
Technische Universität München

TUM School of Computation, Information and Technology

Spatial State-Space Models:
Dense Probabilistic Prediction and Inference in 3D

Atanas Georgiev Mirchev

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Stephan Günnemann

Prüfer der Dissertation: 1. Prof. Dr. Daniel Cremers

2. Prof. Dr. Herke van Hoof

3. apl. Prof. Dr. Georg Groh

Die Dissertation wurde am 18.09.2023 bei der Technischen Universität München eingereicht

und durch die TUM School of Computation, Information and Technology am 21.03.2024

angenommen.

Abstract

This work is about a spatial state-space model, also seen as a world model,

that supports the control of mobile agents by simulating agent movement,

RGB-D image generation and a dense 3D map. The main contribution

relative to prior art is in reconciling a) prediction and inference in a state-

space model (for control) with b) volumetric dense 3D maps and direct

image generation.
1
The thesis is cumulative with three core publications.

The first is VSSM-LM, a model that defines the predictive state space. It

combines rendering in 3D (emission) with control-driven 6-DoF dynamics

(transition). VSSM-LM can be queried with control inputs, for which it

predicts the agent future (states, images, map) with uncertainty estimates.

This way VSSM-LM complies with the model-based control framework.

In parallel, inference in the model is addressed with a variational

inference (VI) smoother. Compared to traditional maximum a-posteriori

(MAP) optimisation, VI enables a wider range of approximate posteriors.

Variational smoothing works reliably for indoor flight trajectories, but is

limited to off-line use on current hardware.

The second publication, PRISM, addresses Bayesian real-time inference

under VSSM-LM. Specific to rendering in state-space models, PRISM

makes the point that filtering is one path to real-time. The recursion of the

Bayes filter is used to limit computations, relying on closed-form updates

where applicable. PRISM carefully reveals all Bayesian approximations,

so that they can be lifted in the future as hardware improves. It runs in

real-time on commodity GPUs with comparable accuracy to the current

SotA, on a variety of indoor hand-held and flight trajectories.

The final core contribution is TNP-SM,which explores the applicability of

VSSM-LM for navigation in complex 3Dmazes. It is both shown that VSSM-

LM reveals sufficient collision information and that state estimation with

the model is fast enough for real-time control, under partial observability

and noisy agent dynamics in the execution environment.

1
State-space models are fundamental for model-based control, and dense assumptions

increase the information for making decisions.

iii

Acknowledgments

This thesis would not be were it not for the following people.

Dr. Justin Bayer, who taught me how to do research and always had my

back.

Prof. Patrick van der Smagt, who put a start to all of this and trusted me

enough to let me follow my own path.

Prof. Daniel Cremers, who agreed to supervise me and whose feedback

always resonated with me.

Special thanks to my awesome lab mates and students: Adnan, Ahmed,

Alexej, Alex, Amna, Baris, Begum, Botond, Djalel, Ebraheem, Elie, Faruk,

Felix, Felix, Grady, Justin, Karolina, Laura, Liesbeth, Marvin, Max, Max,

Michelle, Nutan, Ole, Patrick, Philip, Richard, Salem, Simon, Tai, Xingyuan,

Ziqing.

Baris, thanks for soldiering through this with me, I learned a lot from you.

Knowing so many bright and humble people is a privilege.

Mom, Dad, Nikola, Teddy – thank you for being by my side. You make me

truly happy.

Contents

Abbreviations 1

Introduction 3

Publication List 7

I. Background 9

1. Probabilistic Models and Control 11
1.1. Monte Carlo . 11

1.1.1. Monte-Carlo Estimation 12

1.2. Parameterisation . 12

1.2.1. Parametric Distributions 12

1.2.2. A Note on Gaussians 13

1.3. Inference . 15

1.3.1. Posterior Inference 15

1.3.2. Model Parameter Inference 17

1.4. State-Space Models . 18

1.4.1. Prediction in State-Space Models 18

1.4.2. Inference in State-Space Models 19

1.5. Model-Based Control . 21

1.5.1. Full State Information 21

1.5.2. Partial Observability 22

2. Spatial Domain Knowledge 25
2.1. Rigid-Body Movement . 25

2.1.1. Rotations . 25

2.1.2. Rigid-Body Transformations 28

2.1.3. Basic Kinematics . 29

2.2. Cameras and Rendering . 29

2.2.1. Camera Geometry 30

2.2.2. Rendering . 31

vii

Contents

2.2.3. Scene Representation 32

II. Thesis Core 34

3. The Problem 35
3.1. Purpose . 35

3.2. High-Level Attack Angle . 36

3.3. Motivating Design Choices 36

3.3.1. White-Box Spatial Modelling 37

3.3.2. Probabilistic Considerations 39

4. Related Work 43
4.1. The Machine Learning Perspective 43

4.2. The Robotics Perspective . 44

4.3. The Computer Vision Perspective 46

4.4. Positioning . 48

5. Methods and Findings 49
5.1. Dense Spatial State-Space Models 50

5.1.1. Control-Driven Probabilistic Predictions 51

5.1.2. Dense Rendering . 53

5.1.3. A Note on the Markov Assumptions 54

5.2. Smoothing . 54

5.2.1. Smoothing via Variational Inference 55

5.2.2. Flexibility . 55

5.2.3. About Optimisation 57

5.2.4. Limitations . 57

5.3. Real-Time Filtering . 58

5.3.1. Divide and Conquer 59

5.3.2. Approximations and Compromises 59

5.3.3. About the Bayesian Map and Marginalisation . . . 61

5.3.4. Limitations . 62

5.4. Dynamics Identification . 63

5.4.1. Transition Learning from Pose Data 63

5.4.2. Mixing Inductive Biases 64

5.4.3. Limitations . 64

5.5. Navigation . 65

5.5.1. Navigation Under Partial Observability 65

5.5.2. Fast State Estimation 67

viii

Contents

5.5.3. Limitations . 68

5.6. Further Control (Unpublished, Joint Work) 69

5.6.1. Navigation with a Robot Car 69

5.6.2. Autonomous Exploration 73

5.7. Contributions . 76

6. Discussion 79
6.1. Compromises & Trade-Offs 79

6.2. Outlook . 82

III. Included Publications 85

A. Core Publications 87
A.1. Variational SSMs for Localisation and Dense 3D Mapping . 87

A.2. PRISM: Probabilistic Real-Time Inference in Spatial World

Models . 111

A.3. Tracking and Planning with Spatial World Models 138

B. Prior Work (Not Thesis) 153
B.1. Approximate Bayesian Inference in Spatial Environments . 153

IV. Appendix 163

C. Additional Background 165
C.1. Linear Gaussian Systems . 165

C.2. Connections to Gauss-Newton 166

C.3. Stochastic Gradients and the VI Reparameterisation Trick . 168

C.4. Approximate Empirical Distributions 169

C.5. Kalman Filters . 171

C.6. Filtering via Optimisation 173

C.7. Particle Filters . 173

C.8. Rotation Matrices . 175

C.9. Lie-Algebra Parameters . 175

D. Publication Permission Information 179
D.1. Included Core Publications 179

D.1.1. Variational State-Space Models for Localisation and

Dense 3D Mapping in 6 DoF (Mirchev et al., 2021) . 179

ix

Contents

D.1.2. PRISM: Probabilistic Real-Time Inference in Spatial

World Models (Mirchev et al., 2022) 180

D.1.3. Tracking and Planning with Spatial World Models

(Kayalibay et al., 2022) 180

D.2. Included Non-Core Prior Work 180

Bibliography 185

x

Abbreviations

Notation Description Notation Description
ELBO evidence lower bound KL Kullback-Leiber

divergence

MAP maximum a-posteriori MC Monte Carlo

MDP Markov decision process MI mutual information

POMDP partially observable

Markov decision process

PRISM core paper, see

appendix A.2

RL reinforcement learning RNN recurrent neural network

SGD stochastic gradient

descent

SLAM simultaneous localisation

and mapping

SSM state-space model TNP-SM core paper, see

appendix A.3

VI variational inference VSSM-LM core paper, see

appendix A.1

1

Nomenclature

Notation Description
x a scalar value x ∈ R
x a vector x ∈ Rn

X a matrix X ∈ Rn×m

I the identity matrix

t time index t ∈ [T]

x1:T a sequence of T variables x1, . . . , xT
x>t future variables xt+1, xt+2, . . . , up to T or∞
x6t past variables x1, . . . , xt
D previously collected data, basis for inference

p(x) a marginal distribution, x is random

p(x | u) a conditional distribution, x is random, u is given

pθ(x) θ are distribution parameters

x ∼ p(x) a sample x is drawn from p(x)

Ex∼p(x)[f(x)] expectation of f(x) under p(x)

q(z) (in inference) an approximate distribution

H(x) differentiable entropy of the random variable x

H(x1 | x2) conditional entropy (not the entropy of x1 | x2)

I(x1; x2 | x3) mutual information between x1 and x2, given x3
x (in the models) an observation (an image)

z (in the models) an agent state

u (in the models) a control input

M (in the models) a map

2

Introduction

Moving robots that can make decisions have piqued the interest of re-

searchers for decades. From drones, to cars, to turtlebots, to legged

quadrupeds, even robot arms – as a community we quest after mobile

agent autonomy. And with good reason, as the applications are many:

drone delivery fleets, factory and building inspection, environment recon-

struction, transportation, object manipulation, the list goes on.

In this regard, over nearly half a century the synonymous fields of

structure from motion (Hartley and Zisserman, 2006) and Simultaneous

Localisation and Mapping (SLAM) (Cadena et al., 2016) have made major

progress in letting moving robots know their place in space and know

what is around them. Simultaneously, in the past decades we have also

solidified our understanding of how to control agents by planning ahead

(Bertsekas, 2005), and nowadaysmodel-based optimal control methods like

dynamic programming and Model-Predictive Control (MPC) are widely

used to enable autonomy both in research and in industry. This same

understanding of control has sculpted the modern field of model-based

Reinforcement Learning (RL) (Sutton and Barto, 2018), leading to the

concept of world models, data-driven differentiable simulators which are

used to learn parametric control policies, also aimed at autonomy (e. g.

Dreamer by Hafner et al. (2020) and SLAC by A. X. Lee et al. (2020)).

Unifying these pillars – SLAM and model-based control, into a spatial

world model is desirable. Further research is needed, specifically for

dense models of raw RGB-D image data, because the assumptions of the

Markovian models used for control are not completely aligned with the

typical modelling in modern dense volumetric SLAM, for example because

control-driven state transitions are not always considered, or for efficiency

reasons odometry estimation is isolated from dense map estimation, or

posterior and predictive distributions are not explicitly spelled out (see the

surveys of Zollhöfer et al. (2018), Civera and S. H. Lee (2020), and Tosi et al.

(2024) for an overview). Building this bridge is the main goal of the thesis.

This cohesion, between state estimation and control, is a prerequisite for

controllers that are aware of potential state estimation errors in the future

3

Introduction

(i. e. proper control under partial observability). While such control per

se is out of scope for the thesis, it is a motivation nonetheless. The other

argument in favour of unity is the natural cross-pollination of methods.

The thesis gives one possible answer to each of the following questions:

How to define a spatial state-space model well-suited for control such that

it generates dense images directly? How to formulate inference for it? Can

everything be framed in a Bayesian way, in order to obtain uncertainty?

How to infer such a model from data in real-time, and what compromises

does this imply? How to use such a model to solve navigation control and

autonomous exploration?

Possible solutions are derived using the Bayesian framework, and then

evaluated with both simulated and real-world data.

A Note on Jargon and Notation

The following terms appear very often in the thesis and are key for

understanding the contributions.

State-space model is used throughout, and is synonymous with a hidden

Markov model (i. e. specific connections between variables are assumed).

Prediction is reserved for generating any model variables either in the

future of the agent, or from novel regions in the state space. Simulation is

used in the same way in the context of graphical models.

Inference is reserved for the estimation of unknown (latent) model

variables from past data.

Point estimation refers to inferring a single value for a latent variable, as

opposed to fully probabilistic or full-posterior inference which gives a full

distribution.

Cost-to-go refers to the sum of future control costs; it is the same as the

negative value (sum of rewards), or return.

Also, the notation in the thesis follows standard conventions from the

field of machine learning. Please consult the preceding pages for a list of

abbreviations and nomenclature.

How to Read the Thesis?

The thesis is publication-based, organised in three parts.

Part I has the most important theoretical background. It can be read

end-to-end and shows the connections to control. For convenience, each

section of part II also lists the most relevant background sections.

4

Part II is the thesis core, it details the central problem and purpose,

positions them in the scientific context and then presents the contributions.

This part has the overarching narrative, but it is painted in broad strokes.

The relevant background and the papers have the details.

Finally, the core publications are included as appendices in part III. This

is the only part that contains all the math and experiment details.

5

Publication List

This publication-based thesis is made of three core publications, VSSM-LM

(Mirchev et al., 2021), PRISM (Mirchev et al., 2022) (oral presentation) and

TNP-SM (oral presentation, shared first author, Kayalibay et al. (2022)).

They are discussed in part II and the respective papers are attached in

appendices A.1 to A.3.

Core Publications
Mirchev, Atanas, Baris Kayalibay, Patrick van der Smagt, and Justin Bayer

(2021). “Variational State-Space Models for Localisation and Dense 3D

Mapping in 6 DoF.” In: 9th International Conference on Learning Represen-

tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

url: https://openreview.net/forum?id=XAS3uKeFWj.
Mirchev, Atanas, Baris Kayalibay, Ahmed Agha, Patrick van der Smagt,

Daniel Cremers, and Justin Bayer (2022). “PRISM: Probabilistic Real-Time

Inference in SpatialWorldModels.” In:Conference on Robot Learning, CoRL

2022, 14-18 December 2022, Auckland, New Zealand. Vol. 205. Proceedings

of Machine Learning Research. PMLR, pp. 161–174. url: https://
proceedings.mlr.press/v205/mirchev23a.html.

Kayalibay, Baris, Atanas Mirchev, Patrick van der Smagt, and Justin Bayer

(2022). “Tracking and Planning with Spatial World Models.” In: Learning

for Dynamics and Control Conference, L4DC 2022, 23-24 June 2022, Stanford

University, Stanford, CA, USA. Vol. 168. Proceedings of Machine Learning

Research. PMLR, pp. 124–137.

During the doctorate, the author was also a co-author in three non-core

publications, tangent to the topic of the thesis and therefore not included.

The first identifies a problemwith suboptimal conditioning of amortised

posteriors, coined a conditioning gap, in the context of variational state-space

models (Bayer et al., 2021). The second studies the impact of this same

conditioning gap on model-based reinforcement learning (Kayalibay et al.,

7

https://openreview.net/forum?id=XAS3uKeFWj
https://proceedings.mlr.press/v205/mirchev23a.html
https://proceedings.mlr.press/v205/mirchev23a.html

2021). The last makes MPC control aware of the estimation errors in the

future of an agent, in line with notions in this thesis (Kayalibay et al., 2023).

Non-Core Publications
Bayer, Justin, Maximilian Soelch, Atanas Mirchev, Baris Kayalibay, and

Patrick van der Smagt (2021). “Mind the Gap when Conditioning Amor-

tised Inference in Sequential Latent-VariableModels.” In: 9th International

Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,

May 3-7, 2021. OpenReview.net. url: https://openreview.net/forum?
id=a2gqxKDvYys.

Kayalibay, Baris, Atanas Mirchev, Patrick van der Smagt, and Justin Bayer

(2021). “Less Suboptimal Learning and Control in Variational POMDPs.”

In: Self-Supervision for Reinforcement Learning Workshop - ICLR 2021. url:

https://openreview.net/forum?id=oe4q7ZiXwkL.
Kayalibay, Baris, Atanas Mirchev, Ahmed Agha, Patrick van der Smagt,

and Justin Bayer (2023). “Filter-Aware Model-Predictive Control.” In:

Learning for Dynamics and Control Conference, L4DC 2023, 15-16 June

2023, Philadelphia, PA, USA. Vol. 211. Proceedings of Machine Learning

Research. PMLR, pp. 1441–1454. url: https : / / proceedings . mlr .
press/v211/kayalibay23a.html.

Lastly, the two publications (Kayalibay et al., 2018) and (Mirchev et al.,

2019) appeared right when the doctoral project began. They are aimed at

the same topics, but are admittedly a more naive attempt at modelling.

They do not count towards the dissertation contributions (they partially

overlap with the author’s master’s thesis).

Prior Work (Before Doctorate)
Kayalibay, Baris, AtanasMirchev,Maximilian Soelch, Patrick vander Smagt,

and Justin Bayer (2018). Navigation and planning in latent maps. url: http:
//reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf.

Mirchev,Atanas, Baris Kayalibay,Maximilian Soelch, Patrick vander Smagt,

and Justin Bayer (2019). “Approximate Bayesian Inference in Spatial

Environments.” In: Robotics: Science and Systems XV, University of Freiburg,

Freiburg im Breisgau, Germany, June 22-26, 2019. doi: 10.15607/RSS.2019.
XV.083. url: https://doi.org/10.15607/RSS.2019.XV.083.

8

https://openreview.net/forum?id=a2gqxKDvYys
https://openreview.net/forum?id=a2gqxKDvYys
https://openreview.net/forum?id=oe4q7ZiXwkL
https://proceedings.mlr.press/v211/kayalibay23a.html
https://proceedings.mlr.press/v211/kayalibay23a.html
http://reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf
http://reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf
https://doi.org/10.15607/RSS.2019.XV.083
https://doi.org/10.15607/RSS.2019.XV.083
https://doi.org/10.15607/RSS.2019.XV.083

Part I.

Background

The presented background is based on the following sources: Bishop (2007)

and Koller and Friedman (2009) on graphical models and general inference,

Särkkä (2013) on state-space models, smoothing and filtering, Thrun et al.

(2005) on probabilistic robotics and kinematics, Hartley and Zisserman

(2006) on computer vision, and Bertsekas (2005) on control.

Chapter 1 introduces the basic tools of probabilistic modelling, followed

by a discussion of state-space models and a short section on model-based

control. Chapter 2 presents the necessary spatial domain knowledge, it

covers 6-DoF kinematics, cameras and rendering.

Probabilistic Models and Control 1
This thesis builds a spatial world model, a probabilistic simulator that is tailored

to control requirements. More specifically, the outcome is a variation of a

state-space model (a hidden Markov model) (Särkkä, 2013).

The methods use the toolkit of directed probabilistic graphs (Koller and

Friedman, 2009)
1
. The rest of the chapter first covers the basic tools:

• Monto-Carlo evaluations (section 1.1).

• Parameterising individual graph factors (section 1.2).

• Inference from data (section 1.3).

Then it delves into the state-space assumptions and indicates how they fit

in a control context:

• State-space models (section 1.4).

• Model-based control (section 1.5).

1.1. Monte Carlo
The presented methods will often rely on Monte Carlo, sampling ancestrally

(Bishop, 2007) from distributions following their factorisation.

For example, for the factorised joint distribution

p(x1, x2, x3) = p(x1)p(x2 | x1)p(x3 | x1) (1.1)

we would first sample xk1 ∼ p(x1), followed by xk2 ∼ p
(
x2
∣∣ xk1

)
and xk3 ∼

p
(
x3
∣∣ xk1

)
. Repeating this gives a set of samples {xk1 , x

k
2 , x

k
3 }[K] from

p(x1, x2, x3).
Sampling is used for predictive simulation (e. g. when predicting agent

rollouts) and also in stochastic optimisation.

1
The graph perspective is most useful as a conceptual basis for probabilistic programming

(e. g. Edward by Tran et al. (2018)) and implementations in auto-differentiable frame-

works (e. g. JAX by Bradbury et al. (2018)), which is what the thesis uses throughout.

11

1. Probabilistic Models and Control

1.1.1. Monte-Carlo Estimation

Both in simulation and in derivations we will also encounter expectations

Ex∼p(x)[f(x)] =
∫
p(x)f(x) dx, (1.2)

where f(x) is some utility function. Expectation integrals are generally

intractable for arbitrary f(·). To work around this, we will often use

Monte-Carlo (MC) estimation

1
K

K∑
k=1

f(xk) ≈ Ex∼p(x)[f(x)], xk ∼ p(x), (1.3)

where the estimate is the average of f(·) across K samples. MC estimation

is unbiased.

1.2. Parameterisation
The joint distributions in this thesis are almost always implemented as a

product of factors (e. g. like in eq. (1.1)). For the individual factors, the

thesis relies on closed-form parametric distributions. Particle-based empirical

distributions are an alternative covered in appendix C.4, but they appear

only in prior work.

1.2.1. Parametric Distributions

Parametric distributions are constructed in two steps. First, we select a

distribution family in which deterministic distribution parameters ψ define

the probability density function. The commonplace example are Gaussians

N(x;µ,Σ) with parameters ψ = (µ,Σ). Second, we specify a deterministic

function that maps deterministic model parameters θ into ψ, for example

f(θ) = µ,Σ for aGaussian.
2
Wedenote the PDFof the resulting distribution

with pθ(x), as it is a function of θ. Gradient-based optimisation of θ, and

thus the whole distribution, is then straightforward when ∇θf(θ) and
∇ψp(x) are well-defined.

This construction applies to both marginal and conditional distributions:

pθ(x), ψ = f(θ) (1.4)

pθ(x | z), ψ = f(θ, z), (1.5)

2
In the trivial case of f(θ) = θwe haveψ = θ, then we model the distribution parameters

directly.

12

1.2. Parameterisation

where for conditionals it is more natural to think of f(θ, z) as a parametric

function fθ(z) (e. g. a neural net or physical equations with parameters θ).

Notation-wise, we will often use one θ to denote the combined parameters

of all factors in a joint distribution, e. g. pθ(x, z) = pθ(x | z)pθ(z).
Parametric distributions are chosen for two reasons. First, they allow us

to incorporate inductive biases through f(·) – in the thesis this will get as

complex as a 3D renderer. And second, their PDFs are well-defined, which

is needed in posing objectives.

1.2.2. A Note on Gaussians

Parametric Gaussian factors of the form pθ(z) and pθ(x | z) are prevalent
in this work. Here we will highlight three of their properties.

Non-Linear Gaussian Systems

A joint pθ(x, z) = pθ(x | z)pθ(z) made of only Gaussian factors can still be

complex and non-Gaussian, as long as the Gaussian conditional pθ(x | z)
is non-linear in z. Individual Gaussian factors are thus not as limiting as

assuming the whole joint pθ(x, z) is Gaussian, which implicitly carries

a linear assumption. A comparison is given in fig. 1.1b and fig. 1.1c.

Linearisation is avoided in the predictive models, to remain expressive.

Linear Gaussian Systems

The aforementioned linearity of joint Gaussians is easiest to see from the

perspective of linear Gaussian systems. A Gaussian marginal N(z | µz,Σz)

and a linear Gaussian conditional N(x | Az + a,Σx) always combine into a

joint Gaussian N(x, z | µ∗,Σ∗). Similarly, a Gaussian joint N(x, z | µ∗,Σ∗)
can always be decomposed into a Gaussian marginal and a linear Gaussian

conditional, in both directions p(x | z) and p(z | x). These operations hap-
pen in closed form, which makes them fast. The details are in appendix C.1.

This is the basis for both Kalman filters and variable marginalisation

in Gauss-Newton optimisation (e. g. see Dellaert and Kaess (2017)); the

latter is typical for modern SLAM. In this thesis linear Gaussian systems

are used much more sparingly, in only one building block in state estima-

tion (not prediction) when real-time operation is needed (publication in

appendix A.2).

13

1. Probabilistic Models and Control

(a) (b)

(c) (d)

Figure 1.1.: Various options for representing distributions. (a) A target

bivariate distribution ptarget(x,y) over R2
with a non-linear support. (b)

Contour plot of a joint 2D Gaussian pθ(x,y). It cannot capture the non-
linear manifold. (c) Contour plot of a factorised joint pθ(y | x)pθ(x) with

Gaussian factors. The conditional is given by a neural net. It fits the

non-linear manifold. (d) Particles obtained via importance sampling

(appendix C.4) fit the target accurately (coloured by weight).

Gaussian Products

Products of Gaussians over the same variable happen in closed form:

N(x | µ∗,Σ∗) ∝ N(x | µ1,Σ1)N(x | µ2,Σ2) (1.6)

Σ∗ = (Σ−1
1 + Σ−1

2)−1
(1.7)

µ∗ = Σ∗(Σ−1
1 µ1 + Σ

−1
2 µ2) (1.8)

Intuitively, the mean of the resulting Gaussian is a weighted combination

of the input means
3
, and the resulting Gaussian’s precision is the sum

of the input precisions. This result is historically linked to sensor fusion

(Moravec, 1988), and combined with Bayes’ law it can lead to very fast

inference (it is used for fast 3D map updates in appendix A.2).

3
In the multivariate case this weighted average does not necessarily lie on the line between

the two modes. It is the point of highest density overlap, which can be offset.

14

1.3. Inference

1.3. Inference
So far we have talked about probabilistic models as abstract simulators,

and only hinted at model inference. Let us now make the distinction clear.

The models in this thesis are latent variable models (LVMs), also generative

models. They simulate both variables that can be observed with sensors

(e. g. images), as well as variables that remain latent, internal to the model

(e. g. agent dynamic states). The observed variables (grouped in x) are
generated from the unobserved variables (grouped in z):

pθ(x, z) = pθ(x | z)pθ(z). (1.9)

The conditional pθ(x | z) is known as a likelihood, while pθ(z) simulates

the unobserved z and holds our prior knowledge.

When we talk about simulation or prediction, we refer to the generative

model pθ(x, z) – e. g. sampling from it or evaluating expectations. When

we talk about inference, we mean inverting generation to infer either the

simulated unknown variables z (section 1.3.1) or the parameters θ of the

simulator pθ(x, z) itself (section 1.3.2).

1.3.1. Posterior Inference

Inferring the latents z means finding their posteriorwith Bayes’ law

pθ(z | x) =
pθ(z, x)
pθ(x)

=
pθ(x | z)pθ(z)

pθ(x)
. (1.10)

The integral in the normaliser pθ(x) =
∫
pθ(x, z) dz is intractable in general.

However, because the normaliser pθ(x) is constant in z, the posterior is

proportional to the joint, which itself is a tractable starting point:

pθ(z | x) ∝ pθ(z, x) = pθ(x | z)pθ(z). (1.11)

Point Estimation

The simplest posterior approximation is a pointmass, given by the posterior-

mode-seeking maximum a-posteriori (MAP) optimisation
4

z∗ = argmax
z

log pθ(x | z) + log pθ(z). (1.12)

This is principled because pθ(z | x) ∝ pθ(x | z)pθ(z) (from eq. (1.11)).

4
MLE approaches that ignore the prior and optimise only p(x | z) can be seen as a special

case of MAP with an uninformative prior assumption.

15

1. Probabilistic Models and Control

Laplace Approximation

An MAP point-estimate z∗ can be extended with uncertainty via a Laplace

approximation by fitting a joint Gaussian to the joint PDF curvature of

pθ(z, x) around z∗. 5
This is justified because of eq. (1.11). We have

Λ = −∇2
z log pθ(z, x)︸ ︷︷ ︸

log-joint Hessian

∣∣∣
z=z∗

(1.13)

q(z) = N
(
z
∣∣ z∗,Λ−1) ≈ pθ(z | x). (1.14)

whereΛ = Σ−1
is the fitted Gaussian precision. For the Gaussian approx-

imation it is required that Λ is positive definite, which can be ensured

by approximating the Hessian in eq. (1.13) with the squared Jacobian,

often done in conjunction with Gauss-Newton optimisation (appendix C.2

explains the connection, but it is tangent to the research).

Variational Inference

The combination of MAP and a Laplace approximation is limited to a joint

Gaussian over all latent variables in z, and we already know this implies

linearity. One way to relax this is with variational inference (VI), which finds

a parametric approximate posterior qφ(z) by minimising the KL divergence

φ∗ = argmin
φ

KL
(
qφ(z)

∣∣∣∣ pθ(z | x)
)
. (1.15)

Since pθ(z | x) is unknown, Bayes’ law is used to flip conditionals and

introduce the known joint factorisation pθ(z, x) = pθ(z)pθ(x | z):

KL
(
qφ(z)

∣∣∣∣ pθ(z | x)
)

= Eqφ(z)
[
logqφ(z) − log pθ(z | x)

]

= Eqφ(z)
[
logqφ(z) − log pθ(z) − log pθ(x | z) + log pθ(x)

]

= KL
(
qφ(z)

∣∣∣∣ pθ(z)
)
− Eqφ(z)[log pθ(x | z)] + log pθ(x). (1.16)

Considering that pθ(x) is constant inφ, we get the objective

φ∗ = argmin
φ

KL
(
qφ(z)

∣∣∣∣ pθ(z)
)
− Eqφ(z)[log pθ(x | z)]. (1.17)

5
Laplace approximations work for any p(z) ∝ f(z), using a maximum and the curvature

of f(z). The discussion is intentionally limited to posteriors for simplicity.

16

1.3. Inference

Note that x here is the datawe infer from, i. e. the known observations in the

condition of the target posterior pθ(z | x). The term log pθ(x | z) is known

as a reconstruction log-likelihood, and maximising it finds a z that improves

the generation of observed data. The KL divergence KL
(
qφ(z)

∣∣∣∣ pθ(z)
)

is between the approximate posterior and the latent prior, respecting all

prior assumptions we’ve made about the unobserved z.
In practice, expectations in eq. (1.17) are usually MC-estimated using

samples fromqφ(z), andφ is optimisedwith variants of stochastic gradient

descent. Gradients also propagate through the MC sampling, via a

reparameterisation trick. This is explained in more detail in appendix C.3.

Contrary to MAP followed by a Laplace approximation, qφ(z) is flexible
and can factorise into non-linear, even non-Gaussian, factors in the sense

of section 1.2 that can be as complex as normalising flows (Rezende and

Mohamed, 2015).

1.3.2. Model Parameter Inference

Next to inferring simulated variables z there is also the inference of

deterministic model parameters θ in the parametric generative model

pθ(x, z) = pθ(x | z)pθ(z). For this we would want to maximise the log-

likelihood of the observed data given θ, but log pθ(x) = log
∫
pθ(x, z) dz is

not tractable due to the integral.

Fortunately, if we rearrange eq. (1.16) we see that

L
elbo

(φ,θ) := Eqφ(z)[log pθ(x | z)] −KL
(
qφ(z)

∣∣∣∣ pθ(z)
)

= log pθ(x) −KL
(
qφ(z)

∣∣∣∣ pθ(z | x)
)

6 log pθ(x). (1.18)

The objectiveL
elbo

(φ,θ) is known as the evidence lower bound (ELBO), since

it is smaller or equal to the marginal log-likelihood log pθ(x) (evidence in
Bayesian terminology). It is thus a principled surrogate objective:

θ∗ = argmax
θ

L
elbo

(φ,θ) ≈ argmax
θ

log pθ(x). (1.19)

Note that this is the same objective as in eq. (1.17). Optimisation of θ

proceeds analogously to how we optimised qφ(z) before.
Equations (1.17) and (1.18) show the ELBO has a dual purpose: it is used

to find variational posteriors and thus estimate z, but it can also be used to

optimise the predictive model pθ(x, z) itself. Both can be done in parallel,

and the lower bound is tight when qφ(z) = pθ(z | x).

17

1. Probabilistic Models and Control

. . .

x

z

u
Figure 1.2.: A state-spacemodel with observations xt (white circles), latents

zt (black circles) and controls ut (white diamonds).

1.4. State-Space Models

We now turn our attention to state-space models (SSM) that simulate a

sequence of observations x1:T (e. g. images) and latents z1:T (e. g. dynamic

states) over discrete time steps t = 1, . . . , T , conditional on controls u1:T−1.

An SSM has the following factorisation:

pθ(z1:T , x1:T | u1:T−1)

= pθ(z1)pθ(x1 | z1)
T−1∏
t=1

pθ(xt+1 | zt+1)pθ(zt+1 | zt, ut). (1.20)

For brevity, we will omit controls ut from pθ(zt+1 | zt, ut) in the following

sections, they are always implied. An SSM depiction is given in fig. 1.2.

SSMs have two main properties. First, each emission
6
factor pθ(xt | zt)

is independent from all past and future variables (i. e. z<t, x<t, x>t, z>t).
Second, the transition

7
factors pθ(zt+1 | zt) form a Markov chain, which

means knowing zt alone is sufficient to predict the future.

Aswewill see shortly both of these properties a) streamline the recursion

of the Bayes filter and b) tightly align with model-based control (Bertsekas,

2005). This is why the thesis adheres to an SSM factorisation.

1.4.1. Prediction in State-Space Models

Like any other generative model, state-space models are also interpreted

as simulators. One way to simulate with them is to sample ancestrally over

6
Also measurement model.

7
Also dynamics model.

18

1.4. State-Space Models

the Markov chain. A rollout of samples {zk1:T , x
k
1:T }[K] can be obtained with

zkt ∼ pθ
(
zt
∣∣ zkt−1

)
, xkt ∼ pθ

(
xt
∣∣ zkt

)
. (1.21)

Rollout expectations can be estimated with Monte Carlo as well

Epθ(z1:T ,x1:T)(f(z1:T , x1:T)) ≈
1
K

K∑
k=1

f(zk1:T , x
k
1:T). (1.22)

Rollouts are needed for control, when planning ahead.

1.4.2. Inference in State-Space Models

In terms of SSM inference, all of the techniques from section 1.3 apply. We

will briefly cover how smoothing and filtering are approached in the thesis.

Smoothing

The biggest posterior to infer in an SSM is the smoother (Särkkä, 2013)

pθ(z1:T | x1:T) ∝ pθ(z1:T , x1:T), (1.23)

where every zt is inferred from all observed data, before and after t. The

thesis applies only variational inference to smoothing, as a more general

alternative to MAP. Alternatives such as forward-backward (two-filter)

smoothers are left out of scope (Särkkä, 2013).

Assuming an approximate posterior qφ(z1:T), the ELBO for an SSM is
8

L
elbo

(θ,φ) = Eqφ(z1:T)
[
log pθ(z1:T , x1:T) − logqφ(z1:T)

]

= Eqφ(z1:T)

[
T∑
t=1

log pθ(xt | zt)

]

+ Eqφ(z1:T)

[
T∑
t=1

log pθ(zt | zt−1) − logqφ(z1:T)

]
. (1.24)

In the thesis, a variant of the SSM ELBO is used to infer a smoothing

posterior qφ(·) over all latents in the proposed spatial model (agent

states, a 3D map). In a separate model, the SSM ELBO is also used to

learn generative transition parameters θ, to improve the SSM’s predictive

rollouts. Both are done with stochastic optimisation, as described in

section 1.3.1.

8
For brevity, in the sums it is implied that pθ(z1 | z0) = pθ(z1).

19

1. Probabilistic Models and Control

Filtering

When smoothing is too expensive (e. g. on a real-time budget), one can

infer the filtering posterior instead, which is a sub-problem:

pθ(zT | x1:T) =
∫
pθ(z1:T | x1:T) dz1:T−1. (1.25)

SSM filters admit a specific recursion, that of the Bayes filter (Särkkä, 2013):

pθ(zT | x1:T) ∝ pθ(xT | zT)pθ(zT | x1:T−1) (1.26)

= pθ(xT | zT)
∫
pθ(zT , zT−1 | x1:T−1) dzT−1 (1.27)

= pθ(xT | zT)
∫
pθ(zT | zT−1)pθ(zT−1 | x1:T−1)︸ ︷︷ ︸

prev. filter

dzT−1. (1.28)

The Markovian independence of SSMs makes the recursion particularly

streamlined: the integral in eq. (1.28) needs to only propagate the previous

filter through the transition pθ(zT | zT−1) and the emission pθ(xT | zT)
remains on the outside. Because the developed spatial models target

dense image generation, which implies an expensive emission, the above

significantly simplifies the design of approximate non-linear filters and is

used to develop a real-time solution. In essense, the SSM independences

are seen as a gateway to more flexible Bayesian inference.

In general, solving the recursion can be approached in different ways.

If the whole system is linearised, the linear Gaussian equations from

section 1.2.2 make the recursion analytical and lead to (Extended) Kalman

filters (detailed in appendix C.5). Alternatively, one can also pose the

recursion as an optimisation problem, treating the integral in eq. (1.28) as a

prior (detailed in appendixC.6), which ismore flexible. The solution chosen

in this thesis uses a custom derivation tailored to dense spatial modelling,

mixing different approaches (MAP optimisation, Laplace approximation,

partial linearisation of only the transition, sensor fusion).

The main caveat of approximate filtering is that the recursion can

compound approximation errors, and the past cannot be easily corrected.

For the rest of the thesis, we will drop θ from pθ(·), and only use them

if they are contextually relevant.

20

1.5. Model-Based Control

1.5. Model-Based Control
We will now look at control, i. e. finding control inputs that minimise a

cost-to-go
9
, a sum of costs cτ over the uncertain agent future starting at

agent state zt:

J(zt) = Ep

[∞∑
τ=t

γτ−tcτ

]
, (1.29)

where γ < 1.0 is a discount factor (to bound J(zt)). This thesis targets

model-based control, where a model of p(·) enables simulation of eq. (1.29).
10

1.5.1. Full State Information

When the agent states zt are observable, the standard model for control is

a Markov Decision Process (MDP), where p(z>t, c>t, u>t) is given by the

following terms:

p(zt) initial state

p(zτ | zτ−1, uτ−1) transition

π(uτ | zτ) control policy

c(zτ, uτ) cost function.

Note how this is only the transition chain of an SSM, extended with a

policy and a cost function. See fig. 1.3a for a diagram. Because of the

Markovian independences the MDP cost-to-go is recursive

Jπ(zt) = Eπ(ut|zt)[c(zt, ut)] + γEp(zt+1|zt)[J
π(zt+1)]. (1.30)

The optimal cost-to-go is then given by

J∗(zt) = min
ut
c(zt, ut) + γEp(zt+1|zt,ut)[J

∗(zt+1)], (1.31)

for a deterministic policy ut = π∗(zt) that minimises every recursive step.

When states and controls are discrete, expectations become tractable

vector and matrix products and we can rewrite eq. (1.31) as

J∗ = T∗J∗. (1.32)

9
Same as negative value, in RL terminology.

10
Up to a finite horizon, which is sufficient under a terminal cost-to-go approximation.

21

1. Probabilistic Models and Control

. . .

c

z

u
(a) MDP.

. . .

x, c

z

u
(b) POMDP.

Figure 1.3.: Graphicalmodels of anMDP and a POMDP.Observed variables

are white circles (zt is observed in an MDP), latent variables are black

circles, controls are white diamonds. The cost function c(zt) and cost

outputs are in gray, for clarity we omit edges from controls to costs. The

policy edges (observations to control) are dotted in blue, noting the MDP

vs. POMDP difference (depending on observability).

where now J∗ is a cost-to-go vector for all states and T∗ applies eq. (1.31)
elementwise to it. T∗ is known as the Bellman optimality operator and the

fixed-point iteration in eq. (1.32) is guaranteed to converge to the optimal

cost-to-go from any initial J vector (see Bertsekas (2005)). This is known as

value iteration. After convergence, the optimal policy is given by eq. (1.31).

Value iteration can be applied to continuous problems byfirst discretising

the state and action spaces and the MDP transition, which is known as

aggregation (Bertsekas, 2005). This is how it is used in this thesis. Actor-

critic methods with a parametric neural policy and critic (i. e. cost-to-go

approximation) are left out of scope (see Sutton and Barto (2018)).

1.5.2. Partial Observability

In practice, spatial agents cannot observe their state directly, the problem

is partially observable. The standard formalism to account for this is a

Partially Observable Markov Decision Process (POMDP). This is exactly why

we discussed state-space models – POMDPs follow the same Markovian

state-space assumptions, adding a state-to-observation emission p(xt | zt)
to the MDP components. See fig. 1.3b for a diagram.

Because the state zt is not observed, an optimal POMDP policy needs all

past observed data x6t, u<t as input (Bertsekas, 2005) 11
. Since past data

keeps growing this is unwieldy, and one workaround is to condition the

11
Due to the dependences in the underlying SSM, the future depends on all past observed

data if the latent states are not given.

22

1.5. Model-Based Control

policy on the distribution parameters ψt (e. g. mean and covariance) of the

filtering posterior pψt(zt) = p(zt | x6t, u<t) of the underlying SSM. The

filter parameters ψt are sufficient statistics for x6t, u<t.
This results in a "lifted" MDP with statesψt and new cost and transition

conditionals derived from the original POMDP. Its transition is given by

p(ψt | ψt−1, ut−1) =

∫∫∫
δ
(
ψt = fupdate(ψt−1, xt, ut−1)

)︸ ︷︷ ︸
flter param. update

p(xt | zt)p(zt | zt−1, ut−1)︸ ︷︷ ︸
SSM transition and emission

pψt−1(zt−1)︸ ︷︷ ︸
prev. filter, given byψt−1

dzt−1 dzt dxt. (1.33)

The crux here is that this new MDP can be solved with the regular MDP

control toolkit, which like before means infinite-horizon planning via

cost-to-go estimation is possible. However, this is also expensive. In

addition to the regular SSM transition, it requires imagining what the

agent would see with p(xt | zt) and imagining how that would influence

the filter parameters with f
update

(ψt−1, xt, ut−1). The lifted states ψt are

referred to as beliefs and planning in the new MDP as belief-space planning,

as opposed to state-space planning in a regular fully-observed MDP with

states zt. Please see Bertsekas (2005) for a thorough treatment and Placed

et al. (2023) for a link to SLAMmethods.

The above is the price for being aware of state-estimation errors when

planning. Note that for it to work, state estimation uncertainties should be

well-calibrated, to inform the controller of potential failures. While hard

to execute, it seems desirable that spatial models should strive to support

such estimator-aware control in the long run. This is the ideal from the

perspective of the thesis, hence the Bayesian standpoint and the active

pursuit of non-linear inference methods.

In practice, because belief-space planning is costly on current commodity

hardware, a common compromise is to use the filter p(zt | x6t, u<t) as
an initial state distribution p(zt) and proceed with state-space planning,

reverting to the regular MDP assumptions and ignoring the effect of state

estimation in future rollouts.

Regardless of the chosen method, these considerations motivate the

use of SSMs, as they unlock both belief- and state-space planning in the

POMDP / MDP framework, and ensure prediction and state estimation

are consistent with each other and come with uncertainty.

23

Spatial Domain Knowledge 2
With the SSM framework in place, we will now focus on the spatial

modelling of the individual graph factors p(zt+1 | zt, ut) and p(xt | zt).

2.1. Rigid-Body Movement
We assume the agent is a moving rigid body. This section is about how to

represent its 6-DoF dynamic states zt, using rotations, translations, angular

and linear velocities, such that we can still express distributions p(zt).

2.1.1. Rotations

The group of 3D rotations R ∈ SO(3)1 is a Lie group, not isomorphic to

any vector space Rn. However, an additive representation in Rn is needed

both for gradient-based optimisation and for distributions. Rotations are

hence parameterisedwith vectors θ ∈ Rn that are mapped to SO(3):

frot(θ) = R, θ ∈ Rn, R ∈ SO(3). (2.1)

Note that θ here is not the same as the one in pθ(·), notation overlaps.

Distributions in the thesis are on the rotation parameters θ directly, i. e. θ

is a part of the zt states. Following are two different options for θ and frot.

Lie-Algebra Parameters

One option is to put rotation parameters in the Lie algebra so(3), which is

the linear space of 3D skew-symmetric matrices

[
θ
]
× =




0 −θz θy
θz 0 −θx
−θy θx 0


.

1
Rotation matrices R as treated as direct elements of SO(3) for brevity, see appendix C.8.

25

2. Spatial Domain Knowledge

Skew-symmetric matrices are isomorphic to the space of 3D vectors θ ∈ R3

in terms of cross products, in the sense that

∀p ∈ R3 :
[
θ
]
×p = θ× p. (2.2)

We can thus use the vector θ ∈ R3
directly, the parameterisation is minimal.

The mapping of θ ∈ R3
to a rotation R ∈ SO(3) is given by

frot(θ) = exp
([
θ
]
×

)
(2.3)

= I +
[
θ

‖θ‖

]

×
sin‖θ‖+

[
θ

‖θ‖

]2

×
(1− cos‖θ‖). (2.4)

This is known as the exponential map of SO(3) and also as the Euler-Rodrigues

formula (Dai, 2015). The mapping is differentiable, and thus suitable for

gradient-based optimisation.

The vectors θ associated with the Lie-algebra are also referred to as

axis-angle or rotation vectors. Their magnitude ‖θ‖ gives the rotation angle

around the normalised axis
θ
‖θ‖ . The mapping is thus many-to-one, and

parameters are equivalent in a repeating pattern with a period of 2π, i. e.:

frot(θ) = frot((‖θ‖+ 2kπ)
θ

‖θ‖), k ∈ Z. (2.5)

This is a short summary, appendix C.9 has more details on so(3).

Quaternions

An alternative rotation representation are unit quaternions:

q = (cos
α

2
, sin

α

2
v) ∈ R4

(2.6)

where v ∈ R3, ‖v‖ = 1. (2.7)

Intuitively, v is a unit 3D axis around which we rotate by an angle α. Unit

quaternions are thus related to Lie-algebra parameters, as v is collinearwith

a respective Lie-algebra vector θ, and α = ‖θ‖ (modulo 2π). Respectively,
a unit quaternion q is mapped onto SO(3) via

grot(q) = I + [v]× sinα+ [v]2×(1− cosα), (2.8)

where [v]× denotes the skew-symmetric matrix parameterised by the unit

vector v ∈ R3
. The mapping is similar to the one for Lie-algebra vectors in

26

2.1. Rigid-Body Movement

eq. (2.4). With that, any non-zero vector θ ∈ R4
can be first normalised

and then projected to SO(3), which gives the parameterisation mapping:

frot(θ) = grot(
θ

‖θ‖). (2.9)

This is also many-to-one, collinear vectors map to the same rotation:

frot(θ) = frot(ηθ), η ∈ R/{0}. (2.10)

For a proper treatment of quaternions, see Gallier (2011).

Comparison

The difference between the two parameterisations is illustrated intuitively

for 1D rotations in fig. 2.1. The mappings frot for both Lie-algebra and

quaternion parameterisations aremany-to-one, with topological differences

in the translation of uncertainty from parameter to rotation space.

(a) Lie-algebra for 1D rotations. (b) "Quaternion" equivalent for 1D ro-

tations.

Figure 2.1.: Analogues of Lie-algebra parameters and quaternions for

1D rotations. Lie-algebra parameters are in R, and are mapped via the

exponential map, wrapping around the rotation manifold. Unnormalised

"quaternion"-analogue parameters are in R2
, and are projected onto the

unit circle manifold S1. The plots show how whole distributions over

parameters are mapped, with the distribution modes in orange.

27

2. Spatial Domain Knowledge

Because quaternions need to be projected to the unit sphere, the un-

certainty over unnormalised quaternion parameters θ shrinks in terms

of SO(3) when ‖θ‖ increases. It is therefore advisable that e. g. mean

parameters for Gaussians over quaternions are kept close to unit.

Overall, while unnormalised quaternion vectors can serve as parameters,

they are less elegant than parameters on the Lie-algebra. The only reason

they are discussed here is because they appear in some of the publica-

tions due to legacy implementation code, before Lie-algebra vectors were

appreciated and adopted by the author.

2.1.2. Rigid-Body Transformations

Rotations combined with translations form the special Euclidean group

SE(3) of rigid-body transformations. SE(3) elements represent both relative

movement, as well as absolute poses relative to a reference frame. They are

matrices T ∈ R4×4
of the form

T =

[
R t
0 1

]
, t ∈ R3,R ∈ SO(3). (2.11)

SE(3) transformations are composed through matrix multiplication T1T2,

and Tp rotates and translates a homogeneous point p ∈ R4
.

Because of the rotation component, SE(3) is not closed under addition.

We again work with parameters ξ ∈ Rn and a mapping fpose : Rn → SE(3)
from parameters to group elements.

Lie-Algebra Parameters

SE(3) is a Lie group, and like SO(3) it has its own Lie algebra se(3).
Parameterising in se(3) proceeds analogously to parameterising in so(3).

The Lie-algebra elements have the form

ξ̂ =

[[
θ
]
× τ

0 1

]
, θ ∈ R3,τ ∈ R3. (2.12)

They have six degrees of freedom (6 DoF) and the algebra is isomorphic

to R6
. In practice we represent them as the corresponding vectors ξ ∈ R6

,

where ξ = (θ,τ). Using frot from eq. (2.4), the parameter mapping is

fpose(ξ) =

[
frot(θ) g(θ)τ

0 1

]
(2.13)

g(θ) = I +
[
θ
]
×
1− cos‖θ‖
‖θ‖2

+
[
θ
]2
×
‖θ‖− sin‖θ‖
‖θ‖3

. (2.14)

28

2.2. Cameras and Rendering

Parameterising with Quaternions

If quaternions are used to represent the rotation component, the rigid-body

transformation parameters become

ξ = (θ, t), θ ∈ R4, t ∈ R3. (2.15)

With frot from eq. (2.9), the mapping to SE(3) is then

fpose(ξ) =

[
frot(θ) t

0 1

]
.

2.1.3. Basic Kinematics

Next comes the parameterisation of angular and linear velocities and basic

kinematic equations used in transition models p(zt+1 | zt, ut), with ut
acceleration control inputs. Velocities are expressed in the world frame, as

vectors

zvel = (ω, v), ω ∈ R3, v ∈ R3.

The vector ω is a Lie-algebra axis-angle vector for the angular velocity.

The Lie algebra appears here again because it is a tangent space whose

elements are related to derivatives (details in eq. (C.58)). The vector v is a

linear velocity in world frame. The basic rigid-body kinematic equation is

then

(
zposet+1
zvelt+1

)
=




Rt+1
tt+1
ωt+1
vt+1


 =




exp(ωt∆t)Rt
tt + vt∆t

ωt + uang

t (∆t)2

vt + ulin

t (∆t)2


,

where uang

t and ulin

t are respectively angular and linear acceleration control

inputs in world frame, and ∆t is the integration time step. In the above,

exp(ωt∆t) is the exponential map of the rotation Lie group and integrates

the angular velocityωt over time ∆t.

The publication in appendix A.1 explores learning a corrective dynamics

model on top of engineered kinematics, to account for external influences

on the dynamics and bias in the control inputs.

2.2. Cameras and Rendering
This section has the relevant backgroundon cameras and rendering, needed

for emissions p(xt | zt) that directly generate images.

29

2. Spatial Domain Knowledge

2.2.1. Camera Geometry

Amodel of image generation can simulate the physics of real-world cameras.

In this thesis this is done via a projective pinhole camera model, aligned

with standard computer vision assumptions (Hartley and Zisserman, 2006).

About notation: in this section 3D points are represented with homoge-

neous coordinates in R4
. Also, the following symbols are used:

• pw ∈ R4
is a homogeneous point in world frame;

• pc ∈ R4
is a homogeneous point in camera frame;

• Tba ∈ R4
is an SE(3) pose from frame a to frame b;

• (x,y) are coordinates in the image plane;

• d is the depth for a given image coordinate.

With that, let us define

K =



fx 0 cx
0 fy cy
0 0 1


, P =



1 0 0 0
0 1 0 0
0 0 1 0


. (2.16)

Here, K is the intrinsic camera matrix (Hartley and Zisserman, 2006). It

holds the camera focal lengths fx and fy, as well as the principal offset

cx, cy of the camera center relative to the origin of the image plane. The

matrix P can remove the trailing 1 in homogeneous points below.
2

We define the projection function

π : R4 → Ω× R,

which maps a homogeneous 3D point in the camera frame to a coordinate

in the image planeΩ ⊂ R2
and a depth in R. It is given by

π(pc) = (x,y,d), where d



x

y

1


 = KPpc. (2.17)

The multiplication with K captures the projection geometry.

The projection can also be inverted

π−1(x,y,d) =
[
dK−1[x,y, 1]T

1

]
= pc. (2.18)

2
Technically P is also a standard projective matrix, see Hartley and Zisserman (2006).

30

2.2. Cameras and Rendering

π−1(·) returns a homogeneous 3D point in camera frame, given a pixel

coordinate (x,y) and a depth d.

Across the thesis, it is assumed that cameras are calibrated and images are

undistorted; respectively, the camera intrinsics do not include a distortion

model.

Projecting World Points

We are often interested in projecting world points pw into the image plane

and vice versa, for example in rendering. For this, first the inverse camera

pose Tcw is used to move the world points to camera frame, after which

they are projected:

π(Tcwpw) = (x,y,d). (2.19)

Respectively, finding a 3D world point pw that corresponds to a given pixel

(x,y) with depth d is given by

Twc π
−1(x,y,d) = pw. (2.20)

Projection Between Images

Given two camera poses Twc1 and Twc2, it is straightforward to re-project an

image pixel (x1,y1) and depth d1 from one image into another

(x2,y2,d2) = π(Tc2w · Twc1 · π−1(x1,y1,d1)). (2.21)

This image coordinate (pixel) association is the basis for photometric

constraints (i. e. colours in different imagesmust agree) as well as geometric

constraints (i. e. the depth in RGB-D images must agree). It is differentiable

and enables the optimisation of poses Twc1,T
w
c2 and depth d1.

Such reprojection is at the heart of direct image alignment (e. g. Stein-

brücker et al. (2011)) and iterative closest point (ICP) algorithms (Chen

and Medioni, 1992). It is also used to formulate a surrogate optimisation

objective for the core publications in appendices A.2 and A.3.

2.2.2. Rendering

Rendering images requires reasoning about the direction of light rays that

enter the camera. Based on the pinhole model, the ray through the pixel

coordinate (x,y) is expressed in world coordinates with the line equation

rxy(d) = Twc π
−1(x,y,d) ∈ R3. (2.22)

31

2. Spatial Domain Knowledge

camera origin

Figure 2.2.: Raycasting diagram, evaluating fM along a single ray. The

outputs of fM are multidimensional, the depiction is in 1D for simplicity.

Here Twc is a camera-to-world pose and we implicitly drop the homoge-

neous part of rxy(d). Note that the inverse projection π−1
is linear in d

(see eq. (2.18)). Increasing d slides along the ray.

This thesis uses volumetric rendering (Curless and Levoy, 1996; Parker

et al., 1998). First, a scene function fM (M stands for map) is evaluated for

discrete points along the ray for different dk,k = 1, . . . ,K:

fM : R3 → R4

fM(rxy(dk)) = (cxy,k,oxy,k). (2.23)

This is shown in fig. 2.2. The function fM returns a color cxy,k ∈ R3
and

a signed distance oxy,k ∈ R to the nearest surface, for all queried points

along the ray. The renderer then searches for the first dk that is a surface

crossing and returns the depth and color at that point. Note that this

limits the model to only objects with crisp solid boundaries, e. g. smoke

or transparency are not modelled. More advanced rendering via light

aggregation, like with neural radiance fields (Mildenhall et al., 2020), is

left for future work.

The core publication in appendix A.1 further extends the above by

making rendering differentiable and framing it as a conditional emission

p(xt | zt,M). The map can be seen as emission parameters.

2.2.3. Scene Representation

The next question is how to parameterise the continuous R3
field of fM.

32

2.2. Cameras and Rendering

Grid Representations

One option is to organise scene parameters in a 3D grid M with cells

Mijk ∈ R4
. To ensure fM is differentiable, one can trilinearly interpolate

grid parameters

fM(p) =
∑
ijk

αijk(p)Mijk. (2.24)

The indices ijk run over the eight neighbour voxels around the continuous

point p. Theweight coefficientsαijk(p) are formed by linearly interpolating

along one dimension at a time, combining the previously interpolated

results. The equations can be found in the survey of Canelhas et al. (2018).

The main advantages of grids is that they are fast to evaluate (as

parameters are queried locally) and that they can be updated in closed

form (e. g. with signed-distance function updates (Curless and Levoy,

1996)). The main caveat is that their memory grows cubically, which can

be relaxed with octrees (Meagher, 1982) and voxel hashing (Nießner et al.,

2013), effectively pruning grid cells in free space.

