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Abstract—Researchers developing new architectures and algo-
rithms for data center networks (DCNs) face the challenge of pro-
ducing meaningful evaluations of their contributions. Traditional
evaluation methods like traffic traces and parametric models can
fail to reveal weak spots in DCNs. The concept of adversarial
inputs shapes traffic data, making it challenging for a DCN to
serve it. Adversarial traffic can provide insight into performance
issues of a DCN that might go unnoticed with traces and models.
This paper presents ADFAT, a genetic algorithm-based system
for automated adversarial input generation for DCNs. While
previous work focuses on reordering flow volumes or individual
packets, our system uses flow arrival times as the adversarial
traffic dimension. By creating adversarial flow arrivals for a
demand-oblivious RotorNet topology, we show that ADFAT not
only finds traffic that causes 22.64% higher mean flow completion
times than traffic with uniform random arrival times but is also
sensitive to the inherent periodicities and connection patterns
of RotorNet. The results indicate ADFAT can find and exploit
temporal and structural properties of dynamic and demand-
oblivious topologies in an automated way.

Index Terms—Data Centers, Genetic Algorithms, Performance
Evaluation, Adversarial Machine Learning

I. INTRODUCTION

The ever-increasing number of cloud-based services on
the internet requires larger and larger amounts of storage
and computational power [1]. Data center networks (DCNs)
are a crucial part of the technical infrastructure that enables
these services. To satisfy the increasing requirements, research
tries to make DCNs more performant with the help of new
topologies and network algorithms to interconnect the servers
of a data center [2]–[7]. Further, data-driven approaches in
network design and operation (often referred to as self-driving
networks) grow in popularity [8]–[10]. They aim to reduce the
manual and error-prone configuration of DCNs by introducing
data-driven and automated management and analysis.

The evaluation of new DCN architectures and algorithms is
traditionally conducted with either data sampled from traffic
traces [2], [6] or by randomly sampling traffic from parametric
models, as done in [3]–[5]. Trace data usually stems from a
different use case and is, therefore, highly specific and not
particularly well suited for evaluating other DCNs. Samples
from distributions might be unbalanced and not represent the
characteristics of the models due to chance, and require the
researchers to select the parameters. It can not be assumed that
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Fig. 1: Adversarial demand generation. After the lower loop con-
verges, the found demand can help to find weak spots in the DCN.

either of the aforementioned traffic creation methods produces
traffic that can provide deeper insight into the performance
of topologies and algorithms in challenging scenarios [11],
[12]. Only some specific parts of the input region might cause
the network algorithms to behave poorly, but there is no
guarantee that these regions are contained in the data used
for evaluation. Further, to make new DCNs future-proof and
robust, evaluation should be conducted with traffic outside
regions covered by traces. Creating challenging evaluation data
sets by hand is also complex and sometimes impossible even
for experts [13].

When weak spots or failure modes of algorithms stay
hidden during evaluation, it can lead to over-estimation of
performance and oversight of implementation issues. This can
drastically impact the reliability and security of a system [14].
The problem of identifying weak spots of DCNs gives rise to
the idea of tailoring the used input data to the application, thus
creating more reliable evaluation results [11], [12]. Borrowing
from the concept of adversarial examples in machine learning
systems, input data that is challenging for a DCN can be
referred to as adversarial demand [13]. Analyzing demand
that leads to decreased performance can create valuable in-
sights into how the DCN behaves for specific traffic, help
find implementation errors, and provide guidance on further
improvements.

The automated detection of algorithmic and structural weak
spots in DCNs is especially important for the idea of self-
driving networks [9], [10]. Autonomous networks need the
capability to gain insight into their performance for a specific
workload and draw conclusions on how to better adapt to it.
In this context, the automated creation of adversarial traffic
patterns and subsequent improvement upon the found informa-
tion is a promising path to enhance the self-monitoring and
self-managing capabilities of future DCNs. Figure 1 depicts
this idea: By optimizing the demand to degrade a perfor-



mance metric, the resulting adversarial demand can contain
information about weak spots of the DCN under attack. Prior
work in Toxin [12] solves this optimization problem with a
Genetic Algorithm (GA). However, it neglects the arrival times
as a dimension of the adversarial traffic. This work extends
Toxin’s basic idea of GA-based adversarial input generation.
Our contributions are:

1) We present ADFAT that freely controls the arrival time
of flows, thereby incorporating the temporal behavior of
DCNs into the search for challenging traffic for the first
time.

