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Abstract

In computational mechanics, deterministic parameters are commonly considered as input or

boundary conditions. However, these are often simplifications of variables subject to random

phenomena. When random variables significantly impact the system, probabilistic analyses

inducing iterative procedures are employed to quantify their effect. Traditionally, the multi-

query study repeatedly invokes the system solver with varying parameter configurations, which

poses high and impractical computational expenses. Projection-based Model Order Reduction

(MOR) techniques have been introduced to accelerate nonlinear Finite Element (FE) analysis.

The approach assumes that an intrinsic subspace can represent the problem with fewer un-

knowns. For nonlinear problems, a snapshot-based method extends the physical system with

data-driven strategies.

This thesis proposes a multi-fidelity scheme exploiting projection-based MOR for structural

analysis. The architecture’s key feature is the intertwining of intrusive and non-intrusive reduc-

tion methods. Both models are built in the same subspace, limiting the additional construction

cost to a minimum. Moreover, the bi-fidelity scheme is tailored to double-loop algorithms, so

analysis and optimisation under uncertainty can be performed efficiently.

The snapshot-based approaches evaluate FE training simulations through a Proper Orthog-

onal Decomposition (POD) to identify a reduced basis. In this new subspace, two models

with significantly lower numbers of unknowns are established: the non-intrusive as the low-

fidelity model and the intrusive representing the high-fidelity model. The non-intrusive MOR

efficiently evaluates the coarse loop by a data-driven framework. The physics-based intrusive

MOR technique is utilised to evaluate the second loop. Operating within the FE solver, the

system of equations is first projected to the subspace and then solved in lower dimensions.

An additional hyper-reduction step further reduces the computational effort of the intrusive

model.

This thesis first compares intrusive and non-intrusive MOR techniques for crash simulations

and their optimisations. To test the flexibility of the intrusive method, it is extended to statis-

tically evaluate inhomogeneous material properties with the example of wood. Applying the

proposed multi-fidelity framework in uncertainty propagation and robust design optimisation

underlines the modular character.
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Zusammenfassung

In einer numerischen Analyse werden Eingangs- oder Randbedingungen in der Regel als

deterministische Parameter angenommen. Dabei handelt es sich häufig um Vereinfachun-

gen von Variablen, die Zufallsphänomenen unterliegen. Wenn Zufallsvariablen, einen sig-

nifikanten Einfluss auf das System haben, werden iterative Verfahren aus der Probabilis-

tik herangezogen, um deren Auswirkung zu bewerten. Allerdings führen die wiederholten

Systemberechnungen mit variierenden Parameterkonfigurationen zu hohen und unpraktik-

ablen Rechenzeiten. Um die Finite Elemente (FE) Modelle zu beschleunigen, werden pro-

jektionsbasierte Reduktionsmethoden in der Literatur eingeführt. Der Ansatz geht davon aus,

dass ein intrinsischer Unterraum existiert, in dem das Problem mit weniger Unbekannten

dargestellt werden kann. Für nicht-lineare Probleme werden Snapshot-Methoden verwendet,

die den physikalischen Ansatz durch datenbasierte Methoden erweitern.

In dieser Arbeit schlagen wir ein multi-fidelity Schema vor, das zwei projektionsbasierte Re-

duktionsmethoden für strukturmechanische Probleme kombiniert. Die Verflechtung einer in-

trusiven und einer nicht-intrusiven Reduktionsmethode charakterisiert unsere neuartige Algo-

rithmusarchitektur. Die reduzierten Modelle basieren dabei auf dem gleichen Unterraum, um

deren Konstruktionskosten minimal zu halten. Des weiteren ist das Schema für Methoden mit

zwei iterativen Schleifen zugeschnitten, damit Analysen und Optimierungen unter Unsicherheit

effizient durchgeführt werden können.

Um eine passende reduzierten Basis zu identifizieren, werden Trainingssimulationen mittels

Proper Orthogonal Decomposition ausgewertet. Auf diesem neuen Unterraum basieren zwei

reduzierte Modelle: das nicht-intrusive als low-fidelity Modell und das intrusive als high-fidelity

Modell. Die nicht-intrusive Modellreduktion ergibt ein datengesteuertes Ersatzmodell, das die

erste Iterationsschleife effizient auswertet. Der physikalische intrusive Ansatz wird zur Be-

wertung der zweiten Schleife verwendet. Dazu projiziert der FE Algorithmus das Gleichungs-

system zunächst auf den reduzierten Unterraum, um es in einer kleineren Dimension zu lösen.

Ein zusätzlicher Hyper-Reduktionsschritt optimiert den Rechenaufwand des intrusiven Mo-

dells weiter.

Diese Arbeit vergleicht zunächst intrusive und nicht-intrusive Projektionstechniken für Crash-

simulationen und deren Optimierung. Der intrusive Ansatz wird am Beispiel von Holz für inho-

mogene Materialeigenschaften erweitert, um die Flexibilität der Methode zu testen. Darüber

hinaus unterstreicht die Anwendung des vorgeschlagenen multi-fidelity Schemas in einer Un-

sicherheitsanalyse und in einer robusten Optimierung den modularen Charakter.
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Chapter 1

Introduction

1.1. Motivation

Nowadays, the engineering world provides a great variety of digital tools and numerical meth-

ods to create and improve structural design. For structural mechanics, the Finite Element (FE)

method is a highly popular numerical tool to analyse the mechanical behaviour of structures.

Detailed FE models have been developed over the last decades to understand the mechan-

ical responses of designed products. This was enabled by the steady rise in computational

resources that allowed for increasingly large-scale, highly detailed, and complex mechanical

simulations. To help engineers in the design process, additional methods have been devel-

oped around the classical FE analysis. For example, optimisation algorithms find an optimal

design under the variation of certain design variables. Other tools, originating from statistical

theories, enable engineers to safely handle present uncertainties, such as small variation due

to production imprecision. These types of studies induce an iterative evaluation of the original

FE model, also called multi-query analysis, under certain parameter variations.

This thesis will be based around the topic of Model Order Reduction (MOR) in the scope of

iterative analysis due to uncertainties. In general, MOR techniques try to reduce the order of

dimensions, consequently lowering the computational costs. The reader could question why

model order reduction is still necessary if computational power constantly improves. Therefore,

the topic is motivated by a practical example on the subject of vehicle safety.
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Figure 1.1 Human Body Model (THUMS, version 5, (Iwamoto et al, 2002)) in a frontal impact situation (Uriot et al, 2015)
analysed with LS-Dyna to investigate submarining (Go, 2021).

Crash simulations have become an integral part of vehicle safety design, which places Human

Body Models (HBMs) in the car to analyse potential injuries. For frontal impacts, the lab seat

belt can slip over the pelvis causing injuries to the hollow abdominal organs. To explain the

phenomenon, Fig. 1.1 shows an HBM with the desired behaviour on the left and a critical

position of the lab seat belt on the right. This condition, also known as submarining, can occur

in reclined seating positions, either due to comfort requirements or in autonomous driving

vehicles. However, submarining is difficult to predict, as it can appear under a combination of

different conditions. Multiple co-depending influences between the human and the design of

the seat and airbag affect the phenomenon. As safety is to be ensured for people with different

physiques and ages, also deviating from the classic HBM model, further investigations are

essential.

These uncertainties require an iterative study to investigate the combination of critical param-

eters to quantify the risk of submarining. As an example, we refer to Go et al (2023), where

the influence of six parameters on an average male HBM is analysed with FE simulations. The

already simplified HBM model is discretised with a mesh consisting of around 50,000 nodes,

resulting 1,500,000 unknowns. To solve the system of equations, the processing time is ap-

proximately 20 minutes when distributed among 36 CPUs, which is common in an industrial

environment. For a single analysis, this seems reasonable; however, for the high-dimensional

parameter study, a few hundred simulations are required, leading to days of computing time.

Such a high processing effort is unpractical, and techniques to reduce computational costs are

required.

This is a realistic setting where engineers work on already available large-scale models, such

as the open source HBM mentioned above. The FE analysis is highly complex, as non-linear

material and large deformations must be considered. In addition, contact formulations are in-

cluded, which further increase the computation time of the explicit FE analysis. The described

problem exemplarily pictures the need for reduced order models in the context of multi-query

analysis for large-scale and nonlinear models in structural analysis.
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1.2. State of the art

In the literature, an extensive number of papers have been published on MOR. As a general

and quite popular keyword, many different techniques can be found. Especially the distinction

between approaches suitable for linear or nonlinear problems is not always clear at first sight.

For related MOR techniques the interested reader is referred to Benner et al (2015) for an

overview of parametric MOR and to Hesthaven et al (2022) for a summary suitable for transient

analysis. Moreover, the collection of Benner et al (2021a,b,c) includes a large variety of MOR

topics. The following paragraphs name only closely related publications and summarise similar

techniques to the author’s best knowledge.

In previous years, projection-based reduced order models have been identified to efficiently

decrease computation time. A reduced space is constructed with a snapshot-based approach,

utilising previously computed FE simulations. It combines knowledge extracted from available

data with classical numerical analysis, following the trends of machine learning. This thesis

addresses the practical application of data-driven and projection-based model order reduction.

The selected methods are based on a linear projection method, in which the so-called snap-

shot matrix is reformulated via Proper Orthogonal Decomposition (POD) to identify a reduced

basis (Sirovich, 1987). We apply an intrusive MOR scheme using the Galerkin projection to

transform the system of equations into the reduced space. A hyper-reduction step further re-

duces the system via the Empirical Cubature Method (ECM) (Hernández et al, 2017) or Energy

Conserving Sampling and Weighting Technique (ECSW) technique (Farhat et al, 2014). Ad-

ditionally, a non-intrusive approach that combines the identified basis vectors with a weighted

sum employing a regression model has been selected (Guo and Hesthaven, 2017; Swischuk

et al, 2019; Yu et al, 2019; Kast et al, 2020). By Hesthaven et al (2022), this technique was

named proper orthogonal decomposition with interpolation.

Reduced order models are primarily designed to decrease the computational effort for numer-

ical analysis. To create the reduced models employed in this thesis, a construction phase is

required, which is associated with upfront costs. In fact, the training phase includes full-order

simulations for snapshot-based MOR techniques. These upfront costs are justifiable if the

focus is on very fast real-time simulation, where offline costs are irrelevant, or if the model

is evaluated repeatedly in an iterative process. This thesis concentrates on the latter, the

application of reduced order models for many-query or multi-query analysis. Moreover, the

focus lies on the efficient application rather than the construction of the models. We are par-

ticularly interested in combining intrusive and non-intrusive schemes to form efficient analysis

under uncertainty. Therefore, a multi-fidelity architecture based on varying MOR levels shall

be constructed.

To introduce multi-fidelity frameworks, Peherstorfer et al (2018) reviews varying concepts for

4
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multi-fidelity schemes in double-loop algorithms. In particular, uncertainty propagation, infer-

ence, and optimisation are identified as useful applications. We follow these ideas and focus

on uncertainty propagation and optimisation under uncertainties.

Different model managements combining high-fidelity and low-fidelity models can be cate-

gorised. The concepts are classified with adaptation, when a low-fidelity model is improved

through a high-fidelity model, fusion, a combination of high- and low-fidelity models, and filter-

ing, where a high-fidelity analysis is invoked by a low-fidelity model. In classically multi-fidelity

schemes for FE analysis, a low- and high-fidelity are created with varying mesh resolutions.

However, in Peherstorfer et al (2018) it is stressed that the concepts are applicable to more

general fidelity schemes, such as MOR or models based on simplified physical assumptions.

In the following, we summarise multi-fidelity approaches utilising similar reduced order mod-

els, mainly focusing on POD-based techniques. A larger literature block corresponds to Multi-

fidelity Models (MFMs), which create a single surrogate based on the results of different fidelity

models. Afterwards, we name publications that use multi-fidelity and MOR-based architectures

for uncertainty propagation. A review of related approaches for optimisations and optimisation

under uncertainties finalises the literature review. The publications differ mainly in the com-

bination of methods and their application. Therefore, the following paragraphs present an

overview of available ideas rather than a progressive development of a single concept.

Multi-fidelity models

A closely related line of research investigates MFM, which incorporates high- and low-fidelity

models to create a single non-intrusive surrogate. Therefore, the same model management

principles are applicable (Khatouri et al, 2022). It must be stressed that we are not interested

in MFM, but rather in building a framework using high- and low-fidelity models. This distinction

is not always clearly visible, and therefore a few interesting approaches are named. A popular

MFM is Gaussian process regression due to its inherent statistical properties. For example,

cokriging (Kennedy and O’Hagan, 2000) or one of its further advances, such as hierarchical

kriging (Han and Görtz, 2012), is often employed for optimisation problems. Typically, an

adaptive refinement strategy improves the surrogate during the optimisation procedure.

In this class, MFM using projection-based methods have also been developed. A multi-fidelity

surrogate based on gappy POD can be found in Toal (2014), which is applied to uncertainty

propagation and optimisation. Unlike the POD with interpolation employed in this thesis, the

gappy POD approach approximates the missing high-fidelity results using low-fidelity data.

Sella et al (2023) investigate three multi-fidelity regression models for non-intrusive MOR,

linearly combining a weighted reduced basis. Here, the high- and low-fidelity models are FE

analyses with varying mesh resolution. As the publication investigates very sparse data, a

bi-fidelity Kennedy-O’Hagan approach and data augmentation techniques are tested for the

approximation of a surface pressure field. Instead of a linear regression model, Lu and Zhu
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(2021) use a neural network in a similar framework. A neural network trained with high-fidelity

analyses has additional features extracted from the low-fidelity model.

Kast et al (2020) apply a multi-fidelity scheme for the construction of the reduced basis,

whereby the low-fidelity model helps to indicate valuable snapshot locations, then evaluated

by the high-fidelity model. The multi-fidelity idea is also used in the online stage, where a cok-

riging algorithm is combined with the previously identified reduced basis. The non-intrusive

technique is evaluated for different low-fidelity models either using a lower number of ele-

ments or a linearised solver for the structural problem under large deformations. This is in

contrast to Guo et al (2022), where the high-fidelity is a full-order FE analysis and the low-

fidelity model is created with an intrusive MOR technique. Here, a multi-fidelity neural network

is enriched with the hyper-reduced model using the Discrete Empirical Interpolation Method

(DEIM) algorithm.

In a consecutive publication by Conti et al (2023) this parametric model is extended to dynamic

analysis through short-term memory networks. Such techniques belong to scientific machine

learning, which also employs multi-fidelity approaches. For example, multi-fidelity deep opera-

tor networks (Lu et al, 2022), applied to optimisation studies, or multi-fidelity convolutional auto-

encoder (Partin et al, 2023) have been developed. Often, the additional low-fidelity model is

used to extend the training set for sparse data regimes, e.g. with transfer learning approaches

(Song and Tartakovsky, 2021). An interesting application shows Tao and Sun (2019), using

a multi-fidelity deep learning approach for robust aerodynamic design optimisation or Balokas

et al (2021), which applies a multi-fidelity neural network to quantify uncertainties of nonlinear

braided composites. Interested readers can refer to Khatouri et al (2022), which presents an

extensive list of MFM mainly focusing on aerospace applications.

Multi-fidelity schemes for uncertainty propagation

Next, we concentrate on multi-fidelity architectures combining multiple separate models of

varying fidelity instead of one MFM surrogate. Returning to analysis under uncertainties, we

first focus on uncertainty propagation based on multi-fidelity architecture. In the scope of

uncertainty propagation Monte Carlo (MC) based sampling strategies are commonly used

for nonlinear problems. As a prominent multi-fidelity scheme, the concept of control variate

estimators has been adapted using high- and low-fidelity models, also known as Multi-fidelity

Monte Carlo (MFMC) (Ng and Willcox, 2014). This evolved from the concept of multilevel

MC, where hierarchical models with varying mesh resolution are invoked to estimate statistical

properties. An overview of recent advances on MFMC, such as Gorodetsky et al (2020), and

its closely related multi-level MC is given in Zhang (2021).

We are interested in reduced order models in the scope of control variate estimators. Early

publications use a reduced basis method, which is built by greedy algorithms for control vari-

ates (Boyaval et al, 2009; Boyaval, 2012). We refer the interested reader to Chen et al (2017)

6
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for an overview of reduced basis methods in Uncertainty Quantification (UQ). In González

et al (2019) control variate estimators with a non-intrusive MOR technique are constructed

as a low-fidelity model for time-invariant, linear problems. There, the reduced basis is not

generated with the help of snapshots, but using model derivatives.

Moreover, the MFMC approach was extended to the optimal model management strategy that

defines the number of high- and low-fidelity simulations with the solution of an optimisation

problem (Peherstorfer et al, 2016). In Blonigan et al (2020) the optimal hyperparameter of

an intrusive Pertrov-Galerkin projected model is investigated by applying the optimal model

management scheme.

Multi-fidelity schemes for optimisation

The original publication of Ng and Willcox (2014) in fact applies MFMC within the scope of

optimisation under uncertainties. Control variate estimators are used to accelerate the com-

putation of the variance criterion, quantifying the influence of uncertain parameters. This leads

to the investigation of similar projection-based MOR techniques within the scope of optimisa-

tion. An optimisation study using intrusive MOR has first been proposed by Amsallem et al

(2015a). The shape of a rocket nozzle, discretised by finite differences, has been projected

and hyper-reduced via gappy POD. An additional approximation of the objective function by

radial basis is introduced for quantities lost within the hyper-reduction step. The optimisation

problem is successfully solved by a sequential quadratic programming method.

In Scheffold et al (2018) a vibration frequency optimisation of jointed structures under con-

tact was performed. The utilised model is created based on Galerkin projection and hyper-

reduction via ECSW. Another design optimisation that combines POD-based, intrusive MOR

with an equivalent static load approach can be found in Lee and Cho (2018). Here, the proper

orthogonal modes of the external load are considered to define a parameterisation of the re-

duced order model.

Projection-based models have been incorporated within a trust region optimisation using ad-

joint methods (Zahr and Farhat, 2015; Zahr et al, 2019). The publications investigate optimisa-

tion under uncertainties, whereby the uncertainties are estimated with stochastic collocation

based on dimension-adaptive sparse grids. A recent publication also includes the adaptive

construction of a hyper-reduced model for shape optimisation (Wen and Zahr, 2023).

A two-step optimisation technique by Li et al (2018) has a comparable idea of reusing the

snapshots within an intrusive and non-intrusive approach. Here, the optimisation is divided into

two steps to find the minimum. The non-intrusive MOR is based on kriging with interpolative

POD applied within a generic optimisation algorithm. In the consecutive step, the optimum

is found with an adjoint method using an intrusive Petrov-Galerkin projected model; however,

no hyper-reduction is applied. An additional domain decomposition method divides the flow

7
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analysis of an airfoil into sensible and insensible areas, whereby only the insensible ones are

reduced.

As different combinations of bi- and multi-fidelity approaches have been proposed in the liter-

ature, efficiency improvement through varying fidelity models seems promising. Non-intrusive

MFMs have shown that a low-fidelity model can enrich the training process to improve the sur-

rogate. Here, we want to investigate schemes mainly based on intrusive MOR approaches and

evaluate their performance in multi-query settings for structural parametric problems. Transfer-

ring the idea to intrusive MOR, a multi-fidelity architecture, is a promising model management

strategy. We want to keep the expensive construction cost of the reduced order models to a

minimum. Therefore, reusing snapshots, as the decisive cost within the construction phase,

is beneficial. So far, primarily multi-fidelity architectures tailored to specific examples have

been developed, such as Li et al (2018). However, we are interested in a general workflow for

different kinds of double-loop problems based on a modular arrangement.

1.3. Research objectives

In the development process of novel model order reduction techniques, many publications

start with the reduction of a single analysis. However, a meaningful implementation for it-

erative studies must include a parameter space for which the reduced model is applicable.

Therefore, this thesis focuses on parametric reduced order models in the scope of structural

multi-query analysis such as uncertainty quantification, robustness analysis, and optimisation

studies. Throughout the thesis, two groups of research questions are formulated. The first one

discusses the trade-off between accuracy and efficiency for projection-based intrusive MOR

methods in the scope of challenging nonlinear structural design problems. Developing a multi-

fidelity scheme to further improve efficiency gains is the second research objective. In this

context, a general MOR scheme based on multiple fidelity levels is proposed.

With regard to the first research aim, the overall performance, which involves the construc-

tion and execution step, is examined for parametric analyses. Therefore, we focus on the

parameter space and evaluate its effect on the reduced order models. The inter- and extrap-

olation capabilities in the parameter space, as well as an optimisation study, investigate the

performance of projection-based intrusive MOR in a practical setting.

In order to better assess the intrusive MOR method, it is compared to a non-intrusive technique

which belongs to the field of surrogate models. The non-intrusive MOR approach is based

on the identical subspace projection; however, it replaces the system operators by a purely

data-driven regression model. The costs associated with the regression analysis are strongly

reduced, along with a lower level of precision. To reach a comparable accuracy level, the

non-intrusive model requires higher initial construction costs than the intrusive counterpart.

8
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For this purpose, the construction costs are shown in correlation to the processing time of the

reduced order models, and the number of model evaluations leading to overall speedups is

identified. The comparison of both techniques shall give the reader a better understanding of

the potential and limits of projection-based model order reduction.

It is investigated whether the intrusive MOR approach can be extended to the nonlinear anal-

ysis of inhomogeneous materials. Therefore, a workflow to create reduced order models for

spatially varying material properties is proposed. The parameter space is modelled with ran-

dom processes, and its effect on the reduced order models is highlighted with varying ex-

amples. In the online phase, we quantify the effects of the uncertainties with the help of

probabilistic methods. Leading to a quantification of uncertainties via reduced order models,

the efficiency improvements are analysed. Moreover, the applicability in terms of a low Kol-

mogorov n-width is investigated for the structural example to show the limits of classical linear

projection.

In summary, the applicability and performance evaluation of intrusive MOR in the scope

of structural analysis under uncertainties and optimisation is the first aim of this thesis.

The following objectives can be summarised to investigate the corresponding research ques-

tions:

• Investigating the benefits and drawbacks of intrusive MOR for parametric nonlinear struc-

tural problems;
• Contrasting intrusive MOR to the non-intrusive approach by a detailed analysis of offline

and online costs for structural optimisation;
• Extending the intrusive MOR approach to analyses of spatial uncertainties;
• Revealing the limitations of global POD for low Kolmogorov n-width problems in structural

applications;
• Showing the reader in different practical applications, such as crashworthiness and natural

fibre composites, the achievable balance between accuracy and speedups.

The second research objective concerns the development of a novel multi-fidelity scheme

based on varying levels of reduced order models. Therefore, we explore the feasibility of a

general multi-fidelity scheme for analysis and optimisation under uncertainty on the basis of

MOR.

In Chapter 4 we propose a method that merges intrusive and non-intrusive projection-based

approaches to a multi-fidelity architecture. The main idea is that with the intrusive model at

hand, a complementary non-intrusive model can enhance the overall analysis with limited

additional cost and implementation complexity. The training phase is discussed, and links to

the methods introduced in the background theory are created. A detailed workflow description
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of the application phase highlights the options between varying reduced order models and

shows the full range of the proposed schemata.

Furthermore, this thesis discusses how the non-intrusive scheme can be ideally linked to the

intrusive technique. Exploiting the snapshot-based approach, the non-intrusive model can

constantly be improved through newly available high-fidelity analyses. During this iterative

procedure, the low-fidelity model is continuously updated so that its correlation to the high-

fidelity model is enhanced, and thus its approximation quality. The main benefit is attributed to

the low costs of a non-intrusive model, which can consequently improve the overall efficiency

gains.

To showcase the multi-fidelity scheme, the application to optimisation and analysis under un-

certainties is proposed. Both schemes result in double-loop algorithms, which are especially

expensive to perform. The general multi-fidelity scheme is therefore specified for a robust

optimisation and uncertainty propagation using control variate estimators. The two specific

analysis schemes are from different research fields to underline the modular aspect of the

proposed architecture. The uncertainty quantification is based on MC simulations performed

by the intrusive model. The non-intrusive model is integrated through the extension of control

variate estimators, requiring a low-fidelity model. Thus, the estimator for variance and mean

can be enhanced by a high number of non-intrusive analyses, as they add relatively little com-

putational cost. This results in a double-loop algorithm utilising two fidelity levels, a common

attribute with the optimisation procedure. For optimisation under uncertainties, a robustness

criterion is introduced. The robustness criterion requires an additional loop in each iteration

step to evaluate the variance of the performance parameter. Comparable to the uncertainty

propagation, the first loop is performed by the intrusive MOR and complemented by a second

analysis loop using non-intrusive techniques.

Example studies are presented in Chapters 7 and 8, to assess the outlined multi-fidelity

scheme. For uncertainty propagation, the control variate estimators are demonstrated with

varying choices for high- and low-fidelity models. Accuracy levels are compared, and overall

efficiency gains are assessed to judge the multi-fidelity scheme. In addition, studies based

on the multi-fidelity optimisation algorithm show its general applicability. The differences be-

tween absolute and robust minima are highlighted and it is shown that the proposed multi-

fidelity workflow converges to the robust minima with reduced computational effort. With a

final optimisation study, we showcase the potential efficiency gains of the proposed method

for large-scale problems.
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To summarise the previous paragraphs, the following aim and objectives can be formulated.

The development of a multi-fidelity scheme exploiting multiple levels of projection-

based reduced order models is the second research aim, which is implemented with the

merged objectives:

• Proposing a multi-fidelity MOR method for highly cost intensive analysis, especially benefi-

cial for robust design studies with double-loop algorithms;
• Development of a bi-fidelity scheme by enhancing the intrusive model with a non-intrusive

surrogate;
• Adaptive construction of the snapshot-based non-intrusive model by a retraining scheme

ideally utilising the iterative enlarged data set;
• Evaluation of the multi-fidelity scheme for analysis and optimisation under uncertainties with

multiple structural nonlinear problems.

1.4. Associated publications

The following paragraph summarises the associated publications for this thesis. In Czech

et al (2022b) the intrusive and non-intrusive MOR scheme is compared and applied to crash

simulations and an optimisation study. Moreover, Czech et al (2022a) propose the multi-fidelity

MOR for robust optimisation, also introduced in this thesis. If the content originates from one

of the papers, a clear statement is given in the introduction of the corresponding chapters.

In multiple collaborations, the non-intrusive scheme was applied in parameter and optimisation

studies, which are only briefly referred to during the script. In Pretsch et al (2023) the non-

intrusive MOR techniques predict the pressure field in a multidisciplinary design optimisation

for turbine blades. Within a multi-fidelity approach based on hierarchical kriging, the non-

intrusive technique was used for crashworthiness optimisation (Kaps et al, 2022). Another

application of the non-intrusive scheme is the parameter study of Human Body Models in Go

et al (2023).
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1.5. Thesis outline

Corresponding to the research objective, the thesis is structured in three main parts: the

theoretical back ground, the proposed multi-fidelity algorithm, and the application chapters.

First, we introduce the theoretical background required to understand the proposed methods.

It is a compact introduction of relevant concepts which are essential for the following ideas and

the studies conducted.

• Chapter 2 introduces uncertainty analysis, starting with the basic concept of random vari-

ables and processes, introducing the idea of robustness analysis, followed by sample-based

uncertainty propagation and robust optimisation.
• Chapter 3 presents projection-based reduced order models for structural analysis with

snapshot-based POD projection, utilised for intrusive Galerkin projection extended by hyper-

reduction, and regression-based non-intrusive techniques.

The novel multi-fidelity method based on model order reduction for analysis under uncertain-

ties is introduced in Chapter 4.

Next, application studies illustrate the presented reduced order models for analysis under

uncertainties, in particular robustness studies.

• Chapter 5 applies intrusive and non-intrusive MOR to crashworthiness analysis to compare

and evaluate its inter- and extrapolation capabilities.
• Chapter 6 proposes intrusive MOR for the quantification of spatial uncertainties, such as

required for natural fibre composites.
• Chapter 7 shows the proposed multi-fidelity scheme in the scope of uncertainty propagation

via control variate estimators.
• Chapter 8 highlights the multi-fidelity scheme for robust optimisation studies.

To conclude the presented work, Chapter 9 summarises the results, including a critical reflec-

tion, and gives ideas for future work.
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Part II

Background theory
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Chapter 2

Structural analysis and optimisation under uncertainties

This chapter provides the theoretical background for analysis and optimisation under uncer-

tainties, in the context of this thesis. Therefore, the basic techniques employed for this con-

tribution are summarised from literature. To provide a comprehensive explanation, relevant

methods are introduced and accompanied by further literature references. We represent a

summary of the applied methods and do not show a comprehensive overview of the broad

field of optimisation and analysis under uncertainties. In order to understand the connection

between the selected techniques, the first section gives a brief introduction and establishes

the relation between the individual theoretical sections.

2.1. Introduction to analysis and optimisation under uncertainties in
structural mechanics

In classical structural analysis, we consider design parameters such as material properties or

loading conditions as deterministic. However, on closer inspection, these deterministic values

are often a simplification of variables under uncertainty. Especially when considering envi-

ronmental effects, the deterministic assumption can become unreasonable. For example, in

a naturally grown material such as beech wood, the scatter of strength values is so high that

the conservative approach of selecting the worst-case scenario drastically underestimates its

potential capacity (Kandler et al, 2018). In structural engineering, multiple factors can lead to

analyses under uncertainty. Typically, a variation in loading conditions or a scattering of ma-

terial properties through growth, production, or deterioration can induce critical uncertainties.
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Another reason for performing a statistical analysis could be tolerances or imperfections in ge-

ometric shape and dimensions. In the following chapter, the relevant theoretical background

for analysis and optimisation under uncertainties is presented.

In uncertainty quantification, one commonly starts with the classification of uncertainties by its

origin. We differentiate between aleatoric uncertainties, which refers to an intrinsically random

phenomenon, and epistemic uncertainties, describing a lack of knowledge. In this thesis,

we focus on a probabilistic representation of aleatoric uncertainties and refer to Acar et al

(2021); Beyer and Sendhoff (2007) for a detailed comparison of other uncertainty handling,

such as possibility theory, interval approaches or fuzzy methods. The chosen techniques

belong to the field of uncertainty quantification, which bridges mathematical probability theory

with statistical practise (Sullivan, 2015). Section 2.2.1 introduces the concept of random

variables and functions that define a parameter with statistical properties such as its probability

distribution.

