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Abstract— In order to prevent unplanned downtime caused
by potential errors in robot systems used for industrial au-
tomation, we propose a new approach to anomaly detection
that employs a Transformer-based reconstruction network to
identify anomalies in skill-based manufacturing. Based on a
semantic description of processes, products, and resources, a
semantic manufacturing execution system synthesizes a suitable
robot program and executes the process. Our method utilizes
these descriptions to segment and automatically label relevant
process data, which allows for automated configuration of the
detection pipeline. To address data scarcity, we use a sliding
window for data augmentation and leverage the Transformer’s
attention mechanism to effectively extract semantic dependen-
cies from the time series data. By analyzing the residuals
of the reconstructed time series data, we can detect process-
related anomalies. We conducted experiments on a real robot
workcell and demonstrate that our approach outperforms other
competitive concepts.

I. INTRODUCTION

The industrial manufacturing industry is fiercely compet-
itive, with operational costs playing a significant role in the
total cost of owning robot-based production systems. These
costs include the labor and resources required to set up,
reconfigure, and operate the systems. To meet the rising de-
mand for tailored products while reducing operational costs,
the level of automation in manufacturing systems needs to
be increased [1]. This goes beyond the basic programming
of control logic of robots and their tools. It also involves
configuring analytics mechanisms that monitor production
processes and collecting this data. Even the most advanced
technical systems are not immune to errors, therefore a smart
production environment must be able to identify and address
issues automatically. A continuous monitoring of process
parameters and sensor data would enable the implementation
of corrective measures that boost the production system’s
ability to withstand unforeseen circumstances and external
factors.

As cognitive robot-based manufacturing systems become
increasingly capable of independently assessing their pro-
duction objectives and capacities, traditional methods of
developing and refining anomaly detection techniques are no
longer viable. As the precise sequence of activities within
these systems is automatically generated based on product
and process specifications, manual approaches to anomaly
detection can no longer be reliably employed. To detect
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Fig. 1: Automotive fuse box assembly task with (a) normal
execution and various anomaly cases: (b) location-induced
anomaly due to incorrect fuse box location, (c) cluttered
workspace, (d) improper placement of the fuse, (e) program-
ming error, and (f) human interruption.

anomalies in small-batch and high-variation manufacturing,
solutions must be continuously trained using data from only
a few production cycles. However, collected data must first
be labeled to assign significance to raw sensor readings
when using supervised or semi-supervised machine learning
techniques. Unfortunately, in many cases, this manual label-
ing process is still time-consuming. Furthermore, anomaly
detection in these environments presents unique challenges
not found in traditional predictive maintenance applications.
Small-volume and high-variety manufacturing environments
are frequently unstructured, making it critical for anomaly
detection solutions to operate in such environments.

In this paper, we combine semantic knowledge with the
strength of recent advances in deep learning, in particu-
lar with Transformer-based models [2], for the monitoring
and anomaly detection in skill-based manufacturing. The
Transformer is currently widely used in natural language
processing due to its attention mechanism that allows the
model to directly query the state at an earlier point in the
time series sequence and has the capability to extract the
semantic affinity within a data. The proposed network is
a semi-supervised learning approach, where only labeled
normal operation data is used for training, and the evaluation
is performed on an unlabeled data set containing both nor-
mal and anomalous operations. Unlike supervised learning
approaches that classify events using their labels, we use
the reconstruction error to determine whether an operation is



normal or abnormal. A robust and dependable model should
generate samples with small errors compared to their real
counterparts in the absence of anomalies. Furthermore, the
reconstruction error should be smaller than a predefined
threshold value. In the presence of anomalies, the model
should produce a more significant reconstruction error than
the threshold value. We determine the threshold value by
computing the means of the reconstruction errors while
evaluating the model with the training data set.

In our paper, we make four main contributions. Firstly,
we propose a method for segmenting and labeling process
data based on semantic descriptions of the manufacturing
process and operational environment. This approach enables
us to identify relevant data points and assign them to their
respective components and skills. Secondly, we introduce
a skill based Transformer-based reconstruction network for
detecting anomalies in the manufacturing process. This
approach utilizes the self-attention mechanism to capture
long-range dependencies and variable-sized receptive fields.
By computing the reconstruction error between the input
and output data, we can detect abnormal behavior in the
manufacturing process. Thirdly, we combine our semantic
knowledge with the anomaly detection system in a monitor-
ing pipeline. By utilizing the labeled data and the semantic
descriptions of the manufacturing process, we can improve
the accuracy of our anomaly detection system and reduce
false alarms. Finally, we validate our approach with real-
world data sets collected from a skill-based manufacturing
system. Our results show that our approach can accurately
detect anomalies in the manufacturing process.