2) We formulate the optimization problem of flow-based
adversarial demand generation for dynamic DCNs.

3) We present a statistical evaluation of the adversarial
flow arrival times highlighting the resulting adversarial
patterns.

4) We show that the GA successfully exploits implemen-
tation details and parameters of RotorNet to create
adversarial arrival times.

II. RELATED WORK

Other works concerned with adversarial traffic and attacks
in the context of DCNs include: Meier et al. [10] showed
that communication networks provide multiple possible attack
points for adversarial attacks. Lin et al. [15] create adver-
sarial UDP packets for network algorithms using generative
adversarial networks. The packets target vulnerabilities by
causing the execution of erroneous or inefficient code, thereby
causing high resource utilization and exposing security risks.
Nasr et al. [16] implement a neural network-based traffic
generator that alters packet timing and sizes, and introduces
new packets to a communication stream. The proposed system
is able to defeat state-of-the-art traffic analysis techniques, like
flow correlation and website fingerprinting.

The previous two approaches rely on data (either given
or sampled from the target system) that describes the nature
of adversarial traffic. In contrast, the following works create
samples of adversarial input themselves by directly optimizing
the traffic presented to the system under attack.

NetBOA [11] uses Bayesian optimization to create chal-
lenging packet parameters that trigger high CPU usage on
software-defined switches. The closest work, Toxin [12], is
based on permuting the volumes of flows sampled from a
predefined parametric model. It describes itself as proof-of-
concept and introduces a GA as a method to create adver-
sarial demand for DCNs. The results suggest that a GA can
effectively create adversarial flow-based traffic, but additional
experiments, especially considering other dimensions of flows,
like arrival times, are needed. The evaluation of Toxin de-
scribes single adversarial demand samples, but no statistical
evaluation that could lead to more expressive demand patterns
is conducted. Our work addresses both issues and statistically
investigates adversarial flow arrival times created by a GA.

Fig. 2: A ToR-based topology. Gray boxes represent hosts connected
to the ToRs. Two different matchings via the OCS are depicted.

III. PROBLEM FORMULATION

This section describes the models used for network, traffic
and routing algorithms, and the resulting optimization problem
of creating adversarial flow arrival times.

A. Network, Traffic & Routing Algorithm Model

The DCN is modeled as a directed weighted multigraph
G(V,E). The nT nodes ni ∈ V model top-of-rack switches
(ToRs), and the edges ei ∈ E represent links. Edge weights
describe the capacity of the links. In a dynamic topology like
RotorNet [2] or Duo [5], the available links between ToRs
change over time. To include this in the problem formulation,
a topology is represented as a mapping T ∈Υ,

T : R+ 7→ G

from time to a network graph describing the topology at
that time. G is the space of all possible graphs allowed by
the dynamic DCN, and Υ is the space of all such possible
mappings.

All communication in the network is modeled as flows
fi. A flow describes a transmission request for a specified
amount of data. The data should be transferred from one node
in the network to another. Packets and related concepts like
transport protocols are not modeled. A Flow fi is defined by
an ordered tuple (si, di, vi, t

a
i ) where si ∈V is the source node

and di ∈V is the destination node of the flow. vi ∈R+ is the
volume of the flow, tai ∈ R+ is its arrival time, meaning the
time the transmission request becomes active in a network. To
complete a flow, the volume vi needs to be reduced to zero.
To do so, the flow is assigned a route through the network
and a transmission rate by the routing algorithm. When the
flow volume reaches zero, the flow is referred to as serviced,
and the corresponding time is called the service time tsi of a
flow fi. Together with the arrival time tai the flow completion
time (FCT) fct i of a flow is defined as fct i = tsi − tai . It is a
commonly used performance metric for DCNs, where lower
values indicate faster transmission [2]–[4].