If a single independent random variable is not sufficient to describe the present phenomena,

a set of random variables or a random process can be introduced. Section 2.2.2 explains

random processes, a random function dependent on a parameter, to describe spatial or time

dependencies. This concept is applied to spatial uncertainties in the scope of numerical anal-

ysis, as presented in Section 2.3 about random fields. We will focus on Gaussian normal

distribution, as the specific nature of the random variables is not the primary interest in this

work.

The main interest lies in forward problems, where the effects of input uncertainty on perfor-

mance variables are studied (Sullivan, 2015). There are different methods to compute the

effect of random input parameters on output parameters (Acar et al, 2021). In the following,

we will focus on techniques applicable to robustness analysis. A robust design should be

insensitive to uncertain design parameters and characterised by a low variability of the per-

formance. A short overview of robustness measures is given in Section 2.4, which can be

contrasted with the reliability of a design. Expectancy and dispersion measures are explained

in Section 2.4.2, which aims to find the probability distribution of the output variables.

For this work, two specific analyses under uncertainties have been chosen: MC analysis with

control variate and robust design optimisation. Both techniques use variance-based measures

to evaluate robustness. As the focus lies on nonlinear problems, we apply sampling strategies

to solve the probability density integral, such as the highly popular MC analysis. In Section 2.5

the MC analysis with control variate evaluates the probability distribution of a performance

quantity based on a multi-fidelity analysis. In addition to the classical MC analysis, a low-

fidelity model is introduced in a second loop to avoid high sampling costs. For the second type

of analysis, an optimisation strategy to find a robust optimum is described in Section 2.6. To
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x x

fX(x) FX

a b

P(a < X ≤ b)

Figure 2.1 Properties of Gaussian normal distribution variable X ∼ N(µX ,σX ) defined by mean µX and standard deviation
σX : PDF, fX (x) on the left and CDF, FX on the right.

achieve a robust design, the variance of the objective function is computed using a two-loop

algorithm.

Both analyses, MC simulation with control variate and robust optimisation, result in multi-query

or many-query simulations, which suffer from very high or even unfeasible computational costs.

The double loop algorithm can be well combined with multi-fidelity schemes, which strongly

increases its computational efficiency (Peherstorfer et al, 2018). To enable such multi-query

analysis, an efficient implementation with reduced models is proposed in Chapter 3.

2.2. Concept of random variables and processes

In the following section, the concepts essential to random variables and processes with normal

distribution are presented. We mainly follow the explanation of Papaioannou (2020), which is

based on the book of Grigoriu (2002). With knowledge of Gaussian processes, the theory

of random fields is introduced in Section 2.3. It also provides the background knowledge for

Section 3.4.3 on Gaussian processes regression.

2.2.1. Random variables

In probability theory, a parameter with statistical properties is called a random variable X,

indicated with an uppercase letter. A random variable X with X : S→ R of the sample space

S can be observed as the outcome X = x. In other words, the possible values of the random

variable X , are denoted by lowercase x and collected in the sample space S. An event is

a subset of S. To describe the probability P for the occurrence of an event, a probability

distribution is used.

We focus on continuous variables X leaving aside the discrete version of X. The character of

a continuous random variable X can be quantified with Probability Density Function (PDF) and

Cumulative Distribution Function (CDF). Figure 2.1 shows an example PDF on the left and its

corresponding CDF denoted by FX , on the right.
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The CDF is the probability of the event {X ≤ x}, such that a random realisation of X is less

than the outcome x

FX(x) = P(X ≤ x). (2.1)

On the other hand, PDF considers the interval between the realisation a and b and is defined

as ∫ b

a
fX(x)dx = P(a < X ≤ b) = FX(b)−FX(a), (2.2)

with the following properties:

fX(x)≥ 0,
∫

∞

−∞

fX(x)dx = 1, FX =
∫ x

−∞

fX(z)dz. (2.3)

Note that the probability P(X = x) is only computed for the discrete case of X and equals zero

for a continuous variable. For this reason, the PDF is introduced, which is the integral of a

probability.

In general, we are interested not only in random variables, but in functions g(X) that depend

on a random variable X. Therefore, the mathematical expectation E[g(X)] is introduced as

E[g(X)] =
∫

∞

−∞

g(x) fX(x)dx. (2.4)

The expected or mean value µX is the first statistical moment and can be defined with

µX = E[X]. (2.5)

The second central moment gives the variance V as

V(x) = σX
2 = E[(X−µX)

2], (2.6)

which represents a measure of dispersion. In engineering applications, the standard deviation,

defined as the square root of the variance σX =
√

V (x), is often used.

Next, the attributes of Gaussian random variables, frequently used in engineering and shown

in Fig. 2.1, are specified. For a summary of other popular distributions, we refer to (Fishman,

1996). A normal random variable follows X ∼ N(µX ,σX) and is defined with mean µX and

standard deviation σX . The corresponding fX(x) is stated by the equation below:

fX(x) =
1

σX
√

2π
exp

[
−(x−µX)

2

2σX 2

]
. (2.7)

With these basic concepts on random variables, we conclude the section and refer to text
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books such as Fishman (1996); Grigoriu (2002); Sullivan (2015) for a comprehensive intro-

duction.

2.2.2. Gaussian processes

A Gaussian process is formally defined as ’a collection of random variables, any finite number

of which have a joint Gaussian distribution’ by Rasmussen and Williams (2006) and can be

completely defined by its mean and covariance function.

A Gaussian process comprises a collection of random variables that can be expressed by a

random vector X = [X1,X2, ...,Xd] of dimension d. In the second part of the definition, the

term ’multivariate joint Gaussian distribution’ is introduced. The distribution of multiple random

variables, for example the random variable Xi and X j can be represented by its joint distri-

bution. The probability P(Xi,X j) of the occurrence of the joint event {Xi ≤ xi ∩X j ≤ x j} is

denoted by the bi-variate joint CDF. The bi-variate distribution refers to two dimensions, while

the multivariate joint distribution applies to any d-dimensional random vector.

The jointly modelled random variables can also be quantified by the covariance metric Cov. It

is the counterpart to the variance for multidimensional cases and describes the linear depen-

dence of a random variable Xi to X j, such as

Cov[Xi,X j] = E[(Xi−µi)(X j−µ j)]. (2.8)

If Cov[Xi,X j] = 0 the random variables are uncorrelated, whereas for Cov[Xi,X j] = 1 they are

fully correlated. A dimensionless correlation coefficient ρi j is the covariance normalised by its

standard deviations ρi j =
Cov[Xi,X j]

σiσ j
.

Our main interest lies in random processes, so far only random variables and vectors have

been introduced. A random process is a function X(z) indexed by a parameter z ∈ Ω. The

parameter z could describe a time or space dependency in the domain Ω. Similarly to the

definition of random variables, x(z) is a realisation or outcome of the random process X(z).

Moreover, the function X(zi) evaluated for every zi ∈ Ω gives a random variable. If Ω is

a finite set, in other words a vector z ∈ Ωn the random process results in a random vector

[X(z1),X(z2), ...,X(zn)]
T .

For two variables z,z′ ∈Ω the auto-covariance function is defined as

RXX(z,z′) = E[(X(z)−µX(z))(X(z′)−µX(z′))]. (2.9)

Whereby, the covariance function

κ(z,z′) = E[X(z)X(z′)], (2.10)
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is equal to the auto-covariance function if the mean function is zero. Then, a Gaussian random

process can be completely described by mean µX(z) and covariance function κ(z,z′):

f (z)∼ GP(µX(z),κ(z,z′)). (2.11)

For stationary processes, also called homogeneous processes, it is assumed that the mean

µX(z) = µX
0 is constant.

2.3. Modelling of spatial uncertainties with Gaussian random fields

To model spatially varying properties, the concept of random fields has been developed. The

comprehensive book of Vanmarcke (2010) summarises the methods affiliated to random fields

and applies them to the in-depth material variation of soil profiles for civil engineers.

2.3.1. Spatial uncertainties

Random field and random process, as defined in Section 2.2.2, are synonyms, although the

term random field is mostly used for spatial problems. This implies that a random function

X(z) referring to Eq. (2.11) depends on the spatial coordinates z of a one-, two-, or three-

dimensional problem. In the following, a random field will be denoted by H(z,θ) to highlight

its dependency on random phenomena indicated by θ . Moreover, the correlation function

as explained below describes the spatial correlation of the uncertain parameter. This is in

contrast to, e.g. Gaussian process regression where the kernel represents the correlation of

arbitrary data points. In addition, the discretisation of random fields via Karhunen Loève (KL)

expansion is briefly described, so that the analytical formulation of random fields is applicable

within a numerical framework. We restrict ourselves to stationary Gaussian random fields with

a normal distribution of X ∼ N(µX = 0,σX = 1).

2.3.2. Correlation function

Commonly, the correlation function exploits a relative distance measure to describe spatial

dependencies. To compute the correlation function, the covariance function of Eq. (2.10) is

normalised by the standard deviation. The correlation is 0 ≤ C(zi,z j) ≤ 1, so that the fully

correlated points have a correlation of one. Multiple different correlation characteristics are

available, for example, an exponential correlation function could be formulated:

C(zi,z j) = exp
(
−
||zi− z j||2

l2
c

)
, (2.12)

with the distance d = ||zi− z j|| between two arbitrary points zi and z j and the dimensionless

correlation length lc. We assume an isotropic kernel such that the correlation length is equally

defined in all dimensions. The choice of correlation length depends greatly on the specific
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problem. To illustrate the effect of the correlation length, Fig. 2.2 shows three realisations of

a random field with an exponential correlation function of Eq. (2.12) and two varying corre-

lation lengths. Influenced by the outcome of the random function, each realisation results in

a different curve, however, the effect of a higher and lower value of lc is clearly visible when

comparing the left and right graph.

x(z)

z

(a) Three realisations x(z) of a random process with
correlation length lc = 10.

x(z)

z

(b) Three realisations x(z) of a random process with
correlation length lc = 2.

Figure 2.2 One-dimensional random field with exponential correlation function and two different correlation lengths.

2.3.3. Discretisation of Gaussian random fields

In general, random fields are continuous quantities, but must be discretised for computational

use in FE analysis (Vanmarcke, 2010). For an overview of discretisation methods, we refer

to Sudret and Der Kiureghian (2000). Here, the KL expansion is chosen, which utilises the

orthogonal eigenvectors of the auto-covariance function. The numerical solution of the KL

expansion follows Betz et al (2014) and is here only summarised.

As the KL expansion is a series expansion, the continuous random field, H(z,θ), shall be

created by a set of shape functions φ and a random vector b (Li and Der Kiureghian, 1993).

Thus, b(θ) contains random variables that must be uncorrelated to ensure unbiased results.

It reads as

H(z,θ) =
∞

∑
i=1

bi(θ)φi(z), (2.13)

where φi are the corresponding eigenfunctions of the auto-covariance function C(zi,z j) with its

eigenvalues λi. Next, a truncated random field Ĥ(z,θ) is formulated as

Ĥ(z,θ) =
M

∑
i=1

ηi(θ)
√

λi φi(z). (2.14)

The KL expansion captures the variation by a finite number of eigenfunctions, whereby
√

λi

can be interpreted as its standard deviation. Note that ηi = bi(θ)/
√

λi is a normalisation of

the random variable bi by the standard deviation. In addition, the KL expansion is truncated

after M terms, as it can be approximated by the first modes. This follows the same idea as the

truncated matrices of Eq. (3.5); in fact, Singular Value Decomposition (SVD) and KL expansion

refer to the same concept.
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The computation of the required eigenfunctions φ̂k(z) is not trivial and a numerical approxima-

tion is needed (Betz et al, 2014). Therefore, an analysis of the eigenvalues of the correlation

matrix C ∈RN×N is used to compute its eigenvectors φ̂ and eigenvalues λ̂k. The dimension N

refers to the number of unknowns associated with the numerical analysis. A random field with

mean value µX = 0 and standard deviation σX = 1 can be approximated as

Ĥ(z,θ) =
M

∑
i=1

ηi(θ)√
λ̂i

N

∑
j=1

φ̂i(z j)C(z,z j). (2.15)

One can conclude that with a defined covariance function (or correlation function) the random

process can be described for joint Gaussian distributed variables. As a consecutive step, the

field is discretised via KL expansion for an efficient application in numerical settings.

2.4. Robustness analysis

For uncertainty propagation, the identification of uncertain variables and the selection of a

suitable representation by random variables or fields are the first steps. The theoretical back-

ground was given in the previous sections. This allows proceeding with the evaluation of the

system and the impact of the statistical design parameters. We focus on forward problems,

where we investigate the effect of a random input X on an output or a performance quantity

y = g(X).

In particular, our interest lies in the design of robust structures, leaving aside the concept of

reliability. From a methodology point of view, robustness differs significantly from reliability

analysis. Reliability refers to the circumvention of catastrophic failure in rare events and deals

with small probabilities (Acar et al, 2021). On the contrary, a robust design should be insen-

sitive to uncertain design parameters, i.e., have a low variability of the performance variable

(Huang and Du, 2007; Chen et al, 1996).

2.4.1. Robustness classifications

Robustness is a collective term for varying research questions and associated methods. The

first concepts of robust design methodologies were published by Genichi Taguchi in 1986 fo-

cusing on quality improvement. A recent review of robustness metrics for mechanical design

identifies four different regions of robustness analysis (Göhler et al, 2016). The first class,

called sensitivity, merely investigates the influence of one parameter on the output function,

whereas the second class identifies a feasible design space. The third category uses func-

tional expectancy and variance to describe robustness. The probability of fulfilling a robustness

criterion with statistical variations of independent variables is the fourth class, which requires

detailed knowledge about, e.g., variables’ dependencies and functional limits. Here, we focus

on the analysis of functional expectancy and variance. Hence, a robust optimisation intro-
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x

y

fX(x)

g1(x)

g2(x)

(a) Dependencies between random input quantity X
defined by PDF with fX (x) and two exemplary systems
y = g(x) resulting in different distributions of the unknown y.

x

y

xopti xrobust

(b) Concept of a robust optimisation including random input
variables X : absolute minimum xopti and robust minimum
xrobust by considering a low variability of y.

Figure 2.3 Conceptional ideas of robustness analysis based on expectancy and dispersion measure of a) the distribution of
a performance quantity b) robust optimisation.

duced in Section 2.6, as well as the second-order statistic estimations with control variates

from Section 2.5 belong to the third category.

2.4.2. Expectancy and dispersion measure

Ullah et al (2022) categorises classical robustness metrics as functions of the output perfor-

mance parameter. With a "minimax criterion", also called set-based models (Kochenderfer

and Wheeler, 2019), the distribution limits are identified as the worst-case scenario (Jurecka,

2007). On the contrary, the probability measures approximate the distribution of the output

quantity. In this work, the so-called composite criterion is adopted, which is based on the

approximation of expectation and dispersion. Figure 2.3 illustrates the composite criterion for

two different scenarios: the distribution of a performance quantity in 2.3a and the concept of

robust minima referring to 2.3b.

To explain the robustness metric, Fig. 2.3a shows the effect of a random input parameter on

two examples with outputs g1(x) and g2(x). On the x-axis, the realisations x of a random

variable X with PDF fX(x) are depicted. For forward problems, the distribution of the input

parameter X is known, and the distribution of the output parameter y shall be investigated. In

Fig. 2.3a the varying output distributions corresponding to g1(x) and g1(x) are visualised in grey

and blue. These distributions are not known, and therefore a robustness metric is introduced

to evaluate its important properties, such as mean and variance. We focus on problems with

nonlinear dependencies between input x and output quantity y, which must be evaluated with

numerical analysis and circumvent the application of analytical propagation methods. There-

fore, we apply sampling strategies to solve the probability density integral, such as the highly

popular Monte Carlo analysis and an extension with control variate, presented in the Section

2.5.
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The right hand side of Fig. 2.3 illustrates the idea of a robust optimum. Within an optimisation

process, one searches for the minimum of a performance parameter y under the variation of

design parameters X , here a random variable. A robust optimum adds the variability of the

performance measure to the original problem. Therefore, the dispersion-based robustness

criterion is incorporated into the optimisation.

In Fig. 2.3b the conventional optimum is found at xopti, which differs from the robust opti-

mum xrobust . The robust optimum xrobust finds a compromise between absolute minima and

a reduced standard deviation compared to xopti. To estimate statistical properties, sampling

techniques are required, which form a double-loop algorithm. The overall scheme for robust

optimisation is presented as the second main analysis under uncertainties in Section 2.4.

2.5. Double-loop Monte Carlo analysis

As a first example of second-order statistics, the estimation of mean and variance through

control variates are discussed. The theory is based on a classical Monte Carlo analysis,

which is shortly reviewed. Afterwards, control variates are presented, incorporating a second

analysis loop to improve its efficiency.

2.5.1. Monte Carlo analysis

Monte Carlo analysis is one of the most frequently used tools to analyse the moments and

distributions of random variables and functions. It benefits from its general applicability to

any numerical analysis through its non-intrusive nature and its simplicity. Hereby, the statis-

tical moments are approximated by a sampling strategy. Samples of an input random vector

X are created such that xi, i = 1, ...,n and a numerical analysis is performed to obtain the

corresponding quantity of interest yi, i = 1, ...,n. This set of samples is then analysed using

statistical methods. The mean µ1 = E[Y ] and variance µ2 = E[(Y −E[Y ])2] of the response

can be estimated with n number of samples, as

µ̂1 =
1
n

n

∑
i

yi, (2.16)

and

µ̂2 =
1

n−1

n

∑
i
(yi− µ̂1)

2. (2.17)

Equations (2.16) and (2.17) are unbiased estimators, which implies that the mean of the es-

timator is equal to the actual quantity, when n approaches infinity. Furthermore, the variance

of the estimators, can be interpreted as the mean squared error. Equations (2.18) and (2.19)

formulate them as

V [µ̂1] =
µ̂2(y)

n
, (2.18)
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V [µ̂2] =
µ̂4(y)

n
−

(n−3)µ̂2
2 (y)

(n−1)n
, (2.19)

with the approximated central moments µ̂4 and µ̂2
2 given in Appendix A.

The main disadvantage of MC analysis is the computational burden resulting from a large

number of numerical analyses. To reduce computational effort, different improvements have

been developed. One of the options is to adjust the sampling of the random input vector for

a better dispersion in the output space. Prominent advanced sampling techniques are subset

simulation, Markov Chain Monte Carlo, or directional sampling (Fishman, 1996). Another

approach taken here is to introduce a multi-fidelity or multi-level scheme to reduce the costs

associated with MC simulations.

2.5.2. Control variate estimators

The key idea of multi-level or multi-fidelity schemes is to introduce correlated low-fidelity mod-

els that assist in approximating the distribution at relatively low costs. The low-fidelity model

is a simpler model that approximates the system with less computational effort, along with

reduced accuracy. In engineering applications, the high-fidelity model corresponds to the orig-

inal FE analysis, while a model discretised with a coarser mesh is often used as the low-fidelity

model. The concept of control variate adapts the idea of a two-level analysis for second-order

statistics based on MC simulations (Fishman, 1996). The double-loop algorithm stems from

the introduction of the low-fidelity model. When extending the idea to multiple low-fidelity mod-

els, further research can be found under the key word of multi-fidelity MC or multi-level MC,

referring to models with varying mesh resolutions (Zhang, 2021).

Control variate estimator for mean

In the following, we refer to the explanations of González et al (2019) to introduce control

variate for engineering problems. Suppose that the response of interest y computed by the

high-fidelity model is complemented by an additional low-fidelity approximation ỹ. To evaluate

the mean µ1 the high-fidelity y and low-fidelity response ỹ are combined, such as:

µ1 = E[y]−βE[ỹ]+βE[ỹ], (2.20)

with a so-called control parameter β . The addition and subtraction of the low-fidelity model

in Eq. (2.20) is null from a theoretical point of view. Practically, the correlation between high-

and low-fidelity model improves the estimation through different sampling sets. To explain the

idea of different sample sets, we consider a vector Θn corresponding to n realisations of the

random input vector and Θm to a vector of size m. The number of samples m is significantly

higher than n, with m≫ n. For each sample set, the mean µ̂1 can be approximated with a MC

simulation following Eq. (2.16). Introducing the MC estimators in Eq. (2.20) the control variate

24



Catharina Czech

estimator µ̂CV
1 can be formulated as

µ̂
CV
1 = (µ̂1(y,Θn)−β µ̂1(ỹ,Θn))+β µ̂1(ỹ,Θm). (2.21)

Thus, a large number of low-fidelity assessments related to β µ̂1(ỹ,Θm) can significantly im-

prove the estimation of µ̂1(y,Θn) with little additional cost. The error introduced by the low-

fidelity model is corrected by the term µ̂1(y,Θn)−β µ̂1(ỹ,Θn). Its variability is rather low, as the

models are highly correlated. In such a way, the mean estimator µ̂CV
1 can be evaluated with

a better trade-off between accuracy and expenses. The variance of the estimator, interpreted

as an error measure (Peherstorfer et al, 2018), can be calculated by

V
[
µ̂

CV
1

]
= A1−2βA2 +β

2 (A3 +A4) , (2.22)

where
A1 =V [µ̂1(y,Θn)] =

µ2,0
n , A2 =Cov[µ̂1(y,Θn), µ̂1(ỹ,Θn)] =

µ1,1
n ,

A3 =V [µ̂1(ỹ,Θn)] =
µ0,2

n , and A4 =V [µ̂1(ỹ,Θm)] =
µ0,2
m

(2.23)

with the bivariate central co-moments between y and ỹ

µp,q = E[(y−E[y])p(ỹ−E[ỹ])q]. (2.24)

The specific co-moments used for Eq. (2.23) can be found in Appendix A. Following Eq. (2.22)

one can choose an ideal control parameter by minimising the variance of the estimator, such

as

β
⋆ =

A2

A3 +A4
. (2.25)

Control variate estimator for variance

The same concept can be applied to the estimation of the variance µ2 with a control parame-

ter γ

µ2 = (V [y]− γV [ỹ])+ γV [ỹ]. (2.26)

Comparable to the mean estimator of Eq. (2.21), the variance µ̂CV
2 can be approximated by

the control variate approach, with

µ̂
CV
2 = (µ̂2(y,Θn)− γ µ̂2(ỹ,Θn))+ γ µ̂2(ỹ,Θm). (2.27)

The variance of the estimator of the variance is given by

V
[
µ̂

CV
2

]
= B1−2γB2 + γ

2 (B3 +B4) (2.28)
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with the terms B1 - B4 analogous to those defined in Eq. (2.23), for example B1 =V [µ̂2(y,Θn)].

The detailed equations can be found in Appendix A. The control parameter is formulated ac-

cordingly:

γ
⋆ =

B2

B3 +B4
. (2.29)

Control parameters

The choice of the control parameter β is closely related to the discussion about unbiased

estimators. A simple and practical choice could also be β = 1, which can result in accurate

estimators µ̂CV
1 for highly correlated low-fidelity models as presented in González et al (2019).

Another option is to calculate the optimal control parameters β and γ from the sample set

itself, as suggested with Eq. (2.25) and Eq. (2.29). To circumvent a biased estimator, a splitting

scheme can be introduced (Avramidis and Wilson, 1993). Thus, the sample set is divided into

groups from which β and µ̂1 are calculated. For each group, the control variate estimator µ̂CV
1

is computed combining the control parameters and the mean estimators from different groups.

The final µ̂CV
1 is the average of all groups. This concept can be consequently adapted for the

variance estimator (Fina et al, 2022). For a detailed explanation, we here refer to Avramidis

and Wilson (1993).

2.6. Double-loop robust design optimisation

The second selected double-loop scheme is a robust design optimisation under uncertainties.

An optimisation algorithm searches for the minimum of a performance parameter under the

variation of design parameters. The term robustness refers to a low variability of the perfor-

mance quantity around the minima, as illustrated in Fig. 2.3b. In order to assess the variability,

the evaluation of second-order statistics is required. This leads to a double-loop optimisation

to i) find the minimum and ii) evaluate the variance-based robustness criterion.

2.6.1. Robust optimisation

We are interested in robust design optimisation, which utilises a variance-based robustness

metric to find an insensitive optimum. For aleatoric uncertainties, it is either an input variable,

also called a noise variable, or a design variable that represents the uncertainty. In the one-

dimensional example of Fig. 2.3b the design parameter is modelled as a random variable.

Notice that we here follow the naming convention for optimisation and indicate design variables

with x, which does not continue the convention for random variables in the previous sections.

A general optimisation problem can be formulated by the objective function f (xd) dependent

on the vector of design variables xd :

min f (xd) s.t. g(xd)≥ 0
xd

l ≤ xd ≤ xd
u.

(2.30)
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Furthermore, several constraints g(xd) are formulated for the design variables xd , which can

be chosen between lower xd
l and upper limits xd

u. The optimisation algorithm minimises the

objective function under the defined constraints. A random design or noise variable W is ad-

ditionally introduced such that f (xd,W ) with w ∈ S for all realisations. Varying metrics can be

formulated to describe the sensitivity of the objective function with respect to the uncertain pa-

rameter W . The most common technique is to create a two-loop optimisation algorithm. An in-

ner loop computes a robustness metric, which can be considered as an objective or constraint

within the standard optimisation procedure (Arsenyev, 2018). Here, we use the ’composite

criterion’, introducing the variance as a constraint g, which shall be below a threshold value

σ2
thres.

min fr(xd) = E[ f (xd,W )] s.t. V [ f (xd,W )]≤ σ
2
thres. (2.31)

Another idea is to add the robustness metric to the objective function fr(xd). This would

represent an additional objective and lead to multi-objective optimisation. However, the multi-

objective problem can be transferred into a single objective function by a weighted sum:

min fr(xd) = E[ f (xd,W )]+ sV [ f (xd,W )], (2.32)

with s indicating the weight. Considering a black-box simulation, the statistical properties can

not be calculated directly but must be approximated. Therefore, simulation-based methods are

proposed to estimate statistical properties, such as MC analysis. To approximate the standard

deviation, points around a candidate are evaluated with Eq. (2.16) and (2.17). This is repeated

in every iteration of the optimisation to ensure the convergence to a robust optimum.

2.6.2. Evolutionary algorithms

Lastly, a strategy is needed to solve the optimisation problem, which suits the individual prop-

erties of the problem. In general, one can choose between gradient-based methods and

gradient-free methods. The former uses gradient information to guide the algorithm towards

the minimum. Gradient-based algorithms, such as gradient descent or quasi-Newton methods,

are highly efficient in finding local optima for relatively smooth objective functions. The draw-

backs of the descent methods are their poor performance for noisy or discontinuous objective

functions. Then, gradient-free optimisation algorithms can be employed using population-

based techniques, such as Evolutionary Algorithm (EA) or particle swarm optimisation. These

global optimisation algorithms follow the principle of the survival of the fittest, whereby only the

best candidates of a population are allowed to recreate. In an iterative process, a population of

candidates shall evolve through selection, recombination, mutation and creation of offspring to

a global minimum (Harzheim, 2014). Popular EA are Genetic Algorithms, Evolutionary Strate-

gies and Differential Evolution (DE), although here we focus on the latter. The following briefly

presents the DE algorithm, referring the interested reader to Kochenderfer and Wheeler (2019)

for an overview of population-based algorithms.
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Differential Evolution

First proposed by (Storn and Price, 1997), Algorithm 1 summarised the main steps of DE,

which is also based on the explanations of Feoktistov (2006). For the sake of clarity, the

subscript d of the design variable xd is omitted in Algorithm 1. The three primary control pa-

rameters, the differentiation constant F , the crossover constant Cr, and the population size Np

need to be defined before the DE can be initialised. An initial population Pop0 is generated

employing a Design of Experiments (DOE) method within the bounds of the design variables.

The while loop creates a reproductive scheme such that each generation is evaluated and ma-

nipulated, leading to a subsequent population. The main steps are recombination, crossover,

and selection of the individuals within a population.

Algorithm 1 General DE algorithm (DE/rand/1) based on population size Np, crossover con-
stant Cr, differentiation constant F , maximum number of generations Ngen, objective func-
tion f (x)

Initialise population with DOE: Pop←{x1, ...,xNp}
Evaluate fitness: f (Pop)←{ f (x1), ..., f (xNp)}
while stopping condition not met do

for all xi ∈ Pop do
Choose random individuals for differentiation
π = {ξ1, ...,ξn} ⊂ Pop where ξi ̸= ξ j for i ̸= j
Recombination: create trial vector by recombining the individuals in π

xt ← Recombination(π,F,Strategy)
Crossover: random mutation of single genes
xt ←Crossover(xt ,Cr)
Check constraints for violation, if violated return to feasible domain
Selection:
if f (xt)≤ f (xi) then

xi← xt
else

xi← xi
end if

end for
Pop←{x1, ...,xNp}

end while
return best individual xbest

To test the current individual xi, the recombination function in Algorithm 1 creates a trial vector

in the differentiation phase. Therefore, the trial vector is constructed by

xt = β+F ·δ, (2.33)

with a base vector β, a difference vector δ and the differentiation constant F . Different strate-

gies to choose the base vectors and the difference vector exist, such as the DE/best/1. This

strategy uses the best solution currently available as the base vector β = ξ1 and adds the
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difference of two random vectors ξ2− ξ3 scaled by the differentiation constants F , such that

xt = ξ1 +F(ξ2−ξ3). A common starting point for the differentiation constant is F = 0.5, which

may be increased to one in case of premature convergence (Storn and Price, 1997).

Next, the crossover function further manipulates the trial vector xt . Under a certain probability

defined by Cr ∈ [0,1] the new trial inherits parts of the previously constructed vector xt , oth-

erwise the base vector β is unchanged. The design parameter setting of the trial vector xt is

applied if a randomly generated number rand j is smaller or equal Cr:

xt, j =

xt, j if rand j ≤Cr,

β j else.
(2.34)

As a last step the fitness function is evaluated for the trial vector and compared to the current

individual. If the fitness of the trial vector is smaller, it will replace the current candidate and

thus be considered in the next generation. The while loop is terminated if a convergence

criterion is met or a maximum number of iterations is reached.
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Chapter 3

Projection-based model order reduction for structural
analysis

In the last chapter, the theoretical background for analysis and optimisation has been intro-

duced. The presented techniques result in highly cost-intensive multi-query analysis. To over-

come the restriction associated with the high expenses, this contribution integrates model or-

der reduction techniques into the workflow of robustness analysis and optimisation studies. To

understand the proposed method, a second theoretical chapter introduces projection-based

model order reduction (MOR) techniques for structural analysis. In recent years, research

communities in the field of applied mathematics and computational mechanics have been de-

veloping varying projection-based MOR approaches. For the sake of clarity, the chapter merely

presents the methods applied here. The theoretical chapter does not aim for a comprehen-

sive literature overview, but is intended to provide a compact summary. Links to other popular

research directions in the field of projection-based MOR are provided in the introduction.