II. RELATED WORK

Anomaly detection has been widely studied and various
methods have been proposed. Among the most popular are
frequentist change-point detection methods, such as sequen-
tial probability ratio test (SPRT), cumulative sum (CUSUM),
and Generalized Likelihood Ratio (GLR), due to their suit-
ability for addressing online problems. These algorithms
monitor the logarithm of the likelihood ratio between two
consecutive intervals of the same time series and declare
a change-point when the statistical properties of the inter-
vals differ. However, their effectiveness is limited by their
dependence on knowledge of the probability distribution
functions of the data. Other approaches, such as spectral-
based methods, maximum likelihood estimation, and sub-
space identification, also have limitations because of their
reliance on pre-specified thresholds that are difficult to set
beforehand. Bayesian approaches have been proposed as an
alternative, but most have been used offline for retrospective
studies that require the entire dataset before computing the
probability of a change-point. To address these challenges,
online Bayesian change-point detection (OBCPD) methods
were introduced in [3]. OBCPD recursively determines the
run length, which is the time since the last change-point,
by using the sufficient statistics of the data. However, a
drawback of OBCPD is that it requires knowledge of the
sufficient statistics before updating them.

Recurrent Neural Networks (RNNs), and the recent ad-
vancements in deep learning, are increasingly benefiting
anomaly detection approaches. They have proven to be
efficient in dealing with both univariate and multivariate time
series data. In fact, several studies, such as Zhang et al. [4],
Maia et al. [5], and Yadav et al. [6], have explored the use
of RNNs for multivariate anomaly detection. For instance,
Nanduri et al. [7] used LSTM and GRU in conjunction
with aircraft flight data, and their approach demonstrated
effectiveness in detecting anomalies. Hundman et al. [8]
investigated anomaly detection methods using LSTM and
spacecraft telemetry, where they employed residuals from
prior batches and domain experts’ knowledge to determine
the anomaly detection thresholds needed in subsequent
batches. Additionally, Ebrahimzadeh et al. [9] utilized CNNs
with wavelet transform to detect anomalies in synthetic data.
Their method’s strength lies in its ability to detect gradual
drifts over time.

In order to enhance anomaly detection in time series
data, various approaches combining LSTM with autoencoder
have been examined. Malhotra et al. [10] explored a semi-
supervised learning method that utilizes LSTM with autoen-
coder and univariate time series to compute the reconstruc-
tion errors of the autoencoder and use it as an anomaly
detector. Kim et al. [11] exploited Convolutional Variational
Autoencoders (CNN-VAE) to reduce the size, complexity,
and training cost of the autoencoder without altering its
ability to detect anomalies. Kieu et al. [12] proposed ap-
proaches using LSTM-based autoencoders and convolutional
autoencoders with data enrichment during the pre-processing
phase, demonstrating strengthened autoencoder modeling
capabilities and anomaly detection performance.

The development of generative adversarial network (GAN)
in the computer vision community has paved the way for its
use in anomaly detection of time series data. The state-of-
the-art approaches in GAN-based image anomaly detection
were surveyed in Di et al. [13], where a new GAN structure
was proposed in Akcay et al. [14] utilizing CycleGAN to
consider the notion of consistency relationship. However,
these surveyed methods are only applicable to image-based
anomaly detection and are not suitable for time series data.
Li et al. [15] developed an unsupervised GAN, utilizing
LSTM to capture the temporal characteristics of the system
in the Generator and Discriminator of the network, which
was successfully used for detecting anomalies.

For a comprehensive discussion of anomaly detection in
time series, Cook and Wolf [16] is a valuable resource. In
this work, unlike the aforementioned approaches, a Trans-
former is employed to process the time series data set. The
Transformer shows many benefits compared to LSTM-based
approaches by utilizing the attention mechanism [2].

