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Abstract

The molecular dynamics simulation tool SimpleMD is, like most other simulation software,
based on force calculations between pairs of particles. However, the inclusion of three-body
force terms increases the accuracy of the results in certain cases, like the vapor-liquid
equilibria of fluids. Adaptive resolution enables the use of different force types in distinct
areas of the domain, as required by the specific simulation scenario, for instance to reduce
the costs of a computationally expensive three-body simulation. Therefore, it is useful to
include both three-body interactions and adaptive resolution, in SimpleMD. The purpose
of this thesis is to describe the extension of SimpleMD with three-body interactions and
a simple adaptive resolution scheme, which allows for simulations whose domains have a
volume solely based on two-body interactions and another volume based on three-body
interactions, connected by an interface region that ensures a smooth transition between the
regions. A performance analysis of the implemented extensions is conducted to show how
well three-body interactions scale in a system originally designed for two-body interactions,
and how the performances of two-body interactions, three-body interactions, and different
adaptive resolution use cases behave in comparison to each other.

ix



x



Zusammenfassung

Das Moleküldynamiksimulationsprogramm SimpleMD ist, wie die meisten anderen Si-
mulationsprogramme, auf Kraftberechnungen zwischen Partikelpaaren basiert. Allerdings
erhöht die Inklusion von Dreikörperkrafttermen in gewissen Fällen, wie bei Dampf-Flüssigkeit-
Gleichgewichten, die Genauigkeit der Ergebnisse. Adaptive Auflösungsverfahren ermöglichen
die Benutzung verschiedener Krafttypen in unterschiedlichen Teilen der Simulationsumge-
bung, was in gewissen Simulationen gewünscht ist, um zum Beispiel den Anteil laufzeitinten-
siver Dreikörperinteraktionen zu reduzieren. Es ist deshalb nützlich, sowohl Dreikörperwech-
selwirkungen als auch adaptive Auflösungsverfahren in SimpleMD zu integrieren. Der Zweck
dieser Arbeit ist es, die Erweiterung von SimpleMD um Dreikörperwechselwirkungen und
ein einfaches adaptives Auflösungsverfahren, das die Simulationsumgebung in einen Be-
reich in dem nur Zweikörperkräfte wirken und einen anderen in dem nur Dreikörperkräfte
wirken aufteilt, wobei durch eine Übergangszone für einen glatten Übergang gesorgt
wird, zu beschreiben. Außerdem, wurde eine Performanzanalyse der implementierten
Erweiterungen durchgeführt, um zu zeigen, wie gut Dreikörperwechselwirkungen in einem
auf Zweikörperwechselwirkungen ausgelegten System skalieren und wie sich die Perfor-
manzen von Zweikörperinteraktionen, Dreikörperinteraktionen und verschieden adaptiven
Auflösungsverfahren im Vergleich zueinander verhalten.
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Introduction and Background
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1. Introduction

In the field of molecular dynamics (MD) multi-body potentials are used to compute the forces
between particles. In this thesis, the terms particle and molecule are used interchangeably
to denote one of the simulated atoms or molecules. Although the real quantum interactions
in a chemical system cannot be reduced to two-body and three-body potentials, these two
are considered as the main contributors to the total energy, in most cases. [POM+23]

It is common practice to use effective many-body potentials, like the Lennard-Jones
potential, to base MD simulations on. However, these can hide intermolecular influences,
for instance the vapor-liquid equilibria of fluids are significantly influenced by three-body
interactions. For instance, the contribution of three-body interactions to the liquid phase of
argon is considerable. Therefore, the addition of a three-body term, like the Axilrod-Teller
potential, to the simulation can result in a considerably higher agreement between experi-
ment and theory. Thus, three-body interactions play an important role in these cases, and
hence are indispensable despite being computationally expensive. As shown later in this
thesis (see chapter 5.2), their calculation takes remarkably longer than computing two-body
interactions. [MTS01, MS99]

The tool SimpleMD is part of the macro-micro-coupling tool MaMiCo1. It has been
developed and provided by Helmut Schmidt University and Technical University of Munich.
Its purpose is to run MD simulations based solely on the Lennard-Jones two-body potential.
Hence, there were no three-body interactions available within the tool prior to the current
work. [NFA+16]

As part of this work, we extended SimpleMD to support three-body interactions and
adaptive resolution between the two force types. We start with a basic description of
SimpleMD, explaining all relevant parts for the extension, and then with that backdrop we
describe the current work, which includes extending the library with three-body interactions
and an adaptive resolution scheme, which works with these three-body interactions and
the already existing two-body interactions. Thereafter, we analyze the performance of the
different types of force calculation, compare these performances to each other, and investigate
how they improve when more computational resources are added.

The structure of this thesis is as follows: Chapter 2 provides the background knowledge
used in the other chapters. Chapter 3 describes the structure and functionality of SimpleMD
before the extensions were implemented. In Chapter 4, the changes made throughout the
implementation process are described. It is shown how the existing structures have been
used to realize three-body interactions and adaptive resolution in the system. In chapter 5,

1https://github.com/HSU-HPC/MaMiCo
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the performance of the implementation is analyzed. Here is presented how well the program
scales when parallelization is applied and how the execution times of a three-body simulation,
a two-body simulation, and adaptive resolution simulations behave in comparison to each
other. Chapter 6 describes how SimpleMD can be further enhanced and which aspects of its
performance need to be investigated in the future.
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2. Theoretical Background

2.1. Molecular Dynamics Simulation

A MD simulation simulates the development of a system over time, by tracking the particle
positions and interactions. Therefore, the observed time interval is split in (usually very
small) time steps. In each time step, the forces between the molecules are determined
by calculating the partial derivatives of their potential energy. After this, the molecules’
positions are updated according to a time integration algorithm.

The following formula shows the theoretical force calculation for total force taking effect on
molecule i. The formula consists of its own potential energy and the potentials of the many-
body interactions involving particle i and all other particles j, k, . . . with i ≠ j ̸= k ̸= . . .,
used in the simulation. Thus, theoretically, up to n-body potentials have to be evaluated for
a simulation containing n molecules.

Fi = −∇(ϕ1(i) +
∑
j

j ̸=i

ϕ2(i, j) +
∑
j,k

j ̸=k ̸=i

ϕ3(i, j, k) + . . .)

In the formula, ∇ is the gradient of the sum of all potential energies affecting i and ϕk

is the function describing the k-body potential energy. [KY14] This thesis only focuses on
pairwise (k = 2) and three-body interactions (k = 3).

The particles are located and move in the simulation area, which is called a domain. When
particles are close to the boundaries of the domain or leave the domain, they have to be
treated specially, according to the boundary condition of this boundary. In case there is
no boundary condition, a particle that has left the domain is removed from the simulation.
Another possibility is the use of open boundaries. When they are in use, external forces
are applied to the particles to simulate the real forces between them and particles outside
of the domain. If periodic boundaries are used, the particle leaving the domain reenters
it on the opposite side. This simulation of an infinite space additionally requires force
computations between particles on the opposite sides of the domain. In SimpleMD, the
boundary condition of the boundaries of distributed memory parallelization subdomains,
which border other subdomains, are called parallel boundary conditions. They resemble
periodic boundaries but interact with other subdomains instead of the domain’s opposite
side. Another method, which, in contrast to the others, will be covered throughout this
thesis, are reflecting boundaries. The reflection is applied in a way that at the moment the
particle hits the border, its velocity in this direction is reversed and potentially rescaled.
[NW20, LMV16]
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2.2. Time Integration

2.2. Time Integration

The purpose of the time integration is to update the molecules’ positions according to the
forces influencing them, resulting from the force computations, and their momenta, and
thus, simulate the movements of the molecules in the time step.

