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Abstract
This paper proposes the generative adversarial networks (GAN)
speech inpainting model consisting of the GAN magnitude in-
painting network and the phase reconstruction algorithm. The
GAN network with partial convolutions implements inpaint-
ing specific time-frequency (T-F) areas of spectrograms, and
captures latent information of speech spectrograms and high-
dimensional features using the proposed loss function, con-
tributing to more real and speech-like results. The phase re-
construction algorithm adopts two strategies for different mag-
nitudes, inpainting clear harmonics while reducing the buzzes
in high frequency. The proposed model outperforms the con-
ventional and the T-F mask-based deep inpainting baselines in
inpainting performance of Short-Term Objective Intelligibility
(STOI) and Perceptual Evaluation of Speech Quality (PESQ).
Since it can inpaint specific T-F areas and improve the inpaint-
ing performance, the model implements the speech inpainting
for audio editing software.
Index Terms: speech inpainting, audio inpainting, GAN, par-
tial convolution, speech-VGG loss, audio editing software

1. Introduction
Speech signals inevitably suffer from undesired local distor-
tions. These distortions could be treated as missings, such as
damage after noise suppression, storage error, or packet loss
during transmission. The missing information severely de-
grades audio signals’ hearing and coherence. For speech sig-
nals, this information missing, especially harmonics missing,
impairs more since the integrity of speech signals is more cru-
cial to the quality and intelligibility of speech. Hence, speech
inpainting, has wide applications in audio editing, audio en-
hancement [1], and audio bandwidth extension [2] [3].

In recent decades, many conventional and machine learning
methods have been developed for inpainting audio signals [4].
Conventional methods mainly concentrate on directly inpaint-
ing audio using context time features. At first, D. Goodman and
N. Perraudin implemented inpainting with waveform substitu-
tion according to the explicit estimation of voicing and pitch
or the similarity graph of time-persistent spectral [5]. After-
ward, more successful auto-regressive methods were proposed
to linearly predict or interpolate the missing samples using auto-
regressive coefficients, which are learned from adjacent sam-
pling points [6]. To improve the interpolation of longer missing
gaps, P. Esquef introduced the warped burg’s method into the
auto-regressive method [7]. Sinusoidal modeling-based long in-
terpolation approaches using a linear prediction were attempted
by M. Lagrange [8] and J. Lindblom [9]. Besides, S. Godsill
introduced a statistical approach [10]. G. Chantas further pro-
posed a variational Bayesian model with sparse signal repre-

sentation [11]. Maher presented the extrapolation method by
synthesizing the estimate of missing using a sinusoidal repre-
sentation [12]. Moreover, I. Kauppinen proposed another Lin-
ear Predictive Coding (LPC) based extrapolation method, which
extrapolates time-varying cosine waves [13] [14]. The LPC
method can reconstruct longer missing gaps and is often used
as a performance comparison baseline.

On the other hand, more and more deep neural network
(DNN) methods were proposed. Most of these are based on the
context encoder, which is responsible for extracting informa-
tion from the context, then generating and inpainting missing
segments with this information [15] [16]. Some GAN mod-
els were proposed for inpainting longer gaps [17] [18]. Nev-
ertheless, these methods could only inpaint time-clip missing.
Thus, they only work for some limited scenarios like packet
loss. For the speech inpainting in audio editing software and
other speech enhancement tasks, including noise suppression
and audio bandwidth extension, T-F mask-based methods are
proposed for inpainting specific T-F areas [1] [19].

However, since these methods treat T-F spectrograms as im-
ages to inpaint, they cannot capture the actual audio spectro-
gram features, leading to unreal inpainting results. These meth-
ods still have severe problems of over-smooth and blurry results,
especially for harmonics, leading to the failure to reconstruct
reasonable speech structures. Moreover, using existing phase
reconstruction algorithms from other speech enhancement or
synthesis tasks results in blurry inpainted harmonics and annoy-
ing buzzes. The inpainting of harmonics is paramount in speech
inpainting tasks, which directly determines speech intelligibil-
ity and quality. Hence, this paper proposes the T-F mask-based
GAN speech inpainting model to tackle these problems for im-
proving the inpainting performance and further to implement
the speech inpainting for audio editing software.