3.1. Introduction to model order reduction for structural analysis

To establish reduced order models for structural analysis we start with the underlying concept

of FE analysis in the following section.

Finite Element Method for structural analysis

The approaches presented here are based on the Finite Element Method (FEM), the key

technology for analysis of structures. The continuous problem is discretised through a finite
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number of elements to enable a numerical analysis of arbitrary structures. Attributing from

the popularity of the technique, an enormous number of publications are dedicated to FE

analysis. For the sake of compactness, a general introduction to FEM is omitted and the

reader is referred to one of the extensive books on nonlinear FEM such as Belytschko et al

(2014) or Wriggers (2008).

We start our explanations at the point of the semi-discretised equation of motion and em-

phasise the different nonlinearities typically considered for structural analysis. For dynamic

structural problems the partial differential equation takes the following well-known form:

Mü+ f(u, u̇) = g, (3.1)

with M ∈ RN×N being the mass matrix, u, u̇ and ü denoting displacement, velocity, and ac-

celeration, f and g representing internal and external forces. The total number of degrees of

freedom is N and depends on the resolution of the discretisation.

Equation (3.1) is discretised in space but continuous in the time domain. Therefore, a time

integration scheme of implicit or explicit nature is required for dynamic systems. An implicit

scheme fulfils Eq. (3.1) for each discrete time step and involves solving the system of equa-

tions. With an explicit integration scheme, the unknowns merely depend on the previous step,

which, however, results in an integration scheme which is only conditionally stable and that

requires the consideration of a critical time step.

If the internal force vector f of Eq. (3.1) includes a linear relationship between stress and strain

and the assumption of small displacements, we speak of a linear problem. If these simplified

assumptions are not sufficient to represent the problem at hand, the theory can be extended

to nonlinear behaviour. The following nonlinearities are apparent for structural analysis: geo-

metric nonlinearity, material nonlinearity, or nonlinearities due to boundary conditions such as

contact. For geometric nonlinearities, the linearised kinematic assumptions are replaced by

the consideration of large deformations and rotations. Therefore, a description of not only the

initial configuration but also the deformed reference configuration is required. Iterative solvers

such as Newton-Raphson schemes are needed to solve the equation of motion. Nonlinear

material behaviour is introduced through a nonlinear stress-strain relationship such as hyper-

elasticity, plasticity, or damage/fracture models. Another source of highly nonlinear analysis

is the consideration of contact between two objects or self-contact (Wu and Gu, 2012). For

a detailed discussion of the phenomena, the interested reader is referred to Belytschko et al

(2014). In the scope of MOR we recommend the summary of (Rutzmoser, 2018) for a FEM

scheme of hyper-elastic materials with large displacements.

The computational costs of FE analysis scale with degrees of freedom N. For industrial appli-

cations, detailed simulations require fine meshes with an increasing number of unknowns N.
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Moreover, if additional nonlinearities are included, the computational costs will increase further

through iterative procedures. Considering the analysis under uncertainties, as introduced in

the previous chapter, a single FE analysis is repeated with varying parameter configurations,

which greatly increases computational effort. Therefore, reduced order models have been

introduced to scale down the cost of classical FE simulations.

Introduction to Model Order Reduction

Within the field of model order reduction, an extensive amount of research contributions can

be found. Therefore, we briefly emphasise the selected techniques in comparison to other

available approaches. Rather than a comprehensive overview, this shall give a general clas-

sification in comparison to other popular approaches. Many of the reduced order methods

originate to the field of applied mathematics and are applicable to various system discretisa-

tion other than FE approaches. In comparison to well-established linear model order reduction

techniques, data-driven and projection-based techniques for nonlinear problems are an ac-

tive and fast evolving research field. Recent publications on reduced basis approaches for

snapshot-based methods (Benner et al, 2021a) or time-dependent problems (Hesthaven et al,

2022) provide an extensive overview on the topics.

With projection-based approaches one assumes that the structure relies on an intrinsically

lower dimension, which can represent the behaviour with a lower number of unknowns. The

first challenge is to identify these lower dimensions with a new subspace. For the construction

of the subspace, we will merely focus on data-driven approaches (Benner et al, 2021a), in

contrast to simulation-free approaches (Rutzmoser, 2018).

A common linear projection method, the POD is a highly popular technique to derive the sub-

space from full-order training data. Hereby we assume that the solution manifold of an intrin-

sically nonlinear problem can be approximated with a linear projection method. POD is based

on SVD, which is applied to a collection of full-order resultants, called snapshots, to construct

a projection matrix. Hence, the transformation to the subspace and its corresponding back

projection is a simple matrix multiplication. Other linear snapshot-based projection methods

are Proper Generalised Decomposition or Dynamic Mode Decomposition.

Moreover, we are interested in parametric MOR techniques to construct efficient models within

the scope of uncertainty and optimisation studies. Thus, a parameter space is introduced to

the reduced model, which depicts the parameter variation required for multi-query analysis.

From a practical point of view, the reduced order model shall represent not only one analysis,

but the behaviour dependent on multiple parameter configurations. An extensive overview on

MOR for parametric dynamical systems is given by Benner et al (2015) in the scope of linear

MOR and its extension to nonlinear problems.
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One can divide the MOR approaches into intrusive and non-intrusive techniques, whereby

the former transfers the internal system operators. In contrast, the latter, non-intrusive ap-

proach regards the FE analysis as a black box and is a purely data-based method. In our

case, the intrusive manipulation of the equation of motion is performed with a Galerkin projec-

tion. For nonlinear analysis, the projected equation still depends on the full-order dimension.

Additionally, a hyper-reduction step is added to further reduce the system and enable an inex-

pensive online simulation (Ryckelynck, 2009). In this work, the Energy Conserving Sampling

and Weighting (ECSW) technique and the closely related Empirical Cubature Method (ECM)

(Hernández, 2020; Hernández et al, 2017) technique are presented in detail. However in lit-

erature, many different hyper-reduction techniques have been proposed, e.g., summarised in

(Farhat et al, 2020).

The mentioned approaches based on POD are an efficient tool if the system behaviour is

adequately presentable by the first few basis vectors. A well-known limitation of the linear

projection method is its pure behaviour for problems with low Kolmogorov n-width. The Kol-

mogorov n-width describes the decaying rate of the eigenvalue, which is e.g. critical for trans-

port phenomena in fluid dynamics. Several approaches have been developed to overcome

these limitations. The idea of clustering the subspace by creating multiple smaller subspaces

with a higher decaying eigenvalue rate has been proposed (e.g. Amsallem et al (2012)). An-

other line of research has developed adaptive schemes that allow retraining and weakens the

separation of the online and offline phases, such as Rocha et al (2020). A more fundamental

approach is to exchange the linear with a nonlinear projection method. These techniques are

promising research directions, however, not an essential part of the proposed method.

Returning to non-intrusive approaches, data-driven techniques gain in popularity and specific

Machine Learning (ML) methods are developed for engineering applications often dealing with

sparse data regimes (Montáns et al, 2019). In Hesthaven et al (2022) the approach presented

here is called Proper Orthogonal Decomposition with Interpolation, which decisively names

the two main ingredients. Thus, the reduced basis vectors, computed by POD, are linearly

combined and weighted depending on the parameter configurations. Hereby, the system op-

erators are no longer involved, which creates a purely data-driven meta-model.

Often non-intrusive approaches also exploit nonlinear projection methods instead of linear

ones, as the overall workflow is easier to realise. An example is the kernel Principal Compo-

nent Analysis (PCA), which adds an additional higher-dimensional space, in which the PCA

is performed. Another prominent area of non-intrusive MOR is based on artificial neural net-

works. Most recently, convolutional autoencoders have proven to successfully represent highly

nonlinear manifolds (Lee and Carlberg, 2020; Fresca and Manzoni, 2022). Thus, the encoder

detects a lower-dimensional representation which can be mapped back with the decoder net-

work.
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The approach presented here in detail combines data-based and physical knowledge to project

the system of equations into a reduced subspace. During the training phase, the resultants

of several full-order models, called snapshots, are exploited to derive the main deformation

modes. A global POD is applied to the snapshot matrix, constructing a reduced space through

a linear projection. The concept of linear projection through POD and SVD is explained in Sec-

tion 3.2.1 and 3.2.2. Based on this projection matrix, an intrusive and non-intrusive approach

is presented here. The intrusive scheme transfers the governing equation to the subspace

to reduce the dimension. In addition to the Galerkin projection, the intrusive MOR scheme

includes a hyper-reduction step approximating the nonlinear terms. Section 3.3 explains the

approaches in detail. In contrast, the highlighted non-intrusive scheme combines the pro-

jection matrix with a regression analysis creating a purely data-driven surrogate model. The

non-intrusive approach is outlined in Section 3.4 with the choice of three different regression

models.

3.2. Snapshot-based projection via POD

The key idea of projection-based MOR is to find an intrinsically lower dimension that can

sufficiently represent the system. The full-order FE analysis solves for a vector of unknowns

u ∈ RN with N entries corresponding to each degree of freedom. To reduce the number of

unknowns, u, can be multiplied with a projection matrix V∈RN×k of dimension k, with k≪N

u≈ Vur. (3.2)

The projection breaks down to a linear affine transformation with a reduced basis vector. Con-

sequently, the construction of the reduced basis is essential for a successful projection-based

scheme.

In a snapshot-based approach the computation of the reduced basis is based on full-order

simulations, first proposed by Sirovich (1987). The output resultants, e.g. displacement vec-

tors, of the training simulations, also called snapshots ui, are collected in a snapshot matrix

A. Thus, one searches for a subspace V of predefined dimension minimising the following

problem

min
n

∑
i=1
||ui−Vur||2. (3.3)

with n the number of snapshots. POD solves this problem by applying SVD to the snapshot

matrix. Under the terms PCA and KL expansion, similar concepts have been developed in

varying research fields. The mathematical distinction between the techniques is analysed

by Gerbrands (1981), whereby SVD seems to be the most general label for the underlying

concept.
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3.2.1. Singular Value Decomposition

Mathematically, the SVD is an orthogonal decomposition or transformation of a matrix. To

introduce the technique, we follow the formulation of thin SVD for matrices A ∈ RN×n with

dimensions N ≥ n by Golub and Van Loan (2013). Applying SVD on the matrix A yields the

left-singular vectors U ∈ RN×n, the diagonal matrix Σ ∈ Rn×n containing non-negative singular

values σi, and the right-singular matrix Z ∈ Rn×n.

A = UΣZT . (3.4)

The singular values in Σi appear in descending-order. It is assumed that the higher singular

values are of greater "importance" and can sufficiently represent the dominant information.

Therefore, the lowest singular values are neglected and the matrix is approximated by a trun-

cation. Equation ( 3.5) shows the decomposed and truncated terms to approximate matrix A
by a reduced matrix of rank k.

A≈ UkΣkZT
k = VΣkZT

k .

V = U:,:k ∈ RN×k, Σk = diag(σ1, ...,σk) ∈ Rk×k, Zk = Z:,:k ∈ RN×k.
(3.5)

Thereby, the projection matrix V := Uk can be identified, which resembles the mapping from

the full to the reduced subspace.

To further illustrate the procedure, Fig. 3.1 shows the transformation of a three-dimensional

sample set. The sample matrix A ∈R3×34 is constructed by n = 34 snapshots in the Cartesian

coordinate system (grey), which is plotted on the left side of Fig. 3.1. Note that in contrast

to this example, in engineering applications, the dimension N is usually much larger than the

number of snapshots n. Applying SVD the matrix can be reformulated through three orthogo-

nal column vectors shown in black. On the right of Fig. 3.1 the data set is multiplied with the

projection matrix V of a truncated rank k = 2, such that VT A. The coordinate system in black

is identical to the one on the left, whereby the right figure shows a two-dimensional projection

of the data set. Hence, SVD approximates the data in a new ’coordinate’ system of lower

dimensions, which minimises the variance.

In contrast to the example of Fig. 3.1, it is not trivial to choose an ideal truncation rank k in

the scope of projection-based approaches. As a lower bound for k is not known a priori, an

optimal value k̃ under the constraint of an approximation error ε is obtained, such as:

k = min k̃ with
∥A−Uk̃Σk̃ZT

k̃
∥F

∥A∥F
≤ ε. (3.6)

The Eckart-Young-Mirsky theorem (Eckart C, 1936; Mirsky, 1960) ensures optimality of the

truncated SVD with respect to the Frobenius and spectral norms. In other words, no other
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Figure 3.1 Exemplary transformation of a snapshot matrix A ∈ R3×34 via SVD. On the left, data points are shown in the
three-dimensional coordinate system (grey) and its left singular column matrix (black). The projected points are plotted in
first two directions of the orthogonal column vectors (black), on the right. As here n > N the decomposed terms have the
following dimensions U ∈ RN×N , Σ ∈ RN×N and Z ∈ RN×n.

approximation of rank k with a smaller approximation error based on these norms exists. For

the choice of an appropriate truncation, the singular values can give an import indication.

Equation (3.6) can be reformulated as an energy ratio based on singular values σ , such as

∑
k̃
i=1 σ2

i

∑
n
i=1 σ2

i
≤ 1− ε

2. (3.7)

The error measure ε shall ensure a certain level of accuracy with respect to the snapshot ma-

trix approximation. Moreover, the decaying rate of the singular values can give further insight

into the complexity of the system. A fast decaying rate indicates that an intrinsic lower dimen-

sion can be described by the first few basis vectors, whereas a low decaying rate requires

more dimensions for a sufficient representation.

3.2.2. Data-based global POD

For parametric reduced order models the construction of the reduced basis and its underlying

snapshot selection can be realised in various ways. Here, we discuss a global POD approach

that combines time and parameter variations (Benner et al, 2015). Resultant vectors ui(t,µ)

with t ∈ T as time and µ ∈ P with the parameter domain P, are extracted from full-order train-

ing simulations. The total number of snapshots n consists of the snapshots at varying time

instances t1, t2, ..., tnt ∈ T and different parameter configurations µ1,µ2, ...,µnµ
∈ P, such that

n = ntnµ . Here, the instance selection is based on a classical sampling strategy, such as

Latin hyper-cube sampling or Sobol sampling. The collected snapshot matrix is reformulated

through SVD, and the projection matrix can be constructed.

For large-scale matrices, a conventional evaluation of SVD can be highly computationally ex-
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pensive or infeasible as its complexity exhibits O(n2). To address such problems, randomised

or incremental SVD techniques (Bach et al, 2019; Oxberry et al, 2017) may be applied. Other

developments, such as proposed in Phalippou et al (2020) who introduced an iterative enrich-

ment of the snapshot matrix in combination with an incremental SVD are conceivable.

In general, the choice of snapshots is crucial to the construction of a suitable reduced basis.

The classical sampling strategy could also be exchanged for adaptive sampling via greedy

search algorithms (Benner et al, 2015). Snapshots are iteratively sampled following the high-

est approximation error of the reduced model, such as presented by Bui-Thanh et al (2008)

using trust region optimisation. Another approach divides the space into multiple local sub-

spaces, also called localised model order reduction. Therefore, different subspaces for pa-

rameter clusters are constructed in the offline phase. For each online analysis, the best-fitting

cluster is selected, on which the system operators are projected (see Amsallem et al (2012)

in combination with ECSW hyper-reduction or (Peherstorfer et al, 2014) with DEIM). For a

comprehensive overview on the adaptation of local bases, we refer to (Hesthaven et al, 2022;

Benner et al, 2015).

3.3. Intrusive model order reduction

The foundation of the reduced order model has been developed in the previous section by

constructing a reduced basis formulation from snapshots. Next, we discuss how intrusive

MOR schemes exploit the projection matrix to reduce the dimensions of the system opera-

tors. Figure 3.2 gives a schematic overview of intrusive MOR, which is implemented within

Snapshots of
full-order analysis

Offline phase

Reduced basis

A = VΣkZT
k

Hyper-reduction

VT r≈ ∑e∈E VT
e re ωe.

Online phase

Rapid simulations

VT MV︸ ︷︷ ︸
Mr

ür + VT f︸︷︷︸
fr

(Vur,Vu̇r, t) = VT g︸︷︷︸
gr

.

Evaluation of
multi-query analysis

Figure 3.2 The workflow for intrusive MOR divided into online and offline phase.

the FE solver. It is divided into an offline, or preparation phase and an online step. Within the

preparation step, a suitable orthogonal projection matrix is constructed, as explained in Sec-

tion 3.2. This allows a Galerkin or Petrov-Galerkin projection of the equation of motion into a

subspace to reduce the number of unknowns. However, for a nonlinear problem the computa-

tion of the internal force vector still depends on the full-order analysis. Therefore, an additional

hyper-reduction step is introduced, which also requires a precomputation in the offline phase.

Consequently, the Galerkin projected system with hyper-reduction can be evaluated in the

online phase with lower computational expenses.
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In literature, many different hyper-reduction techniques have been proposed. A first approach,

called gappy POD has been introduced to computational mechanics by Willcox (2006). Farhat

et al (2020) classifies the approach as an approximate-then-project method, whereby other

related techniques are Discrete Empirical Interpolation Method (DEIM) (Chaturantabut and

Sorensen, 2010), its further development UDEIM by Tiso and Rixen (2013), or Gauss-Newton

with Approximated Tensors (GNAT) proposed by Carlberg et al (2013). Another group of hyper-

reduction methods follows the idea of project-then-approximate, such as the ECSW technique

by Farhat et al (2014, 2015) or ECM published in Hernández et al (2017). For more recent

publications, deep neural networks (Cicci et al, 2022), dynamic mode decomposition (Kutz

et al, 2016) or operator inference (Peherstorfer and Willcox, 2016) can be named as alternative

options for hyper-reduction.

For structural FE analysis, ECSW and its closely connected ECM provide beneficial numerical

stability properties and are therefore presented here. Thereby, a subset of elements is selected

to approximate the nonlinear internal forces. In the following section, the Galerkin projection is

introduced, whereby its differences to the Petrov-Galerkin projection are drawn. Section 3.3.2

introduces ECSW and ECM, as a hyper-reduction technique.

3.3.1. Galerkin projection

To derive the Galerkin projection we repeat the equation of motion of dimensions N with the

mass matrix M ∈ RN×N , displacement vector u, external forces g and the nonlinear internal

force vector f:
Mü+ f(u, u̇, t) = g. (3.8)

Let us assume that a suitable reduced basis, which represents the system with lower dimen-

sions k≪ N, is available. The projection matrix V can be introduced to Eq. (3.8)

MVür + f(Vur,Vu̇r, t) = g+ r. (3.9)

Through the approximation implied by the projection, an additional residual r appears. As for

N equations k unknowns are not determined uniquely, the residual is also multiplied by the

matrix V, such as

VT r = 0. (3.10)

If the matrix V in the above equation is the projection matrix, one speaks of a Galerkin pro-

jection. For a Petrov-Galerkin approach, V would be exchanged by another orthogonal matrix

W to bound the residual. The over-determined system is constrained to be orthogonal to the

space spanned by the residual. Thus, we introduce the approximation of Eq. (3.10) to the

equation of motion for general nonlinear dynamics:

VT MV︸ ︷︷ ︸
Mr

ür + VT f︸︷︷︸
fr

(Vur,Vu̇r, t) = VT g︸︷︷︸
gr

. (3.11)
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Figure 3.3 The matrix dimensions of projected system of equations following Eq. (3.11) to underline the transformation from
dimension k to N with k≪ N.

The matrix dimensions of Eq. (3.11) are visualised in Fig. 3.3 to underline the transformation

from dimension k to N with k ≪ N. For dynamic analysis the reduced equation of motion

can be solver with an implicit or explicit time integration scheme (Farhat et al, 2014), whereby

(Bach et al, 2018) highlights the effects on explicit procedures.

3.3.2. Hyper-reduction

The Galerkin projection reduces the size of equations solved in implicit time integration schemes

and therewith the computational costs. For linear problems, this can already result in significant

speedups. However, Eq. (3.11) is still coupled to the original system size N when evaluating

the internal force vector. It defines the reduced internal force vector with

fr := VT f(Vur,Vu̇r, t). (3.12)

As the reduced force vector fr is computed by multiplying VT by the force vector f(Vur,Vu̇r, t)

of dimension N Eq. (3.11) still depends on the physical dimensions. The evaluation of non-

linear forces is performed at every element for every time step in the physical space and re-

quires large computational resources. Reference is made to Farhat et al (2020) for a detailed

overview of the computational bottleneck, which distinguishes between linear and nonlinear

problems. To avoid the high cost associated with the nonlinear force vector, commonly an

additional reduction step called hyper-reduction is introduced (Ryckelynck, 2009). Applying

hyper-reduction, the nonlinear terms are only evaluated at selected entries or elements, to

circumvent the dependency on the full-order dimension. In the following the ECSW technique

and the closely related ECM method are introduced, to circumvent the bottleneck for nonlinear

analysis.

Energy Conserving Sampling and Weighting

By applying the ECSW technique (Farhat et al, 2014, 2015) the internal forces are evalu-

ated over a reduced number of elements, while conserving the global energy of the system.

Moreover, ECSW yields symmetric system matrices and exhibits superior numerical stability

properties compared to other hyper-reduction methods. To identify potential candidates for

the hyper-reduction, a non-negative weighting factor is computed for each element to quantify

its impact on the solution vector. In general, the global internal force vector f is assembled
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through the connectivity matrix Le with the force vectors fe for all elements e ∈Ω. Through the

hyper-reduction the full-order space Ω is approximated by a sub-set E and a weighting vector

ζ ∗ of weights ζ ∗e for each element:

VT f = VT
∑

e∈Ω

LT
e fe ≈ VT

∑
e∈E

ζ
∗
e LT

e fe. (3.13)

The product of VT f can be interpreted as the virtual work, which constitutes virtual displace-

ment multiplied by a force vector. Consequently the energy can be conserved by choosing

appropriate weighting factors (Farhat et al, 2014). To compute the weights ζ ∗e , the unassem-

bled training forces are collected in the matrix G ∈ Rn×Ne

G =


G1,1 · · · G1,Ne

... . . .

Gn,1 Gn,Ne

 , Gi,e = (VT )ef(i)e (3.14)

with f(i)e being defined as the i-th snapshot of the unassembled internal force vector of element

e, Ne the number of elements, and n the number of snapshots. Next, the vector b ∈ Rn, the

sum over all elements bi = ∑e∈Ω Gi,e is set up. The linear equations b = Gζ are formulated,

whereby all entries of ζ are ones. A minimisation problem is solved with a predetermined

tolerance τ , such as:

argmin∥ζ∥0 s.t. ∥Gζ
∗−b∥2 < τ ∥b∥2 and ζ

∗ ≥ 0. (3.15)

Here, ∥·∥0 is the 0-pseudo norm, which counts the number of non-zero entries of its argument.

Equation (3.15) is approximated by a sparse non-negative least square method. A solution

can be obtained using greedy algorithms, where elements are added until the condition of

Eq. (3.15) is satisfied.

Empirical Cubature Method

The Empirical Cubature Method (ECM) algorithm has been introduced by Hernández et al

(2017); Hernández (2020), which are the basis for the following explanations. ECM is closely

related to ECSW, however, it operates on the integration point level to identify suitable ele-

ments. For each selected element, a corresponding non-negative weighting factor is com-

puted to characterise its impact in the assembling process of the reduced system. Instead

of considering the unassembled force vector, the residual is used for the computation of the

weighting factors. From Eq. (3.8) follows that the residual vector is defined as

r(g, ü, u̇,u, t) = g−Mü− f(u, u̇, t). (3.16)
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Recall that through the Galerkin projection the residual is spanned orthogonal to the projection

matrix following Eq. (3.10), such that VT r(g,Vür,Vu̇r,Vur, t) = 0.

The assembly of the reduced system is performed element by element. Therefore, the ele-

mental contributions are collected from all elements e ∈Ω as:

VT r = ∑
e∈Ω

VT
e re ≈ ∑

e∈E
VT

e re ωe. (3.17)

Similarly to ECSW, the set of finite elements Ω is reduced to a subset E and a weighting vector

ω , with ωe > 0, through hyper-reduction. To obtain the subset of elements and corresponding

weights, the unassembled projected residuals are gathered in the matrix S ∈ R(kn)×Ne , such

that

S =


S1,1 · · · S1,Ne

... . . .

Sn,1 Sn,Ne

 , Si,e = VT
e r(i)e . (3.18)

The number of elements and snapshots is denoted by Ne and n and the vector r(i)e is defined

as the i-th snapshot of the unassembled residual for element e. Moreover, we define the

exact assembly, the sum of all elements b = Sζ , with ζ := {1}Ne . The optimisation problem

can be formulated identically to Eq. (3.15) as already explained for ECSW. It is well known

that the problem of Eq. (3.15) is NP-hard (Boyd and Vandenberghe, 2004), and therefore it is

necessary to resort to convexification or sub-optimal greedy procedures. The ECM applies a

greedy procedure to find the required hyper-reduced data. Unlike ECSW, an SVD is performed

on the matrix of projected residuals S≈UrσrG. It was observed by Hernández et al (2017) that

the truncation tolerance for this SVD is closely related to the tolerance τ in the original problem

of Eq. (3.15). The required hyper-reduction data are obtained by passing the truncated matrix

of the right singular vectors G to the algorithm: [E ,ω ] = ECM(G).

Therewith, the basics of intrusive model order reduction have been introduced. In summary,

the system operators are projection into a subspace via Galerkin projection and an addi-

tional hyper-reduction step, which circumvents the bottleneck of computing nonlinear internal

forces.

3.4. Non-intrusive model order reduction

The non-intrusive MOR is purely based on data analysis exploiting techniques from the field of

machine learning. In contrast to the previously mentioned intrusive scheme, the characteristic

equation of the underlying physical phenomena is not invoked. Therefore, non-intrusive MOR

belongs to the class of surrogate models. In this context, proper orthogonal decomposition with

interpolation (Hesthaven et al, 2022) is introduced, which combines the reduced basis with a
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regression model. Examples of successful applications in the scope of nonlinear structural

analysis are given by Guo and Hesthaven (2017); Swischuk et al (2019); Yu et al (2019); Kast

et al (2020); Kaps et al (2022). In comparison to conventional surrogates, which are commonly

used for multi-query analysis, the non-intrusive MOR method operates in the subspace and

does not predict the full-order system directly. Moreover, the corresponding model is bounded

to physical solutions supplied by the reduced basis.

Non-intrusive schemes do not entail a time integration scheme; therefore, the time parameter

must be handled in a different manner. Analogous to the concept of global POD, see Section

3.2.2, the time domain is treated in a similar manner as the parameter domain. Thus, the time

instance is an additional input parameter to the regression model. Another possibility is to use

a two-level POD (Xiao et al, 2015) to separate spatial and temporal modes. Furthermore, the

tensor decomposition of Guo and Hesthaven (2019) provides an advanced way to cope with

two classes of parameters of different nature. These approaches show interesting concepts

which are, however, not elaborated on further.

In essence, the non-intrusive model approximates the system response as a weighted linear

combination of the basis vectors v

u≈
k

∑
i=1

viαi(t,µ). (3.19)

Recalling Section 3.2.1, every column vi in the projection matrix V ∈ RN×k represents a re-

duced basis vector:

V =
[
v1 v2 · · · vk

]
. (3.20)

Hereby, the scalar values αi define the influence of each basis. The weights αi(t,µ), de-

pending on the parameter configuration µ and time instance t, are computed with the help

of a regressor. One can also interpret the approach as a regression model in the reduced

subspace, whereby αi = ur. To gain the full-order resultant vector, a projection back to the

physical space u = Vur is required. Consequently, the evaluation of the governing equation is

replaced by a much simpler regression model, however also situated in the reduced space.

Figure 3.4 summarises the overall workflow of the presented non-intrusive MOR approach.

Consistent with the intrusive scheme, one distinguishes between an offline (training) and an

online phase. First, a snapshot matrix A ∈ RN×ntnµ is built from the resultants of full-order

analysis. To align with the intrusive scheme, we collect displacement data, which could also be

replaced by any other quantity of interest. As discussed in Section 3.2.1, POD is performed on

the snapshot matrix A and a truncated set of basis vectors is selected. A list of time ti ∈ T and

parameter configurations µi ∈ P corresponding to the snapshots is additionally prepared. Prior

to passing u to the regression model, a multiplication with the transposed matrix V projects
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Figure 3.4 The workflow for non-intrusive MOR divided into online and offline phase.

the data into the subspace. Then, a regression model φ : X→Y maps the input t,µ ∈ X to the

outputs ur(t,µ) ∈ Y , whereby ur(t,µ) denotes the vector of unknowns in the reduced space.

We focus on k-Nearest Neighbour (kNN), Polynomial Regression (PolyR), Gaussian Process

Regression (GPR) as interchangeable regression models. After completing the training phase,

Fig. 3.4 depicts the online phase by the lower grey bar. For a specific parameter µ and a time

instance t the regression model provides a system answer ur(t,µ). To interpret the predicted

output, the vector must be projected back into the physical space.

To comprehensively describe the concept of Fig. 3.4, the regression models kNN, PolyR

and GPR are presented. Other regressors, such as radial basis functions or artificial neural

networks, could also be used in the presented setting. From a machine learning perspec-

tive, regression models are supervised learning techniques. To approximate an unknown re-

gression function f we assume that a training set x,y ∈ D is available, where for each pair

xi,yi : yi = f (xi). The available data set is commonly divided into test and training data. The

test data contains n observation of data points with x= [xi, ...,xn] and its corresponding outputs

f = [ f (xi), ..., f (xn)]. In general, the regression model is found by minimising a cost function

ε that penalises deviations of a prediction f̂i from its true value fi. Moreover, the model de-

pends on certain model parameters Θ, corresponding to the chosen regression technique.

The minimisation problem can be formulated as,

Θ
∗ = argmin

Θ
ε(f(x), f̂(Θ,x)). (3.21)

During machine learning, the model parameters Θ, also called hyperparameters, of the chosen

method are optimised. The training set is utilised to build the regression model, which can then

be tested with the remaining test data x⋆ and its corresponding f⋆ to assess its accuracy.