In SimpleMD, the updates of the position and velocity of each molecule are performed
with the velocity form of the Verlet algorithm introduced in [SABW82]. First the velocity
of the current time step n is computed using the forces of the current and previous time
step, the velocity computed in the previous time step n− 1, the length of one time step δt,
and the molecule’s mass m.

vn = vn−1 +
δt
2·m · (Fn + Fn−1)

The calculated velocity is immediately used, along with the force, the length of one time
step, and the mass, to calculate the new position of the molecule, which is used in the next
time step.

xn+1 = xn + δt · (vn + δt
2·m · Fn)

2.3. Force Computations

2.3.1. Short-Range and Long-Range Forces

We can distinguish between short-range forces1, like the Lennard-Jones force and the Axilrod-
Teller force, and long-range forces, such as Coulomb forces or gravitational forces, depending
on how fast the function decays with increasing distances. Hence, if a short-range potential
is used, particles only exert significant forces on each other when the distance between
them is small. Thus, the force calculations can be omitted for particles with a large enough
distance, which allows for more efficient force computations. For instance, the computation
of two-body forces only requires O(n) calculations of partial forces per time step instead of
O(n2). Potentials decaying faster than r−d are considered short-range, otherwise they are
long-range potentials, where r is the distance between the particles and d is the number of
spatial dimensions of the simulation domain. [GZK07]

Since SimpleMD only works with short-range potentials, only these are described in the
next chapters.

2.3.2. Cutoff Radius

When using short-range potentials, a cutoff radius can be used to improve the efficiency.
This approach enables omitting the force calculations of the majority of molecule-pairs and
molecule-triplets2 because their impact is insignificant for the result. In the thesis the cutoff
radius is denoted by rcutoff .

1The same differentiation applies to the corresponting potentials.
2In the context of this thesis, a group of three molecules is called triplet.

5



2. Theoretical Background

For pairwise interactions the cutoff radius is exceeded when the distance between the
particles is larger than rcutoff .

However, for three-body interactions, there are different variations of cutoff radii that can
be applied. Some examples are:

1. The distances between all pairs of particles of the triplet have to be within rcutoff .
[Mar01]

2. The sum of all distances between the respective particles and the center of mass is less
than rcutoff . [O’S13]

3. Both other particles j and k lie within the cutoff radius to particle i. No requirements
about the distance between j and k exist. However, this breaks the symmetry when
the distance between j and k is larger than rcutoff , because then the force only gets
applied to particle i. [CW00]

4. Variant 3 can also be applied symmetrically, with the force affecting all particles,
regardless of the distance between j and k. [KKN+13]

The previously discussed periodic boundary condition can imply that particles on the
opposite side of the domain are within the cutoff distance.

2.3.3. Two-Body Force

Since SimpleMD is only based on two-body interactions, the force computations determine
the forces between pairs of molecules. Therefore, SimpleMD uses the Lennard-Jones 12-6
potential to calculate the two-body forces between the particles.

ϕ2 = 4 · ϵ(( σ
rij

)12 − ( σ
rij

)6)

In the formula, rij denotes the distance between the two particles i and j, and ϵ and σ
are the two Lennard-Jones parameters.

A cutoff radius ensures that only forces between particles which are closer than the cutoff
radius are calculated. The force Fij between the particles i and j is computed by deriving
the potential energy between these molecules with respect to xij , the vector from particle i
to particle j.

Fij = −∂ϕ2(i,j)
∂xij

By using
∂rij
∂xij

=
xij

rij
, the formula results in:

−∂ϕ2(i,j)
∂xij

= − ∂rij
∂xij
· ∂ϕ2(i,j)

∂rij
= −xij

rij
· ∂ϕ2(i,j)

∂rij

Thus, the resulting formula for the force is:

Fij = −24 · ϵ
r2ij
· ( σ

rij
)6 · (1− 2 · ( σ

rij
)6) · xij

6



2.3. Force Computations

However, the force on particle i, resulting from this pair of particles, is calculated according
to

Fi = −∂ϕ2(i,j)
∂xi

.

Hence, the ansatz has to be extended like this, where I is the identity matrix:

−∂ϕ2(i,j)
∂xi

= −∂xij

∂xi
· ∂rij∂xij

· ∂ϕ2(i,j)
∂rij

= −(−I) · xij

rij
· ∂ϕ2(i,j)

∂rij
=

xij

rij
· ∂ϕ2(i,j)

∂rij

Thus, the force on particle i is Fi = −Fij . (Ansatz from [Mar01])

2.3.4. Three-Body Force

The aim of this work is to integrate three-body interactions and adaptive resolution into
SimpleMD. For the calculation of forces between the triplets of particles, we used the
Axilrod-Teller potential, involving any three particles i, j, and k. The formula is

ϕ3 = ν · 1+3·cos θi·cos θj ·cos θk
(rij ·rik·rjk)3

,

where θi is the angle between xij and xik, and ν is a positive parameter, depending on
the ionization energy and the dipole polarizability of the particles. [AT04]

The potential can be rewritten as

ϕ3 = ν · ( 1
(rij ·rik·rjk)3

+
3·(−r2ij+r2ik+r2jk)·(r

2
ij−r2ik+r2jk)·(r

2
ij+r2ik−r2jk)

8·(rij ·rik·rjk)5
)

by application of the cosine law. The latter version of the formula can be used immediately
by the program without calculating the angles resulting from the positions prior.

Using the same ansatz as in chapter 2.3.3, the force Fij , affecting particles i and j, can
be calculated as shown below.

Fij =
3·ν
8·rij · (−

8
r4ij ·r3ik·r

3
jk
− 1

r5ik·r
5
jk

+ 5·rik
r6ij ·r5jk

+
5·rjk
r6ij ·r5ik

− 1
r2ij ·r3ik·r

5
jk
− 1

r2ij ·r5ik·r
3
jk
− 3

r4ij ·rik·r5jk
−

3
r4ij ·r5ik·rjk

− 5
r6ij ·rik·r3jk

− 5
r6ij ·r3ik·rjk

+ 6
r4ij ·r3ik·r

3
jk
) · xij

The remaining two forces Fik and Fjk can be calculated analogously. In the formula, all
indices ij and ik, or ij and jk respectively have to be exchanged.

For the same reason as described in chapter 2.3.3, Fij affects Fi negatively. However, Fik

affects the force of particle i as well. Thus, the total force of particle i resulting from this
triplet is Fi = −Fij − Fik. [Mar01]

7



2. Theoretical Background

2.3.5. Newton’s Third Law of Motion

Newton’s third law of motion states that ”the mutual actions of two bodies upon each other
are always equal, and directed to contrary parts,” [New50] or in other words: Whenever a
force acts from one body on another, a force with the same magnitude acts in the opposite
direction as well.

