
School of Computation, Information and
Technology - Informatics

Technical University of Munich

Master’s Thesis in Computational Science and Engineering

Statistical 3D Denoising on GPUs for
Industrial CT

Yu Huang

School of Computation, Information and
Technology - Informatics

Technical University of Munich

Master’s Thesis in Computational Science and Engineering

Statistical 3D Denoising on GPUs for
Industrial CT

Statistische 3D Entrauschung auf GPUs für
industrielle CT

Author: Yu Huang
Supervisor: Prof. Dr. Michael Bader
1st advisor: Dr. Alex Sawatzky

2nd advisor: M.Sc. Mario Wille
Date: August 23rd, 2023

I confirm that this Master’s Thesis is my own work and I have documented all sources and
material used.

Munich, August 23rd, 2023 Yu Huang

Acknowledgements

Throughout the writing of this thesis, I have received a great deal of support and assis-
tance. First of all, I am grateful to Waygate Technologies and my manager Andreas Fischer
for providing me the opportunity to work on this interesting project. Importantly, I would
like to thank my advisor Dr. Alex Sawatzky at the company for his guidance, invaluable
support, and patience throughout the research and implementation process.

I would also like to express my sincere thanks to my advisor, M.Sc. Mario Wille, for
his valuable feedback and suggestions at all the various stages. A big thank you goes to
Prof. Dr. Michael Bader for supporting me in completing my Master’s thesis in an external
company.

Finally, I would like to express my heartfelt gratitude to my family and friends for their
love and encouragement throughout my masters. Vielen Dank!

vii

viii

Abstract

Industrial Computed Tomography (CT) scans increasingly demand for fast throughput
time. It can be achieved by either reducing the number of projections or shortening the
exposure time per projection. Both methods lead to noise degradation, resulting in insuffi-
cient reconstruction quality with classical Filtered Backprojection (FBP) based algorithms.
One solution is statistical 3D post-denoising of reconstructions achieved with classical FBP-
based algorithms. Total Variation (TV) regularization is a powerful denoising technique
that preserves edges and details in images. To obtain desired speed and portability, OpenCL
is suitable for implementing TV algorithms on GPUs.

In this work, we provide optimized 3D TV algorithms and a statistical 3D TV algorithm
on multi-GPU systems for industrial CT data in OpenCL code. The numerical and GPU
implementations of these algorithms are introduced and analyzed. The results show that
the statistical denoising algorithm can improve the denoising performance both visually
and quantitatively.

ix

x

Contents

Acknowledgements vii

Abstract ix

I. Introduction and Background 1

1. Introduction 2
1.1. Motivation . 2
1.2. Thesis Outline . 3

2. Related Work 5
2.1. Problem Statement . 5
2.2. Total Variation Denoising . 6

II. Implementation 8

3. Numerical Implementation 9
3.1. Primal-dual . 9
3.2. Total Variation Gradient Descent . 10
3.3. Statistical PDU . 12

4. GPU Implementation 13
4.1. Overview of OpenCL . 13

4.1.1. Advantages of OpenCL . 13
4.1.2. OpenCL Architecture . 14
4.1.3. OpenCL Environment . 15

4.2. Image Splitting and Distribution Scheme . 16
4.2.1. Single-split Multi-GPU Scheme . 17
4.2.2. Multiple-splits Multi-GPU Scheme . 17
4.2.3. Buffer Synchronization Scheme . 18

4.3. Workflow on GPUs . 20

III. Experiments and Conclusions 23

5. GPU Performance 24
5.1. Kernel Analysis . 24

xi

5.2. Kernel Optimization . 26
5.2.1. Choice of Work-item and Work-group 27
5.2.2. Vectorization Scheme . 28
5.2.3. Kernel Fusion . 28
5.2.4. Synchronization and Shared Memory Scheme 30

5.3. GPU Scaling . 31
5.3.1. Multiple Command Queues within a Single Device 31
5.3.2. Synchronization between Command Queues 33

6. Numerical Results 38
6.1. Dataset Description . 38
6.2. Convergence Analysis . 38

6.2.1. Convergence of PDU . 40
6.2.2. Convergence of TV-GD . 42

6.3. Parameter Selection Scheme . 43
6.3.1. Smoothing Strength of PDU . 44
6.3.2. Smoothing Strength of TV-GD . 46

6.4. Image Quality . 47
6.5. Comparison of PDU and TV-GD . 49
6.6. Comparison of PDU and S-PDU . 51

7. Discussion and Conclusion 54

Bibliography 56

List of Figures 60

List of Tables 61

List of Algorithms 62

A. Appendix 64
A.1. Abbreviations . 64

Part I.

Introduction and Background

1

1. Introduction

1.1. Motivation

A Computed Tomography (CT) scan is a powerful tool that generates high-resolution
images of the body’s internal structures used in the field of medical imaging. CT scans
provide accurate and precise diagnostic information, such as the size, shape, and density
of organs, tissues, bones, and blood vessels, enabling healthcare professionals to detect
abnormalities and then make decisions regarding patient care. CT scanners use a rotating X-
ray tube and a row of detectors placed in a gantry to measure X-ray attenuation by different
tissues inside the scanned object. The multiple X-ray measurements taken from different
angles are then processed on a computer using tomographic reconstruction algorithms to
produce tomographic images of this object.

Based on the principles of medical CT scans, industrial CT scans visualize the internal
structures of the scanned objects without causing any damage or altering their integrity. The
Three-dimensional (3D) visualization enables the assessment of the quality, integrity, and
dimensional accuracy of manufactured components and materials with non-destructive
testing. CT scans have a broad range of applications in various industries, including
materials science, electronics, automotive, aerospace, medical devices, and so on. Another
advantage of industrial CT scans is the possibility of providing comprehensive quantitative
data. By analyzing the CT scan data, measurements such as dimensions, distances, angles,
and volumes can be accurately determined.

Despite its advantages, industrial CT scans are not without limitations. Unlike med-
ical CT scans, which is typically applied to image smaller objects, such as the human
body, industrial CT scans are used to image a wide range of objects, from small electronic
components to larger aerospace components or even entire vehicles. Scanning such large
or intricate objects may require a longer scan time, which has an impact on throughput
and productivity in industries. Nowadays, the demand for faster throughput time in
industrial CT scans is increasing due to the need for faster productivity and enhanced
quality control. It can be achieved by either reducing the number of projections which
may lead to under-sampling artifacts, or the X-ray dose. Lowering the X-ray dose leads
to a reduced number of X-ray photons detected by the CT scanner. As a consequence, the
Signal-to-noise Ratio (SNR) in the acquired CT images decreases, giving rise to an increase
in image noise. This noise degradation results in insufficient reconstruction quality when
employing classical Filtered Backprojection (FBP) [1] based algorithms. One strategy is
iterative reconstruction incorporating statistical information to optimize projection data,
but this is quite time-consuming for iterative reconstruction.

One alternative is statistical 3D post denoising of reconstruction achieved with classical
FBP based algorithms. Total Variation (TV) regularization [2] is a powerful denoising
technique while preserving edges and details in images. It imposes the prior assumption
of a piecewise smooth image with occasional sharp edges by reducing the total amount

2

1.2. Thesis Outline

of variation. Total Variation denoising stands out as one of the most popular methods
for smoothing, manifesting in numerous distinct mathematical formulations and offering
diverse numerical solutions. It is crucial to choose an algorithm regarding performance and
computing efforts. Typically, a white Gaussian noise model based on a single estimated
parameter is assumed for the images. However, due to variations in X-ray attenuation for
different materials, the statistical nature of X-ray detector, etc., the noise levels in different
parts of the image after reconstruction may vary [3]. Therefore, statistical information of
noise level has to be taken into consideration for image denoising in this case.

In recent years, image sizes in tomographic applications have increased significantly,
driven by higher resolution and more comprehensive imaging. Larger image sizes are
enabled by the development of X-ray sources, detector technologies, and computational
resources. This larger image size, unfortunately, results in higher storage requirements and
longer processing time. Especially for industrial CT data, the volume size can reach 2k or
4k in each dimension, which leads to 32 GB and 256 GB respectively for the image size if
stored in single float precision. These image sizes are a big challenge for compute resources.
To overcome the challenge, powerful compute resources and efficient data management
schemes are required.

Graphic Processing Unit (GPU) has been an essential part of providing processing power
for high performance computing applications over recent years. General Purpose GPU
(GPGPU) Programming is general purpose computing with the use of GPUs. This is
done by applying a GPU together with a Central Processing Unit (CPU) to accelerate the
computations in applications that are traditionally handled by only the CPU. However,
each GPU has limited memory available to store and process data, especially for large
industrial CT data, which may need memory-demanding computations. By multi-GPU
configuration, several GPUs are combined together to offer more available GPU memory.
Apart from memory, with more GPUs, the computation can leverage more parallelization
among multi-GPU to achieve faster execution time.

With the aim of better utilizing the compute resources, GPU-accelerated frameworks are
specifically designed for High Performance Computing (HPC). Compute Unified Device
Architecture (CUDA) and Open Computing Language (OpenCL) are two widely used low-
level GPU programming frameworks. For low-level languages, programmers are capable
of straightforwardly optimizing specific applications depending on the sophistication of
the GPU. CUDA gives fine-grained control over the GPU, yet it’s tailored exclusively for
NVIDIA GPUs, limiting the feasibility of transitioning the algorithms written in CUDA
from NVIDIA GPUs to AMD GPUs or Intel GPUs. In contrast, OpenCL has the advantage
in terms of portability when compared to CUDA.

In this work, we provide optimized statistical 3D denoising algorithms on multi-GPU
for industrial CT data in OpenCL code. While obtaining desired denoising quality, these
algorithms take much less time compared to iterative reconstruction.

1.2. Thesis Outline

The structure of the thesis is as follows: This Chapter introduces the research topic and
outlines the objectives and significance of the study. The literature review and related
work are presented in Chapter 2, which synthesizes previous research and identifies gaps

3

1. Introduction

that this thesis aims to address. Chapter 3 describes the numerical implementation of
our total variation algorithms. The implementation of algorithms on GPU is presented in
Chapter 4, followed by a comprehensive analysis and optimization scheme of performance
on GPUs in Chapter 5. After that, Chapter 6 presents the numerical results and comparison
of image quality. Finally, Chapter 7 states the conclusions, highlighting the contributions
of this research and providing recommendations for future studies. Appendix A includes
supplementary data and supporting materials for further reference.

4

2. Related Work

2.1. Problem Statement

Over the past few decades, the development of hardware has consistently elevated image
quality, but the influence of numerous factors during the image acquisition process and
subsequent processing introduces inevitable noise degradation. This causes a loss of image
quality, impacting both visual clarity and image accuracy. The target of image denoising is
to remove noise from a noisy image in order to restore the true image. Mathematically, the
problem of image denoising can be modeled as follows:

y = x+ n, (2.1)

where y is the observed noisy image, x is the unknown true image, and n represents
Additive White Gaussian Noise (AWGN) with standard deviation σn [4].

Distinguishing between noise, edges, and textures during the denoising process proves
challenging, as they are high-frequency components. Due to the fact that solving the true
image x from Equation (2.1) is an ill-posed problem, there exists no unique solution [5]. For
the purpose of obtaining a good estimation of the unknown true image, image denoising
has been studied for a long time in the field of image processing. So far, various methods for
decreasing noise have been proposed. The classical denoising approach, operating within
the spatial domain, involves noise reduction based on pixel correlations. This method has
the distinct advantage of fast processing, such as Median Filtering [6], Gauss Filtering [7],
Total Variation Regularization [2], etc.

Traditional denoising methods, such as Gaussian Filtering, tend to blur edges, but Total
Variation Regularization can keep sharp edges, making it suitable for applications where
edge preservation is essential. TV denoising algorithms are suitable for implementation on
GPUs or other parallel computing architectures, so they can take advantage of hardware
acceleration to process large images efficiently. The total variation norm is defined as the
sum of the L2-norm of the directional gradients of the variable:

TV (u) =
∑
n

∥∇un∥2, (2.2)

where n is the number of elements. In the context of 3D CT scans, the total variation norm
encapsulates the total sum of total variation throughout the volume. A diminished total
variation corresponds to a smoother volume, and this volume will have more homogeneous
regions.

5

2. Related Work

2.2. Total Variation Denoising

Paper [2] is one of the most influential papers in the field of image denoising, and in the
paper, L. I. Rudin, S. Osher, and E. Fatemi proposed Rudin-Osher-Fatemi (ROF) model,
which is now widely used in minimizing total variation. The target function consists of a
data fidelity term and a total variation regularization term and solves an unconstrained
problem:

u = argmin
u

α

2
∥u− f∥2 + TV (u), (2.3)

where

• the first term
α

2
∥u− f∥2 is the data fidelity term which forces the denoised result to be

close to the original image, and is a convex function. u is the variable to be optimized,
and u ∈ RN . In our case, u is the total volume, and N is the total number of voxels. u
has the same size as the original noisy volume f . The value of the hyperparameter α
controls the strength of this regularization.

• the second term TV (u) is the TV regularization term, as presented in Equation (2.2).
It performs noise removal and is also a convex function [8].

Primal-dual (PDU) is a solution to the ROF problem and was presented in [9]. PDU con-
verted the minimization problem to a saddle point problem by introducing a dual variable
p = (p1, p2, p3)T for the 3D case. By reformulating Equation (2.3) with the dual variable p,
the target function can be rewritten after applying the Cauchy-Schwartz inequality [10]:

u = argmin
u

arg max
∥p∥<1

∥p∇u∥+ α

2
∥u− f∥2. (2.4)

This saddle point problem can be solved by minimizing regarding u and maximizing
regarding p.

The ROF model results from the assumption of the additive Gaussian noise model
presented in equation 2.1. However, if the characteristic of noise varies across the image, the
variance of η is multivariate, and the statistical modeling approach leads to the weighted
least-squares fidelity term where the weight w is specified by the noise variances [11] at
each element. The ROF model then is adapted to:

u = argmin
u

α

2
∥u− f∥21

w

+ TV (u), (2.5)

where ∥x∥2z = ⟨zx, x⟩, and denotes a weighted scalar product with z being positive.
Estimating noise [12] is a crucial step in various image denoising algorithms as accu-

rate noise estimation helps to choose the optimal denoising algorithm and parameters to
effectively reduce noise while preserving image details. There are numerous methods to
estimate noise, such as local variance [13], Block Matching and 3D Filtering [14], Wavelet-
Based methods [15], etc. Paper [16] presents a methodology to obtain reliable pixel-wise
noise estimates, which computes image variance by propagating the noise estimation in
projections through the reconstruction pipeline, which enables the local noise statistics
to be taken into account in the post-processing of the image. The noise in projections is

6

2.2. Total Variation Denoising

estimated by using the local variances, but the non-stationarity is also taken into account.
[16] provides a way for us to combine the noise level estimated element-wise with the
traditional PDU algorithm.