Volumetric grid representations are used in all core publications (ap-

pendices A.1 to A.3), and they are also extended with uncertainty. In

appendix A.2, the possibility to update voxel grids in closed form leads to

a method that runs in real-time.

Neural Fields

A coordinate neural network can also define a continuous field over R3
:

fM(p) = NN(p). (2.25)

M would then be the weights of the neural net. Such networks have been

shown to reach high fidelity in recent years (e. g. Mildenhall et al. (2020)).

Neural nets have the potential for better memory efficiency than grids.

They can also be conditioned on additional inputs, leading to scene models

that change over time (e. g. Z. Li et al. (2021)) or distributions of scene

priors (e. g. Kosiorek et al. (2021)). Their main disadvantage is that they are

expensive, as the whole network is executed for every query point. This is

why the community is steering towards spatially decomposed networks,

with the aim to combine the benefits of both grids and neural nets (e. g.

Reiser et al. (2021), Lombardi et al. (2021), and Müller et al. (2022)).

Because vanilla grids are generally faster to evaluate and are easy to

augment with uncertainty and update in closed form, they were prioritised

over neural nets in the thesis.

33

Part II.

Thesis Core

The Problem 3
This thesis proposes a spatial model that simulates how a robot moves in a

static scene, how the scene looks and how the robot visually perceives it.

However, model parameters are unknown and need to be obtained from

online sensor data. We assume the robot only has an on-board RGB-D

camera and access to past acceleration control inputs.

On a high level, from past image-and-control data D6t we seek both to

uncover a scene map M and to predict future dynamic agent states z>t
and future to-be-observed images x>t for hypothetical future controls u>t,

(x>t, z>t,M) = f
model

(u>t,D6t). (3.1)

In otherwords, we seek amodel that both reveals (unknownmap&dynamic

states) and predicts (system evolution given controls).

In reality, there are modelling errors, system and data noise that one

cannot correct for. To be robust toward them we need uncertainty. Hence

the deterministic function above evolves into the conditional distribution

p(x>t, z>t,M | u>t,D6t). (3.2)

The developed model enables this conditional. One way to predict with it

is to sample many rollouts and maps { xk>t, zk>t,M
k }k∈[K], where

xk>t, z
k
>t,M

k ∼ p(x>t, z>t,M | u>t,D6t). (3.3)

The main goal of the thesis is to approximate this distribution in a way

that scales to dense 3D assumptions. The next sections highlight the overall

purpose and justify the modelling choices throughout the thesis.

3.1. Purpose
The described predictive model is intended as a simulator for making

decisions. Based on simulations, we can define control costs c(·) for future

35

3. The Problem

time steps τ = t + 1, . . . that say what an agent should do through a

cost-to-go objective

E

[∑
τ

c(M, zτ, xτ)

]
. (3.4)

Here the expectation is over stochastic predictions like in eq. (3.3), and

their explicit dependence on uτ is what enables control optimisation.

The predictive models of this thesis make it easy to specify a variety of

control tasks. For example, explicitly uncovering the dense scene geometry

in M enables the definition of collision costs c(M, zt) so that agents can

avoid obstacles; revealing the dynamic states zt allows for velocity costs

c(zt) so that agents can emulate different velocity profiles; predicting

future images allows for costs c(xt) so that agents can navigate to a shown

image, and so on. The more the model reveals and the more faithfully it

predicts reality, the easier it is to specify how an agent should act.

3.2. High-Level Attack Angle
The thesis approaches the target distribution p(x>t, z>t,M | u>t,D6t)

from a Bayesian perspective. Specifically, first the joint model of all past

and future variables is formulated (with controls as conditions)

p(x1:T , z1:T ,M | u1:T−1), (3.5)

where the current time t that appears in e. g. 6 t is an intermediate time

step in 1, . . . , T . Under the assumed joint, p(x>t, z>t,M | u>t,D6t) is
then a posterior predictive distribution, noting thatD6t = (x6t, u<t). The
following section is about the design choices for eq. (3.5), and will reveal

the connection to the targeted posterior predictive towards the end.

3.3. Motivating Design Choices
As previously mentioned in the introduction, the main goal of the research

is to combine the spatial modelling typical for dense visual SLAM with

the probabilistic state-space fundamentals of model-based control.

To reflect this, the perspectives behind this work are grouped accordingly.

Section 3.3.1 is primarily focused on spatial desiderata, and section 3.3.2

on probabilistic principles.

36

3.3. Motivating Design Choices

Figure 3.1.: White-box models reveal variables useful for downstream

tasks. xt are RGB-D images (generated), zt are dynamic agent states

(latent, including velocity),M is a 3D volumetric map (latent) and ut are
acceleration control inputs (conditions).

3.3.1. White-Box Spatial Modelling

The proposed methods rely on spatial domain knowledge, like rendering

or kinematics, instead of black-box neural nets. This white-box approach

is illustrated in fig. 3.1. Note that the overall model is still a differentiable

world model, in the RL sense. Here is why inductive biases are preferred.

Identification First, domain knowledge identifies latent variables with

real-world physics (e. g. SE(3) poses in zt, 3D occupancy in M, etc.).

Control costs c(·) are thus easy to design. Without the 3D map and 6-DoF

agent states long-term collision avoidance or spatial exploration would be

difficult to solve well. This is specific to spatial agents.

Generalisation Second, domain knowledge means the latents zt and M

can be inferred consistently across scenes, unsupervised from image data,

because inductive biases like rendering or kinematics generalise. This is

particularly important given how much scenes can vary.

On-line inference Third, given the above an agent can be placed in a

new scene and controlled without pre-training, solely based on the data

observed on-line. This contrasts end-to-end RL, where models are pre-

trained either by exhaustively probing the target environment (expensive)

37

3. The Problem

or in man-made simulators (sim-to-real can be an issue).

The price of white-box models is the design complexity and the potential

for bias.

Dense Direct Models

The models in this thesis are dense and direct (e. g. see Engel (2017)).

Dense A dense model predicts complete images, capturing all observed

information in a dense map M. In this thesis M parameterises a dense

field over R3
. In contrast, a sparse model captures only a sparse set of

world points (or patches) inM, which are then predicted in the observed

images. Even though sparse models are cheaper and can be inferred

more accurately on a budget, the focus is on dense models as they are

more informative for downstream control. For example, a dense model

can generate complete images from novel view points, which can enable

image-goal navigation costs c(xt). The difference is illustrated in fig. 3.2.

Direct Direct models predict the raw observed images directly. In

contrast, indirect models predict different observations distilled from the

images, usually a set of sparse 2D coordinates of image features tracked

over time (see Cadena et al. (2016)). The purpose of such preprocessing

is to establish correspondences between image features and give them as

conditions to the model, which simplifies inference. Direct models are

chosen over this approach for a) a streamlined end-to-end model, b) to

avoid the bias of preprocessing and c) to allow themodel to predict smooth,

featureless surfaces which are problematic for feature-based methods.

One trade-off here is that direct prediction generally makes latent in-

ference harder. Because image content is highly non-linear (thinking of

images as functions overR2
), log-likelihood optimisation terms in inference

objectives are also non-linear. Convergence is therefore not guaranteed

and requires very good initialisation. Rephrased in probabilistic terms,

this means posteriors over M, zt are highly multi-modal and capturing

even one good mode requires a very accurate initial guess.

38

3.3. Motivating Design Choices

(a) Sparse generative model. (b) Dense generative model.

Figure 3.2.: Left: sparse models have a sparse map and only generate

sparse image points (in green); the example is from ORB-SLAM3 (Campos

et al., 2021). Right: dense models generate full images (here RGB-D) from

a dense map; the example is from the core publications.

3.3.2. Probabilistic Considerations

The joint distribution p(x1:T , z1:T ,M | u1:T−1) is a directed graphical model,

which enables straightforward prediction with ancestral sampling. In

terms of its design, the main choices are a) to use a state-space factorisation

and b) to seek compatible full-posterior approximations for it.

State-Space Assumptions

Direct SLAMmethods often use autoregressive image-to-image connec-

tions xt−1 → xt like in fig. 3.3a to project information from one image into

another in optimisation objectives (e. g. Steinbrücker et al. (2013) and Engel

(2017)). This is an inexpensive and well-established assumption that is

well-suited for inference. Still, the thesis deviates from it and prioritises

state-space assumptions as in fig. 3.3b and extends them with a map as in

fig. 3.3c, here is why.

Markov assumptions As already mentioned in the background, the most

convenient foundation for model-based control is a state-space model.

39

3. The Problem

x

z
(a) Autoregressive.

x

z
(b) State-space.

M

x

z
(c) Extra static map.

Figure 3.3.: Three examples of directed graphical models relevant for the

sequential spatial setting. Observed variables in white, latent variables in

black. Control inputs are omitted for brevity, but remain important to this

work.

Ideally a spatial world model should comply, for a clean integration in the

control loop. The Bayes filter then has a streamlined recursion , which

opens the path to POMDP control (background in section 1.5.2). These are

the main reasons for an SSM.

Also, previously recoded images xt−1 may come with noise or biases

(due to motion blur, reflections, etc.). The latent-to-observation bottleneck

of an SSM can be useful in that regard. Translating past images into a latent

map M provides a mechanism to resolve errors and estimate uncertainty

before predicting a new image xt (see fig. 3.3c).
Two caveats are that the latent-to-observation bottleneck in SSMs comes

with approximation errors (e. g. due to limited map resolution) and in-

creases computation (compared to autoregressive connections).

A Persistent Static Map An SSM emission without extra image-to-image

connections is possible because of the added map M.
1
The map is a latent

random variable over a 3D parameter grid, and needs to be inferred from

past data. Map parameters are also nevermarginalised out (marginalisation

is common in SLAM and visual odometry, see Leutenegger et al. (2013)).

This is done for the sake of retainingmaximum information for downstream

control, with the caveat of a bigger memory footprint.

For simplicity, the map also does not change over time. Dynamically

changing maps are left for future work.

Control-Driven Transitions The SSM control-driven transition between

consecutive latent states zt, zt+1 given a control input ut (cf. edges in

1
The map can be seen as emission parameters.

40

3.3. Motivating Design Choices

figs. 3.3b and 3.3c) is important. The dependence of transition rollouts on

the control inputs ut is what enables control. Across all presentedmethods,

the transition naturally appears both in prediction (as a link in ancestral

sampling) and in inference (as a term in the optimisation objectives).

Unity in Fully Probabilistic Prediction and Inference

Recall that previously we established p(x>t, z>t,M | u>t,D6t) as a target
distribution. When the joint p(x1:T , z1:T ,M | u1:T−1) is an SSM, this target

distribution breaks down into a prediction conditional and an inference

conditional:

p(x>t, z>t,M | u>t,D6t) =∫
p(x>t, z>t | u>t,M, zt)︸ ︷︷ ︸

prediction

p(M, z6t | D6t)︸ ︷︷ ︸
inference

dz6t. (3.6)

In this regard, the thesis asserts two points.

Unity To satisfy Equation (3.6), p(M, z6t | D6t) should be a posterior

distribution derived from the same state-space assumptions that govern

p(z>t, x>t | u>t,M, zt) (cf. section 1.3 and Koller and Friedman (2009)).

This is worth highlighting because inference of the map and 6-DoF agent

states could also be done under a different graphical model (e. g. using an

out-of-band SLAM), but then the synergy between the two terms would

not be guaranteed.

Complete distributions The aim is to have both p(z>t, x>t | u>t,M, zt)
(prediction) and p(M, z6t | D6t) (posterior) as full distributions and not

point masses. For this, the thesis explores non-linear inference algorithms

that go beyond maximum a-posteriori (MAP) estimation and return a

full posterior over the map and agent states. This way uncertainty from

the posterior mixes with the generative uncertainty of future predictions,

as per eq. (3.6), and the combined uncertainty can be used for decision

making.

The caveat of this approach is that full-posterior estimation is more

expensive. When added to the cost of dense rendering, this means that

some accuracy may be sacrificed due to computational limitations. This is

accepted for the sake of uncertainty in a holistic model.

41

3. The Problem

Managing Tractability

The tight integration of all aforementioned choices is computationally

more expensive than the alternatives. The cost of dense assumptions is

due to the sheer volume of data. The cost of state-space assumptions is in

translating past data into a fused map. The cost of full-posterior estimation

is generally due to stochastic gradients in optimisation.

The second core publication is dedicated to reconciling all of the above

under real-time constraints. Of course, this requires certain compromises

in the Bayesian approximation and these are carefully signposted.

42

Related Work 4
To recap the previous chapters, the thesis seeks predictive spatial models

for control. This asks for a (PO)MDP, and in turn a state-space (i. e.

Markovian) model with a latent transition and a latent-to-observation

emission (background in section 1.4). A preference for a POMDP is also

highlighted in the very recent active SLAM survey of Placed et al. (2023).

This puts the work at the intersection of machine learning, robotics

and computer vision. The next three sections outline the most related

prior work from each field. The chapter then ends with a section about

positioning.

4.1. The Machine Learning Perspective
Neural state-space models are proliferous in modern control and deep rein-

forcement learning. They are seen as world models (Ha and Schmidhuber,

2018), because they are differentiable simulators of how the observed data

(e. g. images) come to be. They have neural net transitions and emissions

that have to be learned for the specific use case. The main purpose of such

simulators is enabling control, and this work aligns with that objective.

Overview

Prominent examples are Planet (Hafner et al., 2019), Dreamer (Hafner

et al., 2020; Hafner et al., 2023) or SLAC (A. X. Lee et al., 2020). Such

state-space models have enabled drones learning to fly (Becker-Ehmck

et al., 2020), agents playing Atari games (Kaiser et al., 2020) and robotic

object manipulation from images (Wu et al., 2022). They are often inferred

from data using variational inference (Kingma and Welling, 2014), using

the evidence lower bound (ELBO) to optimise generative parameters.

Background on this is available in section 1.3.2. Their appeal is their

generality – they are formulated without domain knowledge, and used to

simulate different types of raw sensory data.

43

4. Related Work

Open Questions

Despite all recent progress, agents moving freely in space with only ego-

centric observations (e. g. images or inertial) still pose a challenge for neural

state-space models. The main problem is that neural nets can struggle

with generalisation from images, which change a lot when an agent moves.

To address this, there have been numerous past attempts that mix

rudimentary inductive biases in the otherwise neural state space (e. g.

Fraccaro et al. (2018), Chaplot et al. (2018), Corneil et al. (2018), Gregor et al.

(2019), Mirchev et al. (2019), and Chaplot et al. (2020)). These generally

involve some notion of a map, with abstract content arranged either in

a topological graph or in 2D. However, this strategy still does not scale

reliably to free movement in 3D.

4.2. The Robotics Perspective
On the flip side, engineered state-space models for spatial agents are well-

studied in robotics (e. g. see Thrun et al. (2005)). State-space assumptions

were central to SLAM algorithms from the classical era (H. Durrant-Whyte

and Bailey, 2006) and are still used in robotics today. Early methods of

that type relied on Kalman filtering for state estimation (Kalman, 1960). In

such models transitions are defined through known dynamics equations,

and similarly emissions are defined through geometry. Engineering

usually implies more complex design and possibly modelling bias, but

also improved generalisation.

Overview

Seminal works of the late 1980s, such as those by e. g. Chatila and Laumond

(1985), R. C. Smith and Cheeseman (1986), H. F. Durrant-Whyte (1988),

Ayache and Faugeras (1988) and Crowley (1989), paved the way towards

Markovian assumptions in the context of EKF estimation (R. Smith et al.,

1990). Since then, state-space assumptions have prevailed in many spatial

filters, be it EKFs (e. g. Thrun et al. (2002), Davison et al. (2007), Anastasios I.

Mourikis and Roumeliotis (2007), M. Li and Anastasios I Mourikis (2013),

Liu et al. (2020), and Yang et al. (2022)) or Rao-Blackwellised particle filters

(e. g. Murphy (1999), Thrun et al. (2000), Montemerlo et al. (2002), Grisetti

et al. (2007), and Q. Huang and Leonard (2023)). To not mischaracterise the

robotics field, it should be noted that the aforementioned assumptions are

not used solely in EKFs and RBPFs, but also in more general factor graphs

44

4.2. The Robotics Perspective

for MAP smoothing (e. g. see Cadena et al. (2016) and Dellaert and Kaess

(2017)), and in modern days SLAM in robotics and SLAM in computer

vision are intertwined (see next section).

Open Questions

The aforementioned SLAM state-space models comply with the POMDP

framework (Thrun et al., 2005). However, one limitation is that most such

models do not predict dense RGB(-D) images directly. Instead, often the

emission predicts a low-dimensional, often preprocessed version of the

raw 3D data.

For example, in the simplest case a model can assume observations are

6-DoF poses obtained out-of-band, e. g. by running a visual odometry

algorithm on the side. The latent model states then also contain a 6-DoF

pose, and the observations are seen as a noisy version of the latents that

needs to be filtered. This forms a pose graph, with no explicit 3D map.

Another common alternative is that observations are 2D xy-coordinates

of tracked image features
1
. For that, the latent states zt are generally a

combination of the latest agent 6-DoF state and 3D world points which

make a sparse map. The association between these 3D points and the 2D

image features is normally determined a-priori, by tracking salient image

points in the video stream over time (e. g. see SIFT (Lowe, 1999), SURF (Bay

et al., 2006), FAST (Rosten et al., 2010) or ORB (Rublee et al., 2011)).

Both of the aforementioned observation variants require preprocessing

of the raw image data, which a state-space model (and associated inference)

would not be aware of. The reason for preprocessed observations is

efficiency, often motivated by the scalability properties of EKFs (dense

quadratic covariances), PFs (many particles) or factor-graph inference

(number of optimised variables).

In comparison, state-space models with direct RGB(-D) observations are

much rarer. One example is the early EKFwork of Pietzsch (2008), where the

map is limited to a set of planes. There is also a line of dense SLAMmethods

that use forward kinematics loss terms (Wagner et al., 2014; Klingensmith

et al., 2016; Scona et al., 2017), very similar to an SSM transition. The focus

of these latter approaches is on MAP estimation, whereas this thesis also

highlights fully-Bayesian inference and the link to model-based control.

Also, 3D information-theoretic active mapping approaches (e. g. Charrow

et al. (2015), Zhang et al. (2020), and Asgharivaskasi et al. (2022)), which

1
This assumption was the result of cross-pollination between the fields of robotics and

computer vision in the early days of SLAM.

45

4. Related Work

are spiritual successors of early 2D methods (Stachniss, 2009), often use

probabilistic maps, RGB-D images and SSM assumptions for planning, but

not for SLAM inference.

On the whole, state-space models that generate complete images, and

are tightly coupled with inference, deserve further attention.

4.3. The Computer Vision Perspective

The computer vision subfield of 3D structure and motion (Hartley and

Zisserman, 2006) is also very relevant to this thesis. Below we will discuss

two general directions: indirectmethods, which predict tracked 2D features,

and direct methods, which predict raw image data directly.

The work of Lucas and Kanade (1981) and Tomasi and Kanade (1991) has

been very influential for both indirect and direct approaches. Its core idea

is to seek alignment of the content of two images, i. e. to require photometric

consistency between them. In direct methods, this can be used to find a

pose transformation between two views. In indirect methods, it can be

used to track image features by minimising the photometric consistency

error of pixel patches around them.
2

Indirect Methods

Indirect methods have their roots in bundle adjustment (Brown, 1976), which

aligns a bundle of rays frommultiple cameras. They are classified as indirect

because theymodel the geometry of rays and associated image coordinates,

not the image content directly. This requires that the correspondence

between rays is known, which is given by tracking 2D image features

associated with each ray. Note that the same assumptions were mentioned

in the previous section on SLAM in robotics, due to cross-pollination

between the two fields.

In modern SLAM and visual odometry, bundle adjustment is seen as a

special case of maximum a-posteriori (MAP) optimisation (Cadena et al.,

2016) in a graphical model that predicts 2D image coordinates from latent

camera poses and 3Dmap points. MAP has overtaken filtering approaches

in the realm of sparsemethods, due to seminal works like PTAM (Klein and

Murray, 2007) and later Strasdat et al. (2012) empirically demonstrating

that it is a more accurate solution on a small computational budget. The

2
Kanade-Lucas-Tomasi (KLT) trackers were later superseded by searching for global

descriptors like ORB (Rublee et al., 2011), but the idea remains influential.

46

4.3. The Computer Vision Perspective

result is a plethora of indirect large-scale SLAM systems, like ORB-SLAM

(Mur-Artal et al., 2015; Campos et al., 2021), or VINS-MONO (Qin et al.,

2018), or the pose optimisation back end of Kimera (Rosinol et al., 2020).

Direct Methods

On the flip side, the early Lukas-Kanade image alignment has inspired

direct formulations as well. Most such approaches reproject (or warp) the

content from one image into another based on latent camera poses and

latent depth (or 3D points), and then optimise for photometric consistency.

Progress by Audras et al. (2011) and Steinbrücker et al. (2011) has shown

this as a reliable method for odometry estimation. This has led to a number

of stable sparse semi-direct and direct methods, such as SVO (Forster et al.,

2014), LSD-SLAM (Engel et al., 2014) and DSO (Engel et al., 2018), in which

the direct assumptions are framed as MAP optimisation.

In parallel, direct assumptions are also dominant in dense RGB-D

registration, a good example of which is the RGB-D SLAM method of

Steinbrücker et al. (2013). Notably, the direct alignment of depth images is

very close to iterative closest point (ICP) methods, as introduced by Chen

and Medioni (1992). Direct depth-only or RGB-D alignment is also used

in KinectFusion (Newcombe et al., 2011a), VoxelHashing (Nießner et al.,

2013) and ElasticFusion (Whelan et al., 2015).

In modern days, there is also the emerging paradigm of mapping via

differentiable rendering (Lombardi et al., 2019; Mildenhall et al., 2020),

in which dense neural maps are learned by gradient descent through

a renderer that predicts images directly. SLAM systems based on this

approach have started to emerge only recently, for example iMAP (Sucar

et al., 2021), NICE-SLAM & NICER-SLAM (Zhu et al., 2022; Zhu et al.,

2023) and NERF-SLAM (Rosinol et al., 2022).

Open Questions

This thesis subscribes to dense directmodels. Indirect models are efficient

and can be accurate, but they retain less information (tracked features

are normally sparse), they can be sensitive to errors in feature tracking

(cannot be corrected easily) and they can struggle with images with smooth

gradients (few features to track) (Cadena et al., 2016; Engel, 2017).

Next, recall that the thesis specifically seeks spatial state-space models

for control, i. e. with Markovian assumptions. There are two aspects not

covered by prior art in this regard.

47

4. Related Work

First, to the best of the author’s knowledge mainstream dense SLAM

methods usually donot spell out SSMpredictive andposterior distributions,

even if their assumptions are not far away from the SSM independences

(e. g. BAD-SLAM (Schöps et al., 2019)). Sometimes this is simply because a

control-driven transition ismissing, but it could also be due to incompatible

autoregressive connections when images are aligned frame-to-frame and

not frame-to-model (e. g. see section 2.3.1 of Zollhöfer et al. (2018)). A re-

examination of dense methods from the SSM perspective is thus desirable,

especially for emergent paradigms like differentiable rendering.

Second, the de-facto inference method in nearly all modern visual

odometry and SLAM is maximum a-posteriori optimisation, which returns

point-estimates that can be extended with Gaussian uncertainty via a

Laplace approximation (Laplace, 1986). MAP is currently necessary when

efficiency is a top priority. But from a research standpoint, it also leaves

room for exploring alternative inference methods that would return a full

posterior directly.

4.4. Positioning
In summary, the thesis seeks to unify concepts from all three fields and

explore some of the aforementioned research gaps.

The developed spatial model predicts raw RGB-D observations, just

like the discussed world models from machine learning predict raw

data. It is end-to-end differentiable and avoids observation preprocessing.

Variational inference from the field of ML is also explored as a relaxed

alternative to MAP smoothing in computer vision and robotics.

At the same time, generalisation is addressed by incorporating domain

knowledge, like in all listed examples from robotics and computer vision.

The developed model features a dense map and a renderer, which puts it

close to the aforementioned dense direct methods.

Finally, the proposed model has a well-defined state space and can be

easily extended into a POMDP. Generative distributions and posteriors

are made explicit. On the whole, this adds one more perspective to the

existing body of work on dense visual odometry and SLAM.

The main price for these advances are sacrifices in terms of efficiency.

Because of the increased computational footprint, the developed methods

are applicable inmoderate-scale indoor scenes. This also implies a potential

drop in accuracy on a tight inference budget, which is accepted for the

sake of more informative predictions for control.

48

Methods and Findings 5
This chapter summarises themain outcomes of the research. The discussion

remains from a bird’s-eye perspective, highlighting only core methods and

takeaways. Each section lists relevant background from part I and one

relevant core paper from part III as prerequisites.

The core publications are:

1. VSSM-LM (Mirchev et al., 2021), for narrative purposes it is split

between section 5.1 (the SSM), section 5.2 (smoothing), section 5.4

(dynamics learning).

2. PRISM (Mirchev et al., 2022), in section 5.3 (real-time filtering).

3. TNP-SM (Kayalibay et al., 2022)
1
, in section 5.5 (navigation).

In addition, section 5.6 has unpublished, very recent work on further

control with VSSM-LM. The overall research contributions are listed at the

end of the chapter, after all method sections.

The actual papers are attached in appendices A.1 to A.3. The personal

involvement of the author is explained in the beginning of each paper

appendix.

Appendix B.1 also holds a non-core prior-work publication with results

from the author’s master’s thesis, which sparked the research that followed.

It is included only for context, as it manifests similar ideas, albeit in a rather

naive implementation. It does not count towards the dissertation.

1
Shared lead authorship.

49

5. Methods and Findings

5.1. Dense Spatial State-Space Models
This section is about the spatial SSM, VSSM-LM for short (paper in

appendix A.1), which is central to all core publications. It requires

background on state-space models (section 1.4) and a basic understanding

of rigid-body poses (section 2.1) and rendering (section 2.2).

VSSM-LM is the state-space model proposed in this thesis, it is

pθ(x1:T , z1:T ,M | u1:T−1) =

pθ(M)pθ(z1)
T∏
t=2

pθ(zt | zt−1, ut−1)︸ ︷︷ ︸
dynamics

T∏
t=1

pθ(xt | zt,M)︸ ︷︷ ︸
rendering

. (5.1)

Given controls u1:T−1, the model simulates dynamic agent states z1:T , and
with them generates RGB-D images x1:T from a 3D map M. For this,

the factors pθ(M), pθ(xt | zt,M) and pθ(zt | zt−1, ut−1) are implemented

with domain knowledge.

The Map pθ(M) is a Gaussian distribution that factorises over a 3D grid.

Each cell holds a signed-distance (SDF, can be seen as occupancy) and a

colour value. The grid serves as the Bayesian parameters for a continuous

3D field fM : R3 → R4
, obtained by interpolating the grid voxels. The

zero-level set of the SDF field implicitly defines surfaces.

The Emission pθ(xt | zt,M) is a differentiable RGB-D renderer. It assumes

a known camera intrinsic matrix K (part of θ) and predicts RGB-D images

by volumetric rendering. Details about its differentiability are in the paper.

Epistemic map uncertainty flows through it and into the generated images.

The Transition pθ(zt | zt−1, ut−1) predicts the 6-DoF dynamics of the

agent. VSSM-LM offers two versions for it, one with engineered Euler

kinematics and one learned from data (discussed later). Respectively, the

latents zt hold an SE(3) pose, velocity and potentially other information

the transition needs.

VSSM-LM is a differentiable SSM, a simulator for model-based control,

and thus a world model (Ha and Schmidhuber, 2018). With an added cost

function, it becomes a POMDP. It is thus a bridge between SSMs for model-

based control, like the ones in most classical SLAMs (H. Durrant-Whyte

50

5.1. Dense Spatial State-Space Models

Figure 5.1.: The panel shows the mean of an inferred trajectory (blue)
and an inferred map (center) from past RGB-D observations (left) and

controls. Then, a predictive rollout (dark gray) is produced into the future

for hypothetical controls, again showing the mean prediction. The mode

of a rendered RGB-D prediction, a novel view from the rollout, is shown

on the right. Data is from the TUM-RGBD data set (Sturm et al., 2012).

and Bailey, 2006), and the assumptions of dense SLAM (e. g. Newcombe

et al. (2011a), Steinbrücker et al. (2013), and Schöps et al. (2019)).

Defining an SSM is possible because of differentiable rendering. It

makes it possible to use Markovian emissions, as opposed to xt−1 → xt
predictions, and it makes it possible to generate raw data. It also makes the

whole joint of VSSM-LM end-to-end differentiable. This last point matters

for inference and for optimising ut through the model. The thesis sticks

to volumetric rendering, but note that the above would hold for other

renderers too (e. g. the surfel-splatter of BAD-SLAM (Schöps et al., 2019)

would work).

This is the big picture, for the rest of this section we will zoom in on

details about how VSSM-LM works.

5.1.1. Control-Driven Probabilistic Predictions

VSSM-LM focuses on prediction for control. An example of latent inference

of M, z6t followed by a predictive rollout is given in figure fig. 5.1.

51

5. Methods and Findings

Figure 5.2.: Same panel as the previous, but now showing the uncertainty

in all variables. For the map and the predicted RGB-D images on the

right, orange means the estimate is with higher certainty. For the inferred

trajectory (jet colorscheme) blue indicates certainty. The predicted segment

is again in grey, but this time multiple sampled rollouts are shown.

The transitionpθ(zt | zt−1, ut−1) is necessary for prediction, as it causally
links the controls ut−1 to the future rollouts zt:T , xt:T . Related to this,

VSSM-LM specifically targets autonomous agents, where control inputs

are available, and less so hand-held cameras. Also, note that controlled

transitions are orthogonal to maximising the likelihood of inertial mea-

surements in visual-inertial odometry (e. g. VINS Qin et al. (2019)), and

the two can complement each other.

VSSM-LM’s predictions come with uncertainty. This is shown in fig. 5.2,

noting that all variables are random. The factors pθ(M), pθ(xt | zt,M)

and pθ(zt | zt−1, ut−1) are all parametric distributions with closed-form

PDFs. MC sampling and estimation of expectations Ep[f(z1:T , x1:T ,M)]

are thus straightforward. Of course, the speed caveats of MC apply.

Uncertainty matters for three reasons. First, it is necessary for any

sort of marginalisation or filtering (we will later see this is needed for

real-time inference). Second, it can inform POMDP control and make it

robust to estimation errors (out of scope for the thesis, see background in

section 1.5.2). Third, it enables information-theoretic active inference, e. g.

for map exploration (will be demonstrated for VSSM-LM later).

52

5.1. Dense Spatial State-Space Models

(a) Rendering in 3D. (b) Parameter sharing.

Figure 5.3.:Map parameters are automatically sharedwhen rendering. Left:

rendering from two overlapping viewpoints. Right: the grid parameters

in M are blue when only used for the left view, light gray when shared

for both views and dark gray when only used for the right view.

5.1.2. Dense Rendering

Next we will turn our attention to rendering again, as it has a few more

interesting properties.

Rendering generates data densely, which makes VSSM-LM more infor-

mative for downstream tasks. For example, the dense map M will be

useful when reasoning about collisions in navigation. Also, rendering

generalises well, because of geometry (compared to neural nets).

A more intricate point is that rendering implicitly associates map pa-

rameters to observed images, based on the projective camera frustums.

This is shown in fig. 5.3, noting that when frustums overlap parameters are

shared. The map M is therefore non-redundant, and grows with the size

of the scene and not the amount of observed data. This implicit parameter

association and sharing allows us not to marginalise map parameters out of

the system as new data keeps coming in, which is a choice that contrasts

many visual odometry methods. For downstream planning, it is desirable

that the whole map remains. The price for this is memory.

At the same time, rendering brings in some more controversial points.

For example, rendering implies that in inference new images xt have to
alignwith the existingmapM, not previous observations xt−1 like inmany

53

5. Methods and Findings

alternative SLAM methods. This can be beneficial when the observed

RGB-D data is noisy, but it can also lead to localisation inaccuracy if themap

estimate is biased. Two further caveats are that rendering is expensive and

that the rendering emission p(xt | M, zt) is highly non-linear in zt, which

makes optimisation through it very dependent on good initialisation.

5.1.3. A Note on the Markov Assumptions

Since Markovian assumptions are actively targeted by VSSM-LM, it should

be noted that whenM is marginalised out, as in

p(z1:T , x1:T | u1:T−1) =

∫
p(z1:T , x1:T ,M | u1:T−1) dM, (5.2)

the remaining marginal over z1:T , x1:T is not Markovian. The observations

become correlated.

However, given amap sampleM, the conditionalp(z1:T , x1:T | M, u1:T−1)

is again a vanilla state-space model. This means that in a control context,

VSSM-LM asks for evaluating a cost-to-go (see section 1.5) in expectation

over the map, i. e.

EM∼p(M)

[∑
τ

cτ

]
, (5.3)

where the costs cτ are over SSM rollouts. In practice one can always take the

map mean on a budget, or use an MC-estimate. Generally, MC-estimates

w. r. t. the map distribution can vary in cost, and are most expensive if

they have to render inside the expectation. Note that the individual costs

c(·) are free to peek directly at the respectiveM sample (e. g. for collision

avoidance), since it is given as a condition inside the expectation in eq. (5.3).

5.2. Smoothing
This section is about the smoothing inference method introduced with

VSSM-LM (appendix A.1). It requires background on variational

inference (section 1.3.1) and state-space models (section 1.4), and a basic

understanding of rendering (section 2.2).

Consider using VSSM-LM to inform the decisions of a moving agent. To do

so, first we need to infer a belief over themap (i. e. mapping) and the current

agent state (i. e. localisation) from past observed dataD6t = (x6t, u<t), so

54

5.2. Smoothing

that predictive rollouts into the future make sense. Such inference aligns

with SLAM. The thesis explores two approaches for this

• a variational smoother (this section);

• and a real-time filter (next section).

The research gap addressed here is fully-Bayesian posterior inference under

dense rendering, derived from the generative factorisation of VSSM-LM.

The aim is to minimise additional generative assumptions, in order to keep

inference aligned with prediction.

5.2.1. Smoothing via Variational Inference

The smoothing posterior p(z6t,M | x6t, u<t) can correct the past, as old

states are inferred from all data until the current time. It is the biggest

posterior one can phrase up to time t, revealing all latents at once.

The paper in appendix A.1 approximates p(z6t,M | x6t, u<t) through
variational inference (VI). An approximate distribution qφ(z6t,M) with

parametersφ is fit to it by minimising the KL(q || p) divergence:

qφ∗(z6t,M) ≈ p(z6t,M | x6t, u<t) (5.4)

φ∗ ≈ argmin
φ

KL
(
qφ(z6t,M)

∣∣∣∣ p(z6t,M | x6t, u<t)
)
. (5.5)

The approximation q is non-amortised, obtained via stochastic optimisa-

tion.
2
Please consult the included paper for the detailed derivation. The

background on VI is in sections 1.3.1 and 1.4.2.

5.2.2. Flexibility

In modern SLAM and odometry estimation the de-facto standard is

MAP optimisation via Gauss-Newton, optionally followed by a Laplace

approximation (explained in detail in appendix C.2, also see Cadena et al.

(2016)). This approach is restricted to either point-mass estimates or a joint

Gaussian over z6t,M obtained under linearisation of the whole predictive

graph (i. e. here VSSM-LM).

In contrast, the VI approximation qφ(z6t,M) is a full distribution by

design. It is free to factorise into complex non-linear, potentially non-

Gaussian terms. A motivating example is given in fig. 5.4.

2
For better generalisation across new scenes, q is not predicted by a neural network like

in a variational auto-encoder (Kingma and Welling, 2014).

55

5. Methods and Findings

(a) Rendering with perceptual aliasing.

(b) Gaussian.

(c) Normalising flow.

Figure 5.4.: In this simplified setup, an agent is uncertain about the

perspective from which it observes a ball (perceptual aliasing). A Gaussian

posterior can only provide a uni-modal estimate of the agent pose in space.

A variational inference posterior (here a normalising flow) can distribute

uncertainty more accurately over the manifold of possible poses, in this

case a sphere wrapping around the observed ball.

The thesis demonstrates the first successful application of VI for dense

SLAM smoothing. While in the experiments qφ(z6t,M) is a simple mean-

field
3
approximation (product of Gaussians), it is a proof of concept that

should open the path for more intricate approximate posteriors in the

future, without further algorithmic changes. This is the main reason why

VI was explored.

Variational inference was chosen over other relaxed methods, such as

Markov-chain Monte Carlo or sequential importance sampling (SIS) because of

scalability (the dense map has millions of parameters).

3
This means qφ(M, z6t) = qφ(M)

∏t
τ=1 qφ(zτ). The terms qφ(zτ) and qφ(M) also

break down over independent dimensions. This posterior does not capture correlations.

56

5.2. Smoothing

5.2.3. About Optimisation

VI methods require stochastic optimisation. This is because the KL in

eq. (5.5) needs to be estimated via Monte Carlo. One implication is that

second-order optimisers, like Gauss-Newton, cannot be applied directly

because any Hessian estimate would not be stable over optimisation steps.

Because of this the smoother relies on Adam (Kingma and Ba, 2015), a

variant of first-order SGD optimisation.

Also, and this is detailed in the paper, the objective in eq. (5.5) naturally

breaks down into terms that involve the emission and the transition

of VSSM-LM. This is where differentiable rendering comes into play–

gradients through the emission are necessary for optimisation. As already

mentioned, the non-linearity of p(xt | M, zt) also leads to local minima,

and optimisation depends on good initialisation.

5.2.4. Limitations

Experimentally it was found that variational smoothing is limited by its

runtime; on modern commodity hardware it is circa 10-15 times slower

than real-time, even when approximation accuracy is traded for a smaller

budget. This is because the optimisation objective includes a sum of

rendering reconstruction terms over the whole history 1, . . . , t

Eq



t∑
τ=1

− log p(xτ | zτ,M)︸ ︷︷ ︸
renderer


. (5.6)

Computing even a subset of these repeatedly is expensive.
4
Moreover, they

are in expectation over q, which leads to either increased gradient variance

or the need for repeated evaluations for a tighter Monte-Carlo estimate.

Unsurprisingly, this means that the posterior approximation is suboptimal

on a reasonable budget.

As a side note, it is understood that odometry estimation is efficient and

stable with only sparse data (e. g. Engel (2017)), and this could be used to

initialise the pose estimates and improve the runtime. This remained out

of scope as the publication only addressed what can be derived directly

from the streamlined VSSM-LM assumptions.

Despite the computational challenges, dense variational smoothing

works consistently for flight trajectories of up to 4 m/s, lagging slightly

4
In practice, gradients are evaluated for random subsets of pixels in each step.

57

5. Methods and Findings

VI Smooth.
PRISM VIMO VINS

0.00

0.05

0.10

0.15

0.20

0.25
Location RMSE [m]

(a) Localisation summary. (b) Smoother, 3 m/s. (c) PRISM, 3 m/s.

Figure 5.5.: The VI smoother and PRISM have similar accuracy to the

SotA. (a) Localisation comparison to two SotA visual odometry methods,

VIMO (Nisar et al., 2019) and VINS-MONO (Qin et al., 2018), results are

on Blackbird data (Antonini et al., 2020) based on the core publications. (b)

A run of the VI smoother. (c) A run of PRISM. Both are top-down views.

Inferred map and trajectory are in black, true trajectory is in blue. Both

filter out the noise in the observed depth data (in orange).

behind the SotA. The paper has the experiment details, a glimpse at the

results is given in fig. 5.5. On-line use may become viable as hardware

improves, until then the smoother is most useful for optimising generative

parameters through the evidence lower bound, such as camera intrinsics

or transition parameters, as per the background in section 1.3.2. These are

usually off-line tasks done once per robot.

5.3. Real-Time Filtering

This section is about the real-time filtering method introduced with

PRISM (appendix A.2). It requires background on closed-form Gaussian

updates (section 1.2.2), inference methods like MAP and Laplace

(section 1.3), filtering in state-space models (section 1.4), and a basic

understanding of rendering (section 2.2).

The off-line variational smoother leaves room for a real-time solution. The

main challenge is how to work around the cost of rendering in VSSM-LM.

PRISM gives one solution to this problem.

58

5.3. Real-Time Filtering

5.3.1. Divide and Conquer

PRISM scales to real-time by approximating the two marginal filters
5

q
φ
t (zt) ≈ p(zt | x6t, u<t) (5.7)

q
φ
t (M) ≈ p(M | x6t, u<t). (5.8)

Specifically, they are both derived from the recursion of the Bayes filter

p(M, zt | x6t, u<t) ∝ p(xt | zt,M)

∫
p(zt | zt−1, ut−1)

· p(M, zt−1 | x6t−1, u<t−1)︸ ︷︷ ︸
prev. filter

dzt−1. (5.9)

This recursion is possible because of the SSM assumptions of VSSM-LM.

Filtering is motivated by the high cost of rendering. The main insight is

that recursive updates can be solved one at a time (i. e. divide and conquer),

and each recursive step can evaluate the renderer only once. The problem

is smaller than smoothing, as it estimates only the last state and map.

In essence, this is a marginalisation strategy similar to what is done

in visual odometry and SLAM (e. g. Leutenegger et al. (2013)) to bound

computation. But whereas in traditional methods marginalisation is based

on sparsity and linearisation of the complete system, here the filters are

derived from the rendering and 6-DoF dynamics assumptions of VSSM-LM.

On the whole, this strategy leads to a Bayesian posterior that is similar

in accuracy to the preceding VI smoother and the current visual SotA in

indoor environments, on trajectories of up to 4 m/s. This is summarised

in fig. 5.5, the detailed results are in the paper. At the same time, it runs in

real-time and complies with the dense rendering of VSSM-LM.

5.3.2. Approximations and Compromises

The path to real-time is in the details of the Bayesian approximation, which

is rather complex. The remaining discussion will benefit from familiarity

with the derivations of PRISM in appendix A.2, it is recommended to read

these first. Following are only the final outcomes and their implications.

5
The joint filter p(zt,M | x6t,u<t) was not targeted because capturing the map-state

correlations is expensive for the dense 3D map.

59

5. Methods and Findings

State filter PRISM updates the state filter q
φ
t (zt) in three stages.

• An SE(3) pose is found by MAP gradient-based optimisation.

• The pose is extended with uncertainty via a Laplace approximation.

• Velocity, with uncertainty, completes the state estimate.

These steps naturally involve the emission and transition of VSSM-LM.

Both appear as terms in the MAP optimisation which looks like this

argmax
zpose
t

log p
(
xt
∣∣ zt, M̂

)
+ dynamics prior, (5.10)

where the dynamics prior is obtained by linearising the transition and

propagating uncertainty through it in closed form via LGS equations

(background in section 1.2.2).

The main speed-up is from replacing any optimisation through the

rendering term, i. e. log p
(
xt
∣∣ zt, M̂

)
, with a surrogate image-alignment

objective that only renders once, which introduces approximation bias.

This surrogate is a version of the standard photometric consistency (e. g.

Audras et al. (2011) and Steinbrücker et al. (2011)) and point-to-plane ICP

(Chen and Medioni, 1992) equations in direct odometry methods. It is

one piece of the state filter and will be detailed in the next section, as it

emerged in the context of the another core publication (TNP-SM).

The other compromise for speed is the aforementioned Laplace ap-

proximation, which limits uncertainty quality due to its implicit linear

Gaussian assumption. The MAP and Laplace combination can be replaced

by variational inference (see appendix C.6 if interested), but this was not

explored.

The overall state update is depicted in fig. 5.6.

pose + velocity
update

nominal
sample

prior filter
update
new filter

Figure 5.6.: State filter diagram. M̂ is from the previous map filter.

60

5.3. Real-Time Filtering

nominal
sampleprior filter

update
new filter

Figure 5.7.: Map filter diagram. ẑt is from the new state filter.
6

Map filter PRISM updates the map filter q
φ
t (M) in closed-form, via

q
φ
t (M) ∝ qφt−1(M)× q(M | xt, ẑt). (5.11)

Theupdateq(M | xt, ẑt) approximately inverts rendering and costs roughly

as much as rendering once. This is the biggest speed factor for PRISM, the

paper has the runtime details. One restriction is that the map and the

update are Gaussian, for fast Gaussian-product sensor fusion (Moravec,

1988). The other caveat is that the update conditional q(M | xt, ẑt) needs
to be predefined (engineered or learned), which can introduce bias. The

update is depicted in fig. 5.7.

5.3.3. About the Bayesian Map and Marginalisation

An important point is that PRISMwould not be possible without a Bayesian

treatment of the mapM. This is necessary for the map updates in eq. (5.11)

to work. Intuitively, the previous map belief q
φ
t−1(M) is a fused proxy that

reconciles all past image data. If the map was just a point estimate instead,

one would need to account for all past images at once through the renderer

(e. g. like in iMAP (Sucar et al., 2021)), which is inefficient.

Also, PRISM only marginalises out past poses (in the state filter), but

not map parameters. Besides having the map for downstream tasks, one

advantage due to this is that there is an implicit loop-closure effect whenever

the agent revisits a map region.

Note that PRISM does not rely on linearisation of the full VSSM-LM

graph in the filter derivations (i. e. it is not an EKF). This is because a) a

full Gaussian covariance would be prohibitive for the dense VSSM-LM

model anyway and b) it is well-known that linearisation in EKFs is one of

the main sources of errors (S. Huang and Dissanayake, 2016).

6
This is approximate, technically ẑt should come from p(zt | x<t,u<t−1), i. e. it should be

predicted by the transition model, but qφt (zt) is more accurate on a budget.

61

5. Methods and Findings

5.3.4. Limitations

In terms of uncertainty, PRISM makes two main compromises for speed.

These stem from a point in the derivation where each marginal filter

marginalises out the sibling variable from the recursion:

q
φ
t (zt) ≈ p(zt | x6t, u<t) =

∫
p(M, zt | x6t, u<t) dM, (5.12)

q
φ
t (M) ≈ p(M | x6t, u<t) =

∫
p(M, zt | x6t, u<t) dzt. (5.13)

1. The marginalisation integrals in eqs. (5.12) and (5.13) are MC-

estimated with a single nominal sample from the sibling filter, as

shown in figs. 5.6 and 5.7. This means map uncertainty does not

propagate into the state estimates, and vice versa. Multi-sample

MC estimation could address this, but would linearly increase the

runtime. For example, this is where pose uncertainty lateral to the

viewing direction could be accounted for in the map updates.

2. Correlations between zt andM are not tracked, neither are correla-

tions between individual map parameters. The main disadvantage

is that the filtering updates cannot correct errors in map regions far

away from the current step (H. Durrant-Whyte and Bailey, 2006).

Sparse correlation estimation remained out of scope for PRISM, but

would be a logical next step.

PRISM weaves in well-established computer vision and Bayesian tech-

niques in the approximate filters (Kalman, 1960; Moravec, 1988; Chen and

Medioni, 1992; Curless and Levoy, 1996; Steinbrücker et al., 2011). None of

the individual pieces are entirely new on their own. The contribution of

PRISM is rather in deriving a holistic posterior solution from the dense

state-space model of VSSM-LM that runs in real-time, and this is novel.

The result is a state estimator that matches the assumptions of any POMDP

defined based on VSSM-LM.

A lot of care is taken to signpost exactly what approximations are

currently necessary for speed. The hope is that this characterisation of the

Bayesian approximation gap will facilitate future research, particularly in

terms of uncertainty estimation in dense models.

62

5.4. Dynamics Identification

5.4. Dynamics Identification
This section covers the learning of transition models, introduced together

with VSSM-LM (Mirchev et al., 2021), see section 4 of the paper in

appendix A.1. It requires background on variational inference

(section 1.3.1), state-space models (section 1.4) and rigid-body

transformations (section 2.1).

The predictive rollouts of VSSM-LM depend on a good transition. For

model-based control, p(zt | zt−1, ut−1) needs to predict multiple time steps

into the future. This section is about learning such transition models from

data, such that their long-term drift is minimised.

5.4.1. Transition Learning from Pose Data

VSSM-LM identifies 6-DoF poses as part of the latent states zt. This

assumption enables the pre-training of transitions on the outside.

Assume a data set of noisy poses ẑ1:T and associated control inputs u1:T−1
is given. For example, the poses might be obtained from a MOCAP system

or SLAM inference (through VSSM-LM or not). For transition learning, the

recorded poses ẑt are treated as a noisy version of the true latent poses, i. e.

ẑt = zt + ε, ε ∼ N(· | 0,Σ). (5.14)

This leads to a state-space model with an emission as in eq. (5.14) and a

transition between the "true" latents zt:

pθ(ẑ1:T , z1:T | u1:T−1) = p(z1)
T∏
t=2

pθ(zt | zt−1, ut−1)︸ ︷︷ ︸
learned transition

T∏
t=1

p(ẑt | zt)︸ ︷︷ ︸
emission

. (5.15)

This SSM is very similar to the pose graphs used for loop closure in SLAM,

but here it is used for transition learning. Transition parameters θ in

pθ(zt | zt−1, ut−1) are optimised with variational inference in this model,

through the evidence lower bound (ELBO)

θ∗ = argmax
θ

L
elbo

(θ) (5.16)

= argmax
θ

Eq
[
log pθ(ẑ1:T , z1:T | u1:T−1) − logqφ(z1:T | ẑ1:T , u1:T−1)

]
.

(5.17)

This asks for an approximate posterior qφ(z1:T | ẑ1:T , u1:T−1), which is

implemented with a bidirectional recurrent neural network. The details

63

5. Methods and Findings

Prediction type Baseline (IMU int.) Model prediction

0.00

5.00

10.00

15.00

0s 2s 4s 6s 8s

Lo
ca

tio
n

er
ro

r
[m

]

0.00
0.02
0.05
0.08
0.10

0s 2s 4s 6s 8s
Rollout length [s]

R
ot

at
io

n
er

ro
r

[r
ad

]

Model predictions are more stable for long rollouts

Figure 5.8.: Location and orientation absolute errors of predictions from

the trained transition (blue) grow much slower than the errors of simple

control integration (red). Evaluated on 3m/s flight data from the Blackbird

data set (Antonini et al., 2020).

are in the paper, and background on optimising generative parameters

through the ELBO is available in section 1.3.2.

5.4.2. Mixing Inductive Biases

The mean of the transition pθ(zt | zt−1, ut−1) is the sum of kinematics

integration (Euler’s method) and a correction predicted by a neural net:

zt+1 = fkin(zt, ut) +MLP(zt, ut). (5.18)

This is done to both ease learning and promote generalisation. The learned

transition outperforms simple control integration, particularly in long-term

prediction. This is summarised in fig. 5.8. The transition can be seamlessly

integrated in VSSM-LM and leads to more stable predictive rollouts.

5.4.3. Limitations

Long-termprediction is important for controlwhen there is no terminal cost

(i. e. critic) (Bertsekas, 2005). But when there is one, it is likely that short-

term prediction becomes more important, as rollouts can be terminated

early. This needs to be checked empirically in future work.

64

5.5. Navigation

Also, for the lack of a better alternative in the used data, the readings

from an IMU sensor were used as a substitute for control inputs in the

evaluation. While this is reasonable, it would have been ideal if the controls

were the intended accelerations of the agent, rather than sensory readings.

5.5. Navigation
This section is about downstream navigation with VSSM-LM, explored

by TNP-SM (appendix A.3). Leading authorship of the paper is shared

with Baris Kayalibay (the individual contributions are in the appendix).

The section requires background on state-space models (section 1.4) and

camera geometry and scene representations (section 2.2).

After prediction and inference comes the applicability to control tasks. TNP-

SM explores real-time navigation with VSSM-LM in complex simulated

environments.

5.5.1. Navigation Under Partial Observability

Map Inference TNP-SM assumes a data set of prerecorded poses and

images (zpose1:k , x1:k) is given. It then reconstructs a map M from this

data, via gradient descent through the renderer of VSSM-LM (maximum

likelihood). The agent must then navigate to a target position.

State Estimation When deployed, the agent observes only RGB-D images,

so its state must be estimated in real-time and plans must be reevaluated.

Open-loopplanning is not possible because the agent’s real-worlddynamics

are noisy and cannot be predicted perfectly.

High-Level Planning & Control The shortest obstacle-free navigation

paths are found using dynamic programming (A
∗
search) in a discretised

2D state space (see Bertsekas (2005) for DP methods).
7
The A

∗
planner is

informed about collisions through a cost function c(zt,M) based on the

map occupancy, which is also used to determine whether 2D states are

connected in terms of the A
∗
graph. This is possible because occupancy

can be evaluated everywhere, it is a field over R3
. The above assumes

the agent is holonomic, which is true in the experiments. A plan is then

7
A
∗
uses the Euclidean distance to the goal in this case, which is an admissible heuristic,

guaranteeing optimality.

65

5. Methods and Findings

Figure 5.9.: In the figure star is the navigation target and dot is the starting

point. It shows navigation plans in a reconstructed map M for a 3D

apartment from the ProcTHOR simulator (Deitke et al., 2022), along with

the explored A
∗
nodes colored by their cumulative cost (blue means low

cost-to-go). The dense occupancy is sufficient to plan a path to the target

from any starting point (first two columns), and also to identify when no

path to the target exists (last column).

treated as a sequence of waypoints and traversed with a simple low-level

controller. Example navigation plans are given in fig. 5.9. Note that A
∗

covers only a part of the state space, the necessary minimum to find the

shortest path.

The solution works in real-time across different multi-room simulated

environments, reaching up to 0.92 SPL (success weighted by path length)

under noisy agent movement and partial observability. Please consult the

paper for the details and the evaluation. The remainder of this section

focuses on the real-time state estimator, which is the main contribution by

the author. Respectively, the high-level and low-level control laws and the

navigation evaluation are a core part of the dissertation of Baris Kayalibay

(to be submitted in 2023/2024).

66

5.5. Navigation

M xt zt

expensive

(a) Rendering is expensive.

cheap

M x̂t−1 ẑt−1

xt zt
(b) Reprojection is cheap.

Figure 5.10.: Left: graphical model for one rendering step, showing that

forward evaluation and gradient backpropagation through the renderer is

expensive. Right: a previous-step RGB-D prediction x̂t−1 is rendered once

and is a proxy for a local segment of the map surface. The newest pose in

zt can then be optimised with gradients through the reprojection between

x̂t−1 and xt (RGB-D image alignment), which is much faster.

5.5.2. Fast State Estimation

One point of TNP-SM is that to achieve real-time, both for navigation and

in general, the state estimator must avoid gradient descent through VSSM-

LM’s renderer, at least on current commodity GPUs. For this, TNP-SM

derives an approximate MAP filter as such

argmax
zt
p(zt | x6t, u<t,M)

≈ argmax
zt

log p(xt | zt,M)︸ ︷︷ ︸
rendering term

+ log p(zt | ẑt−1, ut−1)︸ ︷︷ ︸
transition term

≈ argmin
zt

L(xt, zt, ẑt−1, x̂t−1)︸ ︷︷ ︸
surrogate for rendering

− log p(zt | ẑt−1, ut−1). (5.19)

As usual, the details are in the included paper in appendixA.3. In the above,

ẑt−1 is the mean of the previous filtering step, and x̂t−1 is a rendered RGB-

D image for that viewpoint. The term L(xt, zt, ẑt−1, x̂t−1) is a surrogate

image alignment objective, mixing point-to-plane geometric alignment

and photometric alignment. Minimising it finds the pose of the newest

RGB-D image by aligning it to the previous x̂t−1 rendered from the map.

The surrogate is illustrated in fig. 5.10.

This technique is typical for dense odometry estimation (e. g. Newcombe

67

5. Methods and Findings

et al. (2011b) and Nießner et al. (2013)). The insight here is that it also

applies to the VSSM-LM maps obtained via differentiable rendering. The

overall objective also includes a dynamics term, which is a novel addition.

What makes it fast is that it requires rendering from the map only once.