After applying the law on two-body forces according to chapter 2.3.3, it holds:

Fij = −Fji and
Fi = −Fj

The application of the law on the three partial forces affecting two particles described in
chapter 2.3.4 results in the following formulas for forces of the molecules j and k resulting
from the triplet.

Fj = Fij − Fjk

Fk = Fik + Fjk

Furthermore, Newton’s third law can be applied on the entire triplet as described by
[Mar01]:

Fi + Fj = −Fk

However, this symmetry is not usable if a variation of the cutoff radius, like the third
variant mentioned in chapter 2.3.2, is used, where the force is not applied to all particles.

2.4. Adaptive Resolution

Sometimes, it is desired to use different potentials in different areas of the domain.3 A naive
approach would be to only consider the forces resulting from the potential relevant in the
volume of the domain the particle is located in. However, this would result in neighboring
molecules along the border being treated completely differently, which is unrealistic in most
cases. Therefore, an interface layer is embedded between the areas, which use only one type
of potential, to allow for a smooth transition.

In this interface layer, both types of forces have a partial effect on the total force of one
particle. The impact of each partial force is determined by a weighting function w. In order
to achieve a smooth transition, the weighting function should ideally fulfill the following
conditions.

1. w : [x0, xn]→ [0, 1] where x0 is the start of the interface region and xn is its end.

2. w(x0) = 0 and w(xn) = 1 or vice versa, depending on the alignment of two-body and
three-body areas.

3In this thesis, adaptive resolution is only covered for two different potentials used in the domain, although
more are possible.

8



2.5. Particle Containers

3. w is monotonic, continuous, differentiable and has a zero slope at the boundaries of
the interface layer.

Functions fulfilling these conditions can, for instance, be based on sines and cosines.

The total potential ϕ of a particle is the weighted sum of its partial potentials. In the
thesis the partial potentials are always the Lennard-Jones potential ϕ2 and the Axilrod-Teller
potential ϕ3. In this chapter the reference to the specific particles is omitted. The calculation
of the total force works analogously. The actual formula depends on how the weighting
function is defined, precisely on whether the result is the weight of the two-body term or
the three-body term. In the formulas below, w outputs the weight of the two-body parts
depending on the position x of the particle.

ϕ = w(x) · ϕ2 + (1− w(x)) · ϕ3

F = w(x) · F2 + (1− w(x)) · F3

On the other hand, if w’s results are the weights of the three-body areas, the formulas are
the same with reversed indices. [PDSK05]

2.5. Particle Containers

The domain of a MD simulation can be decomposed in subdomains for multiple reasons. One
of them, which will not be subject of this thesis, is decomposing the domain into subdomains
for parallelization purposes, so that every process can work on its own subdomain, which is
especially useful for distributed memory parallelization.

Another reason for decomposing the domain is to improve the performance by reducing
the number of distance checks. For this purposes, the domain is decomposed in particle
containers in a way, that the majority of particles outside of particle i’s cutoff radius are not
even considered for the force computations to avoid unnecessary distance evaluations. In
the following chapters, two types of particle containers, which are all illustrated in figure
2.1, are described. There are other types, like Verlet lists and Verlet cluster lists, as well.
However, they are not subject of this thesis and are described in [GSBN21].

(a) Direct Cutoff (b) Linked Cells

Figure 2.1.: The two particle container types described in the sections below. In all figures,
the forces involving the red particle are calculated. The red circle is rcutoff . All
gray particles are part of distance checks and all blue particles are part of force
calculations. The remaining particles are ignored. Source: [GSBN21]

9



2. Theoretical Background

2.5.1. Direct Cutoff

The naive approach, shown in figure 2.1a, is to make no prior decomposition. This is called
direct cutoff. It leads to O(n2) distance checks because every molecule has to evaluate the
distances to all remaining n− 1 molecules when two-body interactions are used. [GSBN21]

2.5.2. Linked Cells

Other methods, like the linked cell approach, are used to reduce the number of necessary
distance checks. The linked cell approach normally divides the domain in a regular Cartesian
grid of so-called linked cells, which is illustrated in figure 2.1b. The mesh width has to
be at least as big as rcutoff and can vary in the different directions, although the cells are
usually squares or cubes. The particles are sorted into the cells according to their position.
The particles within each cell now only have to evaluate the distance between them and
all particles in the neighboring cells. This reduces the number of distance checks to O(n)
if the particles are distributed homogeneously and two-body interactions are used. [GSBN21]

SimpleMD uses a linked cell approach to improve performance by reducing the number of
distance checks.

2.6. Scalability

In high performance computing (HPC), it is possible to use a large amount of resources to
solve problems. The concept of scalability can be used to measure the ability of software to
increase the computational power when more resources are provided.

The primary criterion for indicating the scalability of software is the speedup. It can be
calculated as

speedup(n) = T1
Tn

where n is the number of processors, that the speedup should be evaluated for, and for any
number of processes i, Ti is the execution time of the software using this many processes.

Ideally, the speedup for n processors is equal to n. However, achieving such a speedup is
unrealistic because it would require a perfectly equal workload among all processors and the
absence of any communication between the processors, which is not attainable in realistic
applications. [Li18]

2.6.1. Strong Scaling

Strong scaling measures the speedup of the software, in the case where more resources are
used to solve the same problem size. According to Amdahl, the theoretical upper limit of
the possible speedup is determined by the share of the program that cannot be executed
parallelly. [Amd67] The formula widely used to describe Amdahl’s law is

speedupmax(n) =
1

s+ p
n

10



2.6. Scalability

where n is the number of processes, s is the proportion of the execution time that is used
to compute the parts that cannot be parallelized, and p is the remaining proportion of the
execution time.

As a result, the more resources are added, the lower is the relative improvement, given
that realistically s ̸= 0.

However, the real speedups are usually lower than proposed by Amdahl’s law because an
increase in computational units leads to an increase in the serial share due to maintenance
and communication. [Li18]

2.6.2. Weak Scaling

Weak scaling measures the speedup of the software, where more resources are used to
solve the same problem size per computational unit. Gustafson proposed, that it is more
reasonable to assign higher computational power to bigger problem sizes instead of spending
them on smaller problems, where the limits pointed out by Amdahl have a more severe
effect. Gustafson’s law for the scaled speedup is

speedupscaled(n) = s+ p · n

where n, s, and p represent the same proportions as in Amdahl’s law. [Gus88]

Again, an increasing number of processes leads to a higher value of s. Thus, the actual
scaled speedup usually has a logarithmic behavior and not the linear characteristic described
in the formula. [Li18]

In the performance measurements, the speedup of the weak scaling computation times
is calculated according to the formula in the beginning of chapter 2.6. The relation T1

Tn
is

normally lower then 1 for weak scaling. Therefore, the relation is called efficiency, in this
context.
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3. Structure and Functionality of SimpleMD

3.1. MaMiCo

The macro-micro-coupling tool MaMiCo1 is a software which allows for coupling of arbitrary
continuum and molecular dynamics solvers. It supports several MD solvers, like the Lennard-
Jones based SimpleMD2 and the node-level optimized ls1-MarDyn3. [JN19, NFA+16]

Additionally, there are utility functions, which will be described in the next chapter, in
the subdirectory tarch. The two features primarily used in SimpleMD are the configuration
functions and vectors.