2. Method
The framework of the proposed T-F mask-based speech inpaint-
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Figure 1: The framework of the proposed T-F mask-based
speech inpainting system.
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Figure 2: The structure of the proposed GAN magnitude in-
painting network.

ing system is presented in Fig. 1. At the beginning of the sys-
tem, the impaired spectrogram is concatenated with the corre-
sponding binary masks and then fed into the inpainting model.
Masks are binary and responsible to indicate the impaired areas.
For audio editing software, masks can be provided by the frame
or lasso from users. For other speech enhancement scenarios,
masks can be estimated by methods, such as the ideal binary
mask (IBM) [20] and spectral magnitude mask (SMM) [21].
The GAN network inpaints the magnitude of spectrograms [22],
followed by the phase reconstruction algorithm, which rebuilds
the phase from the inpainted magnitude. The network is only
used to inpaint magnitude since A. Marafioti demonstrated that
the magnitude DNN outperformed the complex-valued DNN in
terms of signal-to-noise ratios and objective difference grades,
in particular for reconstructing high-frequency content [17]. It
is worth noting that the final output spectrum is composited by
the unmasked part of the ground-truth input and the masked
part of the raw inpainted spectrum to preserve the original in-
tact area.

2.1. GAN Magnitude Inpainting Network

GAN architecture is employed in the proposed network since
its unique adversarial training mode and joint loss function con-
tribute to more real inpainting results. Besides, GAN architec-
ture [22] has been demonstrated to be effective in other gener-
ative tasks including inpainting [23] [24], super-resolution [25]
[26] and image generation [27] [28].

The structure of the proposed GAN magnitude inpainting
network is presented in Figure 2. The network includes the gen-
erative network and the adversarial network. For the generator,
the U-Net structure is used to enlarge the network’s receptive
field allowing for extracting more contextual information [29].
It also avoids the information loss of rim features during decon-
volution and up-sampling by the skip link from the encoding
block. The network consists of a seven-layer deep encoder and
decoder. All convolutional layers are replaced by partial convo-
lutional layers [30] since partial convolutions have been demon-
strated to have advantages in T-F mask-based inpainting [19].
Each partial convolutional layer is followed by a BN and ReLU
activation layer. For the decoder, the upsampled feature map
and mask are concatenated with the corresponding ones from
the encoding block. The concatenation is then inputted into the
next partial convolutional layer.

The adversarial network consists of five convolutional lay-
ers. Before each convolutional layer, spectral normalization is
performed to control the Lipschitz constant of the discrimina-

tor [31]. Besides, the leaky ReLU activation (α = 0.2) is fol-
lowed after each convolutional layer. Detailed network param-
eters of the generator and discriminator are shown in Table 1.
Zero-padding is employed for each convolutional layer.

Table 1: Network parameters (kernel size, stride and channel
number).

Layer Encoder Decoder Discriminator

1st 7× 7, 2, 64 3× 3, 1, 512 4× 4, 2, 64
2nd 5× 5, 2, 128 3× 3, 1, 512 4× 4, 2, 128
3rd 5× 5, 2, 256 3× 3, 1, 512 4× 4, 2, 256
4th 3× 3, 2, 512 3× 3, 1, 256 4× 4, 1, 512
5th 3× 3, 2, 512 3× 3, 1, 128 4× 4, 1, 1
6th 3× 3, 2, 512 3× 3, 1, 64
7th 3× 3, 2, 512 3× 3, 1, 1

2.2. Loss Function

Based on the classic loss function of GAN models [22], The
magnitude-based weight loss item is proposed and joined with
VGG loss [30] and L1 loss items to form the proposed new
joint loss function. The proposed joint loss function consists
of generative loss and adversarial loss. The adversarial loss of
the proposed network is similar to that of the classic joint loss
function [22], shown as:

Lad =
E(disgt, Real) + E(discomp, Fake)

2
(1)

where disgt and discomp are the outputs of the discriminator.
E represents the binary cross-entropy (BCE).

For the generative network training, BCE loss LB is still
useful as computed by E(discomp, Real). It is worth noting
that the label is Real here, different from that of the discomp in
the discriminative loss due to the adversarial training mode.

In addition to the loss item from the discriminator, more
loss items from data (ground truth) are employed for the gen-
erative loss function. The basic L1 loss items: Lh and Lv are
included for the pixel-wise reconstruction accuracy as:

Lh = ch(1−M)� ||Sout − Sgt||1 (2)

Lv = cvM � ||Sout − Sgt||1 (3)

where Sout and Sout are the magnitude spectrogram matrixes
of networks’s output and groundtruth. M is the binary mask
matrix (1 for valid pixels) and the normalization factor ch and
cv are 1/(1−mean(M)) and 1/mean(M), respectively. Be-
sides, since partial convolution operations are based on valid
areas, Lv is included as well.