3.4.1. K-nearest neighbour regression

The kNN algorithm is commonly applied for classification problems and is less known as a

regression model. In a classification problem, kNN divides the set of n observations into

multiple clusters. Whenever a new point is classified, the (Euclidean) distance to its k nearest
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ŷ with noise
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Figure 3.5 Comparison of the regression curve ŷ based on kNN, PolyR, GPR for a data set of n = 15 observations.

neighbours is computed to select the cluster. Consequently, regression through kNN also

involves the closest k neighbours for prediction. The approximation technique averages the

value of k neighbours, optionally considering their distances by a weighting factor. The hyper-

parameter is, hereby, k, the number of neighbours. The key question is how to efficiently find

neighbours within the data set. A naive attempt solves this problem by computing all distances

to select the nearest neighbours. The algorithm is characterised by the cost of O[dn2] with the

number of sample points n in dimensions d. To find the closest data points in a more efficient

way, tree structures are used, such as the k-d tree by Bentley (1975).

To illustrate the regression algorithms, Fig. 3.5 shows a data set with n = 15 observations and

dimension d = 1. An exemplary test data point f (x⋆ = 0.1) is approximated with kNN. Using
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k = 4 neighbours, its value is calculated by the weighted distance as depicted by the dotted

lines in Fig. 3.5a. Moreover, the solid line represents the regressor evaluated at equidistant

points along the domain. The prediction is solely based on interpolation, which results in a

non-smooth curve. In general, the advantage of kNN is its simplicity and robustness. As

shown in the following sections, other techniques can create more sophisticated regression

models.

3.4.2. Polynomial regression

In contrast to the local approximation of kNN algorithms, polynomial regression functions be-

long to global approximation techniques. A polynomial function f̂ (x) of degree p shall approx-

imate the unknown function f (x) with a minimal residual error ε , such that

f (x) = f̂ (x)+ ε. (3.22)

An approximation using first-order polynomials is obtained by the first two terms of the following

equation:

f̂ (x) = β0 +
p

∑
i=1

βixi +
p

∑
i=1

p

∑
j>i

βi jxix j, (3.23)

which is extended to a more general form for higher polynomials with the third term. The

approximation includes regression coefficients βi, which are chosen such that the residual r,

the sum of squares between the function y = f (x) and its approximation f̂ (x) is minimised:

r(β ) =
n

∑
w=1

(yw−β0−
p

∑
i=1

βixiw−
p

∑
i=1

p

∑
j>i

βi jxiwx jw)
2. (3.24)

Equation (3.24) can be solved with an ordinary least-squares solver. Although this method

includes polynomials of x, it is essentially a linear technique, as the vector β is in linear re-

lation to y. For this reason, the method is often referred to as multiple linear regression or

linear polynomial regression. The interested reader is referred to Bishop (2006) for a detailed

overview of linear regression models and its developments.

Figure 3.5b shows an exemplary polynomial function f̂ (x) with p = 3 that approximates the

identical data set of the previous example. Here, the distance to the approximation function,

the residuals, are drawn in green for each training point. The approximation function f̂ (x) is

chosen such that the sum of all residuals is minimised. In general, PolyR benefits from a clear

function formulation and rapid evaluations, but can suffer from overfitting for high polynomial

degrees (Bishop, 2006).
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3.4.3. Gaussian process regression

Compared to kNN and PolyR, GPR is a probabilistic regression approach, which is based on

Gaussian random processes introduced in Section 2.2.2. In contrast to the previously pre-

sented random fields, we are not interested in deriving sample functions from a Gaussian

process, but we use its beneficial properties for a predictive model. Thus, training points are

treated as random variables with joint Gaussian distributions, and predictions are accompa-

nied by confidence intervals. We focus only on GPR, which is closely related to the popular

Kriging approaches that add a trend function to the process. The presented derivations are

mainly based on Rasmussen and Williams (2006).

A set of training points x and its function evaluations f are assumed as a stationary Gaussian

process with a zero mean and a covariance matrix K(x,x). An underlying covariance function,

as presented in Section 2.3.2, defines the relation between the data points and is therefore

the core of the process. Based on the data set of observed points f the joint distribution to new

test outputs f⋆ can be constructed

[
f
f⋆

]
∼ N

(
0,

[
K(x,x)K(x,x⋆)

K(x⋆,x)K(x⋆,x⋆)

])
, (3.25)

with the covariance matrix K ∈ Rn×n⋆ and the number of test points n⋆. The joint distribution

can be transformed to a conditional distribution, from which the function values f⋆ are sampled.

The value of the new prediction response is then the mean f⋆

f⋆ = K(x⋆,x)K(x,x)−1f, (3.26)

Cov(f⋆) = K(x⋆,x⋆)−K(x⋆,x)K(x,x)−1K(x,x⋆). (3.27)

For a single test point the covariance Cov(f⋆) equals to the variance. If the observations

are based on noisy data, the approximation y = f (x) + ε includes a noise variable ε . The

additive noise ε is assumed to be independent and identically normal distributed with variance

σn. Therefore, the term K(x,x) in Eq. (3.25) is extended by the noise distribution resulting

in K(x,x) +σnI, with the identity matrix I. The predictions for testing data based on noisy

observations are as follows,

f⋆ = K(x⋆,x)[K(x,x)+σ
2
n I]−1f, (3.28)

Cov(f⋆) = K(x⋆,x⋆)−K(x⋆,x)[K(x,x)+σ
2
n I]−1K(x,x⋆). (3.29)

The correlation matrices K are calculated based on a predefined correlation function. Hereby,
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the correlation lengths are non-physical hyper-parameters. Typically, an optimisation is per-

formed to find an ideal choice for the corresponding data set.

A regression analysis based on GPR for the exemplary data set is plotted in Fig. 3.5c. With

a noise-free assumption, GPR interpolates between the training points. The dotted green line

represents the mean following Eq. (3.26) and its standard deviation is marked by the shaded

area around it. This can be interpreted as the approximation’s confidence interval. A GPR with

noisy data is used to plot the solid blue line calculated with the assumptions of Eq. (3.28). This

approximation does not necessarily conform to the training points. The statistical properties

and its flexibility due to the choice of kernel function are beneficial properties of GPR. However,

since a matrix inversion of the covariance matrix is computationally very demanding, a large

set of data points can be problematic.
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Part III

Methods
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Chapter 4

Multi-fidelity scheme based on two-level model order
reduction

This chapter presents a novel multi-fidelity scheme exploiting reduced order models as the

core part of the thesis. It is based on the theoretical framework introduced in the last two

chapters. Hereby, the proposed methods intertwine the basic concepts of model order reduc-

tion with analysis and optimisation under uncertainties.

For uncertainty quantification or optimisation studies, the iterative nature of the analysis leads

to high computational costs. To enable such analyses for highly complex industrial simulations,

reduced order models have been developed. The MOR approach introduced here combines

classical physics-based FE analysis with data-driven methods to enable cost-effective simu-

lations. In this chapter, the idea is further extended, and a novel multi-fidelity approach is

proposed as the main development of this thesis. The intrusive reduced order model, as pre-

sented in Section 3.3 is complemented by a non-intrusive model that improves the iterative

procedures. To ensure a high correlation between the models, an adaptive update of the

non-intrusive model is additionally suggested. The multi-fidelity scheme represents a gen-

eral applicable technique that specifically focuses on cost-intensive double-loop algorithms.

We are particularly interested in robust design and propose a robustness analysis and ro-

bust optimisation incorporating the multi-fidelity scheme based on two levels of model order

reduction.

The properties of the proposed multi-fidelity scheme are presented, and the options for vari-
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ous applications are highlighted in the following paragraph. The workflow is explained in detail,

distinguishing between the preparation phase in Section 4.1.1 and the online phase in Section

4.1.2. The subsequent sections focus on the implementation of the multi-fidelity framework

for analysis and optimisation under uncertainties. To better understand the workflow, pseudo

algorithms explain the application to the double-loop schemes. The chapter is closed with

Section 4.4 on the transformation to single-fidelity schemes and related collaborative publica-

tions.

4.1. Multi-fidelity scheme for double-loop algorithms

To lower the computational costs, several reduced order models have been developed, which

bridge the gap between data-driven surrogates and physical analysis, ideally combining the

benefits of both. The proposed multi-fidelity scheme considers intrusive MOR for analysis and

optimisation under uncertainty. When creating the intrusive model, the construction of an ad-

ditional non-intrusive model is a natural extension. Therefore, this non-intrusive meta-model is

based on the already available reduced basis. An additional regression model, corresponding

to the reduced number of unknowns in the intrusive model, is easy to incorporate and with little

additional cost. On the other hand, this correlated low-fidelity model can add useful knowledge

in the process of multi-query analysis.

The approach presented here shall be a general scheme for applications of varying iterative

analysis. We focus on analysis under uncertainty because these iterative methods are inher-

ently cost-intensive and severely constrained by their computational complexity. For example,

in MC analysis, the accuracy of the estimator corresponds directly to the number of system

evaluations, and thus to the computational effort. Two costly analysis schemes, a double-loop

optimisation and a double-loop MC analysis, are presented to show the variety of use cases.

However, the proposed scheme is not limited to these application cases.

The general workflow for the analyses under uncertainties is outlined in Fig. 4.1. To start the

analysis, the present uncertainties must be quantified. To describe the aleatoric uncertainties,

probabilistic techniques, as introduced in Section 2.2 are employed. We distinguish between

single random variables or spatially varying random processes. Uncorrelated random vari-

ables could be a material property, e.g., Young’s modulus, a geometrical dimension, such as

the thickness of a plate (see Chapter 5) or an uncertain loading as introduced in Chapter 7.

On the other hand, a random process can describe correlated uncertainty fields in the space

or time domain. Examples of spatially correlated uncertainties in structural analysis are inho-

mogeneous material properties or complex boundary conditions.

If the distribution of the random parameter is already known, one can directly incorporate

this expert knowledge into the numerical analysis. As in Chapter 7 or 8 random variables are
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defined via normal distributions with certain mean and variance. However, in practical settings,

such information is often not available. An example of the quantification of statistical properties

is given in Chapter 6. The spatial uncertainties of beech wood are modelled with the theory

of random fields. Accessing the theoretical background of Section 2.3 on random fields, a

correlation function must be quantified to describe the apparent properties of the correlated

field. Based on an experimental data set, an approach is presented to describe the data with

a correlation function. With the discretised random field, material properties can be adjusted

at the element level, serving as input to the FE analysis. The derived statistical quantities

are then used to define the samples in the training phase and are the basis for any type of

multi-query analysis.

Statistical performance

Uncertainty quantification

Fi
g.

4.
3

Fi
g.

4.
2

phase
Offline/Training

Multi-query
analysis

Figure 4.1 Overview of workflow divided in online and offline phase for proposed multi-fidelity scheme

In the offline or training phase, the reduced order model is constructed, explained in further

detail in the next section. Iterative analyses are performed in the online phase, described in

Section 4.1.2. Detailed explanations of the individual steps are summarised in Fig. 4.2 and

Fig. 4.3. As a final stage, results of the multi-query analysis can be evaluated to quantify the

statistical performance.

4.1.1. Training phase for parametric problems

Figure 4.2 shows a comprehensive overview of the preparation phase for the multi-fidelity

MOR scheme. The grey boxes indicate the considered options between different methods,

and the icons give a visual connection to the theoretical background presented in the previous

chapters.

After identifying and describing the statistical parameters, the training phase can be initialised.

For the set of training simulations, the sampling should correspond to the random variable or

field that describes the uncertainty. Moreover, training simulations should cover the possible

range of realisations of the random variable or field to define a suitable design space. This can

be achieved by applying appropriate sampling procedures, also called design of experiments.

A full factorial sampling is suitable for one- or two-dimensional design spaces, whereby it is
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Figure 4.2 Training phase of multi-fidelity scheme constructing an intrusive and a non-intrusive model for uncertainty
propagation with varying options highlighted in grey.
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beneficial to include the corner points. For such cases, Sobol sampling is a useful sampling

strategy, as the training set can be successively enhanced according to the Sobol numbers, as

applied in Chapters 5 and 8. Another popular sampling technique is Latin Hypercube Sampling

(LHS), which spans a grid of sample points throughout the design domain. Other advanced

sampling approaches are especially helpful when dealing with large design spaces or sparse

samplings. For example, Kaps et al (2022) apply an adjusted sampling technique for large

dimensions (see also Komeilizadeh et al (2023)) to create non-intrusive reduced order models

in the scope of multi-fidelity crash optimisations.

With the sampling strategy, full-order analyses are performed, which often presents the main

cost of the training stage. Snapshots from all training simulations are collected and a global

POD (see Section 3.2) is performed. Therewith, a suitable projection matrix is identified on

which intrusive and non-intrusive models are constructed. The intrusive method is based on

a Galerkin projection and a hyper-reduction as introduced in Section 3.3. First, a Reduced

order model with Galerkin projection (ROM) is established by the Galerkin projection of the

system of equations. Based on ROM simulations, the residuals or forces are collected for the

computation of the hyper-reduced elements. After performing the ECM or ECSW algorithm,

the Hyper-reduced Order Model with Galerkin projection (HROM) is available.

For the multi-fidelity scheme, a second low-fidelity model is added. The non-intrusive model

is created on the basis of the projection matrix. Thus, the weighted combination of the re-

duced basis vectors represents the low-fidelity model. To predict the corresponding weights, a

regression model is introduced, using approaches such as kNN, PolyR, or GPR presented in

Section 3.4. When employing a single-fidelity scheme, one can choose between an intrusive

and a non-intrusive model and neglect the training step corresponding to the other approach.

The error of the reduced order model must be evaluated as a last step. In the ML community,

the available data set is commonly divided into test and training samples. The training set is

used to create the reduced model, while the test set is applied to evaluate accuracy measures.

The quality of the reduced model can be analysed with bisectoral plots or error measures, such

as the generalised mean root square error eGMRE . Furthermore, the division of test and training

sets is expandable by cross-validation procedures, as discussed in Chapter 8.2. The dotted

line indicates that a reconstruction of the reduced order model might be required if accuracy

levels are not sufficient. For example, one can increase the number of training simulations or

the truncation rank of the projection matrix. At the end of the training phase, an intrusive and

a non-intrusive model representing the parametric problem are available.

4.1.2. Online phase for analysis and optimisation under uncertainties

In the previous section, the construction of high- and low-fidelity reduced order models has

been explained step by step. With the models in place, we can move to the online phase and

efficiently perform multi-query analyses. An overview of the proposed multi-fidelity scheme is
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given in Fig. 4.3. The presence of multiple options within the analysis scheme is highlighted

with grey boxes. In addition, the steps related to robust optimisations are coloured blue, while

robust analysis is highlighted in light green. To illustrate the modularity of the scheme, the grey

frames show possible conversions to single-fidelity workflows. The workflow associated with

multi-fidelity analysis is framed by the black dotted line in Fig. 4.3.

The top of Fig. 4.3 illustrates the collection of uncertain parameters as a starting point. As

mentioned in the previous section, random phenomena can be described by a random vari-

able or, in more complex cases, a spatially distributed random field. On the basis of the

uncertain parameter and the desired type of analysis, the iterative procedure is initiated. Both

multi-fidelity analyses start an iterative loop, where analyses are repeated with varying pa-

rameter configuration. In an outer loop, the high-fidelity is analysed, followed by an optional

updating of the low-fidelity model. The idea is that through the additional high-fidelity simula-

tions, new response outputs are available. The training set is enriched with these snapshots,

and the regression model can be retrained. Note that the reduced basis is constant through

the iterative process, and only the regressor is updated. Next, a second inner loop is executed

using the low-fidelity model for analysis.

Figure 4.3 depicts Full-Order Model (FOM) and intrusive ROM, or HROM as possible high-

fidelity models to perform the outer loop analysis. For the inner loop, one has here the choice

between three different regression models incorporated in the non-intrusive scheme. Fur-

thermore, the approximation accuracy of the non-intrusive model can optionally be improved

throughout the retraining step. To gain the highest computational speedup, HROMs should be

chosen as the high-fidelity model. For the applications presented here, FOMs are commonly

utilised to create a reference solution. However, it is also a reasonable choice in combination

with non-intrusive models (Kaps et al, 2022). Another possibility is to omit the hyper-reduction

step and directly use ROMs to perform the outer loop, as in the study of Chapter 8.1.

The first option is an optimisation under uncertainties using a variance-based robustness cri-

terion (see Section 2.6), highlighted in blue on the left of Fig. 4.3. The robustness criterion can

be considered via the objective function or as a constraint of the optimisation problem. The

double-loop algorithm combining two different MOR techniques is employed for optimisation

studies with population-based techniques. Evolutionary algorithms introduce a population of

sample points which is iteratively adapted such that it converges to a global minimum. For each

sample point in every iteration, a structural analysis is required. A second loop evaluates the

robustness measure based on the variance. Example studies are introduced in Chapter 8.

The green boxes in Fig. 4.3 indicate the robustness study based on MC analysis and control

variate, such as introduced in Section 2.5. In the case of an analysis under uncertainties, a

fixed number of samples is analysed during a MC simulation. Similarly, FOM, ROM, or HROM

can be applied to realise the MC analysis. When working with control variates, a second

54



Catharina Czech

Low-fidelity model

Statistical performance

Retraining

Robust minimum Distribution of

Non-intrusive MOR

HROM

High-fidelity model

ROM

Intrusive MOR

FOM

Analysis under uncertainty: multi-query simulation

Robust optimisation

Random variable

Uncertainty quantification

Random field

Robust analysis

MC Analysis Control variateConstraint Objective

PolyGPRkNN

M
ul

ti-
fid

el
ity

S
in

gl
e-

fid
el

ity
S

in
gl

e-
fid

el
ity

performance parameter

Figure 4.3 Online phase of multi-fidelity scheme employing multiple levels of intrusive and non-intrusive models for robust
analysis and optimisation.
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inner loop is introduced. Evaluations of the correlated low-fidelity model improve the mean

and variance estimators with reduced computational costs. For the construction of the low-

fidelity model, additional information from the outer loop can be incorporated. This optional

retraining increases the correlation between the high- and low-fidelity models. The multi-fidelity

scheme is applied in Chapter 7, where a beam experiencing large displacements through

varying loading conditions is analysed.

Figure 4.3 depicts the evaluation of statistical performance as the final stage. For an optimi-

sation study, the robust minima can be visualised along with the convergence of the design

variables and objective function. The distribution of the performance parameter is the main

outcome of the robustness analysis.

We can summarise that the proposed multi-fidelity scheme exploiting varying levels of MOR

is tailored to analysis and optimisation under uncertainties. The construction of the model fol-

lows Fig. 4.2, where its theoretical background is presented in Chapter 3. Methods belonging

to the field of uncertainty quantification have been introduced in Chapter 2 in a systematic

manner. The extension through reduced order models is a major novelty of this work. Fig-

ure 4.3 shows a summary of the multi-fidelity approach using different levels of model order

reduction. The following two sections provide a detailed implementation of robust optimisation

and MC analysis with control variate based on multiple MOR levels. Moreover, its transforma-

tion to single-fidelity schemes and related collaborative publications are mentioned in Section

4.4.

4.2. Multi-fidelity robustness analysis via control variate estimators with
reduced order models

Figure 4.3 presents robustness analyses that estimate the distribution of a performance pa-

rameter as one of the multi-fidelity applications. The theoretical background for statistical

analysis through MC simulations and control variate estimators was introduced in Section 2.5.

This is the basis for Algorithm 2 that shows the proposed multi-fidelity workflow intertwining

the control variate approach with model order reduction techniques.

The definition and initialisation of the random variables is the first step. In particular, two

vectors Θn and Θm of size n and m, with n≪ m, are populated by realisations of the random

variables. In addition, low- and high-fidelity models gLF and gHF are required to initialise the

analysis.

Algorithm 2 further specifies the control variate sampling procedure specific to the multi-level

approach. The outer loop represents the analysis with the high-fidelity model gHF . Based on

the input vector Θn, the performance resultants of n intrusive MOR simulations are collected.
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Algorithm 2 Uncertainty propagation of random input parameters with control variate estima-
tor based on low-fidelity model gLF and high-fidelity model gHF

Define random variable;
Initialise Θn,Θm with n,m samples and n≪ m; ▷ realisations of random variable
function CONTROL VARIATE PROCEDURE(Θn,Θm,gHF ,gLF )

for n sample points Θn do ▷ outer loop
yi = gHF(θi) ▷ intrusive MOR

end for
Retraining of gLF ▷ update non-intrusive model
for (n+m) sample points in (Θn +Θm) do ▷ inner loop

ỹ j = gLF(θ j) ▷ non-intrusive MOR
end for
Compute control parameter β ,γ ▷ apply splitting scheme
Mean estimation µ̂CV

1 (y, ỹ,β ) and V
[
µ̂CV

1
]

Variance estimation µ̂CV
2 (y, ỹ,γ) and V

[
µ̂CV

2
]

end function

These samples can additionally be utilised to improve the low-fidelity model gLF , by a recon-

struction with the supplementary snapshots from the high-fidelity analysis. If the regression

model is based on interpolation, e.g. kNN, the updated low-fidelity model gives the identical

system answer as the high-fidelity model at the retraining points. To avoid this fact, it is rec-

ommended to apply PolyR or GPR with noise as a regression model within the non-intrusive

scheme.

In the next step, the inner loop is called evaluating m simulations with m≫ n using the non-

intrusive model. Note that the loops are not nested compared to the optimisation algorithm and

can also be executed in a parallel manner. Subsequently, the mean and variance estimators

are evaluated as in Eq. (2.21) and (2.27), respectively. Moreover, the corresponding estimators

and their control parameters β and γ are computed within a splitting scheme. To judge the

approximation, the variance of the estimators corresponding to the mean square error can

additionally be computed following Eq. (2.22) and (2.28).

The accuracy of the estimators increases proportionally with the number of sample evalua-

tions. Therefore, the cost associated with the corresponding numerical analysis is of great

importance. In the proposed scheme, the processing time for numerical analyses is reduced

by employing MOR techniques. Assuming a constant budget, the number of samples can be

increased through the multi-fidelity technique, which consequently improves the accuracy of

the estimators. The double-loop algorithm consists of an outer loop using intrusive methods

and an inner loop applying non-intrusive methods. Hence, the correlated models are ideally

arranged in a bi-fidelity scheme to enable large efficiency gains.

The method is showcased in Chapter 7 for a structural design problem, a three-dimensional

beam-like structure. Thereby, the loading direction is uncertain and is modelled as two un-
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correlated normal random variables. With the proposed scheme, we evaluate the distribution

of the tip displacement, as the performance quantity. In comparison to simulations with the

full-order model, we can show that the proposed scheme significantly reduces computational

cost. Moreover, we present the application of the intrusive hyper-reduced order model and the

retrained non-intrusive surrogate.

4.3. Multi-fidelity robust optimisation with reduced order models

Building upon the general workflow of MOR based multi-fidelity schemes, the next paragraph

concentrates on its specific application to robust optimisations. Therefore, Algorithm 3 explains

the multi-fidelity scheme for the double loop algorithm. The analyses through low- and high-

fidelity models are indicated by gLF and gHF , whereby the detailed options for high- and low-

fidelity models can be found in the overview of Fig. 4.3. Additional comments are added to

Algorithm 3 to clarify whether intrusive or non-intrusive techniques are relevant. Algorithm 3 is

embedded in an optimisation strategy, here a population-based method, which is not further

detailed. Within the optimisation procedure, the sample points of a population are evaluated

and recombined through iterations to reach a global optimum. After the initialisation of the

optimisation parameters and random variables, the optimisation loop is entered. In this outer

loop, the objective function f (x) is repeatedly executed for different design parameters x during

the optimisation procedure.

Within the outer loop, a second inner loop is introduced to calculate the robustness metric.

We are interested in the variability pi of the target yi with respect to the random phenomena.

Therefore, sample points xs are calculated around the current design parameter xi considering

the random variable. With the help of the high-fidelity model gHF , the variance of the perfor-

mance quantity yi is computed applying the MC estimator of Eq. (2.17). Through the additional

simulations gained by the variance evaluation, the low fidelity gLF can be enriched. In a con-

secutive step, the performance of the design variable xi can be analysed with the improved

low-fidelity model.

Robust optimisation procedures can consider the robustness criterion within the objective func-

tion as Eq. (2.32) or as a constraint following Eq. (2.31). Algorithm 3 incorporates the variance-

based criterion into the objective function by fi = ỹi+ s · pi with the weight s. Finally, the fitness

fi of the candidate is returned to the general optimisation procedure. This procedure is ap-

plied to all candidates in the population and repeated in each iteration until the convergence

criterion of the optimisation study is met.

Caused by the double-loop algorithm, the costs associated to the optimisation algorithm are

scaled with the number of evaluations multiplied by the number of samples for the variance
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Algorithm 3 Workflow for population based optimisation algorithms exploiting low-fidelity
model gLF and high-fidelity model gHF

Define random variables
Initialise optimisation
while search for minimum do ▷ outer loop

function OBJECTIVE FUNCTION(xi,gHF ,gLF )
Define n sample points xs around xi ▷ based on location and dispersion
for n sample points xs do ▷ inner loop

y j = gHF(xs
j) ▷ run intrusive ROM to approx. variance

end for
Variance criterion pi(y)
Retraining of gLF ▷ update non-intrusive ROM model
Evaluate sample point ỹi = gLF(xi) ▷ run non-intrusive ROM
fi = ỹi + s · pi ▷ objective + variance criterion
return fi

end function
end while

estimation. The intrusive and non-intrusive models help to accelerate the overall workflow and

enable such cost-intensive analysis.

Depending on the focus of the study, the application of intrusive and non-intrusive techniques

is interchangeable. In Algorithm 3 the high-fidelity model is used to approximate the variance

of the design point and the low-fidelity for the design point itself. This could also be exchanged

when the computation of the robustness criterion is of less importance. To still realise the

retraining of the low-fidelity model, the system answer of the design point xi must be computed

before the variance loop. In fact, this corresponds better to the general idea of outer and

inner loops, as presented in Fig. 4.3. In the application chapters, both alternatives are tested.

However, since the applications focus on the robustness criterion, Algorithm 3 was defined

accordingly.

Chapter 8 presents structural optimisations that employ the two-level MOR approach for robust

design. First, the robust position of a hole within a structure experiencing damage is inves-

tigated. Hereby, the absolute and robust minima of the objective function are visualised to

confirm the effect of the robustness criterion on the optimisation procedure. In a second study,

a large-scale industrial optimisation is being carried out: the evaluation of the fibre composite

alignment of an aircraft wing. A hyper-reduced model as well as a non-intrusive surrogate

are created to find the minimal deformation of the airfoil tip deformation. With the FE model’s

200,000 degrees of freedom, the efficiency gains of the proposed multi-fidelity approach are

also exemplified for large-scale analyses.
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4.4. Single-fidelity analysis and related work

After elaborating on the multi-fidelity scheme for robust analysis and optimisation, the conver-

sion to single-fidelity and connected multi-fidelity schemes is highlighted. This transformation

into a single-fidelity analysis is indicated by the grey dashed boxes in Fig. 4.2 and 4.3. When

simplifying the multi-fidelity approach, either the intrusive or the non-intrusive model is ap-

plied. The first aim of this thesis is to investigate the overall performance of intrusive MOR in

the scope of structural design studies. Therefore, the multi-fidelity scheme is converted to a

single-fidelity analysis and the non-intrusive model is neglected or used for comparison. The

corresponding Chapters 5 and 6 apply a single-fidelity scheme purely constructing an intrusive

reduced order model with global POD and hyper-reduction. The application section starts with

an example from the field of crashworthiness in Chapter 5, which also compares the intrusive

scheme to the non-intrusive approach to familiarise the reader with both techniques. In the

scope of uncertainty propagation, the intrusive approach is showcased in Chapter 6 for natural

fibre composites.

For Chapters 5 and 6 the focus lies on intrusive MOR, however, the non-intrusive scheme has

also been further investigated by the author in multiple collaborations. In Go et al (2023) a

non-intrusive reduced order model successfully represents a human body model in scope of

crash analysis. A global POD-based projection is combined with GPR to create a surrogate

model for nonlinear transient analyses. Furthermore, the linear projection method is extended

with a nonlinear Principal Component Analysis (PCA), the so-called kernel PCA. The surro-

gate model allowed for a parameter study to prevent injuries caused by the seat belt in crash

scenarios. Another collaborative publication is presented in Pretsch et al (2023), in which a

non-intrusive model of the pressure field surrounding a compressor blade is used to enable an

interdisciplinary design optimisation. For this industrial optimisation problem, a non-intrusive

reduced order approach in combination with additional Kriging regression models enables the

highly cost-intensive optimisation including structural and fluid analysis.

A multi-fidelity optimisation based on non-intrusive model order reduction has been published

in Kaps et al (2022). A hierarchical kriging model introduces a multi-fidelity scheme that adap-

tively enhances the low-fidelity model within the optimisation study. Within the multi-fidelity

scheme, the full-order FE analysis represents the high-fidelity model, and a global POD with

kNN-based regression is employed for the low-fidelity model. Applied to automotive crashwor-

thiness problems, a size optimisation for lateral impact, and a shape optimisation for frontal

impact is investigated. We could show that the non-intrusive model is well-suited in the scope

of hierarchical kriging and accelerates the optimisation algorithm.
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Part IV

Applications
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Chapter 5

Comparative study of intrusive and non-intrusive model
order reduction for crashworthiness

Based on the theoretical background and developed methods, this chapter presents an ap-

plication of intrusive and non-intrusive MOR for an optimisation study in the field of crash-

worthiness. It is related to the first class of research questions concerning the benefits and

drawbacks of intrusive MOR for parametric nonlinear structural problems. Moreover, the non-

intrusive MOR approach is introduced in contrast to the intrusive scheme and complemented

by a detailed comparison of offline and online costs for structural optimisation.

The field of crashworthiness requires highly nonlinear analysis and is therefore suitable to test

the presented schemes for structural applications. A transient, nonlinear example including

contact formulations is conducted to simulate the deformation process of a crash box. First,

we introduce the constructed intrusive and non-intrusive models on an exemplary crash box

analysis. Hereby, its inter- and extrapolation abilities, and its overall accuracy and speedup

are investigated and compared. With an optimisation study, we highlight the benefits and

drawbacks of both approaches.

