https://github.com/
SeisSol/Examples/) with commit hash 2359667d871bf2068f672ca25f357f97477e2e72.
The setup used for the method comparison in section 7.2 is available in the supplement [2]
to [3].
We obtained all previously unpublished results presented in this thesis with SeisSol

v1.0.1 [167]. We produced the Helsinki results of [82] with an earlier version of SeisSol,
which includes the new LTS scheme. In [79], we computed the earthquake-tsunami bench-
mark and Palu results with a different implementation of dynamic rupture, gravitational
boundary, and LTS. We always use double-precision floating point accuracy.

171

https://github.com/SeisSol/Examples/
https://github.com/SeisSol/Examples/

Bibliography

[1] Rachel E. Abercrombie. “Resolution and Uncertainties in Estimates of Earthquake
Stress Drop and Energy Release”. In: Philosophical Transactions of the Royal
Society A 379.2196 (2021), p. 20200131. doi: 10.1098/rsta.2020.0131.

[2] Lauren Abrahams, Lukas Krenz, Eric Dunham, Alice-Agnes Gabriel, and Tatsuhiko
Saito. Comparison of Methods for Coupled Earthquake and Tsunami Modeling,
Data. Stanford Digital Repository, 2022. doi: 10.25740/JV404DC0795.

[3] Lauren S. Abrahams, Lukas Krenz, Eric M. Dunham, Alice-Agnes Gabriel, and
Tatsuhiko Saito. “Comparison of Methods for Coupled Earthquake and Tsunami
Modelling”. In: Geophysical Journal International 234.1 (2023), pp. 404–426. doi:
10.1093/gji/ggad053.

[4] Thomas Ader, Michael Chendorain, Matthew Free, Tero Saarno, Pekka Heikkinen,
Peter Eric Malin, Peter Leary, Grzegorz Kwiatek, Georg Dresen, Felix Bluemle,
and Tommi Vuorinen. “Design and Implementation of a Traffic Light System for
Deep Geothermal Well Stimulation in Finland”. In: Journal of Seismology 24.5
(2019), pp. 991–1014. doi: 10.1007/s10950-019-09853-y.

[5] Keiiti Aki and Paul G. Richards. Quantitative Seismology. 2. edition, corrected
printing. University Science Books, 2009. isbn: 978-1-891389-63-4.

[6] D. J. Andrews. “Rupture Velocity of Plane Strain Shear Cracks”. In: Journal of
Geophysical Research (1896-1977) 81.32 (1976), pp. 5679–5687. doi: 10.1029/
JB081i032p05679.

[7] Paola F. Antonietti, Francesco Bonaldi, and Ilario Mazzieri. “A High-Order
Discontinuous Galerkin Approach to the Elasto-Acoustic Problem”. In: Computer
Methods in Applied Mechanics and Engineering 358 (2020), p. 112634. doi: 10.
1016/j.cma.2019.112634.

[8] Stephen J. Arrowsmith, Jeffrey B. Johnson, Douglas P. Drob, and Michael A. H.
Hedlin. “The Seismoacoustic Wavefield: A New Paradigm in Studying Geophysical
Phenomena”. In: Reviews of Geophysics 48.4 (2010). doi: 10.1029/2010RG000335.

[9] Stefan Baisch, Christopher Koch, and Annemarie Muntendam-Bos. “Traffic Light
Systems: To What Extent Can Induced Seismicity Be Controlled?” In: Seismolog-
ical Research Letters 90.3 (2019), pp. 1145–1154. doi: 10.1785/0220180337.

[10] Jordan W. Bishop, David Fee, Ryan Modrak, Carl Tape, and Keehoon Kim.
“Spectral Element Modeling of Acoustic to Seismic Coupling Over Topography”.
In: Journal of Geophysical Research: Solid Earth 127.1 (2022). doi: 10.1029/
2021JB023142.

173

https://doi.org/10.1098/rsta.2020.0131
https://doi.org/10.25740/JV404DC0795
https://doi.org/10.1093/gji/ggad053
https://doi.org/10.1007/s10950-019-09853-y
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1016/j.cma.2019.112634
https://doi.org/10.1016/j.cma.2019.112634
https://doi.org/10.1029/2010RG000335
https://doi.org/10.1785/0220180337
https://doi.org/10.1029/2021JB023142
https://doi.org/10.1029/2021JB023142

Bibliography

[11] Julian J. Bommer, Stephen Oates, José Mauricio Cepeda, Conrad Lindholm, Juliet
Bird, Rodolfo Torres, Griselda Marroqúın, and José Rivas. “Control of Hazard
Due to Seismicity Induced by a Hot Fractured Rock Geothermal Project”. In:
Engineering Geology 83.4 (2006), pp. 287–306. doi: 10.1016/j.enggeo.2005.11.
002.

[12] Alexander Breuer and Alexander Heinecke. “Next-Generation Local Time Stepping
for the ADER-DG Finite Element Method”. In: 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2022, pp. 402–413. doi:
10.1109/IPDPS53621.2022.00046.

[13] Alexander Breuer, Alexander Heinecke, and Michael Bader. “Petascale Local Time
Stepping for the ADER-DG Finite Element Method”. In: 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 2016, pp. 854–863. doi:
10.1109/IPDPS.2016.109.

[14] Alexander Breuer, Alexander Heinecke, Michael Bader, and Christian Pelties.
“Accelerating SeisSol by Generating Vectorized Code for Sparse Matrix Operators”.
In: Parallel Computing (2014). doi: 10.3233/978-1-61499-381-0-347.

[15] Alexander Breuer, Alexander Heinecke, Sebastian Rettenberger, Michael Bader,
Alice-Agnes Gabriel, and Christian Pelties. “Sustained Petascale Performance of
Seismic Simulations with SeisSol on SuperMUC”. In: Supercomputing. Lecture
Notes in Computer Science. Springer International Publishing, 2014, pp. 1–18.
doi: 10.1007/978-3-319-07518-1_1.

[16] F. Brezzi, L. D. Marini, and E. Süli. “Discontinuous Galerkin methods for first-
order hyperbolic problems”. In: Mathematical Models and Methods in Applied
Sciences 14.12 (2004), pp. 1893–1903. doi: 10.1142/S0218202504003866.

[17] Edward M. Brooks, Seth Stein, Bruce D. Spencer, Leah Salditch, Mark D. Petersen,
and Daniel E. McNamara. “Assessing Earthquake Hazard Map Performance
for Natural and Induced Seismicity in the Central and Eastern United States”.
In: Seismological Research Letters 89.1 (2018), pp. 118–126. doi: 10.1785/
0220170124.

[18] James N. Brune. “Tectonic Stress and the Spectra of Seismic Shear Waves from
Earthquakes”. In: Journal of Geophysical Research (1896-1977) 75.26 (1970),
pp. 4997–5009. doi: 10.1029/JB075i026p04997.

[19] John Charles Butcher. The Numerical Analysis of Ordinary Differential Equations:
Runge-Kutta and General Linear Methods. Wiley-Interscience, 1987.

[20] Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu. “The Develop-
ment of Discontinuous Galerkin Methods”. In: Discontinuous Galerkin Methods.
Lecture Notes in Computational Science and Engineering. Springer, 2000, pp. 3–50.
doi: 10.1007/978-3-642-59721-3_1.

[21] Richard K. Cook. “Infrasound Radiated During the Montana Earthquake of 1959
August 18”. In: Geophysical Journal International 26.1-4 (1971), pp. 191–198.
doi: 10.1111/j.1365-246X.1971.tb03393.x.

174

https://doi.org/10.1016/j.enggeo.2005.11.002
https://doi.org/10.1016/j.enggeo.2005.11.002
https://doi.org/10.1109/IPDPS53621.2022.00046
https://doi.org/10.1109/IPDPS.2016.109
https://doi.org/10.3233/978-1-61499-381-0-347
https://doi.org/10.1007/978-3-319-07518-1_1
https://doi.org/10.1142/S0218202504003866
https://doi.org/10.1785/0220170124
https://doi.org/10.1785/0220170124
https://doi.org/10.1029/JB075i026p04997
https://doi.org/10.1007/978-3-642-59721-3_1
https://doi.org/10.1111/j.1365-246X.1971.tb03393.x

Bibliography

[22] R. Courant, K. Friedrichs, and H. Lewy. “Über die partiellen Differenzengle-
ichungen der mathematischen Physik”. In: Mathematische Annalen 100.1 (1928),
pp. 32–74. doi: 10.1007/BF01448839.

[23] L. Dagum and R. Menon. “OpenMP: An Industry Standard API for Shared-
Memory Programming”. In: IEEE Computational Science and Engineering 5.1
(Jan.-March/1998), pp. 46–55. doi: 10.1109/99.660313.

[24] David Keyes. Efficient Computation through Tuned Approximation. SIAM Activity
Group on Supercomputing. Nov. 2, 2022. url: https://siag-sc.org/media/
files/DK-slides.pdf (visited on 08/24/2023).