Different from PDU, Projection onto Convex Sets (POCS) [17] is a constrained minimiza-
tion problem and can be described as:

u = argmin
u

TV (u) subject to ∥u− f∥ ≤ ϵ. (2.6)

POCS directly performs minimization regarding the total variation norm, but is constrained
by the predefined data fidelity term. In an unconstrained problem such as PDU, the balance
between the data constraint and the regularization constraint can be tuned via a hyper-
parameter, such as α in Equation (2.4). In contrast, for constrained problems like POCS,
multiple solutions for the data fidelity term may exist. POCS consistently integrates with
reconstruction algorithms, functioning as a regularization term, but it frequently encounters
the challenge of excessive smoothing, which can obscure vital details within the image.

In [18], an Adaptive-weighted Total Variation (AW-TV) minimization algorithm was
derived from POCS by considering the anisotropic edge property among neighboring image
voxels. A higher weight is assigned when there is a minor alteration in voxel intensity.
Conversely, a lower weight can be incorporated if there is a substantial change in voxel
intensity, achieved through the utilization of an exponential function. Adaptive weights are
applied locally regarding the intensity difference of neighboring voxels. The weights are
smaller when dealing with edges with more pronounced changes in voxel intensity. This
indicates that the structure of edge regions is then better preserved in the regions exhibiting
weaker smoothing strength. Diverging from the statistical model outlined in Equation (2.5),
the weights in this context are modulated by voxel intensity disparities rather than noise
levels. Consequently, the adaptive-weighted minimization approach does not conform to
the statistical denoising methodology.

Nowadays, bolstered by increasingly powerful computing resources, particularly GPUs,
the image denoising process can be accelerated in terms of speed and efficiency. This
acceleration is attributed to the fact that image denoising algorithms frequently involve
computationally intensive operations, which can benefit from parallel processing capa-
bilities. This is a key advantage of GPUs. Paper [19] presents the application of POCS
minimization as an additional constraint to CT reconstruction problems on multi-GPUs
written in CUDA programming languages, and it demonstrates the possibility of acceler-
ation for total variation regularization on multi-GPUs. Inspired by this, we propose an
optimized statistical 3D denoising algorithm in OpenCL for large data on multi-GPUs to
achieve desired denoising quality.

7

Part II.

Implementation

8

3. Numerical Implementation

In our work, two total variation algorithms, PDU and Total Variation Gradient Descent
(TV-GD) are implemented and analyzed on multiple GPUs in OpenCL code. Apart from
that, PDU, in conjunction with statistical noise information, is also conducted and compared
with the classical PDU approach. In this chapter, the numerical solutions derived from
these algorithms are presented and analyzed.

3.1. Primal-dual

Primal-dual (PDU) is a solution to the ROF problem by introducing the dual variable, as
shown in Equation (2.4), the minimization problem of ROF in Equation (2.3) is converted to
a saddle point problem in PDU [9]. By differentiating the saddle point problem by u and p
respectively, we can obtain the primal update and the dual update accordingly. Firstly after
differentiating Equation (2.4) by the variable u, the primal update is then retrieved from the
equation as follows:

−∇ · p+ α(u− f) = 0. (3.1)

By applying the gradient descent update scheme, Equation (3.1) leads to

uk+1 = uk(1− τkp) + τkP (f +
1

α
∇ · p), (3.2)

where τkP is the step size for the primal update in step k, and the choice of τkP is crucial for
the stability and convergence of the algorithm and will be discussed later, ∇ · p represents
the divergence of the variable p.

Then after differentiating Equation (2.4) by p, the dual update is obtained from the
equation:

−∇u+ pα = 0. (3.3)

By applying the gradient descent update scheme again, Equation (3.3) leads to

pk+1 =
∏
B0

(pk + τkD∇u), (3.4)

with ∏
B0

(q) =
q

max{1, ∥q∥}
, (3.5)

where
∏

B0
(q) denotes the unit ball centered at the origin and τkD is the step size for the

primal update in step k, ∇u represents the gradient of the variable u.

9

3. Numerical Implementation

Optimal selections of τkP and τkD play a pivotal role in faster convergence in the PDU
approach, similar to [20], the following step size choice performs well in our evaluation
using testing data:

τkD = 0.3 + 0.02k, (3.6)

and

τkP =
1

τkD
(
1

6
− 5

15 + k
). (3.7)

Algorithm 1 illustrates the update procedures for the PDU approach. The duality variable
p is initialized as zeros, and the u is set as the original noisy volume itself. Line 2 pertains to
the primal update in Equation (3.2), and line 3 corresponds to the dual update in Equation
(3.4). In addition to step size selection, the discretization of the divergence and gradient
operators is also vital for the numerical computation of the PDU algorithm. Ensuring the
consistency of these two operators is essential to maintain algorithmic coherence. In our im-
plementation, the gradient is computed by the forward difference, so the divergence should
be computed by the backward difference, as the divergence is the adjoint of the gradient [21].

Algorithm 1: Numerical update approach for PDU

Input: f , u0, p0, α, τkP , τkD
1 for nIter and if stopping criteria is not met do

2 uk+1 = uk(1− τkP) + τkP (f +
1

α
∇ · pk)

3 pk+1 =
∏

B0
(pk + τkD∇uk)

PDU yields a converged solution [9], and in order to stop after obtaining desired quality
without wasting unnecessary iterations, the stopping criteria and the stability are also
proposed and will be presented in Section 6.2.1.

3.2. Total Variation Gradient Descent

Unlike PDU, POCS is a constrained minimization solution that directly performs minimiza-
tion regarding the total variation norm, but is constrained by the predefined data fidelity
term. The POCS algorithm is often served as an additional regularization for reconstruction,
such as Adaptive-steepest-descent POCS (ASD-POCS) [17] combined with the Algebraic
Reconstruction Technique (ART).

However, to maintain the fast speed of the denoising algorithm, iterative reconstruction
is not considered in our algorithm. Instead, only the part of the TV Gradient Descent is
extracted from the complete algorithm. Algorithm 2 presents the update procedures of
the TV-GD approach. The variable u is initialized as the original noisy image. First, the
numerical approximation of the gradient of the total variation norm is computed in line 2
of the TV update algorithm. Then the gradient of the TV norm is normalized in line 3, and
the image will be updated accordingly with a certain step size denoted by λ in line 4 of the
algorithm.

10

3.2. Total Variation Gradient Descent

Algorithm 2: Numerical update approach for TV-GD

Input: u0 = f , λ
1 for nIter and if stopping criteria is not met do

2
−−→
duk = ∇u∥uk∥TV

3 d̂xk =
−−→
duk/∥

−−→
duk∥TV

4
−−→
uk+1 =

−→
uk − λd̂xk

The total variation norm is not differentiable in the general case. However, in CT Scans,
the −→u can be described as uijk, which is a discretized 3D mesh with indices i, j, and k in
x, y and z directions respectively. According to the transformation of the total variation
norm in [21], the numerical approximation of the gradient of the total variation norm can
be computed as:

(∇u∥u∥TV)i,j,k =
∂xui,j,k + ∂yui,j,k + ∂zui,j,k√∑

β(∂βui,j,k)
2

−
(1− δi,imax)∂zui+1,j,k√∑

β(∂βui+1,j,k)2
−

(1− δj,jmax)∂yui,j+1,k√∑
β(∂βui,j+1,k)2

−
(1− δk,kmax)∂zui,j,k+1√∑

β(∂βui,j,k+1)2
,

(3.8)

which describes the scalar field of the same size as the image. The δ denotes the Kronecker
deltas [22] for the Cartesian axis, and imax, jmax, kmax represent the maximum indices in
each direction. δi,j is equal to 1 if i = j and δi,j is equal to 0 if i ̸= j. The introduction
of Kronecker deltas is to make sure that boundary conditions are set to zero to meet the
requirements of the Neumann boundary conditions [23]. The operator ∂β is the gradient
with an additional Cartesian index β.

Adaptive-weighted POCS (AW-POCS) is similar to POCS, and the only difference is the
computation of the gradient of the TV norm. In the implementation of AW-POCS, each
gradient element is weighted in Equation (3.8) by an exponential function:

f(z) = exp

[
−
(
z

γ

)2
]
· z, (3.9)

where γ is a scale factor which controls the strength of the diffusion. From the equation,
a larger weight is assigned if there is a small change in voxel intensity, and vice versa, a
smaller weight is added if there is a large change of voxel intensity. The numerical behavior
of AW-POCS is almost the same as POCS [18]. Although the TV-GD algorithm from POCS
implemented in our work will not converge to the optimal solution, but there is still a way
to find the proper stopping criteria (cf. Section 6.2.2).

11

3. Numerical Implementation

3.3. Statistical PDU

The ROF problem results from the assumption of additive Gaussian noise model with
Gaussian-distributed noise as a scalar variance. Paper [11] proposes a statistical modeling
approach to the ROF problem in the Equation (3.10), which leads to a weighted least squares
data fidelity term with the weight as the corresponding noise variance element-wise. The
element-wise noise is estimated through the method proposed in [16], which enables reliable
element-wise noise estimation of 3D images through propagating the noise estimated in
projections by the reconstruction pipeline. The numerical implementation of Statistical
PDU (S-PDU) is similar to PDU, but as there are new weights attached to data fidelity, and
the primal update should be changed accordingly. After differentiating Equation (2.5) by u,
the primal update from the equation becomes

−w∇ · p+ α(u− f) = 0. (3.10)

With the same gradient descent update scheme, Equation (3.10) leads to a similar update
step:

uk+1 = uk(1− τkP) + τkP (f +
w

α
∇ · p), (3.11)

where the only difference from Equation (3.2) is that the hyperparameter α is element-wise
weighted by the weights. The weights are directly obtained by noise estimation. The value
of α needs to be tuned accordingly based on the range of noise variances. The stopping
criteria of S-PDU is similar to PDU. Algorithm 3 shows the update scheme for statistical
PDU. Similar to the update algorithm of PDU in Algorithm 1, u is initialized as the original
noisy image, and the dual variable p is initialized as zeros. Line 2 is then changed according
to the new primal update scheme shown in Equation (3.10). The step sizes τkp and τkD are
the same as those in the PDU algorithm.

Algorithm 3: Numerical update approach for S-PDU

Input: f , w, u0, p0, α, τkP , τkD
1 for nIter and if stopping criteria is not met do
2 uk+1 = uk(1− τkp) + τkP (f +

w

α
∇ · pk)

3 pk+1 =
∏

B0
(pk + τkD∇uk)

12

4. GPU Implementation

With the growing scale of image sizes in industrial CT, the demand for robust compute
resources has escalated. In contrast to CPUs, which usually feature a limited number of
cores optimized for sequential processing tasks, GPUs are designed with hundreds or even
thousands of cores, facilitating the simultaneous execution of multiple computations. This
inherent parallel processing capability renders GPUs remarkably efficient for applications
that can be parallelized, such as image processing, machine learning, and scientific com-
putation. Furthermore, GPUs provide significantly higher bandwidth than CPU, which
allows them to access data in a more efficient parallel manner. Nevertheless, individual
GPUs possess finite memory capacity, posing a challenge for handling substantial industrial
CT data, which often requires memory-intensive computations. To address this challenge,
multi-GPU configurations merge multiple GPUs, augmenting the available GPU memory.

To utilize the high bandwidth of GPUs efficiently, the data partitioning and memory
management scheme are crucial parts of GPU implementation to enable data parallelism.
In the context of industrial CT data, the volume size can be 2k or 4k in each dimension,
leading to 32GB or 256 GB for the whole volume size stored in single float precision. Even
for multi-GPU setups, the GPU memory is infeasible to keep the whole volume. Thus, a
suitable image splitting scheme becomes indispensable to facilitate algorithm execution
within the constraints of limited GPU resources. Under some conditions, the image needs
to be split into several regions first and then distributed each region as individual parts
evenly among GPUs.

4.1. Overview of OpenCL

Our implementation of these denoising algorithms is based on OpenCL, and this program-
ming language will be introduced first in the following sections.

Open Computing Language (OpenCL) [24] is a parallel programming standard across het-
erogeneous platforms consisting of Central Processing Units (CPUs), Graphics Processing
Units (GPUs), Digital Signal Processors (DSPs), Field-programmable Gate Arrays (FPGAs)
and other processors or hardware accelerators. OpenCL was initially created by Apple Inc,
and the first version, OpenCL 1.0, was released in 2009. Then OpenCL has been maintained
by Khronos Group. Now the latest specification, OpenCL 3.0, was released in 2020.

4.1.1. Advantages of OpenCL

The Khronos Group also developed SYCL, which is a higher-level programming model
for OpenCL to improve programming productivity [25]. SYCL developers can write code
using C++ and apply modern C++ features, such as templates, lambda functions, and
classes. SYCL abstracts lots of low-level details and thus reduces the learning effort and

13

4. GPU Implementation

puts more focus on parallel programming. Typically, the application written in SYCL
requires fewer lines of code to implement the compute functions and needs less calls to
Application Programming Interface (API) functions. As for portability, SYCL is built based
on OpenCL and inherits its portability across devices and vendors. SYCL code can also run
on the devices that support OpenCL.

However, compared to the higher-level programming models, the low-level program-
ming models OpenCL and CUDA continue to provide the highest possible performance
[26].

Compared to CUDA, OpenCL provides an advantage in terms of portability. OpenCL
focuses on data-parallelism and task-parallelism, and provides abstractions for memory
management, thread scheduling, and synchronization, so it has a higher level than CUDA.
Although some papers [27] and [28] point out CUDA is about 30% faster than OpenCL
by comparing CUDA programs with OpenCL on NVIDIA GPUs, CUDA only supports
NVIDIA computing resources and is not available on AMD and Intel hardware.

4.1.2. OpenCL Architecture

At its core, the OpenCL architecture is structured around several key components [29]:

• Platform and Compute Units: in the OpenCL architecture, the platform groups all
hardware capable of executing an OpenCL program. It typically includes a host and
one or more compute devices, such as GPUs. The host is responsible for running the
main application and creating and managing the OpenCL context, which provides the
interface between the host and the OpenCL devices. The host is where the OpenCL
code is executed, and it interacts with the underlying devices to initiate and control
parallel computations. The compute device is a processing unit capable of executing
parallel computations. Each device is further divided into a set of compute units. The
number of compute units depends on the target hardware. A compute unit is further
subdivided into processing elements. A processing element is the fundamental
computation engine in the compute unit, which is responsible for executing the
operations of one work-item.