TNP-SM has experiments that show this surrogate leads to a four-fold

decrease in estimation runtime, without loss in tracking accuracy. The

same message concerning the path to real-time was later reiterated in

PRISM, using L(xt, zt, ẑt−1, x̂t−1) as one building block in its MAP pose

optimisation and extending it with uncertainty and velocity to define the

full state filter.

5.5.3. Limitations

TNP-SM shows that navigationworkswith VSSM-LM,which implies dense

spatial SSMs are a viable control foundation. However, it does not cover

the full control spectrum.

One limitation is that TNP-SM plans in a discrete 2D state space and

assumes the agent is holonomic. This ignores any potential movement

limitations of the dynamics. We will discuss a relaxation of this shortly.

Also, TNP-SM does not make use of VSSM-LM’s uncertainty.

Another limitation is that the maps are learned off-line and that the

state estimator is deterministic. PRISM could have been used to address

both of these issues, but chronologically it was published after TNP-SM.

The integration of PRISM with an MPC controller is a contribution of the

dissertation of Baris Kayalibay (to be submitted in 2023/2024), and it works

on small- and medium-sized apartments from ProcTHOR (Deitke et al.,

2022) (the current results indicate success rates of ca. 89% and ca. 73%,

respectively). Note that this is a much harder task than the navigation in

TNP-SM, as the map emerges gradually while the agent is navigating to a

predefined xy-position in space.

Finally, proper POMDP belief-space planning that accounts for future

state estimator errors was not explored. The main challenge is compu-

tational, as such an approach would require running the state estimator

on multiple imagined rollouts. The non-core publication by Kayalibay

et al. (2023) presents a middle ground between state-space (i. e. MDP) and

belief-space (i. e. POMDP) planning, by training a neural net to predict the

estimator errors across the whole state space, based on prerecorded data

from the environment.

68

5.6. Further Control (Unpublished, Joint Work)

(a) Quanser QCar. (b) QCar arena.

Figure 5.11.: The QCar navigation setup. PRISM is applied to the scene on

the right, using only RGB-D data. After this, the markers on the QCar are

used to obtain fully-observable states for MDP control.

5.6. Further Control (Unpublished, Joint Work)
This section contains methods enabled by VSSM-LM. The presented work

remains to be published.

Following are two more example downstream applications: navigation

with a robot car and spatial exploration.

The car navigation in section 5.6.1 is joint work by the author and Baris

Kayalibay, Ziqing Zhao, Ahmed Agha, Ole Jonas Wenzel, Patrick van

der Smagt and Justin Bayer. The author was involved in implementing

the car control loop, obtaining the maps for the car, conceptualising and

implementing value iteration, modelling the car dynamics and running

experiments – all done together with coauthors. The exploration method

in section 5.6.2 is based on the master’s thesis of Ziqing Zhao (2023), which

was supervised by the author. The author conceived the basic exploration

approach and guided the research.

5.6.1. Navigation with a Robot Car

We will first consider navigation on a real, non-holonomic robot car. A

Quanser QCar, shown in fig. 5.11a, is placed in a confined space cluttered

with objects, shown in fig. 5.11b. The car is equipped with a Realsense 435

RGB-D camera. First, a map of the scene is obtainedwith PRISM given only

RGB-D data collected by a human operator. The map is then fixed, and

69

5. Methods and Findings

the QCar is repeatedly asked to navigate autonomously between any two

points. For simplicity, the QCar is given access to its own pose at this point

(provided by an OptiTrack MOCAP oracle), isolating the control problem

from state estimation. This leads to MDP instead of POMDP control.

Navigating with the QCar poses two challenges. First, the QCar is non-

holonomic (it cannot move sideways), which requires sufficient foresight

to plan maneuvers. Second, the QCar dynamics p(zt | zt−1, ut−1) are

modelled with a simple bicycle kinematics model, which is imperfect

(e. g. because of friction and changes in battery voltage). This can be

compensated for by replanning as new state observations arrive.

Fortunately, both of these challenges are covered by the standard MDP

control toolkit.

Formulating a Critic

The foresight aspect is addressed by value iteration. It is used to approxi-

mate the navigation cost-to-go

J(zt) = E

[
inf∑
τ=t

γτ−tc(zτ,M)

]
, (5.20)

where γ is a discount factor. The per-step cost c(zt,M) has two values,

high if zt collides with an obstacle (based on the mapM), and low when

the agent is at the target. Because value iteration solves the infinite-horizon

problem, it automatically grants the necessary foresight to the agent.
8

Aggregation is used to make value iteration tractable, discretising

the agent state space and the aforementioned bicycle transition model

(Bertsekas, 2005). Contrary to TNP-SM, the discretisation is now three-

dimensional, taking into account both the 2D position and the orientation of

the agent. This means the cost-to-go grid is a 3D volume, where each slice

corresponds to one specific orientation. This is depicted in fig. 5.12. In

practice, this makes the agent aware that its approach angle w. r. t. the target

should be different depending on its xy-position, to satisfy its movement

constraints.

Constrained Model Predictive Control

One way to bridge the discrete cost-to-go and the continuous reality of

the agent is with constrained Model Predictive Control (MPC). This is a

8
This is a general statement for any agent equipped with a cost-to-go (critic).

70

5.6. Further Control (Unpublished, Joint Work)

Figure 5.12.: Four slices of the 3D cost-to-go volume, low cost-to-go in blue

(this is where the navigation goal is). The orientation for each slice is shown

with an arrow. Note how there is a clear preference for xy-positions from

which the car can move forward or backward into the target, reflecting the

car’s non-holonomic constraints.

contribution from the dissertation of Baris Kayalibay (to be submitted in

2023/2024), the following is only a rehash. Constrained MPC uses the

computed cost-to-go as a terminal cost:

u∗>t = argmin
u>t

Ezt+1:T∼p(zt+1:T |zt,u>t)


γT−tJ(zT)︸ ︷︷ ︸

terminal cost

+

T−1∑
τ=t

γτ−tc(zτ,M)




s.t. α(zτ,M) 6 0, τ = t, . . . , T . (5.21)

The current agent state here is zt. The constraints α(zτ,M) punish any

future QCar state that is too close to an obstacle. The rollout expectation

in eq. (5.21) is MC-estimated
9
and the objective is minimised by a) finding

initial admissible controlswith randomsearch andb) refining these controls

with Lagrangian optimisation. MPC control then executes only the first u∗t ,
after which the procedure repeats – this satisfies the need for replanning

9
This is in general, in the experiments the QCar has a deterministic transition.

71

5. Methods and Findings

Figure 5.13.: Example QCar navigation runs. Note how in the second case

the car is aware that it cannot complete the initially planned maneuver,

therefore it backtracks and completes the run.

due to the suboptimal transition. As the cost-to-go has already done the

heavy lifting, the MPC horizon is kept short (e. g. up to 25 steps, or ca. 3 s).

Results

Intuitively, the MPC objective makes the QCar drive towards states of low

cost-to-go (accounting for orientation), while at the same time avoiding

obstacles at all costs. This also makes it aware that it sometimes needs to

backtrack, in order to approach the target from a safe angle. This is shown

in the example runs in fig. 5.13. In one round of experiments done by the

author, the car was asked to navigate to 100 consecutive random targets. It

reached each target every time, touching an obstacle on the way in 8% of

the runs. Note that these results may evolve until the work gets published.

Limitations

The limitations of TNP-SM apply here as well, with two exceptions. First,

the non-holonomic dynamics of the agent are accounted for, both in value

iteration and in MPC control. And second, MPC control with a terminal

cost makes for a tighter, more transparent control loop compared to the

disjoint high-level planning and low-level control in TNP-SM.

A unique limitation of value iteration using aggregation is that the

size of the cost-to-go grid scales poorly. Evaluation is still fast for a

72

5.6. Further Control (Unpublished, Joint Work)

three-dimensional state space, parallelised on a GPU, but adding further

dimensions (e. g. for 6-DoF navigation) would require a different approach.

5.6.2. Autonomous Exploration

Next we consider how VSSM-LM can be used for autonomous exploration.

This is joint work produced during the master’s thesis of Ziqing Zhao

(2023), supervised by the author. The author conceived the high-level

mathematical derivations and guided the work. The implementation,

the further development of the method to improve its efficiency and the

experiments were done by Ziqing Zhao. Note that similar equations and

results will appear in her thesis, along with more details. This is only a

summary.

We focus on exploration in isolation, and assume full observability

of the agent states zt. The agent is placed in an unknown scene, and

has to reconstruct its map as fast as possible. The uncertainty in the

approximate map posterior q(M) is what enables this, using information

theory. Specifically, the mutual-information (MI) objective

u∗>t = argmax
u>t

I(M; x>t | u>t, zt) (5.22)

promotes finding future controls u∗>t that will lead to a sequence of images

x>t maximally informative about the map M (starting from the current

state zt, for brevity past data D6t is omitted from conditions but implied).

This is equivalent to minimising the map entropy H(M) after observing
x>t, because I(M; x>t) = H(M) −H(M | x>t).10

For simplicity, in the following experiment we will shift to high-level

planning and optimise the MI w. r. t. the future states z>t instead of u>t.

This will lead to a trajectory of waypoints that should be followed. It

is conceptually equivalent to assuming a deterministic initial state and

transition. The optimisation becomes:

z∗>t = argmax
z>t

I(M; x>t | z>t). (5.23)

10
Here u>t and zt are omitted to avoid confusion between conditional entropy vs. entropy of

a conditional distribution.

73

5. Methods and Findings

Evaluation is made tractable using the MI decomposition

I(M; x>t | z>t)
= H(M) − Ep(x>t|z>t)

[
Ep(M|x>t,z>t)[− log p(M | x>t, z>t)]

]
(5.24)

≈ H(M) − Ep(x>t|z>t)


Eq(M|x>t,z>t)[− logq(M | x>t, z>t)]︸ ︷︷ ︸

entropy of q(M|x>t,z>t)


, (5.25)

where eq. (5.24) follows from the definition ofMI. Equation (5.25) computes

the expected entropy of a posterior approximation q(M | x>t, z>t). This
is the crux of the method, as we can use PRISM’s map updates to obtain

this approximate posterior quickly in closed form:

q(M | x>t, z>t) ∝ qφt (M)

T∏
τ=t+1

q(M | zτ, xτ). (5.26)

The observations x>t in eq. (5.25) are imagined by rendering from the

currentmap beliefq
φ
t (M), they are ancestrally sampled from the predictive

distribution

p(x>t | z>t) = E
M∼q

φ
t (M)

[
T∏

τ=t+1

p(xτ | M, zτ)

]
, (5.27)

and used to MC-estimate the outer expectation in eq. (5.25). Intuitively, the

agent imagines the impact of these hypothetical observations on the map.

The evaluation of one MC sample takes ca. 30 ms per rollout time step

on a commodity GPU. The algorithm can be sped up even further using

a sparse set of rendered pixels and respective updates, the runtime scales

linearly in the pixel count. The overall method is inspired from early

prior work on infogain exploration (e. g. Stachniss and Burgard (2003)),

the novelty here is in basing it on VSSM-LM’s predictive rendering and

PRISM’s map filter.

Optimisation is done with random search. First, candidate trajectories

{zk>t}[K] are proposed via heuristic breadth-first search that spans the open

regions in the map. Free regions are determined via the occupancy in

the current map belief q
φ
t (M), which reflects only what was explored so

far. The best candidate trajectory z∗>t is then selected based on the MI

objective. An example candidate evaluation is depicted in fig. 5.14a. The

agent then traverses the chosen waypoints and reconstructs the scene until

an unforeseen obstacle is too close (based on a safety threshold), at which

point replanning occurs.

74

5.6. Further Control (Unpublished, Joint Work)

(a) Candidate evaluation. (b) Explored scene. (c) Map entropy.

(d) Example exploration run.

Figure 5.14.: (a) Candidate trajectories, colored by their MI score (magenta

is high). The empty map space on the right is preferred. (b) The explored

3D scene, simulated with PocTHOR (Deitke et al., 2022). (c) Comparison

of the proposed approach, frontier-based exploration and an ablation

that only uses the candidate generation heuristic. (d) Three stages of an

exploration run, occupancy in white, traversed trajectory in orange.

Results

The method is used to explore the apartment scene depicted in fig. 5.14b.

An example exploration run is shown in fig. 5.14d. The agent reaches all

apartment rooms. In fig. 5.14c, the algorithm is compared to a traditional

frontier-based exploration baseline and an ablation that uses only the

candidate generation heuristic. The proposed method leads to moderately

faster reduction of map entropy aggregated over 25 runs, indicating faster

exploration overall. Notably, frontier-based exploration stops early when

all walls have been seen once, regardless of the quality of the map estimate.

In contrast, the information-theoretic approach continues to actively refine

the map based on the remaining uncertainty.

75

5. Methods and Findings

Limitations

One limitation of themethod is that it does not consider the agent dynamics,

as it optimises for future poses directly. Agents with non-holonomic

constraints can then struggle to follow the returned waypoints. An optimal

solution would optimise the MI w. r. t. future controls, but this would be

expensive.

The other main caveat is the candidate generation heuristic, which can

bias exploration. The root problem here is that MI evaluations are rather

expensive even under the current approximations, whichmakes exhaustive

search prohibitive. Overall, this leads to suboptimal exploration, but as

the experiments show it is still competitive with standard frontier-based

approaches.

5.7. Contributions
This concludes the methods chapter. In summary, the contributions are:

1. A new dense spatial state-space model is formulated. It is direct, it

predicts rawRBG-D images and agentmovement through a rendering

emission and a 6-DoF dynamics transition. It is control-driven and

can be extended into a POMDP. The model bridges the assumptions

of model-based control and dense SLAM (section 5.1).

2. All variables come with uncertainty, both in prediction and in infer-

ence from data (section 5.1.1). Uncertainty can enable robust control

in the future, and map uncertainty already enables information-

theoretic exploration (section 5.6.2).

3. The renderer is differentiable which enables optimisation through the

model (sections 5.1 and 5.1.2).

4. A smoothing posterior for the model is obtained via variational

inference. This is the first application of VI for dense SLAM smoothing.

VI is non-linear, opens the door to flexible uncertainty estimation and

explores new ground compared to traditional MAP or EKF SLAM

inference, but it currently runs off-line (section 5.2).

5. Real-time inference is addressed by a Bayes filter approximation

(section 5.3). This Bayes filter can be used as an approximate state

estimator in a POMDP. It is shown that one path to real-time is to

76

5.7. Contributions

limit rendering in the filter (e. g. by using closed-form updates for

the map). The approximations necessary for speed are carefully

signposted.

6. It is shown how to learn transitions for the model from prerecorded

trajectory data (section 5.4).

7. Overall, it is shown the developed model enables standard control

algorithms, like DP, value iteration and MPC control (sections 5.5

and 5.6.1). These are used for real-time navigationwith a holonomic

agent with only RGB-D observations (TNP-SM) and a non-holonomic

agent with observed states (QCar). Collision avoidance is enabled by

the dense occupancy in the inferred 3D map.

The presented methods are suitable for agents operating in moderate-scale

indoor scenes.

77

Discussion 6
Early on in chapter 3 the thesis established some general desiderata:

• models targeting control,

• white-box assumptions,

• dense direct assumptions,

• state-space assumptions,

• full-posterior probabilistic inference.

These were for the sake of aligning dense SLAM and model-based control.

The presented research is one perspective on how to fulfill them. The

following section 6.1 summarises the trade-offsof the chosenpath, grouping

them based on the bullets above. The chapter then ends with an outlook

in section 6.2.

6.1. Compromises & Trade-Offs
Models for Control

First, and this is important to clarify, spatial control can be approachedwith

any SLAM. For example, one can use most off-the-shelf visual odometry

or SLAMmethods to obtain agent poses from a raw video stream. State

estimation can then be seen as a black box, and one can use the pose (and

possibly map) estimates as observations in a separate MDP, with its own

dynamics. In fact, this is structurally not that different from the control

scenarios (TNP-SM, QCar) explored in this thesis. Of course, what can

be controlled will differ – e. g. not all SLAMs return dense maps, but the

overall scheme works conceptually.

The point of the research is that cohesive state estimation and planning

will eventually be needed for POMDP control, when the state estimator

79

6. Discussion

needs to be accounted for in the planned rollouts, and this is currently

not straightforward with dense direct spatial models. VSSM-LM and PRISM

manage to bridge a part of this gap, by being POMDP-compliant. The

trade-off for this is that the thesis has to deviate from the well-trodden

paths for dense SLAM.

The presented navigation experiments do not go as far as POMDP control

(i. e. belief-space planning) because running PRISM’s filter over simulated

MC-rollouts is expensive on current hardware (see Kayalibay et al. (2023)

for a middle ground). Only the information-theoretic exploration comes

close, because it evaluates the effect of map updates into the agent future.

In general, there is a long list of control tasks that should be explored in

the future, such as making better use of VSSM-LM’s uncertainty estimates

or using more of the map content (e. g. for semantics). The control results

so far are an indication that dense SSMs like VSSM-LM are a reasonable

foundation for spatial control.

White-Box Assumptions

The heavy use of domain knowledge in VSSM-LM narrows down the

applicability of the model to only the spatial domain. This loses some of

the appeal of deep world models, which are meant to be generic simulators

that work with any data and any agent, e. g. Dreamer (Hafner et al.,

2023). In that sense, spatial domain knowledge is accepted as the price of

generalisation. It remains to be seenwhether large-scale learning initiatives,

along the lines of Gato (Reed et al., 2022) or RT-1/2 (Brohan et al., 2023),

will be able to shift the balance in favour of black-box models in the future.

Note that just like any other world model VSSM-LM can be used for

the training of parametric policies and critics. The positive is that the

generative model does not need to be learned, it generalises by design.

Dense, Direct Assumptions

Dense modelling makes everything more expensive, due to the sheer

amount of modelled parameters and data. It also limits the presented

models to indoor scenes, not bigger than large multi-room apartments

(this could be improved, see next section). At the same time, it makes

simulation more informative. For example, this is why collision avoidance

is easily possible.

Related to this, the direct prediction of RGB-D data via p(xt | M, zt)
is highly non-linear in zt. Posteriors are thus multi-modal, and captur-

80

6.1. Compromises & Trade-Offs

ing them faithfully would require non-Gaussian assumptions (hence the

interest in variational inference). This also means unimodal posterior

approximations are dependent on careful initialisation, in a limited con-

vergence basin. Directly predicting images also means that inference is

sensitive to the quality of the RGB-D data.

In the thesis state initialisation is addressed by using the control-driven

transition (both in the smoother and in PRISM).

SSM Assumptions

Asmentioned before, the renderer p(xt | M, zt) is whatmakes it possible to

define a dense SSM. As such, it is currently seen as a necessary component.

Its computational cost in the current implementation is O(whr), where

w × h is an image size and r a ray resolution. Improving this runtime

would automatically improve inference (more optimisation on a budget)

and enable more interesting control (cheaper simulation).

As for the transition, one thing to note is that VSSM-LM assumes control

inputs are given. One limitation of the public robot data used for evaluation

was that IMU data had to be used as a substitute for intended acceleration

controls.

Finally, the SSM assumes observations are RGB-D images. While VSSM-

LM could be extended to monocular data, by treating the rendered depth

as latent, this was not explored. This direction would additionally require

very careful initialisation of the depth latents & map.

Full-Posterior Inference

In terms of inference, the main limitations stem from the expense of the

dense assumptions and rendering.

For the variational smoother, this limits convergence accuracy on a

budget. The result is that the method runs off-line, and even then its

localisation and uncertainty estimates are approximate (there is a small gap

in localisation accuracy compared to the SotA). Also, the thesis explores

only a unimodal product of Gaussians for the posterior, a proof of concept

for applying VI. Still, the fact that VI works at all matters, as it paves the

way to multi-modal posterior approximations in the future.

Similarly, for PRISM’s filter the expense of rendering means uncertainty

is quite approximate, because uncertainty propagation through the filtering

recursion becomes difficult on a budget. Also, in both PRISM and in the

smoother correlations between the latents M and zt are not modelled,

81

6. Discussion

because of the size of the dense 3D map, which is another uncertainty

limitation.

Despite these caveats, the two solutions deliver full posteriors approxi-

mations, which is not common for spatial models based on differentiable

rendering (e. g. see iMAP (Sucar et al., 2021) or NICE-SLAM (Zhu et al.,

2022)). The usefulness of the map uncertainty is shown in the MI ex-

ploration experiment. For the state uncertainty, there is an uncertainty

calibration analysis of PRISM compared to the smoother at the end of

appendix A.2, but its usefulness remains to be tested in a control context.

6.2. Outlook
The above compromises lead to a number of interesting directions for

future research.

Addressing Scalability

First, the easiest point to address would be the scalability of the dense

maps. For example, an octree (Meagher, 1982) can directly replace the

voxel grid in M, and respectively reduce the memory footprint and speed

up rendering. This is expected to improve performance across the board.

Advanced Maps & Advanced Rendering

From an impact perspective, the most interesting direction appears to

be that of dynamic maps, as this is very relevant for real-world control.

Because VSSM-LMmodels raw RGB-D images directly, reasoning about

objects in the scene should be possible. Segmentation methods in 3D can

be considered for the extraction of individual rigid bodies (e. g. see the very

recent Cen et al. (2023)). Such a direction would require restructuring the

single voxel grid map into a set of posed topological map nodes, somewhat

similar to the notion of volumetric primitives (Lombardi et al., 2021) or

3D Gaussian primitives (Luiten et al., 2023). This would then require

reasoning about the dynamics of multiple objects in the scene, which could

still be framed as a state-space model and remain compatible with the

POMDP paradigm.

In terms of the map fidelity, one can also consider different rendering

formulations for the SSM emission. For example, both surfel splatting (e. g.

Schöps et al. (2019)) and radiance aggregation (e. g. Mildenhall et al. (2020))

are differentiable and would fit the rest of the model.

82

6.2. Outlook

More Flexible Filtering

Ifmore computation is available, PRISM’s uncertainty propagation could be

improved next. The single-sampleMC approximations for the expectations

of the filter can be replaced by multi-sample MC uncertainty propagation.

Evenwith a small number of samples uncertaintywill start flowing between

the map and state estimates.

Another point is that the MAP pose optimisation and Laplace approxi-

mation in PRISM’s state filter should be replacedwith variational inference,

as that can improve the uncertainty calibration of the estimated poses.

However, convergence is expected to require longer than the current

solution.

Lastly, PRISM currently does not model any correlations between the

map and state parameters. A sparse correlation tracking scheme (e. g.

between only a subset of the map parameters and the states) appears as a

feasible middle-ground that should improve the uncertainty of the filter

further.

More Flexible Smoothing

Another interesting research avenue would be using more advanced

approximate posterior families in the variational smoother, along the lines

of normalising flows (Rezende and Mohamed, 2015). Variational inference

directly supports this. These are generally more expensive to optimise

than Gaussians, so this would require either a significant reduction in the

rendering runtime (e. g. see previous note on scalability) or better GPU

hardware.

From a methods standpoint, one could also consider a keyframe ap-

proach, using pose marginalisation to limit the scope of the smoother

(Leutenegger et al., 2013). Effectively, this could turn the full smoother

into a fixed-lag smoother, moving more towards the divide-and-conquer

strategy of PRISM. This will focus the optimisation budget on fewer time

steps, but would possibly require modelling dense correlations between

map parameters and the agent states, which can be challenging.

Advanced Control

As already noted, more research is needed to tap into VSSM-LM’s potential

for control.

The information in the map and respectively the rendered images can be

used for tasks that go beyond point-to-point navigation, like finding objects

83

6. Discussion

based on visual cues. This can be formulated as a task that maximises the

likelihood of a certain image observation under the model.

Also, more experiments are needed to verify if VSSM-LM’s state uncer-

tainty is useful in a control context. In regular MDP planning, this can be

done by accounting for the model uncertainty both in value iteration and

in MPC rollouts. If computation allows it, one could also consider using

PRISM for POMDP belief-space planning, where the uncertainty of the

state estimator will also contribute.

84

Part III.

Included Publications

Core Publications A
A.1. Variational SSMs for Localisation and Dense 3D

Mapping
Paper Summary

VSSM-LM introduces a novel dense state-space model. The model com-

bines a differentiable renderer (emission) with a 6-DoF dynamics model

(transition). The state-space model predicts raw RGB-D data directly, from

a dense 3D gridmap. It is shown that the resulting probabilistic predictions

are suitable for control.

Themodel is end-to-end differentiable and its parameters can be inferred

with variational inference, a more relaxed fully-Bayesianmethod compared

to traditional MAP optimisation. For that, a novel variational smoother is

derived using the ELBO, and then shown to reach localisation performance

close to that of SotA odometry and SLAM methods. The experiments

are performed on quadcopter indoor flight data. The VI smoother is

computationally expensive and runs off-line.

Finally, it is shown that agent dynamics models can be learned from

prerecorded trajectory data. Such models seamlessly integrate into VSSM-

LM and improve its predictive performance.

Author Contributions

problem definition significant

literature review significant

theoretical derivation significant

implementation significant

experiments significant

writing significant

87

Published as a conference paper at ICLR 2021

VARIATIONAL STATE-SPACE MODELS FOR
LOCALISATION AND DENSE 3D MAPPING IN 6 DOF

Atanas Mirchev Baris Kayalibay Patrick van der Smagt Justin Bayer

Machine Learning Research Lab, Volkswagen Group, Munich, Germany
{atanas.mirchev,bkayalibay,bayerj}@argmax.ai

ABSTRACT

We solve the problem of 6-DoF localisation and 3D dense reconstruction in spatial
environments as approximate Bayesian inference in a deep state-space model.
Our approach leverages both learning and domain knowledge from multiple-view
geometry and rigid-body dynamics. This results in an expressive predictive model
of the world, often missing in current state-of-the-art visual SLAM solutions. The
combination of variational inference, neural networks and a differentiable raycaster
ensures that our model is amenable to end-to-end gradient-based optimisation. We
evaluate our approach on realistic unmanned aerial vehicle flight data, nearing the
performance of state-of-the-art visual-inertial odometry systems. We demonstrate
the applicability of the model to generative prediction and planning.

1 INTRODUCTION

We address the problem of learning representations of spatial environments, perceived through RGB-D
and inertial sensors, such as in mobile robots, vehicles or drones. Deep sequential generative models
are appealing, as a wide range of inference techniques such as state estimation, system identification,
uncertainty quantification and prediction is offered under the same framework (Curi et al., 2020; Karl
et al., 2017a; Chung et al., 2015). They can serve as so-called world models or environment simulators
(Chiappa et al., 2017; Ha & Schmidhuber, 2018), which have shown impressive performance on
a variety of simulated control tasks due to their predictive capability. Nonetheless, learning such
models from realistic spatial data and dynamics has not been demonstrated. Existing spatial generative
representations are limited to simulated 2D and 2.5D environments (Fraccaro et al., 2018).

On the other hand, the state estimation problem in spatial environments—SLAM—has been solved in
a variety of real-world settings, including cases with real-time constraints and on embedded hardware
(Cadena et al., 2016; Engel et al., 2018; Qin et al., 2018; Mur-Artal & Tardós, 2017). While modern
visual SLAM systems provide high inference accuracy, they lack a predictive distribution, which is a
prerequisite for downstream perception–control loops.

Our approach scales the above deep sequential generative models to real-world spatial environments.
To that end, we integrate assumptions from multiple-view geometry and rigid-body dynamics com-
monly used in modern SLAM systems. With that, our model maintains the favourable properties of
generative modelling and enables prediction. We use the recently published approach of Mirchev et al.
(2019) as a starting point, in which a variational state-space model, called DVBF-LM, is extended
with a spatial map and an attention mechanism. Our contributions are as follows:

• We use multiple-view geometry to formulate and integrate a differentiable raycaster, an
attention model and a volumetric map.

• We show how to integrate rigid-body dynamics into the learning of the model.
• We demonstrate the successful use of variational inference for solving direct dense SLAM

for the first time, obtaining performance close to that of state-of-the-art localisation methods.
• We demonstrate strong predictive performance using the learned model, by generating

spatially-consistent real-world drone-flight data enriched with realistic visuals.
• We demonstrate the model’s applicability to downstream control tasks by estimating the

cost-to-go for a collision scenario.

1

Published as a conference paper at ICLR 2021

Predicted colour Observed colour

Predicted depth SGBM depth

−4 −2 0 2 4
x [m]

−4

−3

−2

−1

0

1

2

3

4

y
[m

]

star, max speed 3.0 m/s

MOCAP
proposed

Figure 1: Illustration of the proposed quadcopter localisation and dense mapping. Left: top-down
view of the localisaton estimate. Right: generative depth and colour reconstructions for one time step.

The contributions allow the reformulated model to tackle realistic RGB-D scenarios with 6 DoF.

2 RELATED WORK

Generative models for spatial environments GTM-SM (Fraccaro et al., 2018) focuses on long-
term predictions with a non-metric deterministic external memory. Chaplot et al. (2018) formulate an
end-to-end learning model for active global localisation, filtering with a likelihood update predicted
by a neural network. The agent can turn in four directions and move on a plane, perceiving images of
the environment. VAST (Corneil et al., 2018) assumes a discrete state space for a generative model
applied to the 2.5D Vizdoom environment. Whittington et al. (2018) model agents moving on a
2D grid with latent neurologically-inspired grid and place cells. Other works propose end-to-end
learnable generative scene models (Eslami et al., 2018; Engelcke et al., 2020), without considering the
agent dynamics. Like in the above, we put major emphasis on the generative predictive distribution
of our model. With it, the agent can imagine the consequences of its future actions, a prerequisite
for data-efficient model-based control (Chua et al., 2018; Hafner et al., 2019a;b; Becker-Ehmck
et al., 2020). However, the aforementioned deep generative spatial models have only been applied on
simulated 2D, 2.5D (movement restricted to a plane) and very simplified 3D environments.

A major challenge when scaling to the real world is to ensure that the learned components, and in
turn the generative predictions, generalise to observed but yet unvisited places. Gregor et al. (2019)
highlight another problem, that of long-term consistency when predicting ahead, and address it by
learning with overshooting. In contrast, our method resolves these issues by injecting a sufficient
amount of domain knowledge, without limiting the flexibility w. r. t. learning. To this end, we begin
by sharing the probabilistic factorisation of DVBF-LM (Mirchev et al., 2019), a deep generative
model that addresses the tasks of localisation, mapping, navigation and exploration in 2D. We then
redefine the map, the attention, the states, the generation of observations and the overall inference,
allowing for real-world 3D modelling and priming our method for data-efficient online inference in
the future. We discuss why these changes are necessary more thoroughly in appendix A.

Combining learning and spatial domain knowledge Fully-learned spatial models with an explicit
memory component have been studied by Parisotto & Salakhutdinov (2018); Zhang et al. (2017);
Oh et al. (2016). Further relying on geometric knowledge, Tang & Tan (2019) propose learning
through the whole bundle adjustment optimisation, formulated on CNN feature maps of the observed
images. Czarnowski et al. (2020) define a SLAM system based on learned latent feature codes of
depth images, a continuation of the works by Zhi et al. (2019); Bloesch et al. (2018). Factor-graph
maximum a posteriori optimisation is then conducted, substituting the observations for their respective
low-dimensional codes, leading to point estimates of the individual geometry of N keyframes and
the agent poses over time. Wei et al. (2020) maintain cost volumes (Newcombe et al., 2011) for
discretised poses and depth, and let a 3D CNN learn how to predict the correct geometry and pose
estimates from them. Depth cost volumes are also used by Zhou et al. (2018) in learning to predict
depth and odometry with neural networks. In the work by Yang et al. (2020), networks that predict
odometry and depth are combined with DSO, leading to a SLAM system that utilises learning to its

2

Published as a conference paper at ICLR 2021

advantage. Jatavallabhula et al. (2019) investigate differentiable SLAM, treating odometry estimation
and mapping separately. The considered rendering gradients in that method are from the fused map
to the observations, which is the opposite of the gradient paths used for learning in our work.

As in our approach, the geometric assumptions in the majority of these works allow the systems to
generalise more easily to unseen cases and real-world data. What distinguishes our method is an
explicit generative model, able to predict the agent movement and observations in the future. Addi-
tionally, our approach is fully-probabilistic, maintaining complete distributions over the variables of
interest, whereas the aforementioned approaches are not. Our method is also end-to-end differentiable
and can be implemented in auto-diff frameworks, welcoming learned components. We are bridging
the gap between probabilistic generative models, learning and spatial domain knowledge.

Depth estimation and differentiable rendering Recent promising approaches combine learning
and non-parametric categorical distributions for depth estimation (Laidlow et al., 2020; Liu et al.,
2019), fusing likelihood terms into a consistent depth estimate. Such depth estimation is compatible
with our system and can be used to formulate priors, but for now we rely on a traditional method
as a first step (Hirschmuller, 2007). Inferring whole scenes parameterised with neural networks by
backpropagation through realistic differentiable rendering has also become a prevalent direction of
research (Bi et al., 2020; Mildenhall et al., 2020; Sitzmann et al., 2020). In our method the occupancy
and colour map are inferred in a similar way, but the raycasting scheme we follow is simple, meant
only to illustrate the framework as a whole. We note that the current inference times of e.g. Bi
et al. (2020) amount to days (see appendix of that work), which is hard to scale to online inference.
Extending our approach with a more advanced rendering method is the subject of future work.

Bayesian SLAM inference To keep exposition brief, we refer to (Cadena et al., 2016) for an
overview of modern SLAM inference and focus only on approaches that have applied fully-Bayesian
methods to SLAM. The inference in this work can be categorised as probabilistic SLAM, other
prominent examples of which are FastSLAM (Montemerlo et al., 2002) and RBPF SLAM (Grisetti
et al., 2005). What distinguishes our method is the application of variational inference with SGVB
(Kingma & Welling, 2014). Our model does not restrict the used distributions and allows any
differentiable functional form, which enables us to use neural networks. The contribution by Murphy
(Murphy, 1999) is one of the first to infer a global map with Bayesian methods. Bayesian Hilbert
maps (Senanayake & Ramos, 2017) focus on a fully Bayesian treatment of Hilbert maps for long-term
mapping in dynamic environments. Stochastic variational inference is used to infer agent poses from
observed 2D image features in (Jiang et al., 2017; Jiang et al., 2019). DVBF-LM (Mirchev et al.,
2019) uses Bayes by Backprop (Blundell et al., 2015) for the inference of the global map variable.

3 METHOD

Background We adhere to the graphical model of DVBF-LM (Mirchev et al., 2019), but we
introduce novel design choices for every model component and implement the overall inference
differently, to allow for real-world 3D modelling. In the following, we will first describe the assumed
factorisation and then explain the introduced modifications. The assumed joint distribution of all
variables is:

p(x1:T , z1:T ,m1:T ,M | u1:T−1)

= p(M)ρ(z1)
T∏

t=1

p(xt |mt)p(mt | zt,M)
T−1∏

t=1

p(zt+1 | zt,ut), (1)

where x1:T are observations, z1:T agent states, m1:T map charts and u1:T−1 conditional inputs
(controls). The factorisation defines a traditional state-space model extended with a global map
variable M. For a single step t, an observation xt is generated from a map chart mt—the relevant
extract from the global M around the current agent pose zt (cf. fig. 2a). Chart extraction is given
by p(mt | zt,M), which can be seen as an attention mechanism. In this graphical model, SLAM
is equivalent to inference of the agent states z1:T and the map M. For the remainder of this work,
we assume all observations xt ∈ Rw×h×4 are RGB-D images. Next, we will describe the functional
forms of the map M, the attention p(mt | zt,M), the emission p(xt |mt) and the states z1:T .

3

Published as a conference paper at ICLR 2021

xt

ot ct mt

zt

Mocc Mcol M

.

latent
observed

(a)

5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75

depth values

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

pa
nc

y
va

lu
es

τ

dk−1 dk

oi,
j,k
−

1
oi,

j,k

(b)

Figure 2: (a) One time step of the proposed probabilistic graphical model. (b) Linear interpolation
during ray casting for a single ray in the emission model. dk is the depth corresponding to the first
ray value that exceeds τ . The output depth d is formed by linearly interpolating between dk−1 and
dk based on the occupancy values oi,j,k−1 and oi,j,k.

Geometric map The map random variable M = (Mocc,Mcol) consists of two components.
Mocc ∈ Rl×m×n is a spatially arranged 3D grid of scalar values that represent occupancy. Mcol

represents the parameters of a feed-forward neural network fMcol : R3 → [0, 255]3. The network
assigns an RGB colour value to each point in space. In this work, the network weights are deterministic
and point-estimated via maximum likelihood, the fully-Bayesian treatment of the colour map is left
for future work. The prior and approximate posterior distributions over the occupancy map are:

p(Mocc) =
∏

i,j,k

N (Mocc
i,j,k | 0, 1), qφ(Mocc) =

∏

i,j,k

N (Mocc
i,j,k | µi,j,k, σ2

i,j,k).

Here and for the rest of this work qφ will denote a variational approximate posterior distribution, with
all its optimisable parameters summarised in φ. We assume p(Mocc) and qφ(Mocc) factorise over
grid cells. The variational parameters µi,j,k, σi,j,k are optimised with Bayes by Backprop (Blundell
et al., 2015).

Attention In the proposed model, the composition of the attention p(mt | zt,M) and the emission
p(xt | mt) implements volumetric raycasting. We engineer them based on our understanding of
geometry to ensure generalisation across unseen environments. The attention p(mt | zt,M) forms
latent charts mt, which correspond to extracts from the map M around zt. We identify mt with
the part of the map contained in the frustum of the current camera view. To attend to that region,
first the intrinsic camera matrix K (assumed to be known) and the agent pose zt are used to cast a
ray for any pixel [i, j]T in the reconstructed observation. The ray is then discretised equidistantly
along the depth dimension into r-many points, resulting into a collection of 3D world coordinates
pt ∈ Rw×h×r×3. Depth candidate values d ∈ {kε}1≤k≤r are associated with each point along a ray,
where ε is a resolution hyperparameter. The latent chart mt = (ot, ct) factorises into an occupancy
chart ot ∈ Rw×h×r and a colour chart ct ∈ Rw×h×r×3. Let pijkt ∈ R3 be a 3D point in the spanned
camera frustum. To form the occupancy chart ot, cells from the map Mocc around pijkt are combined
with a weighted kernel oijkt =

∑
l,h,sMocc

l,h,sαl,h,s(p
ijk). Note that here l, h, s are indices of the

occupancy map voxels. We choose a trilinear interpolation kernel for α, merging only eight map cells
per point. This makes the attention fast and differentiable w.r.t zt. The colour chart ct = fMcol(pt)
is formed by applying fMcol , the colour neural network, point-wise to each 3D point. In this work,
we keep the chart mt deterministic. The full attention procedure can be described as:

p(mt | zt,M) =
∏

ijk

δ(mijk
t = fA(M, pijk)), pijk = T(zt)K

−1[i, j, 1]T d︸︷︷︸
:=kε

.

Here T(zt) ∈ SE(3) denotes the rigid camera transformation defined by the current agent state zt
and i, j, k index the points lying inside the attended camera frustum.

4

Published as a conference paper at ICLR 2021

Emission through ray casting The emission model factorises over the observed pixels:

p(xt |mt) =
∏

ij

p(xijt |mt), p(xijt |mt) = p(dijt , c̃
ij
t | ot, ct).

It operates on the extracted chart mt = (ot, ct). Here xijt ∈ R4 denotes an RGB-D pixel value, i.e.
for each pixel [i, j]T we reconstruct a depth dijt and a colour value c̃ijt . The mean of the depth value
dijt is formed by a function fE :

fE(ot)
ij = ε · min

k∈[r]
k s.t. oijkt > τ.

fE traces the ray for pixel [i, j]T , searching for the minimum depth d = εk for which the occupancy
value oijkt exceeds a threshold τ (a hyperparameter).1 Since the above min operation is not differen-
tiable in ot, we linearly interpolate between the depth value for the first ray hit and its predecessor to
form the mean of the emitted depth (cf. fig. 2b):

µijdt = αfE(ot)
ij + (1− α)(fE(ot)

ij − ε), α =
τ − oi,j,k−1t

oi,j,kt − oi,j,k−1t

.

The mean of the emitted colour µijc̃t
= cijkt directly corresponds to the k-th element of the attended

colour values, where k is the index of the first hit from raycasting above. A heteroscedastic Laplace
distribution is assumed for both the emitted depth and colour values:

p(xijt |mt) = Laplace(xijt ; (µijdt ,µ
ij
c̃t

), diag(σijE)).

Agent states All agent states are represented as vectors zt = (λt,ωt, z
rest
t) ∈ Rdz . λt ∈ R3 is the

agent location in space. ωt ∈ H4 is the agent orientation, represented as a quaternion. zrest
t ∈ Rdz−7

is a remainder. Depending on the used transition model, zrest
t can be λ̇t alone or it can contain

an abstract latent portion not explicitly matching physical quantities. The approximate posterior
variational family over the agent states factorises over time:

qφ(z1:T) =
∏

t

qφ(zt) =
∏

t

N (zt | µz
t , diag(σz

t)
2).

Here µz
t ∈ Rdz and σz

t ∈ Rdz are free variables for each latent state and are optimised with
SGVB (Kingma & Welling, 2014). Notably, the above factorisation over states bears similarity to
pose-graph optimisation. One can see the individual terms qφ(zt) as graph nodes, and the loss terms
induced by the transition and emission in the objective presented next as the edge constraints.

Overall objective The elements described so far, together with the transition p(zt+1 | zt,ut)
discussed in the next section, form the probabilistic graphical model in eq. (1). The assumed
variational approximate posterior is

qφ(z1:T)qφ(M) ≈ p(z1:T ,M | x1:T ,u1:T−1).

For the optimisation objective we use the negative evidence lower bound (ELBO) (Jordan et al.,
1999), given as

Lelbo = −Eq
[
T∑

t=1

log p(xt |mt)

]

+ KL(qφ(M) || p(M)) + Eq

[
T∑

t=2

KL(qφ(zt) || p(zt | zt−1,ut−1))

]
. (2)

We employ the approximate particle optimisation scheme from (Mirchev et al., 2019) to deal with
long data sequences. The only optimised parameters are φ, containing the parameters of the map and
the agent states.

Making image reconstruction tractable Using the full observations during inference is not fea-
sible, as raycasting for all pixels is too computationally demanding. To ensure tractability of the
inference method we therefore use reconstruction sampling (Dauphin et al., 2011), emitting a random
part of xt at a time, by randomly selecting c-many pixel coordinates [i, j]T for every gradient step.
Here c is a constant much smaller than the image size wh, speeding up gradient updates by a few
orders of magnitude. Note that this results in an unbiased, faster and more memory-efficient Monte
Carlo approximation of the original objective, avoiding loss of information due to subsampling or
sparse feature selection.

1oijk
t is set to 0 for k ≤ 1 and fE(ot) = rε if no value exceeds τ along the ray.

5

Published as a conference paper at ICLR 2021

4 LEARNING RIGID-BODY DYNAMICS

The introduced model factorisation includes a transition p(zt+1 | zt,ut), which allows the natural
inclusion of agent movement priors. This is reflected in the corresponding KL terms in eq. (2). Note
that using variational inference lets us integrate any differentiable transition model as-is, without
additional linearisation. In the following, we assume the agent has an inertial measurement unit
(IMU) providing readings λ̈

imu
t (linear acceleration) and ω̇imu

t (angular velocity) over time, which we

choose to treat as conditional inputs ut = (λ̈
imu
t , ω̇imu

t).

Engineering rigid-body dynamics In the absence of learning, one can use an engineered transition
prior that integrates the IMU sensor readings over time. The latent state zt = (λt,ωt, λ̇t) then
contains the location, orientation and linear velocity of the agent at every time step. The transition is
defined as:

p(zt+1 | zt,ut) = N (zt+1 | fT (zt,ut), diag(σT)2).

The state update fT implements standard rigid-body dynamics using Euler integration (see ap-
pendix D.3). This engineered model will serve as a counterpart for the learned transition model
presented next.

Learning a dynamics model Engineered models of the agent movement are often imperfect or
not available. We therefore provide a method for learning a fully-probabilistic transition model from
streams of prerecorded controls and agent pose observations, which we can then seamlessly include
as a prior in the full model. We do not learn the transition with per-step, fully-supervised regression.
Instead we formulate a generative sequence model for T time steps. This allows us to separate the
aleatoric uncertainty in the observed agent states from the uncertainty in the transition itself. We
follow the literature on variational state-space models (Fraccaro et al., 2016; Karl et al., 2017a). We
assume we have a sequence of locations λ̂1:T and orientations ω̂1:T as observations, and a sequence
of IMU readings, as well as per-rotor revolutions per minute (RPM) and pulse-width modulation
(PWM) signals, as conditional inputs u1:T−1 = (λ̈

imu
1:T−1, ω̇

imu
1:T−1,u

rpm
1:T−1,u

pwm
1:T−1). We define the

generative state-space model:

p(λ̂1:T , ω̂1:T , z1:T | u1:T−1) = δ(z1)p(λ̂1, ω̂1 | z1)
T−1∏

t=1

pθT
(zt+1 | zt,ut)p(λ̂t+1, ω̂t+1 | zt+1).

The objective is to learn generative transition parameters θT , such that the marginal likeli-
hood of observed agent poses pθT

(λ̂1:T , ω̂1:T | u1:T−1) is maximised. The latent state is
zt = (λt,ωt, λ̇t, z

rest
t), identifying its first three components with location, orientation and lin-

ear velocity. The remainder zrest
t acts as an abstract state part. Its role is to absorb any quantities that

might affect the transition, for example higher moments of the dynamics or sensor biases accumulated
over previous time steps. The transition is implemented as a residual neural network on top of Euler
integration:

pθT
(zt+1 | zt,ut) = N (zt+1 | µt+1, diag(σt+1)2)

µt+1 =

[
fT (zt,ut)

0

]
+ MLPµ(zt,ut), σt+1 = MLPσ(zt,ut),

where fT is the engineered Euler integration from the previous section and the abstract remainder
of the latent state is formed entirely by the network (MLP). This strong inductive bias shapes
the transition to resemble regular integration in the beginning of training, exploiting engineering
knowledge, while still allowing the MLP to eventually take over and correct biases as necessary.

The emission isolates the location and orientation from the latent state as its mean:

p(λ̂t, ω̂t | zt) = N (λ̂t, ω̂t | (λt,ωt), diag(σ)2).

The inference over the latent states uses Gaussian fusion as per (Karl et al., 2017b) and the necessary
inverse emission is given by a bidirectional RNN that looks into all observations and conditions:

q̂(zt | λ̂1:T , ω̂1:T ,u1:T−1) = N (zt | RNN(λ̂1:T , ω̂1:T ,u1:T−1)).

6

Published as a conference paper at ICLR 2021

We minimise the negative ELBO w.r.t. θT , omitting the conditions in q for brevity:

L(θT) = −Eq
[
T∑

t=1

log p(λ̂t, ω̂t | zt)
]

+ Eq

[
T∑

t=2

KL(q(zt) || pθT
(zt | zt−1,ut−1))

]
.

5 EXPERIMENTS

The experiments are designed to validate three model aspects—the usefulness of the reconstructed
3D world maps, multi-step prediction given future controls and the localisation quality.

For evaluation, we use the Blackbird data set (Antonini et al., 2020). It consists of over ten hours
of real quadcopter flight data. The ground truth poses are recorded by a motion capture (MOCAP)
system. For each trajectory, Blackbird contains realistic simulated stereo images. We obtain depth
from these images using OpenCV’s Semi-Global Block Matching (SGBM) (Hirschmuller, 2007)
and treat the left RGB camera image and the estimated depth as an observation xt. We evaluate our
method on the test trajectories used in (Nisar et al., 2019). Other trajectories with no overlap are used
for training the learned dynamics model and model selection. All model hyperparameters are fixed to
the same values for all evaluations. More details can be found in appendices C and D.

5.1 DENSE GEOMETRIC MAPPING

A fused dense map, obtained as an approximate variational posterior qφ(M), allows us to simulate
(emit) the environment from any novel view point. We take the NYC subway station Blackbird
environment as an example, in which the test set trajectories take place. Figure 3a shows image
reconstructions, generated along an example trajectory segment. The model can successfully generate
both colour and depth based on qφ(M). Note that the true observations are not needed for this, as all
of the information is recorded in M through gradient descent. Even though we use reconstruction
sampling during training, on average all image pixels contribute to learning the map. This leads to
dense predictions of the agent’s sensors. The inferred map correctly filters out wrong observations, as
can be seen in the top-down point-cloud comparison in fig. 4d, noting the subway station columns.

5.2 USING MAPS FOR DOWNSTREAM TASKS

Besides parameterising predictive emissions, a map can be used to define downstream navigation
and exploration tasks. Since the map is modelled as a random variable, the approximate posterior
qφ(M) also gives us an uncertainty estimate, in this work only applying to Mocc. Figure 4a shows
a horizontal slice from the occupancy grid, along which the map uncertainty is evaluated. The
uncertainty is low inside the subway station, and high on the outside where the agent has not visited.
Meaningful map uncertainty is useful for information-theoretic exploration (Mirchev et al., 2019).

The occupancy map can also be used to construct navigation plans, by computing a collision cost-to-
go J(z1) = Eu1:T ,z1:T∼p(·)[

∑
t c(ut, zt)] (Bertsekas, 2005). For example, the cost c(u, z) can be

the occupancy value in the map at zt, defining a collision cost. To simulate a control policy, we use
an empirical distribution of randomly picked 40-step sequences of IMU readings u1:T from the test
data. Then we generatively sample future states z1:T for these controls and evaluate the respective
costs. Figure 4c shows J(z) evaluated for all states along the considered 2D slice of the map. The
cost-to-go is high near the walls and columns, and gradually drops off in the free space.

5.3 GENERATING FUTURE PREDICTIONS

The proposed model can predict the agent movement and observations for a sequence of future
conditional inputs, i.e. p(z2:T ,x1:T | u1:T−1, z1). Such predictions are crucial for model-based
control, and typically not readily available from modern visual SLAM systems. Figure 3b shows
predictions of the full spatial model for 200 steps in the future, comparing both the engineered and
learned transition priors. Long-term prediction is significantly better with the learned transition,
indicating that it corrects biases present in the agent sensors. Conversely, with the engineered
transition localisation drift is higher and wrong map regions are queried for generation, translating
into wrong depth and colour predictions. We refer to the supplementary video for more examples
using the predictive model. Evaluated on 200 test set trajectories with 100 steps, the learned transition

7

Published as a conference paper at ICLR 2021

pr
ed

ic
te

d
ob

se
rv

ed
pr

ed
ic

te
d

ob
se

rv
ed

(a)

ob
s.

colour depth

−5 0 5 10
x [m]

−6

−4

−2

0

2

4

6

y
[m

]

MOCAP eng. learn.

(b)

Figure 3: (a) Emissions at different trajectory points, sampled at a one second interval. Top to bottom:
predicted colour, observed colour, predicted depth, observed depth. (b) Generative predictions using
the engineered transition vs. the learned transition in the complete model. Left: top-down view of
200-step location predictions. Right: predicted colour and depth for the same step for both models.

−5 0 5
x [m]

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

y
[m

]

(a)

−5 0 5
x [m]

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

y
[m

]

(b)

−5 0 5
x [m]

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

y
[m

]

(c) (d)

Figure 4: An illustration of a reconstructed dense map for the NYC subway station environment. Note
that columns from the subway are captured in the reconstructed map. The figures show a horizontal
map slice. (a) Occupancy map uncertainty (white means low uncertainty). (b) Occupancy map mean
(white means occupied). (c) Collision cost-to-go (red means high cost). (d) Generated point cloud
(black, for inferred agent poses) vs. data point cloud (red, for ground truth MOCAP poses).

leads to better predictions than its engineered counterpart, with an average translational RMSE
of 1.156 and rotational RMSE of 0.096, compared to 13.768 and 0.111 for the engineered model.
Similarly, the pixel-wise log-likelihood of the observation predictions is −1.23 when the learned
model is used, and −1.85 for the engineered model, averaged over 1000 images. This evaluation
clearly illustrates the positive effect of the learned transition on the model’s predictive performance.

5.4 AGENT LOCALISATION

Finally, we evaluate localisation performance during SLAM inference. Figure 5 shows estimates for
the fastest trajectories in the test set (up to 4m/s). We refer to appendix F and the supplementary
video for more inference examples in different environments. Table 1 summarises the average
absolute RMSE for all test trajectories, evaluated following Zhang & Scaramuzza (2018). Here
we compare to the results reported by Nisar et al. (2019), including VIMO (Nisar et al., 2019) and
VINS-MONO (Qin et al., 2018)—two state-of-the art visual odometry methods. In this case both
systems are carefully tuned to the environment. While the RMSE of our method is not as low as
that of the baselines, we note that these are absolute values. The online translational error of our
method does not exceed 0.4m, which is practical considering the average 232m trajectory length. Our
method also succeeds on the fastest star test trajectory, for which both baselines have been reported
to fail without specific retuning. We note that the two systems run in real-time, whereas currently our
method does not—we will tackle real-time inference in our future work (see appendix E).

We also compare to the system benchmarks provided by Antonini et al. (2020), including results
for VINS-MONO, VINS-Fusion (Qin et al., 2019) and ORB-SLAM2 (Mur-Artal & Tardós, 2017).
We use the same star and picasso trajectories reported in table 1, and refer to Antonini et al. (2020)
for the exact evaluation assumptions. We also explicitly restate a note made by the authors: the
benchmarked systems are not carefully tuned to the Blackbird environment and their loop-closure

8

Published as a conference paper at ICLR 2021

−4 −2 0 2 4
x [m]

−4

−2

0

2

y
[m

] MOCAP
proposed

(a)

−4 −2 0 2 4
x [m]

−4

−2

0

2

y
[m

]

MOCAP
proposed

(b)

20 40 60 80 100
distance travelled [m]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%
dr

if
tr

at
e

Relative translational error
proposed (eng. trans.)
proposed (learn. trans.)
ORB-SLAM
VINS-MONO
VINS-FUSION

20 40 60 80 100
distance travelled [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

er
ro

r[
de

g/
m

]

Relative yaw error
proposed (eng. trans.)
proposed (learn. trans.)
ORB-SLAM
VINS-MONO
VINS-FUSION

(c)

Figure 5: (a,b) Top-down view of localisation for star, forward yaw, max speed 4.0m/s and picasso,
constant yaw, max speed 4.0m/s. (c) Localisation with our method compared to the benchmark
results reported by Antonini et al. (2020) for picasso, constant yaw and star, forward yaw, 1 to 4m/s.

Table 1: Absolute localisation RMSE for each test trajectory. See appendix B for a discussion of the
two noticeable translation RMSE outliers with the learned transition.

Translational RMSE [m] Rotational RMSE [rad]
proposed
(eng. trans.)

proposed
(learn. trans)

VIMO VINS proposed
(eng. trans.)

proposed
(learn. trans.)

VIMO VINS

picasso 1 m/s 0.139 0.143 0.055 0.097 0.053 0.052 0.013 0.011
2 m/s 0.136 0.131 0.040 0.043 0.069 0.064 0.007 0.008
3 m/s 0.120 0.122 0.043 0.045 0.073 0.070 0.005 0.005
4 m/s 0.174 0.368 0.049 0.056 0.124 0.149 0.009 0.011

star 1 m/s 0.137 0.133 0.088 0.102 0.057 0.056 0.008 0.008
2 m/s 0.163 0.626 0.082 0.133 0.061 0.157 0.010 0.011
3 m/s 0.281 0.187 0.183 0.235 0.080 0.059 0.015 0.016
4 m/s 0.156 0.160 - - 0.065 0.059 - -

modules are disabled, which might not be reflective of their best possible performance. Therefore,
these baselines represent the performance of an off-the-shelf visual odometry system without changing
its hyperparameters. Figure 5c summarises the comparison, reporting error statistics for segments of
different length (x-axis) divided by the distance travelled. Localisation with our method is robust and
drift does not compound, which we attribute to the global map variable M serving as an anchor.

Overall, localisation is successful for all test trajectories and its accuracy is practical and close to that
of state-of-the-art systems, while all merits of deep probabilistic generative modelling are retained.