The code is written in C++ and the Makefile and other compile instructions are created
by CMake. Important compile time decisions, like the simulation to be used, the number of
dimensions, whether the simulation should be parallelized with OpenMP and/or MPI, and
more, are set in the compile options. Therefore, a different combination of compile options
generates a different program.

3.2. External Utility

Utility functions that can be used in all parts of MaMiCo are located in the technical
architecture directory tarch4. It contains the folder tinyxml2 which provides functions to
read and write on XML files and is used by the Configuration classes that parse XML files.
The subdirectory la contains vector and matrix classes. Finally, there are also functions for
using multiple MD simulations parallelly, prevent copying, and generating random numbers.

The two utility functions used in SimpleMD, the configurations (and, therefore, also
tinyxml2) and vectors, are described in detail in the following parts.

3.2.1. Vectors

Vector and Matrix classes are located in the linear algebra subdirectory la5. However, since
matrices are not used in SimpleMD, they will not be discussed here.

1https://github.com/HSU-HPC/MaMiCo
2https://github.com/HSU-HPC/MaMiCo/tree/master/simplemd
3https://github.com/ls1mardyn/ls1-mardyn
4https://github.com/HSU-HPC/MaMiCo/tree/master/tarch (tarch is copied from the software Peano
https://gitlab.lrz.de/hpcsoftware/Peano/-/tree/p4/src/tarch)

5https://github.com/HSU-HPC/MaMiCo/tree/master/tarch/la
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3.3. Force Calculation and Time Integration

The generic class Vector has the two template parameters size and T. During the initial-
ization, a vector with as many elements as defined in size of type T is created.

Some math, logic and access functions are achieved by using operator overloading. All
functions can only be used on two vectors of the same size and type or on one vector of
arbitrary size and a scalar of the same type as the elements of the vector.

The most important functions are the addition and subtraction of two vectors using +

and -, as well as += and -= with the same functionality and the first input variable being
the output variable. Moreover, * multiplies a vector and a scalar and dot computes the dot
product of two vectors.

3.2.2. Configuration

The input of SimpleMD is passed in one XML file that contains all data to set up the
simulation in form of key-value-pairs and another file containing the information about the
position, velocity, and force of all molecules. The parsing of the XML file is handled with
the configuration utility functions.

There are two classes in the subfolder configuration6, Configuration and
ParseConfiguration. All configuration classes of SimpleMD inherit the structure of the
class Configuration. Its most important method is parseSubtag, which parses all key-
value-pairs of one subtag of the XML file and stores them in the local attributes defined by
the child class. The class ParseConfiguration provides the necessary functions to parse a
XML file.

3.3. Force Calculation and Time Integration

3.3.1. Force Calculation

SimpleMD uses the Lennard-Jones potential to calculate the forces between the molecules.
A cutoff radius ensures that only forces between molecules which are closer than the cutoff
radius are calculated. The values for the cutoff radius rcutoff and the Lennard-Jones pa-
rameters ϵ and σ are values of the XML file. The force Fi of molecule i, resulting from the
interaction between any two molecules i and j, is computed as described in chapter 2.3.3.

The calculated force is added to the force buffer, which stores the total sum of forces
during one time step, calculated so far, of molecule i and subtracted from the buffer of
molecule j, according to Newton’s third law of motion.

3.3.2. Time Integration

The time integration is performed with a velocity Verlet algorithm as described in chapter 2.2.

6https://github.com/HSU-HPC/MaMiCo/tree/master/tarch/configuration
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3. Structure and Functionality of SimpleMD

In case, after the time integration one molecule’s position is outside of the (sub-)domain,
measures have to be taken. In some cases, which will not be discussed in this thesis, the
respective molecule has to be sent to another process or the same process. However, if the
boundaries of the simulation are reflecting and the molecule has moved outside of the whole
global domain, a reflection is applied. The molecule’s position is mirrored on the boundary,
in a way that the distance between the boundary and the coordinate, in this direction d,
outside the domain equals the distance between the boundary and the new coordinate in
the domain. The velocity in this direction is reversed.

xd,inside = xd,outside + 2 · (xd,domain − xd,outside)
vd,inside = −vd,outside

However, during the initial time step7 the velocity computation does not happen. The
velocity in the formula of the positional update is replaced by the velocity vinit, passed in
the file containing the positions, velocities, and forces of all molecules. The formula for this
time step, which resembles the formula of the first time step of a classic Störmer-Verlet
algorithm [Ver67], is

x1 = xinit + δt · (vinit +
δt
2·m · F0).

Additionally, no reflection is applied, during this time step.

3.4. Linked Cell Approach

SimpleMD uses a linked cell approach to decompose the domain in particle containers. The
size of each linked cell is defined in the XML file. If the domain size is not divisible by the
size of the linked cell in a dimension, depending on the dimension, the last cell on the right,
back, or top side of the domain is smaller than the rest. Normally, the size in each dimension
is identical and at least as big as the cutoff radius, which is also defined in the XML file.

Coordinates

Each linked cell can be identified within the local domain by its index and its coordinates.
The coordinates are a tuple with as many elements as the dimensions of the simulation. The
coordinates will be represented as (x, y), in the two-dimensional case, and (x, y, z), in the
three-dimensional case. The index can be calculated according to the respective formula

index = x+ y · cellsx
index = x+ y · cellsx + z · cellsx · cellsy

where cellsx and cellsy are the total number of cells, including all ghost layers, in the
x-direction and y-direction respectively. The first version of the equation is used for two-
dimensional simulations and the second one for three-dimensional simulations.

7In this time step all objects are created and only the force calculation, computing F0, and time integration,
computing x1, happen.
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3.4. Linked Cell Approach

Visibility

To avoid multiple calculations of the same forces, the interactions between the cells only
happen in a controlled manner. Each cell can only interact with cells that have an equal or
higher coordinate in each dimension. If one cell can interact with another, we call the other
cell visible to the previous cell. The way this interaction control works guarantees that if
cellA is visible to cellB, cellB is always invisible for cellA. However, it is also possible that
two cells which need to interact with another are both invisible to each other. In this case a
third cell which can see both cells needs to initiate the interaction. This phenomenon occurs
during the force calculations and is described in further detail in the next part.

Force Calculations

SimpleMD expects the cell size to be at least as large as the cutoff radius. In that case, all
molecules outside of a linked cell and outside of all 8 neighboring cells, in the two-dimensional
case, or all 26 neighboring cells, in the three-dimensional case, have a larger distance to
molecules inside the central cell than the cutoff radius. Thus, the forces between two such
molecules do not need to be calculated and two linked cells which do not neighbor each
other do not interact with each other during the force calculations.

In the process of force computations, all linked cells are traversed. When a cell is handled,
first, the forces between all molecule-pairs in the cell are calculated. After that, the force
computations for all cell-pairs which are visible and need to be calculated by the handled
cell are initiated. The cell-pairs whose force calculations need to be initiated by a cell are
described below. During the latter step, forces are calculated for every molecule-pair with
one molecule being located in each cell, respectively.

A cell always needs to initiate cell-pair calculations if the following two conditions are
met.