[25] Charles Davison. “Earthquake Sounds”. In: Bulletin of the Seismological Society
of America 28.3 (1938), pp. 147–161. doi: 10.1785/BSSA0280030147.

[26] Steven M. Day, Luis A. Dalguer, Nadia Lapusta, and Yi Liu. “Comparison of Finite
Difference and Boundary Integral Solutions to Three-Dimensional Spontaneous
Rupture”. In: Journal of Geophysical Research 110.B12 (2005), B12307. doi:
10.1029/2005JB003813.

[27] J. De La Puente, J.-P. Ampuero, and M. Käser. “Dynamic Rupture Modeling on
Unstructured Meshes Using a Discontinuous Galerkin Method”. In: Journal of
Geophysical Research 114.B10 (2009), B10302. doi: 10.1029/2008JB006271.

[28] Josep De la Puente. “Seismic Wave Simulation for Complex Rheologies on Un-
structured Meshes”. PhD thesis. LMU, 2008.

[29] Josep De La Puente, Michael Dumbser, Martin Käser, and Heiner Igel. “Dis-
continuous Galerkin Methods for Wave Propagation in Poroelastic Media”. In:
GEOPHYSICS 73.5 (2008), T77–T97. doi: 10.1190/1.2965027.

[30] Josep de la Puente, Martin Käser, Michael Dumbser, and Heiner Igel. “An Ar-
bitrary High-Order Discontinuous Galerkin Method for Elastic Waves on Un-
structured Meshes - IV. Anisotropy”. In: Geophysical Journal International 169.3
(2007), pp. 1210–1228. doi: 10.1111/j.1365-246X.2007.03381.x.

[31] Alexandre Denis, Julien Jaeger, and Hugo Taboada. “Progress Thread Place-
ment for Overlapping MPI Non-blocking Collectives Using Simultaneous Multi-
threading”. In: Euro-Par 2018: Parallel Processing Workshops. Lecture Notes
in Computer Science. Springer International Publishing, 2019, pp. 123–133. doi:
10.1007/978-3-030-10549-5_10.

[32] Ravil Dorozhinskii and Michael Bader. “SeisSol on Distributed Multi-GPU Sys-
tems: CUDA Code Generation for the Modal Discontinuous Galerkin Method”. In:
The International Conference on High Performance Computing in Asia-Pacific
Region. ACM, 2021, pp. 69–82. doi: 10.1145/3432261.3436753.

[33] Michael Dumbser. “Arbitrary High Order PNPM Schemes on Unstructured Meshes
for the Compressible Navier–Stokes Equations”. In: Computers & Fluids 39.1
(2010), pp. 60–76. doi: 10.1016/j.compfluid.2009.07.003.

175

https://doi.org/10.1007/BF01448839
https://doi.org/10.1109/99.660313
https://siag-sc.org/media/files/DK-slides.pdf
https://siag-sc.org/media/files/DK-slides.pdf
https://doi.org/10.1785/BSSA0280030147
https://doi.org/10.1029/2005JB003813
https://doi.org/10.1029/2008JB006271
https://doi.org/10.1190/1.2965027
https://doi.org/10.1111/j.1365-246X.2007.03381.x
https://doi.org/10.1007/978-3-030-10549-5_10
https://doi.org/10.1145/3432261.3436753
https://doi.org/10.1016/j.compfluid.2009.07.003

Bibliography

[34] Michael Dumbser, Dinshaw S. Balsara, Eleuterio F. Toro, and Claus-Dieter Munz.
“A Unified Framework for the Construction of One-Step Finite Volume and Discon-
tinuous Galerkin Schemes on Unstructured Meshes”. In: Journal of Computational
Physics 227.18 (2008), pp. 8209–8253. doi: 10.1016/j.jcp.2008.05.025.

[35] Michael Dumbser and Martin Käser. “An Arbitrary High-Order Discontinuous
Galerkin Method for Elastic Waves on Unstructured Meshes - II. The Three-
Dimensional Isotropic Case”. In: Geophysical Journal International 167.1 (2006),
pp. 319–336. doi: 10.1111/j.1365-246X.2006.03120.x.

[36] Michael Dumbser, Martin Käser, and Josep De La Puente. “Arbitrary High-Order
Finite Volume Schemes for Seismic Wave Propagation on Unstructured Meshes
in 2D and 3D”. In: Geophysical Journal International 171.2 (2007), pp. 665–694.
doi: 10.1111/j.1365-246X.2007.03421.x.

[37] Michael Dumbser, Martin Käser, and Eleuterio F. Toro. “An Arbitrary High-Order
Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes - V.
Local Time Stepping and p-Adaptivity”. In: Geophysical Journal International
171.2 (2007), pp. 695–717. doi: 10.1111/j.1365-246X.2007.03427.x.

[38] Kenneth Duru and Eric M. Dunham. “Dynamic Earthquake Rupture Simulations
on Nonplanar Faults Embedded in 3D Geometrically Complex, Heterogeneous
Elastic Solids”. In: Journal of Computational Physics 305 (2016), pp. 185–207.
doi: 10.1016/j.jcp.2015.10.021.

[39] Adam M. Dziewonski and Don L. Anderson. “Preliminary Reference Earth Model”.
In: Physics of the Earth and Planetary Interiors 25.4 (1981), pp. 297–356. doi:
10.1016/0031-9201(81)90046-7.

[40] John E. Ebel, Vladimir Vudler, and Michael Celata. “The 1981 Microearthquake
Swarm near Moodus, Connecticut”. In: Geophysical Research Letters 9.4 (1982),
pp. 397–400. doi: 10.1029/GL009i004p00397.

[41] Lawrence C. Evans. Partial Differential Equations. 2nd ed. Graduate Studies in
Mathematics v. 19. American Mathematical Society, 2010. isbn: 978-0-8218-4974-
3.

[42] L. G. Evers, D. Brown, K. D. Heaney, J. D. Assink, P. S. M. Smets, and M. Snellen.
“Evanescent Wave Coupling in a Geophysical System: Airborne Acoustic Signals
from the Mw 8.1 Macquarie Ridge Earthquake”. In: Geophysical Research Letters
41.5 (2014), pp. 1644–1650. doi: 10.1002/2013GL058801.

[43] Paola F. Antonietti, Francesco Bonaldi, and Ilario Mazzieri. “Simulation of Three-
dimensional Elastoacoustic Wave Propagation Based on a Discontinuous Galerkin
Spectral Element Method”. In: International Journal for Numerical Methods in
Engineering 121.10 (2020), pp. 2206–2226. doi: 10.1002/nme.6305.

[44] Hugo Fastl and Eberhard Zwicker. Psychoacoustics: Facts and Models. Vol. 22.
Springer Science & Business Media, 2006. doi: 10.1007/978-3-540-68888-4.

176

https://doi.org/10.1016/j.jcp.2008.05.025
https://doi.org/10.1111/j.1365-246X.2006.03120.x
https://doi.org/10.1111/j.1365-246X.2007.03421.x
https://doi.org/10.1111/j.1365-246X.2007.03427.x
https://doi.org/10.1016/j.jcp.2015.10.021
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.1029/GL009i004p00397
https://doi.org/10.1002/2013GL058801
https://doi.org/10.1002/nme.6305
https://doi.org/10.1007/978-3-540-68888-4

Bibliography

[45] Maŕıa R. Fernández-Ruiz, Marcelo A. Soto, Ethan F. Williams, Sonia Martin-
Lopez, Zhongwen Zhan, Miguel Gonzalez-Herraez, and Hugo F. Martins. “Dis-
tributed Acoustic Sensing for Seismic Activity Monitoring”. In: APL Photonics
5.3 (2020), p. 030901. doi: 10.1063/1.5139602.

[46] Andreas Fichtner. Full Seismic Waveform Modelling and Inversion. Springer
Science & Business Media, 2010. isbn: 978-3-642-15807-0.

[47] Gregor Gassner, Michael Dumbser, Florian Hindenlang, and Claus-Dieter Munz.
“Explicit One-Step Time Discretizations for Discontinuous Galerkin and Finite
Volume Schemes Based on Local Predictors”. In: Journal of Computational Physics
230.11 (2011), pp. 4232–4247. doi: 10.1016/j.jcp.2010.10.024.

[48] Emmanuel Gaucher, Martin Schoenball, Oliver Heidbach, Arno Zang, Peter A.
Fokker, Jan-Diederik van Wees, and Thomas Kohl. “Induced Seismicity in Geother-
mal Reservoirs: A Review of Forecasting Approaches”. In: Renewable and Sus-
tainable Energy Reviews 52 (2015), pp. 1473–1490. doi: 10.1016/j.rser.2015.
08.026.