6 CONCLUSION

This work is the first to show that learning a dense 3D map and 6-DoF localisation can be accomplished
in a deep generative probabilistic framework using variational inference. The proposed spatial
model features an expressive predictive distribution suitable for downstream control tasks, it is
fully-differentiable and can be optimised end-to-end with SGD. We further propose a probabilistic
method for learning agent dynamics from prerecorded data, which significantly boosts predictive
performance when incorporated in the full model. The proposed framework was used to model
quadcopter flight data, exhibiting performance close to that of state-of-the-art visual SLAM systems
and bearing promise for real-world applications. In the future, we will address the current model’s
speed limitations and move towards downstream applications based on the learned representation.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pp. 265–283, 2016.

9

Published as a conference paper at ICLR 2021

Amado Antonini, Winter Guerra, Varun Murali, Thomas Sayre-McCord, and Sertac Karaman. The
blackbird uav dataset. The International Journal of Robotics Research, 0(0):0278364920908331,
2020. doi: 10.1177/0278364920908331.

Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and Patrick van der Smagt. Learning to fly via
deep model-based reinforcement learning, 2020.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena Scientific,
Belmont, MA, USA, 3rd edition, 2005.

S. Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Milovs Havsan, Yannick
Hold-Geoffroy, D. Kriegman, and R. Ramamoorthi. Neural reflectance fields for appearance
acquisition. ArXiv, abs/2008.03824, 2020.

Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and Andrew J. Davison.
Codeslam - learning a compact, optimisable representation for dense visual slam. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2560–2568, 2018.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. CoRR, abs/1505.05424, 2015.

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian D.
Reid, and John J. Leonard. Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age. IEEE Trans. Robotics, 32(6):1309–1332, 2016.

Devendra Singh Chaplot, Emilio Parisotto, and Ruslan Salakhutdinov. Active neural localization. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ry6-G_66b.

Silvia Chiappa, Sébastien Racanière, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=B1s6xvqlx.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, pp. 4754–4765, 2018.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pp. 2980–2988, 2015.

Dane Corneil, Wulfram Gerstner, and Johanni Brea. Efficient model-based deep reinforcement
learning with variational state tabulation. volume 80 of Proceedings of Machine Learning Research,
pp. 1049–1058, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Sebastian Curi, Silvan Melchior, Felix Berkenkamp, and Andreas Krause. Structured variational
inference in partially observable unstablegaussian process state space models. volume 120 of
Proceedings of Machine Learning Research, pp. 147–157, The Cloud, 10–11 Jun 2020. PMLR.

J Czarnowski, T Laidlow, R Clark, and AJ Davison. Deepfactors: Real-time probabilistic dense
monocular slam. IEEE Robotics and Automation Letters, 5:721–728, 2020. doi: 10.1109/lra.2020.
2965415. URL http://dx.doi.org/10.1109/lra.2020.2965415.

Yann N. Dauphin, Xavier Glorot, and Yoshua Bengio. Large-scale learning of embeddings with
reconstruction sampling. In Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pp. 945–952, 2011.

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. IEEE Transactions on Pattern Analysis
and Machine Intelligence, March 2018.

10

Published as a conference paper at ICLR 2021

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Generative
scene inference and sampling with object-centric latent representations. In International Conference
on Learning Representations, 2020.

S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Morcos, Marta
Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor, David P. Reichert,
Lars Buesing, Theophane Weber, Oriol Vinyals, Dan Rosenbaum, Neil Rabinowitz, Helen King,
Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray Kavukcuoglu, and Demis Hassabis. Neural
scene representation and rendering. Science, 360(6394):1204–1210, 2018. doi: 10.1126/science.
aar6170. URL https://science.sciencemag.org/content/360/6394/1204.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 2199–2207, 2016.

Marco Fraccaro, Danilo Jimenez Rezende, Yori Zwols, Alexander Pritzel, S. M. Ali Eslami, and
Fabio Viola. Generative temporal models with spatial memory for partially observed environments.
CoRR, abs/1804.09401, 2018.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron van den
Oord. Shaping belief states with generative environment models for rl. In Advances in Neural
Information Processing Systems, pp. 13475–13487, 2019.

Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling. Proceedings of the
2005 IEEE International Conference on Robotics and Automation, pp. 2432–2437, 2005.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 31, pp. 2450–2462. Curran Associates, Inc., 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019b.

Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual information. IEEE
Transactions on pattern analysis and machine intelligence, 30(2):328–341, 2007.

Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull. gradslam: Dense slam meets automatic
differentiation, 2019.

X. Jiang, M. Hoy, H. Yu, and J. Dauwels. Linear-complexity stochastic variational bayes inference
for slam. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC), pp. 1–6, 2017.

Xiaoyue Jiang, Hang Yu, Michael Hoy, and Justin Dauwels. Robust linear-complexity approach to full
slam problems: Stochastic variational bayes inference. In 2019 IEEE 90th Vehicular Technology
Conference (VTC2019-Fall), pp. 1–5. IEEE, 2019.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational bayes
filters: Unsupervised learning of state space models from raw data. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017a.

Maximilian Karl, Maximilian Soelch, Philip Becker-Ehmck, Djalel Benbouzid, Patrick van der
Smagt, and Justin Bayer. Unsupervised real-time control through variational empowerment. arXiv
preprint arXiv:1710.05101, 2017b.

11

Published as a conference paper at ICLR 2021

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the 2nd
International Conference on Learning Representations (ICLR), 2014.

T. Laidlow, J. Czarnowski, A. Nicastro, R. Clark, and S. Leutenegger. Towards the probabilistic
fusion of learned priors into standard pipelines for 3d reconstruction. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7373–7379, 2020. doi: 10.1109/ICRA40945.
2020.9197001.

Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa G Narasimhan, and Jan Kautz. Neural rgb (r) d sensing:
Depth and uncertainty from a video camera. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10986–10995, 2019.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Atanas Mirchev, Baris Kayalibay, Maximilian Soelch, Patrick van der Smagt, and Justin Bayer.
Approximate bayesian inference in spatial environments. In Proceedings of Robotics: Science and
Systems, FreiburgimBreisgau, Germany, June 2019.

Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fastslam: A factored
solution to the simultaneous localization and mapping problem. In AAAI/IAAI, 2002.

Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–1262, 2017.

Kevin P. Murphy. Bayesian map learning in dynamic environments. In Advances in Neural Informa-
tion Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 - December
4, 1999], pp. 1015–1021, 1999.

Richard A. Newcombe, Steven Lovegrove, and Andrew J. Davison. Dtam: Dense tracking and
mapping in real-time. 2011 International Conference on Computer Vision, pp. 2320–2327, 2011.

Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza. Vimo: Simultaneous visual
inertial model-based odometry and force estimation. In Proceedings of Robotics: Science and
Systems, FreiburgimBreisgau, Germany, June 2019.

Junhyuk Oh, Valliappa Chockalingam, Satinder P. Singh, and Honglak Lee. Control of memory,
active perception, and action in minecraft. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pp. 2790–2799, 2016.
URL http://jmlr.org/proceedings/papers/v48/oh16.html.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=Bk9zbyZCZ.

Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular visual-inertial
state estimator. IEEE Transactions on Robotics, 34(4):1004–1020, 2018.

Tong Qin, Jie Pan, Shaozu Cao, and Shaojie Shen. A general optimization-based framework for local
odometry estimation with multiple sensors. arXiv preprint arXiv:1901.03638, 2019.

Ransalu Senanayake and Fabio Ramos. Bayesian hilbert maps for dynamic continuous occupancy
mapping. In Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceed-
ings of Machine Learning Research, pp. 458–471. PMLR, 13–15 Nov 2017.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

Chengzhou Tang and Ping Tan. BA-net: Dense bundle adjustment networks. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=B1gabhRcYX.

12

Published as a conference paper at ICLR 2021

Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey
Radul, Matthew Johnson, and Rif A. Saurous. Simple, distributed, and accelerated probabilistic
programming. In Neural Information Processing Systems, 2018.

Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, and Xiangyang Xue. Deepsfm: Structure from
motion via deep bundle adjustment. In ECCV, 2020.

James Whittington, Timothy Muller, Shirely Mark, Caswell Barry, and Tim Behrens. Generalisation
of structural knowledge in the hippocampal-entorhinal system. In Advances in neural information
processing systems, pp. 8484–8495, 2018.

Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cremers. D3VO: Deep depth, deep pose and
deep uncertainty for monocular visual odometry. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

Jingwei Zhang, Lei Tai, Joschka Boedecker, Wolfram Burgard, and Ming Liu. Neural slam: Learning
to explore with external memory. arXiv preprint arXiv:1706.09520, 2017.

Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory evaluation for visual(-
inertial) odometry. In IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2018.

Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and Andrew J Davison. Scenecode: Monocular
dense semantic reconstruction using learned encoded scene representations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 11776–11785, 2019.

H. Zhou, B. Ummenhofer, and T. Brox. Deeptam: Deep tracking and mapping. In European
Conference on Computer Vision (ECCV), 2018.

13

Published as a conference paper at ICLR 2021

A USE OF DOMAIN KNOWLEDGE WHEN DESIGNING LEARNED SPATIAL
MODELS

(a) When the attention to the map is too narrow, emit-
ting from observed but yet unvisited places suffers from
non-local generalisation issues in an online setting.

(b) A 2D illustration of attending to the whole field of
view of the agent. Note that in our method the occu-
pancy map is a 3D volume, and the attended camera
frustum resembles a pyramid.

Figure 6: Simplified 2D examples of the conceptual difference the chosen attention can have on
generating observations.

What distinguishes our method from DVBF-LM (Mirchev et al., 2019) and other previous 2D and
2.5D deep generative sequence models is that we introduce geometric inductive biases (multiple-view
geometry, rigid-body dynamics) in a deep generative sequence model (inferred via the ELBO). We
hope the following overview of DVBF-LM’s methodology will exemplify why such assumptions
could be necessary and motivate our design choices.

DVBF-LM models the world as a 2D chessboard where the content of each grid cell describes a
360° horizontal panoramic view around the z-axis, centered at the agent 2D location. Observation
predictions are cropped from that view, relative to the way the agent is facing in 2D (and transformed
by an MLP). This already consitutes a set of basic geometric assumptions, but they can be limiting,
as explained below. First of all, the agent movement is restricted to a plane, with rotations around
one axis (no 6-DoF modelling). The main problem, however, is that the map is updated very locally,
only at the 2D location of the agent, because the attention of DVBF-LM only considers four map
cells directly underneath. For example, if the agent is standing 5m in front of a wall and facing it,
DVBF-LM only stores this information at that location in the map. If the agent moves 2m closer
to the wall, it is now accessing different cells, whose content is completely arbitrary (see fig. 6a).
These cells will have to learn the presence of the wall again. The map is thus unnecessarily redundant
and the agent would have to visit virtually all map cells to infill everything. This means observation
predictions from cells which have not been visited before will not be meaningful, even when they
were already in the field of view (FoV) of the agent. Localisation also suffers, as the map is more
easily allowed to establish multiple modes for the pose posterior because of the redundancy (same
content can be stored at different places by mistake), further complicating the perceptual aliasing
problem of spatial environments.

By contrast, in our method we use raycasting and attend to the whole camera frustum, accessing
all map content in the field of view of the agent, as shown in fig. 6b. Note that the depiction is
intentionally simplified to 2D for the sake of clarity, while the actual attention in our approach
operates in 3D. In the above example, the wall and the empty space in front of the agent would be
captured as soon as the agent sees the wall for the first time, and can be predicted from all regions
in the FoV. This constitutes a strong geometric inductive bias that will generalise across different
environments.

In general, the lack of geometric assumptions in previous deep spatial generative models (e.g. the
ones described in the first paragraph of section 2) is attractive, as it lessens the need for domain
knowledge, instead attempting to learn the whole system end-to-end. However, learning everything

14

Published as a conference paper at ICLR 2021

becomes problematic (not just in terms of runtime) when the inference needs to happen on-the-fly
and data is scarce, as is the case for autonomous agents. When the agent cannot afford to exhaustively
observe the whole environment, insufficient data for learning from scratch can lead to problems with
consistency in the map, consistency in the long-term predictions and ambiguous agent localisation.
One option is to address this through learning certain components in advance (e.g. as we do with
the dynamics model, see section 4). Once image data is involved, however, the generalisation of
learned components is much harder to ensure because of the curse of dimensionality. Observations
can vary greatly from one scene to the next, and free 6-DoF movement of the agent exacerbates
the problem further. Instead of collecting data exhaustively, in an attempt to pretrain a network to
learn how to render, we rely on the geometric knowledge that is already available to us to design
the map, the attention and the emission in section 3. Such assumptions are also at the core of many
of the models discussed in the second paragraph in the related work (section 2). In contrast to
these models, however, in our work we weave the aforementioned inductive biases into the deep
generative framework, which is fully-probabilistic, implies end-to-end differentiability and eases
the introduction of new learned components when needed. Therefore, our goal is to maintain an
expressive predictive distribution p(z2:T ,x1:T | u1:T−1, z1) that lets us predict the future, precisely
aligning with the performed inference based on past data at the same time. We stress that maintaining
a full probabilistic predictive model is needed to quantify uncertainty when planning for future actions
of the agent.

15

Published as a conference paper at ICLR 2021

B CASE STUDY: DRONE LANDING

In terms of the integrated transition p(zt+1 | zt,ut), we find that the learned transition performs
on par with its engineered counterpart when used for inference in the full model. However, when
inspecting the absolute RMSE in table 1, there appear to be two outliers—picasso, max speed 4.0
m/s and star, max speed 2.0 m/s, when using the learned transition. A closer examination showed
that this is entirely due to a large localisation error during landing at the end of the trajectories. In
both cases the agent fails to land correctly or falls over, leading to out-of-distribution conditions ut
from the IMU sensor (cf. fig. 7), for which the learned model does not generalise. Such behaviour is
not unexpected when it comes to neural networks. Localisation beforehand is stable along the whole
trajectory, the landing tracking failure happens only during the last 2 seconds of movement.

0 50 100 150
time [s]

−2

0

2

IM
U

va
lu

e

Angular velocity (x,y,z)

0 50 100 150
time [s]

−10

0

IM
U

va
lu

e

Linear acceleration (x,y,z)

0 50 100 150
time [s]

0.0

2.5

5.0

di
st

an
ce

er
ro

r[
m

]

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
value

de
ns

ity

Linear accelerations in y

flight landing

Figure 7: Illustration of the discussed failure landing of the quadcopter at the end of the two test set
trajectories, taking star, max speed 2.0 m/s as an example. The problematic segment of the trajectory
is marked with a red vertical band. Note the outlier controls at the end. Top left: angular velocity IMU
readings. Top right: linear acceleration IMU readings. Bottom left: absolute Euclidean distance error
w.r.t. the ground truth MOCAP locations. Note how the error is large only at the end of the trajectory,
and directly coincides with the outlier controls. Bottom right: comparison of the distribution of linear
accelerations in y during flight (red) vs. during landing (gray). The controls during landing are out of
distribution for the learned transition model.

16

Published as a conference paper at ICLR 2021

C DATA DETAILS AND OVERALL SETUP

For all presented experiments we used the Blackbird data set (Antonini et al., 2020), which can be
found here: https://github.com/mit-fast/Blackbird-Dataset. In the following
we describe the exact pre-processing of the data.

C.1 DATA PARTITIONING AND USAGE

The data was partitioned into a training, a validation and a test set. The trajectory shapes (e.g. star,
picasso, patrick, etc.) in every split were different. This was done to prevent accidental overfitting of
the learned transition model to any particular trajectory shape. In particular, the test set contains the
trajectories star, forward yaw and picasso, constant yaw, traversed at different speeds, everything else
is used for training and validation. This is the same test setup as the one used by Nisar et al. (2019)
(considered as a baseline). Appendix G lists the exact trajectories used for each split, along with the
number of steps in each trajectory after pre-processing (which includes subsampling).

The training set was used only to train the learned transition model pθT
(zt+1 | zt,ut), following the

method described in section 4. The learned transition model is trained separately before it is used as a
prior in the full spatial model. Pretraining the model on multiple trajectories beforehand, as opposed
to training it from scratch during SLAM inference, ensures that the transition really captures the agent
dynamics and does not overfit the currently explored environment. The training trajectories were
further randomly rotated around the z axis and linearly translated in space, to promote generalisation.

The validation set was used for checkpointing and selecting the best weights θT of the neural network
in the learned transition model, based on the ELBO defined in section 4. The validation set was also
used for hyperparameter selection for the engineered transition model, the learned transition model
and the full spatial model. The best hyperparameters for all models (cf. appendix D) were selected
with random search. You can find details for the search ranges in appendix E.

The test set was used for evaluation only—all results reported in the experimental section of the paper
were done on the test data. The full spatial model was tested with the forward yaw star trajectories,
speeds 1.0 m/s to 4.0 m/s and with the constant yaw picasso trajectories, speeds 1.0 m/s to 4.0 m/s, to
match the evaluation by Nisar et al. (2019). These trajectories take place in the NYC subway station
environment.

C.2 DATA PREPROCESSING

Each trajectory contains IMU, RPM and PWM readings, MOCAP ground truth pose observations, as
well as simulated grayscale images from a forward-facing stereo pair and a downward-facing camera.

We pre-processed every trajectory in the following way:

• Ground truth MOCAP state readings were extracted from the provided ROS bags.
• Downward-facing images were ignored.
• The remaining data was subsampled to 10 Hz, using nearest neighbour subsampling based

on the provided time stamps.
• Depth was then precomputed from the left and right images using OpenCV’s SGBM

(Hirschmuller, 2007).
• For every time step, the right colour image was then ignored, while the left image and the

depth estimate were together treated as an RGB-D observation xt ∈ Rw×h×4.
• The provided IMU readings are measured in the coordinate frame of the IMU sensor.

Therefore, they had to be rotated to the body frame of the agent, using the respective
quaternion provided with the data set: q = [0.707, 0.005,−0.004, 0.706]T .

The intrinsic parameters of the camera, specifying the intrinsic camera matrix K, and the stereo
baseline were fixed to the values provided with the data set:

• Stereo baseline: 0.1m.
• Image size: 1024× 768.

17

Published as a conference paper at ICLR 2021

• Focal length, x: 665.1.

• Focal length, y: 665.1.

• Principal point offset, x: 511.5.

• Principal point offset, y: 383.5.

Depth was computed based on the disparity values produced by SGBM. We used the following
parameters, keeping the default values for everything else:

• Block size: 5.

• Min. disparity: 0.

• Max. disparity: 256.

We did not filter the images and the produced depth values in any way and treated them as direct
observations, to limit the pre-processing steps as much as possible and rely on the defined spatial
model instead. Note that due to the simplicity of the method used for depth estimation, the depth
observations contain significant amounts of noise (e.g. fig. 4d). The pixel values for the color images
were normalized to be in the range [0, 1].

D MODEL DETAILS

This section lists all model and optimisation hyperparameters used for generating the results reported
in the paper.

D.1 FULL SPATIAL MODEL

The full spatial model uses either the learned or the engineered transition, see appendix D.2 and
appendix D.3 for their respective hyperparameters.

D.1.1 OPTIMISATION

After subsampling, the trajectories in the Blackbird dataset can still contain thousands of time steps.
To deal with this, during inference the proposed model follows the approximate particle optimisation
scheme introduced by Mirchev et al. (2019), using chunks of 5 time steps for every gradient update,
using 50 approximating state particles and refreshing the respective particles after every gradient step.

Adam (Kingma & Ba, 2014) is used to optimise the parameters φ for the approximate posterior
distribution qφ(z1:T ,M). Table 2b lists the used optimiser hyperparameters. Note that due to the
employed attention p(mt | zt,M), due to the reconstruction sampling in the emission and due to
the approximate optimisation scheme mentioned above (which uses only a chunk of the trajectory at
a time), only a part of the parameters for the occupancy map and the full trajectory of agent states is
used for a gradient step. In other words, gradient updates happen locally in the spatially arranged
occupancy map parameters, based on the currently selected local chunk of the agent trajectory.
Because of this, momentum is disabled in Adam for both the occupancy map and the agent states, to
avoid accidental drift in regions currently not covered by the optimisation.

For every variable in question, the same optimiser is used to optimise the mean and scale of the
assumed distribution (where applicable). For any scale distribution parameters (e.g. standard
deviations for the assumed Gaussian distributions), the optimisation is performed in log-space to
satisfy the positive value constraint.

D.1.2 INITIALISATION OF NEW POSES

While performing SLAM, data is added incrementally to the spatial model, to emulate online usage
of the method. A new time step t is explored every 500 gradient steps, effectively adding a new
observation xt and a new conditional input ut to the data. Whenever a new time step is added, the
parameters of the corresponding state zt are unlocked for optimisation and initialized according to
table 2a.

18

Published as a conference paper at ICLR 2021

Table 2: Model details.

(a) Hyperparameters of the individual spatial model components.

Component Parameter Value

zt init. value for µt mean of pθT (zt | µt−1,ut)
init. value for σt 0.01× 1

Mocc grid size 200× 200× 200
init. value for µi,j,k −0.5
init. value for σi,j,k 0.1

Mcol # hidden layers 5
hidden units 256

activation softsign
residual connections true

p(mt | zt,M) ε (ray resolution) 0.1m
max depth (kε) 20m

reconstr. pixels 200

(b) Optimisation hyperparameters for the full
spatial model.

Variables Parameter Value

z1:T Adam, learning rate 0.001
Adam, β1 0.0
Adam, β2 0.999

Mocc Adam, learning rate 0.05
Adam, β1 0.0
Adam, β2 0.999

Mcol Adam, learning rate 0.001
Adam, β1 0.9
Adam, β2 0.999

(c) Hyperparameters of the learned transition model.

Component Parameter Value
pθT

(zt+1 | zt,ut) # hidden layers 5
hidden units 64

activation relu
residual connections true

size of zrest 8

q̂(zt | λ̂1:T , ω̂1:T ,u1:T) RNN type LSTM
RNN units 64

D.1.3 CHOICE OF APPROXIMATE POSTERIOR OVER STATES

In (Mirchev et al., 2019) a bootstrap particle filter is used to implement the variational posterior
over agent states. The increased model complexity due to the presented raycasting model makes
the application of particle filters with sufficiently many particles costly. In section 3 we therefore
introduce an approximate posterior over the agent states qφ(z1:T), with free state parameters φ, that
factorises over time. The chosen variational states approximation represents a shift in perspective—
from filtering towards a method more similar to pose-graph optimisation.

D.1.4 HANDLING ORIENTATIONS

The portions ωt of the sampled latent states zt are identified with quaternions and are explicitly
normalised to unit quaternions after gradient updates before they are used in the rest of the model.
This means that the assumed Gaussian distribution is not directly expressed on the manifold SO(3),
but we found that this parameterisation works well enough.

D.1.5 COMPONENT PARAMETERS

The rest of the hyperparameters for the full spatial model, including initial values for the optimised
variational parameters, are specific to the individual model components and are listed in table 2a.

The scale σE for the heteroscedastic Laplace emission p(xt |mt) is learned with gradient descent
(applied in log-space). The colour part of σE is forced to be 10 times smaller than that for the depth
part, to account for the different scales of the observed values (colour range is [0, 1], depth range is
[0, 20]).

19

Published as a conference paper at ICLR 2021

D.2 LEARNED TRANSITION

The learned transition is obtained by training the generative parameters θT in the context of the
model defined in section 4. When reconstructing orientations in that model, we do not reconstruct
quaternions directly because of the ambiguity q = −q. Instead we reconstruct the rotation matrix
corresponding to the observed orientation ω̂t, i.e. the mean of the emission p(ω̂t | zt) is a rotation
matrix constructed from the quaternion ωt that’s part of the latent state zt. When used in the full
spatial model, the weights of the transition neural network θT are fixed to their pretrained values.
This is done to avoid accidental overfitting of the transition parameters to the current trajectory and
current environment for which SLAM is performed.

The selected hyperparameters of the learned transition are listed in table 2c.

D.3 ENGINEERED TRANSITION

The mean of the engineered transition prior p(zt+1 | zt,ut) from section 4 is formed by a function
fT , which implements the rigid body dynamics

fT (zt,ut) =



λt+1

ωt+1

λ̇t+1


 =




λt + λ̇t∆t
ωt ⊕R(ωt)ω̇

imu
t ∆t

λ̇t + R(ωt)λ̈
imu
t (∆t)2


 .

Here ⊕ denotes standard quaternion integration. The standard deviation σT of p(zt+1 | zt,ut) (a
Gaussian) is a hyperparameter, estimated via search on the validation set. Its diagonal entries are 0.01
for the location state dimensions, 0.001 for the orientation state dimensions and 0.001 for the velocity
state dimensions. The gravitational force g is subtracted from the IMU readings when applying the
Euler integration given by fT . The time delta for the integration is set to ∆t = 0.1, to match the
10Hz data subsampling.

E HYPERPARAMETER SEARCH AND EXECUTION DETAILS

All models are implemented in python using TensorFlow (Abadi et al., 2016), making use of automatic
differentiation to optimise model parameters. This allows for the easy integration of neural networks
and makes end-to-end optimisation straightforward. In TensorFlow 1.15, one gradient step of the
model takes 0.0607s on average, without XLA compilation. In TensorFlow 2.3 one gradient step of
the model takes 0.0073s on average, with XLA compilation enabled. The inference experiments in the
paper currently assume 500 iterations per added data point (once every 0.1s for a 10Hz stream), which
amounts to 36.5s of inference runtime per 1s of real-time movement in the newer TensorFlow version.
As already mentioned in the main text, we have not yet optimised the model for real-time inference,
and we will address this in our future work. The large speed-up achieved by simply enabling XLA
and switching to a higher version of TensorFlow indicates that a lot of the computations in the model
can be improved further (e.g. by moving to a C++ runtime or writing dedicated CUDA kernels). We
also anticipate that better initialisation and careful tuning of the model hyperparameters will let the
system reach interactive operation rates.

All probabilistic modelling aspects were implemented using Edward (Tran et al., 2018). Hyperpa-
rameter search (HPS) experiments were executed in a cluster with 8 Tesla V100 GPUs and 40 Intel
Xeon E5-2698 CPU cores. Because of the large amount of Blackbird data (4.7 TB) and the current
model’s speed limitations, the search was performed for a subset of all possible hyperparameters. The
performed model selection is therefore not exhaustive, possibly leaving potential for improvement.
In the following we list the considered hyperparameter search ranges and the number of trials for
each model.

E.1 HPS: FULL SPATIAL MODEL

The hyperparameters for the full spatial model were selected based on localisation RMSE for 500-step
segments of trajectories in the validation set. A total of 200 experiments were conducted, randomly
picking a trajectory segment on which SLAM inference is performed. The considered parameter
ranges are listed in table 3a.

20

Published as a conference paper at ICLR 2021

Table 3: HPS details.

(a) HPS ranges for the full spatial model.

Parameter Range
reconstr. pixel count [100, 200, 500]
q(Mocc) init. value stddev [0.01, 0.1, 1.0]
p(Mocc) stddev [0.1, 1.0, 10.0]
Mocc grid side [50, 100, 200]
Mocc learning rate [0.01, 0.05, 0.001]

Mcol learning rate [0.01, 0.05, 0.001]
z1:T learning rate [0.01, 0.05, 0.001]

(b) HPS ranges for the learned transition model.

Parameter Range
learning rate [0.0001, 0.0005, 0.001, 0.005]
zrest [8, 16]
hidden units [32, 64, 128, 256]
layers [2, 3, 4, 5]
activation [softsign, relu]
RNN units [32, 64, 128, 256]

(c) HPS ranges for the engineered transition model.

Parameter Range
λ stddev [0.0001, 0.001, 0.01]
ω stddev [0.0001, 0.001, 0.01]

λ̇ stddev [0.0001, 0.001, 0.01]

E.2 HPS: LEARNED TRANSITION MODEL

The learned transition hyperparameters were selected based on the validation set ELBO value from the
model discussed in section 4. A total of 400 experiments were conducted, using all of the blackbird
training and validation data. The considered parameter ranges are listed in table 3b.

E.3 HPS: ENGINEERED TRANSITION MODEL

The engineered transition hyperparameters were selected in the same HPS for the full model discussed
above, based on localisation RMSE for 500-step segments of trajectories in the validation set. The
considered parameter ranges are listed in table 3c.

21

Published as a conference paper at ICLR 2021

F FURTHER INFERENCE EXAMPLES

Predicted colour

Predicted depth

Observed colour

SGBM depth

−6 −4 −2 0 2 4 6
x [m]

−6

−4

−2

0

2

4

6

y
[m

]

clover, max speed 3.0 m/s
MOCAP
proposed

Predicted colour

Predicted depth

Observed colour

SGBM depth

−6 −4 −2 0 2 4 6
x [m]

−6

−4

−2

0

2

4

6

y
[m

]

patrick, max speed 3.0 m/s
MOCAP
proposed

Predicted colour

Predicted depth

Observed colour

SGBM depth

−6 −4 −2 0 2 4 6
x [m]

−6

−4

−2

0

2

4

6

y
[m

]

sphinx, max speed 3.0 m/s
MOCAP
proposed

Predicted colour

Predicted depth

Observed colour

SGBM depth

−6 −4 −2 0 2 4 6
x [m]

−6

−4

−2

0

2

4

6
y

[m
]

sid, max speed 3.0 m/s
MOCAP
proposed

Figure 8: Examples of inference in the full spatial model, expressed in localisation and mapping for
segments of the following trajectories: clover, forward yaw, max speed 3.0 m/s, patrick, forward yaw,
max speed 3.0 m/s, sphinx, forward yaw, max speed 3.0 m/s and sid, forward yaw, max speed 3.0 m/s.
Left on every subfigure: top-down view of the localisaton estimate. Right on every subfigure: depth
and colour reconstructions from the generative model for one time step.

22

Published as a conference paper at ICLR 2021

G DATA SET SPLITS

Training set
trajectory # steps duration [s]

3dFigure8, constant yaw, 1.0 m/s 2087 208.7
3dFigure8, constant yaw, 2.0 m/s 2130 213.0
3dFigure8, constant yaw, 3.0 m/s 2091 209.1
3dFigure8, constant yaw, 4.0 m/s 2136 213.6
3dFigure8, constant yaw, 5.0 m/s 2240 224.0
ampersand, constant yaw, 1.0 m/s 2086 208.6
ampersand, constant yaw, 2.0 m/s 2061 206.1
ampersand, constant yaw, 3.0 m/s 833 83.3
clover, constant yaw, 1.0 m/s 2575 257.5
clover, constant yaw, 2.0 m/s 2605 260.5
clover, constant yaw, 3.0 m/s 833 83.3
clover, constant yaw, 4.0 m/s 2631 263.1
clover, constant yaw, 5.0 m/s 2607 260.7
dice, constant yaw, 2.0 m/s 2605 260.5
dice, constant yaw, 3.0 m/s 833 83.3
dice, constant yaw, 4.0 m/s 2614 261.4
figure8, constant yaw, 1.0 m/s 1513 151.3
figure8, constant yaw, 2.0 m/s 2052 205.2
figure8, constant yaw, 5.0 m/s 1999 199.9
mouse, constant yaw, 1.0 m/s 2641 264.1
mouse, constant yaw, 2.0 m/s 2674 267.4
mouse, constant yaw, 3.0 m/s 833 83.3
mouse, constant yaw, 4.0 m/s 2620 262.0
mouse, constant yaw, 5.0 m/s 2655 265.5
oval, constant yaw, 2.0 m/s 2033 203.3
oval, constant yaw, 3.0 m/s 833 83.3
oval, constant yaw, 4.0 m/s 2035 203.5
thrice, constant yaw, 1.0 m/s 2726 272.6
thrice, constant yaw, 2.0 m/s 2658 265.8
thrice, constant yaw, 3.0 m/s 2656 265.6
thrice, constant yaw, 4.0 m/s 2656 265.6
thrice, constant yaw, 5.0 m/s 2621 262.1
tiltedThrice, constant yaw, 1.0 m/s 2624 262.4
tiltedThrice, constant yaw, 2.0 m/s 2624 262.4
tiltedThrice, constant yaw, 3.0 m/s 833 83.3
tiltedThrice, constant yaw, 4.0 m/s 2602 260.2
tiltedThrice, constant yaw, 5.0 m/s 2574 257.4
winter, constant yaw, 1.0 m/s 2625 262.5
winter, constant yaw, 2.0 m/s 2570 257.0
winter, constant yaw, 3.0 m/s 833 83.3
winter, constant yaw, 4.0 m/s 2569 256.9
winter, constant yaw, 5.0 m/s 2620 262.0
ampersand, forward yaw, 1.0 m/s 1100 110.0
ampersand, forward yaw, 2.0 m/s 893 89.3
clover, forward yaw, 1.0 m/s 1088 108.8
clover, forward yaw, 2.0 m/s 1088 108.8
clover, forward yaw, 3.0 m/s 833 83.3
clover, forward yaw, 4.0 m/s 1101 110.1
clover, forward yaw, 5.0 m/s 1091 109.1
dice, forward yaw, 1.0 m/s 1096 109.6
dice, forward yaw, 2.0 m/s 1099 109.9
dice, forward yaw, 3.0 m/s 833 83.3
mouse, forward yaw, 1.0 m/s 1110 111.0
mouse, forward yaw, 2.0 m/s 1107 110.7
mouse, forward yaw, 3.0 m/s 833 83.3
mouse, forward yaw, 4.0 m/s 1108 110.8
mouse, forward yaw, 5.0 m/s 1107 110.7
oval, forward yaw, 1.0 m/s 1086 108.6
oval, forward yaw, 2.0 m/s 892 89.2
oval, forward yaw, 3.0 m/s 833 83.3
oval, forward yaw, 4.0 m/s 1086 108.6
thrice, forward yaw, 1.0 m/s 1088 108.8
thrice, forward yaw, 2.0 m/s 1088 108.8
thrice, forward yaw, 3.0 m/s 833 83.3
thrice, forward yaw, 4.0 m/s 1088 108.8
thrice, forward yaw, 5.0 m/s 1088 108.8
tiltedThrice, forward yaw, 1.0 m/s 898 89.8
tiltedThrice, forward yaw, 2.0 m/s 1088 108.8
tiltedThrice, forward yaw, 3.0 m/s 833 83.3
tiltedThrice, forward yaw, 4.0 m/s 1088 108.8
tiltedThrice, forward yaw, 5.0 m/s 1087 108.7
winter, forward yaw, 2.0 m/s 1089 108.9
winter, forward yaw, 3.0 m/s 833 83.3
winter, forward yaw, 4.0 m/s 1091 109.1

Test set
trajectory # steps duration [s]

star, constant yaw, 1.0 m/s 2680 268.0
star, constant yaw, 2.0 m/s 2635 263.5
star, constant yaw, 3.0 m/s 2640 264.0
star, constant yaw, 4.0 m/s 2667 266.7
star, constant yaw, 5.0 m/s 2611 261.1
star, forward yaw, 1.0 m/s 1491 149.1
star, forward yaw, 2.0 m/s 1503 150.3
star, forward yaw, 3.0 m/s 1523 152.3
star, forward yaw, 4.0 m/s 1627 162.7
star, forward yaw, 5.0 m/s 1108 110.8
picasso, constant yaw, 1.0 m/s 2040 204.0
picasso, constant yaw, 2.0 m/s 2071 207.1
picasso, constant yaw, 3.0 m/s 2072 207.2
picasso, constant yaw, 4.0 m/s 2109 210.9
picasso, constant yaw, 5.0 m/s 2626 262.6
picasso, forward yaw, 1.0 m/s 833 83.3
picasso, forward yaw, 3.0 m/s 2083 208.3
picasso, forward yaw, 4.0 m/s 2057 205.7
picasso, forward yaw, 5.0 m/s 891 89.1

Validation set
trajectory # steps duration [s]

sid, constant yaw, 1.0 m/s 2688 268.8
sid, constant yaw, 2.0 m/s 2677 267.7
sid, constant yaw, 3.0 m/s 833 83.3
sid, constant yaw, 4.0 m/s 2668 266.8
sid, constant yaw, 5.0 m/s 2661 266.1
sid, forward yaw, 1.0 m/s 897 89.7
sid, forward yaw, 2.0 m/s 1109 110.9
sid, forward yaw, 3.0 m/s 833 83.3
sid, forward yaw, 4.0 m/s 1109 110.9
sid, forward yaw, 5.0 m/s 1110 111.0
sphinx, constant yaw, 1.0 m/s 2612 261.2
sphinx, constant yaw, 2.0 m/s 2601 260.1
sphinx, constant yaw, 3.0 m/s 833 83.3
sphinx, constant yaw, 4.0 m/s 2560 256.0
sphinx, forward yaw, 1.0 m/s 1088 108.8
sphinx, forward yaw, 2.0 m/s 1087 108.7
sphinx, forward yaw, 3.0 m/s 833 83.3
sphinx, forward yaw, 4.0 m/s 1086 108.6
bentDice, constant yaw, 1.0 m/s 2624 262.4
bentDice, constant yaw, 2.0 m/s 2698 269.8
bentDice, constant yaw, 3.0 m/s 417 41.7
bentDice, constant yaw, 4.0 m/s 2632 263.2
bentDice, forward yaw, 1.0 m/s 1088 108.8
bentDice, forward yaw, 2.0 m/s 1088 108.8
bentDice, forward yaw, 3.0 m/s 833 83.3
patrick, constant yaw, 1.0 m/s 2598 259.8
patrick, constant yaw, 2.0 m/s 2584 258.4
patrick, constant yaw, 3.0 m/s 417 41.7
patrick, constant yaw, 4.0 m/s 2611 261.1
patrick, constant yaw, 5.0 m/s 2580 258.0
patrick, forward yaw, 1.0 m/s 1089 108.9
patrick, forward yaw, 2.0 m/s 1089 108.9
patrick, forward yaw, 3.0 m/s 833 83.3
patrick, forward yaw, 4.0 m/s 1091 109.1

23

A.2. PRISM: Probabilistic Real-Time Inference in Spatial World Models

A.2. PRISM: Probabilistic Real-Time Inference in Spatial
World Models

Paper Summary

PRISM is a method for real-time filtering in a pre-established dense state-

space model (VSSM-LM, appendix A.1). The filters are derived from the

generative assumptions in a principled way, respecting the dense image

generation, and all approximations are carefully signposted in the process.

Filtering is identified as a necessary compromise for dense state-space

models (compared to smoothing), in order to limit the size of the inference

problem. Real-time is reached by incorporating traditional techniques

from computer vision and robotics, with emphasis on closed-form updates

where possible.

PRISM manages to reconcile dense rendering, dynamics and a fully

probabilistic treatment on a tight budget. Its accuracy is comparable to

SotA visual odometry methods, tested on indoor data across three data

sets. The price is compromises in the uncertainty approximations, that

could be addressed in the future as hardware improves.

Errata

Eq. 3 and 10 should say · · · ∝ qφt (M) and · · · ∝ N
(
M
∣∣ µMt+1,diag(σ

M
t+1)

2)

:= qφt+1(M), respectively (∝ instead of = because Gaussian products are

proportional to a Gaussian). Alternatively, q(M | xt, zt) can be defined

as an unnormalised Gaussian in appendix D (then = instead of ∝ holds).

This is only to make notation precise, the method remains the same.

Author Contributions

problem definition significant

literature review significant

theoretical derivation significant

implementation significant

experiments significant

writing significant

111

PRISM: Probabilistic Real-Time Inference in
Spatial World Models

Atanas Mirchev1, Baris Kayalibay1, Ahmed Agha1,
Patrick van der Smagt1, Daniel Cremers2, Justin Bayer1

1Machine Learning Research Lab, Volkswagen Group, 2Technical University of Munich
atanas.mirchev@argmax.ai

Abstract: We introduce PRISM, a method for real-time filtering in a probabilistic
generative model of agent motion and visual perception. Previous approaches either
lack uncertainty estimates for the map and agent state, do not run in real-time,
do not have a dense scene representation or do not model agent dynamics. Our
solution reconciles all of these aspects. We start from a predefined state-space
model which combines differentiable rendering and 6-DoF dynamics. Probabilistic
inference in this model amounts to simultaneous localisation and mapping (SLAM)
and is intractable. We use a series of approximations to Bayesian inference to arrive
at probabilistic map and state estimates. We take advantage of well-established
methods and closed-form updates, preserving accuracy and enabling real-time
capability. The proposed solution runs at 10Hz real-time and is similarly accurate
to state-of-the-art SLAM in small to medium-sized indoor environments, with high-
speed UAV and handheld camera agents (Blackbird, EuRoC and TUM-RGBD).

Keywords: generative model, SLAM, Bayes filter, uncertainty, diff. rendering

1 Introduction

Moving agents perceive streams of information, typically a mix of RGB images, depth and inertial
measurements. Probabilistic generative models [1] are a principled way to formalise the synthesis of
this data, and from these models inference can be derived through Bayes’ rule. We focus on exactly
such inference and target the agent states and the scene map, a problem known as simultaneous
localisation and mapping (SLAM). We treat it as a posterior approximation for a given state-space
model, such that the combination is useful for model-based control: the posterior inference serves as
a state estimator and the predictive state-space model as a simulator with which to plan ahead [2].

To pave the way towards decision making, we believe an inference method should have:

• a compatible predictive model for both RGB-D images and 6-DoF dynamics;
• principled state and map uncertainty;
• real-time performance on commodity hardware;
• state-of-the-art localisation accuracy.

We motivate these requirements further in appendix J. Prominent methods like LSD-SLAM [3],
ORB-SLAM [4], DSO [5] have propelled visual SLAM forward, with heavy focus on large-scale
localisation. The core of modern large-scale SLAM is maximum a-posteriori (MAP) smoothing in
a probabilistic factor graph [6, 7]. At present this demands sparsity assumptions for computational
feasibility, which obstructs the tight integration of dense maps and rendering. Nonetheless, for smaller
scenes the recent popularity of neural models (e.g. NERF [8]) has sparked interest in inference through
a renderer (e.g. [9, 10, 11]), but dynamics modelling and uncertainty have remained out of scope.
Conversely, classical filtering comes with dynamics and uncertainty in real-time (e.g. [12, 13, 14]),

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

Figure 1: Inference is tailored to the depicted predictive model. Predicting future rollouts, as shown,
is required for optimal control. Ground-truth trajectory in black, inferred trajectory from past data in
blue. In orange, we see uncertainty envelopes for the predicted future states. On the right, we see
predicted and ground-truth future images. Visualised in 2D for clarity, our method operates in 3D.

but over time has given way to large-scale smoothing [6] and to our knowledge has not been well
explored for the integration of dense differentiable rendering and dynamics on a moderate scale.

Overall, we find there is a need for a cohesive inference solution that satisfies our requirements. We
thus contribute by meeting all the above goals, emphasising the link to a predictive model (fig. 1).

We start from the generative model of Mirchev et al. [15], who combine differentiable rendering
and agent dynamics in a probabilistic framework. The authors considered stochastic variational
inference for this model, applying it off-line with runtime orders of magnitude too long for on-line use.
We pursue an alternative route for real-time inference: from the generative assumptions we derive
approximations to the true marginal filters over the last state and map [16]. By focusing on recursive
filtering updates, we identify where established probabilistic inference and computer vision techniques
can be used, putting emphasis on fast closed-form updates. We find this divide-and-conquer strategy
is a good compromise for achieving the aforementioned objectives under computational constraints.

We evaluate the proposed solution on two unmanned aerial vehicle (UAV) data sets [17, 18] and on
TUM-RGBD [19]. Our method PRISM runs at 10 Hz real-time with similar localisation accuracy to
state-of-the-art SLAM in moderately-sized indoor environments. It provides uncertainty estimates
and features a predictive distribution that can both render images and forecast the agent’s movement.

2 Related Work

Generative models Generative state-space models simulate the formation of observed data over
time in a Markov chain [1, 12, 20, 21, 22, 23], serving as world models [24, 25]. With their agent
dynamics and state-to-observation emission models we can imagine future rollouts for planning
[2, 26, 27, 28, 29, 30, 31, 32, 33]. We abide by this framework and design a posterior inference for a
spatial state-space model, to enable on-line control. Among such models (e.g. [34, 35, 36, 37, 38, 39,
40]), we tailor our inference to the model of Mirchev et al. [15]. It scales to 3D with rendering and
6-DoF dynamics. We contribute a real-time inference that fits its probabilistic formulation.

SLAM through image synthesis The assumed generative model renders RGB-D images, which
is related to SLAM through full-image synthesis. Traditional methods feature varied maps, from
volumetric to surfels (e.g. [41, 42, 43, 44, 45, 46, 47, 48, 49]), and commonly estimate new camera
poses by aligning new observations to a rendered image with variants of point-to-plane ICP with
photometric consistency [50, 51, 52, 53, 44]. We extend this optimisation with dynamics in our
approximate state filter [54]. A recent trend is to use implicit scene representations like NERF
(e.g. [8, 55, 56]) with high rendering fidelity. Gradient-based pose inference through NERF-like
rendering has received attention [57, 58], with iMAP [11] and NICE-SLAM [9] being two real-time

2

solutions. The mapping runtime of such methods is weighed down by optimisation through the
renderer. Rendering can be sped up by decomposing parameters over space, e.g. by using voxels
or primitives [59, 60, 61, 62, 63], but how to update neural maps in closed form remains unclear.
Therefore, we rely on vanilla voxel grid maps [15, 64], as their probabilistic treatment and closed-form
updates are straightforward, leaving implicit representations for future work. We note that none of the
aforementioned methods incorporate dynamics and uncertainty, which distinguishes our approach.

Probabilistic SLAM inference SLAM filters are thoroughly explored for flat 2D modelling
[65, 12, 66, 13, 67, 68, 69], but have been superseded by MAP smoothing in modern visual SLAM
(e.g. [3, 4, 5, 70, 71, 72, 73]), primarily due to scalability concerns [6, 74]. However, as of now
smoothing is not computationally feasible without sparsity assumptions. We therefore reexamine
filtering for differentiable rendering, as we aim to obtain a dense map posterior with uncertainty in
real-time (see appendix J for further motivation). Filters may benefit from the dense modelling of
observations [74], which aligns with our objective, and we will demonstrate they can be a feasible
solution for moderately-sized indoor environments. For the states, we use a Laplace approximation
[75] and velocity updates similar to those in extended Kalman filters [12]. For the map, occupancy
grids are a common probabilistic choice [64, 66, 76] and closed-form mapping has been used in that
context [69]. To enable rendering we provide a similar derivation, but for a signed distance function
(SDF), which is related. Probabilistic SDF mapping dates back to Curless and Levoy [41], and SDF
updates have a well-known probabilistic interpretation [77, 78]. We use these approximations to
arrive at a holistic probabilistic solution that scales to dense 3D modelling in real-time.

3 Overview

We approach on-line SLAM inference with two aims in mind. First, we want to harmonise our map
and state estimation with a predictive model. Second, we want to quantify uncertainty: estimates and
predictions should account for modelling inaccuracies as well as measurement and process noise.
Both are important for autonomous decision making. To achieve this, we derive a Bayesian posterior
in the probabilistic model of Mirchev et al. [15], to ensure that inference matches the forward model.
Before we delve into our proposed solution, we present a practical summary. At every time step:

1. we point-estimate the agent’s pose using gradient descent, involving geometry and dynamics.
2. we extend the pose with a Gaussian covariance matrix through a Laplace approximation.
3. with the pose, we estimate the agent’s current velocity in closed form.
4. with the pose and the current observation, we update the map in closed form.

We use well-established methods for the above. In 1. we combine assumed density filtering [79],
point-to-plane ICP [50] and photometric alignment [51, 52]. In 2. we use a Laplace approximation
[75, 80]. In 3. we use linear-Gaussian updates, akin to Kalman filters [12]. In 4. we first derive generic
closed-form map updates, which boil down to SDF updates [41] for our generative assumptions.

We contribute by deriving a holistic Bayesian inference from the generative model we started with.
In doing so, we identify where traditional techniques are applicable to make a practical algorithm.

4 Methods

In the following we will denote generative distributions, true posterior distributions and conditionals
with p(·). Respectively, approximate distributions will be denoted with q(·). Approximation steps
will be indicated by ≈ in equations. We use qφ(·) to subsume estimated distribution parameters into
φ. A subscript ·t indicates that a variable or a distribution is different at every time step.

4.1 Background

We start with an overview of the generative model of Mirchev et al. [15] from which we will derive
the inference. We assume a sequence of RGB-D observations x1:T and a sequence of agent states

3

z1:T driven by controls u1:T−1 form a Markovian state-space model. Each observation is constructed
from a respective state with a rendering emission model p(xt |M, zt), where M is a global latent
random variable for a dense map. A transition model p(zt | zt−1,ut−1) accounts for the agent
dynamics, where ut are known acceleration controls. Assuming z1 is given, the joint distribution is:

p(M, z2:T ,x1:T | u1:T−1, z1) = p(M)p(x1 |M, z1)
T∏

t=2

p(zt | zt−1,ut−1)p(xt | zt,M).

The map is a 3D voxel grid of occupancy and color–each cell contains four values. The emission is
fully-differentiable and performs volumetric raymarching, searching for a unique hit position at a
surface along each ray [81]. The transition performs Euler integration, using the acceleration controls
and maintained velocity from the latent state. Appendix B and the original paper have the details.

4.2 Posterior Choice

First we need to choose which posterior to approximate. For example, Mirchev et al. [15] approx-
imate the full posterior over the map and all states p(M, z2:T | x1:T ,u1:T−1, z1) with variational
inference [82]. While generic, this approach is slowed down by rendering at every optimisation step
[54], and the inevitable stochastic optimisation demands multiple steps until convergence. In addition,
estimating the posterior over all states scatters the optimisation budget across the whole trajectory.

To enable real-time inference we target an alternative posterior, the filter p(M, zt | x1:t,u1:t−1, z1),
as the last state belief is enough for planning ahead [2]. Since filters can be updated recursively
[16, 80], we can use closed-form updates for fast inference. Still, maintaining the joint distribution is
too costly because of the large dense 3D map M.1 Instead, we approximate the two marginal filters:

qφt (M) ≈ p(M | Ht) = p(M | x1:t,u1:t−1, z1)

qφt (zt) ≈ p(zt | Ht) = p(zt | x1:t,u1:t−1, z1),

where Ht = x1:t,u1:t−1, z1. More details about this modelling choice can be found in appendix A.
We draw attention to the shorthand notation p(· | Ht), which will appear again in the following.

4.3 Approximate Filtering

For both marginal filters, we will arrive at adequate approximations by reusing the following equation:

p(M, zt | Ht) ∝ p(xt | zt,M)

∫
p(zt | zt−1,ut−1)p(M, zt−1 | Ht−1)dzt−1, (1)

This is a classic recursive expression of the Bayes filter [16]. Starting from each true marginal
posterior, we will first expand the joint, then use eq. (1) and apply a set of approximations. Next we
will discuss our final result, we defer the detailed derivation of both filters to appendices C and E.

4.3.1 Marginal Map Filter

We begin with the map approximation, starting from the true marginal Bayes filter:

p(M | Ht) =

∫
p(M, zt | Ht) dzt

∝
∫
p(xt | zt,M)

∫
p(zt | zt−1,ut−1)p(M, zt−1 | Ht−1) dzt−1 dzt

≈ p(xt | ẑt,M)× qφt−1(M) (2)

≈ q(M | xt, ẑt)× qφt−1(M) =: qφt (M). (3)
Equations (2) and (3) hide a few approximations detailed in appendix C. The resulting solution takes
a nominal state sample ẑt, with which a map update q(M | xt, ẑt) is applied to the previous map
belief qφt−1(M). We set ẑt to the mean of the current state belief qφt (zt). Accepting some bias, we
do this for speed as it is our best guess for zt without extra computation.2 Intuitively, the map update

1E.g. the size of full-covariance Gaussian representations [12] or carrying multiple maps in parallel for a
Rao-Blackwellised particle filter [13, 14] become prohibitive.

2Appendix F discusses this approximation further.

4

q(M | xt, ẑt) populates the map such that the observation xt can be reconstructed. Our derivation of
the updates is similar to the one by Grisetti et al. [69] for 2D occupancy maps, but now applied to 3D.

The above approximation is generic, agnostic to the specific map and rendering assumptions. In prac-
tice, we need a closed-form map update q(M | xt, ẑt) that is faithful to the emission p(xt | ẑt,M).
In this work, we follow Mirchev et al. [15] and use a Gaussian map that factorises over voxels:

qφt (M) =
∏

ijk

N
(Mijk

∣∣ µM
ijk,t, diag((σM

ijk,t)
2)
)
.

Here the indices ijk run over voxels in a 3D grid. For this specific representation and the assumed
surface-based rendering, we identify that the map update q(M | xt, ẑt) can be implemented as
a probabilistic signed distance function (SDF) update [41]. We provide the technical details in
appendix D. SDF updates for voxel maps are a traditional concept in computer vision, and prior work
has considered their probabilistic interpretation before [77, 78]. We contribute by identifying the
place of such updates in a probabilistic filter that follows the generative model of [15]. A detailed
discussion of how the above relates to classical SDF update equations can be found in appendix D.

The above approximations are motivated by the real-time constraint. For example, one could optimise
eq. (2) directly with gradient descent through the renderer, but evaluating the emission is expensive
and hinders accurate convergence on a budget. This is particularly true when uncertainty estimates
are desirable, as optimisation would then be stochastic and gradients noisy [83]. In contrast, the
derived one-shot map updates are meant to have a cost similar to emitting just once, while capturing
uncertainty as well. We show some of the differences between the two approaches in section 5.3.

4.3.2 Marginal State Filter

Similarly, for the state filter we start from the true marginal and arrive at approximations via eq. (1):

p(zt | Ht) =

∫
p(M, zt | Ht) dM

∝
∫
p(xt | zt,M)

∫
p(zt | zt−1,ut−1)p(M, zt−1 | Ht−1) dzt−1 dM

≈ p
(
xt | zposet ,M̂

)
qt(z

pose
t | ut−1, Ht−1)qt(z

vel
t | zposet ,ut−1, Ht−1) (4)

≈ qφt (zposet)× qt(zvelt | zposet ,ut−1, Ht−1) =: qφt (zt). (5)

We detail all the approximations that lead to eq. (4) in appendix E. In eq. (4) we have three terms: an
image reconstruction likelihood, a Gaussian pose prior and a linear Gaussian velocity conditional
given a pose. The latter two we obtain analytically with a linear approximation of the transition
model and the previous Gaussian belief qφt−1(zt−1) (c.f. appendix E). First, using the first two terms
of eq. (4) we define a maximum a-posteriori (MAP) objective for pose optimisation:

arg max
zpose
t

log p
(
xt | M̂, zposet

)
+ log qt(z

pose
t | ut−1, Ht−1).

Here, M̂ is a nominal map sample set to the mean of the previous map belief qφt−1(M).3 The
term log qt(z

pose
t | ut−1, Ht−1) is an approximate dynamics prior over the current pose, it makes

the pose respect the transition model. The term log p(xt | M̂, zposet) represents reconstructing the
current observation, optimising it for the current pose will align the observation to the map. However,
evaluating this rendering term in every gradient step is inefficient. Because of this, we replace it with
the prediction-to-observation objective used by Kayalibay et al. [54], Nießner et al. [45], Newcombe
et al. [84]. We refer to [54] for further motivation and we list the technical details in appendix E.

The above optimisation gives us a MAP pose estimate, which we denote with µpose
t . Next, we apply

a Laplace approximation [75] around it to obtain a full covariance matrix Σpose
t which captures the

curvature of the objective. This leaves us with a full Gaussian belief over the current pose:

qφt (zposet) = N (zposet | µpose
t ,Σpose

t).

3Appendix F discusses this approximation further.

5

(a) Example mapping and localisation

(b) Blackbird map uncertainty.

(c) EuRoC map uncertainty.