The following chapter is based on the publication Czech et al (2022b), which is partly incorpo-

rated or reformulated throughout the text. It is a continuation of the previous Ph. D. thesis of

Bach (2020), which was the starting point for this work. For the intrusive MOR scheme, the

software LS-Dyna including a special implementation interface, is utilised. The implementa-

tion was carried out within a previous work by Bach (2020) and has been extended further to
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perform optimisation studies by Mathias Lesjak. The author added the comparative analysis

and the design of the optimisation study. A stand-alone Python code holds the algorithm for

the non-intrusive scheme, which was developed for this work by the author. Therefore, the

Python library Scikit-learn (2022) and SciPy (2022) have been employed for regression and

optimisation algorithms.

5.1. Crash box analysis

To assess the two algorithms, a crash box example, similar to the example published by Reid

(2000), is introduced. The crash box, as depicted in Fig. 5.9a, is modelled as an elasto-plastic

tube with a wall thickness of 2.0 mm and a length of 272.5 mm, whereby imperfections are

introduced along the tube to trigger the folding mechanism. A rigid plate with an initial velocity

of 40 km/h in the negative z-direction crushes the tube, which is clamped at the bottom.

All deformable parts are discretised with fully integrated Reissner-Mindlin shell elements1,

which have translational and rotational degrees of freedom. In contrast to the element for-

mulation, the remaining contact and material parameters have not changed compared to the

template simulation (Reid, 2000). Penalty formulations are applied to model the contact be-

tween the plate and the crash box, as well as the self-contact2. The material properties for the

crash box are as follows: The mass density is ρ = 7830 kg/m3, the Young’s modulus is E = 200
GPa, the Poisson’s ratio is ν = 0.30 and the yield strength is σy = 0.366 GPa with a piece-wise

linear plasticity model (see Reid (2000)). The reduced order models are constructed for the

tube discretised by 1924 nodes and a termination time of T= 20ms is set.

In the following, the intrusive and non-intrusive MOR schemes are applied to the crash box

example and their results are compared regarding accuracy and numerical effort. First, we

validate the approaches by computing the training accuracy. The measure evaluates the ability

to reproduce the training data. However, the main interest lies in the performance on param-

eters that are not present in the training data presented in Section 5.2.2. Multiple regression

models within the non-intrusive scheme are tested. Furthermore, their inter- and extrapolation

capabilities are studied, whereby the impacting kinetic energy and the thickness of the crash

box are varied. To evaluate their overall computational cost a comparative analysis is pre-

sented. In Section 5.3 the reduced models of the crash box are embedded in an optimisation

workflow.

1 LS-Dyna keyword: ELFORM=16
2 LS-Dyna keyword: CONTACT_AUTOMATIC_SINGLE_SURFACE
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(a) k = 20, τ = 0.1,
εGMRE = 8.1%

(b) k = 40, τ = 0.01,
εGMRE = 0.5%

Figure 5.1 The deformed crash box at t = 20 ms for two different reduction levels, with the FOM as grey wireframe and the
HROM results shown by the coloured elements (Bach, 2020)

5.2. Parameter study for inter- and extrapolation capabilities

5.2.1. Training accuracy

To test the intrusive and non-intrusive scheme for transient analysis, the first study evaluates

a model reproducing the training simulation. Therefore, the parameter domain P is neglected

and only the time domain T is considered. Uniformly, every t = 0.01 ms a snapshot vector of

all displacements is allocated to the snapshot matrix.

As the focus is on transient analysis, an error measure considering the full time domain is

defined. To evaluate accuracy, the global mean relative error εGMRE is calculated using full-

order displacements u and reduced order displacements ur for the full time domain T as

follows:

εGMRE :=

√
∑

t∈T
(u(t)−Vur(t))T (u(t)−Vur(t))√

∑
t∈T

uT (t)u(t)
. (5.1)

For the intrusive scheme, it is referred to Bach (2020) for a detailed description on the imple-

mented MOR employing ECSW (see Section 3.3.2) as hyper-reduction method. Moreover, the

projection matrix V is orthonormalised with respect to the mass matrix and is built for displace-

ment and rotational degrees of freedom separately. The results for the hyper-reduced crash

box are summarised in the following. Figure 5.1 shows the results of two crash box simula-

tions computed by the intrusive MOR, whereby the grey wireframe represents the FOM and

the orange and green shells indicate the selected hyper-reduction elements for two different

reduction levels (Bach, 2020). The parameter k is the number of basis vectors for the ROM,

and τ is the tolerance value for the hyper-reduction algorithm in Eq. (3.15). The ROM and

the HROM, as depicted in Fig. 5.1, result in computational speedup factors of 4.7 and 7.1,

respectively.

To further validate the approach, Fig. 5.2 shows the displacement using intrusive and non-
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Figure 5.2 Displacement-time curve for two reference nodes (marked in Fig. 5.3 in blue and green correspondingly) using
the intrusive (k = 20,τ = 0.01) on the right and non-intrusive (k = 20, Matérn kernel) approach on the left.

intrusive MOR of two reference nodes (highlighted in blue and green in Fig. 5.3), which are

included in the folding mechanism. The intrusive approach on the right shows the nodal dis-

placement result of the ROM and HROM with larger ∆t, as the Galerkin projection leads to a

higher critical time step for explicit solvers (Bach et al, 2018).

Next, the Non-intrusive Reduced Order Model (NiROM) model with Gaussian process regres-

sion, as introduced in Section 3.4 is constructed. On the left of Fig. 5.2 the results of the

reference node are plotted utilising the non-intrusive model with k = 20 basis vectors and a

GPR with an isotropic Matérn kernel. This example recapitulates the application of the intru-

sive scheme and illustrates that the non-intrusive regression model can represent the example

data. To analyse the quality of non-intrusive models, different regression models are tested

with varying input parameter configurations in the next section.
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0.8 · eimpact 1.2 · eimpact

(a) Crash box deformation for a variation of ±20% of the
mass of the impacting plate.

0.8 · ttube 1.2 · ttube

(b) Crash box deformation for a variation of
±20% of the tube’s thickness.

Figure 5.3 Crash box deformation for a variation of ±20% of the tube’s thickness and the impacting kinetic energy realised
by a variation of the plate’s mass.

5.2.2. Online accuracy

The previous section presented the ability of the MOR schemes to create a simplified model

for a nonlinear structural simulation. However, replicating the training simulation is not the

intention of the MOR methodology, as no computational efficiency is gained. Considering

a multi-query analysis, such as optimisation or probabilistic analysis, the idea is to roughly

identify the parameter space and perform a few high-fidelity simulations beforehand. These

are utilised for the construction of the reduced model to enable fast online simulations within

the multi-query analysis. Therefore, the inter- and extrapolation capabilities within the online

phase are the key point for an efficient application. A study investigating two different nonlinear

manifolds should illustrate and compare the capabilities of intrusive and non-intrusive models

for transient analysis. We first restrict us to a one-dimensional parameter space, whereby a

larger design space is evaluated within the optimisation study in the next section.

To illustrate the effect of parameter variations, the kinetic energy of the impacting plate and the

thickness of the crash box are identified as suitable variables. For both parameters, individual

models are created for a variation of ±20% for all the following studies. To change the kinetic

energy applied to the crash box, the mass of the impacting plate is varied by ±20%, as it

deviates proportionally. The variation in kinetic energy and thickness under constant velocity

has a strong impact on the folding mechanism of the crash box depicted in Fig. 5.3. It is

also noticeable that the effects of the variation in kinetic energy have a smaller impact on the

system than 20% deviation of thickness. By discussing both variables we can investigate the

different "levels" of nonlinearity and their effects on the online accuracy.

To analyse the capabilities of reduced order models representing varying manifolds, first a

study focusing on the non-intrusive approach is presented. The NiROMs exploiting ML tech-

66



Catharina Czech

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter domain P

nµ = 2
nµ = 4
nµ = 8
nµ = 16
nµ = 32

Figure 5.4 Visualisation of training sets µ1,µ2, ...,µnµ
∈ P with varying sample number nµ for the ROMs φ(t, ttube),

φ(t,eimpact) corresponding to study of Fig. 5.6 and its 32 test samples, represented by blue lines.

niques PolyR, kNN and GPR are compared individually for the two cases: impacting kinetic

energy and thickness of the tube. As the models highly depend on the quality of the train-

ing phase, not only the different regression techniques are assessed, but also an increasing

number of training simulations.

To judge data-driven meta-models, a prior distinction between training and test data enables

the computation of multiple error measures such as the R2- value or the εGMRE . A training

data set is created by Sobol sampling with an increasing sample set µ1,µ2, ...,µnµ
∈ P with

nµ of 2, 4, 8, 16, and 32. In addition, a testing set of 32 samples is built by a random Sobol

sequence, whereby each number is multiplied by a scaled random value. The distribution of

the corresponding training and test samples is shown in Fig. 5.4, whereby the test points are

highlighted with vertical blue lines.

The training and testing configurations are scaled for the parameter space thickness of the

crash box ttube ∈ P and energy of the impacting plate eimpact ∈ P. Full-order analyses are simu-

lated accordingly and snapshots are collected uniformly every 0.1ms. Five NiROMs φ(t, ttube)

are individually built for the sets of 2, 4, 8, 16, and 32 training points nµ , whereby each sim-

ulation contributes 200 snapshots t1, t2, .., t200 ∈ T . To create five NiROMs φ(t,eimpact) the

procedure is repeated. All models are based on a reduced subspace with k = 20 basis vec-

tors.

In Fig. 5.6 the displacement εGMRE of Eq. (5.1) is plotted, as an error measure for all 32 test

samples. The bar is drawn from the smallest to the largest εGMRE and the mean of all samples

is highlighted individually by a marker for kNN, PolyR and GPR. For all models, the accuracy

increases with the number of training simulations. One can notice that the PolyR models

of order seven, constructed from two training simulations do not provide useful surrogates,

possibly due to overfitting. Despite this exception, the regression techniques kNN with five

neighbours, PolyR and GPR using an anisotropic Matérn kernel show an εGMRE in similar

ranges.

Table 5.1 compares the εGMRE and R2 for the models φ8(t, ttube) and φ8(t,eimpact) built from

8 training simulations for all three ML techniques. It is noticeable, that the GPR performs
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Table 5.1 Comparison of mean error measures R2 and GMRE for varying NiROMs with a subspace k = 20 and PolyR (p =
7), kNN (k = 5), GPR (anisotropic Matérn kernel) for 8 training simulations and 32 test simulations.

PolyR kNN GPR
ttube eimpact ttube eimpact ttube eimpact

R2 0.981 0.992 0.900 0.995 0.994 0.999
εGMRE 1.93 1.20 1.25 0.87 0.36 0.28

best in the framework of non-intrusive MOR with a εGMRE of 0.28% and R2 = 0.999 for the

parameter space eimpact . For this example, the models built by kNN have a higher accuracy

than those obtained by polynomial regression. As the kNN technique averages a data point

with the k-nearest neighbours, its quality to approximate the very first and last time step is

reduced. The performance of kNN trained on sparse data, especially in the time domain can

drop significantly, as also observed by Kneifl et al (2021). However, kNN is a fast and robust

technique and especially for high number of data points a simpler regression model can be

beneficial.

Comparing R2 and εGMRE for the different parameter domains, all φ(t,eimpact) regression mod-

els show a higher R2 than φ(t, ttube). This can also be observed in Fig. 5.6 for models with

increasing training sets. On the left, φ(t, ttube) models have continuously higher εGMRE as

φ(t,eimpact) surrogates. As a smaller range of displacement patterns (Fig. 5.3) corresponds to

the variation of the impacting kinetic energy eimpact , this could be expected.

To further understand the particular meta-models, Fig. 5.5 visualises the displacement in x, y,

and z-direction of the first test simulation for two folding points (marked in Fig. 5.3). Similar to

the Table 5.1, PolyR, kNN, and GPR are based on snapshots from 8 transient training simula-

tions and a subspace of k = 20 basis vectors. An artificially smooth function can be observed

for the polynomial regression of order seven. Compared to the other techniques, GPR using

an anisotropic Matérn kernel has superior accuracy and is able to depict more irregular data

points, as also exploited by Guo and Hesthaven (2019).

The next study compares the non-intrusive to the intrusive approach for varying parameter

domains. For the intrusive MOR the question rises if the projected system of equation enables

an extrapolation of design variables. Therefore, the projection matrix is constructed from a

single training simulation and tested in the online phase with extrapolating design variables.

The displacement εGMRE by Eq. (5.1) of the intrusive MOR are plotted on the right of Fig. 5.3a

and Fig. 5.3b. The model is trained, collecting snapshots every 0.01ms, using a plate mass of

150 kg and a wall thickness of 2.0 mm. It can be observed, that the error increases with the

distance to the training configuration. Also the relative error due to a change in wall thickness

is generally higher than the error associated with a change of the plate’s mass. This further

supports the observation of higher nonlinearities associated with a varying tube thickness.
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Figure 5.5 Displacement-time curve for two reference nodes (marked in Fig. 5.3 in blue and green correspondingly) for
NiROMs with varying regression models PolyR (p = 7), kNN (k = 5), GPR (anisotropic Matérn kernel) and a subspace k = 20.
The model with varying tube thickness φ(t, ttube) is displayed on the left and the model for different impact energies
φ(t,eimpact) is shown on the right.
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Figure 5.6 Displacement εGMRE of 32 test simulations and its mean for varying NiROMs with a subspace k = 20 and PolyR
(p = 7), kNN (k = 5), GPR (anisotropic Matérn kernel) for sets of 2, 4, 8, 16, 32 training simulations. The εGMRE for models
with varying tube thickness φ(t, ttube) are displayed on the left and the models for different impact energies φ(t,eimpact) are
shown on the right.

In contrast to the small extrapolation capabilities of the intrusive ROMs, the non-intrusive

scheme is restricted to interpolation. Training a non-intrusive model with snapshots corre-

sponding to one parameter instance would yield unreasonable results, as the surrogate is

essentially a regression model and only enriched by physical phenomena. For a comparison

of the techniques, the minimum number of training simulations to reach a similar accuracy

level is investigated. The snapshot time increments are enlarged to 1ms, such that a total

number of 20 snapshots are collected from each transient analysis. The number of training

simulations was successively increased until the non-intrusive ROMs achieved εGMRE in the

same range as the intrusive approach. As for non-intrusive models the computational cost

mainly depends on the number of training simulations; this is an important factor to compare

the overall efficiency gains.

On the left of Fig. 5.3a and 5.3b the displacement εGMRE of the non-intrusive MOR results are

depicted. The training samples are obtained by Latin hypercube sampling and marked with

grey circles in Fig. 5.3a and 5.3b. Hence, three training simulations are needed for varying

mass and thirteen for varying thickness, in order to obtain similar error values compared to

the intrusive MOR method. As already observed before, the accuracy of the simplified model

strongly depends on the nonlinear manifold and the quality of the training phase. Note that

for the variation of thickness in Fig. 5.3b the number of training data rises to thirteen, which

would be equivalent to an increasing online error while keeping the same number of training

simulations.

It could be shown, that non-intrusive ROMs are capable of representing the crash box ex-

ample, whereby especially kNN and GPR provided reliable regression models. The GPR is

the most accurate technique and kNN is favourable in terms of efficiency and robustness.

Moreover, the accuracy of ROMs highly relies on the amount of training simulations and snap-

shot intervals in time and parameter domain. Note that the characteristic change in time and
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(a) Overall displacement εGMRE for ROM, HROM and NiROM with varying mass of the impacting plate.
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Figure 5.7 Comparison of the displacement εGMRE with parameter variation of intrusive (Bach, 2020) and non-intrusive
models (anisotropic Matérn kernel) with a subspace k = 40.
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Table 5.2 Elapsed time for the crashbox example of Fig. 5.7 comparing FOM, ROM and HROM (Bach, 2020) and NiROM

FOM ROM HROM NiROM

56.55s 20.75s 11.95s 0.01s

parameter space defines the nonlinear manifold and therewith the required training set. A

comparison to the intrusive approach illustrates, that similar accuracy can be achieved by

non-intrusive ROMs with a higher number of training data. For the intrusive ROMs of the crash

box, extrapolation within the parameter domain is possible for a 20% range, however a gen-

eral conclusion cannot be drawn from this example analysis. Further studies in the field of

crashworthiness are required to display a comprehensive picture.

5.2.3. Computational cost

After examining the accuracy of the models, we now focus on the computational speedup of

the reduced models. The construction cost of the machine learning model is negligibly small

compared to the evaluation of the training simulations for all techniques. One ROM evaluation

using kNN or PolyR is 4 orders of magnitude and for GPR 3 orders of magnitude smaller

than a full-order analysis. However, for a higher number of DOFs, but especially for a higher

number of design parameters and snapshots, the cost of constructing a Gaussian Process can

significantly increase. For a detailed comparison of online and offline costs for the different ML

techniques in the scope of crashworthiness it is also referred to Kneifl et al (2021).

Here, we focus on the comparison of costs of the intrusive and non-intrusive method. Table 5.2

shows the elapsed time for the crash box example of Fig. 5.7. The single online simulations

of the corresponding ROMs are measured on an Intel Xeon 3.5 GHz processor with 4 CPUs.

The intrusive scheme has a speedup factor of approximately 4.7 and the non-intrusive scheme

with GPR is of 3 magnitudes faster than the FOM. However, including the offline phase into the

evaluation of the computational cost the results appear to be different. Figure 5.8 compares

the cost function of intrusive and non-intrusive with φ(t,eimpact) and φ(t, ttube), in grey, blue, and

green respectively. The x-axis shows the number of online evaluations, whereby the start rep-

resents the training effort. The values on the y-axis are normalised by the computational cost

of one full-order simulation. Thus, the intrusive training cost equals to 1 and the non-intrusive

to 3 and 13. With a speedup factor of four and 104, the efficiency of the non-intrusive scheme

overtakes the performance of the intrusive for 10 and 57 online evaluations of φ(t,eimpact) and

φ(t, ttube) respectively. Note that the costs of SVD and hyper-reduction are neglected here

and the speedups of the intrusive MOR highly depend on the specific implementation (Bach,

2020).
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Figure 5.8 Normalised computational cost for the crash box example of Fig. 5.7 comparing full-order simulation (FOM)
intrusive (Galerkin ROM and HROM) and non-intrusive ROM for an increasing number of online simulations.

5.3. Optimisation study

The previous section evaluated the effects of training parameters on the online accuracy ex-

emplarily for the crash box example. Next, an optimisation is proposed to further illustrate the

capabilities of the presented schemes. Therefore, the crash box is adapted for a dimensional

optimisation of tailor welded blanks. The automotive industry discovered that for thin-walled

structures tailor welded blanks can be exploited to improve its lightweight and crashworthi-

ness properties simultaneously (Fang et al, 2017). The task is to combine multiple blanks with

different thicknesses or material properties to a single structure to enhance its mechanical be-

haviour. In literature, multiple optimisation studies searching for the best thickness distribution

of welded (Chen et al, 2019; Xu et al, 2014) or rolled (Duan et al, 2016; Sun et al, 2017; Klinke

and Schumacher, 2018) blanks can be found. All optimisation schemes commonly employ

surrogate models such as radial basis functions (Klinke and Schumacher, 2018; Sun et al,

2017) or support vector regression (Duan et al, 2016). Here, the two MOR schemes are used

as surrogate models during an optimisation analysis, inspired by (Chen et al, 2019), but utilis-

ing a differential evolution algorithm. Notice that we focus on the performance of the surrogate

models in a realistic application rather than the finding of new results of the optimisation study

itself.

For the optimisation the crash box is divided into three circles representing three blanks, as

shown with the colour highlighted parts in Fig. 5.9a. Starting from the top, the thickness of the

first ring t1 and the second ring t2 are unknown design parameters, whereby t3 is assumed to

be of constant thickness of 2 mm. The blanks are simplified to rings, whereby the transition

zones are neglected, such that the design parameters x = [t1, t2] are varied in the range from

xl = 1.0 to xu = 2.0 mm. In addition, the mass of the impacting plate mplate is set as a design

variable with a range of 80−170kg. The termination time is extended to 35ms, such that the

tube is completely folded for all possible choices of design variables.
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Figure 5.9 Optimisation study of a folded crash box minimising f (x) of Tab. 5.3 with design variables t1 and t2.

Table 5.3 Combined objective functions with corresponding weights f (x) = w1 f1 +w2 f2 +w3 f3 for the optimisation study.

Objective Function Weights

↑ Energy − f1(m,v) = 1
2 mplatev2 2

↓ Acceleration f2(u, t) = u(t)− umax
T 2 (t−T )2−umax 1

↓ Mass f3(t1, t2) = (2t1 + t2)ρ 2

As a first objective the kinetic energy of the impacting plate should be maximised, which is

denoted by the objective f1 in [J]. Secondly, the acceleration a(t) and force F(t) resulting from

the impacting plate are expected to be constant for optimal crashworthiness designs. There-

fore, the objective function includes a term corresponding to the displacement curve over time

u(t) of the impacting plate. Starting from t = 1ms, the displacement of the middle node of

the impacting plate is observed, whereby the peak forces are neglected here. Transferring

the objective to the accelerations ü(t) = a(t), the deviation to the ideal quadratic displacement

curve (i.e. related to a constant acceleration) is minimised with the second objective func-

tion f2(u, t) in [mm]. A conflicting requirement is a light weight structure, therefore also the

mass of the crash box is minimised with f3(t1, t2) in [mm]. Thus, the total objective function

f (x) = w1 f1 +w2 f2 +w3 f3, with the weights wi, as shown in Table 5.3, maximises the energy

absorption and minimises the acceleration and mass to improve the crash box design. Note

that normalised values of f1− f3 are combined, to avoid problems due to dissimilar units. The

optimisation algorithm terminates if the tolerance ε < 0.01, a population’s standard deviation

divided by the average of its energy, or a maximum iteration number is reached.

First the study was performed with the FOM and repeated for ten runs with varying population

sizes (12− 21), recombination factors (0.7− 0.9) and max. iteration numbers (30− 50) to

obtain a reference solution. The resulting thicknesses t1 and t2 of all 10 runs are similar, and

the mean is listed in Table 5.4. The thickness of the first ring t1 is at the lower boundary
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Table 5.4 Average optimised design variables for the thickness of ring t1, ring t2 and the mass of the impacting plate mplate
comparing FOM, ROM, and NiROM

Design Variable t1 t2 mplate

Range 1.0 - 2.0 mm 1.0 - 2.0 mm 80 - 170 kg
FOM 1.08 mm 1.85 mm 170 kg
ROM 1.00 mm 1.80 mm 170 kg
NiROM 1.05 mm 1.87 mm 170 kg

of the range and the second ring t2 at the upper limit, which also relates to the ideas of an

optimised crash box by Chen et al (2019). Corresponding to the objective f1 of maximising

the kinetic energy, the mass of the plate mplate has reached the upper range. Exemplarily, the

convergence of the design parameter t1 and t2 with a population size of 18 is displayed for 600

evaluations in Fig. 5.9b and the corresponding deformed crash box is depicted in Fig. 5.9a.

In Fig. 5.10, the objective function is plotted over the full two-dimensional design space t1 and

t2 and in the vicinity of the optimum. Within the design space, 200 points are analysed by

full-order simulation and the minimum is marked. The results of the optimisation algorithm can

be confirmed by the clear minimum of the objective function observable in Fig. 5.10.

Next, the optimisation is performed with the intrusive and the non-intrusive MOR scheme. For

the non-intrusive scheme 150 training simulations are created with a Latin hyper cube sam-

pling corresponding to the ranges of the three design variables. The subspace is spanned

by 50 basis vectors, and a GPR with an anisotropic Matérn kernel is optimised to create the

meta-model. The averaged results of the design variables are also listed in Table 5.4. In addi-

tion, the optimised values of the intrusive MOR scheme using Galerkin projection are plotted

in green. It is built with 30 training simulations and setup by 50 degrees of freedom in the

reduced space.

Both approximation methods can replicate the overall minimum and result in similar optimised

design variables. The error of the optimised design variable lies in the range of 0.1− 7.0%.

However in other regions, especially at the borders of the design space the system answers

deviate more from the reference solution. The interested reader is referred to Fig. 5.10, which

depicts the objective function over the design space t1 and t2 with mplate = 170kg. The ap-

proximation by the intrusive scheme has a larger area of low objective values in the vicinity of

the minimum and therefore shows less robust optimisation results in comparison to the non-

intrusive approximation. This also explains that the intrusive MOR has a higher error than

the non-intrusive approach, which is in contrast to the previous studies of Section 5.2.2, e.g.

Fig. 5.7.

The former analysis included ROMs for a single parameter, whereas for the optimisation a

parameter space of dimension three is spanned. Within the construction of the intrusive ROM

it was noticeable, that the enlarged parameter space reduces its accuracy significantly, as
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Figure 5.10 Objective function plotted over the design space t1 and t2 for mplate = 170kg computed by full-order reference
simulation, intrusive and non-intrusive model with 100 samples points. The minimum is indicated with a white cross.

more variance is present in the data and therefore more basis vectors in the reduced basis

have to be considered. Hereby, the subspace projection restricts the intrusive MOR capturing

higher parameter spaces, also observed by Bach (2020). As the projection is the decisive

reduction step, only Galerkin ROM is utilised for the optimisation study. Since intrusive and

non-intrusive methods differ in speedup by the order of 4 in magnitude, this limitation does not

affect the conclusion of this study and the estimate presented in Section 5.2.3 is reasonable.

5.4. Concluding remarks on MOR for crashworthiness analysis

Within this chapter, data-driven MOR techniques for structural transient, multi-query applica-

tions were discussed. We focused on intrusive MOR, which projects the system of equations

into a reduced subspace in comparison to a non-intrusive approach, a pure data-driven tech-

nique. The main interest lies in their applicability and efficiency within optimisation schemes

for crashworthiness.
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Through a sensitivity study the inter- and extrapolation abilities of intrusive and non-intrusive

MOR were compared for a crashworthiness example. In comparison to the non-intrusive MOR

methods, intrusive MOR is able to extrapolate input parameters in a small range, and needs

fewer training simulations than non-intrusive. Additional modifications to the solver are needed,

which increases the complexity of implementation and normally excludes the usage of com-

mercial FEM solvers. In contrast, non-intrusive methods are easier to implement and lead

to much faster online evaluations. They need generally more training simulations to achieve

acceptable accuracy and are more sensitive to hyperparameter changes.

Moreover, a parameter study illustrated the performance of non-intrusive approaches in rela-

tion to its training set, whereby the performance strongly depends on the nonlinearity of the

underlying manifold. In general, non-intrusive ROMs require a large amount of training data

and its efficiency is only ensured if the number of training simulations does not exceed that of

the online evaluations of the multi-query analysis.

With an exemplary optimisation study, we could show that the MOR scheme is able to per-

form efficient multi-query analyses for structural, highly nonlinear problems. The invested cost

of constructing the reduced order models is compensated in the online phase, where the

population-based optimisation algorithm evaluates the model in an iterative manner. Consid-

ering online and offline expenses, the optimisation via MOR results in significant speedups.

Multiple aspects of intrusive and non-intrusive MOR are still challenging and require further

analysis. For non-intrusive MOR, the regression model can suffer from overfitting or sensitive

hyperparameters. Moreover, the number of training simulations has a large impact on the

quality of the subspace. Both points can lead to an unstable model, which was, however, not

observed as a high challenge within this study. An additional hyperparameter study for the non-

intrusive regression models can be found in Section 8.2 for a sparse data regime. Following the

nature of a data-driven approach, non-intrusive MOR can only be applied for online simulations

interpolating between the parameter configuration of the training simulations.

As shown in Section 5.2.2 the intrusive MOR scheme also enables extrapolation as a higher

amount of physical knowledge is included in the model. However, one can notice that the

optimised design variables deviate from the reference solution by up to 7%, which can be

critical for certain applications. Since an optimisation requires large parameter variation, a

global POD was used to combine training simulations within the parameter space. During the

performed analysis one could observe that the dimension of the subspace must be increased

if the design space is enlarged. Thus, the global POD can be critical as it destroys the optimal

approximation property of Galerkin projection. A detailed discussion of the Galerkin projection

and optimality can be found in Carlberg et al (2017). In addition, if the underlying manifold

is nonlinear, it is critical to fit a low-dimensional hyper-plane through the data with a linear

method.
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The results show that especially the non-intrusive MOR is capable of being used in applications

with considerable parameter changes, although extrapolation should be avoided. In contrast,

the intrusive ROM shows slight extrapolation and interpolation capabilities (see Section 5.2.2),

however, when increasing the number of design parameters especially the presented intrusive

scheme reaches its limits. In summary, the application of intrusive and non-intrusive MOR

leads to reasonable results for the presented optimisation study, but can be critical for large

parameter spaces with underlying highly nonlinear manifolds. In the field of crashworthiness

only smaller test cases have been conducted, the application to a full-scale crash simulation

is still missing.
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Chapter 6

Intrusive model order reduction for spatially varying
material properties - application to wooden fibre
composites

This chapter applies the reduced order models for structures with spatially varying material

properties. It is concerned with the first research aim of investigating intrusive MOR in a single-

fidelity analysis scheme. We investigated its general applicability for the nonlinear analysis of

structures under damage. Furthermore, the potential of intrusive MOR is explored for the

quantification of uncertainties using probabilistic methods.

Therefore, natural fibres, in particular wood, are presented as another challenging application

in the field of structural mechanics. On the basis of experimental data, the inhomogeneous

material properties are quantified with random fields. In contrast to the other applications, the

analysis is complemented by elaborating on the uncertainty field based on an experimental

data set. Moreover, the construction of reduced order models for spatially varying material

properties is proposed. The parameter space associated with the random process is inves-

tigated with varying examples, and its effect on the construction phase is highlighted. The

application complexity is increased until a low Kolmogorov n-width is reached, to show the

limitations of the classical linear projection. Finally, an MC analysis illustrates the application

of intrusive MOR in the scope of uncertainty propagation.

The intrusive MOR approach is realised with Kratos Multiphysics an open source FEM algo-

rithm (Mataix Ferrándiz et al, 2020; Dadvand et al, 2013, 2010). We were in close collabora-
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tion with the International Centre for Numerical Methods in Engineering (CIMNE) in Barcelona,

Spain, in particular Raul Bravo, who developed the core MOR application. Within Kratos Mul-

tiphysics the ECM is employed as a hyper-reduction technique. For this work, the author

extended the MOR implementation for spatially varying material properties. A random field

algorithm for geometrical imperfections, see Messmer (2020), was modified to follow the pro-

posed workflow. Furthermore, the uncertainty quantification was implemented in an external

Python application to communicate with the FE solver results.