• Work-item and Work-group: in OpenCL, computations are divided into work-items,
which are individual threads executing the same code on different data elements.
Work-items are grouped into work-groups, which are collections of work-items that
can share data and synchronize their execution.

• Kernel and Command Queue: a kernel is a function written in the OpenCL C pro-
gramming language that defines the computation to be executed by each work-item.
Kernels are compiled at runtime and executed in parallel across multiple work-items.
To execute OpenCL kernels on a device, the host submits commands to the device
through a command queue. The command queue ensures that kernels are executed in
the correct order and handles data transfers between the host and devices.

• Memory Hierarchy: the OpenCL memory hierarchy includes different levels of mem-
ory available in the computing system and how data is stored and accessed at each
level during the execution of parallel computations. It includes global memory, lo-
cal memory, and private memory. The global (constant) memory is shared by all

14

4.1. Overview of OpenCL

Figure 4.1.: OpenCL memory model (taken from [24]).

work-items, and all compute units in the device, and access to this memory is the
slowest. Global memory is used to store data that needs to be shared among different
work-groups, allowing communication and data exchange between work-groups.
Local memory is shared by work-items within a work-group. Each work-group has
its own dedicated local memory space. Local memory is used for sharing data be-
tween work-items within the same work-group, enabling efficient data exchange and
cooperation during parallel computations. Private memory is owned only by the
work-item itself. It is used to store private variables and intermediate results that
are only relevant to a single work-item. Each work-item has its own private memory
space, and data stored in private memory is not visible to other work-items, as shown
in Figure 4.1.

Overall, the OpenCL architecture enables developers to write parallel code that can take
advantage of the computational power of various devices. By dividing computations into
work-items and work-groups, and utilizing the memory hierarchy efficiently, developers
can achieve significant performance gains in their parallel applications.

4.1.3. OpenCL Environment

Creating an OpenCL environment is essential to execute OpenCL code, and this involves
several steps, including setting up the host code, initializing OpenCL, discovering available
platforms and devices, creating a context and command queues, loading and building
kernels, and managing memory. Below is a general outline of how to create an OpenCL
environment [30]:

1. Include OpenCL Headers: start by including the necessary OpenCL headers, which

15

4. GPU Implementation

contain the definitions of OpenCL functions and data types in the host code.

2. Discover Platforms and Devices: discover available platforms and devices. We
can obtain the corresponding information on the system using OpenCL API call
clGetP latformIDs(), clGetDeviceIDs(), clGetDeviceInfo() and so on.

3. Create a Context and Command Queues: after discovering platforms and devices,
the context needs to be created, which serves as the interface between the host and
the devices using clCreateContext(). Then create one or more command queues
associated with the context using clCreateCommandQueue().

4. Build Program and Create Kernels: write the parallel computation tasks as OpenCL
kernels in the OpenCL C programming language. Load these kernels from source
files or strings using clBuildProgram() to build a program executable and then create
kernels at runtime using clCreateKernel().

5. Create Buffers and Transfer Data: allocate and manage memory on both the host and
devices using OpenCL buffer objects by clCreateBuffer(). Transfer data between
the host and devices as needed for the computations using corresponding OpenCL
API calls.

6. Set Kernel Arguments and Enqueue Kernels for Execution: set the arguments of
OpenCL kernels using clSetKernelArg(). Use the command queues to enqueue
kernels for execution on the devices by clEnqueueNDRangeKernel().

7. Execute Kernels and Synchronize: execute the enqueued kernels on the devices using
the command queues. Properly synchronize the host and devices to ensure correct
execution and avoid data hazards.

8. Environment Cleanup: release any OpenCL resources, such as buffers, kernels, com-
mand queues, and the context, to free up memory and avoid memory leaks using
appropriate OpenCL API calls.

4.2. Image Splitting and Distribution Scheme

3D images inherently possess three dimensions in total. Our image splitting scheme adopts
that the image is split among a predefined dimension, and the other two dimensions remain
untouched. Then, the total image is divided into a collection of 2D image slices regarding
the specific dimension. In our case, we denote the specific dimension as the z direction by
default.

When implementing the TV denoising algorithms, we have to consider the discrete
nature of the data. To update a voxel, the information of neighboring voxels are also needed
according to the update scheme in Algorithm 1 and 2. Since the image has to be split into
multiple parts, the additional neighboring data (often referred to as buffers) needs to be
added for each image part. Because we use backward differences only for the computation
of the gradients in both x, y, and z directions, and the neighboring information can be easily
accessed from image slices in the x and y directions. Only the buffers from neighboring
slices at the left side in the z direction are necessary.

Here we consider two conditions:

16

4.2. Image Splitting and Distribution Scheme

• Adequate GPU Memory: in cases where the requisite memory fits entirely within the
GPUs, image splitting is unnecessary. The image can be directly distributed evenly
across GPUs with appropriate buffers. Here we apply the Single-split Multi-GPU
scheme presented in Section 4.2.1.

• Limited GPU Memory: when GPU memory is insufficient, the image is divided
into distinct regions. Each region is then evenly allocated across GPUs. In this case,
Multiple-splits Multi-GPU scheme is used, which is demonstrated in Section 4.2.2.

The memory requirements and the number of divisions are determined by factors like
image size, number of copies, buffer length, and auxiliary memory.

Splitting images across multiple GPUs may introduce challenges such as communication
overhead, synchronization issues, etc. The problem will be discussed next in Chapter 5.
Efficient data splitting also involves load balancing, where efforts are made to distribute
the workload evenly among GPUs to avoid any one GPU being idle while others are
overloaded.

4.2.1. Single-split Multi-GPU Scheme

If the memory needed can be fully kept on GPUs, then splitting is not necessary, and the
image is distributed evenly into GPUs. For each part on the GPU after distribution, the
buffers should also be added alongside the parts. Buffers are taken from the neighboring
part of the volume. Due to the characteristics of the algorithms we chose, only the left
buffers are required. Figure 4.2 shows the distribution of an image into four GPUs. Suppose
there are a total of four available GPUs, and the image is evenly distributed into four distinct
parts, each indicated by a different color. Each of these parts is then assigned to a dedicated
GPU for computation with corresponding buffers taken from the left neighboring part of
the image. In addition, each of the buffers has the same size.

The length of the buffer also corresponds to the number of iterations that could be run
independently on GPUs. Following each set of independent iterations, a synchronization
step is required to update the buffers, ensuring their alignment for subsequent iterations.

4.2.2. Multiple-splits Multi-GPU Scheme

The second condition is that the GPU memory is not enough or the memory needed is too
large, so the memory needed can not be kept on GPUs. In that case, the image should be
first split into several regions according to the image size and GPU memory size. Figure 4.3
shows the image splitting and distribution scheme in this condition. Given the availability
of four GPUs, the image is strategically divided into three distinct regions in the first row
based on the image size and the GPU memory size, each represented by a different color.
Subsequently, each of these regions is further distributed into four equal parts, as depicted
in the third row, each distinguished by a unique color. These divided parts are individually
assigned to a separate GPU for computation purposes with corresponding buffers taken
from the left neighboring part of the image. Each of the buffers has the same size.

Different from the first condition, the GPUs can only process one region at one time, and
the GPU memory will be rewritten if the GPUs start to iterate a new region, so the updated
data on GPUs will be eliminated and needs to be consolidated in CPU memory for later

17

4. GPU Implementation

Figure 4.2.: Image splitting scheme for the case of the Single-split Multi-GPU scheme.

iterations. After independent iterations on GPUs for one region, the central part, excluding
the buffers, needs to be copied back to the CPU, and then the GPUs can continue to process
the next region. After iterating the whole image, all the regions are combined again in the
CPU, and a new cycle will begin again from the first region with corresponding data and
information if there are still remaining iterations.

The length of the buffer also corresponds to the number of iterations that could be run
independently on GPUs. Different from the condition of as the Single-split Multi-GPU
scheme, after the independent number of iterations, the data are merged again in CPU
memory, and the details will be explained in Section 4.2.3.

4.2.3. Buffer Synchronization Scheme

Each time after independent iterations, the buffers are needed to be synchronized between
image parts and updated to ensure the correctness of the computation. In the case of the
Single-split Multi-GPU scheme, the data are fully kept on GPU. There is no need to store
the data back to the CPU. The buffers can be directly synchronized between GPUs which
saves lots of time for memory transfer operations. We only consider the buffers on the left
side, so only forward buffer synchronization is performed, as shown in Figure 4.4. The
corresponding part of the updated image is then written to the buffer on the right side
for each GPU. When employing the Multiple-splits Multi-GPU scheme, it is important to
consider if there are still remaining iterations. If yes, consequently, the buffers are then not
needed anymore. The parts without buffers need to be transferred back to the CPU, which
may take much longer time than synchronization between GPUs.

18

4.2. Image Splitting and Distribution Scheme

Figure 4.3.: Image splitting scheme for the case of the Multiple-splits Multi-GPU scheme.

19

4. GPU Implementation

Figure 4.4.: Forward buffer synchronization scheme.

The length of the buffer corresponds to the number of iterations that could be run
independently on GPUs. With a larger buffer length, the frequency of memory transfer is
reduced, but the time for each independent set of iterations and the size of memory transfer
is increased. A good choice of buffer length is crucial to balance the memory transfer time
and the computation time. The minimum length we have set in our implementations is 10,
and the maximum length we have set is 60. The final choice of the buffer length depends
on the free memory after considering the memory needed for the central parts of the image.

4.3. Workflow on GPUs

Algorithm 4 and Algorithm 5 describe the workflow on CPU and GPUs for PDU and TV-GD
respectively. In both algorithms, the input variable hsrc represents the original image. The
variable hdst is initialized as an array of zeros, serving as a container for the updated image.
The value of nIter represents the predetermined number of iterations, while the associated
parameters α and λ also play a crucial role in the calculations.

In the context of OpenCL, the environment of OpenCL should be first created, and the
resources should be freed in the end. The data and memory management scheme is similar
for both algorithms. There are two main differences between the implementation of PDU
and TV-GD:

• PDU needs five copies in total for both CPU and GPU memory, while TV-GD needs
only one copy for CPU memory and two copies for GPU memory. When performing
the image splitting and distribution scheme, the number of copies also needs to be
taken into account in the computation of needed memory. For example, the memory
needed is five times the memory of image size in PDU and twice the memory of image
size in TV-GD.

• The kernels used in PDU and TV-GD are different. For PDU, there are only two kernels
called Update U and Update P which correspond with the primal update and the dual
update step respectively. For TV-GD, there exist four kernels in total which are called
GradientTV , ReduceNorm, ReduceSum, and UpdateImg. The kernel GradientTV
corresponds to the computation of the gradient of the TV norm in line 3 of Algorithm
2. According to line 4 of the TV update algorithm, the kernels ReduceNorm and
ReduceSum are reduction operations to obtain the sum of the L2-norm of the gradient
of the total variation norm from GPUs. We have to mention that synchronization is
needed before summing up the value in CPU. After obtaining the sum of the L2-norm

20

4.3. Workflow on GPUs

of the gradient of the total variation norm, the kernel, UpdateImg, performs the
operation in line 5 of the TV update algorithm.

Algorithm 4: Workflow for implementation of PDU on GPUs
Input: h src, h dst, nIter, α

1 Check platforms and GPUs
2 Determine splits and bufferLen
3 Create an OpenCL environment
4 for nIter/bufferLen do
5 for nSplits do
6 if the first iteration then
7 Write original image CPU → GPUs
8 Copy original image to modified image GPUs → GPUs
9 Synchronize()

10 if not first iteration and nSplits>1 then
11 Write modified image CPU → GPUs
12 Write px, py, pz CPU → GPUs
13 Synchronize()

14 for bufferLen do
15 Update U ≪ Launch ≫
16 Update P ≪ Launch ≫

17 Synchronize()
18 if nSplits=1 then
19 if has remaining iterations and nGPUs>1 then
20 Forward buffer synchronization GPUs ↔ CPU

21 else
22 Read modified image GPUs → CPU
23 if has remaining iterations then
24 Read px, py, pz GPUs → CPU

25 if nSplits=1 then
26 Read modified image GPUs → CPU

27 Free GPU resources
Output: h dst

21

4. GPU Implementation

Algorithm 5: Workflow for implementation of TV-GD on GPUs
Input: h src, h dst, nIter, λ

1 Check platforms and GPUs
2 Determine splits and bufferLen
3 Create an OpenCL environment
4 for nIter/bufferLen do
5 for nSplits do
6 if the first iteration then
7 Write original image CPU → GPUs

8 if not first iteration and nSplits>1 then
9 Write modified image CPU → GPUs

10 for bufferLen do
11 GradientTV≪ Launch ≫
12 ReduceNorm2≪ Launch ≫
13 ReduceSum≪ Launch ≫
14 Synchronize()
15 <CPU Code >
16 UpdateImg≪ Launch ≫

17 Synchronize()
18 if nSplits=1 then
19 if has remaining iterations and nGPUs>1 then
20 Forward buffer synchronization GPUs ↔ CPU

21 else
22 Read modified image GPUs → CPU

23 if nSplits=1 then
24 Read modified image GPUs → CPU

25 Free GPU resources
Output: h dst

22

Part III.

Experiments and Conclusions

23

5. GPU Performance

To test the performance of the OpenCL code on multi-GPU environment, our experiments
are conducted with varying image sizes on up to four GPUs. Workstations with different
types of GPUs are utilized to demonstrate the case for GPU portability of the OpenCL
code. One workstation with four AMD FirePro W8100 GPUs is coupled with an Intel Xeon
E5 2650 v2 CPU. Each AMD FirePro W8100 GPU has a memory size of 8GB, a theoretical
bandwidth of 320 GB/s, and a theoretical single float point precision compute power of
4.21 Tera Floating Point Operations Per Second (TFLOPS). Complementing this, the Intel
CPU is accompanied by 128GB of Random-access Memory (RAM). On another workstation,
four NVIDIA RTX 3080 TURBO GPUs are connected with an AMD EPYC 7402 CPU. Each
NVIDIA RTX 3080 TURBO GPU has a memory size of 10GB, a theoretical bandwidth of
760.3 GB/s, and a theoretical single float point precision compute power of 29.77 TFLOPS.
The AMD CPU is equipped with 256 GB of RAM.