The demand F is represented by an ordered tuple of ϕ flows,
where each flow is defined according to the model presented
above:

F = (f1, f2, f3, . . . , fϕ) .

In this work, ϕ is fixed to be nT·(nT − 1), the number of
distinct and directed connections between nT ToRs. F stems



from Φ, the space of all possible demands obeying this
constraint.

Furthermore, a routing algorithm is responsible for coordi-
nating the transmission of flows. It is formalized as a mapping

A : Υ×Φ 7→ R+
ϕ,

where the routing algorithm A maps a topology and a demand
to an ordered tuple of ϕ FCTs ∈ R+. So, for a topology T
and a demand F,

A (T ,F) =
(
fct1, fct2, fct3, . . . , fctϕ

)
.

B. Optimization Problem

To quantify how challenging a scenario is, a function Q
maps a complete scenario (consisting of routing algorithm
A, topology T and demand F) to a single value q ∈ R+:
q=Q (A, T ,F) . The function Q can be any performance
measure constructed from the scenario and the FCTs obtained
by the mapping A. Details for the concrete function used in
ADFAT are presented in Section IV, but in general, demand
that produces high values of q is considered challenging in the
sense of Q. The system alters the demand F to find adversarial
traffic. It tries to find the most challenging demand

F∗ = arg max
F

Q (A, T ,F).

This optimization problem describes creating adversarial de-
mand for a single DCN topology and algorithm.

Since ADFAT focuses on creating adversarial arrival times
and their impact on the performance, we set the volumes of
all flows in the demand to a fixed value V . For simplicity,
we focus on traffic with only one flow from rack i to rack j
and no flows with the same source and destination rack. |Fij |
is the number of flows from rack i to rack j in F. To limit
the duration of one scenario, create comparability, and ensure
that the flows overlap in the time domain and compete for
bandwidth, a time window is defined for the flows to arrive
in the network. Only arrival times in [0, tamax] are considered.
With this, the complete optimization problem is formulated as:

F∗ = arg max
F

Q (A, T ,F)

subject to

vi = V, ∀fi ∈ F,

tai ≤ tamax, ∀fi ∈ F,

|Fij | = 1, ∀(i, j) ∈ {1, . . . , nT}2 , i ̸= j

(1)

This problem is equivalent to presenting the network with the
same volume for every possible flow between the ToR pairs
and adjusting the arrival times of the flows to find challenging
traffic. Therefore, the formulation isolates the influence of
when a flow becomes present in the network.

IV. GENETIC ALGORITHM

The optimization problem above is not guaranteed to be an-
alytically solvable since it involves the potentially highly non-
linear mapping between the flows and the corresponding FCTs

caused by algorithms and topology. Like Toxin, ADFAT relies
on a GA as a black-box-optimization method to obtain near-
optimal solutions by repeatedly selecting and recombining the
fittest solutions to a problem [17]. The only requirement for the
application of a GA is that Q can be calculated for demands
F. We solve this by using simulation. Even though the GA
does not have any guarantees on the quality of the found
solutions and how close they are to the real F∗, the found
near-optimal solutions can still be of interest. Investigating F̃∗

the approximations of F∗ created by the GA

F∗ ≈ F̃∗ = GA (P) ,

where P stands for an optimization problem of the form
described in (1), can provide information about structures
found in the true optimum F∗ and therefore still be used as
adversarial demand, that can help to improve the DCN.

Central for using a GA to find adversarial arrival times is
encoding them in chromosomes C.

C =
(
c12, c13, · · · , c1nT , c21, c23, · · · , c2nT , · · · , c(nT − 1)nT

)
,

where the entries cij correspond to the arrival times taij of the
flow between rack i and j, and nT is the number of ToRs or
racks in the topology. The cij are defined as ∈ [0, 1], so by
multiplying them with tamax, the resulting arrival times fall into
the valid range. Note that the coding only allows for demands
F that satisfy the constraints from the optimization objective
in (1). The demand created from a chromosome consists of
nT·(nT − 1) flows with the same volume V and the arrival
times created from the chromosome:

FC =
{
f(i, j, V, cij · tamax)

∣∣ ∀(i, j) ∈ {1, . . . , nT}2 , i ̸= j
}
.