6.1. Reduced order models for spatial uncertainties

The construction of classical surrogates, such as response surface models, is impractical for

an analysis with heterogeneous material, as the dimension of inputs depends on the spatial

field, a high-dimensional parameter space. To nevertheless enable multi-query analysis, MOR

techniques are proposed as simplified models with spatial uncertainties.

Both spatial uncertainties and reduced order models require a preparation step before the ac-

tual analysis can be executed. For this reason, Fig. 6.1 shows the complete workflow divided

into an offline or training phase and an online phase. For spatial uncertainties, random field

properties are extracted from the measurement data, as introduced in Section 6.2. More pre-

cisely, the correlation function of Eq. (2.12) is set up and its eigenvalue analysis is performed to

discretise the process. The defined random field shall then model the heterogeneous material

properties of the structure. A realisation of the random field can be interpreted as an artificially

created sample board and is used as an input to the FE analysis of the training simulations. To

construct a reduced order model, a snapshot matrix of training simulations is created, and the

projection matrix is extracted via SVD using Eq. (3.4). In addition, the elements and weights for

the hyper-reduced model are computed with the ECM procedure explained in Section 3.3.2.

Random field and hyper-reduced order model (HROM) are the results of the offline phase and

will be further utilised in the online phase.

During the MC analysis the reduced order model is evaluated in an iterative loop. Each re-

alisation of the random field will produce a different input for the HROM model, which can

be evaluated efficiently. Hereby, the speedup results from the reduced number of unknowns

in the projected system and the lower number of elements selected through hyper-reduction.

After all MC samples are computed, the statistical properties of a performance quantity are

extracted. Thus, with a reasonable amount of simulations, an estimated expected value and

a standard deviation of the quantity of interest can be computed. In the following section, the

different aspects of the proposed scheme are highlighted by exemplary test studies.
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Figure 6.1 Proposed workflow for generating and evaluating spatial uncertainties, divided into a preparation phase (or offline
phase) and an online phase in which the MC analysis is performed.
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6.2. Random field approximation by experimental data base

After introducing Gaussian processes and its discretisation, the main question remains how

to define the correlation function. Within this approach, a measured data set, presented in

Section 6.3.1, is utilised to identify a suitable correlation function. Thereby, the correlation

function can be extracted from experimental data points, which capture the spatial variations.

This technique is commonly used in soil mechanics, e.g. Lloret-Cabot et al (2014); Luo et al

(2019); Oguz et al (2019) and originates to Vanmarcke (2010). The data points of each sample

are normalised so that mean µ = 0 and standard deviation σ = 1 are met. Within the data set

an equivalent distance ∆d is required. For each distance k∆d with k = 1,2, ...,n−1 data points

x̂, the experimental correlation function can be calculated by

f̂c(k) =
∑

n−k
j=1(x̂ j−µ j)(x̂ j+k−µ j+k)

∑
n−k
j=1(x̂ j−µ j)2

, (6.1)

for one sample. Thus, all data points x̂ with the same distance k are averaged and compared

with the mean of all samples µ . With increasing distance k less data points are available and

its interpretability becomes questionable, e.g., for the distance n−k only one data pair is avail-

able to verify its correlation. Therefore, large distances are neglected and only distances k

divided by a ratio r are used to evaluate the correlation function. To generalise the extracted

correlations, we next approximate an analytical function to the data set. To fit an analytical cor-

relation function fc and the correlation length lc with an isotropic exponential kernel, Eq. (2.12)

can be reformulated depending on the distance d

fc(ki) = exp
−ki∆d

2lc
. (6.2)

In theory, any other kernel function could also be chosen. To fit the analytical function fc the

error e

e =
n−1

∑
i=1

fc(ki)− f̂c(ki), (6.3)

with respect to the experimentally computed correlation function f̂c is minimised. With the

extracted correlation length and function, Eq. (2.12) can be defined.
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6.3. Wooden structures with spatial uncertainties

This section presents two test cases with properties of non-homogeneous natural fibre-based

material to illustrate the proposed scheme. Referring to a realistic example, beech wood is

selected as the natural fibre material on which all studies in this chapter are based. According

to the workflow of Fig. 6.1, three key areas contribute: the construction of the random field,

the reduced order model, and the MC analysis. The structure of the following section follows

these three topics.

First, we construct a random field based on a data set of varying fibre angles of beech timber

boards. Thus, we restrict ourselves to boards without knots. The assumption of characterising

the material properties of beech timber boards as a random field with normal Gaussian dis-

tributions is explained in Section 6.3.1. In Section 6.3.2 reduced models for spatially varying

material properties are created. With the help of a wooden test case, the accuracy and effi-

ciency of the models are discussed in detail. To investigate the performance of a probabilistic

analysis via MOR techniques, a second test case, a beam under bending experiencing dam-

age, is introduced. Benefits and disadvantages are discussed in Section 6.3.3 to evaluate the

overall scheme.

6.3.1. Material properties of European beech characterised by fibre angles

Natural fibre-based material shows anisotropic and heterogeneous material properties, which

strongly depend on the variation of environmental conditions. Therefore, timber boards are

usually modelled with orthotropic material properties following the directions of the fibre, as

shown in Lukacevic et al (2019). The number of knots and the resulting fibre deviation in

wooden boards strongly influence their mechanical responses. Therefore, a homogeneous

material model is not sufficient to realistically model the material behaviour.

In the research area of wood, the spatial correlation of mechanical material properties have

been investigated and compared. In the early stage, the strength or stiffness values of neigh-

bouring sections were analysed with physical experiments to compute its correlation (Brand-

ner and Schickhofer, 2014; Bulleit and Chapman, 2004). More recently, continuous parameter

space models (Kandler et al, 2015), often quasi-continuous models but with higher resolution

as the previous studies have been developed. Hereby, quasi-continuous data of the mate-

rial properties in two or three dimensions are measured by, e.g. laser scanning devices. By

means of virtual strength grading methods, the stiffness properties of individual boards are

predicted (Khaloian Sarnaghi and van de Kuilen, 2019; Lukacevic et al, 2019). In addition,

spatial correlations have been investigated statistically, however, only for material properties

in one dimension, in particular, the modulus of elasticity (García and Rosales, 2017; Kandler

and Füssl, 2017). Another line of research defines strong and weak regions, based on discrete
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Figure 6.2 Exemplary beech board with varying fibre direction along the board, resulting in inhomogeneous material
properties.

knots, and evaluates their statistical variation, e.g. Fink et al (2015); Isaksson (1999), which is

not discussed further here.

In addition to the spatial nonhomogeneous nature of wood, the natural scatter of material

properties requires statistical theories. An overview of probabilistic analysis of wooden com-

ponents is given by Kandler et al (2015), whereby random processes have been identified as

a possible approach. The authors of Kandler and Füssl (2017) perform a probabilistic study

for linear glued laminated timber beams. Hereby, a random field approach describes the one-

dimensional Young’s modulus as a random variable with spatial correlation.

The proposed approach follows Kandler and Füssl (2017) by analysing a three-dimensional

structure with non-homogeneous material properties modelled by a random process. In con-

trast to the simplification of material properties in one dimension, a three-dimensional rep-

resentation allows the extension to analysis of more complex geometries and non-linear be-

haviour. We focus on boards without knots to maintain a general workflow also applicable to

other fibre-composites. The variation in stiffness profiles is modelled by the fibre deviation of

lamellas obtained from laser scanners as published in Rais et al (2021). The distribution of

the fibre deviation is idealised as a stationary Gaussian process. Unlike Kandler and Füssl

(2017), we fit an analytical correlation function to the data, instead of directly using the data

set to construct the covariance matrix for the random field. This random field approach does

not consider fuzzy approaches (Leichsenring et al, 2018; Schietzold et al, 2018, 2019) or

non-Gaussian distributions (García and Rosales, 2017). To perform a probabilistic analysis, a

common MC scheme similar to Kandler and Füssl (2017) is utilised to approximate the distri-

bution of an output quantity. To enable such a cost-intensive multi-query analysis, we propose

to create a data-driven, intrusive reduced-order model.

In the following we concentrate on the natural scatter of material properties of boards with little

or no knots. An orthotropic material model dependent on the fibre deviation (Seeber et al,

2023) is assumed and any other influences, such as temperature or moisture, are neglected.

As wood is a brittle material under tensile loading, the elastic region is followed by a damage

model in many virtual experiments as analysed in Sandhaas and Van De Kuilen (2013).

As an exemplary material, European beech (Fagus sylvatica) is chosen for this work, with the

authors being able to access an experimental study published by Rais et al (2021). Figure
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Figure 6.3 Exemplary visualisation of random fields from beech boards Rais et al (2021): the distribution of nine data points
in green and its fitted normal distribution N(x) in grey; the one-dimensional functions α1

hor(x) and α2
hor(x) of two boards with

y = z = 0.

6.2 shows an example of a beech board where the changing fibre direction is visible along

four sides of the board. Within the previous work, the surface fibre angles of 407 boards

were measured by means of laser sensor scanners (Rais et al, 2021). Thus, a circular laser

is projected onto the surface’s boards, which deflects to an elliptic shape depending on the

fibre direction. The laser evaluates the horizontal fibre angle αhor on the wide surface and the

vertical angle αver on the narrow face, as depicted in Fig. 6.3. A three-dimensional fibre set is

interpolated with the surface data as explained in Rais et al (2021) . However, the data points

measured by the scanner are not spaced in a regular manner. Therefore, an interpolation

function is needed to transfer the data to a regularly sized three-dimensional point cloud. A

k-nearest neighbour algorithm (Friedman et al, 1977) with distance measure is implemented

to transform the data points into a predefined regular grid.

Figure 6.3 illustrates the nature of the available data set. In blue the horizontal fibre angles

αhor of two samples are extracted at the middle (y = 65mm) and at the surface (z = 0mm) of

the board. The connected data points follow the fibre pattern along the horizontal axis.

With the boards of the sample set, a distribution for the fibre angles can be calculated for any

discretised point along the board. In Fig. 6.3 nine exemplary points are selected equidistantly

along the board and its statistical distribution is evaluated. The sample data for the specific

locations are plotted by the green histograms, which show the distribution of 407 boards.

The black horizontal line underneath represents an angle of αhor = 0. One can notice, that the

sample set has a mean value of αhor close to zero and shows a similar distribution to Gaussian

normal variables. In grey, the corresponding PDF of a normal distribution evaluated by mean

and standard deviation, with
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N(x) =
1

σ
√

2π
e−

1
2 (

x−µ

σ
)2
, (6.4)

is depicted.
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(a) Correlation function (lc = 50.4) for αhor: computed from
30 boards for the horizontal angle in xy-plane.
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(b) Correlation function (lc = 36.1) for αver: computed from
30 boards for the vertical angle in xz-plane.

Figure 6.4 Correlation function fitted to 30 sample data for horizontal αhor and vertical αver fibre deviation angle in x-y and
x-z plane.

In addition to the statistical distribution, the fibre angle field can be characterised by its spatial

correlation. The correlation function describes the influence from one point to its neighbours

and can be approximated as presented in Section 6.2. To analyse the correlation function,

the x− y and x− z surfaces of 30 boards without knots are collected from the data set. The

scanned boards are of dimension 2414 ·130 ·38mm. Figure 6.4 plots the experimental and an-

alytical correlation function following Eq. (6.1) and Eq. (6.2). The y-axis shows the correlation

coefficient corresponding to its distance k, on the x-axis. The correlation value starts at one,

totally correlated, and decreases with larger relative distances.

The horizontal angles αhor measured on the x− y plane are plotted in Fig. 6.4a. The mean of

all samples is depicted in blue, and its 2σ range is plotted in grey to indicate the variation within

the sample set. Figure 6.4a also shows two randomly selected samples. To fit the correlation

function, Eq. (6.3) is minimised with a BFGS optimiser (Zhu et al, 1997). Therefore, the corre-

lation function is evaluated up to the distance of k = l/4 = 603 mm, to ensure interpretability.

With the exponential kernel of Eq. (2.12) the optimised correlation length converges to 50.4
for αhor, as plotted in orange. In Figure 6.4b, the vertical angle αver is evaluated following the

same principle. The correlation length of the vertical angle does not converge to zero with in-

creasing distance. In other words, an average angle or bias of f (k) = 0.14 can be identified for

a board, which is independent of the relative distance. The identified correlation length of 36 in
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relation to 130mm board width in vertical direction can be questioned, and thicker specimens

are required to confirm this observation.

Considering the presented evaluation of the fibre angle data of beech timber boards the follow-

ing conclusion can be drawn. The distributions of exemplary sample points visually indicate

a normal distribution of the data points. Subsequently, the spatial correlation functions are

approximated with an exponential isotropic kernel and are compared graphically. Hereby, one

can conclude that the assumptions of a stationary or homogeneous random field with a Gaus-

sian distribution are suitable. This implies that the data follows a normal distribution and its

correlation is independent of its absolute coordinates. These are strong assumptions, how-

ever, their in-depth discussion is out of the scope of this thesis. It can be added that the

approach is extendable to other distributions or non-stationary fields, which are referred to in

the outlook.

6.3.2. Reduced order model for tension test

To test the capability of MOR methods to represent analysis with fibre-based inhomogeneous

material, a linear elastic transient simulation is first created. A simulation of a beech timber

board shall illustrate the application of random fields in the scope of reduced order models.

A board under tension with two holes, as depicted in Fig. 6.6 is clamped on the left side

(x = 0). On the right y− z plane the applied surface load increases linearly with time following

the function f (t) = t · 3 in x-direction and f (t) = t · 0.003 in y- and z-direction, until the total

time T = 3s is reached. To represent an elastic behaviour, the resulting maximum stress in x-

direction of 9MPa is chosen so that 20% of the failure strength is not exceeded. An orthotropic

material law is used according to Table 6.1 to represent the wooden elastic material constants

(Niemz and Soneregger, 2017) and mass density and strength (Rais et al, 2021). Hereby, the

width direction corresponds to the tangential direction and the thickness to the radial direction

of a timber board. Shear moduli are further approximated by a combination of Ex,Ey,Ez such

as G−1
xy =

1+νyx
Ex

+
1+νxy

Ey
. The tension test with dimension 590 ·40 ·130 mm, contains 8170 linear

hexahedral elements and 10,593 nodes. It is important to note that the round holes within the

board do not represent knots, as the modelled fibre deviation pattern does not consider any

interdependencies between fibre deviation and knots. The random field for the horizontal angle

αhor, as fitted in Section 6.3.1 is used to represent the spatial inhomogeneity of the material. In

a first setting, the vertical angle is neglected. With the local fibre angles the coordinate system

of each element and therewith its material properties are rotated as explained in Seeber et al

(2023).

Two varying realisations of the random field for αhor are depicted in Fig. 6.5. For each reali-

sation, the vector b of Eq. (2.15) yield a different outcome for calculating the fibre field, which

serves as input for the structural analysis. Depending on the spatial field of material proper-

ties, the resulting stress distribution differs, as shown by the comparison in Fig. 6.5. The fibre
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Table 6.1 Material properties for the test cases simulating European beech (Niemz and Soneregger, 2017; Rais et al, 2021),

with the following units E
[

N
mm2

]
, f
[

N
mm2

]
,ρ
[

kg
m3

]
.

Ex Ey Ez νxy νxz νyz f ρ

14000 1160 2280 0.43 0.31 0.49 53 689

Fibre angle [°]

0 157.8

σxy[MPa]

1.7-1.6 0 1-1

11.73.9-1.6

Figure 6.5 Two exemplary fibre deviations modelled by the random field and resulting Cauchy stress σxy analysed with
full-order FE, submitted to a surface force increasing linearly over time up to 9 MPa at t = 3s.

angles are indicated based on the colour map on the top and the resulting Cauchy shear stress

in the x−y direction σxy below. The realisation on the left has a large region of the fibre angles

close to zero. Consequently, the shear stress zones around the holes are smaller than in the

example on the right. The stress distribution in Fig. 6.5 is computed by full order FE models.

In Fig. 6.6 the results computed with reduced order models are depicted, corresponding to the

left fibre angle field of Fig. 6.5.

The first analysis focus on a linear elastic problem. To create the reduced order model 20

training simulations are conducted and 3 snapshots are collected from each analysis. Notice

that for the first training the random field is constructed by an equal weight of all eigenvectors,

to ensure that all parts are included in the training simulation. A reduced subspace is con-

structed with k = 20 degrees of freedom. The truncated snapshot by rank 20 has a truncation

error following Eq. (3.5) in the range of 10−9. The top of Fig. 6.6 shows the displacement re-

sults of the reduced order model with POD based subspace projection (ROM), as explained in

Section 3.2.1. The reduced order model with an additional ECM hyper-reduction step (HROM)

is depicted above, in addition to the full-order reference solution (wire frame).

Visually, the reduced order models have a very similar deformation pattern. To evaluate the

accuracy of the model, Fig. 6.7 shows the error of the HROM model for displacements and

Cauchy stresses. Hereby, the relative error for each direction is computed independently, and

its magnitude is depicted. The relative error is normalised by the maximum value in each
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Figure 6.6 Resulting displacements in mm computed by the reduced order model (ROM) on the bottom and hyper-reduced
(HROM) model on the top (for a fibre deviation field shown on the left of Fig. 6.5).
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(b) Magnitude of relative stress error for σxx,σxy,σyy,
normalised by the max. stress for each direction for the
example shown in Fig 6.6.

Figure 6.7 Relative displacement and stress error for each element of the HROM shown in Fig 6.6.

direction for better comparison. In displacement, the element with the largest error is also the

one with the largest deformation. To ensure that reliable maximum stresses can be evaluated

with reduced models, the error of Cauchy stresses is also depicted in Fig. 6.7b. The relative

error lies within a low range, and regions with high stresses are also well preserved.

To further evaluate its accuracy, 10 online simulations with varying fibre fields are performed,

and a global displacement error eGMRE is computed by

eGMRE =

√
(u−Vur)T (u−Vur)√

uT u
, (6.5)

with u and ur, being the full displacement vector for the last time step t = T .

Table 6.2 states the mean displacement error eGMRE for ROM and HROM models as 5.3 ·10−7

and 2.0 ·10−5, respectively. With this low error, efficiency can be significantly increased since
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Table 6.2 Averaged processing time, speedup and displacement error eGMRE of the constructed reduced models for 10
unseen random field realisations.

Processing time [s] Speedup eGMRE

FOM 13.2
ROM 0.25 53 5.3 ·10−7

HROM 0.03 484 2.0 ·10−5

the relative speedups of ROM and HROM are 53 and 484. For completeness, Table 6.2 also

compares the mean absolute processing time measured with an Intel processor ’Xeon(R) W-

2155 3.30 GHz’ containing 10 CPUs. It is important to note that only the construction of the

system and the solving step are measured to better compare the analyses.

In Table 6.2 the online costs of the reduced order model are compared to those of a full-order

analysis in the online stage. Nevertheless, for a fair evaluation the construction phase of the

reduced order model should be considered as well. Computing the SVD, the hyper-reduced el-

ements as well as the random field is insignificant compared to the costs of full-order analysis.

Consequently, training simulations, in this case 30 FE analyses, are the decisive factor for the

cost of the training phase. The overall efficiency is increased when the multi-query analysis

requires more than 33 simulation runs using the HROM model, and it is further improved with

a higher number of online analyses.

To increase the complexity and further test the MOR approach the presented test case is ex-

tended. A second reduced order model is created with an identical setup, but a second random

field for the vertical angle αver is added. The angle αver adds a rotation in the x− z plane to the

vertical angle αhor in the y− z plan of the system. Similarly to αhor, αver is represented by an

independent random field with an exponential kernel and a fitted correlation length of 36.1. All

other parameter settings of the study and the training phase for the reduced models remain

unchanged. As before, the displacement error following Eq. (6.5) can be computed to evaluate

the accuracy of the model. In the x-direction, εGMRE is 5.5 · 10−3 and 5.6 · 10−3 for ROM and

HROM models, respectively. In the y- and z-directions, the error increases to approximately

4.0 ·10−2 and 5.5 ·10−2 for both models.

To explain this error discrepancy compared to the previous experiment, Fig. 6.8 compares the

singular values of the example studies. The solid line plots the decaying singular vales of the

snapshot matrix computed. The reduced subspace of analysis with two random fields has a

lower rate of decaying singular values. Once, a truncation of rank 10 and, on the other hand, a

truncation of rank 32 represent 99.99 % of the singular values. This results in a larger number

of basis vectors to represent the system. However, for a low rate of decaying singular values,

the Kolmogorov barrier applies and a linear projection method struggles to find a suitable

subspace for the nonlinear manifolds.
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Figure 6.8 Decaying singular values of snapshots matrix and its truncation rank for 99.99% marked with dots for tension test
case with one (k=10) or two random fields (k=32) and for the bending test with damage behaviour (k=46).

With the extensive evaluation of the reduced order models for spatial varying material proper-

ties we conclude that the simplified models are able to increase efficiency while maintaining

a sufficient accuracy. Stresses and displacements can be accurately represented; however,

the overall accuracy level also depends on the Kolmogorov n-width, the decaying rate of the

singular values. In the next section, we present a second example study and focus on the

application of ROMs within the probabilistic workflow.

6.3.3. Probabilistic analysis of bending test with damage

The performance of the reduced order model was evaluated in the last section, whereby its

application to the MC analysis is illustrated with the following example. To demonstrate the

proposed approach, a wooden board under bending is tested. Figure 6.9 draws the setup

of the analysis, which is inspired by the common experimental four-point bending test. To

model the forces in y-direction, a surface load is applied. The material properties are identical

to those given in Table 6.1, only νyz = 0 and νxz = 0 are set to zero, as the behaviour in the

vertical direction is decisive for the bending phenomena. To model the heterogeneous material

properties, the horizontal angle is described as a random field identical to that presented in the

previous sections. In addition, a damage criterion is evaluated based on an equivalent stress

function as shown in Oller et al (1996). Thus, stresses are checked against the isotropic

strength value of 53 MPa and its stiffness is reduced to account for the damage. The damage

law is chosen for simplicity and the reader is referred to Sandhaas and Van De Kuilen (2013)

for wood-specific damage criteria.

The dimensions of the board are 2700 mm, 130 mm, 40 mm in x-, y-, z-direction. It is sym-

metrically set up with a distance between the two supports of 2470mm and between the load

application points of 900mm. The beam is meshed with three-dimensional tetrahedrons con-
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taining four nodes, considering small displacements. The force increases linearly over time,

and the analysis is stopped if an accumulated damage coefficient reaches a certain limit and

further evaluations are unreasonable. The simulation is terminated if 90 elements have been

damaged or if the time is evaluated to t = 6s. In this way, the maximum load capacity of the

wooden beam can be investigated. With varying realisations of the random field, the damaged

elements often occur in the vicinity of the supports changing from the right to the left one. The

damage area of boards without knots is expected to be at the bottom of the board, failing under

tension. However, here a simplified damage criterion based on an equivalent stress results in

different damage areas, which are further referred to in the outlook.

t

F

x

y

z

Figure 6.9 Four-point bending test with inhomogeneous material properties and linearly increasing load over time.

Of great importance for the quality of a reduced order model is the training setup. Here, we

exploit 50 training simulations to create the reduced subspace. Each training simulation is

an analysis with spatially varying fibre angles, a realisation of the constructed random field.

Figure 6.10 shows one realisation of the horizontal angle lc = 50.1, as fitted in Fig. 6.4. From

each training simulation, 5 equally distanced snapshots are collected during the time interval

T = 6s, where the incremental time step is 0.01. The load increases linearly following the

equation f (t) = t · 0.35, so that the final load of 2.1MPa is applied in the last step. After

performing a POD, the snapshot matrix is truncated by rank 70. Moreover, a hyper-reduction

is performed, resulting in the selection of 3017 out of 11993 elements.

To evaluate the proposed approach, we focus on the probabilistic analysis exploiting the ROM,

and HROM model. An identical analysis with the full-order model is performed for comparison.

In total, 500 simulations are conducted with varying realisations of the random field. Figure

6.11 depicts the histograms of the study with full-order model, ROM and HROM. In Fig. 6.11

the x-axis represents the maximum load normalised by pc = 2.1 MPa, and the y-axis shows its

number of occurrences within the MC analysis. For most of the analysis, the maximum time

step T = 6s was reached and those determined by the damage criterion appear to follow the

increasing phase of a normal distribution. One can notice that a comparable distribution of the

maximum load is observable with the reduced models in comparison to the reference. The

mean value of the maximum simulation time of the full-order model is 4.412s, compared to

4.399s for ROM and 4.396s for HROM. Hence, the maximum load can be calculated by f (t) =

t ·0.35. Through the nonlinear material law the speedups only applying the Galerkin projection

are reduced, and the necessity of the additional hyper-reduction step becomes apparent. In
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Figure 6.10 Qualitative visualisation of three dimensional realisation of horizontal angle with fitted correlation lengths lc =
50.4 following Section 6.3.1. Negative angles are displayed in blue, an angle of zero in green and positive angles are marked
in red.

contrast to the previous example, the processing times include the overall simulation time with

system pre- and post-processing. It is important to note that these evaluations are specific

to Kratos Multiphysics and also depend on the specific version of the code. To get an overall

impression of its practical use, Table 6.3 shows the measured processing times for analysis

with the Kratos MOR application from March 2020. The cost of a ROM model is reduced by a

factor of 1.2, whereby the HROM achieves speedups by a factor of 9, while maintaining a high

level of accuracy. Whereby the speedups of the other examples are the specific accelerations

due to the projection-based approaches, this shall give an insight to the practical use.

Table 6.3 Online processing time and speedup factors for 500 MC simulations using FOM, ROM, and HROM models.

Processing [s] Speedup

FOM 79.4 x 500 = 39700
ROM 65.4 x 500 = 32700 1.2
HROM 8.8 x 500 = 4400 9

Instead of performing a successive error analysis, we evaluate the mean value of other output

quantities of the 500 simulations to quantify the accuracy of ROM and HROM. Hereby, the

MC-approximation error is included in addition to the model error, which represents, however,

a realistic setting when using the approach. Two example nodes are selected and their average

displacement is compared to the full-order model. For the mid-node at the bottom of the board,

a mean y-displacement is computed of 11.151mm via full-order model and 11.663mm (ROM)

and 11.739mm (HROM) resulting in a relative error of 4.5 ·10−2 and 5.2 ·10−2. On the bottom

side of the right load application point, the relative displacement error is extracted to 4.0 ·10−2

and 4.6 ·10−2 for ROM and HROM, respectively.

Compared to the previous study, the displacement errors are of magnitude 102 higher. The
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(a) MC analysis: 500 full-order simulations.
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(b) MC analysis: 500 ROMs.
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(c) MC analysis: 500 HROMs.

Figure 6.11 Distribution of max. normalised load for 500 transient bending tests, computed by full-order model, ROM and
HROM.
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displacement error of the study in Section 6.3.2 is in the range of 10−4, whereas in the second

example the error reaches 5 ·10−2. This can also be explained by a lower decay of the singular

values as shown in Fig. 6.8, which was already discussed for the tension test case.

6.3.4. Concluding remarks

With this chapter, projection-based reduced order models are applied for uncertain quantifica-

tion of beech wood as a fibre-composites. The spatial variability of the natural-based material

is described by random fields. To analyse these time-consuming models with inhomogeneous

material, a reduced model is created. Therefore, we propose to build reduced order models

based on training simulations with spatially varying material resulting from realisations of the

random field. An experimental data set is exploited for the construction of a material field. With

a linear and nonlinear example test case, the efficiency of the surrogate models is evaluated.

We can conclude that, for the linear test case, the reduced model is highly efficient while

maintaining accuracy. In comparison, the level of accuracy of the test case with material

nonlinearity is reduced. Then, a comparable level of around 5%, similar to what was obtained

in the optimisation study in Chapter 5, is achieved.

With the probabilistic analysis, we could show that the proposed workflow enables efficient MC

simulations. Compared to classical surrogate models, this technique creates a comprehensive

model for varying simulation parameters. The main benefits arise from its general applicability

to FE analysis. Therefore, the method is easily extendable to varying nonlinear material laws

or geometric nonlinearity.

The quality of the reduced model strongly depends on the representation ability of the con-

structed subspace. With the random field representation, we could create a reduced order

model in a realistic range of the present inhomogeneity for beech wood. Short correlation

lengths can result in locally dominated deformation patterns, which are less suitable for the

global approach. We conclude that the fibre-induced variation in the longitudinal direction can

be represented with the MOR approach. If local phenomena are decisive for the behaviour

of the system, the global approach might not be suitable. Then, the MOR approach could be

extended by locally defined subspaces.

In the next step, a more realistic wooden structure should be investigated. A complex damage

criterion can be applied to realistically assess the behaviour under damage. In addition, the

idealisation of the stationary Gaussian field is a preliminary assumption which should be ex-

changed with an inverse parameter identification. Moreover, environmental influences such as

those presented in Yu et al (2022) are an interesting use case for the scheme presented.
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Chapter 7

Multi-fidelity robustness analysis via control variate
estimators

Through the first two application chapters the reader was familiarised with the intrusive and

non-intrusive MOR scheme for varying structural nonlinear multi-query analysis. The follow-

ing chapter focuses on the proposed multi-fidelity scheme, as the second research aim of this

thesis. The approach is based on intrusive and non-intrusive MOR forming a multi-fidelity anal-

ysis as introduced in Chapter 4. We focus on uncertainty propagation and efficient robustness

analysis of a performance quantity. In the presented test study, this performance parameter

is the resultant of a nonlinear FE analysis. The application of the proposed method to the

double-loop algorithm exploiting the concept of control variate estimators is illustrated. More-

over, an adaptive construction of the snapshot-based non-intrusive model is tested. Thus, the

chapter showcases the proposed multi-fidelity approach for uncertainty propagation.

In the following, the proposed multi-fidelity approach is evaluated for a structural analysis under

uncertainty, in particular, for a three-dimensional beam-like structure. For the example study,

the loading direction is uncertain and is modelled with independent normal random variables.

As a performance quantity, we are interested in the distribution of the tip displacement. The

results of the multi-fidelity approach with varying sample numbers and model configuration

are explained in detail. We investigate the adaptive construction of the non-intrusive model

and the overall impact of the retraining step. Compared to classical MC simulations based on

full-order models, we can show that the proposed scheme significantly improves efficiency.
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Figure 7.1 Three-dimensional structural design problem with uncertain loading direction of P1 and P2 in the x− y plane.