Figure 2: (a) 3D reconstruction, example emission and inferred trajectory for EuRoC/V102 and
TUM-RGBD fr3/office. (b) Blackbird experiment. Top-down map uncertainty on the left, black is
uncertain, orange is precise. Precision is highest in a triangle around the center, which is the camera
frustum where the agent remains sitting on a platform for a long time, see the orange triangle amidst
the map point cloud on the right. (c) Analogous EuRoC experiment. Map uncertainty is high outside
of the room, at the center and behind the two structures on the left due to occlusion. The uncertainty
in the center is high because the agent primarily looks outwards (view directions in the right image).

Finally, we can combine this Gaussian with the Gaussian velocity conditional
qt(z

vel
t | zposet ,ut−1, Ht−1) (the third term in eq. (4)) into a full-state belief in closed form:

qφt (zt) = N (zt | µt,Σt) = N (zposet | µpose
t ,Σpose

t)N
(
zvelt

∣∣ Dtz
pose
t + et,Σ

vel
t

)
.

This is approximate, we do it for speed and find it does not harm localisation in practice. Appendix E
describes how the linear Gaussian terms come to be in more detail.

5 Experiments

Originally we set out with a few goals: the inference method should be faithful to the generative
assumptions, it should quantify uncertainty and it should run in real-time. What follows is an
empirical analysis of these aspects. We evaluate on the EuRoC [17], Blackbird [18] and TUM-RGBD
[19] data sets. The agent in the former two is an unmanned aerial vehicle (UAV), with speed of up to
4 m/s. For Blackbird, we use Semi-Global Block Matching (SGBM) for stereo depth estimation [85].
For EuRoC, we use the ground-truth Leica MS50 depth readings provided by [10]. We pretend the
IMU readings from these data sets are our control inputs. For TUM-RGBD we do not feed in any
controls and assume a constant-velocity transition. All experimental details are in appendix G.

5.1 Inference Through a Probabilistic Generative Model

First we look into the synergy between the inference and the generative assumptions. In fig. 2a we
see mapping and localisation examples. The inferred scenes are consistent, with no dramatic offsets
in geometry. More importantly, rendering from the inferred map using the emission p(xt | zt,M)
works as expected (see middle row), indicating that map updates are consistent with the generative
assumptions. This is evident from the accuracy of the inferred state trajectories as well (last row), as
the pose optimisation objective from section 4.3.2 uses rendered images at every filtering step. A
potential discrepancy between the inference and the generative assumptions would lead to errors that
would accumulate over time, which is not the case.

6

(a) x location uncertainty (b) qz (yaw) orientation uncertainty

Figure 3: Inferred state uncertainty. Inferred trajectories are colored by precision (inverse uncertainty)
of a certain state dimension, followed by observations, followed by columns of the tracking Jacobian
for that same state dimension. (a) Here the precision in z (vertical movement) is high (yellow),
because the z-orthogonal floor produces a consistent Jacobian (bottom right). (b) Here the precision
in qz orientation (yaw, azimuth) is low (violet), as there are no orthogonal surfaces (i.e. facing
sideways). Note the low Jacobian magnitude of the horizontal floor this time (bottom right).

Map uncertainty The inferred map uncertainty is determined by the map updates. We show its
interpretable effects in figs. 2b and 2c for two examples, one from Blackbird and another from EuRoC.
Our map updates are akin to traditional SDF updates and the main factor that decides whether a map
region is certain is how often it was observed. Regions that were occluded by objects, are behind
walls or were rarely in view remain uncertain, e.g. as seen in fig. 2c. In contrast, if the agent spends a
lot of time looking at a certain map region, the uncertainty there decreases, as seen in fig. 2b.

State uncertainty In fig. 3 we analyse state uncertainty by looking at the variance for individual
dimensions. We notice that state uncertainty changes along the trajectory. Uncertainty is determined
by what the agent currently sees, based on the geometric relationship between the agent movement and
the observed scene (e.g. fig. 3a and fig. 3b). This effect can be explained if we examine the Laplace
approximation used to estimate pose covariances. At any given time step, we set the covariance to
Σpose

t ≈ −H−1 ≈ −
(
2JTJ

)−1
. Here H is the Hessian of the tracking objective at the mean pose

estimate and J is the Jacobian. The Jacobian connects the pose to all image pixel errors. The more
consistent Jacobian entries are for a given pose dimension, the smaller the variance for that dimension
will be. We refer to appendix H for more details about the map and state uncertainty quality.

5.2 Localisation Accuracy

We compare PRISM’s localisation to state-of-the-art methods in moderately-sized indoor environ-
ments. We consider both baselines with dense maps (TANDEM [10], VSSM-LM [15], iMAP [11],
NICE-SLAM [9], CodeVIO [86]) and sparse methods without rendering (ORB-SLAM2 [4], VINS
[71], VIMO [70]). The results are in table 1. For the considered trajectories accuracy is comparable
to the baselines, with differences of a few centimeters. At the same time, our inference boasts a
predictive state-space model with both rendering and dynamics as well as uncertainty estimates,
which is not common in the dense visual SLAM literature. Finally, in fig. 4 we see example inferred
agent velocities, noting the uncertainty bands. This is possible because we model the agent dynamics.

Our localisation accuracy on Blackbird is better than the off-line variational inference results of
VSSM-LM presented by Mirchev et al. [15], and at the same time our solution runs in real-time and
also captures uncertainty. This shows the advantages of the proposed divide-and-conquer filtering.

5.3 Approximations for Runtime Improvement

All of our approximations are motivated by the real-time constraint, dictating the need for closed-form
map updates, a Laplace approximation, linearisation assumptions and a surrogate pose optimisation
objective. Figure 5 shows a runtime breakdown for different image resolutions, measured on an

4Last 10 s are skipped, as the drone hits the ground during landing.

7

Table 1: Localisation absolute error RMSE in meters on
EuRoC [17], Blackbird [18] and TUM-RGBD [19].

Trajectory Ours Code TANDEM ORB
VIO SLAM2

EuRoC/V101 0.041 (± 0.002) 0.05 0.09 0.031
EuRoC/V102 0.035 (± 0.002) 0.07 0.17 0.02
EuRoC/V103 0.042 (± 0.002) 0.07 - 0.048
EuRoC/V201 0.037 (± 0.001) 0.10 0.09 0.037
EuRoC/V202 0.035 (± 0.003) 0.06 0.12 0.035
EuRoC/V203 x 0.275 - x

Trajectory Ours VSSM VIMO VINSLM

picasso, 1 m/s 0.064 (± 0.003) 0.139 0.055 0.097
picasso, 2 m/s 0.053 (± 0.003) 0.136 0.040 0.043
picasso, 3 m/s 0.061 (± 0.003) 0.120 0.043 0.045
picasso, 4 m/s 0.079 (± 0.005)4 0.174 0.049 0.056
star, 1 m/s 0.089 (± 0.007)4 0.137 0.088 0.102
star, 2 m/s 0.111 (± 0.009) 0.163 0.082 0.133
star, 3 m/s 0.115 (± 0.012) 0.281 0.183 0.235
star, 4 m/s 0.153 (± 0.015)4 0.156 x x

Trajectory Ours iMAP NICE ORB
SLAM SLAM2∗

fr1/desk 0.053 (± 0.003) 0.049 0.027 0.016
fr2/xyz 0.029 (± 0.001) 0.02 0.018 0.04
fr3/office 0.083 (± 0.001) 0.058 0.03 0.01

0.25
0.25

inferred true

0.25
0.25

0 200 400 600
time step

0.25
0.25

Figure 4: Inferred xyz-velocity.

640×480 320×240 160×120 80×60
image resolution

0

50

100

150

200

ru
nt

im
e

[m
s]

LGS equations
map update
Laplace apprx.
pose optim.
rendering

Figure 5: Runtime breakdown.

101 102 103

runtime [ms]

0.2

0.3

0.6

1.0

re
c.

er
r.

VI-based (SGD)
smallest err. level
SDF err. level
SDF update

Figure 6: Mapping comparison.

NVIDIA 1080 Ti GPU and an Intel(R) Xeon(R) W-2123 CPU at 3.6 GHz. The heaviest operations
are rendering and the gradient-based pose optimisation. Based on movement speed, rendering can
happen periodically, whenever a new anchor image prediction for pose optimisation is needed. This
leaves us with a total runtime of 10 Hz to 15 Hz, updating the map and state at every data step. In
fig. 6 we also compare closed-form map updates to map inference via gradient-descent (e.g. as in
[15, 8, 11, 9]). While gradient-descent is more accurate on a bigger budget, it is much more expensive.
For example, to match the accuracy of the closed-form updates, which take less than 10 ms, one
would need ca. 250 ms of optimisation, which is impractical. These runtimes are for a voxel grid that
is significantly faster than neural representations [54], which would only exacerbate the problem.

6 Limitations and Conclusion

SDF voxel grids allow for closed-form updates, but their memory footprint limits the maximum
resolution and scene size. Voxel hashing [45] or octrees [87] can directly replace them for memory
efficiency. Neural maps and dynamically changing maps have remained out of our scope. Their
probabilistic formulation and closed-form updates require further investigation. Our map factorises
over voxels with no inter-region correlation, which could also be improved. PRISM provides
interpretable uncertainty in real-time, but estimation is approximate. Obtaining perfectly calibrated
uncertainty on a budget remains an open question (see appendix H). While filtering works for our
generative assumptions indoors, filters cannot revisit past errors and can drift in large scenes with
high levels of exploration [6]. We leave large-scale inference considerations for future work.

We have introduced PRISM, a method for probabilistic filtering in a predefined spatial state-space
model. Our solution runs in real-time, provides state and map uncertainty, and infers a dense map and
a 6-DoF state trajectory with velocities. It is comparably accurate to state-of-the-art SLAM in indoor
environments. To the best of our knowledge this is the first real-time fully-probabilistic solution for
SLAM that combines differentiable rendering and agent dynamics. We validated our method on three
challenging data sets, featuring unmanned aerial vehicles and a handheld camera. The results are
promising, establishing PRISM as a viable state estimator for downstream model-based control.

8

Acknowledgments

We thank our reviewers for the thoughtful discussion, it helped us to better position our contribution.

References
[1] D. Koller and N. Friedman. Probabilistic Graphical Models - Principles and Techniques. MIT

Press, 2009.

[2] D. P. Bertsekas. Dynamic programming and optimal control, 3rd Edition. Athena Scientific,
2005. ISBN 1886529264. URL http://www.worldcat.org/oclc/314894080.

[3] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct monocular slam. In European
conference on computer vision, pages 834–849. Springer, 2014.

[4] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–1262, 2017.

[5] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Mar. 2018.

[6] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.
Leonard. Past, present, and future of simultaneous localization and mapping: Toward the
robust-perception age. IEEE Transactions on robotics, 32(6):1309–1332, 2016.

[7] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on information theory, 47(2):498–519, 2001.

[8] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[9] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and M. Pollefeys. Nice-slam:
Neural implicit scalable encoding for slam. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2022.

[10] L. Koestler, N. Yang, N. Zeller, and D. Cremers. Tandem: Tracking and dense mapping in
real-time using deep multi-view stereo. In Conference on Robot Learning (CoRL), 2021.

[11] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison. imap: Implicit mapping and positioning in real-time,
2021.

[12] R. E. Kalman et al. A new approach to linear filtering and prediction problems [j]. Journal of
basic Engineering, 82(1):35–45, 1960.

[13] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: A factored solution to the
simultaneous localization and mapping problem. In AAAI/IAAI, 2002.

[14] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with rao-
blackwellized particle filters. IEEE transactions on Robotics, 23(1):34–46, 2007.

[15] A. Mirchev, B. Kayalibay, P. van der Smagt, and J. Bayer. Variational state-space models
for localisation and dense 3d mapping in 6 dof. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=XAS3uKeFWj.

[16] S. Särkkä. Bayesian Filtering and Smoothing. Number 3. Cambridge University Press, USA,
2013. ISBN 1107619289.

[17] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart.
The euroc micro aerial vehicle datasets. The International Journal of Robotics Research, 35
(10):1157–1163, 2016.

9

[18] A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Karaman. The blackbird uav
dataset. The International Journal of Robotics Research, 0(0):0278364920908331, 2020.
doi:10.1177/0278364920908331.

[19] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation
of rgb-d slam systems. In Proc. of the International Conference on Intelligent Robot Systems
(IROS), Oct. 2012.

[20] L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989. doi:10.1109/5.18626.

[21] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters: Unsupervised
learning of state space models from raw data. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[22] R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters. arXiv preprint arXiv:1511.05121,
2015.

[23] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent
variable model for sequential data. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
b618c3210e934362ac261db280128c22-Paper.pdf.

[24] S. Chiappa, S. Racanière, D. Wierstra, and S. Mohamed. Recurrent environment simulators.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://
openreview.net/forum?id=B1s6xvqlx.

[25] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 2450–2462. Curran Associates, Inc., 2018.

[26] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11),
pages 465–472. Citeseer, 2011.

[27] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International Conference on Machine Learning, pages
2555–2565. PMLR, 2019.

[28] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by
latent imagination. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1lOTC4tDS.

[29] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. Advances in Neural Information Processing
Systems, 33:741–752, 2020.

[30] P. Becker-Ehmck, M. Karl, J. Peters, and P. van der Smagt. Learning to fly via deep model-based
reinforcement learning, 2020.

[31] M. Karl, M. Soelch, P. Becker-Ehmck, D. Benbouzid, P. van der Smagt, and J. Bayer. Unsuper-
vised real-time control through variational empowerment. arXiv preprint arXiv:1710.05101,
2017.

[32] D. Corneil, W. Gerstner, and J. Brea. Efficient model-based deep reinforcement learning with
variational state tabulation. volume 80 of Proceedings of Machine Learning Research, pages
1049–1058, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

10

[33] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. In Advances in Neural Information Processing
Systems, pages 4754–4765, 2018.

[34] M. Fraccaro, D. J. Rezende, Y. Zwols, A. Pritzel, S. M. A. Eslami, and F. Viola. Generative tem-
poral models with spatial memory for partially observed environments. CoRR, abs/1804.09401,
2018.

[35] S. M. A. Eslami, D. Jimenez Rezende, F. Besse, F. Viola, A. S. Morcos, M. Garnelo, A. Ruder-
man, A. A. Rusu, I. Danihelka, K. Gregor, D. P. Reichert, L. Buesing, T. Weber, O. Vinyals,
D. Rosenbaum, N. Rabinowitz, H. King, C. Hillier, M. Botvinick, D. Wierstra, K. Kavukcuoglu,
and D. Hassabis. Neural scene representation and rendering. Science, 360(6394):1204–1210,
2018. doi:10.1126/science.aar6170. URL https://science.sciencemag.org/content/
360/6394/1204.

[36] K. Gregor, D. J. Rezende, F. Besse, Y. Wu, H. Merzic, and A. van den Oord. Shaping belief
states with generative environment models for rl. In Advances in Neural Information Processing
Systems, pages 13475–13487, 2019.

[37] A. Mirchev, B. Kayalibay, M. Soelch, P. van der Smagt, and J. Bayer. Approximate bayesian
inference in spatial environments. In Proceedings of Robotics: Science and Systems, Freiburgim-
Breisgau, Germany, June 2019.

[38] S. Gupta, V. Tolani, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping
and planning for visual navigation, 2019.

[39] E. Parisotto and R. Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Bk9zbyZCZ.

[40] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to explore using
active neural slam. In International Conference on Learning Representations (ICLR), 2020.

[41] B. Curless and M. Levoy. A volumetric method for building complex models from range images.
In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
pages 303–312, 1996.

[42] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and
T. R. Evans. Reconstruction and representation of 3d objects with radial basis functions. In
Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pages 67–76, 2001.

[43] R. A. Newcombe, S. Lovegrove, and A. J. Davison. Dtam: Dense tracking and mapping in
real-time. 2011 International Conference on Computer Vision, pages 2320–2327, 2011.

[44] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton,
S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking.
In 2011 10th IEEE international symposium on mixed and augmented reality, pages 127–136.
IEEE, 2011.

[45] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3d reconstruction at scale
using voxel hashing. ACM Transactions on Graphics (ToG), 32(6):1–11, 2013.

[46] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb. Real-time 3d recon-
struction in dynamic scenes using point-based fusion. In 2013 International Conference on 3D
Vision - 3DV 2013, pages 1–8, 2013. doi:10.1109/3DV.2013.9.

[47] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison. Elasticfusion:
Dense slam without a pose graph. In Robotics: Science and Systems, 2015.

11

[48] Y.-P. Cao, L. P. Kobbelt, and S. Hu. Real-time high-accuracy three-dimensional reconstruction
with consumer rgb-d cameras. ACM Transactions on Graphics (TOG), 37:1 – 16, 2018.

[49] Y. Xu, L. Nan, L. Zhou, J. Wang, and C. C. Wang. Hrbf-fusion: Accurate 3d reconstruction
from rgb-d data using on-the-fly implicits. ACM Transactions on Graphics (TOG), 41(3):1–19,
2022.

[50] Y. Chen and G. Medioni. Object modelling by registration of multiple range images. Image and
vision computing, 10(3):145–155, 1992.

[51] F. Steinbrücker, J. Sturm, and D. Cremers. Real-time visual odometry from dense rgb-d images.
In 2011 IEEE international conference on computer vision workshops (ICCV Workshops), pages
719–722. IEEE, 2011.

[52] C. Audras, A. Comport, M. Meilland, and P. Rives. Real-time dense appearance-based slam for
rgb-d sensors. In Australasian Conf. on Robotics and Automation, volume 2, pages 2–2, 2011.

[53] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2100–2106. IEEE, 2013.

[54] B. Kayalibay, A. Mirchev, P. van der Smagt, and J. Bayer. Tracking and planning with spatial
world models. arXiv preprint arXiv:2201.10335, 2022.

[55] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representations
with periodic activation functions. Advances in Neural Information Processing Systems, 33,
2020.

[56] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and M. Mukadam. isdf:
Real-time neural signed distance fields for robot perception. arXiv preprint arXiv:2204.02296,
2022.

[57] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y. Lin. Inerf: Inverting
neural radiance fields for pose estimation, 2021.

[58] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu. Nerf–: Neural radiance fields without
known camera parameters, 2021.

[59] C. Reiser, S. Peng, Y. Liao, and A. Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps, 2021.

[60] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh. Neural volumes.
ACM Transactions on Graphics, 38(4):1–14, Jul 2019. ISSN 1557-7368. doi:10.1145/3306346.
3323020. URL http://dx.doi.org/10.1145/3306346.3323020.

[61] L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt. Neural sparse voxel fields. NeurIPS,
2020.

[62] S. Lombardi, T. Simon, G. Schwartz, M. Zollhoefer, Y. Sheikh, and J. Saragih. Mixture of
volumetric primitives for efficient neural rendering. ACM Trans. Graph., 40(4), jul 2021. ISSN
0730-0301. doi:10.1145/3450626.3459863. URL https://doi.org/10.1145/3450626.
3459863.

[63] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a
multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July 2022. doi:
10.1145/3528223.3530127. URL https://doi.org/10.1145/3528223.3530127.

[64] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proceedings. 1985
IEEE International Conference on Robotics and Automation, volume 2, pages 116–121. IEEE,
1985.

12

[65] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press, 2005. ISBN 0262201623.

[66] K. P. Murphy. Bayesian map learning in dynamic environments. In Advances in Neural
Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 -
December 4, 1999], pages 1015–1021, 1999.

[67] D. Hahnel, W. Burgard, D. Fox, and S. Thrun. An efficient fastslam algorithm for generating
maps of large-scale cyclic environments from raw laser range measurements. In Proceedings
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat.
No.03CH37453), volume 1, pages 206–211 vol.1, 2003. doi:10.1109/IROS.2003.1250629.

[68] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al. Fastslam 2.0: An improved particle
filtering algorithm for simultaneous localization and mapping that provably converges. In IJCAI,
volume 3, pages 1151–1156, 2003.

[69] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with rao-blackwellized
particle filters by adaptive proposals and selective resampling. Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, pages 2432–2437, 2005.

[70] B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza. Vimo: Simultaneous visual inertial
model-based odometry and force estimation. In Proceedings of Robotics: Science and Systems,
FreiburgimBreisgau, Germany, June 2019.

[71] T. Qin, P. Li, and S. Shen. Vins-mono: A robust and versatile monocular visual-inertial state
estimator. IEEE Transactions on Robotics, 34(4):1004–1020, 2018.

[72] A. Rosinol, T. Sattler, M. Pollefeys, and L. Carlone. Incremental visual-inertial 3d mesh
generation with structural regularities. In 2019 International Conference on Robotics and
Automation (ICRA), 2019.

[73] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera: an open-source library for real-time
metric-semantic localization and mapping. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2020. URL https://github.com/MIT-SPARK/Kimera.

[74] H. Strasdat, J. M. Montiel, and A. J. Davison. Visual slam: why filter? Image and Vision
Computing, 30(2):65–77, 2012.

[75] P. S. Laplace. Memoir on the probability of the causes of events. Statistical Science, 1(3):
364–378, 1986. ISSN 08834237. URL http://www.jstor.org/stable/2245476.

[76] R. Senanayake and F. Ramos. Bayesian hilbert maps for dynamic continuous occupancy
mapping. In Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of
Proceedings of Machine Learning Research, pages 458–471. PMLR, 13–15 Nov 2017.

[77] C. Hernández, G. Vogiatzis, and R. Cipolla. Probabilistic visibility for multi-view stereo. In
2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[78] W. Dong, Q. Wang, X. Wang, and H. Zha. Psdf fusion: Probabilistic signed distance function for
on-the-fly 3d data fusion and scene reconstruction. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 701–717, 2018.

[79] M. Opper and O. Winther. A bayesian approach to on-line learning. 1999.

[80] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[81] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive ray tracing for isosurface
rendering. In Proceedings Visualization’98 (Cat. No. 98CB36276), pages 233–238. IEEE, 1998.

13

[82] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6114.

[83] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

[84] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli,
J. Shotton, S. Hodges, and A. W. Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. 2011 10th IEEE International Symposium on Mixed and Augmented Reality,
pages 127–136, 2011.

[85] H. Hirschmuller. Stereo processing by semiglobal matching and mutual information. IEEE
Transactions on pattern analysis and machine intelligence, 30(2):328–341, 2007.

[86] X. Zuo, N. Merrill, W. Li, Y. Liu, M. Pollefeys, and G. Huang. Codevio: Visual-inertial
odometry with learned optimizable dense depth. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 14382–14388. IEEE, 2021.

[87] F. Steinbrucker, C. Kerl, and D. Cremers. Large-scale multi-resolution surface reconstruction
from rgb-d sequences. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3264–3271, 2013.

[88] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

[89] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

[90] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun. Hands-on bayesian neural
networks—a tutorial for deep learning users. IEEE Computational Intelligence Magazine, 17
(2):29–48, 2022.

[91] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

14

A The Cost of Maintaining a Joint Filter

In section 4.2, we mention that Rao-Blackwellised or full-covariance Gaussian representations for
the joint p(M, zt | Ht) are difficult due to the large number of parameters in the dense 3D maps.
For example, a joint Gaussian distribution of M and zt would require O((nz + nM)2) parameters,
where nz is the size of a single state (6 degrees of freedom for the pose plus 6 degrees of freedom for
the velocity) and nM is the size of a map (e.g. a voxel grid of size 200× 200× 200). Similarly, a
Rao-Blackwellised particle representation would require O(P (nz + nM)), where P � 1 is a very
large number of particles, leading to billions of parameters. This is because every particle would
carry its own individual map, and many particles are needed to properly cover the 6-DoF state space.
In these cases both the memory and the necessary computation to process all the data are prohibitive
for real-time operation.

As a workaround, we choose to approximate the individual marginal distributions. Framing the
problem in this way helps with separation of concern and allows us to more easily incorporate
traditional inference techniques (c.f. sections 4.3.1 and 4.3.2 and appendices C and E). It is worth
noting that the product of the two marginals qφt (M) and qφt (zt) is not necessarily an optimal
approximation of the joint. As each approximate filter targets a marginal true posterior, their product
is not directly optimised as a mean-field approximation [80]. The posterior approximation and
particular derivation paths we have chosen is only one way (out of many) to frame the problem which
we have found convenient to derive a practical solution.

One could attempt to sample from the joint, using one of the maintained marginal filters as a starting
point. For example, consider the following joint factorisation

p(M, zt | Ht) = p(M | Ht)p(zt |M, Ht).

To sample from it (e.g. via importance sampling [80]), we would need to compute the term
p(zt |M, Ht) up to a normalising constant:

p(zt |M, Ht) ∝ p(xt |M, zt)p(zt |M,x1:t−1,u1:t−1)

= p(xt |M, zt)

∫
p(zt, zt−1 |M,x1:t−1,u1:t−1) dzt−1

= p(xt |M, zt)

∫
p
(
zt | zt−1,ut−1,((((

((((M,x1:t−1,u1:t−2

)

× p(zt−1 |M,x1:t−1,u1:t−2︸ ︷︷ ︸
Ht−1

,���ut−1) dzt−1

= p(xt |M, zt)

∫
p(zt | zt−1,ut−1)p(zt−1 |M, Ht−1) dzt−1. (6)

The above reveals a recursive expression for the evaluation of p(zt |M, Ht). Therefore, computing
this term would require going back the Markov chain to the beginning of the sequence, which is
inefficient. One could try to maintain cached approximations of p(zt |M, Ht) at every time step (e.g.
through weighted zt particles, for different M), but this is encumbered by the large dimensionality of
the map and states. The alternative filter factorisation p(M, zt | Ht) = p(zt | Ht)p(M | zt, Ht)
leads to an analogous problem. Since we target real-time inference, we opt for maintaining approxi-
mations to only the marginal filters instead. Further considerations about the joint posterior are left
for future work.

B Details of the Generative Model

We follow the generative assumptions of Mirchev et al. [15]. The map prior is a 3D voxel grid of
occupancy and color and factorises over voxels:

p(M) =
∏

ijk

N
(Mijk

∣∣ µijk, σ
2I)
)
.

15

Each map cell Mijk ∈ R4 contains an SDF value and three RGB values. We assume an uninformed
(very broad) prior, setting σ � 1. We set the very first approximate map posterior to the prior (in the
absence of data) and recusively apply updates to it as new data arrives.

Rendering from the map is captured by the emission model p(x |M, z). First, a bundle of rays are
cast inside the camera frustum, using the pose zpose to position them in space 5. Each ray point can
be expressed as an offset from the camera center along a ray direction:

pij = c + drij .

Here ij runs over pixels, and d is the depth of the point and determines the length of the offset
along the ray direction rij . For every ray, a discrete set of K ray points {pij

k }[K] is formed, using
equidistantly spaced depth offsets d ∈ {ε, 2ε, 3ε, . . . }. For all ray points in the frustum, occupancy
and color are obtained by evaluating the occupancy and color field fM : R3 → R4 parameterised by
M. This is done by trilinearly interpolating the cells of M. Next, search is performed along each
ray, finding the first point pij

k for which the occupancy exceeds a threshold τ (in our implementation
τ = 0).6 This approximately finds the first intersection with a surface along the ray, but points along
the ray are discrete. To predict the depth of the surface more accurately, linear interpolation based on
the occupancy values is used:

d∗ = αdk + (1− α)dk−1, α =
τ − focc(pij

k−1)

focc(p
ij
k)− focc(pij

k−1)
.

Here pij
k−1 is the point preceding the surface, and pij

k the point after it (identified by the ray search).

The linear interpolation of distance to the surface based on map content matches the assumptions of
signed distance function representations (SDF) [41]. If we consider a single ray in isolation, the SDF
value would equal the signed distance of ray points to the surface, i.e. predicted depth along the ray
would be a linear function of the SDF values as well (identity), just like in the above equation. This
property of the generative renderer allows us to use closed-form map updates that are alike traditional
SDF updates without sacrificing accuracy. Therefore, we treat occupancy like an SDF with a flipped
sign (positive inside objects, negative outside). Appendix D provides the details of the probabilistic
map updates.

Color predictions are evaluated analogously to depth for each ray. The predicted depth and color are
combined into an RGB-D image mean µrgbd, which is used to parameterise a Laplace distribution:

p(x |M, z) = Laplace(x | µrgbd, diag(σE)).

The emission model is differentiable–M and z can be optimised through it with gradient descent.
However, in this work we avoid using this gradient path, as it is too expensive for real-time inference.

The transition model p(zt+1 | zt,ut) is defined as Euler integration of acceleration and velocity:

p(zt+1 | zt,ut) = N
(
zvelt+1

∣∣ fvel(zvelt ,ut), diag(σvel)2
)

×N
(
zposet+1

∣∣ fpose(zposet , zvelt+1), diag(σpose)2
)
.

Here fvel denotes acceleration integration and fpose denotes velocity integration. We deviate from
the formulation in the original paper, and use the velocity of step t instead of t − 1 to obtain the
pose as step t. We find this leads to a more convenient implementation when inferring velocity in a
filtering setup. We discuss this factorisation further in appendix E.1, where we introduce the assumed
linearisation of the transition.

We refer to the original paper for further details concerning the generative model.

5x is conditionally independent of zvel given M, zpose.
6We assume occupancy is continuous, deviating from the traditional {0, 1} Bernoulli definition.

16

C The Marginal Map Filter

Here we derive the approximation of the true marginal map filter:

p(M | Ht) =

∫
p(M, zt | Ht) dzt

∝
∫
p(xt | zt,M)

∫
p(zt | zt−1,ut−1)p(M, zt−1 | Ht−1) dzt−1 dzt

≈
∫
p(xt | zt,M)

∫
p(zt | zt−1,ut−1)qφt−1(M)qφt−1(zt−1) dzt−1 dzt (7)

≈ p(xt | ẑt,M)× qφt−1(M) (8)

≈ q(M | xt, ẑt)× qφt−1(M) =: qφt (M). (9)

We begin by applying eq. (1) directly. The first approximation we make is in eq. (7), substituting
the true previous joint filter p(M, zt−1 | Ht−1) for qφt−1(M)qφt−1(zt−1). We do this for speed,
sacrificing some modelling accuracy for the sake of directly reusing the previous marginal estimates.
Appendix A discusses why using an approximation of the joint here is difficult. Next, in eq. (8) we
use a single-sample MC approximation of the integral of zt. The nominal value ẑt we set to the mean
of the current approximate state filter qφt (zt). Accepting some bias, we also do this for speed, as
this is the best guess for zt available at step t without extra computation. Our next approximation
is the term q(M | xt, ẑt) in eq. (9), which represents a closed-form map update. Intuitively, it
approximately inverts the emission p(xt | ẑt,M) and populates the map with the content necessary
for reconstructing the observation xt.

To understand how the map update comes to be, consider the following:

p(xt | ẑt,M) = p(xt,M | ẑt)p(M)
−1

= p(M | xt, ẑt) p(xt | ẑt)︸ ︷︷ ︸
const in M

p(M)
−1

= p(M | xt, ẑt)× p(M)
−1 × const

≈ q(M | xt, ẑt),

where q(M | xt, ẑt) has to be designed to be proportional to p(M | xt, ẑt)× p(M)
−1. With the

help of Bayes’ theorem we invert the emission and then arrive at an expression which is the target for
the map update approximation. The same strategy has been previously used by Grisetti et al. [69].
We specify the exact form of the update in appendix D, where we engineer the update such that it
results in meaningful rendering.

D Map Update Formulation

Consider the emission model p(xt | zt,M). As described in appendix B, it determines the hit
of a single surface during raycasting. Moreover, the linear interpolation described in appendix B
means an SDF-like representation will match the rendering assumptions. Noting that we use an
uninformed map prior, the map update then needs to approximate q(M | xt, ẑt) ≈ p(M | xt, ẑt) ≈
p(M | xt, ẑt)× p(M)

−1. Because of this, we define the map update as:

q(M | xt, zt) =
∏

ijk

q(Mijk | xt, zt)

q(Mijk | xt, zt) = N
(
Mijk

∣∣∣ fupdate(zt,xt)ijk, diag(σupdate
ijk)2

)

fupdate(zt,xt)ijk = [−fsdf(pijk, zt,xt), frgb(pijk, zt,xt)]
T .

Here the indices ijk run over the voxels in a 3D grid. The function fsdf computes the SDF update
values for the particular voxel center pijk based on the observed depth image xd

t and the camera

17

pose zposet . frgb computes the RGB update values analogously. Both functions follow a traditional
implementation [41]. We use the negative SDF value in the update to match the assumptions of
Mirchev et al. [15] (see appendix B). Since the update is engineered in advance to match the generative
assumptions, we empirically validate whether it is appropriate in section 5.

Next we recap the parametric form of the approximate map filter:

qφt (M) =
∏

ijk

N
(Mijk

∣∣ µM
ijk,t, diag(σM

ijk,t)
2
)
.

Applying the update is straightforward, as it comes down to solving the multiplication of Gaussians
for each voxel in closed form. This is because both the update and the approximate map filter factorise
over voxels. Therefore, the application of the updates can be easily parallelised on a GPU. In the
following we present the update equations for the whole map at once for the sake of simplicity of
notation:

q(M | xt, zt)q
φ
t (M) = N

(M
∣∣ fupdate(zt,xt), diag(σupdate)2

)

×N
(M

∣∣ µM
t , diag(σM

t)2
)

= N
(M

∣∣ µM
t+1, diag(σM

t+1)2
)

:= qφt+1(M). (10)
The update equations are better described in terms of the Gaussian precisions (inverse covariances),
denoting them as:

ΛM
t = diag(σM

t)−2

ΛM
t+1 = diag(σM

t+1)−2

Λupdate = diag(σupdate)−2.

Solving for the parameters µM
t+1 and ΛM

t+1, from eq. (10) we have:

µM
t+1 = (ΛM

t+1)−1
(
ΛM

t µM + Λupdatefupdate(zt,xt)
)

ΛM
t+1 = ΛM

t + Λupdate.

These equations reveal the connection to the traditional SDF equations of Curless and Levoy [41]:

Dt+1(p) =
Wt(p)Dt(p) + wt(p)dt(p)

Wt(p) + wt(p)

Wt+1(p) = Wt(p) + wt(p).

Here p ∈ R3 is a point in the world frame (e.g. a voxel center), Dt is the accumulated SDF, dt is the
SDF update, Wt the accumulated weights so far and wt the update weight. The algebraic form is the
same, equating the mean of the filtering estimate to D, the mean of the update to d, the precision of
the filtering estimate to W and the precision of the update to w. A similar probabilistic connection
has been explored before in [77, 78].

E The Marginal State Filter

Before discussing the state filter, first we need to introduce the following linear approximation of the
transition.

E.1 Transition Linearisation

We represent each state zt = (zposet , zvelt) as the combination of a pose zpose ∈ SE(3) and a velocity
(translational and angular) zvel ∈ R6. Poses are parameterised as a combination of a 3D location and
a quaternion. Our controls are translational and angular acceleration in the world reference frame:
ut = (ulin. accel

t ,uang. accel
t). The assumed generative transition model is then the Euler integration of

acceleration first, and then of velocity:
p(zt+1 | zt,ut) = p

(
zvelt+1 | fvel(zvelt ,ut)

)
p
(
zposet+1 | fpose(zposet , zvelt+1)

)

= N
(
zvelt+1

∣∣ fvel(zvelt ,ut), diag(σvel)2
)

×N
(
zposet+1

∣∣ fpose(zposet , zvelt+1), diag(σpose)2
)
.

18

The function fvel defines acceleration integration in the world frame and is linear:

zvelt+1 = fvel(z
vel
t ,ut) = zvelt + ut · (∆t)2.

The function fpose defines Euler integration of the agents velocity, to obtain its new pose. When we
do inference (not for prediction), we choose to linearise this function:

zposet+1 = fpose(z
pose
t , zvelt+1)

≈ Atz
pose
t + Btz

vel
t+1 + ct︸ ︷︷ ︸

first order Taylor apprx.

=: f̂pose(z
pose
t , zvelt+1).

This assumption lets us propagate uncertainty and infer velocity in closed form. Thus, we define an
approximate linearised transition:

q(zt+1 | zt,ut) ≈ p(zt+1 | zt,ut) (11)

q(zt+1 | zt,ut) = p
(
zvelt+1 | fvel(zvelt ,ut)

)
q
(
zposet+1 | f̂pose(zposet , zvelt+1)

)

= N
(
zvelt+1

∣∣ zvelt + ut · (∆t)2, diag((σvel)2)
)

×N
(
zposet+1

∣∣ Atz
pose
t + Btz

vel
t+1 + ct, diag((σpose)2)

)
.

Here, we introduce a linearisation f̂pose of conventional Euler pose integration. Since the velocity
integration function fvel is linear by definition, this leaves us with two linear Gaussian conditionals,
which we will use for closed-form updates [80]. In particular, the following integral can be solved in
closed form: ∫

q(zt | zt−1,ut−1)qφt−1(zt−1) dzt−1 =: qt(zt | ut−1, Ht−1), (12)

assuming qφt−1(zt−1) is a Gaussian belief over the previous state, our state filter approximation
introduced in appendix E.2.

E.2 State Filter Derivation

We can now derive the approximation of the true marginal state filter:

p(zt | Ht) =

∫
p(M, zt | Ht) dM

∝
∫
p(xt | zt,M)

∫
p(zt | zt−1,ut−1)p(M, zt−1 | Ht−1) dzt−1 dM

≈
∫
p(xt | zt,M)

∫
q(zt | zt−1,ut−1)qφt−1(M)qφt−1(zt−1) dzt−1 dM (13)

≈ p
(
xt | zt,M̂

)∫
q(zt | zt−1,ut−1)qφt−1(zt−1) dzt−1 (14)

= p
(
xt | zposet ,M̂

)
qt(zt | ut−1, Ht−1) (15)

= p
(
xt | zposet ,M̂

)
qt(z

pose
t | ut−1, Ht−1)qt(z

vel
t | zposet ,ut−1, Ht−1) (16)

≈ qφt (zposet)qt(z
vel
t | zposet ,ut−1, Ht−1) =: qφt (zt). (17)

Our first approximation is in eq. (13), substituting p(M, zt−1 | Ht−1) for qφt−1(M)qφt−1(zt−1)
with the same reasoning as for the map filter. We also replace the true transition model for the
linearised version from eq. (11). Next, in eq. (14) we MC-estimate the integral of M with a
single sample, using the mean M̂ of the previous map belief qφt (M). Next, in eq. (15) we solve
the integral over zt−1 analytically (c.f. eq. (12)). We can do this because the approximate linear
transition q(zt | zt−1,ut−1) forms a linear Gaussian system with qφt−1(zt−1). Thus we obtain
qt(zt | ut−1, Ht−1), an approximate Gaussian prior over the current state. Next, in eq. (16) we can
split this Gaussian into qt(z

pose
t | ut−1, Ht−1), a Gaussian prior over the current agent pose, and

qt(z
vel
t | zposet ,ut−1, Ht−1), a linear Gaussian velocity conditional given a pose. We can obtain

both of them in closed form following standard multivariate Gaussian equations for linear Gaussian
systems [80].

19

E.3 Pose Optimisation Objective

As already discussed in the main text, we obtain a pose belief qφt (zposet) using a maximum-aposteriori
(MAP) objective

arg max
zpose
t

log p
(
xt | M̂, zposet

)
+ log qt(z

pose
t | ut−1, Ht−1).

It arises naturally from the first two terms in eq. (16), serving as a likelihood and a prior. The
term log p

(
xt | M̂, zposet

)
represents rendering with the emission model, and evaluating it in every

gradient step is inefficient. Because of this, we replace that term for the prediction-to-observation
objective used by Kayalibay et al. [54], Nießner et al. [45], Newcombe et al. [84]. We refer to [54]
for a discussion of why this surrogate is meaningful. Our final objective for optimising the pose is:

arg min
zpose
t

Lgeo

(
zposet ,xt, z

pose
t−1 , x̂t−1

)
+ Lrgb

(
zposet ,xt, z

pose
t−1 , x̂t−1

)

− log qt(z
pose
t | ut−1, Ht−1). (18)

where we have:

Lgeo

(
zposet ,xt, z

pose
t−1 , x̂t−1

)
=
∑

k

∥∥∥〈p̂k
t−1 −T

zpose
t−1

zpose
t

pk
t , n̂

k
t−1〉

∥∥∥
1

Lrgb

(
zposet ,xt, z

pose
t−1 , x̂t−1

)
=
∑

k

∥∥∥x̂rgb
t−1[π(T

zpose
t−1

zpose
t

pk
t)]− xrgb

t [π(pk
t)]
∥∥∥
1
.

We follow the notation of Kayalibay et al. [54] for consistency, and refer to that paper for further
details. zposet is the current unknown pose of the agent. zposet−1 is the mean pose of the previous pose

belief. x̂t−1 is a rendered observation from the preceding step, the mean of p
(
xt−1 | M̂, zposet−1

)
.

T
zpose
t−1

zpose
t

is the relative pose between the current and previous data step. pk
t and p̂k

t−1 are correspond-

ing 3D points in respectively the current and previous camera frames. Accordingly, n̂k
t−1 is the

corresponding normal of the rendered depth image.

The two terms Lgeo and Lrgb align the current RGB-D observation xt to the preceding prediction
x̂t−1 rendered from the map, using geometric and photometric alignment, also known as point-to-
plane ICP [41] and direct color image alignment [52, 51]. Because the preceding x̂t−1 is rendered,
this effectively anchors the current observation to the map by optimising the new pose of the agent.
In addition, log qt(z

pose
t | ut−1, Ht−1) is maximized, satisfying the linearised dynamics prior over

the agent pose. The L1 norm in Lgeo and Lrgb corresponds to a Laplace distribution assumption and
the sole reason for it is robustness to outliers. When we apply a Laplace approximation7 to obtain
pose uncertainty, we implicitly change the L1 assumption. This is because we approximate a Hessian
for the objective with the square of the full-objective Jacobian (with the dynamics prior term as well),
which implies an assumed curvature of a square function. In practice we did not observe any major
negative consequences from this fact.

F Approximation Gap

In our derivations, we have made a few crude approximations to reduce computations and make
implementation simpler. For example, in eq. (8), we choose to use the previous state filter’s mean
instead of taking the expectation w.r.t. the whole distribution when computing the map marginal filter.
Similarly, in eq. (14), we choose to use the previous map filter’s mean instead of taking the expectation
w.r.t. the whole distribution when computing the state marginal filter. Note that the implication of this
conditioning is that state uncertainty is not reflected in the map updates (i.e. map does not become
more uncertain if we are uncertain where to place the update) and map uncertainty is not reflected in
the pose optimisation (i.e. states do not become more uncertain even if the map for which they are

7Not to be confused with a Laplace distribution assumption.

20

Table 2: Assumed environment sizes, one size per data set.

EuRoC Blackbird TUM-RGBD
14 m × 14 m × 14 m 25 m × 25 m × 25 m 14 m × 14 m × 14 m

Table 3: Transition scale hyperparameters.

translation rotation
σvel σpose σvel σpose

0.03 0.05 0.03 0.02

optimised has not settled yet). We look forward to improving this aspect in future work, as proper
uncertainty propagation can stabilise long-term operation of the proposed inference and allow for
better overall uncertainty calibration of the model. In eqs. (7) and (13) we also approximate the joint
posterior with the product of both marginal approximations. We believe that positioning the method
as an approximation to p(zt | Ht) and p(M | Ht), the optimal marginal posteriors, reveals the
exact places where compromises have been made. We expect that explicitly highlighting the current
approximation gap will be conducive for future research.

G Experiment Details

G.1 Execution Details

We have implemented PRISM with JAX [88], using Accelerated Linear Algebra (XLA) to compile
computations into kernels that can be executed on a GPU device. This lets us execute everything
in real-time, while preserving the auto-differentiability of the generative model [15]. Rendering,
map updates and the Laplace approximation for pose uncertainty are executed on GPU, as they
involve a lot of parallel computations. The gradient-based pose optimisation is executed on CPU,
as every optimisation step is lightweight and optimisation steps need to happen in sequence. The
linear-Gaussian updates are executed on CPU as well.

G.2 Hyperparameters and Inference Details

Map parameters Grid resolution is 200× 200× 200 across all experiments. The map is parame-
terised with a mean grid and a grid with standard deviations. Each mean grid cell contains occupancy
and RGB color, four values in total. Each standard deviation grid cell also contains four respective
uncertainty values. Each map covers a hypercube of real-world space, we list the environment sizes
per data set in table 2. This determines the effective voxel size, between 7 cm for EuRoC and
TUM-RGBD and 12.5 cm for Blackbird.

Transition parameters The transition is homoscedastic, with predefined scales for acceleration
and velocity integration. We use different scales for the location and orientation components of the
states. Table 3 provides the hyperparameters, with σvel governing acceleration integration and σpose

governing velocity integration. They are the same for all data sets.

Rendering The maximum camera depth is set to 7.0 m for EuRoC, 8.0 m for TUM-RGBD and 20.0
m for Blackbird. The ray step size ε is set to 0.4× voxel_size. The threshold for hit determination τ
is set to 0, so that rendering is compatible with the map updates.

Map updates Map updates are placed only for map voxels that fall inside the camera frustum, and
fall between the camera optical center and an added truncation distance after the observed depth
surface. The truncation distance is 4× voxel_size for Blackbird [18] and 2× voxel_size for EuRoC

21

[17] and TUM-RGBD [19]. We assume a constant scale σupdate
ijk = 1.0 for the update of all relevant

voxels. For the very first map belief, we initialise occupancy (negative SDF) to -0.001 and color to
0.0 for all map voxels.

Pose optimisation Poses are optimised using the MAP objective from section 4.3.2. We use Adam
[89] as an optimiser, disabling its momentum. Step sizes are set individually for the translation and
rotation components of the optimised poses. For the translational part of the pose, we use a step size
of 0.001. For the rotational part of the pose, we use a step size of 0.00036. We use 1000 optimisation
steps, sampling 200 random pixels uniformly at each step to evaluate the objective. Pixels with a
geometric error higher than 0.45 are ignored during optimisation. Pixels with a photometric error
higher than 0.15 are ignored during optimisation. The same optimisation hyperparameters are used in
all experiments.

In terms of the objective itself, we assume a different Laplace scale for the photometric and geometric
terms in eq. (18) for each data set, based on our confidence in the sensors. A lower Laplace scale
means higher priority is given to the respective observations (color or depth). For EuRoC and
TUM-RGBD, we use a color scale of 0.1 and a geometric scale of 0.02, as the depth readings in these
data sets are accurate. For Blackbird, we use a color scale of 0.02 and a geometric scale of 0.2, as the
depth we use in Blackbird is rather inaccurate, estimated with SGBM [85].

Laplace approximation We approximate the pose optimisation objective’s Hessian with the
square product of the objective’s Jacobian. Since the Laplace estimates are noisy over time due to
approximation errors, we apply an exponential moving average over time with a coefficient of 0.8.

G.3 Data Preprocessing

We subsample images to a resolution of 60 × 80 pixels for EuRoC, 192 × 256 for Blackbird and
120× 160 pixels for TUM-RGBD. Since the ground-truth depth readings for EuRoC from [10] are
sparse we downscale them to a resolution of 60 × 80 pixels to densify. We ignore pixels with invalid
depth throughout our method, as well as pixels for which depth is highly discontinuous.

G.4 Localisation Evaluation Details

We compare our localisation results to the published results of existing SLAM methods, carrying
them over from the respective publications. Respectively, the choice of our evaluation trajectories
was determined by whether a comparison is possible. We run inference experiments with 5 random
seeds for each trajectory and report the mean and standard deviation of the relevant metrics.

22

H Uncertainty Analysis

Figure 7: Whitened state residuals for PRISM and VSSM-LM [15] for eight different blackbird
trajectories (denoted in the titles). The model is pessimistic when the distribution of whitened
residuals is narrower than a standard Gaussian.

We analyse the uncertainty of PRISM and compare it to our reproduction of the off-line variational
inference method of Mirchev et al. [15] in JAX, which we denote with VSSM-LM. We compare
both state uncertainty and map uncertainty. Since we have ground-truth poses for the state, we can
also evaluate the state uncertainty calibration quantitatively. The calibration tells us whether the
uncertainty matches the estimation errors between the inferred state means and the ground truth.

State uncertainty To evaluate the calibration of state uncertainty, we first evaluate the residuals
between the inferred mean poses and the ground-truth MOCAP poses, using the same eight trajectories
of the Blackbird data set [18] from section 5.2. The emission and transition scales of both methods
define the overall uncertainty magnitude of the estimates. To put both systems on equal ground and
avoid tuning inefficiencies w.r.t. these scales, we estimate a single global scalar correction for each
method and apply it to all state covariances. We then whiten8 the computed residuals with their
respective covariance estimates for all poses in all trajectories.

The whitened residuals of a perfectly calibrated model should form a standard normal distribution.
This would indicate that the inferred covariances exactly match the distribution of errors the model
makes. If the whitened residuals end up narrower than a standard Gaussian, then the model is too
pessimistic as its uncertainty estimate was higher than the actual unnormalised residuals, and vice
versa. Figure fig. 7 shows the distribution of the whitened residuals for both PRISM and VSSM-LM.
While both models are not perfectly calibrated, their residual distributions are still reasonable, as
they roughly match the support of the ideal Gaussian. PRISM is more pessimistic, indicated by the
narrower distributions of whitened residuals. We find this is better than the alternative, as it would
lead to more cautious control of the agent. Note that PRISM is also consistently more accurate in
state estimation than VSSM-LM, as shown in section 5.2. The pessimism is more pronounced for
trajectories of lower velocity (see titles of fig. 7), for which state estimation is easier.

8Normalise by the square root of the covariance matrix, i.e. inverse of a triangular matrix.

23

Figure 9: Horizontal slices of map uncertainty (orange means certain) for the same eight blackbird
trajectories. PRISM on top, VSSM-LM below. From left to right: star {1, 2, 3, 4} m/s, forward yaw,
then picasso {1, 2, 3, 4} m/s, constant yaw.

0.0 0.2 0.4 0.6 0.8 1.0
obs. CDF

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

. C
D

F

PRISM
VSSM-LM
optimal

Figure 8: Chi-squared calibration curve.

To quantify the calibration gap further, we per-
form a Chi-squared calibration analysis of the
normalised squared sum of residuals (NSSR),
following Jospin et al. [90], section VII. Sum
here refers to summing over the pose dimension.
Figure 8 shows the result. It compares the cumu-
lative Chi-squared distribution of the normalised
residuals (prediction distribution) to the cumula-
tive distribution of observing that residual in the
data (observation distribution). A model with
an ideal calibration of its uncertainties relative
to the errors it makes would match the identity
diagonal. The x-axis corresponds to an order-
ing of the magnitude of the residuals (low to
high). Model curves above the diagonal mean
the model is pessimistic, and vice versa. The
calibration curves of both methods indicate a
reasonable correlation between the cumulative
prediction distribution and the cumulative ob-
servation distribution of residuals, with PRISM
exhibiting more bias towards pessimism. This is a confirmation of what we identified in the residual
plots above. Note that the uncertainty of VSSM-LM is produced offline, ca. 15 times slower than
PRISM in our implementation.

Map uncertainty Next we qualitatively compare the map uncertainty of PRISM to the map
uncertainty of VSSM-LM. Figure 9 shows horizontal slices of the uncertainty estimates at eye level
for the same eight Blackbird trajectories from section 5.2. For all trajectories, the scene is a subway
station with multiple columns.

VSSM-LM is certain primarily at surfaces, i.e. at walls and columns (the orange lines and dots
in the images on the lower row). It assigns lower certainty to the empty space inside the scene
(purple), which is technically observed just as much by the agent. We attribute this to the way
differentiable rendering works in this method: since the renderer identifies a single hit along each ray
when observations are reconstructed, gradients flow only to the map parameters that correspond to
the hit. Therefore certainty is most pronounced there.

On the other hand, PRISM assigns certainty both to surfaces and to the observed empty space between
(c.f. fig. 9, top row), due to the nature of the map updates. Note that whenever something is occluded
in the view of the agent it remains less certain (e.g. the triangular patterns behind columns seen in the
images). Also, whenever the agent spends more time observing a given region, the certainty of the
map increases proportionally. This can be seen in all star trajectories, where the agent starts its flight

24

from the same spot after sitting still for a while (first four images in fig. 9, also see fig. 2b). Whether
this characteristic difference between the methods matters is left to explore in future work.

Overall, both methods reliably leave regions out of view uncertain and increase certainty only in the
observed space.

I Map Resolution Ablations

In this ablation we evaluate how localisation accuracy changes for increased map resolution. We
set the new resolution to 400 × 400 × 400, doubling the resolution of each voxel grid side. We fix
all other hyperparameters to their default values, as listed in appendix G. The localisation results
are in table 4. We notice consistent improvements across the board, the largest of up to 3 cm for the
Blackbird trajectories. This makes sense, as the Blackbird scenes are the biggest (25 m × 25 m × 25
m), where an increased resolution leads to a more substantial reduction in voxel size, from 12.5 cm to
6.25 cm per side.

We notice only one outlier, star, 4 m/s. For the increased resolution, five seeds for that trajectory
resulted in RMSE scores of {0.300, 0.281, 0.420, 0.115, 0.269} m. None of the runs failed and they
all showed low to moderate estimation bias around the corners of the trajectory.

We note that voxel grids are wasteful in terms of memory and limit the maximum feasible resolution.
Schemes like voxel hashing [45] can lift this limitation, and fit all other presented assumptions.

Table 4: Localisation absolute error RMSE in meters on EuRoC [17], Blackbird [18] and TUM-
RGBD [19], for a map resolution of 400 x 400 x 400 (twice as big as the default).

Trajectory PRISM PRISM
res. 200 res. 400

EuRoC/V101 0.041 (± 0.002) 0.038 (± 0.003)
EuRoC/V102 0.035 (± 0.002) 0.030 (± 0.001)
EuRoC/V103 0.042 (± 0.002) 0.038 (± 0.002)
EuRoC/V201 0.037 (± 0.001) 0.032 (± 0.001)
EuRoC/V202 0.035 (± 0.003) 0.035 (± 0.003)
EuRoC/V203 x x

Trajectory PRISM PRISM
res. 200 res. 400

picasso, 1 m/s 0.064 (± 0.003) 0.045 (± 0.003)
picasso, 2 m/s 0.053 (± 0.003) 0.048 (± 0.009)
picasso, 3 m/s 0.061 (± 0.003) 0.042 (± 0.002)
picasso, 4 m/s 0.079 (± 0.005)9 0.061 (± 0.002)9

star, 1 m/s 0.089 (± 0.007)9 0.074 (± 0.009)9

star, 2 m/s 0.111 (± 0.009) 0.103 (± 0.009)
star, 3 m/s 0.115 (± 0.012) 0.082 (± 0.008)
star, 4 m/s 0.153 (± 0.015)9 0.278 (± 0.015) 9

Trajectory PRISM PRISM
res. 200 res. 400

fr1/desk 0.053 (± 0.003) 0.052 (± 0.001)
fr2/xyz 0.029 (± 0.001) 0.021 (± 0.000)
fr3/office 0.083 (± 0.001) 0.081 (± 0.002)

J Motivation and Downstream Applicability

PRISM is an inference tailored to the state-space model introduced by Mirchev et al. [15], and this
synergy has advantages. Markovian state-space models are a fundamental building block that enables

9Last 10 s are skipped, as the drone hits the ground during landing.

25

model-based control [2]. For this, both a predictive distribution and a state estimator are needed. The
predictive distribution is already given by Mirchev et al. [15], PRISM fills the role of a real-time state
estimator.

The advantages we foresee come from the probabilistic integration of a dense map, rendering and
dynamics.

Prediction and Control PRISM’s estimates harmonise with the predictive model:

Eqφt (M)qφt (zt)
[p(zt+1:t+k,xt:t+k | ut:t+k−1, zt,M)],

because we derive them as approximations to posterior distributions stemming from the same state-
space model. A rollout can therefore start from the inference estimates qφt (M) and qφt (zt) (in
expectation above) and predict both rendered images and states with appropriate uncertainty for
a candidate control sequence ut:t+k−1. We can then apply any technique from the literature on
optimal control and reinforcement learning to control the agent [2, 91]. Note that because the control
problem is of partial observability, i.e. a partially-observable Markov decision process (POMDP), an
ideal solution may need to intertwine the estimator in the rollout to form beliefs, but we leave such
considerations for the future to simplify discussion.