[49] S. Glimsdal, G. K. Pedersen, C. B. Harbitz, and F. Løvholt. “Dispersion of
Tsunamis: Does It Really Matter?” In: Natural Hazards and Earth System Sciences
13.6 (2013), pp. 1507–1526. doi: 10.5194/nhess-13-1507-2013.

[50] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time Dependent Problems
and Difference Methods. Vol. 24. John Wiley & Sons, 1995.

[51] GW4 and the UK Met Office. A64FX - Fujitsu — GW4-Isambard Documentation.
url: https://gw4- isambard.github.io/docs/user- guide/A64FX.html
(visited on 09/15/2023).

[52] Bilel Hadri, Samuel Kortas, Saber Feki, Rooh Khurram, and Greg Newby. “Overview
of the KAUST’s Cray X40 System–Shaheen II”. In: Proceedings of the 2015 Cray
User Group 3 (2015).

[53] David Harel. “Statecharts: A Visual Formalism for Complex Systems”. In: Science
of Computer Programming 8.3 (1987), pp. 231–274. doi: 10.1016/0167-6423(87)
90035-9.

[54] Markus O. Häring, Ulrich Schanz, Florentin Ladner, and Ben C. Dyer. “Charac-
terisation of the Basel 1 Enhanced Geothermal System”. In: Geothermics 37.5
(2008), pp. 469–495. doi: 10.1016/j.geothermics.2008.06.002.

[55] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Chakravarthy.
“Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III”. In:
Journal of Computational Physics 71.2 (1987), pp. 231–303. doi: 10.1016/0021-
9991(87)90031-3.

[56] M. A. H. Hedlin, K. Walker, D. P. Drob, and C.D. de Groot-Hedlin. “Infrasound:
Connecting the Solid Earth, Oceans, and Atmosphere”. In: Annual Review of
Earth and Planetary Sciences 40.327 (2012), p. 2012. doi: 10.1146/annurev-
earth-042711-105508.

177

https://doi.org/10.1063/1.5139602
https://doi.org/10.1016/j.jcp.2010.10.024
https://doi.org/10.1016/j.rser.2015.08.026
https://doi.org/10.1016/j.rser.2015.08.026
https://doi.org/10.5194/nhess-13-1507-2013
https://gw4-isambard.github.io/docs/user-guide/A64FX.html
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/j.geothermics.2008.06.002
https://doi.org/10.1016/0021-9991(87)90031-3
https://doi.org/10.1016/0021-9991(87)90031-3
https://doi.org/10.1146/annurev-earth-042711-105508
https://doi.org/10.1146/annurev-earth-042711-105508

Bibliography

[57] Alexander Heinecke, Alexander Breuer, Michael Bader, and Pradeep Dubey. “High
Order Seismic Simulations on the Intel Xeon Phi Processor (Knights Landing)”.
In: High Performance Computing. Lecture Notes in Computer Science. Springer
International Publishing, 2016, pp. 343–362. doi: 10.1007/978-3-319-41321-
1_18.

[58] Alexander Heinecke, Alexander Breuer, Sebastian Rettenberger, Michael Bader,
Alice-Agnes Gabriel, Christian Pelties, Arndt Bode, William Barth, Xiang-Ke
Liao, Karthikeyan Vaidyanathan, Mikhail Smelyanskiy, and Pradeep Dubey.
“Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous
Supercomputers”. In: SC ’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 2014, pp. 3–14.
doi: 10.1109/SC.2014.6.

[59] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. “LIBXSMM:
Accelerating Small Matrix Multiplications by Runtime Code Generation”. In: SC
’16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2016, pp. 981–991. doi: 10.1109/SC.
2016.83.

[60] Bruno Hernandez, Alexis Le Pichon, Julien Vergoz, Pascal Herry, Lars Ceranna,
Christoph Pilger, Emanuele Marchetti, Maurizio Ripepe, and Rémy Bossu. “Es-
timating the Ground-Motion Distribution of the 2016 Mw 6.2 Amatrice, Italy,
Earthquake Using Remote Infrasound Observations”. In: Seismological Research
Letters 89.6 (2018), pp. 2227–2236. doi: 10.1785/0220180103.

[61] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods.
Springer New York, 2008. doi: 10.1007/978-0-387-72067-8.

[62] David P. Hill. “What Is That Mysterious Booming Sound?” In: Seismological
Research Letters 82.5 (2011), pp. 619–622. doi: 10.1785/gssrl.82.5.619.

[63] David P. Hill, Fredrick G. Fischer, Karen M. Lahr, and John M. Coakley. “Earth-
quake Sounds Generated by Body-Wave Ground Motion”. In: Bulletin of the
Seismological Society of America 66.4 (1976), pp. 1159–1172. doi: 10.1785/
BSSA0660041159.

[64] Gregor Hillers, Tommi A. T. Vuorinen, Marja R. Uski, Jari T. Kortström, Päivi B.
Mäntyniemi, Timo Tiira, Peter E. Malin, and Tero Saarno. “The 2018 Geothermal
Reservoir Stimulation in Espoo/Helsinki, Southern Finland: Seismic Network
Anatomy and Data Features”. In: Seismological Research Letters 91.2A (2020),
pp. 770–786. doi: 10.1785/0220190253.

[65] Torsten Hoefler and Andrew Lumsdaine. “Message Progression in Parallel Com-
puting - to Thread or Not to Thread?” In: 2008 IEEE International Conference
on Cluster Computing. 2008, pp. 213–222. doi: 10.1109/CLUSTR.2008.4663774.

178

https://doi.org/10.1007/978-3-319-41321-1_18
https://doi.org/10.1007/978-3-319-41321-1_18
https://doi.org/10.1109/SC.2014.6
https://doi.org/10.1109/SC.2016.83
https://doi.org/10.1109/SC.2016.83
https://doi.org/10.1785/0220180103
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1785/gssrl.82.5.619
https://doi.org/10.1785/BSSA0660041159
https://doi.org/10.1785/BSSA0660041159
https://doi.org/10.1785/0220190253
https://doi.org/10.1109/CLUSTR.2008.4663774

Bibliography

[66] P. Hupe, L. Ceranna, A. Le Pichon, R. S. Matoza, and P. Mialle. “International
Monitoring System Infrasound Data Products for Atmospheric Studies and Civilian
Applications”. In: Earth System Science Data 14.9 (2022), pp. 4201–4230. doi:
10.5194/essd-14-4201-2022.

[67] Yoshihiro Ito, Takeshi Tsuji, Yukihito Osada, Motoyuki Kido, Daisuke Inazu,
Yutaka Hayashi, Hiroaki Tsushima, Ryota Hino, and Hiromi Fujimoto. “Frontal
Wedge Deformation near the Source Region of the 2011 Tohoku-Oki Earthquake”.
In: Geophysical Research Letters 38.7 (2011). doi: 10.1029/2011GL048355.

[68] Kinjiro Kajiura. “The Leading Wave of a Tsunami”. In: Bulletin of the Earthquake
Research Institute, University of Tokyo 41.3 (1963), pp. 535–571.

[69] Martin Käser and Michael Dumbser. “A Highly Accurate Discontinuous Galerkin
Method for Complex Interfaces between Solids and Moving Fluids”. In: GEO-
PHYSICS 73.3 (2008), T23–T35. doi: 10.1190/1.2870081.

[70] Martin Käser, Michael Dumbser, Josep de la Puente, and Heiner Igel. “An Arbi-
trary High-Order Discontinuous Galerkin Method for Elastic Waves on Unstruc-
tured Meshes – III. Viscoelastic Attenuation”. In: Geophysical Journal Interna-
tional 168.1 (2007), pp. 224–242. doi: 10.1111/j.1365-246X.2006.03193.x.

[71] Martin Käser, Verena Hermann, and Josep de la Puente. “Quantitative Accuracy
Analysis of the Discontinuous Galerkin Method for Seismic Wave Propagation”.
In: Geophysical Journal International 173.3 (2008), pp. 990–999. doi: 10.1111/j.
1365-246X.2008.03781.x.

[72] Martin Käser, P. Martin Mai, and Michael Dumbser. “Accurate Calculation of
Fault-Rupture Models Using the High-Order Discontinuous Galerkin Method on
Tetrahedral Meshes”. In: Bulletin of the Seismological Society of America 97.5
(2007), pp. 1570–1586. doi: 10.1785/0120060253.

[73] Alexander A Kaufman and Anatoli L Levshin. Acoustic and Elastic Wave Fields
in Geophysics: III. Vol. 32. Elsevier, 2005.

[74] Katsuyoshi Kawaguchi, Yoshiyuki Kaneda, and Eiichirou Araki. “The DONET:
A Real-Time Seafloor Research Infrastructure for the Precise Earthquake and
Tsunami Monitoring”. In: OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean. 2008,
pp. 1–4. doi: 10.1109/OCEANSKOBE.2008.4530918.