III. SEMANTIC PROCESS DESCRIPTION

Processes in industrial robotics and industrial automa-
tion are traditionally specified via imperative programming
paradigms. A programmer manually defines the sequence of
individual functions that need to be executed in order to
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Fig. 2: Overview of knowledge-augmented anomaly detec-
tion architecture.

achieve the desired process result. This has to be manually
adapted to new variants or even completely redesigned for
a different process. In contrast to this, approaches in service
robotics are typically based on a declarative programming
paradigm, where the intended goal is specified and a suitable
order of tasks is generated and executed in order to achieve
this goal.

Our approach is based on such a declarative paradigm,
where the intended goal product and its process is specified
and the system automatically synthesizes a suitable task
sequence based on the capabilities of its resources [17]. Here,
a process represents a sequence of tasks on an object-centric
level that can be assigned to individual actors such as a robot
or a human, e.g., pick up fuse A. A task is then implemented
via a number of skills with specific parameters such as the
fuse’s position and orientation or the proper insertion force.
The knowledge base in our architecture (Fig. 2) uses a graph
database with an inference engine and is based on the Web
Ontology Language (OWL). It stores semantic knowledge of
the process, product, and resources together with application-
specific and automation-related domain knowledge. This
includes detailed semantic models of objects, e.g., boundary
representation of CAD data and geometric constraints for
assembly [18], [19], and the system’s resources, e.g., robots,
grippers, objects, and their layout (Fig. 4). The resource
models incorporate semantic knowledge of the OPC UA
middleware’s information model to represent individual ele-
ments of a resource such as function calls or data, e.g., joint
positions, joint torques [20].

The process used in our evaluation assembles an automo-
tive fuse box based on a vehicle’s individual configuration
as ordered by the customer and therefore exhibits a large
number of variations, e.g., radio type, air conditioning, driver
assistance functions. This assembly is currently performed
manually, as automation via traditional imperative program-
ming is economically unviable [21]. In our system, all
process and product-related knowledge is available and can

be triggered by the specification of the vendor’s product ID.
This is received by the system’s semantic manufacturing
execution system (sMES) that synthesizes a suitable robot
program for the current product (Fig. 3). The generated
sequence of tasks is executed and monitored, while the
process-relevant semantic data is collected and used as input
for the anomaly detection module. This data is semantically
annoted (e.g., joint torque data) and is connected to the
currently executed task (e.g., pick up fuse A) and its related
information (e.g., object location).

The semantic digital twin of all manufacturing resources
provides rich contextual information that allows sensor data
generated during production runs to be automatically an-
notated with relevant information. This includes relating a
measured force to the involved robot, tool, target object,
and task description, among other factors. Machine learning-
based anomaly detectors can benefit from automatically
labeled data and contextual information during training. Once
trained, these detectors can evaluate new sensor data samples
and determine whether the current skill execution is normal
or an anomaly. To accomplish this, semantic models are
used to segment process data into individual skill executions
within the system, and label time series data for the anomaly
detector to use automatically.

IV. ANOMALY DETECTION ALGORITHM

The Transformer [2] is widely applied in natural language
processing (NLP) to handle sequential data, such as gen-
erating translations or text summaries, without regard for
the order in which the sequences are presented. In addition,
the Transformer leverages attention mechanisms to learn
interdependencies within sequences. As with most Seq2Seq
models, the Transformer is structured as an encoder-decoder
architecture and can be used for input reconstruction.

A. Problem Formulation

Anomaly detection is a semi-supervised machine learning
technique that relies on labeled normal and non-anomalous
occurrences to train a model. The problem involves a training
dataset, 𝑋 ∈ ℝ𝑀×𝑛, and a testing dataset, 𝑌 ∈ ℝ𝑁×𝑛,
where 𝑀 and 𝑁 are the sizes of the training and testing
datasets, respectively, and 𝑛 represents the size of the selected
features obtained from robot movement. Each data sample,
𝑋𝑖, in 𝑋, 𝑌 corresponds to a high-dimensional piece of
information, 𝑋𝑖 = 𝑥0,… , 𝑥𝑛−1, that is time-stamped and
derived from the status messages of executable robot system
skills. Normally, the normal data should cover all areas of the
data space accessed during regular task completion, while
anomalous data exist in unknown areas of the data space.
One way to distinguish between anomalous and nominal skill
execution is to check whether the queried data point lies in
the normal data space by computing its distance to all known
normal data samples. However, this method is impractical
since it is not feasible to cover all possible measurements
during data collection. Alternatively, standard approaches
employ kernel functions to approximate the normal data
space, such as Support Vector Machines (SVM) or Gaussian
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Fig. 4: The resources used in the assembly process and their
semantic layout description.