To thoroughly examine the GPU performance, the utilization of profiling tools becomes
essential, enabling the tracing of hardware usage. For CUDA-based programs, profiling is
conveniently achieved through NVIDIA’s profiling and tracing tools, such as the NVIDIA
Visual Profiler. The NVIDIA Nsight Visual Studio has emerged as a more comprehensive
option compared to the NVIDIA Visual Profiler, offering enhanced profiling capabilities.
When dealing with OpenCL-coded programs, several profiling tools are available, including
AMD Radeon GPU Profiler, AMD CodeXL, and CLtracer. Nonetheless, these tools may not
match the robustness of NVIDIA’s profiling tools. They might lack the ability to provide
detailed hardware insights during the process and might not generate critical reports like
the Roofline model [31], which assesses performance bottlenecks.

In order to estimate the performance of our algorithms on multi-GPU setups, the perfor-
mance of the compute kernels is analyzed by the Roofline model, and GPU scaling behavior
is compared across different numbers of GPUs and varying data sizes. In addition, GPU
memory access patterns, parallel execution, and synchronization are explored.

5.1. Kernel Analysis

As stated, each AMD FirePro W8100 GPU on the first workstation has a theoretical band-
width of 320 GB/s and a theoretical single float point precision compute power of 4.21
TFLOPS. Each NVIDIA RTX 3080 TURBO GPU on the second workstation has a theoretical
bandwidth of 760.3 GB/s and a theoretical single float point precision compute power of
29.77 TFLOPS. These theoretical indicators are essential for analyzing the efficiency of the
kernels.

As shown in the GPU pseudo code of PDU in Algorithm 4 and TV-GD in Algorithm 5,
there are several computation functions in the inner loop. The functions are also called
kernels which are intended to be executed in parallel on GPUs. Kernels are the fundamental

24

5.1. Kernel Analysis

0 5 10 15 20 25 30 3513.18
Arithmetic Intensity (GFLOP/GB)

0

1000

2000

3000

4000

5000

4218.88

G
FL

O
Ps

GradientTV

ReduceNorm

ReduceSum

UpdateImg

Update U

Update P

Figure 5.1.: Roofline model for the kernels in both PDU and TV-GD approaches tested on
the AMD FirePro W8100 GPU.

units of computation in OpenCL. A kernel is distinguished from the normal C or C++
function by adding the kernel specifier in the front.

It is crucial to write a computation function to gain good hardware resource utilization.
A kernel could be either memory-bound or compute-bound. Memory-bound refers to a
situation in which the time to complete a given computational problem is decided primarily
by the amount of free memory required to hold the working data. It also means that most of
kernel time is spent in executing memory instructions. This is in contrast to a kernel that is
compute-bound, where the number of elementary computation steps is the deciding factor.
GPUs have high memory and compute bandwidth and can be suitable for both categories.
The terms are used for categorization and to indicate which optimization techniques may
improve the performance of application significantly. To discriminate whether a function is
memory-bound or compute-bound, the Roofline model is used together with theoretical
peak bandwidth, peak performance, and arithmetic intensity.

Floating Point Operations Per Second (FLOPS) is an important index to measure the
compute power or performance of a processor. The specification of GPU always provides
the theoretical maximum single float point compute power or double float point compute
power for reference.

A given kernel is characterized by a point given by its arithmetic intensity I . The
arithmetic intensity is defined as the ratio of the number of FLOPS per byte of memory
traffic. If the arithmetic intensity of a kernel is smaller than the division of peak performance
and peak bandwidth, then this kernel is characterized to be memory-bound, and vice versa,
the kernel is characterized to be compute-bound. Figure 5.1 plots the Roofline model for all
the kernels in PDU and TV-GD. The result shows that all the kernels are memory-bound.

For compute-bound kernels, FLOPS is the right metric that can reflect the distance to
GPU peak performance. In addition, bandwidth is chosen as the metric for memory-bound
kernels to check GPU efficiency. Table 5.1 documents the GPU bandwidth efficiency for
kernels in both PDU and TV-GD approaches, CPU time, and theoretical time for specific

25

5. GPU Performance

GradientTV ReduceNorm ReduceSum UpdateImg Update U Update P

Data size 3.801 GB 3.675 GB 0.0287GB 3.801 GB 1.489GB 1.489GB
Theoretical

time 0.0356 s 0.0115 s 8.97E-05 s 0.0356 s 0.0279 s 0.0326 s

CPU time 0.148 s 0.0566 s 0.0336 s 0.0554 s 0.0686 s 0.0724 s
Theoretical
time/voxel 1.25E-11 s 1.25E-11 s 1.25E-11 s 1.25E-11 s 1.25E-11 s 1.25E-11 s

Measured
time/voxel 5.19E-11 s 6.09E-11 s 4.68E-09 s 1.94E-11 s 3.07E-11 s 2.78E-11 s

Efficiency 24.1% 20.5% 0.267% 64.4% 40.7% 45.0%

Table 5.1.: GPU bandwidth efficiency for kernels in both PDU and TV-GD approaches tested
on the AMD FirePro W8100 GPU.

test data size on the AMD FirePro W8100 GPU. The theoretical time is obtained based
on the theoretical GPU bandwidth. The GPU bandwidth is calculated by the division of
theoretical time for updating a voxel and measured time for updating a voxel. The results
show that the kernel ReduceSum reaches very low efficiency, and it may be the performance
bottleneck for the whole algorithm. Depending on the type of the kernel, different kinds of
optimization methods can be used, which will be explained in the next section.

5.2. Kernel Optimization

Kernel optimization aims to maximize the utilization of GPU compute power and mem-
ory bandwidth in order to make computations faster and more efficient. Efficient kernel
optimization is essential to fully utilize the capabilities of the GPU and achieve signifi-
cant speedup over traditional CPU-based computations. Optimizing compute-bound and
memory-bound kernels in OpenCL needs to consider the performance bottlenecks of each
type of kernel [32].

For memory-bound kernels, there are various possible ways to overcome the bottlenecks:

• Memory Access Coalescing: access memory in a contiguous and aligned manner
to enable GPUs to efficiently transfer data between global memory and processing
units [33]. Exploit shared memory or local memory to cache frequently accessed data
or intermediate results within the kernel. Minimize redundant memory accesses by
reusing data stored in faster memory spaces [34]. Memory bandwidth can be better
utilised by choosing the size of work items and workgroups wisely.

• Vectorization: use SIMD instructions to process multiple data elements in a single
instruction, reducing memory access overhead.

• Loop Unrolling: unroll loops within the kernel to reduce loop overhead and increase
instruction-level parallelism. Unrolling eliminates loop control flow and enables the
compiler to better schedule instructions for execution. Kernel fusion is similar to loop
fusion, but it aims to optimize the execution of multiple kernels.

For compute-bound kernels, there are also some methods to improve performance:

26

5.2. Kernel Optimization

• Parallelism Maximization: ensure that the kernel effectively utilizes parallelism to
leverage the computational power of the device. This includes optimizing work-item
or work-group sizes, maximizing occupancy, minimizing thread divergence, and
exploiting Single Instruction, Multiple Data (SIMD) capabilities [35].

• Memory Localization: consider employing data or loop transformations to enhance
data locality, reducing memory access overhead. Techniques such as loop tiling [36]
or blocking can improve data reuse and reduce memory access latency.

Based on the results of kernel analysis and the kernel optimization schemes, we will
introduce the details and examples of optimizing the kernels in the following sections.

5.2.1. Choice of Work-item and Work-group

In OpenCL, a work-item refers to an individual task or operation that is executed in
parallel. Work-items are executed by GPU cores, and each core can handle multiple work-
items simultaneously. Each work-item is identified by a unique global ID. Work-items are
organized into work-groups. Each work-group contains a set of work-items. Work-items
within a work-group can synchronize and communicate with each other by shared memory.
Work-groups may have up to three dimensions which can be advantageous when the
workload naturally maps to a 2D or 3D domain [37], such as the image processing task.

To reduce the overhead of maintaining a work-group, the size of work-groups should be
as large as possible. Each GPU has the upper bound for work-group size, which is typically
specified by the GPU manufacturer and can be obtained by clGetDeviceInfo() function
with the CL DEV ICE MAX WORK GROUP SIZE parameter. On our NVIDIA RTX
3080 TURBO GPUs, the maximum allowed amount of work-items in one work-group is
1024, whereas the limit is 256 on AMD FirePro W8100 GPUs. When neighboring work-items
access consecutive memory locations in one work-group, it results in a memory access
coalescing, and this allows a chunk of work-items access contiguous , which may maximize
memory bandwidth.

In our code, the 3D image is stored as a flattened 1D array, and the linear index of the voxel
is calculated based on the coordinates (x, y, z) using the formula z×rows×cols+y×cols+x,
where rows, cols, and depth represent the sizes of the 3D image volume in the x, y, and z
directions respectively. The coordinates are represented by the global ID of work-items in
each direction.

In order to maximize memory bandwidth, the decision of work-group sizes should
be matched to the layout of the data in order to improve memory coalescing and cache
utilization [38]. Take the kernel UpdateImg as an example, and fix the maximum work-
group size as 256 (which is the limit of our AMD FirePro W8100 GPUs), the kernel execution
time with different work-group sizes tested on the NVIDIA RTX 3080 TURBO GPUs are
documented in Table 5.2. The experiments were tested on the dataset with a size of 3.6GB.
As shown, a well-chosen work-group size can result in a performance improvement of up to
about 2.48x compared to other choices. If there are more work-items in the z direction, the
execution will take longer as the linear index in the work-group will be sparse in the layout
of the data, and neighboring work-items access non-consecutive memory. Data locality is
then lost, and memory latency becomes higher. In our implementation, we have chosen

27

5. GPU Performance

Execution time
Work-group

size in x
Work-group

size in y
Work-group

size in z
0.07736 s 2 2 64
0.03529 s 8 8 4
0.03234 s 16 16 1
0.03121 s 256 1 1

Table 5.2.: Example of kernel execution time using different 3D work-group sizes on the
NVIDIA RTX 3080 TURBO GPU.

work-group sizes as (16, 16, 1) along the x, y, and z directions. This selection has proven to
be effective and suitable for all the test data we have employed.

5.2.2. Vectorization Scheme

Vectorization in OpenCL refers to the utilization of vector data types and operations to
perform SIMD processing on multiple elements simultaneously using a single instruction
[39]. OpenCL has vector versions for each fundamental data type, such as float2, float4,
float8, etc., which can hold multiple elements in the same data type. For example, by
using float4, four float elements can be processed in parallel, which reduces the overall
execution time. There are also lots of built-in vector operations in OpenCL, like load and
store operations. These operations, such as vload2, vload4, vstore2, vstore4, etc., can load
and store multiple elements from or to memory for vector data types. This makes memory
access between memory and vector registers efficient. The availability of vectorization
depends on hardware support or compiler optimizations for SIMD instructions. Figure 5.2
shows an example of an OpenCL kernel before and after applying SIMD by utilizing vector
data types and operations. As in both of our workstations, the vectorization is tested to be
auto-implemented by our experiments. In the real implementation, the OpenCL code can
benefit from implicit vectorization without writing vector operations. The performance
benefit from the vectorization might be lower for the kernels that include a complex control
flow.

5.2.3. Kernel Fusion

Kernel fusion [40] is analogous to loop fusion. However, there is a crucial difference between
kernels and loops since kernels also allow synchronization at the device memory level. If
two threads within a thread block need to synchronize, they can use shared memory and
a barrier to do so. When two threads in different thread blocks need to synchronize, this
is only possible with different kernel launches acting as a barrier. Combining multiple
kernel operations into a single kernel reduces the need to store intermediate results in
memory. This minimizes memory reads and writes and reduces data transfer between the
CPU and GPU or between different memory levels, which can significantly improve overall
performance. Kernel Fusion also reduces the number of kernel launches, leading to lower
overhead and improved efficiency.

For instance, in our implementation of TV-GD, the kernel UpdateImg performs the

28

5.2. Kernel Optimization

k e r n e l void updateImg (g l o b a l f l o a t * f , g l o b a l const f l o a t *u , f l o a t sum ,
f l o a t lambda , i n t depth , i n t rows , i n t c o l s) {

i n t x = g e t g l o b a l i d (0) ;
i n t y = g e t g l o b a l i d (1) ;
i n t z = g e t g l o b a l i d (2) ;
i n t idx = z * rows * c o l s + y * c o l s + x ;
i f (x >= c o l s | | y >= rows | | z >= depth)

return ;

f [idx] = f [idx] − u [idx] * lambda / sum ;
return ;

}

(a) OpenCL kernel example

k e r n e l void updateImg (g l o b a l f l o a t * f , g l o b a l const f l o a t *u , f l o a t sum ,
f l o a t lambda , i n t depth , i n t rows , i n t c o l s) {

i n t x = g e t g l o b a l i d (0) ;
i n t y = g e t g l o b a l i d (1) ;
i n t z = g e t g l o b a l i d (2) ;
i n t simd x = 4 * x ;
i n t idx = z * rows * c o l s + y * c o l s + simd x ;
i f (simd x >= c o l s | | y >= rows | | z >= depth)

return ;

f l o a t 4 f v a l = vload4 (idx , f) ;
f l o a t 4 u val = vload4 (idx , u) ;

f v a l = f v a l − u val * lambda vec / sum vec ;

vs tore4 (f v a l , idx , f) ;
}

(b) OpenCL kernel example after adding vectorization

Figure 5.2.: OpenCL kernel example before and after adding vectorization.

29

5. GPU Performance

Kernel name Execution time
Division 0.02476 s

Multiplication 0.02504 s
Subtraction 0.03225 s
UpdateImg 0.03234 s

Table 5.3.: Example of kernel execution time before and after kernel fusion on the NVIDIA
RTX 3080 TURBO.

operations in both line 3 and line 4 of the algorithm shown in Algorithm 2. The division,
multiplication, and subtraction are fused in the kernel, as the operations are done on the
same data. We compare the execution time of the kernels Division, Multiplication, and
Subtraction before applying kernel fusion and of the kernel UpdateImg on the dataset with
a size of 3.6GB, as documented in Table 5.3. The experiments were conducted on the NVIDIA
RTX 3080 TURBO GPU. The total execution time of the kernels Division, Multiplication,
and Subtraction is 0.08214 s, and the kernel UpdateImg achieves a speedup of about 2.55x
after kernel fusion.

5.2.4. Synchronization and Shared Memory Scheme

Synchronization in OpenCL can only occur: between work-items in a single work-group
or among commands enqueued to command queues in a single context. Here we only
focus on the first type of synchronization as it relates to the performance of kernels [30].
Synchronization with a work-group means the coordination of work-items to ensure correct
execution of parallel computations. Excessive or unnecessary synchronization can lead to
performance bottlenecks and reduced parallelism. Work-items will wait at the synchroniza-
tion point until all of them complete their tasks, so some of working-items just waste time
waiting and thus stall execution.