[75] Sabrina Keil, Joachim Wassermann, and Tobias Megies. “Estimation of Ground
Motion Due to Induced Seismicity at a Geothermal Power Plant near Munich,
Germany, Using Numerical Simulations”. In: Geothermics 106 (2022), p. 102577.
doi: 10.1016/j.geothermics.2022.102577.

[76] Dimitri Komatitsch and Jean-Pierre Vilotte. “The Spectral Element Method:
An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geological
Structures”. In: Bulletin of the Seismological Society of America 88.2 (1998),
pp. 368–392. doi: 10.1785/BSSA0880020368.

179

https://doi.org/10.5194/essd-14-4201-2022
https://doi.org/10.1029/2011GL048355
https://doi.org/10.1190/1.2870081
https://doi.org/10.1111/j.1365-246X.2006.03193.x
https://doi.org/10.1111/j.1365-246X.2008.03781.x
https://doi.org/10.1111/j.1365-246X.2008.03781.x
https://doi.org/10.1785/0120060253
https://doi.org/10.1109/OCEANSKOBE.2008.4530918
https://doi.org/10.1016/j.geothermics.2022.102577
https://doi.org/10.1785/BSSA0880020368

Bibliography

[77] David A. Kopriva, Gregor J. Gassner, and Jan Nordström. “Stability of Dis-
continuous Galerkin Spectral Element Schemes for Wave Propagation When the
Coefficient Matrices Have Jumps”. In: Journal of Scientific Computing 88.1 (2021),
p. 3. doi: 10.1007/s10915-021-01516-w.

[78] Jeremy E. Kozdon and Eric M. Dunham. “Constraining Shallow Slip and Tsunami
Excitation in Megathrust Ruptures Using Seismic and Ocean Acoustic Waves
Recorded on Ocean-Bottom Sensor Networks”. In: Earth and Planetary Science
Letters 396 (2014), pp. 56–65. doi: 10.1016/j.epsl.2014.04.001.

[79] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel, Lauren S.
Abrahams, Eric M. Dunham, and Michael Bader. “3D Acoustic-Elastic Coupling
with Gravity: The Dynamics of the 2018 Palu, Sulawesi Earthquake and Tsunami”.
In: SC’ 21: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 2021, pp. 1–14. doi: 10.1145/
3458817.3476173.

[80] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel, Lauren S.
Abrahams, Eric M. Dunham, and Michael Bader. Supplementary Material for 3D
Acoustic-Elastic Coupling with Gravity: The Dynamics of the 2018 Palu, Sulawesi
Earthquake and Tsunami. Zenodo, Apr. 9, 2021. doi: 10.5281/ZENODO.5159333.

[81] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel, Lauren S.
Abrahams, Eric M. Dunham, and Michael Bader. Supplementary Material for 3D
Acoustic-Elastic Coupling with Gravity: The Dynamics of the 2018 Palu, Sulawesi
Earthquake and Tsunami (Updated for SeisSol v1.0.1). Zenodo, Apr. 9, 2021. doi:
10.5281/ZENODO.8341965.

[82] Lukas Krenz, Sebastian Wolf, Gregor Hillers, Alice-Agnes Gabriel, and Michael
Bader. “Numerical Simulations of Seismoacoustic Nuisance Patterns from an
Induced M 1.8 Earthquake in the Helsinki, Southern Finland, Metropolitan Area”.
In: Bulletin of the Seismological Society of America (2023). doi: 10 . 1785 /
0120220225.

[83] Lukas Krenz, Sebastian Wolf, Gregor Hillers, Alice-Agnes Gabriel, and Michael
Bader. Supplementary Material: Numerical Simulations of Seismoacoustic Nui-
sance Patterns from an Induced M 1.8 Earthquake in the Helsinki, Southern Fin-
land, Metropolitan Area. Zenodo, June 19, 2023. doi: 10.5281/ZENODO.8056416.

[84] Martin Kronbichler. “The Discontinuous Galerkin Method: Derivation and Proper-
ties”. In: Efficient High-Order Discretizations for Computational Fluid Dynamics.
CISM International Centre for Mechanical Sciences. Springer International Pub-
lishing, 2021, pp. 1–55. doi: 10.1007/978-3-030-60610-7_1.

[85] Martin Kronbichler and Katharina Kormann. “Fast Matrix-Free Evaluation of
Discontinuous Galerkin Finite Element Operators”. In: ACM Transactions on
Mathematical Software 45.3 (2019), 29:1–29:40. doi: 10.1145/3325864.

[86] Pijush K. Kundu, Ira M. Cohen, David R. Dowling, and Grétar Tryggvason. Fluid
Mechanics. Sixth edition. Elsevier/AP, 2016. isbn: 978-0-12-405935-1.

180

https://doi.org/10.1007/s10915-021-01516-w
https://doi.org/10.1016/j.epsl.2014.04.001
https://doi.org/10.1145/3458817.3476173
https://doi.org/10.1145/3458817.3476173
https://doi.org/10.5281/ZENODO.5159333
https://doi.org/10.5281/ZENODO.8341965
https://doi.org/10.1785/0120220225
https://doi.org/10.1785/0120220225
https://doi.org/10.5281/ZENODO.8056416
https://doi.org/10.1007/978-3-030-60610-7_1
https://doi.org/10.1145/3325864

Bibliography

[87] Fabian Kutschera, Alice-Agnes Gabriel, Sara Aniko Wirp, Bo Li, Thomas Ul-
rich, Claudia Abril, and Benedikt Halldórsson. “Linked and Fully-Coupled 3D
Earthquake Dynamic Rupture and Tsunami Modeling for the Húsav́ık-Flatey
Fault Zone in North Iceland”. In: EGUsphere [preprint] (2023), pp. 1–43. doi:
10.5194/egusphere-2023-1262.

[88] Grzegorz Kwiatek, Patricia Martinez Garzon, Jörn Davidsen, Peter Malin, Aino
Karjalainen, Marco Bohnhoff, and Georg Dresen. “Limited Earthquake Interaction
during a Geothermal Hydraulic Stimulation in Helsinki, Finland”. In: Journal of
Geophysical Research: Solid Earth 127.9 (2022). doi: 10.1029/2022JB024354.

[89] Grzegorz Kwiatek, Tero Saarno, Thomas Ader, Felix Bluemle, Marco Bohnhoff,
Michael Chendorain, Georg Dresen, Pekka Heikkinen, Ilmo Kukkonen, Peter Leary,
et al. “Controlling Fluid-Induced Seismicity During a 6.1 km-Deep Geothermal
Stimulation in Finland”. In: Science Advances 5.5 (2019).

[90] Grzegorz Kwiatek, Tero Saarno, Thomas Ader, Felix Bluemle, Marco Bohnhoff,
Michael Chendorain, Georg Dresen, Pekka Heikkinen, Ilmo Kukkonen, Peter Leary,
Maria Leonhardt, Peter Malin, Patricia Mart́ınez-Garzón, Kevin Passmore, Paul
Passmore, Sergio Valenzuela, and Christopher Wollin. “Controlling Fluid-Induced
Seismicity during a 6.1-Km-Deep Geothermal Stimulation in Finland”. In: Science
Advances 5.5 (2019). doi: 10.1126/sciadv.aav7224.

[91] Oliver D. Lamb, Jonathan M. Lees, Peter E. Malin, and Tero Saarno. “Audi-
ble Acoustics from Low-Magnitude Fluid-Induced Earthquakes in Finland”. In:
Scientific reports 11.1 (2021), pp. 1–8. doi: 10.1038/s41598-021-98701-6.

[92] Lev D. Landau and Evgenij M. Lif̌sic. Theory of Elasticity. 3. English edition. 7.
Elsevier, Butterworth-Heinemann, 2009. isbn: 978-0-7506-2633-0.

[93] Leibniz-Rechenzentrum (LRZ). Hardware of SuperMUC-NG. url: https://doku.
lrz.de/hardware-of-supermuc-ng-11482553.html (visited on 09/15/2023).

[94] Maria Leonhardt, Grzegorz Kwiatek, Patricia Mart́ınez-Garzón, Marco Bohnhoff,
Tero Saarno, Pekka Heikkinen, and Georg Dresen. “Seismicity During and After
Stimulation of a 6.1km Deep Enhanced Geothermal System in Helsinki, Finland”.
In: Solid Earth Sciences Library 12.3 (2021), pp. 581–594. doi: 10.5194/se-12-
581-2021.

[95] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002. doi: 10.1017/cbo9780511791253.

[96] Jiaxuan Li, Taeho Kim, Nadia Lapusta, Ettore Biondi, and Zhongwen Zhan. “The
Break of Earthquake Asperities Imaged by Distributed Acoustic Sensing”. In:
Nature (2023), pp. 1–7. doi: 10.1038/s41586-023-06227-w.

[97] Gabriel C. Lotto and Eric M. Dunham. “High-order Finite Difference Modeling of
Tsunami Generation in a Compressible Ocean from Offshore Earthquakes”. In:
Computational Geosciences 19.2 (2015), pp. 327–340.