One advantage we see is that whole images can be predicted in the rollout. This is possible be-
cause of the dense map estimate, which supports rendering. It allows us to define rewards for the
image observations, which can enable interesting control tasks that are not limited to point-to-goal
navigation.

Another advantage is that the dense map directly provides obstacle information. We can combine this
information with the map uncertainty estimates to be more robust when avoiding obstacles in the
environment. Similarly, since the predictive rollout is fully-probabilistic, the uncertainty of qφt (zt)
will propagate through the state transition and would be useful for robust collision avoidance as well.

On its own, the uncertainty of the map is useful for active learning (e.g. see [37]). In particular, we
can go beyond frontier-based exploration and focus the agent on still uncertain map regions through
an information-theoretic objective.

Adoption and Future Work We have made an effort to signpost all approximations we make in
our filtering derivations in appendices C and E. We hope this will facilitate future research.

PRISM is also straightforward to implement in auto-differentiable frameworks (the current version is
written entirely in JAX [88]).

26

A. Core Publications

A.3. Tracking and Planning with Spatial World Models
Paper Summary

TNP-SM shows how to solve navigation tasks under a dense state-space

model (VSSM-LM, appendix A.1). It uses the densemaps obtained through

differentiable rendering for collision avoidance, and combines high-level

planning (search) with low level control to solve complex simulated

environments (e. g. 3D mazes). The navigation works with only RGB-D

images under noisy dynamics, using a state estimator to uncover the 6-DoF

agent states needed for planning.

TNP-SM runs in real-time, and a key ingredient for that is that the state

estimator derived from VSSM-LM uses a surrogate coloured-ICP objective

to avoid gradients through the renderer. An analysis of the runtime is

included, with a comparison to the alternative.

Author Contributions

The author’s main contribution to the paper is the definition and implemen-

tation of a real-time state estimator (tracker) for the agent states, derived

from the predictive assumptions of VSSM-LM, and the accompanying

experiments that compare the state estimator’s performance to estimation

with gradients directly through a renderer (sections 3.2, 4.2 and "State

estimation in real-time" in section 5). The planning and low-level control

methods and associated experiments are contributions by Baris Kayalibay.

Both authors co-wrote the paper.

problem definition helped

literature review helped

theoretical derivation significant (state estimation)

implementation significant (state estimation)

experiments significant (state estimation)

writing significant

138

Proceedings of Machine Learning Research vol 168:1–14, 2022 4th Annual Conference on Learning for Dynamics and Control

Tracking and Planning with Spatial World Models

Barış Kayalıbay∗ BKAYALIBAY@ARGMAX.AI

Atanas Mirchev∗ ATANAS.MIRCHEV@ARGMAX.AI

Patrick van der Smagt
Justin Bayer BAYERJ@ARGMAX.AI

Machine Learning Research Lab, Volkswagen Group, Munich

Editors: R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, M. Kochenderfer

Abstract
We introduce a method for real-time navigation and tracking with differentiably rendered world
models. Learning models for control has led to impressive results in robotics and computer games,
but this success has yet to be extended to vision-based navigation. To address this, we transfer ad-
vances in the emergent field of differentiable rendering to model-based control. We do this by plan-
ning in a learned 3D spatial world model, combined with a pose estimation algorithm previously
used in the context of TSDF fusion, but now tailored to our setting and improved to incorporate
agent dynamics. We evaluate over six simulated environments based on complex human-designed
floor plans and provide quantitative results. We achieve up to 92% navigation success rate at a fre-
quency of 15 Hz using only image and depth observations under stochastic, continuous dynamics.
Keywords: navigation, planning, model-based control, state estimation, differentiable rendering

1. Introduction

Figure 1: Planning in a world model. Isometric
model view with planned trajectory.

Autonomous systems need to understand their
environment to make good decisions. Optimal
control and reinforcement learning therefore
hinge on learning or engineering accurate mod-
els of both dynamics and observations, which
allow us to plan into the future and find opti-
mal actions. The paradigm of learning models
has been successfully applied to Atari games
(e.g. Kaiser et al., 2020), walking with complex
simulated robots (e.g. Hafner et al., 2019), con-
trolling unmanned aerial vehicles (e.g. Becker-
Ehmck et al., 2020) and meta-reinforcement
learning for robotics (e.g. Zhao et al., 2020).

Prior work has attempted to learn such
world models of spatial environments (Fraccaro
et al., 2018; Mirchev et al., 2019). These early
models were limited to simple scenes, which re-
stricted their practical use in control to toy sce-

∗ Equal contribution.

c© 2022 B. Kayalıbay, A. Mirchev, P. van der Smagt & J. Bayer.

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

narios (Kayalibay et al., 2018). Their limitations were a result of attempting to model the complex
interaction of a camera or depth sensor with its environment using a combination of neural networks
and simple inductive biases. More recently, this balance has shifted in favour of the inductive bias,
with an increased focus on engineering and domain knowledge (Mildenhall et al., 2020; Mirchev
et al., 2021; Sitzmann et al., 2020; Müller et al., 2019). The result is the field of differentiable
rendering, which models camera sensing by applying multiple-view geometry and adapting con-
cepts from computer graphics, with neural networks being relegated to the relatively simple task of
predicting properties like colour or occupancy over 3D space.

Differentiable rendering allows to model spatial environments with outstanding fidelity. It is
then natural to use such models for control, an idea that was voiced as early as the 1990s (Oore et al.,
1997). This has been done by Li et al. (2021) in the context of multi-link robots and Adamkiewicz
et al. (2021) in the context of navigation, albeit without a quantitative evaluation of success.

Here we present a practical navigation algorithm for planar robots which uses a learned world
model. Navigating based on visual observations alone requires inferring the agent’s pose. We will
therefore address the problem of state estimation as well. Our exact contributions are:

• We present a 15-Hz real-time algorithm for navigation under noisy agent dynamics and only
local RGB-D observations in world models obtained with differentiable rendering.

• We test our method on simulated yet challenging indoor environments based on actual floor
plans and provide a thorough quantitative evaluation.

• We improve an existing method for tracking camera poses by using the dynamics of the agent
and apply it to our setting. This runs about five times faster than propagating gradients through
the renderer, and is thus well-suited for vision-based control.

2. Related Work

Generative models and maps. Various generative models of space have been proposed (Fraccaro
et al., 2018; Planche et al., 2019; Gregor et al., 2019; Mirchev et al., 2019). Among these, the work
of Mirchev et al. (2019) was later adapted to a navigation task with the addition of A∗-based plan-
ning (Kayalibay et al., 2018). The method was demonstrated on simple 2D mazes with 360◦ depth
range observations. In contrast, others have proposed models aimed at tasks like navigation and
exploration, which do not require generating new observations from the model. These approaches
define read and write operations for distilling information from camera images into a 2D top-down
map of the environment. Notable contributions here include the work of Parisotto and Salakhutdinov
(2017), where a 2D neural map with abstract features is written to and read from to solve searching
problems. Gupta et al. (2019) proposed a similar algorithm, extended by a planning module for
navigation. The write operation was improved using projective geometry in (Chen et al., 2019) and
(Chaplot et al., 2020), the latter achieving impressive navigation performance. Ramakrishnan et al.
(2020) extended the setup by learning to predict occupancy beyond visible locations.
Differentiable rendering, pose estimation and control. Various methods for differentiably ren-
dering images have been proposed in recent years. Of these, the method of Mildenhall et al. (2020)
relies on modeling colour and spatial density with neural nets. Sitzmann et al. (2020) used an LSTM
to find the point where a ray would hit the scene geometry. Lombardi et al. (2019) proposed using
voxel grids and warping fields to encode and decode scenes. Mirchev et al. (2021) employ voxel

2

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

grids as well, focusing on localisation and mapping with unmanned aerial vehicles (UAV). Taking
a different route, Niemeyer et al. (2020) and Yariv et al. (2020) rely on implicit differentiation to
define the surface of the scene.

Several works deal with pose estimation in the context of differentiable rendering. Wang et al.
(2021) jointly optimise pose, camera and scene parameters in a set of simple scenes. Assuming that
the scene parameters have been learned in advance, Yen-Chen et al. (2021) propose finding camera
poses using gradient descent and an efficient pixel subsampling scheme. Notably, Sucar et al. (2021)
propose a real-time algorithm for joint tracking and mapping, though their evaluation is limited to
small scenes. Mirchev et al. (2021) introduce a SLAM algorithm based on differentiable rendering,
capable of tracking a UAV in photorealistically rendered simulations, though not in real time.

To the best of our knowledge, only two papers exist that apply differentiable rendering in a
control context. Of these, (Li et al., 2021) focuses on manipulation tasks involving a robot arm.
Adamkiewicz et al. (2021) investigate using neural radiance fields to solve navigation tasks. Their
work is close to ours, though we differ in a couple of points. We focus on navigation with planar
robots in indoor environments, and provide a quantitative evaluation on a set of complex scenes
based on human-designed floor plans which were converted into levels for the Vizdoom simulator
(Wydmuch et al., 2018). In contrast, they provide experiments with different kinds of robots, though
they do not report any quantitative results indicating large-scale navigation success. Our work
also approaches the problem of pose estimation differently. They approach pose estimation by
combining the approach of Yen-Chen et al. (2021) with a transition loss and obtain a Bayesian filter.
The benefit of our approach is its speed over computing gradients through the rendering pipeline.
Finally, they propose a gradient-based algorithm for obstacle avoidance, which is initialised using
A∗-search. We similarly use A∗-search, and track the planned trajectory using a simple low-level
controller intended for a planar robot.

3. Background

3.1. Differentiable Rendering

The backbone of most differentiable rendering approaches is a parametric function that maps 3D
space to geometric information (e.g. occupancy) and colour. Formally, we have two maps f : R3 →
R and g : R3 → R3, where one learns the occupancy (alternatively, density or opacity) and the other
corresponds to the RGB value. The colour model might also take a viewing angle as input, which
allows modeling reflections. We can then generate an RGB-D image from any camera pose in the
special Euclidean group SE(3) by defining a differentiable rendering procedure.

The first step of the rendering procedure involves finding the point where a ray intersects the
scene geometry for the first time, the latter being implicitly defined by the occupancy model. We
follow the approach of Mirchev et al. (2021), where the occupancy function is linearised around the
point where it first exceeds a threshold, and the intersection point is then found using that linear
approximation. This way of rendering is well-suited to our purposes, since it directly defines the
occupancy of a point in space, which defines where the obstacles are when navigating. Formally,
given a ray parameterised by the camera centre and an offset vector: r = c + kv, we evaluate
the occupancy function for k ∈ {∆, 2∆, . . . , n∆}, where ∆ gives the distance between two points
along the ray, and n∆ is the maximum range of the camera. Then, if p+ = c + k+v is the first
point for which the occupancy function returns a value above some threshold τ , and p− = c+ k−v

3

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

is the point that precedes it, the intersection point p is defined as p∗ = c + k∗v for:

k∗ = αk+ + (1− α)k−, α =
τ − f(p−)

f(p+)− f(p−)
. (1)

The setup of Mirchev et al. (2021) is also set apart from other differentiable rendering ap-
proaches as voxel grids are used instead of neural nets to capture the scene. Making use of trilinear
interpolation, differentiability is maintained and hence the use of gradient-based techniques pos-
sible. We follow this decision as well, since indexing a voxel grid via interpolation is faster than
evaluating a neural net. This reduces the time it takes to render a full image, a step required by
our tracking method (we discuss rendering speed in section 5). We note that the voxel grid can be
seen as an ensemble of small neural networks with partially fixed weights, where the networks are
distributed over space in a grid-fashion, resembling the work of Reiser et al. (2021).

Formally the occupancy map is a 3D tensorMocc ∈ Rh×w×d and the colour map is a 4D tensor
Mcol ∈ Rh×w×d×3. The occupancy and colour functions f and g are then given by extracting the
eight neighbor cells of the input point and trilinearly interpolating between them. The density of an
RGB-D image x taken from the camera pose z under the differentiably rendered model is then:

p(x | z) =
∏

i,j

p(xij | z,Mocc,Mcol) =
∏

xij∈x
Laplace

([
x

rgb
ij

xd
ij

]∣∣∣∣∣

[
g(p∗)
k∗

]
,

[
σ1

σ2

])
. (2)

Here, xij is a pixel from the image, and x
rgb
ij and xd

ij are its RGB and depth readings respectively.
p∗ and k∗ are the intersection point of the ray and its distance from the camera. The Laplace
distribution’s scales for colour and depth are parameterised by σ1 and σ2, which are treated as
learnable parameters. The ray for a pixel is given by: t(z) + dR(z)K−1

[
i j 1

]T , with t(·) and
R(·) translation and rotation defined by the camera pose, K the camera intrinsic matrix, (i, j) the
2D coordinates of the pixel and d a depth reading.

This differentiable renderer was proposed by Mirchev et al. (2021) in the context of online
simultaneous localisation and mapping. Here the map is learned offline on a set of RGB-D images
with known camera poses. Given a dataset of images and camera poses D = {(x(i), z(i))}Ni=1, the
occupancy and colour parametersMocc andMcol are obtained by gradient-based minimisation of:

L(Mocc,Mcol) = −
∑

x,z∈D

∑

i,j

log p(xij | z,Mocc,Mcol). (3)

We approximate the gradients by Monte-Carlo sampling images and pixels uniformly for speed.

3.2. Pose Estimation with Differentiable Renderers

Agents moving about freely normally cannot directly observe their state. Instead, they need to rely
on estimating it from observations. Pose estimation in prior approaches with differentiable rendering
has so far focused on backpropagating pixel-wise reconstruction errors through the renderer (Yen-
Chen et al., 2021; Sucar et al., 2021; Adamkiewicz et al., 2021):

arg min
z
− log p(x | z,Mocc,Mcol).

4

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

We additionally consider a different route for state estimation, optimising both photometric and
point-to-plane reprojection errors (Chen and Medioni, 1992). Given an RGB-D image x̂ = (x̂rgb, x̂d)
rendered by the model, a new observation x = (xrgb,xd) and a relative pose z we minimise:

arg min
z

∑

k

∥∥∥x̂rgb[π(Tzp
k)]− xrgb[π(pk)]

∥∥∥
1

+
∑

k

∥∥∥〈p̂k −Tzp
k, n̂k〉

∥∥∥
1
. (4)

Here, pk is a 3D point in the observed camera frame1 and p̂k is a 3D point in the camera frame
of the model prediction, related via projective association (Blais and Levine, 1995; Stotko, 2016).
π denotes perspective projection from 3D into the image plane, using the known intrinsic matrix
K. The dot product 〈 · , n̂k〉 with the corresponding normal vector n̂k defines the point-to-plane
objective. First, normals are computed based on image gradients of the rendered prediction x̂d.
Then the difference p̂k − Tzp

k is projected onto the normal of the rendered surface, therefore
reflecting the distance between the transformed point Tpk and a hyperplane tangent to the surface.
It drives points from the second camera frame to align to the surface implicitly defined by the
rendered depth x̂d. The L1-norm (Laplace assumption) is used for increased robustness to outliers.

This method is commonly referred to as point-to-plane ICP (Chen and Medioni, 1992) com-
bined with a photometric objective (Steinbrücker et al., 2011; Audras et al., 2011). Variants of
this approach have been used to good effect for tracking new RGB-D observations w.r.t. a fused
scene model (Newcombe et al., 2011; Nießner et al., 2013; Whelan et al., 2015). Traditionally, this
is well-explored for maps obtained via TSDF fusion. We show the same concept is applicable to
maps obtained by optimisation through differentiable rendering. In section 4.2 we will discuss its
advantages compared to gradient descent directly through the renderer.

4. Method

4.1. Motion Planning

We focus on planar indoor robots trying to reach a goal position, the target. Given a starting location
and target coordinates, we plan a trajectory using A∗-search in the space of 2D coordinates (planning
in fig. 2, top). Here, we discretise the environment using a uniform grid. Moving from one cell to
another is possible only if a) there is no occupied point on the line connecting the two cells according
to the occupancy model, and b) the cell we step into maintains a minimum safety distance to any
obstacle. For the former, we sample a fixed (e.g. one hundred) number of points along the movement
vector. For the latter, we extract obstacles from the occupancy model by evaluating it on each grid
point, where the occupied points then give us a set of point obstacles. This requires many evaluations
of the map, which in our case is computationally cheap due to the voxel grid parameterisation of the
map, in contrast to a neural net. The cost of stepping from one cell to the other is the length of the
step and we likewise use the Euclidean distance to the target as our A∗ heuristic.

Our A∗-search yields a shortest path to the target without satisfying any constraints on the
agent’s movement in this phase. To follow this path, given as a sequence of waypoints, while
obeying the limitations of the agent’s dynamics, we use a low-level controller (fig. 2, top right). We
assume that the agent can rotate in-place up to a maximum angular velocity, and always moves in
the direction of its current heading subject to some maximum velocity. This allows using a simple

1. In practice, we obtain pk from pixel coordinates, depth dk and the inverse intrinsic matrix K−1 in the observed
image. We use it directly in eq. (4) for brevity.

5

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

Environment

previous state estimate

scene geometry

Spatial World Model

Dynamics

Model

State Estimator

Planner
(A* search)

Low-level

Controller

Controller

waypoints

pose estimate

Point-to-Plane
with dynamics prior

control

control

emission

pose prior

camera image

Figure 2: Overview of our method. The planner produces a set of waypoints based on the scene
geometry learned by the world model. The low-level controller picks an action to move
to the next waypoint. We estimate the agent’s state by combining the agent’s dynamics
with the current camera image, which is aligned against an image predicted by the model.

low-level controller, which turns the agent at the nearest waypoint and then moves towards it. Our
method can be applied to other systems, as long as a low-level controller capable of following the
A∗ plan is available.

4.2. State Estimation

Our control rule requires us to continuously track the orientation and 2D location of the agent. We
do so using a tracker that combines a transition model with the RGB-D images observed by the
agent (state estimator in fig. 2). In the following, we will denote actions with u, see section 5
for a description of the assumed noise model for the transition p(zt | zt−1,ut−1). Assuming a
point-estimate of M we can combine it with the transition into a state-space model:

p(z2:T ,x1:T | u1:T−1, z1,M) = p(x1 | z1,M)

T∏

t=2

p(zt | zt−1,ut−1)p(xt | zt,M).

We are interested in the filtering posterior p(zt | xt,x1:t−1,u1:t−1, z1,M), shortened with ptfilter(zt):

ptfilter(zt) ∝ p(xt | zt,M)p(zt | x1:t−1,u1:t−1, z1,M)

= p(xt | zt,M)Ezt−1∼ pt−1
filter(·)

[p(zt | zt−1,ut−1)] , (5)

for which we employ a maximum a-posteriori (MAP) approximation:

arg max
zt

log p(xt | zt,M) + log
(
Ezt−1∼ pt−1

filter(·)
[p(zt | zt−1,ut−1)]

)

≥ log p(xt | zt,M) + Ezt−1∼ pt−1
filter(·)

[log p(zt | zt−1,ut−1)]

≈ log p(xt | zt,M) + log p(zt | z∗t−1,ut−1). (6)

6

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

The second line follows from Jensen’s inequality. In the last line we approximate the expectation
using the previous MAP estimate z∗t−1.

Integrating the agent’s desired angular and forward velocities from the action ut−1, we can
arrive at a prediction for the current state through p(zt | z∗t−1,ut−1), reflected in the second term
of eq. (6). This prediction is imperfect due to noisy dynamics. We can refine it by comparing the
agent’s RGB-D observation against the map by optimising for p(xt | zt,M). In the literature of
differentiable rendering, this is typically done by minimising the difference between the RGB-D
observation xt and an image x̂t rendered from the pose variable zt that is subject to optimisation.
This is equivalent to maximising the log-likelihood term log p(xt | zt,M) above, and we will refer
to it as emission-based tracking going forward.

While eq. (6) is well-aligned with the assumed generative model we follow (Mirchev et al.,
2021), it is weighed down by the optimisation of log p(xt | zt,M) due to the high computational
cost of propagating gradients through the renderer. We provide an empirical analysis of this aspect
in section 5. With this in mind, we opt for one more approximation, substituting the first term in
eq. (6) for the prediction-to-observation objective introduced in section 3.2:

arg min
zt

∑

k

∥∥∥x̂rgb
t−1[π(T

z∗t−1
zt pkt)]− xrgb

t [π(pkt)]
∥∥∥

1

+
∑

k

∥∥∥〈p̂kt−1 −T
z∗t−1
zt pkt , n̂

k
t−1〉

∥∥∥
1
− log p(zt | z∗t−1,ut−1). (7)

Here, T
z∗t−1
zt denotes the relative pose between step t and t − 1 (going backward in time), which is

a function of the optimised zt and the previous MAP estimate z∗t−1. With that pose, we reproject
points between x̂rgb

t−1, a rendered mean prediction of the RGB image at the previous time step, and
the current RGB observation xrgb

t . For the point-to-plane objective, pkt is a 3D point in the camera
frame of the current observation, computed based on the observed depth xd

t , and p̂kt−1 and n̂kt−1 are
respectively the corresponding 3D point and normal in the previous camera frame, found through
projective data association (Blais and Levine, 1995). The optimised states zt are parameterised in
the se(3) Lie-algebra for the special Euclidean group SE(3), and we assume an L1 norm (Laplace
assumption) for robustness to outliers. We uniformly sample a constant number of pixels for which
the objective is evaluated, approximating gradients in expectation. We perform 100 steps of gradient
descent for each new time step using the Adam optimizer (Kingma and Ba, 2015).

By substituting the rendering log-likelihood from eq. (6) for the photometric and point-to-plane
loss terms in eq. (7), we maintain the necessary geometric constraints in addition to satisfying the
assumed transition model. Note that in the revised objective new observations are still anchored
to the map, as the projective transformation happens between a rendered prediction x̂t−1 and the
new incoming observation xt. The chosen objective reflects a conditional independence assumption
xt ⊥⊥M | xt−1, zt−1, zt between the map M and current observation xt given a previous xt−1

and relative pose offset, which is a reasonable approximation for consecutive time steps. We opt for
this tracking approach in favour of optimising through the emission model as it is faster and just as
accurate in our setting, as we will show in experiments. To the best of our knowledge combining
photometric, point-to-plane and dynamics constraints in one objective for state estimation has not
been explored before for differentiable rendering.

7

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

truthinferred state Impact of noise

Figure 3: Evaluation levels with successful navigation runs (left) and the training maze (right). The
solid blue line is a reference trajectory. The stochasticity of the dynamics is illustrated by
showing multiple samples based on the same control inputs: since each trajectory ends
up in a different place, state estimation and closed-loop control are crucial.

5. Experiments

We use the Vizdoom simulator for our quantitative experiments (Wydmuch et al., 2018). Despite its
limited visual fidelity, Vizdoom allows us to focus on environments that are large and complex, i.e.
with multiple rooms and realistic floor plans, as we can easily modify the simulation maps. To that
end, we extracted six floor plans from the HouseExpo dataset Li et al. (2020), which we converted
to Vizdoom levels with added obstacles. Figure 3 shows the evaluation environments, along with
a training level taken from (Savinov et al., 2018). An agent body length of 0.2m, as suggested by
Anderson et al. (2018), corresponds to an environment size of up to a 11.4× 11.4m2 sized square.
A voxel map is learned for each environment from 5000 RGB-D images with pose labels. Our
extended technical report describes the setup and models in detail (Kayalibay et al., 2022).

To analyze navigation performance under stochastic dynamics, we add noise to the agent motion
in the simulator. Here, we make two considerations: noise should only be applied when the agent
tries to move and it should not invert the direction of an action. The latter means that if the agent
tries to rotate left, the noise should not make it rotate right. Likewise, if the agent tries to move
forward, noise should not make it move backward. Guided by these principles, we add clipped
Gaussian distributed noise to the angular velocity and speed, where the clipping ensures that the
direction of turning (left/right) or movement (forward/backward) is not inverted.

Formally, the controls of the agent are u = (α̇, o, s), where α̇ is the angular velocity, o the angle
of the movement direction and s the speed along that direction. The movement angle is distinct from
the current heading angle α but must align with it up to a threshold of 5◦, and there are likewise
maximum values defined for the angular velocity and speed at 11.5◦ and 0.8 times the agent’s own
body length. If we take l to be the 2D location of the agent, the noisy dynamics then amount to:

αt+1 = αt + sign(α̇t) max(0, |α̇|+ εαt), εαt ∼ N (0, σα)

8

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

0.00 0.05 0.10 0.15
location error [m]

0

20

40

60

80

100

%
w

ith
sm

al
le

re
rr

or

emission
pred-to-obs

(a)

0 2 4
orientation error [deg]

0

20

40

60

80

100

%
w

ith
sm

al
le

re
rr

or

emission
pred-to-obs

(b)

2.6

2.7

2.8

2.72s
NERF, full render.
voxels, full render.
emission-based track.
pred-to-obs track.
our full pipeline

0 2 4
workload

0.0

0.1

0.2

0.05s

0.25s

0.06s 0.06s

(c)

Figure 4: (a,b) CDF of the location & orientation RMSEs. The vertical line shows 0.5×agent size.
(c) Average runtimes of a single step for different computations: NeRF rendering, voxel
map rendering, emission–based tracking, tracking with our scheme, tracking and control.

for the orientation and

lt+1 = lt +

[
cos(εαt + ot)
sin(εαt + ot)

]
max(0, st + εst), ε

s
t ∼ N (0, σs)

for the location, where the angular velocity noise is added to the direction of movement and t
denotes time. In addition to the noise, there is another source of error in the agent’s dynamics,
which results from the simulator. Vizdoom only allows for setting an integer angle in [0◦, 360◦]
degrees and the 2D location can only be specified up to two decimal points of precision. Together,
these factors make for enough perturbation to pose a non-trivial challenge against navigation. This
effect is illustrated in the right plot of fig. 3.

State estimation in real-time First, we compare the tracker described in section 4.2 to pose es-
timation via gradient backpropagation through the rendering emission. We use 3◦ and 5% of the
agent body length for the rotational and translational Gaussian scales of the noisy simulator dynam-
ics. Figures 4(a) and 4(b) show the accuracy of the two approaches, displaying the percentage of
trajectories with an RMSE smaller than the number on the x-axis. Both estimators have adequate
performance, with a location RMSE smaller than 0.1m more than 99% of the time. Similarly, the
orientation RMSEs are roughly on par.

However, the main advantage of the state estimator from section 4.2 is its speed. As shown in
fig. 4(c), a single step takes 0.06s (16.7Hz) on average, compared to 0.25s (4Hz) for the emission-
based tracking. This is due to avoiding the computational cost of propagating gradients through the
renderer (cf. section 4.2). We also note the major runtime difference when rendering from a NeRF
map (Mildenhall et al., 2020) at 2.72s (0.4Hz) and from a voxel map (Mirchev et al., 2021) at 0.05s
(20Hz) per image (fig. 4(c), left) respectively. The aim for on-line control made us employ the latter
approach. The overall runtime of our pipeline is 0.062s (16.1Hz) per time step, with the bulk of it
occupied by the state estimator. The proposed approach amounts to stable real-time tracking under
noisy dynamics with only RGB-D observations. We believe this is a necessary component in the
context of on-line control.

Navigation Next we focus on our overarching objective – successful point-to-point navigation.
Since our tracker works by combining transition estimates with RGB-D observations that are com-
pared against the map, we conduct an ablation study to check how much each part is contributing.

9

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

noise ours no map dynamics

high 0.46 0.37 0.33
mid 0.79 0.51 0.52
low 0.92 0.61 0.61

(a) (b)

Figure 5: (a) Average SPL over six environments. Higher is better. No map tracks by optimising
eq. (7) using the previous camera image instead of the model prediction. Dynamics
merely integrates the dynamics. (b) Isometric views of the learned maps and successful
navigation trajectories from AI2-THOR. The low noise setting was used.

Here, we compare our pipeline to a) tracking by using the transition model only, i.e. path integration;
b) tracking by optimising a pose offset between two consecutive RGB-D observations (instead of us-
ing an emitted image from the map). We repeat our evaluation under three different levels of noise:
high (σa= 9◦, σs= 30% of agent size), medium (σa= 6◦, σs= 15%) and low (σa= 3◦, σs= 10%).

In our evaluation, we sample random pairs of starting positions and targets from the free space
of the level, with the constraint that the start and target must be farther apart than three times the
agent’s body length. We consider a navigation attempt as successful if the agent’s final position
is closer to the target than two times the agent’s body length, and use 200 navigation tasks per
environment. The same navigation tasks are used for each noise level and method.

Our central evaluation metric is success weighted by path length (SPL) (Anderson et al., 2018),
which is defined as:

SPL =
∑

si∈S
si

li
max(pi, li)

, (8)

where S is a set of navigation tasks, si is a binary variable indicating the success of a task, and pi
and li are the length of the path taken by the agent and the length of the optimal path. We have
found that SPL and success rate are almost the same for all three approaches. This indicates that
successful navigation runs align well with the optimal trajectory.

The results of our evaluation can be found in fig. 5(a). We find that our proposed navigation
approach performs best under all noise levels, yet it also degrades at higher levels of noise. Finally,
we qualitatively demonstrate that our work extends to AI2-THOR (Kolve et al., 2017) in fig. 5(b),
which is visually much more realistic than Vizdoom.

6. Conclusion

We have introduced a method for real-time navigation based on a differentiably rendered world
model. Our approach is able to solve navigation tasks in complex environments using only RGB-D
observations and under different levels of noise. We demonstrated that the state estimation prob-
lem can be solved by applying a point-to-plane metric to the differentiable rendering setting and
combining it with a dynamics model, which allows for faster tracking compared to differentiating
through the renderer. In future work, we will extend our method to environments with a higher
visual fidelity and more complex dynamics.

10

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

References

Michal Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Preston Culbertson,
Jeanette Bohg, and Mac Schwager. Vision-only robot navigation in a neural radiance world,
2021. URL https://mikh3x4.github.io/nerf-navigation/assets/NeRF_
Navigation.pdf.

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta,
Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, and Amir R.
Zamir. On evaluation of embodied navigation agents, 2018.

Cedric Audras, A Comport, Maxime Meilland, and Patrick Rives. Real-time dense appearance-
based slam for rgb-d sensors. In Australasian Conf. on Robotics and Automation, volume 2,
pages 2–2, 2011.

Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and Patrick van der Smagt. Learning to fly
via deep model-based reinforcement learning. CoRR, abs/2003.08876, 2020. URL https:
//arxiv.org/abs/2003.08876.

Gérard Blais and Martin D. Levine. Registering multiview range data to create 3d computer objects.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):820–824, 1995.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdi-
nov. Learning to explore using active neural slam, 2020.

Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for navigation, 2019.

Yang Chen and Gérard Medioni. Object modelling by registration of multiple range images. Image
and vision computing, 10(3):145–155, 1992.

Marco Fraccaro, Danilo Jimenez Rezende, Yori Zwols, Alexander Pritzel, S. M. Ali Eslami, and
Fabio Viola. Generative temporal models with spatial memory for partially observed environ-
ments, 2018.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron van den
Oord. Shaping belief states with generative environment models for rl, 2019.

Saurabh Gupta, Varun Tolani, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra
Malik. Cognitive mapping and planning for visual navigation, 2019.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, pages 2555–2565, 2019. URL http://proceedings.mlr.press/
v97/hafner19a.html.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model-based reinforcement learning
for atari, 2020.

11

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

Baris Kayalibay, Atanas Mirchev, Maximilian Soelch, Patrick van der Smagt, and Justin Bayer.
Navigation and planning in latent maps, 2018. URL http://reinforcement-learning.
ml/papers/pgmrl2018_kayalibay.pdf.

Baris Kayalibay, Atanas Mirchev, Patrick van der Smagt, and Justin Bayer. Tracking and planning
with spatial world models. arXiv, 2022. URL https://arxiv.org/abs/2201.10335.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017.

Tingguang Li, Danny Ho, Chenming Li, Delong Zhu, Chaoqun Wang, and Max Q. H. Meng. House-
expo: A large-scale 2d indoor layout dataset for learning-based algorithms on mobile robots,
2020.

Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba. 3d neural scene
representations for visuomotor control, 2021.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser
Sheikh. Neural volumes. ACM Transactions on Graphics, 38(4):114, Jul 2019. ISSN 1557-
7368. doi: 10.1145/3306346.3323020. URL http://dx.doi.org/10.1145/3306346.
3323020.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020.

Atanas Mirchev, Baris Kayalibay, Maximilian Soelch, Patrick van der Smagt, and Justin Bayer.
Approximate bayesian inference in spatial environments, 2019.

Atanas Mirchev, Baris Kayalibay, Patrick van der Smagt, and Justin Bayer. Variational state-space
models for localisation and dense 3d mapping in 6 dof. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=XAS3uKeFWj.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novk. Neural im-
portance sampling, 2019.

Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J
Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In 2011 10th IEEE international symposium on
mixed and augmented reality, pages 127–136. IEEE, 2011.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volu-
metric rendering: Learning implicit 3d representations without 3d supervision, 2020.

12

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-time 3d recon-
struction at scale using voxel hashing. ACM Transactions on Graphics (ToG), 32(6):1–11, 2013.

Sageev Oore, Geoffrey E. Hinton, and Gregory Dudek. A mobile robot that learns its place. Neural
Comput., 9(3):683–699, 1997. doi: 10.1162/neco.1997.9.3.683. URL https://doi.org/
10.1162/neco.1997.9.3.683.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning, 2017.

Benjamin Planche, Xuejian Rong, Ziyan Wu, Srikrishna Karanam, Harald Kosch, YingLi Tian, Jan
Ernst, and Andreas Hutter. Incremental scene synthesis, 2019.

Santhosh K. Ramakrishnan, Ziad Al-Halah, and Kristen Grauman. Occupancy anticipation for
efficient exploration and navigation, 2020.

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps, 2021.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory
for navigation, 2018.

Vincent Sitzmann, Michael Zollhfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations, 2020.

Frank Steinbrücker, Jürgen Sturm, and Daniel Cremers. Real-time visual odometry from dense
rgb-d images. In 2011 IEEE international conference on computer vision workshops (ICCV
Workshops), pages 719–722. IEEE, 2011.

Patrick Stotko. State of the art in real-time registration of rgb-d images. In Central European
Seminar on Computer Graphics for Students (CESCG 2016), 2016.

Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davison. imap: Implicit mapping and posi-
tioning in real-time, 2021.

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. Nerf–: Neural
radiance fields without known camera parameters, 2021.

Thomas Whelan, Stefan Leutenegger, R Salas-Moreno, Ben Glocker, and Andrew Davison. Elas-
ticfusion: Dense slam without a pose graph. Robotics: Science and Systems, 2015.

Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. Vizdoom competitions: Playing doom
from pixels. IEEE Transactions on Games, 2018.

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Ronen Basri, and Yaron
Lipman. Multiview neural surface reconstruction by disentangling geometry and appearance,
2020.

Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip Isola, and Tsung-Yi
Lin. Inerf: Inverting neural radiance fields for pose estimation, 2021.

13

TRACKING AND PLANNING WITH SPATIAL WORLD MODELS

Tony Z. Zhao, Anusha Nagabandi, Kate Rakelly, Chelsea Finn, and Sergey Levine. MELD: meta-
reinforcement learning from images via latent state models. CoRR, abs/2010.13957, 2020. URL
https://arxiv.org/abs/2010.13957.

14

Prior Work (Not Thesis) B
B.1. Approximate Bayesian Inference in Spatial

Environments
Paper Summary

DVBF-LM (Mirchev et al., 2019) is a neural state-space model with a

2D latent map. The transition is an MLP working in an abstract latent

space and the emission is an MLP that predicts either 2D range scans or

colour images from the map. DVBF-LM simultaneously addresses SLAM,

navigation and exploration in toy scenarios. The model, its inference and

exploration were defined in the author’s master’s thesis. Navigation was

added after a separate workshop publication (Kayalibay et al., 2018).

In the early days of the doctorate it was already apparent that DVBF-LM

does not have sufficient inductive biases to reliably scale to 3D modelling.

At the same time, the demonstrated results in DVBF-LM, albeit in toy

environments, were motivation enough to further pursue the direction of

spatial generative state-space models. This lead to the development of the

three core publications, and thus the thesis as a whole.

Author Contributions

Please note that this publication does not count towards the dissertation,

as sections from it overlap with the author’s master’s thesis. It is included

for context, as it set the whole doctorate in motion.

problem definition significant

literature review significant

theoretical derivation significant

implementation significant

experiments significant

writing significant

153

Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Approximate Bayesian inference in spatial
environments

Atanas Mirchev†, Baris Kayalibay†, Maximilian Soelch†, Patrick van der Smagt‡ and Justin Bayer†

Machine Learning Research Lab, Volkswagen Group
80805, Munich, Germany

†{firstname.lastname}@argmax.ai
‡smagt@argmax.ai

Abstract—Model-based approaches bear great promise for deci-
sion making of agents interacting with the physical world. In the
context of spatial environments, different types of problems such
as localisation, mapping, navigation or autonomous exploration
are typically adressed with specialised methods, often relying on
detailed knowledge of the system at hand. We express these tasks
as probabilistic inference and planning under the umbrella of deep
sequential generative models. Using the frameworks of variational
inference and neural networks, our method inherits favourable
properties such as flexibility, scalability and the ability to learn
from data. The method performs comparably to specialised state-
of-the-art methodology in two distinct simulated environments.

I. INTRODUCTION

Sequential decision making is a framework to represent the
interaction of an agent with its environment: an observation of
the world is presented to the agent, upon which the informed
agent picks an action, which in turn alters the world’s state.
One instance of interest are spatial environments such as mobile
robots on a factory floor, autonomous cars, robot arms or
unmanned aerial vehicles. Various tasks are of interest in these
scenarios. Localisation or pose estimation considers the relation
of the agent itself to the environment. This is often combined
with establishing a map of its surroundings and has been
referred to as simultaneous localisation and mapping (SLAM)
by the robotics community. If the aim is to obtain that map
efficiently, autonomous exploration is about devising trajectories
that uncover the map with as little effort as possible. Another
goal is navigation, referring to the generation of plans that allow
the agent to reach a pre-specified location.

We set out to address these problems in a unified framework.
We augment a non-linear state space model, the deep variational
Bayes filter [12] with a global latent variable representing a map
(DVBF-LM). We propose the necessary learning algorithms
that enable end-to-end learning and make it possible to express
the aforementioned tasks as either inference or planning in
that model. SLAM is performed by approximate, variational
inference of the joint posterior over maps and pose trajectories.
We rely on a standard formulation as probabilistic inference in a
graphical model. For autonomous exploration, we optimise the
expected information gain with respect to the control signals
[25, 21]. This is possible due to the probabilistic treatment

(a) (b) (c)

Fig. 1: Example for the agent pose posterior in a LiDAR environ-
ment (pybox2d): (a) Scatter plot of observations predicted from
the learned DVBF-LM map. (b) The current agent position and
LiDAR readings. (c) Plot of the pose posterior over locations
given the current observation. It is highly non-Gaussian and
has several maxima.

of the map, where unexploredness is related to the remaining
uncertainty in the respective region. Navigation is implemented
as planning in a discretisation of the learned model.

Our contributions are:
• a deep non-linear state-space model with an explicit map

component that can be estimated from data;
• methods of performing SLAM, autonomous exploration

and navigation in said model;
• a solution to train stochastic recurrent models on a single,

long, consecutive time series;
• a variational posterior formulation that copes with the

complex joint posterior prevalent in SLAM (cf. Figure 1).
We validate the claims in a series of extensive experiments
where we perform comparably to baselines tailored specifically
to the respective settings.

II. RELATED WORK

The problem of concurrent estimation of an agent’s pose
and its surrounding has seen considerable attention in the last
decades. We refer the interested reader to the survey of Cadena
et al. [3]. A contribution of Murphy [17] is most similar to
our approach: the map is a matrix-valued global latent variable
inferred through Bayesian methods.

xt xt+1 xt+2

mt mt+1 mt+2

zt zt+1 zt+2

M

.

Fig. 2: Sequential graphical model
with global map M and local charts
mt.

…

…

(a) (b) (c) (d) (e) (f)

Fig. 3: Illustration of pose inference. (a) An agent (teal star) traverses a maze, (b) collecting
sensor readings (top) and control signals (bottom). (c) A belief of the map is formed from
observations (top), a belief of the trajectory is formed from observations and controls
(bottom). (d) The two beliefs are fused. (e) The map is indexed with a pose-based attention
mechanism. (f) The attended region of the map is used to reconstruct the observation.

Mapping and localisation has been adopted in the machine-
learning community mostly to solve reinforcement-learning
or visual-navigation problems [18, 19]. Fraccaro et al. [7]
proposed a generative model for spatial environments. While
their approach is similar to ours, their focus was primarily
on simulator performance over long time spans. Further, an
external memory is used which does not directly represent a
random variable as part of a graphical model.

Early discussions of the importance of exploration of model
parameters can be found in [20, 23], and information-theoretic
methods for spatial exploration can be traced back to [6, 26].
Our work follows the framework of curiosity-driven exploration
[20]. In the spatial environment context, it represents an instance
of active SLAM [25, 3].

A large body of recent spatial exploration methods [21,
1, 24, 27] is driven by information theory, but assumes
particular discretisations of the state space (occupancy grids)
or skeletonisations of the possible action paths. Variational
information maximizing exploration (VIME) [11] is closely
related to our method, but imposes an intentional Gaussian
constraint for tractability and mutual information is estimated
for one step t at a time. Our method has no such assumptions.

III. DEEP VARIATIONAL BAYES FILTER WITH A
LATENT MAP

Our aim is to provide a unified model that covers all of
the aforementioned tasks. We defer the discussion of their
exact implementations to Section IV, Section V and Section VI.
Here we will focus on the underlying probabilistic generative
model. We step on the solid foundation of state space models
to represent sequential agent interactions:

p(x1:T , z1:T | u1:T−1) =

p(z1)
T∏

t=2

p(zt | zt−1,ut−1)
T∏

t=1

p(xt | zt),

where

x1:T ∈ RT×Dx is a sequence of observations,
z1:T ∈ RT×Dz is a sequence of poses, and
u1:T−1 ∈ RT−1×Du is a sequence of control inputs.

In terms of spatial environments, the transition model
p(zt | zt−1,ut−1) represents the dynamics and the emission
model p(xt | zt) simulates the formation of observations.

The traditional state space model above is a powerful tool for
the analysis of stochastic dynamical systems [12]. In order to
unlock further inferences specific to spatial environments, more
transparency is required. We thus introduce additional structure
to provide the necessary entry points. First, we identify a part
of the latent space with the environment itself. To that end we
extend the traditional graphical model, incorporating a global
map latent variable M ∼ p(M). We introduce a latent middle
layer of local charts mt ∼ p (mt | zt,M). Intuitively, the chart
mt represents the currently relevant attended region of the map.
It shapes the transition of poses over time, p (zt+1 | zt,mt,ut).
The observation emission model operates solely on these charts,
xt ∼ p (xt | mt). In total, this yields the graphical model (cf.
Figure 2)

p (x1:T , z1:T ,m1:T ,M | u1:T−1) =

p(M)ρ(z1)
T∏

t=1

p (xt | mt) p (mt | zt,M)

T−1∏
t=1

p (zt+1 | zt,mt,ut) .

A common assumption is that the factors are governed by
a set of parameters θ, i.e. ρθI

(z1), pθT
(zt+1 | zt,ut,mt),

pθE
(xt | mt). We will leave out the dependency for notational

brevity in the remainder of this work. Further, in the conducted
experiments we assume the transition parameters θT and the
initial state distribution are learned a priori or engineered.

A. Approximation via Variational Inference

Exact inference in such models is typically intractable.
We obtain variational approximations q(M) and
q (z1:T | x1:T ,u1:T−1,M) of the corresponding posteriors,
collecting their learnable variational parameters in φ, where we
rely on Bayes by backprop [2] for the former and on SGVB
[14] for the latter. The negative evidence lower bound (ELBO)

is given as

Lelbo = Eq [− log p (x1:T | z1:T ,M)]︸ ︷︷ ︸
=:`r

+

KL(q(M) || p(M))︸ ︷︷ ︸
=:`M

+

Eq [KL(q (z1:T | x1:T ,M) || p (z1:T |M))]︸ ︷︷ ︸
=:`z

. (1)

The conditioning on u1:T−1 is dropped for brevity. We call `r

the reconstruction loss, `z the pose KL penalty and `M the
map KL penalty. Inference of poses and the map then comes
down to the minimisation of Equation (1) with respect to φ.

B. Implementation of the Generative Model

In general, the geometric properties of the environment that
need to be represented will determine the particular form of
the map and the associated attention model. For the purposes
of this work we follow [17], defining the map M to be a
finite grid of width w and height h. Each grid cell Mij is a
real-valued vector of dimensionality Dm, i.e. M ∈ Rw×h×Dm .
As prior for such a latent map cell we use a standard normal,
Mij ∼ N (0,1). Extracting local charts mt from the map is
done through a convex combination of the memory cells:

mt = fm(zt,M) =
∑
i,j

α(zt)ijMij .

The result is then a point mass:

p (mt | zt,M,θM) ∝ I [mt = fm(zt,M)] .

In this implementation, we choose α to be a bilinear interpola-
tion kernel, combining four cells at a time.

The emission model and transition model are conditional
Gaussian distributions with fixed diagonal covariances. The
respective means are given by neural networks parameterised
by θE and θT :

p (xt | mt) = N
(
µE(mt), diag(σ2

E)
)
,

p (zt+1 | zt,ut,mt) = N
(
µT (zt,ut,mt), σ

2
T1
)
.

C. Design of the Variational Posterior

Inference of poses is done through a variational approxima-
tion of the true posterior q (zt | x1:T) ≈ p (zt | x1:T) , where
we left out the control signals u1:T−1 for brevity and will do so
for the remainder of this section. The global variable M poses
an atypical challenge for stochastic recurrent models trained
with amortised variational inference, for which an intuitive
explanation is as follows. Consider the true posterior, which
has to account for all possible maps:

p (zt | x1:T) =

∫
p (zt |M,x1:T) p (M | x1:T) dM.

Any parameterised variational approximation q (zt | x1:T) will
have to implement its own belief of the map implicitly. During
training, this will prove difficult as it has to track the current
belief of the generative model to conform to it, as it essentially

implements its inverse. The task of the inference model can be
substantially eased by informing it of the current belief of the
map q(M) explicitly. We choose to do so by implementing
q as a bootstrap particle filter [8] with the particle forwarding
distribution from Section III-D2 as a proposal distribution:

q (z1:T | x1:T ,M) =

T∏
t=1

q (zt | x1:t,M) ,

q (zt | x1:t,M) ∝ E
z
(k)
t ∼q̂(zt)

[
K∑

k=1

ω̂iI(zt = z
(k)
t)

]
,

ω̂k =
ωk∑
j ωj

,

ωk =
p
(
xt | z(k)t ,M

)
p
(
z
(k)
t

)
q̂(z

(k)
t)

.

This has two immediate consequences. First, the variational
posterior used does not have any parameters and is hence
not optimised directly. Second, the true posterior is recovered
for K → ∞. But most importantly, the importance weights
explicitly reflect the map (sampled from an outer expectation
over q(M) in Equation (1)) and the proposals in conflict with
it will be sorted out in a natural manner as they have lower
weights.

The variational approximation of the posterior map q(M)
was chosen to follow a mean-field approach with a factorised
Gaussian q(M) =

∏
i

∏
j N (µMij

,σ2
Mij

), with variational
parameters µMij

,σ2
Mij

∈ φ.

D. Faster Training with Mini Batches

In practice, inference is typically performed on very long,
continuous streams of data recorded from a moving agent.
Evaluating the ELBO for the whole trajectory at once proves
prohibitive for learning or is downright impossible due to
memory limitations. We therefore seek to relax the optimisation
while still respecting the underlying model.

1) Decomposing the Loss into a Sum over Time Steps:
Under the Markov assumptions, the evidence lower bound from
Equation (1) can be written as a sum over time steps:

Lelbo = `r + `z + `M = Eq

[
T∑

t=1

`rt + `zt + `Mt

]
(2)

with, leaving out the control signals u1:T−1 for brevity:

`rt = − log p (xt | zt,M) , `r = Eq

[
T∑

t=1

`rt

]
,

`zt = log
q(zt | x1:t,M)

p (zt | zt−1,M)
, `z = Eq

[
T∑

t=1

`zt

]
,

`Mt =
1

T
log

q(M)

p(M)
, `M = Eq

[
T∑

t=1

`Mt

]
.

Following [2], we distribute the contribution of the map KL
penalty term over different time steps, reflected in `Mt . We
denote the overall loss at time step t as Lt.

If the loss function is a sum over independent terms, a
gradient estimator using only a subset of those terms will
be unbiased. Unfortunately the terms for each time step in
Equation (2) are not independent, which requires ancestral
sampling from the whole Markov chain.

2) Approximate Asynchronous Particle Representation:
To overcome this issue we maintain sets of N particles
ξ
(n)
t , n = 1, . . . , N ; t = 1, . . . , T that cache samples for each

step of the variational posterior over poses q(z1:T | x1:T ,M) =∏T
t=1 q(zt | x1:t,M) during training.
We define an estimator of the gradients from the complete

ELBO, akin to stochastic gradient descent. The time steps we
wish to use for gradient estimation are gathered in a minibatch
B. We then approximate the loss given in Equation (2) via

L̃ =
T

|B|
∑
t∈B

EM∼q
[
Ezt∼q̃

[
`rt + `zt + `Mt

]]
, (3)

where q̃(z1:T) =
∏T

t=1 q̃(zt) is an approximation of
q(z1:T | x1:T ,M) based on the cached particles that allows
more efficient sampling of zt. In particular, every q̃(zt) is
importance-resampled from an underlying proposal distribution
q̂(zt), which in turn is based on the particles ξ(n)t , n = 1, . . . , N .
In this work, q̂(zt) is represented as a Normal random variable
with moments matched from the set of N particles for time step
t: q̂(zt) = N (µξt

,σ2
ξt

). The mean µξt
= 1

N

∑N
n=1 ξ

(n)
t and

variance σ2
ξt

= 1
N

∑N
n=1(µξt

− ξ
(n)
t)2 are the empirical mean

and variance of the particles respectively. The approximating
particle sets are updated during gradient estimation: for any
training iteration with t ∈ B, we can update the particles at
following time steps t+ k, k = 1, . . . :

ξ
(n)
t+k ∼ q̃(zt)

k∏
i=1

p (zt+i | zt+i−1,M) ,

effectively performing importance resampling and moving
particles forward through the transition model, refreshing
the approximation q̂(zt+k). This leads to an asynchronous
procedure: expectations in Equation (2) w.r.t. the approximate
posterior over agent poses are implemented through particles
stemming from previous training iterations, potentially biasing
the gradients. This bias can be controlled with small parameter
updates (i.e. φ(i+1) ≈ φ(i)), since we can then expect the
expectations to be close as well. In practice, we will choose
chunks of consecutive time steps to be the elements of mini
batches, requiring to only update the particles at the beginning
of each such chunk.

IV. DVBF-LM AS A METHOD FOR SLAM

We first investigate the capabilities of DVBF-LM as a
solution to SLAM. Our model is evaluated in two simulated,
precisely controlled environments—a 2D environment with
laser range finder observations and VizDoom [13]. A detailed
description of each, along with additional information regarding
the experimental setup can be found in the supplementary

material 1.
We randomised seven distinct 2D maze patterns and repli-

cated them in both environments. Each maze was traversed
multiple times by two human operators to collect data. For
both environments, the transition model p (zt+1 | zt,ut,mt)
is pretrained on a first maze that is not considered during
evaluation. Performing SLAM then consists of approximating
the posterior of the poses and the map p (z1:t,M | x1:t,u1:t−1)
for a single traversal through the optimisation of Equation (1)
with respect to the variational posteriors q(z1:T) and q(M).

We consider two cases, offline and online SLAM. In the first
case we optimise for all time steps at once, whereas in the
second case we sweep t = 1, . . . , T to obtain time-step-wise
estimates q(z1:t).

All distances in the following experiments are unit-less, the
width and height of the considered mazes were set to 1.0.

A. Pybox2d Environment

For this environment we implemented our own 2D simulator
using pybox2d, in which the agent’s sensors are laser range
finders (LiDAR readings).

a) Improving Path Integration: The aim of this set of
experiments is to test whether the proposed approximation of
the graphical model improves upon direct path integration based
on the pretrained transition p (zt+1 | zt,ut,mt) only. For both
online and offline SLAM, using a map clearly outperforms
the path integration baseline in terms of localisation error:
0.03 ± 0.02 and 0.04 ± 0.02 at time step 3000 for online
and offline SLAM respectively. At this time step, the motion
model has diverged for most of the sequences with an average
error of 0.14± 0.1. Most notably, the use of a map practically
eliminates drift: after 3000 steps, a relative error of less than
20,000−1, effectively zero, is obtained. This shows that our
method stabilises the motion model and keeps the location
estimate from diverging. We illustrate the findings in Figure 4.

b) Comparison to Cartographer: Next we compare DVBF-
LM’s online localisation performance to that of Google’s
Cartographer [10], which we consider a representative baseline
model for 2D LiDAR SLAM. Cartographer is a realtime
SLAM system which operates on laser range finder data and is
capable of detecting loop closures. In addition to the LiDAR
observations collected from pybox2d, we provided Cartographer
with the angular velocity of the agent at every time step in
the form of IMU readings. In order to improve upon the
default Cartographer configuration and tune it to our setup,
we performed a hyperparameter search over more than 40 of
Cartographer’s hyperparameters, with 6000 trials on a held out
trajectory of 1000 steps. Both Cartographer and DVBF-LM
manage to eliminate drift, with respective errors of 0.05± 0.04
and 0.03 ± 0.02 at time step 3000. The proposed graphical
model approximation leads to localisation performance that
is consistently on par in quality to that of Cartographer. The
results from the comparison are depicted in Figure 5a.

1Available at: https://arxiv.org/abs/1805.07206.

Fig. 4: We compare the online and offline DVBF-LM localisa-
tion error to path integration for all 24 test traversals accross 6
mazes in the pybox2d environment. The plots show aggregate
results, shaded regions contain 50% and 80% of the traversals.
The second plot shows the localisation error relative to the
distance travelled.

B. VizDoom Environment

The VizDoom experiments take place in the same set of mazes
as pybox2d. Observations are now two-dimensional images
taken from the perspective of the agent.

For the VizDoom environment we only investigate offline
SLAM performance. The experiment procedure was identical
to the pybox2d counterpart. All model components apart from
the emission model are kept the same. The latter is modified
to better fit visual observations.

We summarise quantitative localisation results in Figure 5b.
The method performs on a similar level as in the laser scan-
based environment: localisation error is 0.04± 0.03 after 5000
time steps. We can see that DVBF-LM is capable of correcting
the drift resulting from path integration (an error of 0.11±0.05).
The final relative error is 0.06%±0.06% of the trajectory length.
The results indicate that our method is able to perform accurate
localisation when applied to different observation modalities
in an offline fashion by adapting only the architecture of the
emission model.

V. NAVIGATION IN LEARNED ENVIRONMENTS

One incentive for learning a generative model of a spatial
environment is that such a model can be used to plan interactions
with that environment. As an example, we use DVBF-LM as a
black-box environment simulator and provide its predictions to
a classical path planning algorithm to solve navigation tasks.

A. Latent Hybrid-A∗

The latent map M of DVBF-LM conserves the Euclidean
geometry of the true environment through the inductive bias of
the pretrained transition. Hence, we are able to use the hybrid-
A∗ algorithm [5] for path planning. The goal of hybrid-A∗ is
to find a path from a continuous starting pose to a continuous
target pose. This is done by discretising the search space into a
grid of N cells {cn}n∈[N], which the conventional A∗-search
[9] can operate on.