In addition, instead of inpainting spectrograms as images
like some previous methods, we introduce two speech VGG loss
items: perceptual loss Lp and style loss Ls. The VGG network
pretrained by lots of speech data is used to capture the actual
spectrogram latent, contributing to more real and speech-like
inpainting results. Moreover, VGG loss is helpful for inpainting
results to be closer to human perception, leading to better per-
formance in subjective hearing. VGG loss items are computed
based on a pre-trained deep feature extractor. After the gener-
ator’s output and the ground truth are fed into the extractor, a
perceptual loss can be obtained by computing the L1 distance
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Table 2: Comparative experimental results in objective metrics (PESQ & STOI)

Inpainting Models Loss Function PRA PESQ STOI
Missing Size (in T & F) − − 10% 20% 30% 40% 10% 20% 30% 40%

Before Inpainting − − 2.291 1.489 1.085 0.775 0.894 0.768 0.649 0.524
CNN (U-Net) L1 TSPRA 3.296 2.406 1.797 1.345 0.951 0.854 0.740 0.614

Proposed GAN Model
classic joint loss & L1 TSPRA 3.281 2.590 2.108 1.736 0.952 0.879 0.799 0.709
proposed loss function GLA 3.299 2.424 2.108 1.572 0.954 0.872 0.792 0.706
proposed loss function TSPRA 3.302 2.609 2.149 1.755 0.955 0.889 0.814 0.730

of features in each pooling layer. Since our model’s final out-
put is the composition of the raw output’s hole part and ground
truth’s valid part, we further apply the composited output rather
than the raw output and update the perceptual Lp [32] as:

Lp =

P−1∑

p=0

||FScomp
p − F

Sgt
p ||1

Np
(4)

where F
Sgt
p and F

Scomp
p are pth layer feature maps of ground

truth and composited output respectively. Np is the number of
pixels in pth layer. Based on the perceptual loss, if each fea-
ture map is performed an auto-correlation (Gram matrix) before
computing L1 distance, another helpful VGG loss item: style
loss Ls to extract style information besides content [32].

Furthermore, to address the over-smoothing and blurring of
inpainting results, we propose the magnitude-based weight loss
item Lw as the following formula:

Lw = |Sgt| ||Scomp − Sgt||1 (5)

Since the harmonics are usually the pixels with higher magni-
tudes in the speech spectrogram, using Sgt as the weight can
force the network to enhance the learning of these pixels to re-
duce the over-smoothing and blur. As a result, harmonics with
clearer structures will be inpainted accordingly.

Overall, the generative loss function of the proposed net-
work is the combination of the above loss items as:

Lgen = 0.01LB + Lv + 2Lh + 4Lp + 500Ls + 0.2Lw (6)

2.3. Two-Strategy Phase Reconstruction Algorithm
(TSPRA)

Previous inpainting models used some existing Phase Recon-
struction Algorithms (PRA), including Griffin–Lim Algorithm
(GLA) [33] and fast signal reconstruction [34], and so on. How-
ever, these methods inevitably have problems, such as annoying
buzzes and over-smooth inpainting results, since they are de-
signed for other speech enhancement and synthesis tasks. Thus,
based on the Phase gradient heap integration (PGHI) [35], we
employ a proper phase reconstruction algorithm for speech in-
painting. The PGHI shows remarkable performance in low fre-
quency, as spectrograms have clear-structure harmonics with
high magnitude in low frequency. Nevertheless, since the spec-
trograms in high frequency have low magnitudes and are rel-
atively smooth, PGHI will generate lots of annoying buzzes.
Hence, we adopt two strategies for different magnitudes. The
PGHI is only performed for the areas with high magnitude. For
other low-magnitude areas, random phases are assigned to re-
duce buzzes since high frequency does not contribute much to
speech intelligibility. The buzzes caused by further processings
degrade the intelligibility instead.

Figure 3: Comparison with baselines in PESQ and STOI.

3. Experimental Results
Objective experiments in speech intelligibility and quality are
carried out to demonstrate the inpainting performance improve-
ment of the proposed GAN speech inpainting model. Besides,
various demos including spectrograms and audio files are gen-
erated by the proposed T-F mask-based speech inpainting sys-
tem of audio editing software for presenting the improvement
of inpainting and subjective hearing.

3.1. Training Settings

Train-clean-360, test-clean, and dev-clean of LibriSpeech [36]
are used as training, validation, and evaluation datasets, respec-
tively, which are consistent with the baseline [19]. All used
datastes are English speech data with a sampling rate of 16
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(a) Impaired spectrogram (b) Inpainted spectrogram (c) Ground truth

Figure 4: An example of the proposed T-F mask-based speech inpainting system for audio editing software.

kHz. During training and evaluation, speech time sequences
are first chunked into 1-second long segments, then transformed
into spectrograms by STFT. After that, normalization and trans-
forming to log domain are performed subsequently. Then, spec-
trograms are multiplied by binary masks to simulate the im-
paired speech dataset to be inpainted. The shape of masks in
the used mask dataset depends on the specific speech enhance-
ment task since partial convolutions have been demonstrated to
handle masks with any shape robustly [30]. In this paper, to
better compare with baselines, the mask dataset for training is
also generated with the same rules as the baseline [19]. Missing
types includes both time clips and frequency bands. Besides,
we use 512-sample, instead of 256-sample, STFT to increase
the frequency resolution of the inpainted spectrogram.