181

https://doi.org/10.5194/egusphere-2023-1262
https://doi.org/10.1029/2022JB024354
https://doi.org/10.1126/sciadv.aav7224
https://doi.org/10.1038/s41598-021-98701-6
https://doku.lrz.de/hardware-of-supermuc-ng-11482553.html
https://doku.lrz.de/hardware-of-supermuc-ng-11482553.html
https://doi.org/10.5194/se-12-581-2021
https://doi.org/10.5194/se-12-581-2021
https://doi.org/10.1017/cbo9780511791253
https://doi.org/10.1038/s41586-023-06227-w

Bibliography

[98] Gabriel C. Lotto, Tamara N. Jeppson, and Eric M. Dunham. “Fully Coupled
Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai
Trough, and Cascadia Subduction Zone”. In: Pure and Applied Geophysics 176.9
(2019), pp. 4009–4041. doi: 10.1007/s00024-018-1990-y.

[99] Gabriel C. Lotto, Gabriel Nava, and Eric M. Dunham. “Should Tsunami Simula-
tions Include a Nonzero Initial Horizontal Velocity?” In: Earth, Planets and Space
69.1 (2017), p. 117. doi: 10.1186/s40623-017-0701-8.

[100] B. Lund, Marianne Maria Malm, Päivi Birgitta Mäntyniemi, Kati Johanna
Oinonen, T. Tiira, Marja Riitta Uski, and Tommi Antton Tapani Vuorinen.
Evaluating Seismic Hazard for the Hanhikivi Nuclear Power Plant Site, Seismo-
logical Characteristics of the Source Areas, Attenuation of Seismic Signal, and
Probabilistic Analysis of Seismic Hazard. Ed. by J. Saari. Vol. Report NE-4459.
ÅF-Consult Ltd, 2015.

[101] Raul Madariaga. “Earthquake Scaling Laws”. In: Extreme Environmental Events.
Springer New York, 2011, pp. 364–383. doi: 10.1007/978-1-4419-7695-6_22.

[102] E. H. Madden, M. Bader, J. Behrens, Y. van Dinther, A.-A. Gabriel, L. Rannabauer,
T. Ulrich, C. Uphoff, S. Vater, and I. van Zelst. “Linked 3-D Modelling of Megath-
rust Earthquake-Tsunami Events: From Subduction to Tsunami Run Up”. In:
Geophysical Journal International 224.1 (2021), pp. 487–516. doi: 10.1093/gji/
ggaa484.

[103] Takuto Maeda and Takashi Furumura. “FDM Simulation of Seismic Waves, Ocean
Acoustic Waves, and Tsunamis Based on Tsunami-Coupled Equations of Motion”.
In: Pure and Applied Geophysics 170.1 (2013), pp. 109–127. doi: 10.1007/s00024-
011-0430-z.

[104] P. Martin Mai. “Supershear Tsunami Disaster”. In: Nature Geoscience 12.3 (2019),
pp. 150–151. doi: 10.1038/s41561-019-0308-8.

[105] Ernie Majer, James Nelson, Ann Robertson-Tait, Jean Savy, and Ivan Wong.
Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal
Systems. Tech. rep. DOE/EE–0662, 1219482. 2012, DOE/EE–0662, 1219482. doi:
10.2172/1219482.

[106] Päivi Birgitta Mäntyniemi. “Revisiting Svenskby, Southeastern Finland: Commu-
nications Regarding Low-Magnitude Earthquakes in 1751–1752”. In: Geosciences
12.9 (2022). doi: 10.3390/geosciences12090338.

[107] Satoshi Matsuoka, Jens Domke, Mohamed Wahib, Aleksandr Drozd, and Torsten
Hoefler. “Myths and Legends in High-Performance Computing”. In: The Inter-
national Journal of High Performance Computing Applications 37.3-4 (2023),
pp. 245–259. doi: 10.1177/10943420231166608.

[108] John D. McCalpin. “HPL and DGEMM Performance Variability on the Xeon
Platinum 8160 Processor”. In: SC’ 18: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2018. doi: 10.1109/
SC.2018.00021.

182

https://doi.org/10.1007/s00024-018-1990-y
https://doi.org/10.1186/s40623-017-0701-8
https://doi.org/10.1007/978-1-4419-7695-6_22
https://doi.org/10.1093/gji/ggaa484
https://doi.org/10.1093/gji/ggaa484
https://doi.org/10.1007/s00024-011-0430-z
https://doi.org/10.1007/s00024-011-0430-z
https://doi.org/10.1038/s41561-019-0308-8
https://doi.org/10.2172/1219482
https://doi.org/10.3390/geosciences12090338
https://doi.org/10.1177/10943420231166608
https://doi.org/10.1109/SC.2018.00021
https://doi.org/10.1109/SC.2018.00021

Bibliography

[109] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.0. Manual. 2021.

[110] Henrik Møller and Christian Sejer Pedersen. “Hearing at Low and Infrasonic
Frequencies”. In: Noise & Health 6.23 (2004), pp. 37–57.

[111] Gordon E. Moore. “The Experts Look Ahead: Cramming More Components onto
Integrated Circuits”. In: Electronics 38.8 (1965), pp. 114–119.

[112] J. Paul Mutschlecner and Rodney W. Whitaker. “Infrasound from Earthquakes”.
In: Journal of Geophysical Research: Atmospheres 110.D1 (2005), pp. 1–11. doi:
10.1029/2004JD005067.

[113] Jan Nordström. “A Roadmap to Well Posed and Stable Problems in Computational
Physics”. In: Journal of Scientific Computing 71.1 (2017), pp. 365–385. doi:
10.1007/s10915-016-0303-9.

[114] Yoshimitsu Okada. “Surface Deformation Due to Shear and Tensile Faults in
a Half-Space”. In: Bulletin of the Seismological Society of America 75.4 (1985),
pp. 1135–1154.

[115] Emile A. Okal. “The Generation of T Waves by Earthquakes”. In: Advances in
Geophysics. Vol. 49. Elsevier, 2008, pp. 1–65. doi: 10.1016/S0065-2687(07)
49001-X.

[116] Tom Parker, Sergey Shatalin, and Mahmoud Farhadiroushan. “Distributed Acous-
tic Sensing – a New Tool for Seismic Applications”. In: First Break 32.2 (2014).
doi: 10.3997/1365-2397.2013034.

[117] Ryan Paulik, Aditya Gusman, James H. Williams, Gumbert Maylda Pratama,
Sheng-lin Lin, Alamsyah Prawirabhakti, Ketut Sulendra, Muhammad Yasser
Zachari, Zabin Ellyni Dwi Fortuna, Novita Barrang Pare Layuk, and Ni Wayan
Ika Suwarni. “Tsunami Hazard and Built Environment Damage Observations from
Palu City after the September 28 2018 Sulawesi Earthquake and Tsunami”. In:
Pure and Applied Geophysics 176.8 (2019), pp. 3305–3321. doi: 10.1007/s00024-
019-02254-9.

[118] C. Pelties, A.-A. Gabriel, and J.-P. Ampuero. “Verification of an ADER-DG
Method for Complex Dynamic Rupture Problems”. In: Geoscientific Model Devel-
opment 7.3 (2014), pp. 847–866. doi: 10.5194/gmd-7-847-2014.

[119] Christian Pelties, Josep De La Puente, Jean-Paul Ampuero, Gilbert B. Brietzke,
and Martin Käser. “Three-dimensional Dynamic Rupture Simulation with a High-
Order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes”.
In: Journal of Geophysical Research: Solid Earth 117.B2 (2012). doi: 10.1029/
2011JB008857.

[120] Kaare B. Petersen and Michael S. Pedersen. The Matrix Cookbook. Technical
University of Denmark, 2012.

183

https://doi.org/10.1029/2004JD005067
https://doi.org/10.1007/s10915-016-0303-9
https://doi.org/10.1016/S0065-2687(07)49001-X
https://doi.org/10.1016/S0065-2687(07)49001-X
https://doi.org/10.3997/1365-2397.2013034
https://doi.org/10.1007/s00024-019-02254-9
https://doi.org/10.1007/s00024-019-02254-9
https://doi.org/10.5194/gmd-7-847-2014
https://doi.org/10.1029/2011JB008857
https://doi.org/10.1029/2011JB008857

Bibliography

[121] Arben Pitarka, Aybige Akinci, Pasquale De Gori, and Mauro Buttinelli. “Determin-
istic 3D Ground-Motion Simulations (0–5 Hz) and Surface Topography Effects of
the 30 October 2016 Mw6.5 Norcia, Italy, Earthquake”. In: Bulletin of the Seismo-
logical Society of America 112.1 (2022), pp. 262–286. doi: 10.1785/0120210133.

[122] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics.
Vol. 37. Texts in Applied Mathematics. Springer New York, 2007. doi: 10.1007/
b98885.