The intrusive MOR model is based on the Kratos Multiphysics MOR application (Mataix Fer-

rándiz et al, 2020; Dadvand et al, 2013, 2010), whereas the non-intrusive model is developed

in a stand-alone Python code. We incorporated the FE simulation within an object-orientated

Python implementation to the multi-fidelity workflow. Moreover, the control variate was imple-

mented by the author, following the publication of Fina et al (2022); González et al (2019), in

consultation with Marcos Valdebenito from the Technical University of Dortmund.

7.1. Beam-like structure with uncertain boundary conditions

To test the multi-fidelity scheme, a three-dimensional structural design problem as depicted

in Fig. 7.1 is analysed with a quasi-static FE simulation. The structure is constructed by a

clamped beam with a profile of 10 mm · 10 mm and a length of 70 mm in z-direction. An

additional block is added at the top with a distance of z = 49 mm from the clamped edge and

dimensions 10 mm ·10 mm ·14 mm. Furthermore, a linear elastic material law with density

ρ = 7850 kg/m3, Young’s modulus E = 206.9 GPa, and Poisson ratio ν = 0.29 is chosen.

The geometry is meshed with 2744 hexahedral elements using a total Lagrangian formulation

to enable the computation of large deformations. The meshed geometry leads to 10,905
degrees of freedom. Two surface loads are applied on the blue and green marked areas with

P1 = 2 · 108N/m2 and P2 = 5 · 107N/m2, respectively. Moreover, the direction of the surface

loads is modelled with a normal random variable with a mean µ = 26.5◦ and a variance of

σ = 11.3 in [◦2], so that the load is not only applied in a single direction, but in the x− y
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plane.

With a MC simulation, the distribution of the tip displacement, as marked in Fig. 7.1, is anal-

ysed. Therefore, 1000 reference simulations are conducted and the resulting distribution of

the tip displacement in x- and y-direction is depicted in the histograms of Fig. 7.2. With these

histograms, the distribution of the performance quantity can be approximated. Due to the dif-

ferent load magnitudes, the variance of the y-displacement distribution with σ = 2.08 is higher

compared to σ = 1.12 corresponding to the deformation in x-direction.
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(a) Reference distribution: x-displacement of tip node.
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(b) Reference distribution: y-displacement of tip node.

Figure 7.2 MC analysis performed with 1000 full-order simulations evaluated for the tip displacement (see marked node in
Fig. 7.1) in x- and y-direction.

7.2. Reduced order models

Next, the reduced order models are constructed to enable the proposed multi-fidelity analysis.

In the training phase 25 full-order simulations are evaluated through a full factorial design of

experiments with an equidistant grid for load angles between 0◦ and 45◦. Through a global

POD of the snapshot matrix, a reduced basis with k = 16 vectors is identified for the projection-

based approach. The intrusive MOR scheme is further established with ECM as a hyper-

reduction method, resulting in 135 hyper-reduced elements (5% of the original element set),

such that intrusive ROM and HROM are available. To construct the non-intrusive model, a

polynomial regression function of p = 3 is chosen.

The quality of the constructed reduced order models is evaluated with Table 7.1 comparing the

global eGMRE following Eq. (6.5) and the corresponding processing costs. The processing time

merely includes the solving step and neglects the simulation initialisation and post-processing

to provide a fair comparison. The average global eGMRE and computing time of ten simulations
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are evaluated with realisations of the random variables P1 and P2. For comparison, the result

of full-order models FOM is displayed in the first column of Table 7.1. The ROM and HROM

correspond to the intrusive models with and without hyper-reduction. The properties of the

non-intrusive model are displayed in the last column indicated by NiROM. One notices the

highly accurate intrusive models, however, with lower computational speedups compared to

the non-intrusive approach. A high-fidelity model with high accuracy level and a low-fidelity

model with low computational cost are now available for the multi-fidelity scheme.

Table 7.1 Comparison of eGMRE for the varying reduced order models and its corresponding computational cost (system
construction and solving).

FOM ROM HROM NiROM

eGMRE [%] 5.85 ·10−5 2.30 ·10−4 5.78 ·10−2

Processing time [s] 4.33 0.46 0.03 0.0005
Speedup 9.4 144 8660

7.3. Multi-fidelity analysis via control variate estimators

Based on the reduced order models, in the following paragraphs the multi-fidelity approach

employing control variate estimators is investigated. With varying models and sample num-

bers, the properties of the scheme, as proposed with Algorithm 2, are evaluated for the exam-

ple study. Hence, the section discusses the impact of the additional non-intrusive low-fidelity

model on the accuracy, computational cost, and implementation complexity.

To showcase the multi-fidelity algorithm, Tables 7.2 and 7.3 present the results of the applied

analysis schemes, in terms of x and y deformation as the desired output quantity. To compare

the approach with a reference solution, we state the results obtained with 2000 full-order

simulations in the first row. Models referring to MC employ a single-fidelity analysis based

solely on MC estimators following Eq. (2.16) and (2.17) to approximate the mean and variance

of the output quantity. Furthermore, the variance of the estimators can be approximated with

Eq. (2.18) and (2.19) to indicate its precision.

For the control variate estimators, the number of samples from the high-fidelity model n is

set to 60, with the number of low-fidelity models given by m. The parameter neq represents

the equivalent full-order simulation cost, to conveniently compare the different analyses. It is

calculated by

neq = ntrain +
n

sHF
+

n+m
sLF

, (7.1)

additionally considering the number of training simulations ntrain. The variables sHF and sLF are

the speedup factors for the high- and low-fidelity model, which can be acquired from Table 7.1.

The estimation of mean and variance based on control variate (CV) approaches are calculated

with Eq. (2.21) - (2.29), using varying levels of reduced order models. We first focus on the
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result of the proposed algorithm and discuss the different model options 3 - 5, in the following

paragraphs to highlight specific attributes of the scheme.

The control variate estimators computed by Algorithm 2 are shown in the second row of Table

7.2, where n = 60 and m = 1200 samples are employed for high- and low-fidelity analyses

loops. For the high-fidelity model, a HROM is utilised, and the adaptively updated NiROM

represents the low-fidelity model. The estimation of the first- and second-order statistics, µ̂1

and µ̂2 can be successfully approximated, since the approximated mean and variance highly

correlate to the reference solution, as stated in Tables 7.2 and 7.3.

Table 7.2 Estimation of second-order statistics for tip displacement in x-direction: comparison of Monte Carlo (MC) and
control variate (CV) estimators employing multi-fidelity MOR schemes.

Analysis type High-fidelity Low-fidelity n m neq µ̂1 V [µ̂1] µ̂2 V [µ̂2]

[mm] [mm2] [mm2] [mm4]

Reference
1. MC FOM - 2000 - 2000 -13.1921 0.000634 1.2680 0.001283

Algorithm 2
2. CV HROM NiROM 60 1200 25.56 -13.2006 0.000957 1.2482 0.002596

Other analysis and model configuration: here NiROM without retraining
3. MC HROM - 60 - 25.42 -13.4648 0.018247 1.0947 0.036514
4. CV HROM NiROM 60 600 25.49 -13.2247 0.001817 1.1795 0.004306
5. CV HROM NiROM 60 1200 25.56 -13.2092 0.001028 1.2919 0.002729

To highlight the influence of the additional low-fidelity model within the control variate esti-

mators, the multi-fidelity analysis is repeated 500 times. For each out of 500 runs, a multi-

query analysis with 60 high-fidelity analyses, and additional 1200 low-fidelity analyses are

performed, and the resulting mean and variance values are stored. Hence, a histogram of the

approximated mean µ̂1 and variance µ̂2 is plotted in Fig. 7.3. In comparison, the single-fidelity

analysis is displayed, labelled as MC estimator. Therefore, the high-fidelity model based on

HROM is evaluated with n = 60 samples following the setup of analysis three in Table 7.2.

The histograms of Fig. 7.3 visually display the strongly reduced variance of the control vari-

ate estimators, compared to the MC estimators. Thus, by adding the low-fidelity model to

the estimators, the approximation accuracy can be strongly improved. Figures 7.3a and 7.3b

show the tip displacement in the x-direction, while Figs. 7.3c and 7.3d display the estimators

for the y-displacement. As expected, second-order estimators show a higher variance of esti-

mators V [µ̂2] compared to mean estimators V [µ̂1]. It is noticeable that the variance µ̂2 of the

y-displacement is, in fact, higher than for the displacement in x-direction. With a larger vari-

ance of the output quantity, the approximation is more challenging. This can be observed by

the higher variances of the estimators V [µ̂2]. However, this does not affect the approximation

ability of the control variate estimators.

To confirm the variances of the estimators V [µ̂] in Table 7.2, a comparison with the histograms
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(a) Mean estimator µ̂1 of tip displacement in x-direction.
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(b) Variance estimator µ̂2 of tip displacement in x-direction.
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(c) Mean estimator µ̂1 of tip displacement in y-direction.
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(d) Variance estimator µ̂2 of tip displacement in y-direction.

Figure 7.3 Histogram of 500 analyses comparing Monte Carlo (MC) and control variate (CV) estimators to estimate the
mean µ̂1 and variance µ̂2 and its derived variance of estimators V for the tip displacement in the x- and y-direction. The
analyses are performed with schemes 3 and 5 of Table 7.2 and Table 7.3, which show the corresponding estimators for a
single analysis run.
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can be drawn. The variance of estimators, such as Eq. (2.22) is tested against the numer-

ical experiment of 500 individual control variate estimations. When comparing V [µ̂CV
1 ] from

Table 7.2 with Fig. 7.3a, 0.000957 is confirmed by the value of 0.00096 calculated through the

repetitive study.

Returning to Table 7.2, we next analyse the influence of varying numbers of low-fidelity sam-

ples within the control variate approach. In Analysis 4, m = 600 low-fidelity samples are evalu-

ated, while in Analysis 5, m is set to 1200. It is apparent that the additional computational costs

are very small, however, the estimation’s accuracy increases. The estimations for µ̂1 and µ̂2

are closer to the reference solution for Analysis 5 compared to Analysis 4. Furthermore, the

error estimation V [µ̂] clearly shows the positive effect of higher sample numbers.

After discussing the approximation accuracy of the control variate estimators, the computa-

tional costs are evaluated. Since for MC estimators the variance of the mean V [µ1] is inversely

proportional to the number of samples, one can calculate the number of samples to reach a

similar error level as in the multi-fidelity scheme. With the same approximation accuracy, a

fair comparison of computational expenses can be made. In fact, a MC simulation with 1325
high-fidelity analyses would be required to reach a level similar to V [µ1] = 0.001. The multi-

fidelity scheme has a resultant neq of 25.6 to achieve V [µ1] = 0.001. This results in an overall

speedup factor of 51.7. It is important to note that the measured acceleration also includes the

construction phase of the reduced order models.

Second, we investigate the effect of the non-intrusive MOR model with a retraining phase, as

introduced in Algorithm 2. The NiROM is additionally based on high-fidelity results involved

in the control variate estimators and not only the full-order simulations of the training phase.

To judge the influence of the retraining step, the multi-fidelity scheme is executed without the

adaptive nature of the NiROM. The resulting distribution properties are depicted in Table 7.2 as

Analysis 5. Compared to Analysis 2, the estimation of the mean and variance with the adaptive

NiROM is slightly closer to the reference solution. A clear improvement in the approximation

of µ̂2 in y-direction with the retraining step is visible in Table 7.3. Here, V [µ̂2] can be reduced

from 0.0442 to 0.0398 through the enlarged training set of the adaptive NiROM.

Table 7.3 Estimation of second-order statistics for tip displacement in y-direction: comparison of Monte Carlo (MC) and
control variate (CV) estimators employing multi-fidelity MOR schemes.

Analysis type High-fidelity Low-fidelity n m neq µ1 V [µ1] µ2 V [µ2]

[mm] [mm2] [mm2] [mm4]

1. MC FOM - 2000 - 2000 8.07810 0.002049 4.09844 0.02005
2. CV HROM NiROM 60 1200 25.56 8.0579 0.003379 4.1610 0.04423
3. CV HROM adaptive NiROM 60 1200 25.56 8.0625 0.003356 4.1046 0.03982

To further investigate the effect of the retraining step, a new set of reduced order models

based on 9 training simulations, instead of 25, is created. Figure 7.4 shows the control variate
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(a) Mean estimator µ̂1 of tip displacement in y-direction
employing NiROM and adaptive NiROM.
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(b) Variance estimator µ̂2 of tip displacement in y-direction
employing NiROM and adaptive NiROM.

Figure 7.4 Histogram of 500 analysis comparing control variate estimators (CV) using a classical NiROM and an adaptive
NiROM based on 9 offline training simulations to estimate the mean µ̂1 and variance µ̂2 for the tip displacement in
y-direction.

estimator without the retraining step in green and with adaptive construction in blue. The

histogram clearly visualises that the variance of the estimators is reduced, indicating a lower

approximation error. This can be observed for the mean estimator in Fig. 7.4a as well as for

the variance estimator in Fig. 7.4b .

The positive impact of the adaptive reconstruction of the non-intrusive model highly depends

on its initial quality. If the accuracy of the initial NiROM is relatively high, additional retraining

has less impact. Consequently, an adaptive NiROM is especially beneficial for models with

a low number of initial training simulations. Moreover, these assumptions are based on the

premises that the intrusive models have higher accuracy than the non-intrusive ones.

7.4. Concluding remarks

With the example problem, the multi-fidelity scheme was tested and evaluated in comparison

to a reference solution based on full-order simulations. In summary, the test study has shown

that the proposed multi-fidelity scheme successfully performs efficient uncertainty propagation.

In fact, this analysis shows the most favourable application of the MOR scheme in comparison

to other studies presented.

For the robustness analysis, we are interested in the distribution of an output quantity analysed

through a FE simulation or, in our case, a reduced order model. Therefore, the parameter

space considered for the reduced model is fully exploited for the robustness evaluation. This

103



Catharina Czech

is in contrast to the optimisation algorithm, where the main focus lies on the optimum and its

direct neighbourhood.

The construction of the intrusive model showed significantly higher speedups compared to the

previous chapters. The analysis is based on large deformations, and the variation of the load

direction is expected to create a manifold with a lower level of nonlinearity compared to the

first two chapters. Therefore, the global POD approach results in ROMs with very low error

measures. Here, the hyper-reduction reduces its accuracy level significantly by a factor of 10.

The resulting online speedup factor of 144 is also increased by a magnitude compared to the

crash example.

However, the speedup comparison to the first chapter on crashworthiness is difficult as vary-

ing FE solver have been used. The implementation complexity of large-scale solvers omits

a fair comparison. Moreover, the speedup is highly dependent on the exact measured pro-

cessing times. For example, there is a great disparity in measuring the overall processing

time of the simulation, including pre- and post-processing steps or only the solving time of the

characteristic equation.

The combination of intrusive and non-intrusive models allows for an approximation of the per-

formance distribution with a speedup of 52 (including offline costs) while maintaining a com-

parable level of accuracy. Moreover, the beneficial influence of the low-fidelity model has been

presented in detail with varying parameter configurations. It could be shown that adding a high

number of low-fidelity samples increases the accuracy of the statistical estimators. An addi-

tional iterative analysis could confirm the theoretical equations of the control variate estimators

and illustrate its variance reduction on the estimators.

To analyse the effect of the retraining stage, the multi-fidelity scheme was evaluated with

varying non-intrusive models to highlight its impact. Depending on the initial quality of the non-

intrusive model, the impact of the retraining step varies. For models with low approximation

abilities due to a limited number of offline training simulations, the adaptive NiROM could

significantly improve the overall analysis. If the initial non-intrusive model is already on a high

accuracy level, the importance of the retraining step decreases.

Overall, the combination of control variate estimators and multiple levels of reduced-order

models seems a promising idea. This is embedded in the research direction of multi-level MC

analysis, and further extension with additional fidelity levels could be investigated.
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Chapter 8

Multi-fidelity robust design optimisation

In the previous chapter, the multi-fidelity concept was applied to an uncertainty propagation

problem. To illustrate its general applicability, this application chapter concentrates on robust

optimisation. Therefore, the multi-fidelity approach, as introduced in Section 4, is applied

to optimisation problems considering uncertainty. With two structural design problems, the

double-loop algorithm using high- and low-fidelity MOR models is demonstrated. Furthermore,

we illustrate the efficiency gains resulting from the combination of both models.

The first example seeks the ideal position of a hole for a beam that is experiencing damage.

We highlight the differences between absolute and robust minima on the basis of objective

function evaluations in the full design space. The result evaluation focuses on the robustness

criterion and on the adaptive non-intrusive model. It is shown that the proposed multi-fidelity

workflow converges to the robust minimum with reduced computational effort. The second

example is a large-scale airfoil wing constructed with fibre composites, in which the fibre ori-

entation is optimised. Here, we illustrate that the proposed approach is also applicable to

industrial-scale problems.

As in the previous chapter, the multi-fidelity MOR implementation incorporates the intrusive

MOR from Kratos Multiphysics with the non-intrusive algorithm. This is combined with the

optimisation algorithm that is realised with the help of the Python library SciPy (2022). The

first example was published in a conference proceeding by the author (Czech et al, 2022a),

which is the basis for the following paragraphs. The second example was developed during a

Master’s thesis of Weißinger (2023) supervised by the author.
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Figure 8.1 Three-dimensional test case: dynamic four-point bending test with hole.

8.1. Positioning of a hole within a bending beam

With this example the multi-fidelity scheme, presented in Algorithm 3 of Chapter 4 is assessed.

Hereby, we focus on the evaluation of the robustness criterion and the retraining step of the

non-intrusive scheme and leave the efficiency evaluation to the second example case.

8.1.1. Four-point bending test with damage

As depicted in Fig. 8.1, a four-point bending test inspired by a wooden board experiment (Kan-

dler et al, 2018) is analysed to illustrate the proposed algorithm. The three-dimensional beam

has a length of 2700mm and a rectangular cross-section of 150mm·70mm. It is meshed with

quadratic elements of length 25mm in all directions, resulting in 9156 degrees of freedom.

Subjected by a linearly increasing load over time, Fy = 0.3t N/s, which is distributed as a sur-

face load, the beam bends in negative y-direction until 10s are reached. The surface loads

are applied at a distance of 800mm to 850mm, measured from the edges of the board. An

orthotropic material description with a Tsai-Wu damage criterion (Knight, 2006) characterises

the material behaviour. The damage criterion is evaluated at each time step, and, if stresses

exceed the strength value, the stiffness of the element is reduced by multiplying with the reduc-

tion factor β . Table 8.1 states Young’s modulus E, Poisson’s ratio ν , strength value f , reduction

factors β , and mass density ρ corresponding to the coordinate system shown in Fig. 8.1. If no

specific direction is stated, the parameters in Table 8.1 are assumed to be isotropic. Moreover,

the shear moduli are calculated by a combination of Ex,Ey,Ez such as G−1
xy =

1+νyx
Ex

+
1+νxy

Ey
.

Table 8.1 Material parameter of test cases: Young modulus E
[

N
mm2

]
, Poisson’s ratio ν , strength f

[
N

mm2

]
, reduction factors

β , mass density ρ

[
kg
m3

]
. The indices 1,2,3 correspond to x,y,z direction, respectively.

E1 E2 E3 ν f β ρ

12500 500 500 0.0 80 0.01 1000

Figure 8.1 depicts a quadratic hole in the board of size 25 ·25mm2, characterised by the coor-

dinates x1 and x2 of its centre, which will be optimised. In this exemplary study, the mid-node

displacement of the beam is minimised with respect to the position of the hole. Here, the

design variables are treated as continuous variables and the displacement in y-direction at
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Figure 8.2 Decaying singular values of the snapshot matrix with logarithmic scale, truncated at rank 50 for the reduced order
models.

the symmetry plane is considered as the objective function. To better understand and illus-

trate robust optimisation, a two-dimensional design space is chosen. The complexity is further

reduced, as only one half of the symmetric problem is investigated.

8.1.2. Reduced order models

To test the proposed surrogates, full-order training simulations are analysed for the construc-

tion of intrusive and non-intrusive reduced order models. In the design space, a full factorial

sampling is spanned with 50 points in x- and 4 points in y-direction. At each grid point, a train-

ing simulation is conducted, and snapshots are collected from the last time step. These 200
snapshots are combined and reduced to a 50-dimensional subspace via SVD approximation

by a truncation error of 2 ·10−5. The decaying singular values are depicted in Fig. 8.2 on log-

arithmic scale with a truncation at rank 50. Based on the reduced basis vectors, a regression

model is trained for the non-intrusive model. To compute the weights, for the linearly com-

bined bases vectors of Eq. (3.19), a polynomial regression model is introduced with p = 5 and

trained with 200 snapshot results. As the hyper-reduction step is neglected for this first exam-

ple, the training phase is completed, and intrusive and non-intrusive reduced order models are

available for the desired multi-query analysis.

8.1.3. Robust optimisation of the holes’ coordinates

The optimisation study includes two design variables, which describe the coordinates of the

hole. All elements in the z-direction with identical x and y coordinates are deleted such that a

hole is created. Elements at the boundary and those affected by the support are excluded so

that the first design variable, the x-coordinates are chosen between 112.5 ≤ x1 ≤ 1612.5mm

and the y-coordinate is bounded with 37.5 ≤ x2 ≤ 112.5mm. The objective is defined as the

displacement of the mid-node in y-direction. Moreover, the design variables are defined as the

uncertain variables and its impact on the objective function is to be investigated. To consider

the robustness criterion, the variance of the objective function is included as a constraint, with

σcrit ≤ 0.001[mm2].
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Figure 8.3 Convergence of design variables x1 to robust minimum xr computed by FOM analyses with robust design
optimisation.

For a reference solution, the optimisation scheme based on full-order analyses is conducted.

To perform the optimisation, a differential evolution algorithm is employed with a population

of 5 and a recombination factor of 0.7. The algorithm stopped after 14 iterations and 253
evaluations, whereby an absolute convergence tolerance of 0.001 is reached. The global

minimum x0 is found at the coordinates x1 = 193.4mm and x2 = 103.4mm, which correspond

to a hole with the central coordinates x = 187.5mm and y = 112.5mm.

To better judge the results and effectiveness of the variability measurement, the design space

is scanned by FOM simulations. In Fig. 8.4a, the x- and y-axes represent the x- and y-

coordinates of the hole, and the normalised objective function is displayed according to the

colour bar. The global minimum x0 is located in the upper left part of the design space, coloured

dark blue. Another optimisation, including the robustness criterion, is started with the same

optimisation parameters. Figure 8.3 depicts the convergence of the design variables x1. When

adding the robustness criterion by the standard deviation approximated by four points, another

minimum xr, is found. The absolute value of the objective function is higher, but the larger

distance between iso-lines visualises a reduced variability compared to the global optimum

x0.

For the global minimum, the position of the hole is close to the corner of the board, above

the support. Here, the hole weakens the board only minimally, but its variability in bending is

relatively high. When the hole is moved closer to the support, the force flow is disturbed and

deformation increases. A hole placement with lower variability of the objective function can be

found in the middle (shown as xr in Fig. 8.4), approximately one third of the board length, with

a greater distance from the support.

The result of the robust optimisation via MOR models, as proposed in Algorithm 3 is depicted

in Fig. 8.4b. Therefore, the variance is estimated with the high-fidelity model and displacement

is based on the low-fidelity evaluations. The background shows the design space scanned by
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(a) Two-dimensional design space showing global x0 and robust minimum xr
evaluated with a differential evolution strategy using FOM analyses.
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(b) Two-dimensional design space evaluated by ROM analyses and robust
minimum found with multi-fidelity (MF) approach.

Figure 8.4 Two-dimensional design space showing the global x0 and robust xr minimum of the objective function evaluated
with the full-order model (FOM) and the intrusive reduced order model (ROM).
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(a) Objective function f (x1,x2) computed by low-fidelity
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Figure 8.5 Evaluation of the multi-fidelity (MF) optimisation scheme compared to full-order analysis (FOM) and analysis
based non-intrusive models (NiROM) distinguishing between NiROM and adaptive NiROMs.

intrusive reduced order analyses. When comparing the design space analysed by the intrusive

model in Fig. 8.4b with the reference in Fig. 8.4a, the overall landscape is well approximated. It

is noticeable that the resulting design variable x1 computed by the proposed algorithm slightly

deviates from the reference solution due to the approximation error of the ROM. To further anal-

yse this discrepancy, the accuracy of the surrogate models is evaluated with the normalised

mean squared error:

εNMSE =

√
(uFOM−u)2

u2
FOM

. (8.1)

The mid-node y-displacement of the robust optima, as the decisive quantity for the optimisation

problem, is compared to the reference solution. The high-fidelity ROM has a normalised mean

squared error of εNMSE = 0.009. In addition, the low-fidelity NiROM is evaluated, resulting in a

εNMSE of 0.02.

To further illustrate the combined models, Fig. 8.5a depicts the objective function f (x1,x2)

computed by low-fidelity (NiROM) and multi-fidelity (adaptive NiROM + ROM) compared to

FOM reference solution for varying x1. One can clearly notice that the system answer between

the NiROM and FOM reference solution diverges, indicating that an optimisation based solely

on the low-fidelity model is not sufficient. On the other hand, the multi-fidelity model closely

follows the reference solution.

In a next analysis step, we evaluate the retraining step of the NiROM in Fig. 8.5b. To highlight

the importance of the retraining step, an optimisation run with (adaptive NiROM) and without

update (NiROM) is compared to the reference solution. The adaptive NiROM improves its

accuracy and also the εNMSE of Eq. (8.1) is reduced from 0.02 to 0.01. Without the adaptive

nature, the information gained by the high-fidelity model is not used further, and the accuracy

of the approximation is reduced.
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Table 8.2 Geometric parameters of the Common Research Model (CRM) of NASA (2022) for the utilised airfoil model of a
transsonic transport aircraft.

Wing span Aspect ratio Root chord Tip chord

58.76m 9 13.56m 2.73m

The proposed algorithm was successfully tested on a small structural design problem with

material nonlinearity. It could be shown that the robustness criterion can approximate the

variability of the objective function and lead to a robust optimum instead of the global minimum.

Confirming the results of the last chapter on uncertainty propagation, the adaptive NiROM can

improve the overall accuracy of the proposed workflow. To create an efficient scheme for higher

nonlinear problems, a hyper-reduction step must be added to the workflow. An application to

a large-scale industrial example that includes all the available reduction steps is presented in

the next section.

8.2. Robust optimisation of an airfoil wing structure

For the second example study, the fibre direction of a semi-span airfoil wing is optimised

applying the multi-fidelity scheme. The focus lies on a large-scale optimisation study in which

a simplified airfoil model for a transsonic transport aircraft is analysed. Therefore, we use the

Common Research Model (CRM) of NASA (2022), which has been employed for numerous

analysis, such as the structural optimisation in Dababneh et al (2018); Kilimtzidis et al (2023).

The design of an airfoil wing is a complex task that includes computational fluid dynamics

and structural analysis (Bak et al, 2014). Here, we merely focus on the structural design

of airfoils, which is commonly optimised for the overall weight, the stiffness and strength, or

aeroelastic stability, such as flutter. It is important to note that we do not show a realistic design

optimisation of an airfoil wing, but a simplified version to illustrate the applicability of the multi-

fidelity scheme to related problems. Therefore, we perform an optimisation that minimises the

twisting angle under the variation of two material constants characterising the orientation of

the fibre composite material.

8.2.1. Wing structure analysis

The original aircraft model by NASA (2022) is simplified to its wing, neglecting the body, pylon,

and nacelle. Moreover, the wing is modelled as a hollow structure, while the reinforcement in

the interior are not represented. The upper and lower surfaces of the airfoil wing are shown in

Fig. 8.6, with the geometric variable summarised in Table 8.2. The upper and lower structure is

modelled with a thickness of 100mm. For detailed explanations of the airfoil model, the reader

is referred to Vassberg et al (2008).

The wing is clamped on the left side and static loading conditions are assumed. To model

111



Catharina Czech

Table 8.3 Orthotropic material assigned to the wing surfaces for a T300/7901 UD layer, (Hu et al, 2021): Young’s modulus E[
N

mm2

]
, shear modulus G

[
N

mm2

]
, Poisson’s ratio ν . The indices 1,2,3 correspond to x,y,z direction, respectively.

E1 E2,E3 G12,G13 G23 ν12,ν13 ν23

125000 11300 5430 3980 0.3 0.42

the complex aerodynamic loading, pressure measurements are taken from wind tunnel exper-

iments TNA ESWIRP ETW (2014). The pressure distributions correspond to a wind tunnel

experiment that mimics a standard transsonic flight operation with a cruise altitude of 10688m,

a Mach number of 0.85, and a nominal lift condition of 0.5. The pressure is measured by 227

pressure ports during the experiment. Within the FE model, we averaged the pressure results

to 16 different surface loads. In Fig. 8.6 the corresponding surfaces are depicted, whereby

the dotted lines show the location of the experimentally obtained pressure data. The orange

surface is highlighted as an example, for which the pressure is averaged to 53 kPa considering

the corresponding pressure ports of the first three rows.

η < 0.297

y

xz

η ≥ 0.297

Figure 8.6 Airfoil wing structure (NASA, 2022) and corresponding averaged pressure results experimentally gained by TNA
ESWIRP ETW (2014). The variable η describes the relative position in spanwise direction.

Aircraft wings are commonly constructed with fibre-reinforced materials, often consisting of

multiple layers of varying fibre orientations. For this analysis, one uni-directional carbon fi-

bre reinforced epoxy layer is assumed, with the material parameters given in Table 8.3. An

orthotropic material model represents the varying material properties of fibre and matrix with
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the first direction corresponding to the x-axis, and the second direction corresponding to the

y-axis, as shown in Fig. 8.6. The fibre direction is defined as the positive rotation around the

z-axis, starting with zero degree aligned with the x-axis. The upper and lower part of the wing

are represented with individual fibre orientations θ1 and θ2. As a hyper-elastic material model

is appropriate (Lüders, 2020), a Neo-Hookean material represents the linear elastic regime

(Belytschko et al, 2014). To discretise the wing, it is meshed with 242,362 linear tetrahedral el-

ements with element lengths between 25 and 120mm, resulting in 79,737 nodes and 239,211
degrees of freedom.