1. Both cells are visible to the currently handled cell.

2. There is no other cell with an equal or higher coordinate in each dimension that can
see both cells, as well.

Two-Dimensional Force Calculations

In the two-dimensional case, each cell has to initiate the computations for 4 cell-pairs. These
are the three interactions between the initiating cell and its right8, top9, and top-right
neighbors. Additionally, the force calculation between the molecules in the neighboring cells
on the right and top needs to be triggered, as well, because the top neighbor is invisible to
the right neighbor due to a lower x-coordinate and the vice versa due to a lower y-coordinate.
The second condition is fulfilled because the initiating cell is in the top-right corner of the
subdomain containing all cells that can see both cells.

8in positive x-direction
9in positive y-direction
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3. Structure and Functionality of SimpleMD

Figure 3.1.: Force calculations that need to be initiated by the bottom-left cell.

The remaining 5 computations including the handled cell are triggered by its left, bottom,
and left-bottom neighbor. Each of these cells initiates the calculating including itself. The
bottom cell also sets off the interaction with the bottom-right neighbor and the left cell sets
off the interaction with the left-top neighbor.

Three-Dimensional Force Calculations

In the three-dimensional case, each cell has to initiate 13 cell-pair computations. These
contain the 4 interactions of the two-dimensional case in the xy-plane and also their
equivalents in the xz-plane and yz-plane. This results in a total of 9 interactions because the
pairings of the handled cell and its right, top, and back10 neighbor are part of two planes,
but only computed once per time step. The remaining four pairs are between the handled
cell and its top-right-back neighbor, between the right and the top-back neighbor, between
the top and the right-back neighbor, and between the back and the top-right neighbor. For
all of these pairs, the handled cell is, again, in the top-right-back corner of the subdomain
containing the cells which are able to see both cells.

10in positive z-direction
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3.4. Linked Cell Approach

(a) Force calculations between molecules
whose cells are in the bottom-left-front
cell’s xy-plane, xz-plane, and yz-plane.

(b) Remaining force calculations.

Figure 3.2.: Force calculations, initiated by the bottom-left-front cell.

The remaining 19 cell-pairs including the handled cell are handled by its 7 neighbors on
the left-bottom-front side of the 3× 3× 3 cell-cube with the handled cell in the middle.
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3. Structure and Functionality of SimpleMD

3.5. Structure of SimpleMD

Figure 3.3.: Simplified class diagram of SimpleMD, containing the most relevant classes
of the main directory and the subdirectories as packages. All vectors of the
class Molecule have the number of dimensions as size. Irrelevant attributes and
methods, as well as getter and setter methods are omitted.

SimpleMD consist of a main directory and 4 subdirectories. The main directory includes a file
providing the main method, files defining constants, the classes for molecules and linked cells,
and the simulation. The subdirectories are cell-mappings11 and molecule-mappings12, which
provide the functions applied on a cell level and molecule level respectively, configurations13,
which is responsible for the parsing of the XML file, during the initialization of the system,
and services14, which provides services to operate on linked cells and molecules that are
used by the simulation class. The following sections describe the most important parts of
SimpleMD. A more detailed description is provided in appendix A.1.

3.5.1. Main Directory

Main Method: The main method is located in main.cpp. It sets up, runs, and shuts down
one MD simulation.

11https://github.com/HSU-HPC/MaMiCo/tree/master/simplemd/cell-mappings
12https://github.com/HSU-HPC/MaMiCo/tree/master/simplemd/molecule-mappings
13https://github.com/HSU-HPC/MaMiCo/tree/master/simplemd/configurations
14https://github.com/HSU-HPC/MaMiCo/tree/master/simplemd/services
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3.5. Structure of SimpleMD

Constants: Global constants are defined in the files MolecularDynamicsDefinitions.h and
MolecularDynamicsUserInput.h. Some of these constants are used in preprocessor
directives.

MolecularProperties: The class stores the properties that all molecules have in common.

Molecule: The class contains all properties that differ from molecule to molecule. Some of
these are the position, the velocity, and the forces of the current and previous time
step.

LinkedCell: This class provides the functionality to store molecules in a list, access this list
and iterate over it.

MolecularDynamicsSimulation: This class runs the MD simulation. Its methods allow to
initialize the system, simulate one time step, run the entire simulation, and shut
down the system. During the initialization, it uses the functions of the directory
configurations and during each time step, it operates by using the services. The control
flow of SimpleMD is described in chapter 3.6.

The remaining classes and more information about the classes described here can be found
in appendix A.1.1.

3.5.2. Subdirectories

Configurations

Figure 3.4.: Simplified structure of the subdirectory configurations. All attributes and
methods are omitted. Most can be found at table 3.1 and chapter 3.2.2.
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3. Structure and Functionality of SimpleMD

All classes in the subdirectory configurations inherit their structure from the utility class
Configuration, which is described in chapter 3.2.2. Each class stores the parsed values in
local attributes and provides getter methods for them. Table 3.1 shows the most important
values parsed in the respective classes.

Class Properties

DomainConfiguration

� Molecules per direction

� Domain size per direction

� Domain offset (coordinates of the
bottom-left-front point of the do-
main)

� Cutoff radius

� Linked cell size per direction

� Boundary types

� Checkpoint file name (optional)

MoleculeConfiguration

� Mass

� Lennard-Jones parameter ϵ

� Lennard-Jones parameter σ

SimulationConfiguration
� Time step length δt

� Number of time steps

MPIConfiguration � Number of processes per direction

Table 3.1.: The most important values parsed in the most important configuration classes.

Additionally, there are further configuration classes. Most of them provide values used to
set up plotters and writers for checkpoint files, which store data about all molecules. The
other two classes are

1. ExternalForceService, which parses constant external forces to be applied to the
entire domain in every time step, and

2. MolecularDynamicsConfiguration, which stores all other configuration classes based
on their tag. MolecularDynamicsSimulation uses this class to access all configura-
tions.
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3.5. Structure of SimpleMD

Services

The service classes are primarily used by the class MolecularDynamicsSimulation to execute
simulation of one time step. The most important services are the LinkedCellService and the
MoleculeService. The other services are the ExternalForceService, adding the external
forces to the molecules’ force buffers, the MolecularPropertiesService, enabling access
to the class MolecularProperties, and the ParallelAndLocalBufferService and the
ParallelTopologyService, which manage the processes and the communication between
them in case of distributed memory parallelization, parallel and periodic boundaries. The
latter two will not be covered in this thesis.

MoleculeService

The MoleculeService stores all molecules in a std::vector15 and allows for adding and
deleting molecules. The most important method for the simulation, however, is the generic
method iterateMolecules. It receives an instance of a molecule mapping and applies this
mapping to all stored molecules. Therefore, it iterates over all molecules stored in the vector
and calls the mapping’s method handleMolecule with the currently handled molecule as
input argument. Shared memory parallelization with OpenMP is used for this iteration if
the corresponding compile option has been enabled.