(a) Pybox2d

(b) VizDoom

Fig. 5: (a) Online DVBF-LM localisation error compared to that
of Cartographer on test mazes in the pybox2d environment. We
omit the offline DVBF-LM results from Figure 4 for the sake
of legibility. (b) Offline DVBF-LM localisation error compared
to path integration on test maze traversals in the VizDoom
environment. The plots show aggregate results, shaded regions
contain 50% and 80% of the traversals. The plots on the right
show the localisation error relative to the distance travelled.

To obtain smooth navigation trajectories, every discrete state
cn is associated with a continuous state zn—the agent’s state
when that cell was explored for the first time. New cells cn+1

are explored by picking random sequences of controls un
1:K

and predicting a following continuous state by applying the
controls to the current zn. The successor states are found by
applying the transition model of DVBF-LM and picking the
mean of the resulting Gaussian distribution. When the target
state is found, we backtrack to obtain a consistent sequence of
controls u1:T , which can be executed by the agent to reach the
target.

One issue with using an approximate transition model is that
collisions with obstacles cannot always be modelled accurately.
The problem is exacerbated by the fact that shortest paths in
spatial environments tend to stay close to obstacles. In order to
alleviate the negative effect of these two factors on navigation
success, we introduce a safety term which penalises closeness
to obstacles: Lsafe =

∑
i s(li). Here, li is the reading of the

i-th range sensor of the agent, as predicted by DVBF-LM based
on the learned map q(M), and s(·) is a sigmoidal function
mirrored along the y-axis.

We add Lsafe to the travel distance when calculating edge
weights. The penalty term assumes that we have access to depth
readings, which is true in the case of laser scan-based settings
but not when the agent only has access to visual observations.

Planning in belief space

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

start target

(a)

Execution in real world

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

start target

(b)

Aggregate navigation success

0 200 400 600 800 1000
Allowed simulation steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

pe
rc

en
ta

ge

Ours (pose to obs)
Ours (pose to pose)
Physics Simulator

(c)

Fig. 6: (a) Navigation plan constructed by using the belief space of the learned environment. (b) Executed trajectory in the actual
simulator. (c) Ratio of successful navigation attempts over the number of simulation steps in A∗. In green the upper bound,
A∗ with access to the ground truth map and transition.

Generalising this path planning framework to visual observations
will be part of future work.

B. Results

In our experiments, we verify that the model described in
Section III can be applied to navigation.

a) Generative Model Learning: Before DVBF-LM can
be used for planning, the emission model and the map M
must first be learned. Here, we use the same models that were
acquired as part of the SLAM experiments. For the transition
we use an engineered model that allows the agent to move
forward along its heading as long as the predicted LiDAR
reading in that direction is greater than the desired step length.
All navigation tasks are performed in the same set of mazes
introduced earlier.

b) Pose-to-Pose Navigation with Hybrid-A∗: For each
maze, we exhaustively pick pairs of starting and target pose
from a 5×5 grid over the map. For each pair of poses, we apply
the hybrid-A∗ as described in Section V-A to plan a trajectory.
The obtained controls are then executed in the true physics
simulator. The navigation task is considered successful if the
agent lands in a proximity of 0.05 or less from the target pose.
As a baseline, we consider the navigation performance when the
planning algorithm is executed directly in the physics simulator,
with access to the true transition and emission. This allows us
to assess the drop in performance resulting from approximating
the true environment with DVBF-LM. Figure 6c shows the
results of the evaluation. Planning based on our generative
model comes very close in terms of navigation efficiency to
planning in the simulator, affirming the usability of the learned
environment maps for navigation tasks. Furthermore, all planned
trajectories are successful in reaching the target.

c) Pose-to-Observation Navigation with Hybrid-A∗: In
this scenario, the observation targets are sensor readings from
the environment simulator. The corresponding starting poses
are the same as in the previous case. Before we can apply the
algorithm from V-A the observation targets must first be mapped

to pose targets. To that end, we train a separate variational auto-
encoder (VAE, [14]) on the same data used for learning a map
of the environment. We set the generative part of the VAE to the
emission model of DVBF-LM, we condition on the learned map
q(M), and freeze the map and emission parameters. Thus, we
obtain an approximation q (z | x) of the posterior over poses
p (z | x) that conforms to the learned spatial map. This is done
once for each of the six mazes. The obtained approximation can
be reused for multiple navigation tasks in the given environment.
The rest of the evaluation proceeds analogously to the pose-
to-pose case, using the mode of the approximate posterior,
z∗ = arg maxz q (z | x), as a target. Figure 6c illustrates the
results of the evaluation. Performance is very similar to the
pose-to-pose case, with less than 2% of all trajectories failing to
reach their actual target. The slight drop in performance can be
attributed to perceptual aliasing—ambiguity in the pose given
an observation—that is typical for spatial environments.

VI. EXPLORATION

Next, we tackle the problem of exploration, expressed in
the efficient mapping of the environment. Fast inference of
the map is a prerequisite for making informed decisions in
spatial settings, as was demonstrated in the navigation task.
Autonomous exploration amounts to the selection of control
signals such that the data acquired makes inference progress
fast. The control signals are then executed in the environment
and the process repeats. We will now discuss how we use
DVBF-LM to define an exploration policy.

A. Exploration via Active Learning

We choose to follow an information-theoretic approach—we
define optimal exploration to be that which leads to the largest
change in information in the map variable, a metric commonly
referred to as infogain [15]. The change in information is
quantified by the mutual information (MI) between future
observations x1:T predicted by DVBF-LM for a sequence of

Candidate trajectories

(a) White means high MI
score.

Map uncertainty

(b) Black means high un-
certainty.

Fig. 7: Generated candidates conform with
the obstacles belief. Candidates leading into
uncertain regions have high MI scores.

Fig. 8: Qualitative exploration comparison: proposed method vs. LSTM baseline.
The plot shows the parallel exploration progress of both agents over time.

planned controls and the map M:

Ex1:T∼p(·)[KL(p(M | x1:T) || p(M))]

= KL(p(x1:T ,M) || p(x1:T)p(M))

= I(x1:T ;M), (4)

omitting u1:T−1 for brevity. Intuitively, the goal is to select
those control signals which maximise the information gained
through them in expectation. Thus, we pose the following
optimal-control problem:

u∗1:T−1 = arg max
u1:T−1

I(x1:T ;M|u1:T−1). (5)

In light of this goal, the generative nature of DBVF-LM and
the explicit modelling of a global latent map appear essential to
the formulation of a principled exploration solution. To solve
the posed problem, two issues need to be addressed: the in-
tractability of computing mutual information from Equation (4)
and conducting the optimisation in Equation (5) (w.r.t. u1:T−1).

B. Approximating Mutual Information

Equation (4) depends on the highly nonlinear intractable
joint p(x1:T ,M | u1:T−1) and marginal p(x1:T | u1:T−1). For
brevity, we will omit the conditioning on u1:T−1 until the end
of this section. Approximation poses a challenge because of
the double integration in the multi-dimensional spaces of x1:T

and M. We resort to combining MC sampling with applying
a black-box entropy estimator, as done in [4]. This results in
the following estimation:

I(M; x1:T) = H[x1:T]−H[x1:T |M]

≈ Ĥ(X̄)− 1

M

M∑
m=1

Ĥ(X̃(m)). (6)

Ĥ represents a black-box entropy estimator that works on
sample sets. X̄ is a set of samples from the marginal p(x1:T)
and each X̃(m),m = 1, . . . ,M is a set of samples from a
conditional p

(
x1:T

∣∣∣M(m)
)

for M(m)∼ q(M). All samples
are obtained through ancestral sampling from DVBF-LM, which
is only possible since DVBF-LM is a generative model.

In practice, exploration is performed in parallel with the infer-
ences of q(z1:T) and q(M), gradually adding new data points
and increasing the overall data set size. Note that we do not
maximise MI once w.r.t. the prior p(M) for all future time steps,
but we maximise it on-line multiple times for T steps ahead w.r.t.
the current variational posterior q(M) ≈ p(M | D). This is
well-grounded due to the validity of sequential Bayesian updates,
i. e. p(M | D,x1:T) ∝ p(x1:T |M)p(M | D). In this work,
a k-NN black-box entropy estimator is used for Ĥ [22].

C. Optimising Mutual Information

Optimisation of Equation (5) is performed in two stages. First,
a set of proposal controls U is generated by using the current be-
lief of the map q(M) ≈ p(M | D). Second, the best candidate
control sequence u∗1:T−1 = arg maxu1:T−1∈U I(x1:T ;M |
u1:T−1,D) is selected among the candidates and executed by
the agent, following the scheme from the previous section.

Generating control sequences at random is very sample-
inefficient, as the majority of sampled trajectories pass through
obstacles in the environment. Instead we follow a heuristic
approach, exploiting the laser range nature of our sensors.
First we define an obstacle penalty Lobstacle(z) by building
an occupancy map of the environment using q(M) and the
DVBF-LM emission model. We then draw F random control
sequences and form a set of candidates, minimising Lobstacle in
expectation over the model:

ū
(f)
1:T−1 = arg min

u1:T−1

Ez1:T∼p(·|u1:T−1,D)

[
T∑

t=1

Lobstacle(zt)

]
,

(7)

with f = 1, . . . , F . We then approximate Equation (5) via

u∗1:T−1 = arg max
u

(f)
1:T−1∈U

I(x1:T−1;M | u(f)
1:T−1).

Figure 7a illustrates the described steps.

D. Results

The exploration experiments were carried out in our pybox2d
simulator. All model components are learned during exploration,
with the exception of the transition model, which is handled in

(a)

(b)

Fig. 9: Comparison of the proposed method (blue) against
the LSTM baseline (violet): (a) infogain (b) exploration ratio.
Higher values are better. The x axis shows the number of
interaction steps divided by 10. Shaded area corresponds to one
standard deviation over seven runs.

the same way as in the navigation experiments. We evaluate
explorative performance based on two metrics—information
gain over the course of exploration and the fraction of “tiles”
visited by the agent, the exploration ratio. For the latter, we
divide the mazes into a fixed number of equally sized tiles.

As a baseline we consider a method that directly optimises
the second metric, the exploration ratio. The baseline agent is
represented by a deep deterministic LSTM network. Given a
sequence of observations as its input, it puts out a control signal
at each time step. We refer to it as the pose-entropy maximising
agent (PEMA). Since the exploration ratio objective is non-
differentiable w.r.t. the LSTM parameters, we use Augmented
Random Search [16] to optimise it.

Qualitatively, we see that the proposed method rapidly
traverses the maze. DVBF-LM exploration exhibits nearly
uniform coverage, being driven to places that are visited least
and are thus most uncertain (see Figure 7). This holds even

for the most complex mazes we considered, as we show in
Figure 8.

The quantitative evaluation shows that our method consis-
tently and significantly outperforms PEMA, even though PEMA
is directly trained on the exploration ratio evaluation criterion.
Figure 9 summarises the comparison for the different metrics
over time, aggregated over multiple runs in mazes with different
complexity and corridor width.

VII. CONCLUSION AND FUTURE WORK
We have introduced a deep variational Bayes filter that

integrates a global latent variable of spatial form. The novelty
of our contribution lies in the flexibility that is inherited from
neural networks and variational inference: contrary to most
recent work in the area, our model still constitutes a generative
model, which allows for a number of essential types of inference
in spatial environments. We validated the proposed method by
applying it to the problems of SLAM, autonomous exploration
and navigation. Our model exhibits competitive localisation
performance in comparison to an existing 2D LiDAR SLAM
system, outperforms a strong baseline for exploration and
can be used as a simulator for planning with virtually no
loss in performance. The results bear promise for real world
application, which we will address in upcoming studies, along
with comparisons to state-of-the-art visual SLAM methods.

REFERENCES

[1] Shi Bai, Jinkun Wang, Fanfei Chen, and Brendan Englot.
Information-theoretic exploration with bayesian optimiza-
tion. In Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on, pages 1816–1822.
IEEE, 2016.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural networks.
CoRR, abs/1505.05424, 2015. URL http://arxiv.org/abs/
1505.05424.

[3] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, José Neira, Ian D. Reid, and John J.
Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception
age. IEEE Trans. Robotics, 32(6):1309–1332, 2016. doi:
10.1109/TRO.2016.2624754. URL https://doi.org/10.1109/
TRO.2016.2624754.

[4] Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale
Doshi-Velez, and Steffen Udluft. Decomposition of
uncertainty in Bayesian deep learning for efficient and
risk-sensitive learning. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 1192–1201. PMLR,
10–15 Jul 2018. URL http://proceedings.mlr.press/v80/
depeweg18a.html.

[5] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and
James Diebel. Path planning for autonomous vehicles in
unknown semi-structured environments. The International
Journal of Robotics Research, 29(5):485–501, 2010. doi:

10.1177/0278364909359210. URL https://doi.org/10.1177/
0278364909359210.

[6] Alberto Elfes. Robot navigation: Integrating perception,
environmental constraints and task execution within a
probabilistic framework. In Reasoning with Uncertainty
in Robotics, pages 91–130. Springer, 1996.

[7] Marco Fraccaro, Danilo Jimenez Rezende, Yori Zwols,
Alexander Pritzel, S. M. Ali Eslami, and Fabio Viola.
Generative temporal models with spatial memory for
partially observed environments. CoRR, abs/1804.09401,
2018. URL http://arxiv.org/abs/1804.09401.

[8] N. J. Gordon, D. J. Salmond, and A. F. M. Smith.
Novel approach to nonlinear/non-gaussian bayesian state
estimation. IEE Proceedings F - Radar and Signal
Processing, 140(2):107–113, April 1993. ISSN 0956-375X.
doi: 10.1049/ip-f-2.1993.0015.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, July 1968. ISSN 0536-1567. doi: 10.1109/
TSSC.1968.300136.

[10] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel
Andor. Real-time loop closure in 2d lidar slam. In
2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1271–1278, 2016.

[11] Rein Houthooft, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. Vime: Variational
information maximizing exploration. In Advances in
Neural Information Processing Systems, pages 1109–1117,
2016.

[12] Maximilian Karl, Maximilian Sölch, Justin Bayer, and
Patrick van der Smagt. Deep variational bayes filters:
Unsupervised learning of state space models from raw
data. CoRR, abs/1605.06432, 2016. URL http://arxiv.org/
abs/1605.06432.

[13] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub
Toczek, and Wojciech Jaśkowski. ViZDoom: A Doom-
based AI research platform for visual reinforcement learn-
ing. In IEEE Conference on Computational Intelligence
and Games, pages 341–348, Santorini, Greece, Sep 2016.
IEEE. URL http://arxiv.org/abs/1605.02097. The best
paper award.

[14] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. In Proceedings of the 2nd International
Conference on Learning Representations (ICLR), 2014.

[15] David JC MacKay. Information-based objective functions
for active data selection. Neural computation, 4(4):590–
604, 1992.

[16] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple
random search provides a competitive approach to rein-
forcement learning. CoRR, abs/1803.07055, 2018. URL
http://arxiv.org/abs/1803.07055.

[17] Kevin P. Murphy. Bayesian map learning in dy-
namic environments. In Advances in Neural Informa-
tion Processing Systems 12, [NIPS Conference, Denver,

Colorado, USA, November 29 - December 4, 1999],
pages 1015–1021, 1999. URL http://papers.nips.cc/paper/
1716-bayesian-map-learning-in-dynamic-environments.

[18] Emilio Parisotto and Ruslan Salakhutdinov. Neural map:
Structured memory for deep reinforcement learning. CoRR,
abs/1702.08360, 2017. URL http://arxiv.org/abs/1702.
08360.

[19] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.
Semi-parametric topological memory for navigation.
CoRR, abs/1803.00653, 2018. URL http://arxiv.org/abs/
1803.00653.

[20] Jürgen Schmidhuber. Curious model-building control
systems. In Neural Networks. 1991 IEEE International
Joint Conference on, pages 1458–1463. IEEE, 1991.

[21] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Bur-
gard. Information gain-based exploration using rao-
blackwellized particle filters. In Robotics: Science and
Systems I, June 8-11, 2005, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA, pages 65–
72, 2005. URL http://www.roboticsproceedings.org/rss01/
p09.html.

[22] Zoltán Szabó. Information theoretical estimators toolbox.
Journal of Machine Learning Research, 15:283–287, 2014.

[23] S. Thrun. The role of exploration in learning control. In
D.A. White and D.A. Sofge, editors, Handbook for Intel-
ligent Control: Neural, Fuzzy and Adaptive Approaches.
Van Nostrand Reinhold, Florence, Kentucky 41022, 1992.

[24] Chaoqun Wang, Lili Meng, Teng Li, Clarence W De Silva,
and Max Q-H Meng. Towards autonomous exploration
with information potential field in 3d environments. In
Advanced Robotics (ICAR), 2017 18th International Con-
ference on, pages 340–345. IEEE, 2017.

[25] Peter Whaite and Frank P. Ferrie. Autonomous exploration:
driven by uncertainty. In Conference on Computer Vision
and Pattern Recognition, CVPR 1994, 21-23 June, 1994,
Seattle, WA, USA, pages 339–346, 1994. doi: 10.1109/
CVPR.1994.323849. URL https://doi.org/10.1109/CVPR.
1994.323849.

[26] Peter Whaite and Frank P Ferrie. Autonomous exploration:
Driven by uncertainty. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(3):193–205, 1997.

[27] Kai Xu, Lintao Zheng, Zihao Yan, Guohang Yan, Eugene
Zhang, Matthias Niessner, Oliver Deussen, Daniel Cohen-
Or, and Hui Huang. Autonomous reconstruction of
unknown indoor scenes guided by time-varying tensor
fields. ACM Transactions on Graphics (TOG), 36(6):202,
2017.

Part IV.

Appendix

Additional Background C
C.1. Linear Gaussian Systems
Consider a Gaussian marginal

p(z) = N(z | µz,Σz), (C.1)

and a linear Gaussian conditional

p(x | z) = N(x | Az + a,Σx), (C.2)

which form a factorisation of the joint distribution

p(x, z) = p(x | z)p(z). (C.3)

This configuration is referred to as a linear Gaussian system (LGS), because

of the linear dependence in the functional form f(θ, z) = Az + a that

defines the conditional mean. Given this directed model, one can obtain

the terms of the inverse factorisation p(x)p(z | x) and the joint p(x, z) itself
in closed-form. All three are Gaussian distributions. The formulas are

p(x, z) = N(x, z | µ∗,Σ∗) (C.4)

p(z | x) = N(z | µ∗z ,Σ
∗
z) (C.5)

p(x) = N(x | µ∗x,Σ
∗
x), (C.6)

where

µ∗z = Kx + (I − KA)µz − Ka (C.7)

Σ∗z = (I − KA)Σz (C.8)

K = ΣzAT
(
AΣzAT + Σx

)−1
, (C.9)

and

µ∗x = Aµz + a (C.10)

Σ∗x = Σx + AΣzAT , (C.11)

165

C. Additional Background

and

µ∗ =
(

µz
Aµz + a

)
(C.12)

Σ∗ =
[
Σz ΣzAT

AΣz Σx + AΣzAT

]
. (C.13)

The equations are derived by "completing the square" for each target

Gaussian, after algebraically expanding the known product p(z)p(x | z)
(see Bishop (2007) for a proof).

C.2. Connections to Gauss-Newton
If the model is small, i. e. its variables and computations easily fit in

memory, then MAP optimisation lends itself to second-order optimisation

methods. This is why flavors of Gauss-Newton (GN) are common in the

field of sparse SLAM and sparse odometry estimation. We will now take a

moment to relate Gauss-Newton to full-posterior estimation, seen as MAP

plus a Laplace approximation. The purpose is to distinguish it from the

inferences proposed in the core publications of the thesis.

In its basic form, a Gauss-Newton objective is a sum of squared errors

(SSE)

θ∗ = argmin
θ

∑
k

rk(θ)
2, (C.14)

where rk(z) are residuals between predictions and observations, and θ are

latent variables we seek to infer. For our discussion, we will upgrade this

to the generalised Gauss-Newton formulation

θ∗ = argmin
θ
f(g(θ)), (C.15)

where we replace the sum of square functions with f(·), a convex function,

and we replace the residuals rk(θ) with a non-linear function of g(θ) (e. g.
see Diehl and Messerer (2019)). We will make f and g concrete at the end

of this section.

Gauss-Newton can then be seen as an optimisation under a linear

approximation of g(θ).1 In other words, we choose to approximate g(θ)
by its first-order Taylor expansion

ĝ(θ) = g(θ0) + Jg(θ0)(θ− θ0). (C.16)

1
We choose this perspective on Gauss-Newton to highlight the linear approximation.

166

C.2. Connections to Gauss-Newton

Here Jg(θ0) is the Jacobian of g(·) evaluated at the expansion point θ0, the

current estimate in an optimisation context. Under this approximation, the

Hessian of the objective becomes

∇2f(ĝ(θ)) = Jg(θ0)T · ∇2f(θ)︸ ︷︷ ︸
Hessian of f

· Jg(θ0) := H̃(θ). (C.17)

The matrix Ĥ is positive semi-definite. This follows from f being convex,

its Hessian∇2f(θ) thus being positive semi-definite, and the product with

the Jacobian from both sides preserving that. GN update steps are then

θ1 = θ0 + αH̃−1(θ0)∇f(g(θ0)). (C.18)

This is a generalised perspective on Gauss-Newton, where if we substitute

for a square f (or sum of) and for residuals in place of g we recover the

traditional variant. We defer to Nocedal and Wright (1999) for further

information on GN and relaxations like Levenberg-Marquardt.

For our purposes, we are interested in how the above relates to posterior

estimation. We can see MAP optimisation as a special case of eq. (C.15).

Define {z1, z2, ...zM} to be a set of latent variables, the equivalent of θ above,

and let {x1, x2, ..., xN} be a set of observed variables. Assume we have a

joint graphical model for p(z1:N, x1:M) with the factorisation

p(z1:N, x1:M) =

(
N∏
n=1

p(zn | P(zn))

)(
M∏
m=1

p(xm | P(xm))

)
. (C.19)

HereP(·) denotes the parent nodes of a variable and the individual product

terms reflect the factorisation of the joint. Then MAP optimisation boils

down to

z∗1:N = argmax
z1:N

N∑
n=1

log p(zn | P(zn)) +
M∑
m=1

log p(xm | P(xm)). (C.20)

If all terms p(zn | P(zn)) and p(xm | P(xm)) are homoscedastic Gaussians,

we recover a weighted sum of square residuals that fits the generalised

Gauss-Newton definition. Note that the conditionals can be non-linear

or even non-Gaussian, e. g. they can be any parametric pθ(zn | g(P(zn)))
in the sense of section 1.2.1. We only require that log p(·) is convex and

twice differentiable in the outputs of g(P(zn)), which should have a valid

Jacobian.

167

C. Additional Background

If we optimise eq. (C.20) with Gauss-Newton, we obtain a point-mass

approximation of the posterior for the model in eq. (C.19). We can

additionally apply a Laplace approximation using the Hessian estimate

from eq. (C.17). We then obtain a posterior approximation

q(z1:N) ≈ p(z1:N | x1:M) (C.21)

q(z1:N) = N
(
z1:N

∣∣ z∗1:N,−H̃(z∗1:N)
−1). (C.22)

Since the generalised Gauss-Newton Hessian estimate is positive semi-

definite, it is straightforward to make it p.d. and use it in a Laplace

approximation, regardless of whether z∗1:N is a perfect posterior mode.
2

The method is efficient for sparse data or sparse Jacobians (Dellaert

and Kaess, 2017). This makes it suitable for sparse odometry and sparse

SLAM inference under real-time constraints (Cadena et al., 2016). However,

this work focuses on dense volumetric rendering and steers away from

sparsity. The resulting posterior is a joint Gaussian over all latents and g(·)
is linearised, which is restrictive. One goal of the thesis is to explore how

to relax these assumptions.

C.3. Stochastic Gradients and the VI
Reparameterisation Trick

Tomake the variational inference objective in eqs. (1.17) and (1.18) tractable,

we estimate the expectation over qφ(z)with Monte Carlo. The expectation

integral is replaced with an average over samples zk ∼ qφ(z),

L
elbo

(φ,θ) ≈ 1
K

K∑
k=1

log pθ(x | zk) −KL
(
qφ(z)

∣∣∣∣ pθ(z)
)
. (C.23)

This assumes that KL
(
qφ(z)

∣∣∣∣ pθ(z)
)
is tractable (e. g. for Gaussians).

Alternatively, one can approximate the KL via Monte Carlo as well,

L
elbo

(φ,θ) ≈ 1
K

K∑
k=1

log pθ(x | zk) − logqφ(zk) + log pθ(zk). (C.24)

Both variants make evaluation tractable, but for gradient-based opti-

misation of the posterior parameters φ we additionally need tractable

gradients through the MC sampling zk ∼ qφ(z).

2
Usually small positive values are already added to the diagonal of H̃(z∗1:N) in a Levenberg-

Marquardt optimisation context.

168

C.4. Approximate Empirical Distributions

The reparameterisation trick makes this possible for a wide family of

distributions (Kingma and Welling, 2014). The variational family qφ(z) is
chosen such that its samples zk can be computed as

zk = f(φ,ε), ε ∼ p(ε). (C.25)

Here, ε is a random seed drawn from an out-of-band distribution, e. g. a

standard Gaussian. Then, the sample zk is the output of a deterministic

function f(·), of the variational parameters φ and the random seed ε.3

This construction allows gradients to flow through f intoφ. For example,

Gaussian, Laplace, Logistic, Gumbel and normalising flow distributions

are variational families that can be easily framed in this way. When q

is multivariate, the above applies to its individual factors, i. e. different

families can be composed together for different latents.

Effectively, the reparameterisation shifts the expectation from qφ(z) to
p(ε), i. e.

Eqφ(z)(g(z)) = Ep(ε)[g(f(φ,ε))] ≈ 1
K

K∑
k=1

g(f(φ,εk)), (C.26)

for any differentiable function g, so that the random sampling of ε is

decoupled from gradient floww. r. t.φ and gradients can be MC-estimated

w. r. t. p(ε) .

C.4. Approximate Empirical Distributions

Sometimes we may want to trade the convenience of parametric distri-

butions for expressiveness. Imagine we want to approximate a complex

target distribution p(x), but only have a function g(x) proportional to it,

i. e.

p(x) =
g(x)
Z

, (C.27)

with Z > 0. In this case an empirical weighted set of particles can be

a proxy for the unknown p(x), enabling Monte-Carlo estimation. See

fig. 1.1d for an example (particles are coloured by their weights).

3
In practice, f is usually defined by hand in terms of ε and the distribution parameters ψ

of q, e. g. a mean and a covariance for a Gaussian q, which in turn are a function ofφ.

169

C. Additional Background

Importance sampling is one way to achieve this. We seek to evaluate

expectations

Ep(x)(f(x)) =
∫
p(x)f(x) dx. (C.28)

Because we cannot sample from p(x), we use a proposal distribution q(x)
from which we can sample and which has a known PDF. For example, this

could be a parametric distribution qθ(x) as per the previous section. We

also require that ∀x,p(x) > 0 : q(x) > 0, i. e. the proposal should cover the

support of the unknown p(x). Then we can rewrite eq. (C.28) as

Ep(x)[f(x)] = Eq(x)
[
p(x)
q(x)

f(x)
]
= Eq(x)

[
g(x)
q(x)

f(x)
]
/Z

=
Eq(x)

[
g(x)
q(x)f(x)

]

Eq(x)
[
g(x)
q(x)

] , (C.29)

where eq. (C.29) follows from

1
Z

=

∫
g(x) dx = Eq(x)

[
g(x)
q(x)

]
. (C.30)

Since we known q(x) and g(x), we can apply MC estimation to obtain:

Ep(x)[f(x)] =
Eq(x)

[
g(x)
q(x)f(x)

]

Eq(x)
[
g(x)
q(x)

] ≈
∑K
k=1

g(xk)
q(xk)f(x

k)∑K
l=1

g(xl)
q(xl)

=

∑K
k=1 w̃

kf(xk)∑K
l=1 w̃

l
=

K∑
k=1

wkf(xk) (C.31)

Here we define w̃k =
g(x)
q(x) and wk = w̃k∑K

l=1 w̃
l
. The terms wk are known as

the normalised importance weights of each sampled particle xk ∼ q(x). The
set of particles and their weights forms the weighted empirical distribution{(

wk, xk
)}
k=1,...K. (C.32)

Through eq. (C.31) it allows us to approximate any expectation w. r. t. the

target p(x).

170

C.5. Kalman Filters

Most commonly, this is applicable when we know p(z)p(x | z) and seek

p(z | x). Through Bayes’ law we see the above applies with

p(z | x) =
g(z)
Z

where g(z) = p(z, x) = p(z)p(x | z)
Z = p(x). (C.33)

For the particles zk ∼ q
(
zk
)
the importance weights are then

w̃k =
p
(
zk, x

)

q(zk)
, wk =

w̃k∑K
l=1 w̃l

, (C.34)

and the respective empirical is

{
wk, zk

}
k=1,...K. Note that x above is from

the conditional p(z | x).
Empirical approximations are approximate due to the Monte-Carlo

estimation in eq. (C.31). The number of particles needed to reduce the

approximation gap grows exponentially with variable size. This makes

empirical approximations too expensive for large problems, like the dense

spatialmodellingused throughout the thesis. On theother hand, empiricals

are unbiased in the asymptotic limit, which cannot be easily guaranteed

for parametric distributions.

C.5. Kalman Filters
The most basic filter relevant to this work is the Kalman filter (Kalman,

1960). The prediction step of Kalman filters inspires a small part of the

more complex spatial filter proposed in appendix A.2.

Kalman filters assume a state-space model with a linear Gaussian

emission and a linear Gaussian transition,

p(zt | zt−1) = N(zt | Azt−1 + a, S) (C.35)

p(xt | zt) = N(xt | Bzt + b,L). (C.36)

Note that the constants a, b are added for generality, extending the purely

linear mappings. Also note that control inputs to the transition are omitted

for brevity, but are there in practice. Let us assume the previous filter is

Gaussian, such that

p(zt−1 | x1:t−1) = N(zt−1 | µt−1,Σt−1).

171

C. Additional Background

Under Markovian independence, p(zt−1 | x1:t−1) and p(zt | zt−1) form a

linear Gaussian system, in the sense of section 1.2.2. Equations (C.10)

and (C.11) then give the one-step prediction distribution

p(zt | x1:t−1) =
∫
p(zt | zt−1)p(zt−1 | x1:t−1) dzt−1 (C.37)

= N
(
zt
∣∣ µ̂t, Σ̂t

)
(C.38)

µ̂t = Aµt−1 + a (C.39)

Σ̂t = S + AΣt−1AT . (C.40)

In the above, uncertainty from the previous filter at step t−1 is propagated
through the transition into the current step t, marginalising zt−1 in the

process.

In turn, p(zt | x1:t−1) and p(xt | zt) form another LGS. Equations (C.7)

and (C.8) then give the target filter

p(zt | x1:t) = N(zt | µt,Σt) (C.41)

µt = Ktxt + (I − KtB)µ̂t − Ktb (C.42)

Σt = (I − KtB)Σ̂t (C.43)

Kt = Σ̂tBT
(
BΣ̂tBT + L

)−1
. (C.44)

The result is again a Gaussian, and the same procedure can repeat for

future steps by induction. The matrix Kt is known as a Kalman gain

(Särkkä, 2013). It is often interpreted as an interpolation term, weighing

the newest observation xt against the prior over zt (see algebraic structure
of eq. (C.42)).

In practice, variants of the Kalman filter are applied to non-linear state-

space models. Extended Kalman filters (EKFs) linearise both the emission

and transition via a first-order Taylor expansion, while unscented Kalman

filters (UKFs) rely on an unscented transformation of sigma points for

uncertainty propagation (Särkkä, 2013).

The Gaussian and linearity assumptions of Kalman filters are restrictive.

For that reason, EKF assumptions are used very sparingly in a small part

of the derivations in appendix A.2, for speed. Additionally, Kalman filters

do not directly scale to the dense spatial setting, with millions of latent

parameters, without strong independence assumptions (diagonalisation).

172

C.6. Filtering via Optimisation

C.6. Filtering via Optimisation
Filtering can be approached with variational inference as well. This is

similar to assumed density filters (ADF) (e. g. Opper and Winther (1999) and

Minka (2001)), where first a parametric approximate distribution family is

assumed and then its divergence to the filtering posterior is minimised.

The only difference is that VI optimises aKL(q || p)while ADFs optimise a

KL(p || q) divergence (i. e. expectation propagation). Since VI was already

covered in the background, we will now consider how it applies to the

recursion of the Bayes filter in SSMs.

The main idea is to interpret the recursion from eq. (1.26) as the graph-

ical model p(xt | zt)p(zt | x1:t−1) for the joint p(xt, zt | x1:t−1), which is

correct under Markovian assumptions. Assuming both terms p(xt | zt)
and p(zt | x1:t−1) are known, one can use the ELBO to find the poste-

rior p(zt | x1:t) ∝ p(xt | zt)p(zt | x1:t−1). Following section 1.3.1, for an

assumed approximation qφ(zt) we pose the optimisation objective

argmax
φ

L
elbo

(φ)

= argmax
φ

Eqφ(zt)[log p(xt | zt)] −KL
(
qφ(zt)

∣∣∣∣ p(zt | x1:t−1)
)
.

Formulating filters in this way has the advantage that qφ(zt) is a flexible
parametric distribution, up to the reparameterisation trick (appendix C.3).

The emission and transition are also not limited, as long as their PDFs

are known and they are differentiable. The main caveat is that the prior

p(zt | x1:t−1) = Ep(zt−1|x1:t−1)[p(zt | zt−1)] is given by an expectation inte-

gral that needs to be approximated.

For dense spatial models, computing both a prior approximation and a

following variational inference approximation in real-time is challenging,

at least at the time of writing. Still, similar ideas underpin a pose tracking

objective of the proposed spatial filters in appendix A.2 and appendix A.3,

with the compromise that the optimisation is max-a-posteriori under real-

time constraints. In this case q is a point mass, and can be extended with

Gaussian uncertainty via Laplace approximation.

C.7. Particle Filters
Where Kalman filters are the archetype of closed-form but restrictive

assumptions, particle filters (PFs) are their flexible but more unwieldy

counterpart.

173

C. Additional Background

Formally, a PF only requires that the transition and emission have a

tractable PDF. It is further assumed the previous filter p(zt−1 | x1:t−1) is
approximated by importance-weighted particles, as per appendix C.4:{(

wkt−1, z
k
t−1
)}
k=1,...K. (C.45)

A particle filter then approximates p(zt | x1:t) with a new particle set,

moving the recursion forward. First, using the particle set for t − 1 one

can MC-estimate the expectation in eq. (1.28) like so

p(zt | x1:t) ∝ p(xt | zt)Ep(zt−1|x1:t−1)[p(zT | zT−1)] (C.46)

≈ p(xt | zt)
K∑
k=1

wkt−1p
(
zt
∣∣ zkt−1

)
(C.47)

=

K∑
k=1

wkt−1p(xt | zt)p
(
zt
∣∣ zkt−1

)
:= g(zt). (C.48)

It approximately holds that p(zt | x1:t) ∝ g(zt). This matches the setup

for importance sampling (see appendix C.4), and here it is used to form

a new particle set. An assumed proposal distribution q(zt)4 generates K
new candidate particles zkt ∼ q(zt) which are then assigned the weights

w̃kt =
g(zkt)
q
(
zkt
) , wkt =

w̃kt∑K
l=1 w̃

l
t

. (C.49)

The filter p(zt | x1:t) is then approximated by the particle set{(
wkt , z

k
t

)}
k=1,...K. (C.50)

The above is an instance of sequential importance sampling (SIS), a

sequential Monte Carlo (SMC) method (Doucet, Johansen, et al., 2009).
5

For the sake of brevity, the reader is referred to the excellent tutorial by

Doucet, Johansen, et al. (2009) for more details on sequential importance

resampling (SIR), the benefits of resampling in PFs and Rao-Blackwellised

PFs.

PF posteriors appear in the non-core publication in appendix B.1, which

preceded the core contributions of this thesis. They are discussed here

4
Can be sampled from and must have a tractable PDF.

5
For brevity, the discussion is narrowed to the assumptions of state-space models, instead

of more general SMC and SIS formulations.

174

C.8. Rotation Matrices

only for the purpose of comparison. Particle filters are asymptotically

ideal, but the number of particles needed for a reasonable estimate suffers

from the curse of dimensionality (Doucet, Johansen, et al., 2009). This is a

general limitation of sampling methods, and the main reason they were

not explored further for the proposed dense spatial models. In particular,

in this thesis p(xt | zt) is analogous with a renderer and evaluating it

for a very large number of particles is expensive (cf. eq. (C.48)). Direct

application of particle filtering is hence challenging for real-time inference

and remains to be explored in future work.

C.8. Rotation Matrices
The elements of the algebraic group SO(3) map one-to-one to orthogonal

rotation matrices R ∈ R3×3
with a positive determinant. For brevity, we

will treat rotation matrices R as the direct elements of SO(3):

R ∈ SO(3) : RTR = I, det(R) = 1. (C.51)

The abstract SO(3) operator ◦ is then equivalent to a matrix product:

∀R1,R2 ∈ SO(3) : R1R2 ∈ SO(3). (C.52)

When we multiply rotation matrices we concatenate consecutive rotations.

The null-element of the rotation group maps to the identity matrix

∀R ∈ SO(3) : R−1R = RTR = I ∈ SO(3). (C.53)

Respectively, Rp rotates a point p ∈ R3
(i. e. the group action of SO(3)).

Rotation matrices are real-valued, but they are not closed under addition.

C.9. Lie-Algebra Parameters
The rotation group SO(3) is a Lie group, as it is both a group and a

differentiable manifold. The group manifold is characterised by a tangent

space at the identity, known as the Lie algebra so(3). This tangent space
makes for an elegant parameterisation, because it is isomorphic to R3

and it is straightforward to map from it to the Lie group and back. The

parameterisation is minimal, with three degrees of freedom.

To remain on topic, this section covers only practical aspects about the

parameterisation. The reader is referred to the tutorial by Deray and Solà

(2020) and Hall and Hall (2013) for more theory.

175

C. Additional Background

Consider a curve of rotationsR(t) that lies on the rotationmanifold SO(3).
An expression for its derivative Ṙ(t) can be obtained by differentiating

R(t)R(t)T :

R(t)R(t)T = I (C.54)

Ṙ(t)R(t)T + (Ṙ(t)R(t)T)T = 0 (C.55)

Ṙ(t)R(t)T = −(Ṙ(t)R(t)T)T︸ ︷︷ ︸
:=
[
θ
]
×(t)

. (C.56)

Equation (C.56) tells us that

[
θ
]
×(t) = −(Ṙ(t)R(t)T)T is a skew-symmetric

matrix of the form

[
θ
]
×(t) =




0 −θz θy
θz 0 −θx
−θy θx 0


. (C.57)

With eqs. (C.56) and (C.57) the rotation derivative is

Ṙ(t) =
[
θ
]
×(t)R(t). (C.58)

A first-order Taylor expansion around R(0) = I6 then gives us:

Ṙ(0) =
[
θ
]
×(0) (C.59)

R(t) ≈ I + t
[
θ
]
×(0). (C.60)

The Taylor expansion gives the tangent space, or Lie-algebra, which is the

space of all skew-symmetric matrices

so(3) =
{[
θ
]
× ∈ R3×3 |

[
θ
]
× = −

[
θ
]T
×

}
. (C.61)

The notation

[
θ
]
× ∈ R3×3

is intentional here, because skew-symmetric

matrices are isomorphic to the space of vectors θ ∈ R3
in terms of cross

products, in the sense that

∀p ∈ R3 :
[
θ
]
×p = θ× p. (C.62)

The elements of θ = [θx, θy, θz] ∈ R3
are the three degrees of freedom

that appear in the skew-symmetric matrix. In practice, a rotation is

parameterised with the vector θ directly.

6
The convention is to express Lie-algebras at the identity, but it should be noted that

tangent spaces have similar structure at any element on the Lie group manifold.

176

C.9. Lie-Algebra Parameters

With rotation parameters θ ∈ R3
the mapping to rotations is defined as

frot : R3 → SO(3) (C.63)

frot(θ) = exp
([
θ
]
×

)
(C.64)

= I +
[
θ

‖θ‖

]

×
sin‖θ‖+

[
θ

‖θ‖

]2

×
(1− cos‖θ‖). (C.65)

This is known as the exponential map of SO(3) and also as the Euler-

Rodrigues formula (Dai, 2015). The exponential arises from solving for

R(t) in eq. (C.58). The expression is differentiable, and thus suitable for

gradient-based optimisation. Rotations can also be mapped back to vectors

θ via a logarithmic map, for brevity we refer to Deray and Solà (2020) for

more details.

The vectors θ associated with the Lie-algebra are also referred to as

axis-angle or rotation vectors. Their magnitude ‖θ‖ gives the rotation

angle around the normalised axis
θ
‖θ‖ . Respectively, this means that

frot(θ) = frot(
‖θ‖+ 2kπ
‖θ‖ θ), k ∈ Z, (C.66)

Themapping is many-to-one, and parameters are equivalent in a sinusoidal

pattern with a period of 2π. The discussion of further properties of Lie-

algebras, such as the Lie-bracket, are purposefully left out as they are not

necessary to understand the proposed methods.

177

Publication Permission
Information D
All of the publications included in the thesis appear only in open-access

conference proceedings, they were not published in traditional journals.

The authors did not give up their copyright in the process (i. e. it was not

transferred). Following are the details for each published paper.

D.1. Included Core Publications
Each of the following subsections has the publication permissions of the

included core papers in the dissertation.

D.1.1. Variational State-Space Models for Localisation and Dense 3D
Mapping in 6 DoF (Mirchev et al., 2021)

The publication appeared at the 9th International Conference on Learning

Representations (ICLR) 2021. It is available on OpenReview (an open-

access conference proceedings website) under the following link: https:
//openreview.net/forum?id=XAS3uKeFWj. The paper copyright remains

with the authors and was not transferred to ICLR, as explained on the

ICLR website: https://iclr.cc/FAQ/Copyright. Here is the verbatim

quote:

Copyright and Patents on ICLR Papers
According to U.S. Copyright Office’s page What is a Copyright.

When you create an original work you are the author and the

owner and hold the copyright, unless you have an agreement

to transfer the copyright to a third party such as the company

or school you work for. Authors do not transfer the copyright

of their paper to ICLR, instead they grant ICLR a non-exclusive,

perpetual, royalty-free, fully-paid, fully-assignable license to

copy, distribute and publicly display all or part of the paper.

179

https://openreview.net/forum?id=XAS3uKeFWj
https://openreview.net/forum?id=XAS3uKeFWj
https://iclr.cc/FAQ/Copyright

D. Publication Permission Information

Patents

You cannot file a patent once a paper is publicly disclosed. The

US has a 1-year grace period.

D.1.2. PRISM: Probabilistic Real-Time Inference in Spatial World Models
(Mirchev et al., 2022)

The publication appeared at theConference onRobot Learning (CoRL) 2022.

It was published in the online, open-access Proceedings ofMachine Learning

Research (PMLR) under a Creative Commons Attribution 4.0 International

License (CC BY 4.0), which is permissive and allows redistribution of the

published version. According to the CC BY 4.0 agreement, the authors

"retain ownership of all rights under copyright in all versions of the article,

and all rights not expressly granted in this agreement". The publication

is available online under the following link: https://proceedings.mlr.
press/v205/mirchev23a.html.

D.1.3. Tracking and Planning with Spatial World Models (Kayalibay et al.,
2022)

The publication appeared at the Learning for Dynamics and Control

Conference (L4DC) 2022. It was published in the online, open-access

Proceedings of Machine Learning Research (PMLR) under a Creative

Commons Attribution 4.0 International License (CC BY 4.0), which is

permissive and allows redistribution of the published version. According

to theCCBY4.0 agreement, the authors "retain ownershipof all rights under

copyright in all versions of the article, and all rights not expressly granted

in this agreement". The publication is available online under the following

link: https://proceedings.mlr.press/v168/kayalibay22a.html.

D.2. Included Non-Core Prior Work

The non-core publication (Mirchev et al., 2019) was included in a thesis

appendix for context, but it does not count towards the dissertation (it

was published immediately before the doctorate). It appeared at the

Robotics Science and Systems (RSS) 2019 conference and is available

online in the online Robotics Science and Systems Proceedings under

the following link: https://www.roboticsproceedings.org/rss15/p83.

180

https://proceedings.mlr.press/v205/mirchev23a.html
https://proceedings.mlr.press/v205/mirchev23a.html
https://proceedings.mlr.press/v168/kayalibay22a.html
https://www.roboticsproceedings.org/rss15/p83.html
https://www.roboticsproceedings.org/rss15/p83.html
https://www.roboticsproceedings.org/rss15/p83.html

D.2. Included Non-Core Prior Work

html. The RSS proceedings are open-access, copyright was not transferred

to RSS when the work was published.

181

https://www.roboticsproceedings.org/rss15/p83.html
https://www.roboticsproceedings.org/rss15/p83.html
https://www.roboticsproceedings.org/rss15/p83.html

Own publications

Core Publications
Mirchev, Atanas, Baris Kayalibay, Patrick van der Smagt, and Justin Bayer

(2021). “Variational State-Space Models for Localisation and Dense 3D

Mapping in 6 DoF.” In: 9th International Conference on Learning Represen-

tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

url: https://openreview.net/forum?id=XAS3uKeFWj.
Mirchev, Atanas, Baris Kayalibay, Ahmed Agha, Patrick van der Smagt,

Daniel Cremers, and Justin Bayer (2022). “PRISM: Probabilistic Real-Time

Inference in SpatialWorldModels.” In:Conference on Robot Learning, CoRL

2022, 14-18 December 2022, Auckland, New Zealand. Vol. 205. Proceedings

of Machine Learning Research. PMLR, pp. 161–174. url: https://
proceedings.mlr.press/v205/mirchev23a.html.

Kayalibay, Baris, Atanas Mirchev, Patrick van der Smagt, and Justin Bayer

(2022). “Tracking and Planning with Spatial World Models.” In: Learning

for Dynamics and Control Conference, L4DC 2022, 23-24 June 2022, Stanford

University, Stanford, CA, USA. Vol. 168. Proceedings of Machine Learning

Research. PMLR, pp. 124–137.

Non-Core Publications
Bayer, Justin, Maximilian Soelch, Atanas Mirchev, Baris Kayalibay, and

Patrick van der Smagt (2021). “Mind the Gap when Conditioning Amor-

tised Inference in Sequential Latent-VariableModels.” In: 9th International

Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,

May 3-7, 2021. OpenReview.net. url: https://openreview.net/forum?
id=a2gqxKDvYys.

183

https://openreview.net/forum?id=XAS3uKeFWj
https://proceedings.mlr.press/v205/mirchev23a.html
https://proceedings.mlr.press/v205/mirchev23a.html
https://openreview.net/forum?id=a2gqxKDvYys
https://openreview.net/forum?id=a2gqxKDvYys

Kayalibay, Baris, Atanas Mirchev, Patrick van der Smagt, and Justin Bayer

(2021). “Less Suboptimal Learning and Control in Variational POMDPs.”

In: Self-Supervision for Reinforcement Learning Workshop - ICLR 2021. url:

https://openreview.net/forum?id=oe4q7ZiXwkL.
Kayalibay, Baris, Atanas Mirchev, Ahmed Agha, Patrick van der Smagt,

and Justin Bayer (2023). “Filter-Aware Model-Predictive Control.” In:

Learning for Dynamics and Control Conference, L4DC 2023, 15-16 June

2023, Philadelphia, PA, USA. Vol. 211. Proceedings of Machine Learning

Research. PMLR, pp. 1441–1454. url: https : / / proceedings . mlr .
press/v211/kayalibay23a.html.

Prior Work (Before Doctorate)
Kayalibay, Baris, AtanasMirchev,Maximilian Soelch, Patrick vander Smagt,

and Justin Bayer (2018). Navigation and planning in latent maps. url: http:
//reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf.

Mirchev,Atanas, Baris Kayalibay,Maximilian Soelch, Patrick vander Smagt,

and Justin Bayer (2019). “Approximate Bayesian Inference in Spatial

Environments.” In: Robotics: Science and Systems XV, University of Freiburg,

Freiburg im Breisgau, Germany, June 22-26, 2019. doi: 10.15607/RSS.2019.
XV.083. url: https://doi.org/10.15607/RSS.2019.XV.083.

Mirchev, Atanas and Seyed-Ahmad Ahmadi (2018). “Classification of

sparsely labeled spatio-temporal data through semi-supervised adver-

sarial learning.” In: arXiv preprint arXiv:1801.08712.

Golkov, Vladimir,Marcin J. Skwark, AtanasMirchev, Georgi Dikov, Alexan-

der R. Geanes, Jeffrey L. Mendenhall, Jens Meiler, and Daniel Cre-

mers (2020). “3D Deep Learning for Biological Function Prediction

from Physical Fields.” In: 8th International Conference on 3D Vision, 3DV

2020, Virtual Event, Japan, November 25-28, 2020. IEEE, pp. 928–937. doi:

10.1109/3DV50981.2020.00103. url: https://doi.org/10.1109/
3DV50981.2020.00103.

Leis, Viktor,AndreyGubichev,AtanasMirchev, PeterA. Boncz,AlfonsKem-

per, and Thomas Neumann (2015). “How Good Are Query Optimizers,

Really?” In: Proc. VLDB Endow. 9.3, pp. 204–215. doi: 10.14778/2850583.
2850594. url: http://www.vldb.org/pvldb/vol9/p204-leis.pdf.

184

https://openreview.net/forum?id=oe4q7ZiXwkL
https://proceedings.mlr.press/v211/kayalibay23a.html
https://proceedings.mlr.press/v211/kayalibay23a.html
http://reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf
http://reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf
https://doi.org/10.15607/RSS.2019.XV.083
https://doi.org/10.15607/RSS.2019.XV.083
https://doi.org/10.15607/RSS.2019.XV.083
https://doi.org/10.1109/3DV50981.2020.00103
https://doi.org/10.1109/3DV50981.2020.00103
https://doi.org/10.1109/3DV50981.2020.00103
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
http://www.vldb.org/pvldb/vol9/p204-leis.pdf

Bibliography

Antonini, Amado, Winter Guerra, Varun Murali, Thomas Sayre-McCord,

and Sertac Karaman (2020). “The Blackbird UAV dataset.” In: Int. J.

Robotics Res. 39.10-11. doi: 10.1177/0278364920908331. url: https:
//doi.org/10.1177/0278364920908331.

Asgharivaskasi, Arash, Shumon Koga, and Nikolay Atanasov (2022). “Ac-

tive Mapping via Gradient Ascent Optimization of Shannon Mutual In-

formation over Continuous SE(3) Trajectories.” In: IEEE/RSJ International

Conference on Intelligent Robots and Systems, IROS 2022, Kyoto, Japan, Octo-

ber 23-27, 2022. IEEE, pp. 12994–13001. doi: 10.1109/IROS47612.2022.
9981875. url: https://doi.org/10.1109/IROS47612.2022.9981875.

Audras, Cedric, A Comport, Maxime Meilland, and Patrick Rives (2011).

“Real-time dense appearance-based SLAM for RGB-D sensors.” In: Aus-

tralasian Conf. on Robotics and Automation. Vol. 2, pp. 2–2.

Ayache, Nicholas and Olivier D. Faugeras (1988). “Building, Registrating,

and Fusing Noisy Visual Maps.” In: Int. J. Robotics Res. 7.6, pp. 45–65.

doi: 10.1177/027836498800700605. url: https://doi.org/10.1177/
027836498800700605.

Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool (2006). “SURF: Speeded

Up Robust Features.” In: Computer Vision - ECCV 2006, 9th European

Conference on Computer Vision, Graz, Austria, May 7-13, 2006, Proceedings,

Part I. Ed. by Ales Leonardis, Horst Bischof, and Axel Pinz. Vol. 3951.

Lecture Notes in Computer Science. Springer, pp. 404–417. doi: 10.1007/
11744023_32. url: https://doi.org/10.1007/11744023%5C_32.

Becker-Ehmck, Philip, Maximilian Karl, Jan Peters, and Patrick van der

Smagt (2020). “Learning to Fly via Deep Model-Based Reinforcement

Learning.” In: CoRR abs/2003.08876. arXiv: 2003.08876.
Bertsekas, Dimitri P. (2005). Dynamic programming and optimal control, 3rd

Edition. Athena Scientific. isbn: 1886529264. url: https://www.worldcat.
org/oclc/314894080.

Bishop, Christopher M. (2007). Pattern recognition and machine learning, 5th

Edition. Information science and statistics. Springer. isbn: 9780387310732.

url: https://www.worldcat.org/oclc/71008143.

185

https://doi.org/10.1177/0278364920908331
https://doi.org/10.1177/0278364920908331
https://doi.org/10.1177/0278364920908331
https://doi.org/10.1109/IROS47612.2022.9981875
https://doi.org/10.1109/IROS47612.2022.9981875
https://doi.org/10.1109/IROS47612.2022.9981875
https://doi.org/10.1177/027836498800700605
https://doi.org/10.1177/027836498800700605
https://doi.org/10.1177/027836498800700605
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744023%5C_32
https://arxiv.org/abs/2003.08876
https://www.worldcat.org/oclc/314894080
https://www.worldcat.org/oclc/314894080
https://www.worldcat.org/oclc/71008143

Bibliography

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson,

Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake

VanderPlas, Skye Wanderman-Milne, and Qiao Zhang (2018). JAX:

composable transformations of Python+NumPy programs. Version 0.3.13. url:

http://github.com/google/jax.
Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph

Dabis,ChelseaFinn,KeerthanaGopalakrishnan,KarolHausman,Alexan-

der Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas

Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalashnikov,

Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu,

UtsavMalla, DeekshaManjunath, IgorMordatch, OfirNachum, Carolina

Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jornell Quiambao,

Kanishka Rao, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi, Kevin

Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan,

Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia,

Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich (2023).

“RT-1: Robotics Transformer for Real-World Control at Scale.” In: Robotics:

Science and Systems XIX, Daegu, Republic of Korea, July 10-14, 2023. Ed. by

Kostas E. Bekris, Kris Hauser, Sylvia L. Herbert, and Jingjin Yu. doi:

10.15607/RSS.2023.XIX.025. url: https://doi.org/10.15607/RSS.
2023.XIX.025.

Brown, Duane (1976). “The bundle adjustment-progress and prospect.” In:

XIII Congress of the ISPRS, Helsinki, 1976.

Cadena, Cesar, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-

muzza, José Neira, Ian D. Reid, and John J. Leonard (2016). “Past,

Present, and Future of Simultaneous Localization and Mapping: Toward

the Robust-Perception Age.” In: IEEE Trans. Robotics 32.6, pp. 1309–1332.

doi: 10.1109/TRO.2016.2624754. url: https://doi.org/10.1109/
TRO.2016.2624754.

Campos, Carlos, Richard Elvira, Juan J. Gomez, Jose M. M. Montiel, and

Juan D. Tardos (2021). “ORB-SLAM3: An Accurate Open-Source Library

for Visual, Visual-Inertial and Multi-Map SLAM.” In: IEEE Transactions

on Robotics 37.6, pp. 1874–1890.

Canelhas, Daniel Ricao, Todor Stoyanov, and Achim J. Lilienthal (2018). “A

Survey of Voxel InterpolationMethods and an Evaluation of Their Impact

on Volumetric Map-Based Visual Odometry.” In: 2018 IEEE International

Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May

21-25, 2018. IEEE, pp. 3637–3643. doi: 10.1109/ICRA.2018.8461227.
url: https://doi.org/10.1109/ICRA.2018.8461227.

186

http://github.com/google/jax
https://doi.org/10.15607/RSS.2023.XIX.025
https://doi.org/10.15607/RSS.2023.XIX.025
https://doi.org/10.15607/RSS.2023.XIX.025
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/ICRA.2018.8461227
https://doi.org/10.1109/ICRA.2018.8461227

Bibliography

Cen, Jiazhong, Zanwei Zhou, Jiemin Fang,Wei Shen, Lingxi Xie, Dongsheng

Jiang, Xiaopeng Zhang, and Qi Tian (2023). “Segment Anything in 3D

with NeRFs.” In: CoRR abs/2304.12308. doi: 10.48550/arXiv.2304.
12308. arXiv: 2304.12308. url: https://doi.org/10.48550/arXiv.
2304.12308.