Synchronization can be performed via either a memory fence or barrier function. The
difference between these two is that a barrier forces that all the work-items stop at the
barrier while a memory fence only requires that loads and stores before the memory fence
are committed. With careful use of the memory fence, performance can be greatly increased
as this synchronization keeps work-items active as long as possible.

Shared memory is shared among work-items within a work-group and provides a high
bandwidth and low latency memory that can be used to accelerate data sharing and
communication between work-items. Especially, the shared memory can be used for
parallel reduction operations, where work-items produce partial results to a shared memory
buffer that is later combined to produce a final result.

Reduction in OpenCL is used to efficiently compute the sum, minimum, maximum, or any
other associative operation of a large array or buffer of data. The reduction process involves
iteratively combining elements of the input data to produce a single result. The reduction
algorithm divides the input data into smaller chunks and performs partial reductions on
each chunk in parallel. The partial results are then combined in subsequent iterations until
the final reduction result is obtained. The process continues until the data is reduced to a
single value.

30

5.3. GPU Scaling

In our implementation, the reduction is performed in two kernels of TV-GD named
ReduceNorm and ReduceSum, which is also presented in line 2 and line 3 of Algorithm
2. The gradient of the TV norm is computed element-wise by the equation (3.8), and then
reduced to compute the sum of the L2-norm of the gradient of the TV norm across the
whole volume. To obtain good performance, we optimize the reduction kernel regarding
memory coalescing and also loop unrolling, as shown in Figures 5.3 and 5.4. In the inner
loop of the original reduction kernel of Figure 5.3, the index is computed as 2 ∗ s ∗ tid. As s
is increased, the addressing will then be interleaved, so sequential addressing is needed
to make sure that memory is coalescing. Since all warps execute every iteration of the for
loop and if statement, applying loop unrolling for the last warp can save useless work in all
warps, which is shown in Figure 5.4.

5.3. GPU Scaling

It is important that the hardware can provide greater compute power when the amount
of resources is increased. This characteristic is also called scaling. There are two kinds
of scaling, depending on the application itself. Strong scaling [41] means the number of
processors is increased while the problem size remains constant, while in the case of weak
scaling, both the number of processors and the problem size are increased. Lots of factors
may influence GPU scalability:

• Workload Parallelism: sufficient parallelism make sure the workload is effectively
distributed among multiple GPUs.

• Communication and Synchronization Overhead: communication and synchronization
between multiple GPUs can hinder scalability by introducing overhead. To obtain
good scalability, the frequency of communication and synchronization between GPUs
should be minimized.

• Data Partitioning and Memory Management: data should be appropriately split
and distributed among GPUs, and the frequency of transferring memory should be
minimized to maximize memory locality.

In OpenCL, a context represents the execution environment that encapsulates devices,
memory objects, and other resources necessary for executing OpenCL kernels. It manages
the sharing of resources, memory allocation, and synchronization across devices. The
command queue schedules commands for execution on a device. Each device in the context
can have one or more associated command queues. Commands enqueued in a command
queue are executed in the order they are enqueued.

5.3.1. Multiple Command Queues within a Single Device

Multiple command queues associated with a single device allow for parallel execution of
commands and efficient utilization of the available resources [42]. This feature enables
asynchronous execution, which can overlap data transfers, computation, and other oper-
ations, resulting in better overall performance. But it also has some limitations, such as
increased complexity and increased overhead. Take an example in PDU, in the forward

31

5. GPU Performance

unsigned i n t t i d = g e t l o c a l i d (0) ;
unsigned i n t i = g e t g l o b a l i d (0) ;
sdata [t i d] = (i < n) ? g i d a t a [i] : 0 ;
b a r r i e r (CLK LOCAL MEM FENCE) ;

for (unsigned i n t s =1; s < g e t l o c a l s i z e (0) ; s *= 2)
{

i n t index = 2 * s * t i d ;
i f (index < g e t l o c a l s i z e (0))
{

sdata [index] += sdata [index + s] ;
}
b a r r i e r (CLK LOCAL MEM FENCE) ;

}
i f (t i d == 0) g odata [get group id (0)] = sdata [0] ;

(a) Original reduction kernel

unsigned i n t t i d = g e t l o c a l i d (0) ;
unsigned i n t i = get group id (0) * (g e t l o c a l s i z e (0) * 2) + g e t l o c a l i d (0) ;
sdata [t i d] = (i < n) ? g i d a t a [i] : 0 ;
i f (i + g e t l o c a l s i z e (0) < n)

sdata [t i d] += g i d a t a [i + g e t l o c a l s i z e (0)] ;
b a r r i e r (CLK LOCAL MEM FENCE) ;

for (unsigned i n t s= g e t l o c a l s i z e (0) /2; s>0; s>>=1)
{

i f (t i d < s)
{

sdata [t i d] += sdata [t i d + s] ;
}
b a r r i e r (CLK LOCAL MEM FENCE) ;

}

i f (t i d == 0) g odata [get group id (0)] = sdata [0] ;

(b) Reduction kernel with memory coalescing

Figure 5.3.: OpenCL reduction kernel with memory coalescing.

32

5.3. GPU Scaling

unsigned i n t t i d = g e t l o c a l i d (0) ;
unsigned i n t i = get group id (0) * (g e t l o c a l s i z e (0) * 2) + g e t l o c a l i d (0) ;
sdata [t i d] = (i < n) ? g i d a t a [i] : 0 ;
i f (i + b lockSize < n)

sdata [t i d] += g i d a t a [i +b lockS ize] ;
b a r r i e r (CLK LOCAL MEM FENCE) ;

i f (b lockS ize >= 512) { i f (t i d < 256) { sdata [t i d] += sdata [t i d + 2 5 6] ; }
b a r r i e r (CLK LOCAL MEM FENCE) ; }

i f (b lockS ize >= 256) { i f (t i d < 128) { sdata [t i d] += sdata [t i d + 1 2 8] ; }
b a r r i e r (CLK LOCAL MEM FENCE) ; }

i f (b lockS ize >= 128) { i f (t i d < 64) { sdata [t i d] += sdata [t i d + 6 4] ; }
b a r r i e r (CLK LOCAL MEM FENCE) ; }

i f (t i d < 32)
{

i f (b lockS ize >= 64) { sdata [t i d] += sdata [t i d + 3 2] ; }
i f (b lockS ize >= 32) { sdata [t i d] += sdata [t i d + 1 6] ; }
i f (b lockS ize >= 16) { sdata [t i d] += sdata [t i d + 8] ; }
i f (b lockS ize >= 8) { sdata [t i d] += sdata [t i d + 4] ; }
i f (b lockS ize >= 4) { sdata [t i d] += sdata [t i d + 2] ; }
i f (b lockS ize >= 2) { sdata [t i d] += sdata [t i d + 1] ; }

}

i f (t i d == 0) g odata [get group id (0)] = sdata [0] ;

Figure 5.4.: OpenCL reduction kernel with unrolling.

buffer synchronization part, not only the variable u denoting updated image, but also the
dual variables px, py, and pz have to be synchronized. By utilizing multiple command
queues here, the data transfers between GPUs can be overlapped, as shown in Figure 5.5.
In this case, the data transfer time is reduced, and the parallelism is enhanced by utilizing
multiple command queues.

5.3.2. Synchronization between Command Queues

Synchronization between command queues is necessary when there are conditions such
as data dependency, resource sharing, and execution correctness. One of the mechanisms
in OpenCL to perform synchronization is the clF lush() and clF inish() functions, which
provide a brute force capability to flush or wait for all queued commands to complete.
clF inish() is a blocking function, and when the function is called, the host program will be
blocked until all the previous OpenCL commands in the command queue have completed
execution on the device before allowing the program to proceed further. So, clF inish()
provides a global synchronization point. On the other hand, clF lush() is a non-blocking
function that only enqueues commands in the command queue for execution on the device
without waiting for their completion. When clF lush() is called, it will queue all the
commands from the specified command queue for execution, but it does not block the host
program’s execution. The commands are merely sent to the device for processing, but the
host program can continue with other tasks immediately. It does not guarantee that the
commands have completed execution.

33

5. GPU Performance

Figure 5.5.: Example of multiple command queues in one device.

Synchronization can also be enabled by coordinating events [43]. An event in OpenCL
serves as a synchronization point and provides information about the status and completion
of commands enqueued in a command queue. Using the clWaitForEvents() function
enables the command to wait for the completion of specific events before proceeding. This
function is non-blocking and synchronizes specific commands or kernel executions in
the command queue without blocking the entire program, which allows for fine-grained
synchronization. By waiting for specific events to complete before launching subsequent
commands, the order of execution can be controlled, and data dependencies are properly
handled. It also allows the host program to continue with other tasks while waiting
for the specified events to complete. This asynchronous behavior can lead to improved
overall program performance, as the host can continue to perform useful work during the
synchronization process and thus reduce the synchronization overhead.

In our implementation, we have tried to avoid using clF lush() and clF inish() func-
tions and replaced them with events to perform synchronization. For instance, in TV-GD
implementation shown in Algorithm 5, the ReducedNorm kernel is executed after the
GradientTV kernel. Here, the synchronization between these two kernels can be com-
pletely avoided, since they are queued in the same command queue, and the kernels will be
executed in order. In the case that before entering the inner loop shown in line 10, memory
transfer operations have to be taken, and in this case, the execution of kernels needs to
wait until the completion of memory transfer. Waiting events from memory transfer can
be assigned to the GradientTV kernel, and this reduces the synchronization overhead and
makes our algorithms faster.

Figure 5.6 plots the strong scaling performance of TV-GD and PDU regarding varying
data sizes and on up to four GPUs. The experiment was tested on the workstation with
four AMD FirePro W8100 GPUs. The y-axis represents the number of elements updated
per second. Duplicating the amount of GPUs should also double the number of elements
updated per second in theory. To analyze strong scaling performance, the memory needed
should be fitted into the memory size of a single GPU. In Figure 5.6a, two data sizes are

34

5.3. GPU Scaling

1 2 3 4
Number of GPUs

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

1E
09

Vo
xe

ls
U

pd
at

e
pe

r
Se

co
nd

Datasize: 3.68 GB

theoretical
measured

1 2 3 4
Number of GPUs

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225
Datasize: 1.96 GB

(a) Strong scaling performance for TV-GD on up to 4 GPUs

1 2 3 4
Number of GPUs

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

1E
09

Vo
xe

ls
U

pd
at

e
pe

r
Se

co
nd

Datasize: 1.43 GB

theoretical
measured

1 2 3 4
Number of GPUs

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225
Datasize: 1.06 GB

(b) Strong scaling performance for PDU on up to 4 GPUs

Figure 5.6.: Strong scaling performance for TV-GD and PDU algorithms on up to 4 GPUs.

individually compared on up to four GPUs, and the larger data size we have set to is 3.68
GB for TV-GD, which satisfies 8 GB of the GPU memory size on the AMD FirePro W8100
GPU, as TV-GD needs two copies of the original image. The scaling efficiency tested on
larger data size is about 99.98% on two GPUs and 90.79% on four GPUs, and this efficiency
shows a good scaling behavior of TV-GD on multi-GPUs. The smaller data size we have set
to is 1.96 GB, almost half of the larger one, the scaling efficiency tested on this small data
size is about 99.52% on two GPUs and 85.51% on four GPUs, which is a little worse than
the larger one, and this is due to the fact that synchronization time is relatively larger for
less execution time.

In Figure 5.6b, two different data sizes are set for PDU, and the larger data size is 1.43 GB,
which also satisfies the GPU memory size, as the PDU approach needs five copies of the
original image. The scaling manner is worse for PDU compared to TV-GD, especially on
four GPUs, and the scaling efficiency declines to 66.57% from 92.92% on two GPUs. The
reason for this is that the computational load per GPU is too small compared to the required
memory transfers, which is the case for the small sizes in this experiment.

35

5. GPU Performance

512 768 1024 1536 2048 3072
Data Size in Each Dimension (N)

0

50

100

150

200

250

300

Ti
m

e
(s

)

1 GPU
2 GPUs
4 GPUs

(a) The speeds of TV-GD at different sizes
on different number of GPUs.

512 768 1024 1536 1792
Data Size in Each Dimension (N)

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

)

1 GPU
2 GPUs
4 GPUs

(b) The speeds of PDU at different sizes
on different number of GPUs.

512 768 1024 1536 2048
Data Size in Each Dimension (N)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

co
m

pa
re

d
to

1
G

PU

2 GPUs
4 GPUs

(c) The speedup of TV-GD compared to the 1
GPU execution time at different sizes on

different number of GPUs.

512 768 1024 1536
Data Size in Each Dimension (N)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

co
m

pa
re

d
to

1
G

PU

2 GPUs
4 GPUs

(d) The speedup of PDU compared to the 1 GPU
execution time at different sizes on different

number of GPUs.

Figure 5.7.: The speeds and speedups of TV-GD and PDU at different sizes on different
number of GPUs.

Besides the analysis of the GPU scaling performance, Figure 5.7 presents the total time
for different sizes (N) and the number of GPUs tested on the workstation with four AMD
FirePro W8100 GPUs. The experiments used N3 image volumes with N data size for each
dimension, and the total time includes computation time and memory transfer time. We
run TV-GD and PDU with a fixed number of iterations, 50 and 200 respectively, and the
reason for choosing these values will be explained in the next chapter. The missing points
are caused by insufficient GPU memory for the 4 GPU workstations to satisfy the minimal
buffer length we have set.

The kernel is fast enough in the case of small problem sizes so that time is dominated by
GPU property checks and memory transfers. The computational kernel is small enough
to mask any improvements that multiple GPUs could bring. The computational cost of
both operations increases as N increases, so the measured speedup ratios are close to
theoretical (2x and 4x for 2 and 4 GPUs, respectively). In general, adding more GPUs
brings the speedup ratio closer to the theoretical limit until there are enough GPUs and the
computational load of each GPU is too small compared to the required memory transfers,

36

5.3. GPU Scaling

as was the case for the smallest size in this experiment.
However, if the image size is too large, the number of splits increases, and the buffer

length decreases, leading to an increase in the frequency of memory transfers. Memory
transfers take up more of our execution time. Therefore, the speedup ratio drops again for
the largest size.

37

6. Numerical Results

6.1. Dataset Description

All the datasets employed in our testing consist of 3D images, often referred to as volumes.
These volumes are stored in the single precision floating-point format, with each voxel
represented as a 32-bit floating-point binary value, equating to four bytes of storage per
voxel. For instance, in a typical 2k volume with 2000 pixels in each dimension, the volume
size amounts to 32 GB.