Mixture Models (GMM). These approaches assign each point
𝑥 in the data space a function value that corresponds to
the probability of belonging to the trained data, but they
have been shown to be less effective than deep learning-
based methods. To address this issue, we have employed
a Transformer-based network for anomaly detection. By
analyzing the relationships between sequential data points,
the Transformer can identify anomalous behavior that de-
viates from normal patterns within the data. Additionally,
the Transformer’s attention mechanisms allow it to focus on
specific parts of the input sequence that may be relevant
to detecting anomalies. This makes it a powerful tool for
identifying subtle deviations or abnormalities within complex
datasets, making it a popular choice for anomaly detection.

B. Transformer-based Anomaly Detection Structure

Fig. 5 depicts an overview of the overall structure of
the transformer-based anomaly detection concept. Individual
parts of this structure are explained in the following subsec-
tions.

1) Transformer-Encoder: Fig. 6 depicts Encoder, which
consist of an embedding layer, a positional encoding layer,
and 𝑁× stacked encoder layers. In this work, we set 𝑁 = 4.
The structure is illustrated in Fig. 6a (left). The embedding
layer maps time series data to a 𝑑model-dimensional vector

using a fully connected network. We utilize a positional
encoding layer with sine and cosine functions to label the
sequential position information, which is crucial for inter-
preting the meaning of time series data. The resulting hidden
feature is then fed to the encoder layer, which comprises two
sub-layers: self-attention and a positional, fully connected
network. Self-attention means that no external information
flows, which is the central difference between attention
mechanisms in the encoder and decoder. Each sub-layer uses
a residual net-like structure together with a normalization
layer. The extracted feature is then considered as the input
to the reconstruction network. The encoder layer at 𝑙th layer
can be formulated as

𝑍𝑙 = LayerNorm(Attention(𝑋𝑙−1) +𝑋𝑙−1) (1a)

𝑋𝑙 = LayerNorm(FFN(𝑍𝑙) +𝑍𝑙) (1b)

where 𝑋𝑙 ∈ 𝑁×𝑑model , 𝑙 ∈ 1,… , 𝑁 indicates the output
of the 𝑙-th layer, and 𝑍𝑙 is the hidden state. The attention
function is used to compute the association relationships
insides a time series.

2) Attention Mechanism: Attention is the core component
of Transformer-based seq2seq networks. In the context of
sequential data, using a convolutional kernel, such as Stacked
dilated convolutions, as proposed in [22], is a common
approach to capture relationships between positions in the
sequence. However, such a design cannot fully guarantee
to capture all the dependencies. On the other hand, (self-
)attention computes the dot product between each position in
the sequence and establishes a variable-sized receptive field.
Additionally, the multiplication operator enables crisp error
propagation. Fig. 6 illustrates the attention component of the
network and its vicinity. The attention mechanism assigns
a weight to each position in the sequence and computes
the weighted sum of values to produce the output. The
weights are calculated based on the dot product between
the query vector and the key vector of each position in the
sequence. The output of the attention mechanism is a linear
combination of the values, where the weights determine
the importance of each position in the sequence. By using
multiple heads in the attention mechanism, the network can
attend to different relationships and capture more complex
dependencies in the sequence.
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In this study, we enhance the attention mechanism by
incorporating an anomaly attention block that simultaneously
takes into account prior-association and series association.
To represent the prior association, we employ a learnable
Gaussian kernel that calculates the prior based on the tem-
poral distance. The Gaussian kernel, which has a learnable
𝜎𝑖 = 𝑋𝑙−1𝑊 𝑙

𝜎 , is interpreted as.

𝑃 𝑙 = Rescale
(

[ 1
√

2𝜋𝜎𝑖
exp(−

|𝑗 − 𝑖|2

2𝜎𝑖
)
]

𝑖,𝑗∈(1,…,𝑁)

)

(2)

The series association is computed as the normal way as
stated in the original paper.