LinkedCellService

The class LinkedCellService stores all linked cells and all ghost cells of the (sub-)domain
in an array. The index of each linked cell can be calculated as described in chapter 3.4. It pro-
vides the functions for adding and deleting molecules from linked cells. The cell structure can-
not be changed after it has been generated by the method initCellStructure. In contrast
to the MoleculeService, there are two frequently used methods in the LinkedCellService.
These methods are iterateCells and iterateCellPairs.

iterateCells: This generic method iterates over all non-ghost cells and calls the method
handleCell of the cell mapping it received as input. The iteration is parallelized using
OpenMP when the compile option has been enabled.

iterateCellPairs: This generic method works similar to iterateCells. It receives a cell
mapping, iterates over all non-ghost cells and applies the mapping to all cells and neighboring
cell-pairs. To avoid the cell mapping being applied multiple times on the same cell-pair,
the visibility restriction mentioned in chapter 3.4 have to be complied with. During the
iteration each non-ghost cell is handled once. First the handled cell gets passed to the cell
mapping’s method handleCell, then, all cell-pairs, whose interactions needs to be executed
during the handling of this cell, get passed to the method handleCellPair.

15https://en.cppreference.com/w/cpp/container/vector
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3. Structure and Functionality of SimpleMD

Shared memory parallelization with OpenMP is possible for the iteration in
iterateCellPairs, as well. However, a red-black traversal, or a colored traversal in general,
has to be applied to avoid race conditions. Race conditions can occur if any two neighboring
cells are handled parallelly because one may accesses the other and/or both may access
a shared neighbor at the same time. All cells are split in 2d groups. (d is the number of
dimensions.) Every group contains all cells that share the same combination of even or odd
coordinates in the respective dimensions. Afterwards, the cells in one group are iterated.
This iteration can be parallelized because no race conditions can occur in the simulation
use case. The iteration of the next group can only start if the iteration of its predecessor is
completed.

Figure 3.5.: Distribution of linked cells of a section of a two-dimensional domain into groups
according to the red-black traversal. All cells of one color can be handled
parallelly. However, no differently colored cells may be handled, meanwhile. In
the three-dimensional case, this distribution is valid for every second value of
the z-coordinate. For the remaining half of the three-dimensional domain, the
same scheme can be applied with different colors.
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Cell Mappings

Figure 3.6.: Class diagram of the general structure of all cell mappings.

All cell mapping classes are structured similarly. They feature the methods
beginCellIteration and endCellIteration, which are further explained in appendix
A.1.2. Additionally, there are the two methods handleCell and handleCellPair. They
receive one or two cells respectively and their indices, and apply the mapping to the molecules
in these cells. The most relevant cell mappings are:

EmptyLinkedListMapping: After the last cell mapping has been applied in a time step, this
mapping is used to remove all molecules from each cell because, after time integration,
they might belong in another cell.

LennardJonesForceMapping: This mapping computes the Lennard-Jones forces, as de-
scribed in chapter 3.3.1 for all molecule-pairs in one cell if handleCell is called, and
for all molecule-pairs with one molecule being located in each of the two cells if
handleCellPair is executed. The forces are added to or subtracted from the force
buffer of the molecules. Additionally, if handleCell is called, constant external forces
are added to the force buffer of each molecule. The external forces are added by the
ExternalForceService, which is mentioned in chapter 3.5.2.

The remaining mappings are mentioned or described in appendix A.1.2.

Molecule Mappings

Figure 3.7.: Class diagram of the general structure of all molecule mappings.
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3. Structure and Functionality of SimpleMD

Like the cell mappings, all molecule mappings have a similar structure. This structure
contains the methods beginMoleculeIteration and endMoleculeIteration, which serve
the same purpose as their equivalents in the cell mappings, and handleMolecule which
applies the mapping to a passed molecule. The most important molecule mappings are:

InitialPositionAndForceUpdate: The mapping replaces the time integration in the initial
time step. Its functionality is described in chapter 3.3.2. After the calculation it stores
the force calculated in the initial time step in the buffer for the force of the previous
time step and resets the force buffer to 0.

UpdateLinkedCellListMapping: This mapping sorts the molecules into the linked cells
according to the coordinates. It is used at the end of every time step.

VelocityStoermerVerletMapping: This mapping applies the time integration as described
in chapters 2.2 and 3.3.2. Similar to the InitialPositionAndForceUpdate, the force
of the current time step is stored in forceOld and the buffer force is reset to 0.

The remaining molecule mappings are mentioned in appendix A.1.2.

3.6. Control Flow of SimpleMD

(a) Simulation (b) Time step

Figure 3.8.: Simplified control flow of a SimpleMD simulation and one time step.

Figure 3.8a shows the simplified control flow of SimpleMD. During the initialization, the
XML file is parsed and the values are used for the creation of all objects. Then, the number
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3.6. Control Flow of SimpleMD

of time steps defined in the XML file are simulated. The procedure during one time step is
illustrated in figure 3.8b. Finally, all structures are cleared and the objects are deleted during
the shutdown phase. More details about the specific phases of a SimpleMD simulation can
be found in appendix A.2. There is information about the actions during each time step,
which are not shown in the figure.
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Part II.

Implementation and Performance
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4. Implementation

This chapter showcases the changes and extensions that were implemented in SimpleMD.1

Chapter 4.1 explains, how the program was extended with three-body interactions. Chapter
4.2 shows the approach of using both two-body interactions and three-body interactions, to
run a MD simulation with adaptive resolution. In chapter 5, the performance improvements
achieved by shared memory parallelization (using OpenMP), and distributed memory
parallelization (via MPI), are shown and analyzed. Additionally, the differences in execution
times between three-body interactions only, different adaptive resolution cases, and two-body
interactions only, are investigated.

4.1. Three-Body Interactions

The implementation of three-body interactions required additional mappings, as well as
changes in existing classes. Backwards compatibility is guaranteed because the new code
is only used if the corresponding constant MD_BODY, used for preprocessor directives, is set
accordingly. The implementation of the compile option, switching between two and three
body interactions, and its impact on the program are described in chapter 4.1.4.

4.1.1. Cell Mappings

Handling Triplets of Cells

Three-body interactions operate on three different molecules which may be located in
three different cells. However, the cell mappings currently only support computations
with molecules that are in one cell or in a pair of two cells. Therefore, the new method
handleCellTriplet, which receives instances of all three cells and their indices, similar to
handleCell and handleCellPair, is added. All currently existing cell mappings do not
operate on triplets of cells. Thus, the new method has no function in all cell mappings
existing so far. It is only used in the two new cell mappings described below.

1The implementation at the time of writing can be found on a dedicated branch of MaMiCo at
https://github.com/HSU-HPC/MaMiCo/tree/simplemd-three-body
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4. Implementation

Force Calculation

Figure 4.1.: Simplified class diagram of the AxilrodTellerForceMapping.

The forces of the molecule-triplets are computed by the new class
AxilrodTellerForceMapping. As the name suggests, the Axilrod-Teller potential is used
as a basis for the force calculations. The forces are calculated according to the formula
shown in chapter 2.3.4. The class has three attributes. They are the Axilrod-Teller pa-
rameter ν, which is called v in the code, the squared cutoff radius and the instance of the
ExternalForceService. The methods and their functionality are listed below:

handleCell: The method passes all molecules in the linked cell to the
ExternalForceService, iterates over all triplets of molecules within this cell, and
initiates the force calculation by the method getAxilrodTellerForce for each triplet.
It subtracts the reversed forces, which are returned by getAxilrodTellerForce, from
the molecules’ force buffers.

handleCellPair: First, all molecule-triplets, that contain two molecules of the first passed
cell and one of the second cell are iterated over. Then, the triplets, which contain
one molecule of the first cell and two of the second are iterated over. The force
computations are handled as described above.

handleCellTriplet: This method iterates over all molecule-triplets, which contain one molecule
of each of the three cells, and initiates the force calculations like mentioned before.

getAxilrodTellerForce: The method receives the positions of all three molecules and calcu-
lates the reversed force for each of the molecules if the distance between all three pairs
of molecules respectively is not bigger than the cutoff radius. Otherwise, all returned
forces are 0. The three computed forces, which are all instances of the utility class
Vector, are returned in a std::vector. The algorithm of the force computation is
shown in figure 4.2.