To measure the fitness of an individual demand, the mean
of the fct i of the flows fi ∈ F is used. QFCT, the mean flow
completion time fitness function is defined as

QFCT (A, T ,F) =
1

|F|
·

|F|∑
i=1

fct i.

It is used to select the high-performing chromosomes and is
the objective function of the optimization in ADFAT.

The remaining parts of the GA are designed as follows: We
use a random uniform initialization where all cij ∼ U(0, 1) for
the initialization of the GA population. The parents selected
for crossover and creation for the next generation are picked by
greedily selecting the top 10% of the solutions of the previous
generation. To combine parents, an order-preserving random
k-point crossover [18] operator is used. The mutation step
is a combination of resampling nmut random genes cij with
probability pre and, with probability padd, adding samples from
U(−1, 1) to nmut different genes and afterwards truncating
them to stay in [0, 1].

V. EXPERIMENTS

This section evaluates ADFAT as a method to create adver-
sarial flow arrivals. It briefly describes the RotorNet topology,
the simulator we use for calculating Q, the GA parameters,
and the resulting adversarial arrival times.



Fig. 3: Mean maximum score per generation. Confidence interval
(α = 0.99) not visible

A. Example: RotorNet

As a case study, we create adversarial arrival times for the
dynamic RotorNet DCN. Because it is demand-oblivious, it
does not alter its structure based on the demand it needs
to serve [2]. All nT racks of the topology are connected to
nOCS optical circuit switches (OCSs). The OCSs cycle through
matchings where every rack is directly connected to exactly
one other rack. A matching is held for one slot of duration
tslot. After this, the OCS links are reconfigured to the matching
of the next slot. Figure 2 shows two exemplary matchings
via a single OCS. RotorNet provides all-to-all connectivity
between nT racks over the course of nT − 1 slots, referred
to as a matching cycle. Routing decisions are made at the
beginning of a slot to transmit directly, if possible, or indirectly
via two-hop paths if no direct path is available. Because
indirectly transmitted volume is stored on the intermediate
rack until it can be transmitted to its final destination, this
way of transmission is less effective and introduces delay [2].
The periodic behavior of RotorNet allows us to investigate if
the GA is sensitive to the temporal changes of the topology
structure defined by the matchings between the racks. Also,
since two transmission qualities (direct and indirect) exist, the
GA can potentially exploit the differences between them to
construct adversarial demand. Further, the decision on which
flows will transmit during a slot is made at the beginning of
the slot. With this, the reaction of the GA to the time points
of the routing decisions can be analyzed.

B. Settings

We use a custom flow-level simulator to evaluate the perfor-
mance of a demand for the RotorNet topology. The simulation
is conducted on a ToR level. It includes no transport layer
effects, and multiple flows sharing a link do not interact. This
abstract simulator is chosen to focus on the impact of the
topology reconfiguration and routing.

The GA uses a population size of 500, k=9 for
the crossover operation, and the mutation parameters are
padd =0.5, pre =0.1, and nmut =5. For RotorNet, tslot =100 µs,
nOCS =1, and nT =8. The optimized demand is obtained by
selecting the best solution after 100 epochs of the GA. All
results represent the accumulation of 100 differently seeded
runs of the GA.

C. Results

ADFAT produces adversarial arrival times. Figure 3
shows the mean maximum population fitness over 100 gener-

Fig. 4: Histograms of the arrival times of all flows accumulated over
100 seeds. The top figure shows the histogram of the best solutions
of the first generation, the bottom one of the last generation.

ations in orange. The gray dashed line represents a uniformly
sampled baseline. After less than 30 generations, the GA is
converged and the resulting adversarial arrival times increase
the mean FCT by 22.64% compared to the initial, uniformly
sampled arrivals.