These datasets are generated through CT scans followed by CT reconstruction. Different
datasets are used for various tests, varying not only in size but also in noise patterns. The
initial noisy data results from the reconstruction of projections with limited acquisition time.
The SNR of acquired projection data decreases, and this can result in increased noise in the
reconstructed image. Depending on whether the original noisy data has corresponding
ground truth data [44], the dataset can be split into two main parts:

• Full-reference (FR): in full-reference image quality assessment, the quality of a pro-
cessed image is compared to a high-quality reference image. This reference image is
considered to be a distortion-free version of the original image.

• No-reference (NR): in no-reference image quality assessment, the quality of a pro-
cessed image is evaluated without using a reference image. This is typically achieved
by analyzing statistical features or image properties that are affected by the presence
of noise or distortion.

In the case of FR, the ground truth reference is reconstructed from projections with a
longer acquisition time, as shown in Figure 6.1, exhibiting less noise and higher quality.
These ground truth datasets provide a means of validation and testing. Additionally, there
are datasets with varying noise levels across different regions designed for experiments
involving statistical denoising.

6.2. Convergence Analysis

The objective of convergence analysis is to comprehend how a denoising algorithm ap-
proaches the optimal denoised image and the extent to which parameters influence the
convergence rate and accuracy of the algorithm.

• Convergence: in certain scenarios, denoising algorithms eventually converge to the
optimal solution under specific conditions, while in others, they might not. Conver-
gence criteria are then needed to define when the denoising algorithm should stop
iterating.

38

6.2. Convergence Analysis

(a) Noisy image with low acquisition time (b) Noisy image with magnification

(c) Reference image from a long acquisition time (d) Reference image with magnification

Figure 6.1.: Stone data with noisy image from a low acquisition time and reference image
from a long acquisition time.

39

6. Numerical Results

• Stability: stability is another factor to consider, ensuring that the algorithm consistently
produces the same denoised outcome given the same noisy input image and parameter
settings.

• Robustness: robustness refers to the ability to generate satisfactory denoised results
across diverse noise conditions, encompassing varying noise levels.

In the forthcoming sections, we will delve into the convergence aspects and discuss the
stopping criteria applied to PDU and TV-GD algorithms individually.

6.2.1. Convergence of PDU

From the numerical analysis in [9], the PDU algorithm has a converged solution, and the
algorithm has to be stopped to avoid unnecessary iterations. It is difficult to decide when to
stop as it is hard to determine whether the approximate solution has high quality or not
if the ground truth data is not available, so the stopping criteria are hard to choose. [9]
proposed reliable and easily calculated criteria named duality gap:

G(uk, pk)

D(pk)
< TOL, (6.1)

where G(uk, pk) = P (uk) − D(pk) and k denotes the number of iterations. TOL is the
pre-specified tolerance threshold. P (u) and D(p) are cost functions for the primal update
and the dual update respectively. The functions to compute the energy of primal-dual
updates are defined as:

P (u) =
1

2
∥u− f∥2 + 1

α
∥∇u∥, (6.2)

and
D(p) =

1

2
(∥f∥2 − ∥ 1

α
∇ · p+ f∥2). (6.3)

The duality gap is a measure of the closeness of the primal-dual pair to the primal-dual
solution. As the optimization scheme consists of a minimization and a maximization
problem, P (u) presents an upper bound, and D(p) presents a lower bound for the true
minimum of the ROF model. Figure 6.2 shows a representative example of the convergence
behavior for the duality gap with the number of iterations. The energy of the primal
update and the dual update is approaching the same, and the duality gap is exponentially
decreasing. This figure also indicates that iterating after a certain number of iterations is
not necessary. For instance, the duality gap after 200 iterations will decrease exponentially,
and denoised results are already good before this point.

For cases where ground truth data exists as a reference, ground truth data can be utilized
to validate the convergence, and Figure 6.3 shows the error of the updated data to the
ground truth data with the number of iterations. The error of the updated data to the
ground truth data is computed as the L2 Norm. The error initially increases as the dual
variables are initialized as zeros, which are far from the optimal solution. Subsequently, the
error starts decreasing and eventually converges to a specific value. The outcomes from the
analysis affirm that PDU consistently converges after a certain number of iterations. This
validates the convergence of the PDU algorithm with the chosen step sizes.

40

6.2. Convergence Analysis

0 100 200 300 400 500
Number of Iterations

0

20000

40000

60000

80000

100000

En
er

gy

Primal cost
Dual cost

(a) Evolution of the primal and dual cost regarding the number of iterations.

0 100 200 300 400 500
Number of Iterations

0

50

100

150

200

250

D
ua

lit
y

ga
p

(b) Evolution of the duality gap regarding the number of iterations.

Figure 6.2.: Evolution of the primal cost, the dual cost and the duality gap regarding the
number of iterations.

41

6. Numerical Results

0 25 50 75 100 125 150 175 200
Number of Iterations

0

20

40

60

80

100

120

140

160

∥u
−
g
∥

alpha=50
alpha=100
alpha=300

Figure 6.3.: Error to the ground truth data regarding the number of iterations for different
parameters in PDU.

6.2.2. Convergence of TV-GD

When ground truth data is available as a reference, the error of updated data to the ground
truth data can be used to investigate the numerical behavior of the algorithm. Figure 6.4
shows the L2-norm error of updated data to the ground truth data with the number of
iterations. The error will first go down to an optimal minimum error and then go up as the
image will be overly smoothed without the data fidelity constraint. After this point, TV
regularization is too strong. This diverging behavior corresponds to the Algorithm 2, with
a very large of iterations, the norm of TV will be minimized to a point, which means the
amount of total variation is minimized, and the image will become too flat and far away
from the true image.

However, in general cases, there is no reference data, so it is hard to find the optimal
solution for TV-GD. In addition, it is also complicated to predefine a tolerance for the data
fidelity term as it depends on volume size, noise level, desired image quality, etc.

The problem of TV-GD is that this algorithm can easily over smooth the noisy image with
strong TV minimization. In order to ensure that the result is an optimal estimate, similar
to that in the ASD-POCS implementation [17], the associative Karush-Kuhn-Tucke (KKT)
condition should be satisfied. The KKT condition is tested with an indicator, which is
defined as:

Cα =

−−→
dTV ·

−−→
ddata

∥
−−→
dTV ∥ · ∥

−−→
ddata∥

, (6.4)

where
−−→
dTV is a vector of the derivative of the TV term, and

−−→
ddata is a vector of the derivative

of the data constraints using a Lagrangian multiplier. Cα represents the cosine of the angle

42

6.3. Parameter Selection Scheme

0 25 50 75 100 125 150 175 200
Number of Iterations

5

10

15

20

25

30

35
∥u

−
g
∥

lambda=5
lambda=15
lambda=30

Figure 6.4.: Error to the ground truth data regarding the number of iterations for different
parameters in TV-GD.

between these two vectors. As reported in [17], Cα = −1.0 is a necessary condition for
TV minimization to reach an optimal solution with sufficient data constraints. These two
vectors point in exactly opposite directions, but this condition requires a large number of
iterations and may not be practical. Typically, the stopping criteria are chosen as Cα < −0.5
or Cα < −0.6 in real applications shown in [18]. In our experiments, we found that
the stopping criterion of the ASD-POCS algorithm does not work in TV-GD because the
constraint of the data fidelity term is missing, and the convergence endpoint is not an
optimal solution.

The TV-GD algorithm will also converge to a specific limit in the end with a larger number
of iterations, but this algorithm is not converging to the optimal solution, as shown in Figure
6.4. There still exists an optimal solution before over-smoothing. It is important to analyze
the smoothing property, which is related to not only the number of iterations but also the
predefined parameters, to avoid under-smoothing and over-smoothing. The parameter
selection scheme will be introduced in the next section.

6.3. Parameter Selection Scheme

Over-smoothing and under-smoothing are two common issues that can arise when ap-
plying denoising algorithms. Both situations have distinct effects on the denoised image,
and finding the right balance is crucial for achieving optimal denoising results. Over-
smoothing occurs when the denoising algorithm removes not only the noise but also some
of the finer image details and edges. The denoised image appears overly blurry or ex-
cessively smoothed, resulting in a loss of important information. This is often caused
by using denoising algorithms with aggressive filtering or large smoothing kernels. In

43

6. Numerical Results

some cases, over-smoothing can even introduce some artifacts, such as halos and rings.
Under-smoothing occurs when the denoising algorithm does not effectively remove the
noise, resulting in a denoised image that still contains noticeable noise artifacts [45].

As shown in Figure 6.5, the TV-GD algorithm is tested on the Stone dataset, and the
right column is obtained by magnifying the lower right part of the volume from the left
column. The Stone dataset contains lots of small structures and consists of various materials
with different gray values. Figures 6.5a and 6.5b in the first row are the denoised images
with weak smoothing strength, and from the figures, visible noise still can be noticed in
the volume, and the volume is under-smoothing. Figures 6.5e and 6.5f in the third row
are obtained with strong smoothing strength, where the noise is almost removed, but the
volume is overly blurry and loses some important details. For instance, the sand between
the stones can not be distinguished anymore, the region becomes flat, and the volume is
over-smoothing. In the middle row, Figures 6.5c and 6.5d show the denoised image with
median smoothing strength, and in this case, the noise can be effectively removed, and the
vital details can be kept.

The key to effective image denoising is finding the right balance between over-smoothing
and under-smoothing. Different denoising algorithms have various parameters that control
the level of smoothing. By tuning these parameters and selecting appropriate denoising
methods, it is possible to achieve an optimal denoising result that preserves important
image details while effectively reducing noise [46].

6.3.1. Smoothing Strength of PDU

Smoothing strength in the task of image processing refers to the level of smoothing applied
to an image during a denoising or filtering process. It represents how much the noise
in the image is suppressed or reduced to obtain a smoother version of the original data.
Smoothing strength is often controlled by adjusting parameters that control the amount of
noise removal or blurring. In the context of denoising, increasing the smoothing strength
results in a more aggressive noise reduction, which may lead to loss of fine details or edges
in the data, and the image is over-smoothing. On the other hand, reducing the smoothing
strength may retain more details but may also allow some noise to persist in the denoised
result, and the result is under-smoothing.

For PDU, the parameter α controls the amount of noise removal and the smoothing
strength. With different parameters, the convergence rate will differ, and the converging
point will change as well accordingly, as shown in Figure 6.6. Here, the L2-norm of the data
fidelity term is chosen as a reference with the number of iterations for different values of
α. A larger L2-norm of the data fidelity term means there is more difference between the
original image and the updated image.

According to Equation (2.4), the larger the alpha is, the more weight the data fidelity
term has. Consequently, the difference between updated volume and noisy volume will be
smaller at the end after convergence. It also means less weight the TV regularization has, the
weaker TV regularization will be after convergence, and the algorithm has weak smoothing
strength. Vice versa, with a smaller alpha, the algorithm has stronger smoothing strength.
The smoothing strength is determined by the parameter α. In PDU, the selection of τkP
and τkD determines the step size of the primal update and the duality update, controlling
the convergence rate and smoothing rate of the algorithm. In our implementation, the

44

6.3. Parameter Selection Scheme

(a) Under-smoothing (b) Under-smoothing with magnification

(c) Optimal-smoothing (d) Optimal-smoothing with magnification

(e) Over-smoothing (f) Over-smoothing with magnification

Figure 6.5.: Under and over-smoothing tested on the Stone dataset.

45

6. Numerical Results

0 100 200 300 400 500
Number of Iterations

0

10

20

30

40

50

60

70

80

∥u
−
f
∥

alpha=20
alpha=40
alpha=60
alpha=80
alpha=100

Figure 6.6.: L2-norm of data fidelity regarding the number of iterations with different
parameters in PDU.

number of iterations is set as a fixed number between 200 and 500 which has shown good
experimental results. The α is the only parameter that has to be tuned for various datasets.

Concerning the variant of PDU known as S-PDU, the sole distinction lies in the data
fidelity term. In statistical PDU, this term is weighted element-wise based on the noise
level at each voxel. Through our experiments, we have observed that the convergence
and smoothing behavior of statistical PDU closely align with those of the original PDU.
Therefore, we have opted not to present a separate discussion of numerical results for
statistical PDU in this context.

6.3.2. Smoothing Strength of TV-GD

For TV-GD, the number of iterations controls the smoothing strength. However, there exists
no data fidelity constraint for TV-GD, so TV-GD will smooth the volume continuously
until the volume reaches the minimization of TV regularization and become flat. The
corresponding data fidelity term will grow up endlessly, as shown in Figure 6.7. With a
larger λ, the smoothing procedure will be faster, and the λ controls the step size of the
smoothing procedure shown in Algorithm 2. As the number of iterations increases, the
volume will first become under-smoothing and then reach an optimal-smoothing point
where the important details of volumes are preserved while removing the noise. Afterward,
the volume will be over-smoothing with more iterations, and the important details may be
lost.

The smoothing speed is determined by the parameter λ, and a larger λ means a faster
smoothing rate. Here, we have to be careful that the lambda can not be too high, as the
algorithm will then have unstable behavior. In detail, there will be a high oscillation at
the initial iterations. The smoothing strength is decided by the number of iterations, and

46

6.4. Image Quality

0 100 200 300 400 500
Number of Iterations

0

20

40

60

80

100

120

140
∥u

−
f
∥

lambda=2
lambda=5
lambda=15
lambda=30
lambda=50

Figure 6.7.: L2-norm of data fidelity regarding the number of iterations with different
parameters in TV-GD.

with more number of iterations, the update image will first be under-smoothing and then
be over-smoothing. In our real implementation, the number of iterations is set as a fixed
number, and the optimal solution can be obtained by tuning the λ. The number between 50
and 80 presents a satisfactory result in our experiments for the iterations.

An additional variant of POCS known as AW-POCS introduces a subtle alteration to
the computation of the gradient element. In AW-POCS, the gradient of the TV norm is
weighted by an exponential function. Our experimental findings correspondingly indicate
that AW-POCS shares similar convergence behavior and smoothing characteristics with
the standard POCS algorithm. The discussion of numerical results for AW-POCS is not
presented here.

6.4. Image Quality

Apart from analyzing the numerical behavior of the algorithms, the quality of the denoised
image is essential to be assessed to judge if the algorithm performs well or not. In the next
section, the means and metrics of evaluating image quality will be introduced, and the
algorithms will be compared together regarding the denoising performance.