Chaplot, Devendra Singh, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta,

and Ruslan Salakhutdinov (2020). “Learning To Explore Using Active

Neural SLAM.” In: 8th International Conference on Learning Representations,

ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. url:

https://openreview.net/forum?id=HklXn1BKDH.
Chaplot, Devendra Singh, Emilio Parisotto, and Ruslan Salakhutdinov

(2018). “Active Neural Localization.” In: 6th International Conference on

Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -

May 3, 2018, Conference Track Proceedings. OpenReview.net. url: https:
//openreview.net/forum?id=ry6-G%5C_66b.

Charrow, Benjamin, Gregory Kahn, Sachin Patil, Sikang Liu, Ken Goldberg,

Pieter Abbeel, Nathan Michael, and Vĳay Kumar (2015). “Information-

Theoretic PlanningwithTrajectoryOptimization forDense 3DMapping.”

In: Robotics: Science and Systems. Vol. 11. Rome, pp. 3–12.

Chatila, Raja and Jean-Paul Laumond (1985). “Position referencing and

consistent world modeling for mobile robots.” In: Proceedings of the

1985 IEEE International Conference on Robotics and Automation, St. Louis,

Missouri, USA,March 25-28, 1985. IEEE, pp. 138–145. doi: 10.1109/ROBOT.
1985.1087373. url: https://doi.org/10.1109/ROBOT.1985.1087373.

Chen, Yang and Gérard G. Medioni (1992). “Object modelling by registra-

tion of multiple range images.” In: Image Vis. Comput. 10.3, pp. 145–155.

doi: 10.1016/0262-8856(92)90066-C. url: https://doi.org/10.
1016/0262-8856(92)90066-C.

Civera, Javier and Seong Hun Lee (2020). “RGB-D Odometry and SLAM.”

In: CoRR abs/2001.06875. arXiv: 2001.06875. url: https://arxiv.org/
abs/2001.06875.

Corneil, Dane, Wulfram Gerstner, and Johanni Brea (Oct. 2018). “Efficient

Model-Based Deep Reinforcement Learning with Variational State Tabu-

lation.” In: ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings

of Machine Learning Research. Stockholmsmässan, Stockholm Sweden:

PMLR, pp. 1049–1058.

Crowley, James L. (1989). “World modeling and position estimation for a

mobile robot using ultrasonic ranging.” In: Proceedings of the 1989 IEEE

International Conference on Robotics and Automation, Scottsdale, Arizona,

USA, May 14-19, 1989. IEEE Computer Society, pp. 674–680. doi: 10.

187

https://doi.org/10.48550/arXiv.2304.12308
https://doi.org/10.48550/arXiv.2304.12308
https://arxiv.org/abs/2304.12308
https://doi.org/10.48550/arXiv.2304.12308
https://doi.org/10.48550/arXiv.2304.12308
https://openreview.net/forum?id=HklXn1BKDH
https://openreview.net/forum?id=ry6-G%5C_66b
https://openreview.net/forum?id=ry6-G%5C_66b
https://doi.org/10.1109/ROBOT.1985.1087373
https://doi.org/10.1109/ROBOT.1985.1087373
https://doi.org/10.1109/ROBOT.1985.1087373
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.1016/0262-8856(92)90066-C
https://arxiv.org/abs/2001.06875
https://arxiv.org/abs/2001.06875
https://arxiv.org/abs/2001.06875
https://doi.org/10.1109/ROBOT.1989.100062
https://doi.org/10.1109/ROBOT.1989.100062
https://doi.org/10.1109/ROBOT.1989.100062

Bibliography

1109/ROBOT.1989.100062. url: https://doi.org/10.1109/ROBOT.
1989.100062.

Curless, Brian and Marc Levoy (1996). “A Volumetric Method for Building

Complex Models from Range Images.” In: Proceedings of the 23rd Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

1996, New Orleans, LA, USA, August 4-9, 1996. Ed. by John Fujii. ACM,

pp. 303–312. doi: 10.1145/237170.237269. url: https://doi.org/10.
1145/237170.237269.

Dai, Jian S (2015). “Euler–Rodrigues formula variations, quaternion conju-

gation and intrinsic connections.” In:Mechanism and Machine Theory 92,

pp. 144–152.

Davison, Andrew J., Ian D. Reid, NicholasMolton, andOlivier Stasse (2007).

“MonoSLAM: Real-Time Single Camera SLAM.” In: IEEE Trans. Pattern

Anal. Mach. Intell. 29.6, pp. 1052–1067. doi: 10.1109/TPAMI.2007.1049.
url: https://doi.org/10.1109/TPAMI.2007.1049.

Deitke, Matt, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador,

Kiana Ehsani, Winson Han, Eric Kolve, Ali Farhadi, Aniruddha Kemb-

havi, and Roozbeh Mottaghi (2022). “ProcTHOR: Large-Scale Embodied

AIUsing Procedural Generation.” In:NeurIPS. Outstanding PaperAward.

Dellaert, Frank and Michael Kaess (2017). “Factor Graphs for Robot Per-

ception.” In: Found. Trends Robotics 6.1-2, pp. 1–139. doi: 10.1561/
2300000043. url: https://doi.org/10.1561/2300000043.

Deray, Jérémie and Joan Solà (2020). “Manif: A micro Lie theory library for

state estimation in robotics applications.” In: J. Open Source Softw. 5.46,

p. 1371. doi: 10.21105/joss.01371. url: https://doi.org/10.21105/
joss.01371.

Diehl, Moritz and Florian Messerer (2019). “Local Convergence of General-

ized Gauss-Newton and Sequential Convex Programming.” In: 58th IEEE

Conference on Decision and Control, CDC 2019, Nice, France, December 11-13,

2019. IEEE, pp. 3942–3947. doi: 10.1109/CDC40024.2019.9029288. url:

https://doi.org/10.1109/CDC40024.2019.9029288.
Doucet, Arnaud, AdamM Johansen, et al. (2009). “A tutorial on particle

filtering and smoothing: Fifteen years later.” In: Handbook of nonlinear

filtering 12.656-704, p. 3.

Durrant-Whyte, Hugh and Tim Bailey (2006). “Simultaneous localization

andmapping: part I.” In: IEEE robotics & automation magazine 13.2, pp. 99–

110.

Durrant-Whyte, Hugh F. (1988). “Uncertain geometry in robotics.” In: IEEE

J. Robotics Autom. 4.1, pp. 23–31. doi: 10.1109/56.768. url: https:
//doi.org/10.1109/56.768.

188

https://doi.org/10.1109/ROBOT.1989.100062
https://doi.org/10.1109/ROBOT.1989.100062
https://doi.org/10.1109/ROBOT.1989.100062
https://doi.org/10.1109/ROBOT.1989.100062
https://doi.org/10.1109/ROBOT.1989.100062
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1561/2300000043
https://doi.org/10.1561/2300000043
https://doi.org/10.1561/2300000043
https://doi.org/10.21105/joss.01371
https://doi.org/10.21105/joss.01371
https://doi.org/10.21105/joss.01371
https://doi.org/10.1109/CDC40024.2019.9029288
https://doi.org/10.1109/CDC40024.2019.9029288
https://doi.org/10.1109/56.768
https://doi.org/10.1109/56.768
https://doi.org/10.1109/56.768

Bibliography

Engel, Jakob (2017). “Large-Scale Direct SLAM and 3D Reconstruction in

Real-Time.” PhD thesis. Technical University Munich, Germany. url:

https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20171016-
1326959-1-5.

Engel, Jakob, Vladlen Koltun, and Daniel Cremers (2018). “Direct Sparse

Odometry.” In: IEEE Trans. Pattern Anal. Mach. Intell. 40.3, pp. 611–625.

doi: 10.1109/TPAMI.2017.2658577. url: https://doi.org/10.1109/
TPAMI.2017.2658577.

Engel, Jakob, Thomas Schöps, and Daniel Cremers (2014). “LSD-SLAM:

Large-Scale Direct Monocular SLAM.” In: Computer Vision - ECCV 2014

- 13th European Conference, Zurich, Switzerland, September 6-12, 2014,

Proceedings, Part II. Ed. by David J. Fleet, Tomás Pajdla, Bernt Schiele,

and Tinne Tuytelaars. Vol. 8690. Lecture Notes in Computer Science.

Springer, pp. 834–849. doi: 10.1007/978-3-319-10605-2_54. url:

https://doi.org/10.1007/978-3-319-10605-2%5C_54.
Forster, Christian, Matia Pizzoli, and Davide Scaramuzza (2014). “SVO:

Fast semi-direct monocular visual odometry.” In: 2014 IEEE International

Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May

31 - June 7, 2014. IEEE, pp. 15–22. doi: 10.1109/ICRA.2014.6906584.
url: https://doi.org/10.1109/ICRA.2014.6906584.

Fraccaro, Marco, Danilo Jimenez Rezende, Yori Zwols, Alexander Pritzel,

S. M. Ali Eslami, and Fabio Viola (2018). “Generative Temporal Models

with Spatial Memory for Partially Observed Environments.” In: Proceed-

ings of the 35th International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G.

Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning

Research. PMLR, pp. 1544–1553. url: http://proceedings.mlr.press/
v80/fraccaro18a.html.

Gallier, Jean (2011). Geometric methods and applications: for computer science

and engineering. Vol. 38. Springer Science & Business Media.

Gregor, Karol, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza

Merzic, and Aäron van den Oord (2019). “Shaping Belief States with

Generative Environment Models for RL.” In: Advances in Neural Infor-

mation Processing Systems 32: Annual Conference on Neural Information

Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,

Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,

Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, pp. 13475–

13487. url: https://proceedings.neurips.cc/paper/2019/hash/
2c048d74b3410237704eb7f93a10c9d7-Abstract.html.

189

https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20171016-1326959-1-5
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20171016-1326959-1-5
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2%5C_54
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1109/ICRA.2014.6906584
http://proceedings.mlr.press/v80/fraccaro18a.html
http://proceedings.mlr.press/v80/fraccaro18a.html
https://proceedings.neurips.cc/paper/2019/hash/2c048d74b3410237704eb7f93a10c9d7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2c048d74b3410237704eb7f93a10c9d7-Abstract.html

Bibliography

Grisetti, Giorgio, Cyrill Stachniss, andWolfram Burgard (2007). “Improved

Techniques for Grid Mapping With Rao-Blackwellized Particle Filters.”

In: IEEE Trans. Robotics 23.1, pp. 34–46. doi: 10.1109/TRO.2006.889486.
url: https://doi.org/10.1109/TRO.2006.889486.

Ha, David and Jürgen Schmidhuber (2018). “Recurrent World Models

Facilitate Policy Evolution.” In: Advances in Neural Information Processing

Systems 31:AnnualConference onNeural InformationProcessing Systems 2018,

NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio,

Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-

Bianchi, and Roman Garnett, pp. 2455–2467. url: https://proceedings.
neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-
Abstract.html.

Hafner, Danĳar, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi

(2020). “Dream to Control: Learning Behaviors by Latent Imagination.”

In: 8th International Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. url: https:
//openreview.net/forum?id=S1lOTC4tDS.

Hafner, Danĳar, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, DavidHa,

Honglak Lee, and JamesDavidson (2019). “Learning LatentDynamics for

Planning from Pixels.” In: Proceedings of the 36th International Conference

on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,

USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.

Proceedings of Machine Learning Research. PMLR, pp. 2555–2565. url:

http://proceedings.mlr.press/v97/hafner19a.html.
Hafner, Danĳar, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap

(2023). “Mastering Diverse Domains through World Models.” In: CoRR

abs/2301.04104. doi: 10.48550/arXiv.2301.04104. arXiv: 2301.04104.
url: https://doi.org/10.48550/arXiv.2301.04104.

Hall, Brian C and Brian C Hall (2013). Lie groups, Lie algebras, and representa-

tions. Springer.

Hartley, Andrew and Andrew Zisserman (2006). Multiple view geometry

in computer vision (2. ed.) Cambridge University Press. isbn: 978-0-521-

54051-3.

Huang, Qiangqiang and John J. Leonard (2023). “GAPSLAM: Blending

GaussianApproximation andParticle Filters forReal-TimeNon-Gaussian

SLAM.” In: CoRR abs/2303.14283. doi: 10.48550/arXiv.2303.14283.
arXiv: 2303.14283. url: https://doi.org/10.48550/arXiv.2303.
14283.

190

https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/TRO.2006.889486
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
http://proceedings.mlr.press/v97/hafner19a.html
https://doi.org/10.48550/arXiv.2301.04104
https://arxiv.org/abs/2301.04104
https://doi.org/10.48550/arXiv.2301.04104
https://doi.org/10.48550/arXiv.2303.14283
https://arxiv.org/abs/2303.14283
https://doi.org/10.48550/arXiv.2303.14283
https://doi.org/10.48550/arXiv.2303.14283

Bibliography

Huang, Shoudong and Gamini Dissanayake (2016). “A critique of current

developments in simultaneous localization and mapping.” In: Interna-

tional Journal of Advanced Robotic Systems 13.5, p. 1729881416669482.

Kaiser, Lukasz, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy

H. Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr

Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George

Tucker, and Henryk Michalewski (2020). “Model Based Reinforcement

Learning for Atari.” In: 8th International Conference on Learning Representa-

tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

url: https://openreview.net/forum?id=S1xCPJHtDB.
Kalman, R. E. (Mar. 1960). “A New Approach to Linear Filtering and

Prediction Problems.” In: Journal of Basic Engineering 82.1, pp. 35–45. issn:

0021-9223. doi: 10.1115/1.3662552. url: https://doi.org/10.1115/
1.3662552.

Kayalibay, Baris (to be submitted in 2023/2024). “Control with Spatial

World Models.” PhD thesis. Technical University Munich, Germany.

Kayalibay, Baris, Atanas Mirchev, Ahmed Agha, Patrick van der Smagt,

and Justin Bayer (2023). “Filter-Aware Model-Predictive Control.” In:

Learning for Dynamics and Control Conference, L4DC 2023, 15-16 June

2023, Philadelphia, PA, USA. Vol. 211. Proceedings of Machine Learning

Research. PMLR, pp. 1441–1454. url: https : / / proceedings . mlr .
press/v211/kayalibay23a.html.

Kayalibay, Baris, Atanas Mirchev, Patrick van der Smagt, and Justin Bayer

(2022). “Tracking and Planning with Spatial World Models.” In: Learning

for Dynamics and Control Conference, L4DC 2022, 23-24 June 2022, Stanford

University, Stanford, CA, USA. Vol. 168. Proceedings of Machine Learning

Research. PMLR, pp. 124–137.

Kayalibay, Baris, AtanasMirchev,Maximilian Soelch, Patrick vander Smagt,

and Justin Bayer (2018). Navigation and planning in latent maps. url: http:
//reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: AMethod for Stochastic

Optimization.” In: 3rd International Conference on Learning Representations,

ICLR 2015, SanDiego, CA, USA,May 7-9, 2015, Conference Track Proceedings.

Ed. by Yoshua Bengio and Yann LeCun. url: http://arxiv.org/abs/
1412.6980.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational

Bayes.” In: 2nd International Conference on Learning Representations, ICLR

2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.

Ed. by Yoshua Bengio and Yann LeCun. url: http://arxiv.org/abs/
1312.6114.

191

https://openreview.net/forum?id=S1xCPJHtDB
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://proceedings.mlr.press/v211/kayalibay23a.html
https://proceedings.mlr.press/v211/kayalibay23a.html
http://reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf
http://reinforcement-learning.ml/papers/pgmrl2018_kayalibay.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114

Bibliography

Klein, Georg and David William Murray (2007). “Parallel Tracking and

Mapping for Small AR Workspaces.” In: Sixth IEEE/ACM International

Symposium on Mixed and Augmented Reality, ISMAR 2007, 13-16 November

2007, Nara, Japan. IEEE Computer Society, pp. 225–234. doi: 10.1109/
ISMAR.2007.4538852. url: https://doi.org/10.1109/ISMAR.2007.
4538852.

Klingensmith, Matthew, Siddartha S. Sirinivasa, and Michael Kaess (2016).

“Articulated Robot Motion for Simultaneous Localization and Mapping

(ARM-SLAM).” In: IEEE Robotics Autom. Lett. 1.2, pp. 1156–1163. doi:

10.1109/LRA.2016.2518242. url: https://doi.org/10.1109/LRA.
2016.2518242.

Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models -

Principles and Techniques. MIT Press. isbn: 978-0-262-01319-2. url: http:
//mitpress.mit.edu/catalog/item/default.asp?ttype=2%5C&tid=
11886.

Kosiorek, Adam R., Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia

Schneider, Sona Mokrá, and Danilo Jimenez Rezende (2021). “NeRF-

VAE: A Geometry Aware 3D Scene Generative Model.” In: Proceedings of

the 38th International Conference on Machine Learning, ICML 2021, 18-24

July 2021, Virtual Event. Ed. by Marina Meila and Tong Zhang. Vol. 139.

Proceedings of Machine Learning Research. PMLR, pp. 5742–5752. url:

http://proceedings.mlr.press/v139/kosiorek21a.html.
Laplace, Pierre Simon (1986). “Memoir on the Probability of the Causes

of Events.” In: Statistical Science 1.3, pp. 364–378. issn: 08834237. url:

http://www.jstor.org/stable/2245476 (visited on 05/13/2022).

Lee, Alex X., Anusha Nagabandi, Pieter Abbeel, and Sergey Levine (2020).

“Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a

Latent Variable Model.” In: Advances in Neural Information Processing

Systems 33: Annual Conference on Neural Information Processing Systems

2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-

Tien Lin. url: https://proceedings.neurips.cc/paper/2020/hash/
08058bf500242562c0d031ff830ad094-Abstract.html.

Leutenegger, Stefan, Paul Timothy Furgale, Vincent Rabaud, Margarita

Chli, Kurt Konolige, and Roland Siegwart (2013). “Keyframe-Based

Visual-Inertial SLAMusingNonlinearOptimization.” In:Robotics: Science

and Systems IX, Technische Universität Berlin, Berlin, Germany, June 24 -

June 28, 2013. Ed. by Paul Newman, Dieter Fox, and David Hsu. doi:

10.15607/RSS.2013.IX.037. url: http://www.roboticsproceedings.
org/rss09/p37.html.

192

https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/LRA.2016.2518242
https://doi.org/10.1109/LRA.2016.2518242
https://doi.org/10.1109/LRA.2016.2518242
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2%5C&tid=11886
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2%5C&tid=11886
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2%5C&tid=11886
http://proceedings.mlr.press/v139/kosiorek21a.html
http://www.jstor.org/stable/2245476
https://proceedings.neurips.cc/paper/2020/hash/08058bf500242562c0d031ff830ad094-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/08058bf500242562c0d031ff830ad094-Abstract.html
https://doi.org/10.15607/RSS.2013.IX.037
http://www.roboticsproceedings.org/rss09/p37.html
http://www.roboticsproceedings.org/rss09/p37.html

Bibliography

Li,Mingyang andAnastasios IMourikis (2013). “High-precision, consistent

EKF-based visual-inertial odometry.” In: The International Journal of

Robotics Research 32.6, pp. 690–711.

Li, Zhengqi, SimonNiklaus,NoahSnavely, andOliverWang (2021). “Neural

Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes.”

In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2021, virtual, June 19-25, 2021. Computer Vision Foundation / IEEE,

pp. 6498–6508. doi: 10.1109/CVPR46437.2021.00643. url: https:
//openaccess.thecvf.com/content/CVPR2021/html/Li%5C_Neural%
5C_Scene%5C_Flow%5C_Fields%5C_for%5C_Space-Time%5C_View%5C_
Synthesis%5C_of%5C_Dynamic%5C_CVPR%5C_2021%5C_paper.html.

Liu, Wenxin, David Caruso, Eddy Ilg, Jing Dong, Anastasios I. Mourikis,

Kostas Daniilidis, Vĳay Kumar, and Jakob Engel (2020). “TLIO: Tight

Learned Inertial Odometry.” In: IEEE Robotics Autom. Lett. 5.4, pp. 5653–

5660. doi: 10.1109/LRA.2020.3007421. url: https://doi.org/10.
1109/LRA.2020.3007421.

Lombardi, Stephen, Tomas Simon, Jason M. Saragih, Gabriel Schwartz,

Andreas M. Lehrmann, and Yaser Sheikh (2019). “Neural volumes:

learning dynamic renderable volumes from images.” In: ACM Trans.

Graph. 38.4, 65:1–65:14. doi: 10.1145/3306346.3323020. url: https:
//doi.org/10.1145/3306346.3323020.

Lombardi, Stephen, Tomas Simon, Gabriel Schwartz, Michael Zollhöfer,

Yaser Sheikh, and Jason M. Saragih (2021). “Mixture of volumetric

primitives for efficient neural rendering.” In: ACM Trans. Graph. 40.4,

59:1–59:13. doi: 10.1145/3450626.3459863. url: https://doi.org/10.
1145/3450626.3459863.

Lowe, David G. (1999). “Object Recognition from Local Scale-Invariant

Features.” In: Proceedings of the International Conference on Computer

Vision, Kerkyra, Corfu, Greece, September 20-25, 1999. IEEE Computer

Society, pp. 1150–1157. doi: 10.1109/ICCV.1999.790410. url: https:
//doi.org/10.1109/ICCV.1999.790410.

Lucas, Bruce D. and Takeo Kanade (1981). “An Iterative Image Registration

Technique with an Application to Stereo Vision.” In: Proceedings of

the 7th International Joint Conference on Artificial Intelligence, ĲCAI ’81,

Vancouver, BC, Canada, August 24-28, 1981. Ed. by Patrick J. Hayes.William

Kaufmann, pp. 674–679.

Luiten, Jonathon, Georgios Kopanas, Bastian Leibe, and Deva Ramanan

(2023). “Dynamic 3D Gaussians: Tracking by Persistent Dynamic View

Synthesis.” In: preprint.

193

https://doi.org/10.1109/CVPR46437.2021.00643
https://openaccess.thecvf.com/content/CVPR2021/html/Li%5C_Neural%5C_Scene%5C_Flow%5C_Fields%5C_for%5C_Space-Time%5C_View%5C_Synthesis%5C_of%5C_Dynamic%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li%5C_Neural%5C_Scene%5C_Flow%5C_Fields%5C_for%5C_Space-Time%5C_View%5C_Synthesis%5C_of%5C_Dynamic%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li%5C_Neural%5C_Scene%5C_Flow%5C_Fields%5C_for%5C_Space-Time%5C_View%5C_Synthesis%5C_of%5C_Dynamic%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li%5C_Neural%5C_Scene%5C_Flow%5C_Fields%5C_for%5C_Space-Time%5C_View%5C_Synthesis%5C_of%5C_Dynamic%5C_CVPR%5C_2021%5C_paper.html
https://doi.org/10.1109/LRA.2020.3007421
https://doi.org/10.1109/LRA.2020.3007421
https://doi.org/10.1109/LRA.2020.3007421
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.1999.790410

Bibliography

Meagher, Donald (1982). “Geometric modeling using octree encoding.” In:

Computer graphics and image processing 19.2, pp. 129–147.

Mildenhall, Ben, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,

Ravi Ramamoorthi, and Ren Ng (2020). “NeRF: Representing Scenes

as Neural Radiance Fields for View Synthesis.” In: Computer Vision -

ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,

Proceedings, Part I. Ed. by Andrea Vedaldi, Horst Bischof, Thomas Brox,

and Jan-Michael Frahm. Vol. 12346. Lecture Notes in Computer Science.

Springer, pp. 405–421. doi: 10.1007/978-3-030-58452-8_24. url:

https://doi.org/10.1007/978-3-030-58452-8%5C_24.
Minka, Thomas P. (2001). “A family of algorithms for approximate Bayesian

inference.” PhD thesis. Massachusetts Institute of Technology, Cam-

bridge, MA, USA. url: https://hdl.handle.net/1721.1/86583.
Mirchev, Atanas, Baris Kayalibay, Ahmed Agha, Patrick van der Smagt,

Daniel Cremers, and Justin Bayer (2022). “PRISM: Probabilistic Real-Time

Inference in SpatialWorldModels.” In:Conference on Robot Learning, CoRL

2022, 14-18 December 2022, Auckland, New Zealand. Vol. 205. Proceedings

of Machine Learning Research. PMLR, pp. 161–174. url: https://
proceedings.mlr.press/v205/mirchev23a.html.

Mirchev, Atanas, Baris Kayalibay, Patrick van der Smagt, and Justin Bayer

(2021). “Variational State-Space Models for Localisation and Dense 3D

Mapping in 6 DoF.” In: 9th International Conference on Learning Represen-

tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

url: https://openreview.net/forum?id=XAS3uKeFWj.
Mirchev,Atanas, Baris Kayalibay,Maximilian Soelch, Patrick vander Smagt,

and Justin Bayer (2019). “Approximate Bayesian Inference in Spatial

Environments.” In: Robotics: Science and Systems XV, University of Freiburg,

Freiburg im Breisgau, Germany, June 22-26, 2019. doi: 10.15607/RSS.2019.
XV.083. url: https://doi.org/10.15607/RSS.2019.XV.083.

Montemerlo, Michael, Sebastian Thrun, Daphne Koller, and Ben Wegbreit

(2002). “FastSLAM: A Factored Solution to the Simultaneous Localiza-

tion and Mapping Problem.” In: Proceedings of the Eighteenth National

Conference on Artificial Intelligence and Fourteenth Conference on Innova-

tive Applications of Artificial Intelligence, July 28 - August 1, 2002, Ed-

monton, Alberta, Canada. Ed. by Rina Dechter, Michael J. Kearns, and

Richard S. Sutton. AAAI Press / The MIT Press, pp. 593–598. url:

http://www.aaai.org/Library/AAAI/2002/aaai02-089.php.
Moravec, Hans P. (1988). “Sensor Fusion in Certainty Grids for Mobile

Robots.” In: AI Mag. 9.2, pp. 61–74. url: https://ojs.aaai.org/index.
php/aimagazine/article/view/676.

194

https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8%5C_24
https://hdl.handle.net/1721.1/86583
https://proceedings.mlr.press/v205/mirchev23a.html
https://proceedings.mlr.press/v205/mirchev23a.html
https://openreview.net/forum?id=XAS3uKeFWj
https://doi.org/10.15607/RSS.2019.XV.083
https://doi.org/10.15607/RSS.2019.XV.083
https://doi.org/10.15607/RSS.2019.XV.083
http://www.aaai.org/Library/AAAI/2002/aaai02-089.php
https://ojs.aaai.org/index.php/aimagazine/article/view/676
https://ojs.aaai.org/index.php/aimagazine/article/view/676

Bibliography

Mourikis, Anastasios I. and Stergios I. Roumeliotis (2007). “A Multi-State

Constraint Kalman Filter for Vision-aided Inertial Navigation.” In: 2007

IEEE International Conference on Robotics and Automation, ICRA 2007, 10-14

April 2007, Roma, Italy. IEEE, pp. 3565–3572. doi: 10.1109/ROBOT.2007.
364024. url: https://doi.org/10.1109/ROBOT.2007.364024.

Müller, Thomas, Alex Evans, Christoph Schied, and Alexander Keller

(2022). “Instant neural graphics primitives with a multiresolution hash

encoding.” In: ACM Trans. Graph. 41.4, 102:1–102:15. doi: 10.1145/
3528223.3530127. url: https://doi.org/10.1145/3528223.3530127.

Mur-Artal, Raul, J. M. M. Montiel, and Juan D. Tardós (2015). “ORB-SLAM:

A Versatile and Accurate Monocular SLAM System.” In: IEEE Trans.

Robotics 31.5, pp. 1147–1163. doi: 10.1109/TRO.2015.2463671. url:

https://doi.org/10.1109/TRO.2015.2463671.
Murphy, Kevin P. (1999). “Bayesian Map Learning in Dynamic Envi-

ronments.” In: Advances in Neural Information Processing Systems 12,

NIPS Conference, Denver, Colorado, USA, November 29 - December 4, 1999,

pp. 1015–1021. url: http://papers.nips.cc/paper/1716-bayesian-
map-learning-in-dynamic-environments.

Newcombe, Richard A., Shahram Izadi, Otmar Hilliges, David Molyneaux,

David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve

Hodges, and Andrew W. Fitzgibbon (2011a). “KinectFusion: Real-time

dense surface mapping and tracking.” In: 10th IEEE International Sympo-

sium onMixed and Augmented Reality, ISMAR 2011, Basel, Switzerland, Octo-

ber 26-29, 2011. IEEEComputer Society, pp. 127–136. doi: 10.1109/ISMAR.
2011.6092378. url: https://doi.org/10.1109/ISMAR.2011.6092378.

Newcombe, Richard A., Steven Lovegrove, and Andrew J. Davison (2011b).

“DTAM: Dense tracking andmapping in real-time.” In: IEEE International

Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13,

2011. Ed. by Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, and Luc

Van Gool. IEEE Computer Society, pp. 2320–2327. doi: 10.1109/ICCV.
2011.6126513. url: https://doi.org/10.1109/ICCV.2011.6126513.

Nießner,Matthias,MichaelZollhöfer, Shahram Izadi, andMarc Stamminger

(2013). “Real-time 3D reconstruction at scale using voxel hashing.” In:

ACM Trans. Graph. 32.6, 169:1–169:11. doi: 10.1145/2508363.2508374.
url: https://doi.org/10.1145/2508363.2508374.

Nisar, Barza, Philipp Foehn, Davide Falanga, and Davide Scaramuzza

(2019). “VIMO: Simultaneous Visual Inertial Model-Based Odometry

and Force Estimation.” In: Robotics: Science and Systems XV, University of

Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019. Ed. by Antonio

195

https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2015.2463671
http://papers.nips.cc/paper/1716-bayesian-map-learning-in-dynamic-environments
http://papers.nips.cc/paper/1716-bayesian-map-learning-in-dynamic-environments
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1145/2508363.2508374
https://doi.org/10.1145/2508363.2508374

Bibliography

Bicchi, Hadas Kress-Gazit, and Seth Hutchinson. doi: 10.15607/RSS.
2019.XV.082. url: https://doi.org/10.15607/RSS.2019.XV.082.

Nocedal, Jorge and Stephen J. Wright (1999). Numerical Optimization.

Springer. isbn: 978-0-387-98793-4. doi: 10.1007/b98874. url: https:
//doi.org/10.1007/b98874.

Opper, Manfred and Ole Winther (1999). “A Bayesian approach to on-line

learning.” In:

Parker, StevenG., Peter Shirley, YardenLivnat, CharlesD.Hansen, andPeter-

Pike J. Sloan (1998). “Interactive ray tracing for isosurface rendering.” In:

9th IEEE Visualization Conference, IEEE Vis 1998, Research Triangle Park,

North Carolina, USA, October 18-23, 1998, Proceedings. Ed. by David S.

Ebert, Holly E. Rushmeier, and Hans Hagen. IEEE Computer Society

and ACM, pp. 233–238. doi: 10.1109/VISUAL.1998.745713. url: https:
//doi.org/10.1109/VISUAL.1998.745713.

Pietzsch, Tobias (2008). “Planar Features for Visual SLAM.” In: KI 2008:

Advances in Artificial Intelligence, 31st Annual German Conference on AI, KI

2008, Kaiserslautern, Germany, September 23-26, 2008. Proceedings. Ed. by

Andreas Dengel, Karsten Berns, ThomasM. Breuel, Frank Bomarius, and

Thomas Roth-Berghofer. Vol. 5243. Lecture Notes in Computer Science.

Springer, pp. 119–126. doi: 10.1007/978-3-540-85845-4_15. url:

https://doi.org/10.1007/978-3-540-85845-4%5C_15.
Placed, Julio A., Jared Strader, Henry Carrillo, Nikolay Atanasov, Vadim

Indelman, Luca Carlone, and José A. Castellanos (2023). “A Survey on

Active Simultaneous Localization andMapping: State of theArt andNew

Frontiers.” In: IEEE Trans. Robotics 39.3, pp. 1686–1705. doi: 10.1109/TRO.
2023.3248510. url: https://doi.org/10.1109/TRO.2023.3248510.

Qin, Tong, Peiliang Li, and Shaojie Shen (2018). “VINS-Mono: A Robust

and Versatile Monocular Visual-Inertial State Estimator.” In: IEEE Trans.

Robotics 34.4, pp. 1004–1020. doi: 10.1109/TRO.2018.2853729. url:

https://doi.org/10.1109/TRO.2018.2853729.
Qin, Tong, Jie Pan, Shaozu Cao, and Shaojie Shen (2019). “A General

Optimization-based Framework for Local Odometry Estimation with

Multiple Sensors.” In: CoRR abs/1901.03638. arXiv: 1901.03638. url:

http://arxiv.org/abs/1901.03638.
Reed, Scott E., Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo,

Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky,

Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali Razavi,

AshleyEdwards,NicolasHeess, YutianChen, RaiaHadsell, Oriol Vinyals,

Mahyar Bordbar, and Nando de Freitas (2022). “A Generalist Agent.”

196

https://doi.org/10.15607/RSS.2019.XV.082
https://doi.org/10.15607/RSS.2019.XV.082
https://doi.org/10.15607/RSS.2019.XV.082
https://doi.org/10.1007/b98874
https://doi.org/10.1007/b98874
https://doi.org/10.1007/b98874
https://doi.org/10.1109/VISUAL.1998.745713
https://doi.org/10.1109/VISUAL.1998.745713
https://doi.org/10.1109/VISUAL.1998.745713
https://doi.org/10.1007/978-3-540-85845-4_15
https://doi.org/10.1007/978-3-540-85845-4%5C_15
https://doi.org/10.1109/TRO.2023.3248510
https://doi.org/10.1109/TRO.2023.3248510
https://doi.org/10.1109/TRO.2023.3248510
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/TRO.2018.2853729
https://arxiv.org/abs/1901.03638
http://arxiv.org/abs/1901.03638

Bibliography

In: Trans. Mach. Learn. Res. 2022. url: https://openreview.net/forum?
id=1ikK0kHjvj.

Reiser, Christian, Songyou Peng, Yiyi Liao, and Andreas Geiger (2021).

“KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny

MLPs.” In: 2021 IEEE/CVF International Conference on Computer Vision,

ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. IEEE, pp. 14315–

14325.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational In-

ference with Normalizing Flows.” In: Proceedings of the 32nd Interna-

tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11

July 2015. Ed. by Francis R. Bach and David M. Blei. Vol. 37. JMLR

Workshop and Conference Proceedings. JMLR.org, pp. 1530–1538. url:

http://proceedings.mlr.press/v37/rezende15.html.
Rosinol, Antoni, Marcus Abate, Yun Chang, and Luca Carlone (2020).

“Kimera: an Open-Source Library for Real-Time Metric-Semantic Local-

ization and Mapping.” In: 2020 IEEE International Conference on Robotics

and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020.

IEEE, pp. 1689–1696. doi: 10.1109/ICRA40945.2020.9196885. url:

https://doi.org/10.1109/ICRA40945.2020.9196885.
Rosinol, Antoni, John J. Leonard, and Luca Carlone (2022). “NeRF-SLAM:

Real-Time Dense Monocular SLAM with Neural Radiance Fields.” In:

CoRR abs/2210.13641. doi: 10.48550/arXiv.2210.13641. arXiv: 2210.
13641. url: https://doi.org/10.48550/arXiv.2210.13641.

Rosten, Edward, Reid B. Porter, and Tom Drummond (2010). “Faster and

Better: A Machine Learning Approach to Corner Detection.” In: IEEE

Trans. Pattern Anal. Mach. Intell. 32.1, pp. 105–119. doi: 10.1109/TPAMI.
2008.275. url: https://doi.org/10.1109/TPAMI.2008.275.

Rublee, Ethan, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski (2011).

“ORB: An efficient alternative to SIFT or SURF.” In: IEEE International

Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13,

2011. Ed. by Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, and Luc

Van Gool. IEEE Computer Society, pp. 2564–2571. doi: 10.1109/ICCV.
2011.6126544. url: https://doi.org/10.1109/ICCV.2011.6126544.

Särkkä, Simo (2013). Bayesian Filtering and Smoothing. Vol. 3. Institute of

Mathematical Statistics textbooks. Cambridge University Press. isbn:

978-1-10-761928-9. url: http://www.cambridge.org/de/academic/
subjects / statistics - probability / applied - probability - and -
stochastic-networks/bayesian-filtering-and-smoothing?format=
PB.

197

https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj
http://proceedings.mlr.press/v37/rezende15.html
https://doi.org/10.1109/ICRA40945.2020.9196885
https://doi.org/10.1109/ICRA40945.2020.9196885
https://doi.org/10.48550/arXiv.2210.13641
https://arxiv.org/abs/2210.13641
https://arxiv.org/abs/2210.13641
https://doi.org/10.48550/arXiv.2210.13641
https://doi.org/10.1109/TPAMI.2008.275
https://doi.org/10.1109/TPAMI.2008.275
https://doi.org/10.1109/TPAMI.2008.275
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
http://www.cambridge.org/de/academic/subjects/statistics-probability/applied-probability-and-stochastic-networks/bayesian-filtering-and-smoothing?format=PB
http://www.cambridge.org/de/academic/subjects/statistics-probability/applied-probability-and-stochastic-networks/bayesian-filtering-and-smoothing?format=PB
http://www.cambridge.org/de/academic/subjects/statistics-probability/applied-probability-and-stochastic-networks/bayesian-filtering-and-smoothing?format=PB
http://www.cambridge.org/de/academic/subjects/statistics-probability/applied-probability-and-stochastic-networks/bayesian-filtering-and-smoothing?format=PB

Bibliography

Schöps, Thomas, Torsten Sattler, and Marc Pollefeys (2019). “BAD SLAM:

Bundle Adjusted Direct RGB-D SLAM.” In: IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June

16-20, 2019. Computer Vision Foundation / IEEE, pp. 134–144. doi:

10.1109/CVPR.2019.00022. url: http://openaccess.thecvf.com/
content%5C_CVPR%5C_2019/html/Schops%5C_BAD%5C_SLAM%5C_
Bundle%5C_Adjusted%5C_Direct%5C_RGB-D%5C_SLAM%5C_CVPR%5C_
2019%5C_paper.html.

Scona, Raluca, Simona Nobili, Yvan R. Petillot, and Maurice F. Fallon

(2017). “Direct visual SLAM fusing proprioception for a humanoid

robot.” In: 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017.

IEEE, pp. 1419–1426. doi: 10.1109/IROS.2017.8205943. url: https:
//doi.org/10.1109/IROS.2017.8205943.

Smith, Randall, Matthew Self, and Peter C. Cheeseman (1990). “Esti-

mating Uncertain Spatial Relationships in Robotics.” In: Autonomous

Robot Vehicles. Ed. by Ingemar J. Cox and Gordon T. Wilfong. Springer,

pp. 167–193. doi: 10.1007/978- 1- 4613- 8997- 2_14. url: https:
//doi.org/10.1007/978-1-4613-8997-2%5C_14.

Smith, Randall C and Peter Cheeseman (1986). “On the representation and

estimation of spatial uncertainty.” In: The international journal of Robotics

Research 5.4, pp. 56–68.

Stachniss, Cyrill (2009). Robotic Mapping and Exploration. Vol. 55. Springer

Tracts in Advanced Robotics. Springer. isbn: 978-3-642-01096-5. doi:

10.1007/978-3-642-01097-2. url: https://doi.org/10.1007/978-
3-642-01097-2.

Stachniss, Cyrill and Wolfram Burgard (2003). “Exploring Unknown En-

vironments with Mobile Robots using Coverage Maps.” In: ĲCAI-03,

Proceedings of the Eighteenth International Joint Conference on Artificial

Intelligence, Acapulco, Mexico, August 9-15, 2003. Ed. by Georg Gott-

lob and Toby Walsh. Morgan Kaufmann, pp. 1127–1134. url: http:
//ijcai.org/Proceedings/03/Papers/162.pdf.

Steinbrücker, Frank, Christian Kerl, and Daniel Cremers (2013). “Large-

Scale Multi-resolution Surface Reconstruction from RGB-D Sequences.”

In: IEEE International Conference on Computer Vision, ICCV 2013, Sydney,

Australia, December 1-8, 2013. IEEE Computer Society, pp. 3264–3271. doi:

10.1109/ICCV.2013.405. url: https://doi.org/10.1109/ICCV.2013.
405.

Steinbrücker, Frank, Jürgen Sturm, and Daniel Cremers (2011). “Real-time

visual odometry from dense RGB-D images.” In: IEEE International

198

https://doi.org/10.1109/CVPR.2019.00022
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Schops%5C_BAD%5C_SLAM%5C_Bundle%5C_Adjusted%5C_Direct%5C_RGB-D%5C_SLAM%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Schops%5C_BAD%5C_SLAM%5C_Bundle%5C_Adjusted%5C_Direct%5C_RGB-D%5C_SLAM%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Schops%5C_BAD%5C_SLAM%5C_Bundle%5C_Adjusted%5C_Direct%5C_RGB-D%5C_SLAM%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Schops%5C_BAD%5C_SLAM%5C_Bundle%5C_Adjusted%5C_Direct%5C_RGB-D%5C_SLAM%5C_CVPR%5C_2019%5C_paper.html
https://doi.org/10.1109/IROS.2017.8205943
https://doi.org/10.1109/IROS.2017.8205943
https://doi.org/10.1109/IROS.2017.8205943
https://doi.org/10.1007/978-1-4613-8997-2_14
https://doi.org/10.1007/978-1-4613-8997-2%5C_14
https://doi.org/10.1007/978-1-4613-8997-2%5C_14
https://doi.org/10.1007/978-3-642-01097-2
https://doi.org/10.1007/978-3-642-01097-2
https://doi.org/10.1007/978-3-642-01097-2
http://ijcai.org/Proceedings/03/Papers/162.pdf
http://ijcai.org/Proceedings/03/Papers/162.pdf
https://doi.org/10.1109/ICCV.2013.405
https://doi.org/10.1109/ICCV.2013.405
https://doi.org/10.1109/ICCV.2013.405

Bibliography

Conference on Computer Vision Workshops, ICCV 2011 Workshops, Barcelona,

Spain, November 6-13, 2011. IEEE Computer Society, pp. 719–722. doi:

10.1109/ICCVW.2011.6130321. url: https://doi.org/10.1109/
ICCVW.2011.6130321.

Strasdat, Hauke, J. M. M. Montiel, and Andrew J. Davison (2012). “Visual

SLAM: Why filter?” In: Image Vis. Comput. 30.2, pp. 65–77. doi: 10.1016/
j.imavis.2012.02.009. url: https://doi.org/10.1016/j.imavis.
2012.02.009.

Sturm, Jürgen, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and

Daniel Cremers (2012). “A benchmark for the evaluation of RGB-D

SLAM systems.” In: 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal, October 7-

12, 2012. IEEE, pp. 573–580. doi: 10.1109/IROS.2012.6385773. url:

https://doi.org/10.1109/IROS.2012.6385773.
Sucar, Edgar, Shikun Liu, Joseph Ortiz, and Andrew J. Davison (2021).

“iMAP: ImplicitMappingandPositioning inReal-Time.” In: 2021 IEEE/CVF

International Conference on Computer Vision, ICCV 2021, Montreal, QC,

Canada,October 10-17, 2021. IEEE, pp. 6209–6218. doi:10.1109/ICCV48922.
2021.00617. url: https://doi.org/10.1109/ICCV48922.2021.00617.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An

introduction. MIT press.

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox (2000). “A Real-Time

Algorithm for Mobile Robot Mapping With Applications to Multi-Robot

and 3DMapping.” In: Proceedings of the 2000 IEEE International Conference

on Robotics and Automation, ICRA 2000, April 24-28, 2000, San Francisco,

CA, USA. IEEE, pp. 321–328. doi: 10.1109/ROBOT.2000.844077. url:

https://doi.org/10.1109/ROBOT.2000.844077.
– (2005). Probabilistic robotics. Intelligent robotics and autonomous agents.

MIT Press. isbn: 978-0-262-20162-9.

Thrun, Sebastian, Daphne Koller, Zoubin Ghahramani, Hugh F. Durrant-

Whyte, and Andrew Y. Ng (2002). “Simultaneous Mapping and Local-

ization with Sparse Extended Information Filters: Theory and Initial

Results.” In: Algorithmic Foundations of Robotics V, Selected Contributions of

the Fifth International Workshop on the Algorithmic Foundations of Robotics,

WAFR2002,Nice, France,December 15-17, 2002. Ed. by Jean-Daniel Boisson-

nat, JoelW. Burdick, KenGoldberg, and SethHutchinson. Vol. 7. Springer

Tracts in Advanced Robotics. Springer, pp. 363–380. doi: 10.1007/978-
3-540-45058-0_22. url: https://doi.org/10.1007/978-3-540-
45058-0%5C_22.

199

https://doi.org/10.1109/ICCVW.2011.6130321
https://doi.org/10.1109/ICCVW.2011.6130321
https://doi.org/10.1109/ICCVW.2011.6130321
https://doi.org/10.1016/j.imavis.2012.02.009
https://doi.org/10.1016/j.imavis.2012.02.009
https://doi.org/10.1016/j.imavis.2012.02.009
https://doi.org/10.1016/j.imavis.2012.02.009
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/ICCV48922.2021.00617
https://doi.org/10.1109/ICCV48922.2021.00617
https://doi.org/10.1109/ICCV48922.2021.00617
https://doi.org/10.1109/ROBOT.2000.844077
https://doi.org/10.1109/ROBOT.2000.844077
https://doi.org/10.1007/978-3-540-45058-0_22
https://doi.org/10.1007/978-3-540-45058-0_22
https://doi.org/10.1007/978-3-540-45058-0%5C_22
https://doi.org/10.1007/978-3-540-45058-0%5C_22

Bibliography

Tomasi, Carlo and Takeo Kanade (1991). “Detection and Tracking of Point

Features.” In: Carnegie Mellon University Technical Report CMU-CS-91-132.

Tosi, Fabio, Youmin Zhang, Ziren Gong, Erik Sandström, StefanoMattoccia,

Martin R. Oswald, and Matteo Poggi (2024). “How NeRFs and 3D Gaus-

sian Splatting are Reshaping SLAM: a Survey.” In: CoRR abs/2402.13255.

doi: 10.48550/ARXIV.2402.13255. arXiv: 2402.13255. url: https:
//doi.org/10.48550/arXiv.2402.13255.

Tran, Dustin, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srini-

vas Vasudevan, Alexey Radul, Matthew Johnson, and Rif A. Saurous

(2018). “Simple, Distributed, and Accelerated Probabilistic Program-

ming.” In: Neural Information Processing Systems.

Wagner, René, Udo Frese, and Berthold Bäuml (2014). “Graph SLAM

with signed distance function maps on a humanoid robot.” In: 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

2014, Chicago, IL, USA, September 14-18, 2014. IEEE, pp. 2691–2698. doi:

10.1109/IROS.2014.6942930. url: https://doi.org/10.1109/IROS.
2014.6942930.

Whelan, Thomas, Stefan Leutenegger, Renato F. Salas-Moreno, BenGlocker,

and Andrew J. Davison (2015). “ElasticFusion: Dense SLAM Without

A Pose Graph.” In: Robotics: Science and Systems XI, Sapienza University

of Rome, Rome, Italy, July 13-17, 2015. Ed. by Lydia E. Kavraki, David

Hsu, and Jonas Buchli. doi: 10.15607/RSS.2015.XI.001. url: http:
//www.roboticsproceedings.org/rss11/p01.html.

Wu, Philipp, Alejandro Escontrela, Danĳar Hafner, Pieter Abbeel, and

Ken Goldberg (2022). “DayDreamer: World Models for Physical Robot

Learning.” In: Conference on Robot Learning, CoRL 2022, 14-18 December

2022, Auckland, New Zealand. Ed. by Karen Liu, Dana Kulic, and Jeffrey

Ichnowski. Vol. 205. Proceedings of Machine Learning Research. PMLR,

pp. 2226–2240. url: https://proceedings.mlr.press/v205/wu23c.
html.

Yang, Yulin, Chuchu Chen, Woosik Lee, and Guoquan P. Huang (2022).

“Decoupled Right Invariant Error States for Consistent Visual-Inertial

Navigation.” In: IEEE Robotics Autom. Lett. 7.2, pp. 1627–1634. doi: 10.
1109/LRA.2021.3140054. url: https://doi.org/10.1109/LRA.2021.
3140054.

Zhang, Zhengdong, Theia Henderson, Sertac Karaman, and Vivienne

Sze (2020). “FSMI: Fast computation of Shannon mutual information

for information-theoretic mapping.” In: Int. J. Robotics Res. 39.9. doi:

10 . 1177 / 0278364920921941. url: https : / / doi . org / 10 . 1177 /
0278364920921941.

200

https://doi.org/10.48550/ARXIV.2402.13255
https://arxiv.org/abs/2402.13255
https://doi.org/10.48550/arXiv.2402.13255
https://doi.org/10.48550/arXiv.2402.13255
https://doi.org/10.1109/IROS.2014.6942930
https://doi.org/10.1109/IROS.2014.6942930
https://doi.org/10.1109/IROS.2014.6942930
https://doi.org/10.15607/RSS.2015.XI.001
http://www.roboticsproceedings.org/rss11/p01.html
http://www.roboticsproceedings.org/rss11/p01.html
https://proceedings.mlr.press/v205/wu23c.html
https://proceedings.mlr.press/v205/wu23c.html
https://doi.org/10.1109/LRA.2021.3140054
https://doi.org/10.1109/LRA.2021.3140054
https://doi.org/10.1109/LRA.2021.3140054
https://doi.org/10.1109/LRA.2021.3140054
https://doi.org/10.1177/0278364920921941
https://doi.org/10.1177/0278364920921941
https://doi.org/10.1177/0278364920921941

Bibliography

Zhao, Ziqing (2023). “Information Theory for Active Exploration in Spatial

World Models.” MA thesis. Technical Univesity Munich, Germany.

Zhu, Zihan, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R. Os-

wald, Andreas Geiger, and Marc Pollefeys (2023). “NICER-SLAM: Neu-

ral Implicit Scene Encoding for RGB SLAM.” In: CoRR abs/2302.03594.

doi: 10.48550/arXiv.2302.03594. arXiv: 2302.03594. url: https:
//doi.org/10.48550/arXiv.2302.03594.

Zhu, Zihan, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao,

Zhaopeng Cui, Martin R. Oswald, and Marc Pollefeys (2022). “NICE-

SLAM: Neural Implicit Scalable Encoding for SLAM.” In: IEEE/CVF

Conference on Computer Vision and Pattern Recognition, CVPR 2022, New

Orleans, LA, USA, June 18-24, 2022. IEEE, pp. 12776–12786. doi: 10.1109/
CVPR52688.2022.01245. url: https://doi.org/10.1109/CVPR52688.
2022.01245.

Zollhöfer, Michael, Patrick Stotko, Andreas Görlitz, Christian Theobalt,

Matthias Nießner, Reinhard Klein, and Andreas Kolb (2018). “State

of the Art on 3D Reconstruction with RGB-D Cameras.” In: Comput.

Graph. Forum 37.2, pp. 625–652. doi: 10.1111/CGF.13386. url: https:
//doi.org/10.1111/cgf.13386.

201

https://doi.org/10.48550/arXiv.2302.03594
https://arxiv.org/abs/2302.03594
https://doi.org/10.48550/arXiv.2302.03594
https://doi.org/10.48550/arXiv.2302.03594
https://doi.org/10.1109/CVPR52688.2022.01245
https://doi.org/10.1109/CVPR52688.2022.01245
https://doi.org/10.1109/CVPR52688.2022.01245
https://doi.org/10.1109/CVPR52688.2022.01245
https://doi.org/10.1111/CGF.13386
https://doi.org/10.1111/cgf.13386
https://doi.org/10.1111/cgf.13386

Addendum

D.1. Clarification of Experiment Details
Exploration The plots in fig. 5.14 were created by the author using

an experiment setup and data courtesy of Ziqing Zhao (see attributions

in section 5.6.2, she did exploration experiments while working on her

thesis, Zhao (2023), Technical University Munich). Based on that data, the

entropies in fig. 5.14c were reported up to an added constant. Inevitably,

the exact values depend on the details of the simulator, map resolution

and map updates, and are thus meant only as a qualitative result.

Also, around eq. (5.27) it is explained that a part of the exploration

objective in eq. (5.25) is MC-estimated by rendering images x>t. This is the
general theoretical perspective, however the accompanying experiments

from fig. 5.14 use a single x>t for the estimation, namely the mean of the

rendering emission conditioned on the mean of the current map belief

q
φ
t (M). This is biased towards optimismwhen the mapmean is initialised

empty (SDF-wise), but works well in the chosen environment. This could

be relevant for reproducibility, otherwise conclusions remain the same.

QCar Navigation Around eq. (5.20) it is explained that aggregated value

iteration is used to approximate the navigation cost-to-go. In the exper-

iments, this was done using the map mean to evaluate the cost values

c(zτ,M). The assumed transitionmodel at this pointwas also deterministic

(bicycle kinematics).

D.2. Typos And Notation
1. In eq. (5.18), zt should be µzt , i. e. the transition mean (notation).

2. Around fig. 2.1, 1D refers to one DoF (the rotations are in 2D space).

	Abbreviations
	Nomenclature
	Introduction
	Publication List
	Background
	Probabilistic Models and Control
	Monte Carlo
	Monte-Carlo Estimation

	Parameterisation
	Parametric Distributions
	A Note on Gaussians

	Inference
	Posterior Inference
	Model Parameter Inference

	State-Space Models
	Prediction in State-Space Models
	Inference in State-Space Models

	Model-Based Control
	Full State Information
	Partial Observability

	Spatial Domain Knowledge
	Rigid-Body Movement
	Rotations
	Rigid-Body Transformations
	Basic Kinematics

	Cameras and Rendering
	Camera Geometry
	Rendering
	Scene Representation

	Thesis Core
	The Problem
	Purpose
	High-Level Attack Angle
	Motivating Design Choices
	White-Box Spatial Modelling
	Probabilistic Considerations

	Related Work
	The Machine Learning Perspective
	The Robotics Perspective
	The Computer Vision Perspective
	Positioning

	Methods and Findings
	Dense Spatial State-Space Models
	Control-Driven Probabilistic Predictions
	Dense Rendering
	A Note on the Markov Assumptions

	Smoothing
	Smoothing via Variational Inference
	Flexibility
	About Optimisation
	Limitations

	Real-Time Filtering
	Divide and Conquer
	Approximations and Compromises
	About the Bayesian Map and Marginalisation
	Limitations

	Dynamics Identification
	Transition Learning from Pose Data
	Mixing Inductive Biases
	Limitations

	Navigation
	Navigation Under Partial Observability
	Fast State Estimation
	Limitations

	Further Control (Unpublished, Joint Work)
	Navigation with a Robot Car
	Autonomous Exploration

	Contributions

	Discussion
	Compromises & Trade-Offs
	Outlook

	Included Publications
	Core Publications
	Variational SSMs for Localisation and Dense 3D Mapping
	PRISM: Probabilistic Real-Time Inference in Spatial World Models
	Tracking and Planning with Spatial World Models

	Prior Work (Not Thesis)
	Approximate Bayesian Inference in Spatial Environments

	Appendix
	Additional Background
	Linear Gaussian Systems
	Connections to Gauss-Newton
	Stochastic Gradients and the VI Reparameterisation Trick
	Approximate Empirical Distributions
	Kalman Filters
	Filtering via Optimisation
	Particle Filters
	Rotation Matrices
	Lie-Algebra Parameters

	Publication Permission Information
	Included Core Publications
	Variational State-Space Models for Localisation and Dense 3D Mapping in 6 DoF mirchev2021variational
	PRISM: Probabilistic Real-Time Inference in Spatial World Models mirchev2022prism
	Tracking and Planning with Spatial World Models kayalibay2022tracking

	Included Non-Core Prior Work

	Bibliography