A common constraint to ensure static stability is to limit the displacement and twist angle at the

tip of the wing (Dababneh et al, 2018; Kilimtzidis et al, 2023). Therefore, the tip displacement

is restricted to utip < 15% · s = 4.41, with the semi-span s. To keep the twist angle in a realistic

range, we check for αtip < 6◦. These constraints are met with fibre angles ranging between

40◦ and 60◦ degrees. The range also aligns with fibre directions approximately following the

wing span.

8.2.2. Hyper-reduced airfoil wing model

To construct suitable reduced order models, training simulations are run with varying design

variables θ1 and θ2 in a range of [40◦,60◦]. In total 49 training simulations are sampled based

on a full factorial design with an equidistant grid for θ1 and θ2. We collect the resulting dis-

placement vectors in the snapshot matrix, which is reformulated via SVD. With a truncation

tolerance of 1 ·10−6 a subspace with k = 39 reduced basis is created. For the hyper-reduction,

only 12 training simulations are utilised to select the reduced set of elements, due to memory

limitations resulting from the large matrix sizes. The 284 hyper-reduced elements, selected

through the ECM algorithm are depicted in Fig. 8.7.

Figure 8.7 Hyper-reduced airfoil wing structure based on 39 reduced basis resulting in 284 selected elements via ECM.

To test the reduced order models, 10 random samples within the design space are computed

and compared with the reference solution. Therefore, displacement eGMRE and speedups are

depicted in Table 8.4. The eGMRE of the ROM with 2.84× 10−6 in the decisive y-direction
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shows that the global POD approach can sufficiently approximate the current design space.

The HROM has a reduced but acceptable mean eGMRE of 3.77× 10−3 for the same quantity.

The measured processing time only contains the projection and solving step and neglects

the initial setup and post-processing for a fair comparison. Since in this example only 0.001%
percent of the element are included in the hyper-reduced mesh, the remarkable speedup factor

of 2000 is achieved.

Table 8.4 Evaluation of the displacement eGMRE for all three dimensions and the computational speedup of the ROM,
HROM, and NiROM with varying regression models.

model eGMRE speedup
x y z

ROM 1.23×10−5 2.84×10−6 2.25×10−6 12.51
HROM 2.97×10−3 3.77×10−3 4.02×10−3 2452.10

NiROM - PolyR 2.21×10−1 2.95×10−2 2.30×10−2 61884.06
NiROM - kNN 1.48×10−1 5.00×10−2 4.84×10−2 48542.87
NiROM - GPR 1.50×10−2 1.28×10−3 6.69×10−4 56113.65

For the non-intrusive approach, all three regression models are tested. Therefore, only 12

training simulations are used within the training space to create a fair comparison between

intrusive and non-intrusive MOR.

For PolyR and kNN a hyper-parameter study with 5-fold cross-validation is conducted to find

the optimal polynomial degree and number of neighbours, respectively. Therefore, the dis-

placement eGMRE corresponding to the test and training data is computed to judge the con-

structed models. On the left of Fig. 8.8 the testing error is plotted in grey, and the training

error is visualised in blue for increasing polynomial degrees. It is visible that the lowest testing

error can be found with a polynomial degree of p = 5. With polynomials p < 5, the training

and testing errors are simultaneously decreasing, while a divergent trend for p > 5 indicates

the start of overfitting. For the kNN regression model, we observe the lowest testing error with

k = 2 neighbours in Fig. 8.8, on the right. The sparse training data explains the low number

of neighbours and the relatively poor performance. The GPR is constructed with an RBF ker-

nel with an isotropic correlation length of 50. Here, the hyper-parameter is found through a

gradient-based optimisation study. The corresponding speedups for the non-intrusive models

are in a comparable range of 104, summarised in Table 8.4.

8.2.3. Optimisation study to minimise the twist angle

An optimisation study of the presented airfoil wing is conducted with the multi-fidelity MOR

approach. Minimising the twist angle at the tip of the wing is chosen as an objective to illustrate

the capabilities of the robust optimisation approach. The design variables are θ1 and θ2, the

fibre orientations for the upper and lower skin. Consequently, the optimisation problem can be
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Figure 8.8 Hyper-parameter study with 5-fold cross-validation for PolyR and kNN to find the optimal polynomial degree and
number of neighbours for NiROMs.

defined with the following objective function:

minimise f (θi) =
αtip(θi)

α0
+

σ2(θi)

σ2
0

,

such that 40◦ ≤ θi ≤ 60◦; θi ∈ R, i = 1,2.

(8.2)

Equation (8.2) combines the twist angle at the tip αtip and the robustness criterion σ2 in the

objective function. This contrasts to the previous example in Section 8.1.3, where the robust-

ness criterion is considered as a constraint. Here, the multi-objective problem is combined

to a single-objective function with a weighted sum. As the weights are set to one, they are

neglected in the above equation. To compute the twist angle, we evaluate

αtip = arctan
(

δmax−δmin

ctip

)
, (8.3)

with δmax the maximum displacement and δmin the minimal displacement of the tip in the ver-

tical direction, and ctip the chord length at the tip (Dababneh et al, 2018; Kilimtzidis et al,

2023). The simulation to evaluate the twist angle represents the outer optimisation loop and is

executed with the intrusive model.

The robustness measure is represented by the variance σ2 in Eq. (8.3). The evaluation of

the variance-based criterion is approximated by Latin hypercube sampling in the vicinity of the

corresponding candidates x = (θ1,θ2)
T . The sensitivity of the objective function to random

deviations in the design variables is set to ±0.5◦. Thus, candidates x j are sampled within the

neighbourhood defined by

xj =
(

θ
j

1 ,θ
j

2

)
, with θ

j
i ∈ [θi−0.5◦,θi +0.5◦], (8.4)
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for robustness evaluation. If the current sample x is close to the limits of the design variables,

the neighbourhood is adjusted so that the samples remain within the design space. Normali-

sation coefficients α0 and σ2
0 are introduced to combine the two objectives in an equal manner.

They are obtained by a standard optimisation that neglects the robustness criterion. Conse-

quently, the robust optimum is expected to have an objective function value fi/ f0 > 1 and a

normalised variance σ2
i /σ2

0 < 1. The overall fitness is then a sum of the normalised twist angle

and its normalised variance.

The optimisation algorithm is based on a differential evolution strategy and is executed with an

initial population of 10, a differentiation constant F = [0.5,1], a crossover constant of Cr = 0.5,

and a rand/1/bin strategy to avoid convergence to local minima. Furthermore, the optimisation

algorithm is terminated if a tolerance of 1 ·10−8 is reached or after 10 generations.

The results of the multi-fidelity optimisation study are shown in Fig. 8.9 that highlight the global

optimum x0 and the robust optimum xr. Evaluated by HROM analyses, the objective function is

plotted in the background. A minimum determined by the non-robust optimisation is found with

the fibre angles θ1 = 48.07◦ and θ2 = 52.54◦. Moreover, the corresponding objective function

and variance values are stated in Table 8.5 in the first row.

Table 8.5 Global and robust minimum found by the optimisation algorithm exploiting the multi-fidelity MOR scheme and the
corresponding reference FOM analysis.

Optimum θ1 [◦] θ2 [◦] model αtip [◦] σ2 [(◦)2]

global x0 48.07 52.54
HROM/GPR 6.141×10−2 5.862×10−4

FOM 6.575×10−2 5.155×10−4

robust xr 41.77 55.07
HROM/GPR 7.391×10−2 1.740×10−4

FOM 7.317×10−2 1.348×10−4

To evaluate a robust minimum, the presented multi-fidelity (MF) approach applies the HROM

and non-intrusive model with GPR. Therefore, 100 evaluations of the low-fidelity model are

used to approximate the variance for the robustness criterion. The optimal design is found

with the design variables θ1 = 41.77◦ and θ2 = 55.07◦, with a slightly higher twist angle and a

reduced variance from 5.9 · 10−4 to 1.7 · 10−4. Here, the optimisation algorithm is terminated

when the maximum number of iterations is reached. With the contour plot, the convergence of

the robust optimum can be visually confirmed. Therefore, no further optimisation study, with

e.g. different initial parameter settings, is performed to improve the convergence behaviour.

As a robust optimisation based on FOMs would have infeasible costs, only simulations with the

optimal design variables are carried out. In Table 8.5 reference solutions for the twist angles

and its variances are stated for the absolute and robust minimum. For the FOM analysis,

the variance is approximated with only 10 sample points. The reader can observe that the

results of the twist angle and its variance slightly vary between HROM and FOM, due to its

approximation error. However, the comparison between global and robust optimum shows a
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Figure 8.9 Performed multi-fidelity optimisation study based on HROM and NiROM resulting in a global optimum x0 and the
robust optimum xr.

correct identification. Consequently, we can confirm that the proposed optimisation scheme is

capable of finding a robust optimum.

As a last step, the cost associated with the optimisation study is evaluated. Approximately 420
designs are analysed by the HROM during the robust optimisation procedure. Furthermore,

the neighbourhood is explored with 100 low-fidelity samples for each design, resulting in a total

of 42,000 model evaluations. Combining the offline and online costs of the robust optimisation

results in a total processing time of 16,686 s. A robust optimisation based solely on FOM

would have incurred a cost of 7×106 s. Thus, the presented scheme offers a speedup of 466
and compensates for the expenses of the training phase. Even in comparison to a FOM-based

analysis utilising only 10 individuals to approximate the variance, the presented scheme would

still provide a speedup of 51.

8.3. Concluding remarks on multi-fidelity scheme

Within this chapter, the multi-fidelity scheme has been successfully applied to robust optimi-

sation studies. A robust position of a hole within a beam under damage represented the first

application case. Through a fibre optimisation of an airfoil wing, the efficiency of the proposed

multi-fidelity scheme could be confirmed.

The first example focused on the variance-based robustness criterion and the adaptively up-

dated non-intrusive model. Similarly, to Chapter 7 the update can improve the accuracy of the

NiROM. The enhancement depends on the initial quality of the non-intrusive scheme and its
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effect is reduced if the initial approximation quality is relatively high. However, only previously

available data are used and a limited additional effort is needed for the retraining step.

Secondly, we showed that the robustness criterion has a measurable effect on the optimisation

study, and robust optima that are insensitive to small variations in the design variables can

be found. To consider the robustness criterion, it can be incorporated as a constraint, as in

Section 8.1 and within the objective function shown in Section 8.2. For variance evaluation, the

application of high- and low-fidelity models is interchangeable and can be defined according to

its importance within the optimisation study. The first example approximates the variance with

the high-fidelity model. With the second optimisation of an airfoil wing, this was exchanged.

Here, the twist angle is evaluated with the high-fidelity model, and the variance is evaluated

with the low-fidelity model.

The second example is closer to an industrial application case with approximately 240,000
elements. It is observable that the proposed multi-fidelity approach is well applicable to large-

scale problems. In addition, the achievable speedups are highest in this example compared to

the others.

With the second example, a previously occurred limitation becomes apparent. In general, we

have assumed that the intrusive MOR approach has a higher accuracy level than the non-

intrusive scheme. However, for the airfoil wing optimisation, the regression model based on

GPR has a similar precision. This has also been observed in Chapter 5 for the enlarged

parameters space of the crash box optimisation. The question can be raised whether the

additional implementation complexity of intrusive MOR is reasonable. Moreover, the retraining

step of the low-fidelity model should be neglected if the precision levels are similar.

Even if the second optimisation study shows a very suitable application of GPR, an expanded

training data set could cause reduced efficiency. As in GPR the inverse of the covariance

matrix must be calculated, classical GPR reaches its limits for large data sets.

Overall, the two robust optimisation schemes illustrated the general applicability of the multi-

fidelity scheme. Not only for uncertainty propagation, as presented in Chapter 7, but also for

optimisation algorithms, the combination of intrusive and non-intrusive MOR approaches can

efficiently enable these cost-intensive analyses.
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Part V

Conclusion
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Chapter 9

Conclusion

9.1. Conclusion

This thesis presented a novel bi-fidelity architecture based on data-driven and projection-

based MOR for analysis under uncertainties. Snapshots from full-order FE analysis are eval-

uated via POD to identify an underlying lower dimensional representation. The Galerkin pro-

jection transforms the system of equations into the subspace with fewer unknowns. This is

complemented by a hyper-reduction step constructed through ECSW or ECM to further re-

duce the analysis cost. We add a non-intrusive approach to the intrusive MOR, which is based

on the identical subspace. Therefore, the basis vectors are combined within a weighted sum,

whereby the unknown weights are determined through a regression model. The low imple-

mentation complexity and evaluation cost extend the intrusive approach forming a multi-fidelity

scheme to improve the efficiency of multi-query analysis.

From a model management point of view, the low-fidelity model follows the principle of adap-

tation. In particular, the non-intrusive low-fidelity model can be updated after additional high-

fidelity results are available. The snapshot-based approach allows the combination of full-order

and intrusive MOR results, such that the non-intrusive model is retrained when additional high-

fidelity results are available. We could show that this improves the accuracy of the low-fidelity

model by adding insignificant additional costs.

With a range of example studies, the modularity of the proposed architecture is highlighted.
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Optimisation under uncertainties and uncertainty propagation have been presented as suitable

double-loop examples, leading to a generally applicable scheme. The multi-fidelity strategy

was adopted for the control variate approach, blending high-fidelity and low-fidelity models to

estimate second-order statistics. The global MOR method is especially beneficial for uncer-

tainty propagation, as the entire design space is required to statistically evaluate the output

quantity. Using an example study, we could show that the presented algorithm can achieve

significant efficiency gains. In addition, we demonstrated the proposed multi-fidelity scheme

for robust optimisation studies. The low- and high-fidelity models are interchangeable for the

evaluation of objective function and robustness criterion. As the loops are recursively ex-

ecuted, costs significantly increase. For large-scale FE analyses, the multi-fidelity scheme

enables optimisation under uncertainties that would otherwise be prohibitively expensive.

With application to multiple example studies, intrusive and non-intrusive MOR techniques for

structural multi-query analysis were investigated in detail. The MOR methods are analysed

for parametric problems with nonlinearities in material, geometry, and boundary conditions

through the varying application cases. Concerning the projection-based reduced order mod-

els, the following statements can be summarised for application in structural optimisation and

uncertainty propagation.

To identify the subspace of the MOR techniques, snapshots from previously computed full-

order simulations are collected. The main advantage of snapshot-based POD is that the

scheme is widely applicable. Training simulations can be easily created for different pa-

rameter spaces, such as varying boundary conditions or material properties. Furthermore,

the approach is extendable to more complex parametric problems, as shown for random

fields describing material inhomogeneities. Another advantage of the presented intrusive

and non-intrusive technique is the seamless extension to transient analysis. For the intrusive

scheme with Galerkin projection and ECM hyper-reduction, an implicit or explicit time integra-

tion scheme can be used. The time parameter was taken as an additional input parameter for

the non-intrusive approach. This results in different natured parameters within the regression

model, which was not observed as a major challenge. For example, in GPR an anisotropic

kernel can account for the parameter indifference.

When discussing the scheme’s overall efficiency, the trade between accuracy and speedups

must be judged. For the evaluation of intrusive MOR, we can conclude on Galerkin projected

schemes with the closely related hyper-reduction schemes ECSW and ECM. In general, this

trade is particularly good for large models with small parameter changes and a low degree of

nonlinearity within the manifold. This is expected as the POD approach is a linear projection

technique. It was observed that the limits of the global POD technique are reached when the

parameter space is enlarged. A good indication is the snapshot matrix’s low decaying rate of

singular values. Then, the accuracy level of the intrusive model is significantly reduced. This
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became especially apparent for the crash box optimisation and the analysis with two indepen-

dent heterogeneous material fields. Furthermore, the appearance of local phenomena, such

as highly localised damage behaviour, also reveals the limits of the global approach.

For all applications, an overall speedup could be achieved. To reasonably evaluate the cost,

also the construction phase must be considered. The main expenses of the construction

cost usually correspond to the number of training simulations, which vary for every problem.

For non-intrusive models, one can estimate that the online phase must at least contain the

number of training simulations to create an efficient scheme. On the other hand, the intrusive

framework shows a significant range of speedups, which prohibits a general conclusion. Here,

a few hundred evaluations were needed for the presented multi-query analysis with gradient-

free optimisation and uncertainty propagation. In these cases, the intrusive MOR scheme

resulted in an accelerated workflow, also considering the offline phase.

The non-intrusive schemes show speedups (without construction phase) of magnitude 104,

which is a significant reduction in computational time. Its implementation effort is relatively

low compared to the intrusive method through openly available ML libraries. Surprisingly, for

the crash box and airfoil wing optimisation study, the non-intrusive model, similarly performed

or even outperformed the intrusive models. This becomes especially apparent when a large

parameter space should be covered. Gaussian process regression achieved the highest ac-

curacy measures when choosing between different regression models. For k-nearest neigh-

bours, its simplicity is valuable, especially for validation purposes, as no overfitting can occur.

A polynomial regression function lies in between the other two approaches, whereby the very

fast online evaluation of the regression function is its main advantage.

In summary, intrusive and non-intrusive projection-based MOR techniques can successfully

evaluate structural analysis under uncertainties. The proposed multi-fidelity scheme as a mod-

ular framework allows the application to varying double-loop problems. Extending the intrusive

MOR by the non-intrusive model adds little additional cost, with a significant advantage for the

presented analyses. An apparent drawback is the accuracy and acceleration inconsistency of

the intrusive scheme on which the architecture is mainly constructed. The following section

provides a critical reflection and suggests improvements for future work.

9.2. Outlook and critical reflection

With the major conclusion summarised in the last section, we critically discuss the proposed

techniques and evaluation methods. The first paragraphs concentrate on the intrusive and

non-intrusive schemes individually, followed by the multi-fidelity scheme and its specific appli-

cation.
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Projection-based model order reduction techniques

In this thesis, the projection-based MOR uses a global POD approach, combining snapshots

from different time instances and parameter configuration to create a global reduced basis.

An apparent limitation of the presented intrusive MOR approach can be traced back to the

global subspace. The linear projection reaches its limits for problems with low decaying eigen-

value rates, resulting in lower accuracy (Amsallem et al, 2015b; Zimmermann, 2021). This

phenomenon was observed for large parameter spaces and localised behaviour. To ensure

certain accuracy tolerance, an error measure for the reduced order models should be intro-

duced, see e.g. (Soize and Farhat, 2017; Nurtaj Hossain and Ghosh, 2020).

In the literature, multiple approaches exist that extend the projection capabilities of the intrusive

method. A common approach introduces multiple local affine subspaces that define different

clusters of behaviour, such as (Amsallem et al, 2012; Vlachas et al, 2021). During the online

phase, an algorithm selects the subspace corresponding to the state of the system. The more

fundamental idea is to exchange linear projection with a nonlinear method, see e.g. Lee and

Carlberg (2020); Fresca and Manzoni (2022). For nonlinear projection methods, the back-

and-forth projection cannot be realised with a simple matrix multiplication, which leads to a

change of the workflow. Contributions to related problems, such as Touzé et al (2021) on

nonlinear projection methods for structural problems with simulation-free approaches, could

also be investigated.

One can notice a wide range of speed-ups for the intrusive MOR scheme when comparing

the different application cases. To further analyse the processing time, a detailed evaluation

of the algorithm would be required. The reduced cost depends on the specific implementa-

tion, as the intrusive MOR is embedded in the FE solver. Moreover, the different nonlinearities

invoke additional costs to the solver, which are difficult to compare. Therefore, every step of

the computation should be quantified, also during the construction phase, to provide an accu-

rate evaluation of the processing time. Two different hyper-reduction algorithms are employed

within the theses, as the crash example was conducted using a different solver environment.

A general comparison of speedups is difficult as the surrounding implementation restrictions

of the FE solver are not comparable. Moreover, we are missing a direct comparison of the two

hyper-reduction techniques.

The non-intrusive MOR performs with similar levels of accuracy within different example stud-

ies. The most promising regression approach is GPR, as also observed by Kneifl et al (2021).

A disadvantage of GPR is its poor scalability for large data sets, as the inverse of the co-

variance matrix must be performed for each prediction step. Modifications such as sparse

Gaussian processes (Snelson and Ghahramani, 2005) or recursive cokriging (Gratiet, 2012)

are available that handle large data sets more efficiently. Furthermore, other sophisticated
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non-intrusive techniques based on auto-encoder, such as Partin et al (2023) open the poten-

tial for further improvement.

Multi-fidelity model management

This thesis’s multi-fidelity scheme merges non-intrusive and intrusive methods, with the lat-

ter as the high-fidelity model. The intrusive MOR approach as a high-fidelity model can be

critically discussed, as it already contains a simplification and, thus, an approximation error.

As an additional fidelity level, full-order analysis could be incorporated into the multi-fidelity

architecture to circumvent this approximation step.

An obvious choice is to reuse the training simulations from snapshot-based approaches within

the multi-query scheme. Therefore, a sampling strategy already adapted to the online phase

would be beneficial. The idea is particularly suitable for control variate estimators, as the

theoretical concept is derived for multiple numbers of fidelity levels.

In the proposed scheme, we assumed that the intrusive level reaches higher accuracy than the

non-intrusive one. As the intrusive and non-intrusive methods have similar accuracy for some

use cases, automated error measures are necessary to quantify and assure this assumption.

In these cases, enhancing the intrusive scheme is inevitable to ensure high accuracy levels.

Through the modular structure of the multi-fidelity architecture a straightforward integration of

multiple affine subspaces would be possible.

Furthermore, estimators that quantify the correlation between models should be implemented

to improve the model management strategy, such as proposed by Peherstorfer et al (2016). It

would also be interesting to apply the proposed multi-fidelity scheme to other areas of multi-

fidelity analysis, such as inference.

Model order reduction tailored to optimisation studies

The proposed multi-fidelity scheme consists of varying modules to create a general workflow

suitable to different double-loop algorithms. Modularity is an advantage, enabling the applica-

tion to diverse problems, but simultaneously a disadvantage, as solutions specifically tailored

to the analysis are often more efficient.

For example, the global POD creates a reduced basis for the entire design space, which

is required for the uncertainty propagation problem. In contrast, only the optimum and its

neighbourhood are essential for robust optimisation, and the rest of the design space is of

minor interest. The optimisation algorithm evaluates points in the entire design space to find

the minimum. However, the exact system answer is only demanded at the minimum of the

objective function. The multi-fidelity model management strategy should consider this fact

when creating efficient reduced-order models, especially with the apparent accuracy issues

of the global POD. One idea is the combination of multi-fidelity approaches with trust region
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optimisation (Zahr et al, 2019; Wen and Zahr, 2023). Another strategy is to develop a two-

step optimisation scheme, first identifying the domain of interest before performing a precise

optimisation, as proposed, e.g. by Li et al (2018). To better explore the specific attributes

of the population-based algorithm, one could also investigate the inherent robustness of the

optimisation strategies (Beyer and Sendhoff, 2006).

In future work, the multi-fidelity scheme could also optimise multi-scale design problems. Pub-

lications, such as Zahr et al (2017); Hernández (2020); Caicedo et al (2019), proposed MOR

techniques in the scope of multi-scale analysis. An interesting combination could be a multi-

fidelity scheme for multi-scale optimisation algorithms, which are commonly based on linear

structural analysis (Murphy et al, 2021).
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Appendix

Appendix A

Following, the detailed equations for the calculation of the control variate estimators for the

mean µ̂CV
1 and variance µ̂CV

2 are given. The control variate estimator of the mean µ̂CV
1 can be

formulated according to Eq. (2.22) with the variables A1−A4:

A1 =
µ̂2,0(y,ỹ,Θn)

n , A2 =
µ̂1,1(y,ỹ,Θn)

n ,

A3 =
µ̂0,2(y,ỹ,Θn)

n , A4 =
µ̂0,2(y,ỹ,Θm)

m ,

(9.1)

with high-fidelity y and low-fidelity ỹ responses and sample sets θn and θm.

The control variate estimator of the variance µ̂CV
2 is given in Eq. (2.28) with the variables

B1−B4:

B1 =
µ̂4,0(y,ỹ,Θn)

n − (n−3)µ̂2
2,0(y,ỹ,Θn)

(n−1)n , B2 =
2µ̂2

1,1(y,ỹ,Θn)

(n−1)n +
µ̂2,2(y,ỹ,Θn)

n − µ̂2,0µ̂0,2(y,ỹ,Θn)
n ,

B3 =
µ̂0,4(y,ỹ,Θn)

n − (n−3)µ̂2
2,0(y,ỹ,Θn)

(n−1)n , B4 =
µ̂0,4(y,ỹ,Θm)

m − (m−3)µ̂2
2,0(y,ỹ,Θm)

(m−1)m ,

(9.2)

The corresponding estimations of the co-moments µ̂p,q are stated in Eq. (9.3) - (9.13) and

formulated in a general way depending on the sample set θl , including l number of samples.

The co-moments are given dependent on sp,q:

sp,q =
l

∑
i=1

(y(θi))
p(ỹ(θi))

q, (9.3)

with θi, the i-th sample of the sample set θl . The required co-moments are depicted in the

equations below (González et al, 2019).

µ̂1,1 =
ls1,1− s0,1s1,0

(l−1)l
. (9.4)

µ̂2,0 =
ls2,0− s2

1,0

(l−1)l
. (9.5)

µ̂0,2 =
ls0,2− s2

0,1

(l−1)l
. (9.6)
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µ̂2,2 =
1

(l−3)(l−2)(l−1)l
((−2l2 +4l−6)s2,1s0,1 +(−2l2 +4l−6)s1,0s1,2 +(l3−22 +3l)s2,2+

ls2,0s2
0,1 +4ls1,0s1,1s0,1 + ls0,2s2

1,0 +(6−4l)s2
1,1 +(3−2l)s0,2s2,0−3s2

1,0s2
0,1)

(9.7)

µ̂4,0 =
1

(l−3)(l−2)(l−1)l
((−4l2 +8l−12)s3,0s1,0 +(l3−2l2 +3l)s4,0 +6ls2,0s2

1,0

+(9−6l)s2
2,0−3s4

1,0)

(9.8)

µ̂0,4 =
1

(l−3)(l−2)(l−1)l
((−4l2 +8l−12)s0,3s0,1 +(l3−2l2 +3l)s0,4 +6ls0,2s2

0,1

+(9−6l)s2
0,2−3s4

0,1)

(9.9)

µ̂
2
1,1 =

1
(l−3)(l−2)(l−1)l

((l2−3l +2)s2
1,1 +(l− l2)s2,2 +(2−2l)s1,0s1,1s0,1 +(2l−2)s2,1s0,1

+(2l−2)s1,0s1,2 + s2
1,0s2

0,1− s2,0s2
0,1− s0,2s2

1,0 + s0,2s2,0)
(9.10)

µ̂
2
2,0 =

(l2−3l +3)s2
2,0 +(l− l2)s4,0−2ls2,0s2

1,0 +(4l−4)s3,0s1,0 + s4
1,0

(l−3)(l−2)(l−1)l
(9.11)

µ̂
2
0,2 =

(l2−3l +3)s2
0,2 +(l− l2)s0,4−2ls0,2s2

0,1 +(4l−4)s0,3s0,1 + s4
0,1

(l−3)(l−2)(l−1)l
(9.12)

µ̂2,0µ̂0,2 =
1

(l−3)(l−2)(l−1)l
((l2−3l +1)s0,2s2,0 +(l− l2)s2,2 +(2− l)s2,0s2

0,1+

(2l−2)s2,1s0,1 +(2− l)s0,2s2
1,0 +(2l−2)s1,0s1,2 + s2

1,0s2
0,1−4s1,0s1,1s0,1 +2s2

1,1)
(9.13)
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Abbreviations

CDF Cumulative Distribution Function

DE Differential Evolution
DEIM Discrete Empirical Interpolation Method
DOE Design of Experiments

EA Evolutionary Algorithm
ECM Empirical Cubature Method
ECSW Energy Conserving Sampling and Weighting Technique

FE Finite Element
FEM Finite Element Method
FOM Full-Order Model

GPR Gaussian Process Regression

HBM Human Body Model
HROM Hyper-reduced Order Model with Galerkin projection

KL Karhunen Loève
kNN k-Nearest Neighbour

MC Monte Carlo
MFM Multi-fidelity Model
MFMC Multi-fidelity Monte Carlo
ML Machine Learning
MOR Model Order Reduction

NiROM Non-intrusive Reduced Order Model

PCA Principal Component Analysis
PDF Probability Density Function
POD Proper Orthogonal Decomposition
PolyR Polynomial Regression

QoI Quantity of Interest

ROM Reduced order model with Galerkin projection

SVD Singular Value Decomposition

UQ Uncertainty Quantification
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List of Symbols

Error measures

εGMRE Global mean relative error summed for all time steps

εNMSE Normalised mean squared error for scalar values

eGMRE Global mean relative error

Multi-fidelity Monte Carlo analysis

Θm Model response vector of numerical analysis with m samples

Θn Model response vector of numerical analysis with n samples

µ̂i Approximated statistical moment of i-th order

µi Statistical moment of i-th order

ỹ QoI evaluated with low-fidelity model

m Number of samples for high-fidelity evaluations

n Number of samples for low- and high-fidelity evaluations

y QoI evaluated with high-fidelity model

Optimisation

W Random design or noise variable

xd Vector of design variables

f Objective function

g Constraint

Random field

C Covariance function

λ Eigenvalue of auto-covariance function

H Random field H(z,θ) of the spatial variable z and θ indicating the random

aspect

φ Eigenvector of auto-covariance function

Ĥ Approximated random field Ĥ(z,θ) of spatial variable z and θ indicating ran-

dom aspect
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Random variables and processes

Cov Covariance

E[·] Expectation operator

FX Cumulative distribution function of continuous random variable X

K Correlation matrix

P(·) Probability

V Variance

κ Correlation function

S Sample space of random variable X

X Random variable

X Random vector X = [X1,X2, ..,Xd] with dimension d

x Realisation of random variable X

µX Mean value of X

ρ Correlation coefficient

σX Standard deviation of X

fX(x) Probability density function of continuous random variable X

lc Correlation length

z Parameter of random function X(z)

Reduced order models

Σ Diagonal matrix of SVD transformation, containing singular values σ

A Snapshot matrix

U Left-singular vector matrix of SVD transformation

V Projection matrix

Z Right-singular vector matrix of SVD transformation

ur Displacement vector in reduced space

k Dimension of reduced space

n Number of snapshots
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Structural Finite Element analysis

E Young’s modulus

N Number of degrees of freedom

M Mass matrix

f Internal force vector

g External force vector

u Displacement vector with the corresponding velocity u̇ and acceleration ü

vector

ν Poisson’s ratio

ρ Mass density
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