𝑆𝑙 = Sof tmax( 𝑄𝐾𝑇
√

𝑑model
) (3)

where 𝑄 = 𝑋𝑙−1𝑊 𝑙
𝑄 and 𝐾 = 𝑋𝑙−1𝑊 𝑙

𝐾 .
3) Reconstruction network: At the first stage, the Trans-

former encoder extracts a global feature 𝐅TE to represent
the robot raw data. We then feed the extracted features into
a reconstruction network to reconstruct the robot data. The
reconstruction network can be structured as a standard auto-
encoder, such as the transformer decoder The reconstruction

network can be mathematically formulated as

𝑌 = Decoder(𝐅TE) (4)

a) Loss Function of anomaly detection Network: Our
network is classified as a semi-supervised learning model,
with only normal execution being utilized for training. The
reconstruction loss is the primary objective for optimizing
the model, and we have replaced the standard attention
mechanism with the anomaly attention block [23]. This
modification has resulted in the introduction of additional
losses, such as the Association Discrepancy loss, which is
defined as follows:

𝐿AssDiss(𝑃 ,𝑆,𝑋) =
[ 1
𝐿

𝐿
∑

𝑙=1

(

KL(𝑃 𝑙
𝑖,∶||𝑆

𝑙
𝑖,∶) (5)

+KL(𝑆𝑙
𝑖,∶||𝑃

𝑙
𝑖,∶)

)]

𝑖∈1,…,𝑁

The Association Discrepancy loss (𝐿AssDiss(𝑃 ,𝑆,𝑋)) is deter-
mined by computing the discrete distribution between 𝑃
and 𝑆 using the KL divergence (KL). This value is then
utilized to determine the presence of anomalies, whereby
anomalies are characterized by having a smaller Association
Discrepancy value than in normal situations [23]. On the
other hand, the reconstruction loss (𝐿recon) is computed to
determine the distance between a given normal data sample
and its corresponding reconstructed version. This distance is
computed as

𝐿recon = ||𝑋 − �̂�||𝐹 . (6)

where �̂� ∈ 𝑁×𝑑 is the reconstructed version of 𝑋, and the
operator ‖.‖𝐹 is the Frobenius matrix norm. The unimodal
nature of the prior-association results in the discrepancy loss
driving the series-association to prioritize the non-adjacent
area. This, in turn, poses a greater difficulty in reconstructing
anomalies and enhances their identification. Therefore, we
can combine the reconstruction loss together with association
discrepancy to form the final loss function

𝐿f inal = 𝐿recon − 𝜆𝐿AssDiss(𝑃 ,𝑆,𝑋) (7)

where the hyper-parameter 𝜆 serves to regulate the impact
of the Association Discrepancy loss. The Minimax Strategy
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proposed in [23] is utilized to train the network. During the
inference stage, only the reconstruction loss is used as a
criterion, with the training value acting as a reference value
to identify anomalies.

V. EXPERIMENTS

The proposed concept for anomaly detection was imple-
mented and evaluated in a real robot workcell, as depicted
in Fig. 8. PyTorch was used to implement the anomaly
detection algorithm, and the models were optimized using an
Adam optimizer in conjunction with a CosineAnnealingLR
scheduler. Each encoder was set to 3 with 8 heads for the
multi-head attention mechanism. Additionally, the values of
𝑑model = 256 and 𝑑f f = 512 were set in the positional feed
forward network. The network was trained on a Linux system
with an Intel i9-12900K processor with eight 3.2 GHz cores,
32 GB of RAM, and one Nvidia RTX3080 GPU.

A. Skill-Based Semantic Data Acquisition and Processing

The data used in this study was collected from a Franka
Panda robot that had a parallel gripper attached, as depicted
in Fig. 8. As explained in Section IV-A, each time series
data point is represented as a vector that contains various
features such as joint positions, joint velocities, end joint
force, all of which are labeled according to the semantic
skill descriptions of the robot. To enhance the quality of the
machine learning model, data augmentation is used, which
plays an important role, especially when large data sets are
not available in industrial applications of small and medium-
sized enterprises (SMEs). To train and evaluate the approach,
we collected data from 100 normal pick and place skill exe-
cutions with fuse insertion task, as well as 80 anomalous pick
and place runs representing 5 different failure types (Fig. 1).
To split the data set into subsets, we use a sliding window
with a size of 300 time stamps, and each two sliding windows
is shifted with 30 time stamps to remain the continuities.
Our anomaly detection structure is trained on each subset
of data samples, and during the inference stage, we apply
the same strategy to obtain the reconstruction error 𝑙recon,𝑖 at
piece 0 ≤ 𝑖 ≤ 𝑁 . We compare 𝑙recon,𝑖 with the maximum
normal reconstruction error represented by 𝑙recon,normal,max
and assign a predicted probability 𝑃𝑖 of 1 for 𝑙recon,𝑖 ≤