In order to distinguish whether the image denoising is good or not, subjective evaluation
by visual inspection is a common method to assess image quality. Experts visually examine
the 3D volume and provide qualitative feedback based on factors like clarity, artifacts, noise,
and overall image fidelity. This is not a good way to compare the performance among
different datasets, algorithms, and image processing methods. Therefore, a quantitative
evaluation is needed. In order to get quantitative results, several measurements can be
chosen regarding specific requirements and settings. In the case of FR, the ground truth

47

6. Numerical Results

data is provided for measuring the image quality, offering a better estimation. In our
case, ground truth data is retrieved from the reconstruction of projections after a long time
scanning with high quality.

There are various methods to measure the similarity between estimated images and
ground truth in the case of FR, which focuses on the assessment of the quality of a test
image in comparison with a reference image [47].

• Mean Square Error (MSE) is one of the most traditional estimators. MSE measures the
average of the squares of the difference between the estimated values and the actual
value [48]. Root Mean Square Error (RMSE) is the square root of MSE and provides a
measure of the average difference between denoised data and ground truth. MSE can
be meaningless if the peak intensity is uncertain.

• Peak Signal to Noise Ratio (PSNR) is also a popular measure of image quality. PSNR
is an expression for the ratio between the maximum possible power of a signal and
the power of corrupting noise that affects the quality of its representation. PSNR
has the advantage of enabling to compare results on images with different peak
intensities compared to MSE. Generally speaking, When the PSNR value is high, it
implies a better similarity and higher image quality between the denoised images
and ground truth. A high PSNR value indicates that the denoised image has less
distortion compared to the ground truth. PSNR is usually defined as [49]:

PSNR = 10 log10
MAX2

MSE
, (6.5)

where MAX represents the max voxel value of this volume.

• Structural Similarity Index (SSIM) [50] provides a more meaningful evaluation by
taking human visual characteristics into account. It measures the structural similarity
between two images by comparing luminance, contrast, and structural information.
The SSIM is computed as:

SSIM(x, y) = Luminance function+ Contrast function+ Structure function

= [l(x, y)]α + [c(x, y)]β + [s(x, y)]γ

=
2µxµy + C1

µ2
xµ

2
y + C1

+
2σxσy + C2

σ2
xσ

2
y + C2

+
σxy + C3

σxσy + C3

=
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
xσ

2
y + C2)

,

(6.6)

where x and y represent two images, and the operator µ is the pixel sample mean.
σ is the standard deviation, whereas σxy is the cross-correlation of x and y. C is a
constant influenced by the dynamic range of pixel values. In our work, we have
set C1 = 0.012 and C2 = 0.032, and the image values are normalized between 0 and
1 before evaluation. The SSIM index ranges between 0 and 1, with higher values
indicating better similarity. The drawback of SSIM is that the computation is more
complex and takes a longer time compared to MSE and PSNR.

48

6.5. Comparison of PDU and TV-GD

However, the problem is that the alignment between ground truth data and noisy data
is not perfect even after lots of alignment operations. In this case, quantitative results for
measuring image quality are hard to achieve good results as the metrics are very sensitive to
geometrical issues such as alignment and scaling. Besides, ground truth data still contains
noises itself, but the noise level is much lower compared to the noisy data. Thus, the
computation of quantitative results will be affected more or less. In addition, there are no
ground truth data available as a reference sometimes. SNR is an option to measure the
image quality in this case of NR, which means no reference image is used, and the metrics
focus on the assessment of the quality of a test image only. SNR can be calculated using
different formulas, and it depends on how signal and noise are determined. One way to
define SNR is [51]:

SNR =
µ

σ
, (6.7)

where µ is the mean of the signal and σ is the standard deviation of the noise, and SNR is
usually calculated as the ratio of the mean pixel value to the standard deviation of the pixel
values over a given neighborhood. The definition is only valid if the variables are always
non-negative. In our real computation, values of volume may need an offset to make sure
that the values of each voxel are non-negative.

In the case that the ground truth is available, the MSE, PSNR, and SSIM indexes can be
utilized as a quantitative interpretation of image quality. SNR can be used as the index
in the case that the ground truth is not available. In the following sections, the PDU and
TV-GD, PDU and S-PDU are compared separately regarding the quality of the denoised
image.

6.5. Comparison of PDU and TV-GD

It is difficult to compare PDU and TV-GD in a fair way when there exists no ground truth
reference data, as two algorithms solve different mathematical problems. PDU solves the
unconstrained problem, and TV-GD solves the constrained problem. It is meaningless to
directly compare the number of iterations or parameters. The data fidelity term can always
be easily obtained even if the ground truth is not available and indicates how far the update
volume from the noisy volume is. As shown in Figure 6.6, PDU will always converge to a
stable data fidelity term. This certain value could also be used as a reference for TV-GD. So,
we propose a comparison scheme for the NR condition as follows:

1. Fix the parameter α in PDU, and first run PDU until it converges to a stable data
fidelity term.

2. Set this certain data fidelity term as a reference for TV-GD, and run TV-GD until the
data fidelity term reaches the predefined value.

3. Compare the updated images obtained from PDU and TV-GD.

Figure 6.8 shows a representative example of how we compare TV-GD and PDU, and the
data fidelity term is obtained from PDU after convergence. TV-GD runs until it reaches the
predefined data fidelity term. The runtime and also the corresponding image quality are

49

6. Numerical Results

0 5 10 15 20 25 30 35 40 452.3
5

11
.88

Runtime in Seconds

0

50

100

150

200

41.88

∥u
−

f
∥

PDU, alpha=75
POCS, lambda=15

Figure 6.8.: Example of runtime (including computation and memory transfer time) for
TV-GD and PDU respectively to reach the same predefined data fidelity term.

Test image SSIM MSE PSNR
Noisy image 0.6460 0.00524 22.808 dB

Denoised image 0.8731 0.00027 35.693 dB

Table 6.1.: Comparison of image quality metrics between the updated image from TV-GD
and the noisy image.

compared. As shown, the runtime required to achieve the same predefined data fidelity
term in TV-GD is about 2.35s, which is much less than 11.88s in PDU. The experiment
was conducted on one of the Stone datasets with a size of about 1.8GB. After applying the
comparison procedure, the scheme was validated by the ground truth reference data, and
the L2-norm of the error to the ground truth at this point in TV-GD is about 2.09136, while
the value comes to 2.19174 in PDU. The updated images obtained from PDU and TV-GD
are both close to the ground truth data, as they have almost the same L2-norm of the error
to the ground truth. Therefore, we have the conclusion that TV-GD are able to reach almost
the same image quality as PDU, while TV-GD needs less time but is harder to adjust to
produce an optimal solution.

In addition, good denoising performance was obtained for the updated image from
TV-GD according to the image quality metrics, as shown in Table 6.1. The metrics of the
updated image from PDU are not presented here, as this updated image is almost the same
as the updated image from TV-GD.

50

6.6. Comparison of PDU and S-PDU

(a) Original image (b) Noise level estimation

Figure 6.9.: Example of noise level estimation from the noisy image.

6.6. Comparison of PDU and S-PDU

The PDU solution results from the ROF problem, which assumes that the additive noise
in the original image is a Gaussian-distributed random variable with a scalar variance. If
the noise level varies across the image, and PDU applies the same smoothing strength to
the whole image, then some parts of the image may become over-smoothing or under-
smoothing depending on the smoothing strength.

The statistical PDU considers multivariate variance of noise across the volume and
introduces the weighted least square data fidelity term. The weights are directly represented
by the noise level at the corresponding voxel. The smoothing strength is correspondingly
weighted voxel-wise, as shown in Figure 6.9. This figure illustrates the estimation of noise
level from the original noisy image for one image slice from the Blade dataset. As we can
see, the noise levels differ at each voxel, and the noise level at the upper part is higher
compared to the lower part in this volume.

Figure 6.10 compares the image quality of the updated image after applying PDU and
S-PDU for the original noisy Blade data in Figure 6.10a. The noise level in the upper part is
visibly much higher than in the lower part. In order to preserve the small structures in the
lower part, Figure 6.10b is obtained after applying PDU with weak smoothing strength, but
the noise on the upper part is still obvious. If stronger smoothing strength is chosen, like in
Figure 6.10c, most of the noise is eliminated, but the lower part is over-smoothing. Small
structures are destroyed, and important details are lost in that area. Figure 6.10d shows the
denoised image after applying statistical denoising, and the noise is removed on the upper
part while still preserving the small structures with weaker smoothing strength compared
to the upper part. The SNR obtained from the red-marked homogeneous region is 55.857,
which is much higher than the original image and under-smoothing PDU. Statistical PDU
shows a much better denoising result both visually and quantitatively over PDU.

51

6. Numerical Results

(a) Original image:
SNR = 25.333 in the red-marked region

(b) PDU with under-smoothing:
SNR = 31.781 in the red-marked region

(c) PDU with over-smoothing:
SNR = 44.907 in the red-marked region

(d) S-PDU:
SNR = 55.857 in the red-marked region

Figure 6.10.: Comparison of PDU and S-PDU on the Blade dataset with different noise
levels across the image, and SNR values are computed in the same red-marked
regions.

52

6.6. Comparison of PDU and S-PDU

(a) Original image:
magnification for details

(b) PDU with under-smoothing:
magnification for details

(c) PDU with over-smoothing:
magnification for details

(d) S-PDU:
magnification for details

Figure 6.11.: Comparison of PDU and S-PDU on the Blade dataset with different noise
levels across the image, and details in the lower part are magnified.

53

7. Discussion and Conclusion

The work presented in this thesis can be divided into two main components. The first
part involves the multi-GPU implementation of two 3D total variation algorithms: PDU
and TV-GD, both implemented in OpenCL. The second part encompasses the multi-GPU
implementation of a statistical 3D denoising algorithm derived from PDU in OpenCL. The
chapters of the thesis have presented both the numerical and GPU implementation of these
algorithms. Detailed discussions about GPU performance and numerical analysis are also
included.

PDU addresses the unconstrained problem of the ROF model by introducing a dual vari-
able, converting the minimization problem into a saddle point problem. In contrast, POCS
represents a constrained minimization approach that directly minimizes the total variation
norm, but POCS is constrained by a predefined data fidelity term. TV-GD is the part of
the TV Gradient Descent taken from the complete POCS algorithm. The statistical PDU
applies a weighted least squares data fidelity term, utilizing element-wise noise variance
as weights. The element-wise noise is estimated by propagating the noise estimation in
projections through the reconstruction pipeline.

The algorithms are implemented on multi-GPU setups using OpenCL programming
language, offering hardware portability across different vendors. Optimized image splitting
and distribution schemes enable accommodating large datasets across multiple GPUs. Com-
pute kernels are analyzed through the Roofline model, leading to tailored optimizations
based on whether they are compute-bound or memory-bound. Appropriate work-item and
vectorization schemes are adopted to maximize parallelism and memory access coherence.
In addition, detailed discussions on reduction operations are provided to avoid unnec-
essary synchronization and better utilize shared memory. GPU scaling is also analyzed
and optimized through the use of multiple command queues within a single device and
minimizing synchronization between command queues.

Convergence evaluation for TV-GD and PDU employs individual stopping criteria and
the L2-norm error of updated images in relation to ground truth data when available. The
results reveal that PDU converges to an optimal solution eventually with chosen step sizes,
while TV-GD needs to be halted before the updated image becomes over-smoothing. In
order to avoid both under-smoothing and over-smoothing, the smoothing strength and rate
are investigated by tuning parameters and iteration counts in both algorithms. In PDU, the
smoothing strength is controlled by the parameter α, and the smoothing rate is influenced
by the selection of step sizes for the primal and duality updates. In contrast, the smoothing
strength of TV-GD is tied to the number of iterations, while the parameter λ governs the
step size for the smoothing procedure.

To check the image quality in a quantitative way across different datasets and algorithms,
metrics like MSE, PSNR, SSIM, and SNR are introduced based on the availability of ground
truth data. Utilizing these indicators, a comparison scheme is devised to compare PDU and
TV-GD in terms of runtime and denoised image quality. The experiments demonstrate that

54

TV-GD achieves the same predefined data fidelity term with significantly less runtime than
PDU, but PDU retains an advantage in robustness.

A comparison between PDU and S-PDU is conducted on the Blade data where the noise
level on the upper part is visibly much higher than the lower part. The results show the
superiority of statistical PDU in applying variable smoothing strengths at different voxels
based on statistical information. Statistical PDU can efficiently prevent under-smoothing
and over-smoothing in specific regions, leading to enhanced denoising results both visually
and quantitatively compared to PDU.

While the presented structure and code are comprehensive, there remain potential areas
for improvement. Enhancements could include efficient memory transfer and computa-
tion overlapping schemes [52], allowing the multi-GPU code to increase parallelism and
reduce overhead, especially for PDU, which involves numerous memory transfer steps.
In traditional data transfer, the host waits for the data transfer between the host memory
and the device memory to complete before proceeding with other tasks. This waiting time
can lead to inefficient resource utilization and decreased performance. In order to ensure
overlapping results are correct, a more elaborate synchronization mechanism and data
management scheme are needed.

Further improvements could be made to the numerical implementation of TV-GD. Despite
its good GPU performance and scalability in comparison to PDU and its lower CPU and
GPU memory requirements, TV-GD is less stable and robust due to the absence of a data
fidelity term constraint. The algorithm is harder to fine-tune for optimal denoised solutions
and is prone to producing over-smoothing updated images. Additionally, it would be
intriguing to explore the application of statistical information using the TV-GD framework.

55

Bibliography

[1] Dan E Dudgeon and Russell M Mersereau. Multidimensional digital signal processing.
Prentice-hall, 1984.

[2] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[3] Gengsheng L Zeng. Nonuniform noise propagation by using the ramp filter in fan-
beam computed tomography. IEEE Transactions on Medical Imaging, 23(6):690–695,
2004.

[4] David R Pauluzzi and Norman C Beaulieu. A comparison of snr estimation techniques
for the awgn channel. IEEE Transactions on communications, 48(10):1681–1691, 2000.

[5] Andrei Nikolaevich Tikhonov, AV Goncharskii, VV Stepanov, and Igor Viktorovich
Kochikov. Ill-posed problems of image processing. In Akademiia Nauk SSSR Doklady,
volume 294, pages 832–837, 1987.

[6] Thomas Huang, GJTGY Yang, and Greory Tang. A fast two-dimensional median
filtering algorithm. IEEE transactions on acoustics, speech, and signal processing, 27(1):13–
18, 1979.

[7] Richard A Haddad, Ali N Akansu, et al. A class of fast gaussian binomial filters for
speech and image processing. IEEE Transactions on Signal Processing, 39(3):723–727,
1991.

[8] Bastian Goldluecke. Total variation, pages 1266–1269. Springer International Publishing,
Cham, 2021.

[9] Mingqiang Zhu and Tony Chan. An efficient primal-dual hybrid gradient algorithm
for total variation image restoration. Ucla Cam Report, 34:8–34, 2008.