For training, the batch size is set to 16. Adam optimizer
with β = 0.9 is used for generative and adversarial networks.
Initial learning rates are 0.02 and 5 × 10−5. Step size and
multiplicative factor of learning rate decay are 200 and 0.96.
Each epoch consists of 9600 segments selected from the train-
ing dataset randomly, and the training is based on the Nvidia
P100. Pre-trained SpeechVGG model used is the one in [37].

3.2. Comparative Experiments

Comparative experiments between a context-based CNN model
and the proposed T-F mask-based GAN model are carried out.
Similarly, The ablation experiments about effectiveness of the
proposed loss function and the two-strategy phase reconstruc-
tion algorithm were carried. Experimental results in the PESQ
and STOI are shown in Table 2. Missing sizes in the exper-
iments are from 10% to 40% (percentage of missing areas in
both the time and the frequency dimension).

As shown in Table 2, the proposed model performs best for
all missing sizes in both metrics. The CNN model’s scores can
follow when the missing size is small, like 10 %. However,
there is a noticeable performance deterioration of CNN mode
for large missing such as from 20% to 40%, showing that the
proposed GAN network with partial convolutions outperforms
context-based models in T-F areas missing, especially for large
missing. Moreover, compared to the GAN model with the clas-
sic joint loss function, the improvement of the GAN model with
the proposed joint loss function is consistent, even if a little
smaller. The model with TSPRA outperforms that with conven-
tional GLA. Thus, the proposed GAN network, loss function,
and TSPRA contribute to the performance improvement of the
proposed model in PESQ and STOI.

3.3. Comparison with Baselines

The comparisons between the proposed GAN model and two
baselines, LPC [13] and the T-F mask-based deep inpainting
model [19], are also performed. These models’ average scores
of the impaired and inpainted datasets in PESQ and STOI are
drawn as points in Figure 3. Four points of each model with

missing sizes from 10% to 40% are further fitted to curves. The
difference between the horizontal and vertical coordinates of
points on the curve denotes the improvement by the model. In
other words, the better model performs, the higher its curve is
located.

Therefore, for PESQ, a remarkable improvement can be
observed on the curve of the proposed GAN model compared
to LPC and the deep inpainting model for all missing sizes.
For STOI, the improvement of our model is consistent, even if
smaller. Overall, our GAN speech inpainting model improves
inpainting performance in PESQ and STOI, providing an aver-
age increase of 0.3 in PESQ and an average increase of 0.02 in
STOI over the T-F mask-based deep inpainting baseline, which
corresponds to an average increase of 0.45 in PESQ and an av-
erage increase of 0.09 in STOI over the LPC model.

3.4. Example Illustration

An example of the proposed system for audio editing software is
illustrated in Figure 4. The impaired spectrogram is generated
by randomly masking some holes. The training model used is as
Sec. 3.1. As observed, harmonics are inpainted clearly, and the
over-smoothing is improved. The audio file of the example and
various audio demo are provided at: 1 for presenting inpainting
improvement in subjective intelligibility and quality.

4. Conclusions
In this paper, the GAN speech inpainting model is proposed
consisting of the GAN magnitude inpainting network using the
new joint loss function, and the two-strategy phase reconstruc-
tion algorithm. The magnitude inpainting network employs the
GAN structure contributing to more real inpainting results by
capturing more latent information of speech spectrograms. The
proposed loss function with magnitude-based weight loss, VGG
loss items can enhance structures of harmonics and explore la-
tent information of speech spectrograms and high-dimensional
features. Meanwhile, the proposed network provides inpainted
magnitudes with higher resolution for phase reconstruction.
The phase reconstruction algorithm adopts two strategies for
different magnitudes, inpainting clear harmonics while reduc-
ing the buzzes caused by the smooth and low magnitude in high
frequency. The experimental results demonstrate that the pro-
posed GAN network, loss function and TSPRA significantly
improve the inpainting performance in PESQ and STOI. More-
over, comparison results show that our model with the proposed
phase reconstruction algorithm outperforms the conventional
and the T-F mask-based deep inpainting baselines. Further-
more, the proposed T-F mask-based speech inpainting system
implements the speech inpainting for audio editing software,
and is promising to be integrated into other audio enhancement
and bandwidth expansion tasks.

1https://github.com/HXZhao1/GSIM
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