28



4.1. Three-Body Interactions

Algorithm 1: getAxilrodTellerForce

Input: positions of three molecules
Output: vector containing the reversed force vectors

1 Function getAxilrodTellerForce(xi, xj, xk):
// Distances and their powers

2 rij ← xj − xi

3 r2ij ← ⟨rij , rij⟩ // dot product

4 if r2ij ≤ r2cutoff and r2ik ≤ r2cutoff and r2jk ≤ r2cutoff then

5 rij ←
√
r2ij

6 r3ij ← r2ij · rij
7 r4ij ← r2ij · r2ij
8 r5ij ← r4ij · rij
9 r6ij ← r4ij · r2ij

// Gradients

10 dV dRij ← 3·ν
8·rij · (−

8
r4ij ·r3ik·r

3
jk
− 1

r5ik·r
5
jk

+ 5·rik
r6ij ·r5jk

+
5·rjk
r6ij ·r5ik

− 1
r2ij ·r3ik·r

5
jk
−

1
r2ij ·r5ik·r
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3
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// Forces

11 Fi ← rij · dV dRij + rik · dV dRik
12 Fj ← rij · (−dV dRij) + rik · dV dRik
13 Fk ← rij · (−dV dRij) + rik · (−dV dRik)

14 return [ Fi, Fj, Fk]

15 else
16 return [ 0, 0, 0]

Figure 4.2.: The computation of the negative Axilrod-Teller forces of a molecule-triplet. The
allocations of the variables for the distances and their powers are only shown for
the molecule-pair ij. The other allocations work analogously. The calculation
of the gradients is only shown for 1

rij
∂V
∂rij

(dV dRij). The two other gradients

are calculated analogously. In the formula, the indices ij and ik, or ij and jk
have to be exchanged. Like in the code, rij is the vector from molecule i to j.
In chapter 2 it was called xij . The variable Fi actually stores the value −Fi.
The variable is called Fi to be consistent with the code. The same holds for Fj

and Fk.
Source: [Mar01]

Potential Energy Calculation

The class AxilrodTellerPotentialEnergyMapping is structured and works similarly to
the force mapping. The potential energy is calculated in the method
getAxilrodTellerPotentialEnergy according to the formula resulting after the application
of the cosine rule, mentioned in chapter 2.3.4. In contrast to the force computations, the
potential energy is added to the molecules’ respective variables. The mapping is never used
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in SimpleMD, similar to the LennardJonesPotentialEnergyMapping. Nevertheless, it is
still included for completeness.

4.1.2. Including the Axilrod-Teller Parameter ν

The three-body forces and potential energy calculations in the extension of SimpleMD are
based on the Axilrod-Teller potential. Therefore, the coefficient ν has to be included in the
calculations. This section shows which changes were necessary that the parameter, which is
part of the XML input file, is parsed and included in the new mappings described in chapter
4.1.1.

MoleculeConfiguration

The configuration class responsible for parsing ν is MoleculeConfiguration. Similar to the
Lennard-Jones parameters, ν is retrieved from the XML file, where it is stored with the key
v. It replaces the parsing of the Lennard-Jones parameters. The value is stored in the new
attribute v. Additionally, a getter method is created for this attribute.

MolecularPropertiesService and MolecularProperties

The MolecularDynamicsSimulation passes all molecular properties, including ν, to the
service at initialization. The service then uses all properties to call the constructor of
MolecularProperties with these values as input arguments. The implementation of three-
body interactions requires the new attribute v of MolecularProperties, storing the value
of ν, a getter method returning it, and a new constructor for MolecularProperties and
MolecularPropertiesService respectively, which replaces the Lennard-Jones parameters
with the Axilrod-Teller coefficient and, ultimately, stores it in the new attribute.

The MolecularPropertiesService is passed to the AxilrodTellerForceMapping at
initialization. The mapping gets the value of ν by accessing MolecularProperties via the
instance of the service.

4.1.3. Linked Cell Approach for Three-Body Interactions

Force Calculations

In case of three-body interactions, SimpleMD still uses the existent linked cell approach.
Since all three molecules have to be within each other’s cutoff radius for the forces to be
different from 0, the three molecules have to be within the same cell, two neighboring
cells, or three cells which all neighbor each other. For molecules in the same cell or in two
neighboring cells, the approach described in chapter 3.4 can be reused.

The same two guidelines to the initiation of cell-triplet calculations as to the initiation of
pair calculations (see chapter 3.4) apply. Therefore, each cell can only initiate the cell-triplet
iterations for most of the triplets including the handled cell and its neighbors in the 2× 2
square or 2× 2× 2 cube with the handled cell as bottom-left(-front) corner.
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Two-Dimensional Force Calculations

In the two dimensional case, a cell needs to initiate the triplet calculations for all 4 combina-
tions of 3 of the 4 cells of this square because in 3 of the cases, the handled cell is part of
the triplet and, thus, has the lowest coordinate in both directions, and in the fourth case,
all three other cells are involved but the right and the top neighbor cannot see each other
and the top-right neighbor can see neither of those.

Figure 4.3.: Force calculations that need to be initiated by the bottom-left cell

Since the same behavior applies to all cells, the remaining 9 triplet calculations involving
a cell are initiated by its left, bottom, and bottom-left neighbor. Each of these cells triggers
3 computations.

Three-Dimensional Force Calculations

In case of a three-dimensional simulation, there are a total of 56 cell-triplets, which include
only the handled cell and/or its visible neighbors. However, the computations only have to
be initiated for 44 of these 56 triplets because all cell-triplets within the yz-plane including
the right neighbor, within the xz-plane including the top neighbor, and within the xy-plane
including the back neighbor can be triggered by the right, back, and top neighbor respectively.
Each of these three cell-squares include 4 triplets as explained in the section above, resulting
in 12 interactions that do not need to be initiated. These triplets and the respective cell
initiating the force computations are listed in table 4.1.
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Neighbor 1 Neighbor 2 Neighbor 3 Initiating neighbor

right top-right right-back right
right top-right top-right-back right
right right-back top-right-back right
top-right right-back top-right-back right
top top-right top-back top
top top-right top-right-back top
top top-back top-right-back top
top-right top-back top-right-back top
back right-back top-back back
back right-back top-right-back back
back top-back top-right-back back
right-back top-back top-right-back back

Table 4.1.: Three-body interactions that do not need to be initiated by a cell, although all
cells are in the 2× 2× 2 cube with the handled cell as bottom-left-front corner.