[123] Marlon D. Ramos, Prithvi Thakur, Yihe Huang, Ruth A. Harris, and Kenny J.
Ryan. “Working with Dynamic Earthquake Rupture Models: A Practical Guide”.
In: Seismological Research Letters 93.4 (2022), pp. 2096–2110. doi: 10.1785/
0220220022.

[124] William H. Reed and Thomas R. Hill. Triangular Mesh Methods for the Neutron
Transport Equation. Tech. rep. Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[125] Anne Reinarz, Dominic E. Charrier, Michael Bader, Luke Bovard, Michael Dumb-
ser, Kenneth Duru, Francesco Fambri, Alice-Agnes Gabriel, Jean-Matthieu Gallard,
Sven Köppel, Lukas Krenz, Leonhard Rannabauer, Luciano Rezzolla, Philipp Sam-
fass, Maurizio Tavelli, and Tobias Weinzierl. “ExaHyPE: An Engine for Parallel
Dynamically Adaptive Simulations of Wave Problems”. In: Computer Physics
Communications 254 (2020), p. 107251. doi: 10.1016/j.cpc.2020.107251.

[126] Sebastian Rettenberger and Michael Bader. “Optimizing I/O for Petascale Seismic
Simulations on Unstructured Meshes”. In: 2015 IEEE International Conference on
Cluster Computing. IEEE, 2015, pp. 314–317. doi: 10.1109/CLUSTER.2015.51.

[127] A. Rintamäki, G. Hillers, S. Heimann, T. Dahm, and A. Korja. “Centroid Full
Moment Tensor Analysis Reveals Fluid Channels Opened by Induced Seismicity at
EGS, Helsinki Region, Southern Finland”. In: EGU General Assembly Conference
Abstracts. 2023, EGU23–12756. doi: 10.5194/egusphere-egu23-12756.

[128] Annukka E. Rintamäki, Gregor Hillers, Tommi A. T. Vuorinen, Tuija Luhta,
Jonathan M. Pownall, Christina Tsarsitalidou, Keith Galvin, Jukka Keskinen,
Jari T. Kortström, Tzu-Chi Lin, Päivi B. Mäntyniemi, Kati J. Oinonen, Tahvo J.
Oksanen, Pirita J. Seipäjärvi, George Taylor, Marja R. Uski, Ahti I. Voutilainen,
and David M. Whipp. “A Seismic Network to Monitor the 2020 EGS Stimulation
in the Espoo/Helsinki Area, Southern Finland”. In: Seismological Research Letters
93.2A (2021), pp. 1046–1062. doi: 10.1785/0220210195.

[129] Barbara Romanowicz, Richard Allen, Knute Brekke, Li-Wei Chen, Yuancong
Gou, Ivan Henson, Julien Marty, Doug Neuhauser, Brian Pardini, Taka’aki Taira,
Stephen Thompson, Junli Zhang, and Stephane Zuzlewski. “SeaFOAM: A Year-
Long DAS Deployment in Monterey Bay, California”. In: Seismological Research
Letters (2023). doi: 10.1785/0220230047.

[130] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.6). https://www.sagemath.org. 2022.

184

https://doi.org/10.1785/0120210133
https://doi.org/10.1007/b98885
https://doi.org/10.1007/b98885
https://doi.org/10.1785/0220220022
https://doi.org/10.1785/0220220022
https://doi.org/10.1016/j.cpc.2020.107251
https://doi.org/10.1109/CLUSTER.2015.51
https://doi.org/10.5194/egusphere-egu23-12756
https://doi.org/10.1785/0220210195
https://doi.org/10.1785/0220230047

Bibliography

[131] Tatsuhiko Saito. Tsunami Generation and Propagation. Springer Geophysics.
Springer Japan, 2019. doi: 10.1007/978-4-431-56850-6.

[132] Tatsuhiko Saito, Toshitaka Baba, Daisuke Inazu, Shunsuke Takemura, and Eiichi
Fukuyama. “Synthesizing Sea Surface Height Change Including Seismic Waves
and Tsunami Using a Dynamic Rupture Scenario of Anticipated Nankai Trough
Earthquakes”. In: Tectonophysics 769 (2019), p. 228166. doi: 10.1016/j.tecto.
2019.228166.

[133] Tatsuhiko Saito and Takashi Furumura. “Three-Dimensional Tsunami Generation
Simulation Due to Sea-Bottom Deformation and Its Interpretation Based on the
Linear Theory”. In: Geophysical Journal International 178.2 (2009), pp. 877–888.
doi: 10.1111/j.1365-246X.2009.04206.x.

[134] Tatsuhiko Saito and Hiroaki Tsushima. “Synthesizing Ocean Bottom Pressure
Records Including Seismic Wave and Tsunami Contributions: Toward Realistic
Tests of Monitoring Systems”. In: Journal of Geophysical Research: Solid Earth
121.11 (2016), pp. 8175–8195. doi: 10.1002/2016JB013195.

[135] Kirk Schloegel, George Karypis, and Vipin Kumar. “Parallel Static and Dynamic
Multi-Constraint Graph Partitioning”. In: Concurrency and Computation: Practice
and Experience 14.3 (2002), pp. 219–240. doi: 10.1002/cpe.605.

[136] Ryan Schultz, Gregory C. Beroza, and William L. Ellsworth. “A Risk-Based
Approach for Managing Hydraulic Fracturing–Induced Seismicity”. In: Science
372.6541 (2021), pp. 504–507. doi: 10.1126/science.abg5451.

[137] Ryan Schultz, Vince Quitoriano, David J. Wald, and Gregory C. Beroza. “Quantify-
ing Nuisance Ground Motion Thresholds for Induced Earthquakes”. In: Earthquake
Spectra 37.2 (2021), pp. 789–802. doi: 10.1177/8755293020988025.

[138] CSC – IT Center for Science Ltd. Mahti - Docs CSC. url: https://docs.csc.
fi/computing/systems-mahti/ (visited on 09/15/2023).

[139] Skipper Seabold and Josef Perktold. “Statsmodels: Econometric and Statistical
Modeling with Python”. In: 9th Python in Science Conference. 2010. doi: 10.
25080/Majora-92bf1922-011.

[140] Shahar Shani-Kadmiel, Gil Averbuch, Pieter Smets, Jelle Assink, and Läslo Evers.
“The 2010 Haiti Earthquake Revisited: An Acoustic Intensity Map from Remote
Atmospheric Infrasound Observations”. In: Earth and Planetary Science Letters
560 (2021), p. 116795. doi: 10.1016/j.epsl.2021.116795.

[141] Peter M. Shearer. Introduction to Seismology. Third. Cambridge University Press,
2019. doi: 10.1017/9781316877111.

[142] Michael Sipser. Introduction to the Theory of Computation. 2nd ed. Thomson
Course Technology, 2006. isbn: 978-0-534-95097-2.

185

https://doi.org/10.1007/978-4-431-56850-6
https://doi.org/10.1016/j.tecto.2019.228166
https://doi.org/10.1016/j.tecto.2019.228166
https://doi.org/10.1111/j.1365-246X.2009.04206.x
https://doi.org/10.1002/2016JB013195
https://doi.org/10.1002/cpe.605
https://doi.org/10.1126/science.abg5451
https://doi.org/10.1177/8755293020988025
https://docs.csc.fi/computing/systems-mahti/
https://docs.csc.fi/computing/systems-mahti/
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1016/j.epsl.2021.116795
https://doi.org/10.1017/9781316877111

Bibliography

[143] A. Sladen, D. Rivet, J. P Ampuero, L. De Barros, Y. Hello, G. Calbris, and P.
Lamare. “Distributed Sensing of Earthquakes and Ocean-Solid Earth Interactions
on Seafloor Telecom Cables”. In: Nature Communications 10.1 (2019), p. 5777.
doi: 10.1038/s41467-019-13793-z.

[144] J. S. Sochacki, J. H. George, R. E. Ewing, and Scott B. Smithson. “Interface
Conditions for Acoustic and Elastic Wave Propagation”. In: Geophysics 56.2
(1991), pp. 168–181. doi: 10.1190/1.1443029.

[145] Y. Tony Song, L. -L. Fu, Victor Zlotnicki, Chen Ji, Vala Hjorleifsdottir, C. K. Shum,
and Yuchan Yi. “The Role of Horizontal Impulses of the Faulting Continental
Slope in Generating the 26 December 2004 Tsunami”. In: Ocean Modelling 20.4
(2008), pp. 362–379. doi: 10.1016/j.ocemod.2007.10.007.

[146] Y. Tony Song and Shin-Chan Han. “Satellite Observations Defying the Long-Held
Tsunami Genesis Theory”. In: Remote Sensing of the Changing Oceans. Springer
Berlin Heidelberg, 2011, pp. 327–342. doi: 10.1007/978-3-642-16541-2_17.