[10] Rajendra Bhatia and Chandler Davis. A cauchy-schwarz inequality for operators with
applications. Linear algebra and its applications, 223:119–129, 1995.

[11] Alex Sawatzky. Performance of first-order algorithms for TV penalized weighted
least-squares denoising problem. In Image and Signal Processing: 6th International
Conference, ICISP 2014, Cherbourg, France, June 30–July 2, 2014. Proceedings 6, pages
340–349. Springer, 2014.

[12] Soeren I. Olsen. Estimation of noise in images: An evaluation. CVGIP: Graphical Models
and Image Processing, 55(4):319–323, 1993.

[13] Avinash C Kak and Malcolm Slaney. Principles of computerized tomographic imaging.
SIAM, 2001.

56

Bibliography

[14] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image
denoising with block-matching and 3d filtering. In Image processing: algorithms and
systems, neural networks, and machine learning, volume 6064, pages 354–365. SPIE, 2006.

[15] Mário AT Figueiredo and Robert D Nowak. An em algorithm for wavelet-based image
restoration. IEEE Transactions on Image Processing, 12(8):906–916, 2003.

[16] Anja Borsdorf. Adaptive filtering for noise reduction in X-Ray computed tomography. PhD
thesis, Citeseer, 2009.

[17] Emil Y Sidky and Xiaochuan Pan. Image reconstruction in circular cone-beam com-
puted tomography by constrained, total-variation minimization. Physics in Medicine &
Biology, 53(17):4777, 2008.

[18] Yan Liu, Jianhua Ma, Yi Fan, and Zhengrong Liang. Adaptive-weighted total variation
minimization for sparse data toward low-dose x-ray computed tomography image
reconstruction. Physics in Medicine & Biology, 57(23):7923, 2012.

[19] Ander Biguria, Reuben Lindroosa, Robert Bryllb, Hossein Towsyfyana, Hans Deyh-
lea, Richard Boardmand, Mark Mavrogordatod, Manjit Dosanjhc, Steven Hancockc,
and Thomas Blumensatha. Arbitrarily large iterative tomographic reconstruction on
multiple gpus using the tigre toolbox. arXiv preprint arXiv:1905.03748, 2019.

[20] Florian Knoll, Markus Unger, Clemens Diwoky, Christian Clason, Thomas Pock, and
Rudolf Stollberger. Magnetic resonance materials in physics, biology and medicine fast
reduction of undersampling artifacts in radial mr angiography with 3d total variation
on graphics hardware. Magma (New York, NY), 23(2):103, 2010.

[21] Ander Biguri. Iterative reconstruction and motion compensation in computed tomography on
GPUs. PhD thesis, University of Bath, 2018.

[22] Ramon Carbó and Emili Besalú. Definition, mathematical examples and quantum
chemical applications of nested summation symbols and logical kronecker deltas.
Computers & Chemistry, 18(2):117–126, 1994.

[23] Alexander H-D Cheng and Daisy T Cheng. Heritage and early history of the boundary
element method. Engineering analysis with boundary elements, 29(3):268–302, 2005.

[24] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science & engineering,
12(3):66, 2010.

[25] Hercules Cardoso Da Silva, Flavia Pisani, and Edson Borin. A comparative study of
sycl, opencl, and openmp. In 2016 International Symposium on Computer Architecture
and High Performance Computing Workshops (SBAC-PADW), pages 61–66. IEEE, 2016.

[26] Goutham Kalikrishna Reddy Kuncham, Rahul Vaidya, and Mahesh Barve. Perfor-
mance study of gpu applications using sycl and cuda on tesla v100 gpu. In 2021 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2021.

57

Bibliography

[27] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler. Bench-
marking opencl, openacc, openmp, and cuda: programming productivity, performance,
and energy consumption. In Proceedings of the 2017 Workshop on Adaptive Resource Man-
agement and Scheduling for Cloud Computing, pages 1–6, 2017.

[28] Marcel Breyer, Alexander Van Craen, and Dirk Pflüger. A comparison of sycl, opencl,
cuda, and openmp for massively parallel support vector machine classification on
multi-vendor hardware. In International Workshop on OpenCL, pages 1–12, 2022.

[29] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa. Heteroge-
neous computing with openCL: revised openCL 1. Newnes, 2012.

[30] Aaftab Munshi, Benedict Gaster, Timothy G Mattson, and Dan Ginsburg. OpenCL
programming guide. Pearson Education, 2011.

[31] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful
visual performance model for multicore architectures. Communications of the ACM,
52(4):65–76, 2009.

[32] Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben Van Werkhoven, and Henri E Bal.
Optimization techniques for gpu programming. ACM Computing Surveys, 55(11):1–81,
2023.

[33] Gert-Jan van den Braak, Bart Mesman, and Henk Corporaal. Compile-time gpu
memory access optimizations. In 2010 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, pages 200–207. IEEE, 2010.

[34] Andrew Davidson, Sean Baxter, Michael Garland, and John D Owens. Work-efficient
parallel gpu methods for single-source shortest paths. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 349–359. IEEE, 2014.

[35] Chao-Hung Hsu, I-Wei Wu, and Jean Jyh-Jiun Shann. Dynamic memory optimization
and parallelism management for opencl. In 2014 International Conference on Information
Science, Electronics and Electrical Engineering, volume 2, pages 776–780. IEEE, 2014.

[36] Nicolas Delbosc, Jon L Summers, AI Khan, Nikil Kapur, and Catherine J Noakes.
Optimized implementation of the lattice boltzmann method on a graphics processing
unit towards real-time fluid simulation. Computers & Mathematics with Applications,
67(2):462–475, 2014.

[37] M Lefebvre, P Guillen, J-M Le Gouez, and C Basdevant. Optimizing 2d and 3d
structured euler cfd solvers on graphical processing units. Computers & Fluids, 70:136–
147, 2012.

[38] Vasily Volkov and James W Demmel. Benchmarking gpus to tune dense linear algebra.
In SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1–11.
IEEE, 2008.

[39] Yi Yang and Huiyang Zhou. The implementation of a high performance gpgpu
compiler. International Journal of Parallel Programming, 41:768–781, 2013.

58

Bibliography

[40] Santonu Sarkar, Sayantan Mitra, and Ashok Srinivasan. Reuse and refactoring of gpu
kernels to design complex applications. In 2012 IEEE 10th International Symposium on
Parallel and Distributed Processing with Applications, pages 134–141. IEEE, 2012.

[41] Jens Glaser, Trung Dac Nguyen, Joshua A Anderson, Pak Lui, Filippo Spiga, Jaime A
Millan, David C Morse, and Sharon C Glotzer. Strong scaling of general-purpose
molecular dynamics simulations on gpus. Computer Physics Communications, 192:97–
107, 2015.

[42] Pekka Jääskeläinen, Ville Korhonen, Matias Koskela, Jarmo Takala, Karen Egiazarian,
Aram Danielyan, Cristóvão Cruz, James Price, and Simon McIntosh-Smith. Exploiting
task parallelism with opencl: a case study. Journal of Signal Processing Systems, 91:33–46,
2019.

[43] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21 Symposium (HCS),
pages 1–314. IEEE, 2009.

[44] Mahdi Khosravy, Nilesh Patel, Neeraj Gupta, and Ishwar K Sethi. Image quality assess-
ment: A review to full reference indexes. Recent Trends in Communication, Computing,
and Electronics: Select Proceedings of IC3E 2018, pages 279–288, 2019.

[45] Earl W Duncan and Kerrie L Mengersen. Comparing bayesian spatial models:
Goodness-of-smoothing criteria for assessing under-and over-smoothing. PloS one,
15(5):e0233019, 2020.

[46] Clifford M Hurvich, Jeffrey S Simonoff, and Chih-Ling Tsai. Smoothing parameter
selection in nonparametric regression using an improved akaike information criterion.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 60(2):271–293, 1998.

[47] Umme Sara, Morium Akter, and Mohammad Shorif Uddin. Image quality assessment
through fsim, ssim, mse and psnr—a comparative study. Journal of Computer and
Communications, 7(3):8–18, 2019.

[48] Jacob Søgaard, Lukáš Krasula, Muhammad Shahid, Dogancan Temel, Kjell Brunnström,
and Manzoor Razaak. Applicability of existing objective metrics of perceptual quality
for adaptive video streaming. In Electronic Imaging, Image Quality and System Perfor-
mance XIII, 2016.

[49] Renuka G Deshpande, Lata L Ragha, and Satyendra Kumar Sharma. Video quality
assessment through psnr estimation for different compression standards. Indonesian
Journal of Electrical Engineering and Computer Science, 11(3):918–924, 2018.

[50] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

[51] Jerrold T Bushberg and John M Boone. The essential physics of medical imaging. Lippincott
Williams & Wilkins, 2011.

59

Bibliography

[52] Timo Zinsser and Benjamin Keck. Systematic performance optimization of cone-beam
back-projection on the kepler architecture. Proceedings of the 12th Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine, pages 225–228, 2013.

60

List of Figures

4.1. OpenCL memory model (taken from [24]). 15
4.2. Image splitting scheme for the case of the Single-split Multi-GPU scheme. . 18
4.3. Image splitting scheme for the case of the Multiple-splits Multi-GPU scheme. 19
4.4. Forward buffer synchronization scheme. 20

5.1. Roofline model for the kernels in both PDU and TV-GD approaches tested
on the AMD FirePro W8100 GPU. 25

5.2. OpenCL kernel example before and after adding vectorization. 29
5.3. OpenCL reduction kernel with memory coalescing. 32
5.4. OpenCL reduction kernel with unrolling. 33
5.5. Example of multiple command queues in one device. 34
5.6. Strong scaling performance for TV-GD and PDU algorithms on up to 4 GPUs. 35
5.7. The speeds and speedups of TV-GD and PDU at different sizes on different

number of GPUs. 36

6.1. Stone data with noisy image from a low acquisition time and reference image
from a long acquisition time. 39

6.2. Evolution of the primal cost, the dual cost and the duality gap regarding the
number of iterations. 41

6.3. Error to the ground truth data regarding the number of iterations for different
parameters in PDU. 42

6.4. Error to the ground truth data regarding the number of iterations for different
parameters in TV-GD. 43

6.5. Under and over-smoothing tested on the Stone dataset. 45
6.6. L2-norm of data fidelity regarding the number of iterations with different

parameters in PDU. 46
6.7. L2-norm of data fidelity regarding the number of iterations with different

parameters in TV-GD. 47
6.8. Example of runtime (including computation and memory transfer time) for

TV-GD and PDU respectively to reach the same predefined data fidelity term. 50
6.9. Example of noise level estimation from the noisy image. 51
6.10. Comparison of PDU and S-PDU on the Blade dataset with different noise

levels across the image, and SNR values are computed in the same red-
marked regions. 52

6.11. Comparison of PDU and S-PDU on the Blade dataset with different noise
levels across the image, and details in the lower part are magnified. 53

61

List of Tables

5.1. GPU bandwidth efficiency for kernels in both PDU and TV-GD approaches
tested on the AMD FirePro W8100 GPU. 26

5.2. Example of kernel execution time using different 3D work-group sizes on
the NVIDIA RTX 3080 TURBO GPU. 28

5.3. Example of kernel execution time before and after kernel fusion on the
NVIDIA RTX 3080 TURBO. 30

6.1. Comparison of image quality metrics between the updated image from TV-
GD and the noisy image. 50

62

List of Algorithms

1. Numerical update approach for PDU . 10
2. Numerical update approach for TV-GD . 11
3. Numerical update approach for S-PDU . 12

4. Workflow for implementation of PDU on GPUs 21
5. Workflow for implementation of TV-GD on GPUs 22

63

A. Appendix

A.1. Abbreviations

CT Computed Tomography . 2

3D Three-dimensional . 2

FBP Filtered Backprojection . 2

SNR Signal-to-noise Ratio . 2

TV Total Variation . 2

GPU Graphic Processing Unit . 3

GPGPU General Purpose GPU . 3

CPU Central Processing Unit . 3

HPC High Performance Computing . 3

CUDA Compute Unified Device Architecture . 3

OpenCL Open Computing Language . 3

AWGN Additive White Gaussian Noise . 5

ROF Rudin-Osher-Fatemi . 6

PDU Primal-dual . 6

64

A.1. Abbreviations

POCS Projection onto Convex Sets . 7

AW-TV Adaptive-weighted Total Variation . 7

TV-GD Total Variation Gradient Descent . 9

AW-POCS Adaptive-weighted POCS . 11

ASD-POCS Adaptive-steepest-descent POCS . 10

ART Algebraic Reconstruction Technique . 10

S-PDU Statistical PDU . 12

TFLOPS Tera Floating Point Operations Per Second 24

RAM Random-access Memory . 24

DSPs Digital Signal Processors . 13

FPGAs Field-programmable Gate Arrays . 13

API Application Programming Interface . 14

FLOPS Floating Point Operations Per Second . 25

SIMD Single Instruction, Multiple Data . 27

FR Full-reference . 38

NR No-reference . 38

KKT Karush-Kuhn-Tucke . 42

65

A. Appendix

MSE Mean Square Error . 48

RMSE Root Mean Square Error . 48

PSNR Peak Signal to Noise Ratio . 48

SSIM Structural Similarity Index . 48

66

	Acknowledgements
	Abstract
	Introduction and Background
	Introduction
	Motivation
	Thesis Outline

	Related Work
	Problem Statement
	Total Variation Denoising

	Implementation
	Numerical Implementation
	Primal-dual
	Total Variation Gradient Descent
	Statistical PDU

	GPU Implementation
	Overview of OpenCL
	Advantages of OpenCL
	OpenCL Architecture
	OpenCL Environment

	Image Splitting and Distribution Scheme
	Single-split Multi-GPU Scheme
	Multiple-splits Multi-GPU Scheme
	Buffer Synchronization Scheme

	Workflow on GPUs

	Experiments and Conclusions
	GPU Performance
	Kernel Analysis
	Kernel Optimization
	Choice of Work-item and Work-group
	Vectorization Scheme
	Kernel Fusion
	Synchronization and Shared Memory Scheme

	GPU Scaling
	Multiple Command Queues within a Single Device
	Synchronization between Command Queues

	Numerical Results
	Dataset Description
	Convergence Analysis
	Convergence of PDU
	Convergence of TV-GD

	Parameter Selection Scheme
	Smoothing Strength of PDU
	Smoothing Strength of TV-GD

	Image Quality
	Comparison of PDU and TV-GD
	Comparison of PDU and S-PDU

	Discussion and Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Appendix
	Abbreviations