Fig. 8: Robot cell used to conduct experiments for anomaly
detection in fuse insertion task.

𝑙recon,normal,max and 0 otherwise. We then compute the mean
probability for 𝑁 pieces with 𝑃 =

∑𝑁
𝑖

𝑃𝑖
𝑁 . If an execution

has 𝑃 ≥ 0.5, it is considered a normal operation; otherwise,
it is considered an anomalous operation.

B. Nominal and anomalous use case variants

The nominal task execution involves picking a fuse and
placing it into the fuse box. To demonstrate the task, we
tasked our robot demonstrator with inserting a set of fuses
into holes within the tabletop’s dimensions, as shown in
Fig. 8. Consequently, the pick and place operations involved
varying motions that differed in their coordinates and dura-
tion. We introduced several types of anomalies to evaluate
the system’s performance. The first anomaly involved the
fuse box’s location by placing it in an incorrect position, as
depicted in Fig. 1b. This led to a completely wrong fuse
hole position. To simulate a situation where an object was
mistakenly placed on the fuse supplier, we placed a paper
on top of the fuse supplier, as shown in Fig. 1c. The third
anomaly was caused by improper placement of the fuse in
the fuse supplier, as depicted in Fig. 1d. Additionally, we
simulated a scenario where the robot placed the fuse in an
already occupied position due to programming error. The last
type of anomaly was caused by human interaction during the
motion, as shown in Fig. 1e.

C. Evaluation Metric

The following metrics are used to evaluate the perfor-
mance of our proposed approach: Accuracy (Accu), Preci-
sion (Pre), 𝐹1 score,

Acc = TP + TN
TP + TN + FP + FN

, Pre = TP
TP + FP

(8)

Rec = TP
TP + FN

, 𝐹1 = 2 ⋅ Pre ⋅ Rec
Pre + Rec

(9)

where True Positive (TP) indicates the detection of normal
operation, while True Negative (TN) is the detection of
anomalies. False Positive (FP) is the falsely detected normal
while False Negative (FN) is the falsely detected anomalies.



D. Evaluation of Anomaly Detection Models

Industrial tasks are often repetitive in nature, such as
pick-and-place operations and peg insertion manipulation. In
this section, we will examine anomaly detection in different
scenarios. Our model is first trained on a nominal dataset
and then evaluated on a dataset that includes both nominal
and anomalous runs. The training dataset includes a partial
view of the nominal grasp dataset. This scenario simulates
the conditions of repetitive work in a real-world application.
In a more strict evaluation, we trained our neural network
with normal pick-and-place executions and evaluated it with
anomalous and normal runs that were not known before.
This scenario covers the situation in which a manufacturer
deploys a new process pipeline for handling the same object.
We will compare our approach with three other competitive
autoencoder methods. The results are summarized in Table I.
It can be seen that our proposed approach can predict TP with
an accuracy of 87.1% and FN of 12.8%, while TN is 96.3%
and FP is 3.7%. By computing the mean values of TP and
TN, we can obtain an overall anomaly detection accuracy of
94.1%.

Furthermore, we compared the proposed approach with
three different types of autoencoder approaches. To ensure
a fair comparison, we used the same optimization strategy
and batch size to train all three models. Additionally, we
evaluated different network structures for each model by
adjusting the number of layers in the encoder and decoder
to extract better latent features and changing the dropout
value to avoid overfitting. We selected the best-performing
solutions as our comparison results. The LSTM-based au-
toencoder used two stacked LSTM layers in the encoder and
decoder, respectively. The result in the first row demonstrates
that the LSTM autoencoder cannot reconstruct the normal
sample well enough and has a TP value of only 50%. It has
a 30% probability of predicting anomalous events as normal
operations. The MLP-based autoencoder had a stack of linear
layers in the sizes of [29, 64, 64, 128, 256], while the CNN-
based autoencoder used the same choice of layer sizes in
Conv2d combined with a kernel size of 3. From the results
in Table I, we can conclude that the MLP-based autoencoder
and CNN-based autoencoder show similar performance and
outperform the LSTM-based autoencoder. However, they still
show a significant gap compared to our approach. From the
results, we can conclude that our proposed approach can
build a better normal operation space compared to the other
three methods.