[147] Y. Tony Song, Ali Mohtat, and Solomon C. Yim. “New Insights on Tsunami
Genesis and Energy Source”. In: Journal of Geophysical Research: Oceans 122.5
(2017), pp. 4238–4256. doi: 10.1002/2016JC012556.

[148] Michael Stauffacher, Nora Muggli, Anna Scolobig, and Corinne Moser. “Framing
Deep Geothermal Energy in Mass Media: The Case of Switzerland”. In: Tech-
nological Forecasting and Social Change 98 (2015), pp. 60–70. doi: 10.1016/j.
techfore.2015.05.018.

[149] Walter A. Strauss. Partial Differential Equations: An Introduction. 2nd ed. Wiley,
2007. isbn: 978-0-470-05456-7.

[150] Matthieu Sylvander and Dorin G. Mogos. “The Sounds of Small Earthquakes:
Quantitative Results from a Study of Regional Macroseismic Bulletins”. In: Bulletin
of the Seismological Society of America 95.4 (2005), pp. 1510–1515. doi: 10.1785/
0120040197.

[151] Matthieu Sylvander, Christian Ponsolles, Sébastien Benahmed, and Jean-François
Fels. “Seismoacoustic Recordings of Small Earthquakes in the Pyrenees: Experi-
mental Results”. In: Bulletin of the Seismological Society of America 97.1B (2007),
pp. 294–304. doi: 10.1785/0120060009.

[152] Yuichiro Tanioka and Kenji Satake. “Tsunami Generation by Horizontal Displace-
ment of Ocean Bottom”. In: Geophysical Research Letters 23.8 (1996), pp. 861–864.
doi: 10.1029/96GL00736.

[153] Taufiqurrahman Taufiqurrahman, Alice-Agnes Gabriel, Thomas Ulrich, Lubica
Valentova, and Frantisek Gallovič. “Broadband Dynamic Rupture Modeling with
Fractal Fault Roughness, Frictional Heterogeneity, Viscoelasticity and Topography:
The 2016 Mw 6.2 Amatrice, Italy Earthquake”. In: Geophysical Research Letters
49.22 (2022). doi: 10.1029/2022GL098872.

186

https://doi.org/10.1038/s41467-019-13793-z
https://doi.org/10.1190/1.1443029
https://doi.org/10.1016/j.ocemod.2007.10.007
https://doi.org/10.1007/978-3-642-16541-2_17
https://doi.org/10.1002/2016JC012556
https://doi.org/10.1016/j.techfore.2015.05.018
https://doi.org/10.1016/j.techfore.2015.05.018
https://doi.org/10.1785/0120040197
https://doi.org/10.1785/0120040197
https://doi.org/10.1785/0120060009
https://doi.org/10.1029/96GL00736
https://doi.org/10.1029/2022GL098872

Bibliography

[154] Texas Advanced Computing Center (TACC). Frontera - TACC HPC Documenta-
tion. url: https://docs.tacc.utexas.edu/hpc/frontera/#system (visited on
09/15/2023).

[155] François Thouvenot, Liliane Jenatton, and Jean-Pierre Gratier. “200-m-Deep
Earthquake Swarm in Tricastin (Lower Rhône Valley, France) Accounts for Noisy
Seismicity over Past Centuries”. In: Terra Nova 21.3 (2009), pp. 203–210. doi:
10.1111/j.1365-3121.2009.00875.x.

[156] V. A. Titarev and E. F. Toro. “ADER: Arbitrary High Order Godunov Approach”.
In: Journal of Scientific Computing 17.1 (2002), pp. 609–618. doi: 10.1023/A:
1015126814947.

[157] V.A. Titarev and E.F. Toro. “ADER Schemes for Three-Dimensional Non-Linear
Hyperbolic Systems”. In: Journal of Computational Physics 204.2 (2005), pp. 715–
736. doi: 10.1016/j.jcp.2004.10.028.

[158] J. Tomic, R. E. Abercrombie, and A. F. Do Nascimento. “Source Parameters and
Rupture Velocity of Small M≤2.1 Reservoir Induced Earthquakes”. In: Geophysical
Journal International 179.2 (2009), pp. 1013–1023. doi: 10 . 1111 / j . 1365 -
246X.2009.04233.x.

[159] E.F. Toro and V.A. Titarev. “Derivative Riemann Solvers for Systems of Conser-
vation Laws and ADER Methods”. In: Journal of Computational Physics 212.1
(2006), pp. 150–165. doi: 10.1016/j.jcp.2005.06.018.

[160] Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer Berlin Heidelberg, 2009. doi: 10.1007/b79761.

[161] Patrizia Tosi, Valerio De Rubeis, Andrea Tertulliani, and Calvino Gasparini. “Spa-
tial Patterns of Earthquake Sounds and Seismic Source Geometry”. In: Geophysical
Research Letters 27.17 (2000), pp. 2749–2752. doi: 10.1029/2000GL011377.

[162] Jan Treibig, Georg Hager, and Gerhard Wellein. “LIKWID: A Lightweight
Performance-Oriented Tool Suite for X86 Multicore Environments”. In: 2010
39th International Conference on Parallel Processing Workshops. IEEE, 2010,
pp. 207–216. doi: 10.1109/ICPPW.2010.38.

[163] T. Ulrich, S. Vater, E. H. Madden, J. Behrens, Y. van Dinther, I. van Zelst, E. J.
Fielding, C. Liang, and A.-A. Gabriel. “Coupled, Physics-Based Modeling Reveals
Earthquake Displacements Are Critical to the 2018 Palu, Sulawesi Tsunami”. In:
Pure and Applied Geophysics 176.10 (2019), pp. 4069–4109. doi: 10.1007/s00024-
019-02290-5.

[164] Carsten Uphoff. “Flexible Model Extension and Optimisation for Earthquake
Simulations at Extreme Scales”. PhD thesis. Technische Universität München,
2020.

[165] Carsten Uphoff and Michael Bader. “Generating High Performance Matrix Kernels
for Earthquake Simulations with Viscoelastic Attenuation”. In: 2016 International
Conference on High Performance Computing & Simulation (HPCS). 2016, pp. 908–
916. doi: 10.1109/HPCSim.2016.7568431.

187

https://docs.tacc.utexas.edu/hpc/frontera/#system
https://doi.org/10.1111/j.1365-3121.2009.00875.x
https://doi.org/10.1023/A:1015126814947
https://doi.org/10.1023/A:1015126814947
https://doi.org/10.1016/j.jcp.2004.10.028
https://doi.org/10.1111/j.1365-246X.2009.04233.x
https://doi.org/10.1111/j.1365-246X.2009.04233.x
https://doi.org/10.1016/j.jcp.2005.06.018
https://doi.org/10.1007/b79761
https://doi.org/10.1029/2000GL011377
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1007/s00024-019-02290-5
https://doi.org/10.1007/s00024-019-02290-5
https://doi.org/10.1109/HPCSim.2016.7568431

Bibliography

[166] Carsten Uphoff and Michael Bader. “Yet Another Tensor Toolbox for Discon-
tinuous Galerkin Methods and Other Applications”. In: ACM Transactions on
Mathematical Software 46.4 (2020), pp. 1–40. doi: 10.1145/3406835.

[167] Carsten Uphoff, Lukas Krenz, Thomas Ulrich, Sebastian Wolf, Adrian Knoll,
Duo Li, Alexander Heinecke, Ravil Dorozhinskii, Stephanie Wollherr, Marius
Bohn, Nico Schliwa, Gilbert Brietzke, Taufiq Taufiqurrahman, Sebastian Anger,
Sebastian Rettenberger, Frédéric Simonis, Alice Gabriel, Viktoria Pauw, Alexander
Breuer, Fabian Kutschera, Kadek Hendrawan Palgunadi, Leonhard Rannabauer,
Lukas van de Wiel, Bo Li, Calum Chamberlain, Jeena Yun, John Rekoske, Yonatan
G, and Michael Bader. SeisSol. 2023. doi: 10.5281/ZENODO.7837068.

[168] Carsten Uphoff, Sebastian Rettenberger, Michael Bader, Elizabeth H Madden,
Thomas Ulrich, Stephanie Wollherr, and Alice-Agnes Gabriel. “Extreme Scale
Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra Megathrust Earth-
quake”. In: SC’ 17: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. ACM. 2017, p. 21. doi:
10.1145/3126908.3126948.

[169] Bram van Leer. “Upwind and High-Resolution Methods for Compressible Flow:
From Donor Cell to Residual-Distribution Schemes”. In: 16th AIAA Computational
Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics,
2003. doi: 10.2514/6.2003-3559.

[170] James P. Verdon and Julian J. Bommer. “Green, Yellow, Red, or out of the Blue?
An Assessment of Traffic Light Schemes to Mitigate the Impact of Hydraulic
Fracturing-Induced Seismicity”. In: Journal of Seismology 25.1 (2021), pp. 301–
326. doi: 10.1007/s10950-020-09966-9.