ADFAT is sensitive to the periodicity of routing de-
cisions. To investigate how the flows arrive between 0 and
tamax =1000 µs, Figure 4 shows histograms of the arrival times
of all flows created over 100 runs. The bin width is 25 µs,
and all bins exclude the lower boundary while including the
upper. On top are the initial arrival times before optimiza-
tion with the GA. As expected from the random uniform
initialization, the arrival times are evenly distributed in the
interval [0 µs, 1000 µs]. In contrast, the lower histogram shows
the arrival times of the found adversarial demand. A sawtooth
pattern with a periodicity equal to tslot of RotorNet (100 µs)
is visible. In each time window of (n·100, (n+1)·100], the
distributions are skewed so that it is much more likely for flows
to arrive exactly after multiples of 100 µs. This is explained
by the routing algorithm of RotorNet, which only considers
flows in the system at multiples of 100 µs for routing and
transmission in the following slot. A flow that arrives slightly
after this has to wait until the next reconfiguration and routing
step happens at the beginning of the next slot. This increases
the FCT of a flow that arrives directly after the routing decision
by almost one slot length.

ADFAT exploits structural changes of the topology and
produces connection-specific arrival times. The previous
paragraph discusses the arrival times of all flows. However,
in RotorNet, the FCT of a flow depends on when related
to the matching cycle it arrives in the system because this
influences the ratio between direct and indirect transmission.
This observation motivates the analysis of the arrival time not
on the global level but on the level of flows with a fixed
source and destination. Figure 5 shows time on the x-axis and
8 selected source-destination pairs on the y-axis. Each colored
dot represents the arrival time of an adversarial flow with the
source and destination ToR corresponding to the y-value. The



Fig. 5: Selected ToR pairs with adversarial flow arrival times.

Fig. 6: ECDF of the percentage of flow arrival times in dead spot.

gray areas mark when a direct optical connection between a
ToR pair is active, and the red areas mark reconfiguration.
The optimized traffic shows clusters that overlap with the
times during which the flow’s source and destination are
directly connected. Arrivals in times before and after the direct
connections are reduced. If a flow arrives while its direct
connection is active, it is not routed during the slot of direct
transmission and can only be sent via indirect paths in the
following slots. During the indirect transmission, it competes
with the transmission of other flows, direct and indirect, further
increasing the FCT.

A flow arriving during the corresponding matching can be
referred to as arriving in a dead spot because arriving there
is highly sub-optimal. To investigate if the tendency to place
flows in dead spots is visible for all ToR pairs, the percentage
of flows arriving in their corresponding dead spot is calculated
per connection. Since we only create a single flow for a ToR
pair per run, this percentage aggregates the 100 runs. Figure 6
shows the empirical CDF of the 56 percentages (one sample
per ToR pair). The blue line represents the CDF before and
the orange after applying the GA. After optimization, the
percentage of flows arriving in their dead spot is higher for
all ToR pairs. On average, the percentage increased by 20.14
percentage points from 17.45% to 37.59%.

VI. CONCLUSION & FUTURE WORKS

The automated creation of adversarial traffic can help to
gain insight into hidden weak spots of DCNs. In this paper,
we present ADFAT that alters the arrival times of flows
to find challenging demand, formulated the corresponding
optimization problem, and evaluated the created adversarial
arrival times for a RotorNet topology. The results show a GA
can produce adversarial flow arrival times, and the algorithm

is sensitive to temporal effects in DCNs. Periodicities of the
routing algorithm and topology reconfigurations are identified
and exploited in generating adversarial demand. Weak points
in the temporal behavior of RotorNet are not only found on a
global level, but the GA also finds challenging arrival times for
specific connection pairs. The presented method can provide
insight into arrival time patterns that lead to performance
issues of RotorNet.

However, the flow-based simulator in this work is highly
abstract. Connecting the system to more detailed packet-level
simulation or real-world testbeds can create solutions contain-
ing information about how, e.g., protocol or firmware effects
in DCNs can be exploited to create adversarial inputs. In
this context, the scaling and efficiency of ADFAT concerning
the cost of fitness function evaluations and topology sizes
need investigation. Further, we plan to extend the chromosome
coding to allow for multiple flows per rack pair and the joint
optimization of arrival times and volumes.
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