To further analyze the performance of our proposed model
for anomalous events, we separately evaluated the anomaly
in each skill. The results are summarized in Table II. It is
interesting to see that in all skills, the anomaly detection in
terms of true negative rate (TNR) can achieve more than
90%. Here, we need to point out that in the evaluation
dataset, the normal execution has only 12 set data, but the
anomaly execution is roughly 85 set. Therefore this is an
imbalance dataset. But the whole accuracy executed more
than 90%. It can proven that the proposed approach is

TABLE I: Comparison of results of different anomaly detec-
tion approaches for experiments in a fully-unknown scenario.
Note: values are given as a percentage.

Ground Truth TPR ↑ FNR↓ FPR↓ TNR↑ Accu↑ Pre↑ 𝐹1↑

LSTM-AE 50.0 50.0 30.0 70.0 63.0 62.5 55.6
CNN-AE 80.0 20.0 50.0 50.0 65.0 61.5 69.6
MLP-AE 60.0 40.0 25.0 75.0 68.0 70.6 64.9

Our approach 87.1 12.8 3.7 96.3 94.1 95.6 91.3

TABLE II: Individual anomaly detection results for each
skilled of introduced anomaly. Note: values are given as a
percentage.

Skills TPR↑ FNR↓ FPR↓ TNR↑ Accu↑

Lift skill 100.0 0.0 0.0 100.0 100.0
Pick skill 83.3 16.6 8.6 91.3 90.4
Place skill 81.8 18.1 0.0 100.0 93.5
Plugin skill 83.3 16.7 6.1 93.9 92.6

efficient to detect the anomaly in the real world.

E. Visualization of Model Reconstruction Results

Figure 9 displays the results of the model reconstruc-
tion experiment. Our analysis involves reconstructing the
seven joint torque values of the robot for both normal and
anomalous events. To facilitate training and evaluation, all
values were normalized between the range of 0 and 1. In
the case of normal events, as depicted in Fig. 9a through
Fig. 9g, the reconstruction output is similar to the input
values, resulting in a small reconstruction loss. However, for
anomalous events, as shown in Fig. 9h through Fig. 9n, the
reconstruction loss is considerably larger. Therefore, we can
easily differentiate between normal and anomalous events.

The visualization indicates that our proposed network
can map all input values through an encoder to a normal
operation space and reconstruct normal operations through
this hidden state. When an anomalous event occurs, the
decoder rebuilds the output from the normal space, which
differs from the anomalous space. Hence, we can use this
approach to distinguish between normal and anomalous skill
executions.

VI. CONCLUSION

We developed a new approach to detecting anomalies in
manufacturing scenarios by integrating semantic knowledge
with a reconstruction network based on Transformers. By
leveraging our semantic descriptions of manufacturing re-
sources, we can automatically gather relevant training and
testing data for specific skills, allowing us to analyze the
manufacturing process at a skill level. This enables our skill-
driven production system to monitor individual skill execu-
tions and evaluate their normal conditions. The Transformer-
based reconstruction network effectively captures higher-
level features in the generated time series data using its self-
attention mechanism.

To evaluate our method, we collected a dataset of normal
and anomalous task executions on a physical robot workcell.
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Fig. 9: This visualization displays an excerpt of reconstructed output generated by our proposed anomaly detection network
for nominal and anomalous operation. The input data is represented by the green line, while the blue/red line shows the
corresponding reconstructed output. The first row presents the results for a normal execution run, specifically the normalized
joint force of the Franka robot (a)–(g). In contrast, the second row showcases the corresponding plots in case of an anomaly
(h)–(n).

Our approach outperformed other state-of-the-art methods,
yielding promising results. As a future extension, the system
could either alert an operator to inspect the anomaly or
handle it on its own.
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