[171] F. Vernon, J. Tytell, M. A. H. Hedlin, K. Walker, R. Busby, and R. Woodward.
“Integration of Infrasound, Atmospheric Pressure, and Seismic Observations with
the NSF EarthScope USArray Transportable Array”. In: EGU General Assembly
Conference Abstracts. 2012, p. 10770.

[172] Peter Wauligmann, Nathan Brei, Alexander Puscas, and Jonas Schreier. PSpaMM.
url: https://github.com/SeisSol/PSpaMM (visited on 08/01/2023).

[173] Roger Waxler and Jelle Assink. “Propagation Modeling through Realistic Atmo-
sphere and Benchmarking”. In: Infrasound Monitoring for Atmospheric Studies:
Challenges in Middle Atmosphere Dynamics and Societal Benefits. Springer Inter-
national Publishing, 2019, pp. 509–549. doi: 10.1007/978-3-319-75140-5_15.

[174] Roger Waxler, Claus H. Hetzer, Jelle D. Assink, and Philip Blom. “A Two-
Dimensional Effective Sound Speed Parabolic Equation Model for Infrasound
Propagation with Ground Topography”. In: The Journal of the Acoustical Society
of America 152.6 (2022), pp. 3659–3669. doi: 10.1121/10.0016558.

188

https://doi.org/10.1145/3406835
https://doi.org/10.5281/ZENODO.7837068
https://doi.org/10.1145/3126908.3126948
https://doi.org/10.2514/6.2003-3559
https://doi.org/10.1007/s10950-020-09966-9
https://github.com/SeisSol/PSpaMM
https://doi.org/10.1007/978-3-319-75140-5_15
https://doi.org/10.1121/10.0016558

Bibliography

[175] Lucas C. Wilcox, Georg Stadler, Carsten Burstedde, and Omar Ghattas. “A High-
Order Discontinuous Galerkin Method for Wave Propagation through Coupled
Elastic–Acoustic Media”. In: Journal of Computational Physics 229.24 (2010),
pp. 9373–9396. doi: 10.1016/j.jcp.2010.09.008.

[176] Nadine G. Reitman William J. Stephenson and Stephen J. Angster. U.S. Geological
Survey Open-File Report 2017–1152: P- and S-wave Velocity Models Incorporating
the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations,
Version 1.6—Update for Open-File Report 2007–1348. Tech. rep. U.S. Geological
Survey, 2017. doi: 10.3133/ofr20171152.

[177] Andrew Wilson and Shuo Ma. “Wedge Plasticity and Fully Coupled Simulations
of Dynamic Rupture and Tsunami in the Cascadia Subduction Zone”. In: Journal
of Geophysical Research: Solid Earth 126.7 (2021). doi: 10.1029/2020JB021627.

[178] Sara Aniko Wirp, Alice-Agnes Gabriel, Maximilian Schmeller, Elizabeth H. Mad-
den, Iris van Zelst, Lukas Krenz, Ylona van Dinther, and Leonhard Rannabauer.
“3D Linked Subduction, Dynamic Rupture, Tsunami, and Inundation Modeling:
Dynamic Effects of Supershear and Tsunami Earthquakes, Hypocenter Loca-
tion, and Shallow Fault Slip”. In: Frontiers in Earth Science 9 (2021). doi:
10.3389/feart.2021.626844.

[179] Sara Aniko Wirp, Thomas Ulrich, Lukas Krenz, Michael Bader, Stefano Lorito,
and Alice-Agnes Gabriel. “Earthquake Scenarios for the Hellenic Arc from 3D
Dynamic Rupture Modeling: Implications for Tsunami Hazard”. In: EGU General
Assembly Conference Abstracts. 2022. doi: 10.5194/egusphere-egu22-9486.

[180] Sebastian Wolf, Alice-Agnes Gabriel, and Michael Bader. “Optimization and Local
Time Stepping of an ADER-DG Scheme for Fully Anisotropic Wave Propagation
in Complex Geometries”. In: Computational Science – ICCS 2020. Vol. 12139.
Springer International Publishing, 2020, pp. 32–45. doi: 10.1007/978-3-030-
50420-5_3.

[181] Sebastian Wolf, Martin Galis, Carsten Uphoff, Alice-Agnes Gabriel, Peter Moczo,
David Gregor, and Michael Bader. “An Efficient ADER-DG Local Time Stepping
Scheme for 3D HPC Simulation of Seismic Waves in Poroelastic Media”. In: Journal
of Computational Physics 455 (2022). doi: 10.1016/j.jcp.2021.110886.

[182] Stephanie Wollherr, Alice-Agnes Gabriel, and Carsten Uphoff. “Off-Fault Plasticity
in Three-Dimensional Dynamic Rupture Simulations Using a Modal Discontinuous
Galerkin Method on Unstructured Meshes: Implementation, Verification and
Application”. In: Geophysical Journal International 214.3 (2018), pp. 1556–1584.
doi: 10.1093/gji/ggy213.

[183] Brian J. N. Wylie. “Exascale Potholes for HPC: Execution Performance and Vari-
ability Analysis of the Flagship Application Code HemeLB”. In: 2020 IEEE/ACM
International Workshop on HPC User Support Tools (HUST) and Workshop on
Programming and Performance Visualization Tools (ProTools). IEEE, 2020. doi:
10.1109/hustprotools51951.2020.00014.

189

https://doi.org/10.1016/j.jcp.2010.09.008
https://doi.org/10.3133/ofr20171152
https://doi.org/10.1029/2020JB021627
https://doi.org/10.3389/feart.2021.626844
https://doi.org/10.5194/egusphere-egu22-9486
https://doi.org/10.1007/978-3-030-50420-5_3
https://doi.org/10.1007/978-3-030-50420-5_3
https://doi.org/10.1016/j.jcp.2021.110886
https://doi.org/10.1093/gji/ggy213
https://doi.org/10.1109/hustprotools51951.2020.00014

Bibliography

[184] N. Yamamoto, K. Hirata, S. Aoi, W. Suzuki, H. Nakamura, and T. Kunugi.
“Rapid Estimation of Tsunami Source Centroid Location Using a Dense Offshore
Observation Network”. In: Geophysical Research Letters 43.9 (2016), pp. 4263–
4269. doi: 10.1002/2016GL068169.

[185] Zhongwen Zhan, Mattia Cantono, Valey Kamalov, Antonio Mecozzi, Rafael Müller,
Shuang Yin, and Jorge C. Castellanos. “Optical Polarization–Based Seismic and
Water Wave Sensing on Transoceanic Cables”. In: Science 371.6532 (2021), pp. 931–
936. doi: 10.1126/science.abe6648.

190

https://doi.org/10.1002/2016GL068169
https://doi.org/10.1126/science.abe6648

	Introduction
	Equations
	Earthquakes
	Linear Elasticity
	Earthquake Sourcing

	Fluid Mechanics
	Euler Equations
	Linear Acoustics with Gravity

	Fully Coupled Model
	Interface Conditions
	Energy
	Discussion

	Riemann Problems & Boundary Conditions
	Rotational Invariance
	Characteristic Variables
	Rankine-Hugoniot Jump Condition
	The Acoustic Riemann Problem
	Boundary Conditions
	Discussion

	The Elastic Riemann Problem
	Elastic-Acoustic & Acoustic-Elastic Riemann Problems
	Computational Aspects
	Discussion

	Discretization
	Discontinuous Galerkin
	Mesh
	Basis Functions
	Weak Form
	Surface Terms
	Summary

	ADER
	Cauchy-Kowalevski Procedure
	One-Step Update

	Gravitational Free Surface
	Summary & Computational Aspects

	Energy Stability
	Energy
	Energy Rate from Faces
	Energy Rate from Gravity
	Proof

	Local Time-Stepping
	Clustered LTS
	Numerical Considerations
	The Time-Stepping Algorithm
	The Actor Model
	Computations & Shared Memory Parallelization
	Distributed Memory Parallelization
	Ghost Clusters
	MPI Progression
	Dynamic Rupture

	Scheduling
	Wiggle Factor & Cluster Merging
	Discussion

	Earthquake-Tsunami Coupling
	Shallow Water Equations
	One-Way Coupling Approaches
	The Sea Surface Height
	Tanioka
	Filtering & Transfer Functions

	Discussion

	Verification
	Planar Waves
	Snell's Law at an Elastic-Acoustic Interface
	Scholte Waves
	Compressible Ocean
	Discussion

	Scenarios
	Earthquake-Tsunami Benchmark
	Palu, Sulawesi 2018
	Helsinki Metropolitan Area
	Numerical Experiments
	Results
	Conclusion

	Summary

	High-Performance Computing
	Single Node Performance
	Pinning
	Mesh Partitioning
	Strong Scaling
	Discussion

	Conclusion
	Simulations
	Bibliography