The 44 triplet interactions that need to be initiated by a cell can be split into two groups.
There are 21 triplets which all include the handled cell, and there are 23 triplets not including
the handled cell. The interactions of the latter triplets need to be triggered by this cell due
to mutual invisibility. The two neighboring cells of the 21 triplets which include the handled
cell are listed in table 4.2.
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Neighbor 1 Neighbor 2

right top
right top-right
top top-right
right back
right right-back
right top-back
right top-right-back
top back
top right-back
top top-back
top top-right-back
top-right back
top-right right-back
top-right top-back
top-right top-right-back
back right-back
back top-back
back top-right-back
right-back top-back
right-back top-right-back
top-back top-right-back

Table 4.2.: Three-body interactions that need to be initiated by a cell and include this cell.

The remaining 23 triplet interactions a cell has to initiate are listed below.

33



4. Implementation

Neighbor 1 Neighbor 2 Neighbor 3

right top top-right
right top back
right top right-back
right top top-back
right top top-right-back
right top-right back
right top-right top-back
top top-right back
top top-right right-back
right back right-back
top back right-back
top-right back right-back
right back top-back
top back top-back
top-right back top-back
right back top-right-back
top back top-right-back
top-right back top-right-back
right right-back top-back
top right-back top-back
top-right right-back top-back
top right-back top-right-back
right top-back top-right-back

Table 4.3.: Three-body interactions that need to be initiated by a cell and not include this
cell.

LinkedCellService

The LinkedCellService only had the methods iterateCells and iterateCellPairs.
Neither of these implemented the handling of cell-triplets. Thus, the new method
handleCellTriplets was created. The input arguments are the cell mapping that should
be applied, the coordinates of the subdomain, the iteration should be executed on, and a
boolean value which specifies whether to use OpenMP for parallelization purposes or not.

First, multiple vectors are initialized and filled with the indices of the two-cells of all
cell-pairs and the three cells of all cell-triplets whose handling needs to be initiated, in
relation to the index of the currently handled cell. Then, the method beginCellIteration

is executed and the iteration over all non-ghost cells, according to increasing indices,
commences. If a cell is handled, the mapping is applied to the cell, before application
to the cell-pairs and cell-triplets. The cells for the pair and triplet application are picked
according to the previously created vectors. Finally, the method endCellIteration is called.

If a shared memory parallelization, using OpenMP, should be applied, the approach
described in chapter 3.5.2 can be used. The same red-black traversal works in this method
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as well because all computations only involve a cell and its direct neighbors.

MolecularDynamicsSimulation

The simulation only works with three-body interactions if the AxilrodTellerForceMapping
gets passed to the LinkedCellServices’s method iterateCellTriplets. Therefore, the
MolecularDynamicsSimulation needs to initialize the mapping in its method initServices.
It calls the constructor of the mapping and passes the instances of the ExternalForceService
and the MolecularPropertiesService as input arguments. The force mapping uses these
objects to get the values to store in all attributes.

All calls of iterateCellPairs with the LennardJonesForceMapping as input need to be
replaced by calls of the new method iterateCellTriplets and the
AxilrodTellerForceMapping as input argument. The same applies for the calls in the
BoundaryTreatment as well.

4.1.4. Compile Option and Preprocessor Directives

Since CMake is used to generate Makefiles, all compile options are implemented in the file
CMakeLists.txt. This file is located in the directory MaMiCo, one directory level above
SimpleMD.

In this file the option MDBody has been added, which could be set to either MDBody2, for
two-body interactions, or MDBody3, for three-body interactions. The value of this parameter
is passed to SimpleMD as compile definition. Additionally, the two new mappings are added
in the list of source files to compile.

In the file MolecularDynamicsUserIput.h, depending on the value defined for MDBody,
the global constant MD_BODY is either set to 2 or to 3. If neither of the two allowed values
for MDBody is defined (which should not happen) the compilation immediately fails.

This constant is used in preprocessor directives to only compile the code needed for the
three-body computations if the option is set accordingly. In the previous chapters, the word
replace was used multiple times. However, this did not refer to deleting the two-body code
and implementing the three-body code instead. It meant that both versions of the code are
there but, according to MD_BODY, one version of the code gets ignored by the compiler. The
general use of the directives is shown in listing 4.1.

1 #i f (MDBODY == 2)
2 // two=body code
3 #else
4 // three=body code
5 #endif

Listing 4.1: Use of preprocessor directives for three-body interactions.
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4.2. Adaptive Resolution

In contrast to the two-body interactions and three-body interactions, the implementation
of the adaptive resolution requires both types of interactions, not just one. New mappings
and changes to existing structures are needed, to store the two types of forces separately, to
weight them for each molecule, and to sum up the weighted values. Backwards compatibility
is, again, guaranteed by a constant set according to a compile option, and preprocessor
directives.

4.2.1. Functionality of Adaptive Resolution in SimpleMD

The adaptive resolution in SimpleMD is constructed for use with reflecting boundaries. If
any other type of boundaries (especially periodic ones) is used, a correct calculation of
forces is very unlikely. The reason for this is that between the molecules on opposite sides
of the domain only one of the force types would be calculated, resulting in some molecules
missing out on partial forces. The scheme is applied in one dimension. In this dimension,
the area from the beginning2 of the domain to the beginning of the interface layer is used
for two-body interactions, both types of forces are applied in a relation depending on each
molecule’s position inside the interface layer, and only three-body interactions are applied
between the end3 of the interface layer and the end of the domain. It may occur, that one
type of force between molecules has to be calculated, but the force is not applied to all
molecules because some of them are outside of the interface layer and others are not. This
circumstance, however, does not cause any problems because the calculated force of this
type is assigned the weight 0 if it is not needed and, thus, it has no impact on the total force.

Calculations of Partial Forces

Since force calculations are the most expensive part of each time step, each type of force is
only calculated for those cells, where it might impact the total force of the molecules inside
the cell. All molecules in the interface layer need both types of forces. Due to the linked cell
approach, the force calculations involve all neighbors. Therefore, both types of forces need
to be calculated for all interactions involving at least one cell in the interface layer. These
interactions can include one or two cells outside the interface layer.

Force computations are still initiated in the way described in chapter 3.4. As a result
the initiation of three-body force calculations has to begin in the plane of cells, whose
coordinates in the dimension adaptive resolution is applied in is lower by one than the
according coordinates of the cells which the interface layer starts in. If the interface layer
starts in the non-ghost cells with the lowest coordinates, the three-body computations begin
in these cells.

On the other hand, the last plane of cells, which need to initiate two-body force com-
putations, is the one the interface layer ends in. All two-body computations between the

2the boundary with the lower coordinate
3the boundary with the higher coordinate
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cells in this plane and the cells in the neighboring plane, whose coordinates in the according
direction are higher by one, are initiated by the lats plane of cells, which is still (partially or
completely) in the interface layer.

Figure 4.4.: Force computations that are initiated by the cells for adaptive resolution. Red
cells only initiate two-body computations, blue cells only initiate three-body
computations, and purple cells initiate both.

Weights, Total Force, and Total Potential Energy

The weights w(xd) ∈ [0, 1] for the molecules depend on:

� The coordinate xd of each molecule, in the dimension d adaptive resolution is applied
in

� The coordinate xinterface of the boundary of the interface layer with the lower coordinate

� The length of the interface region dinterface

They are calculated according to the formula below, which fulfills all criteria described in
chapter 2.4.

w(xd) =


0 xd ≤ xinterface

sin2( π
2·dinterface

· (xd − xinterface)) xinterface < xd < xinterface + dinterface

1 xd ≥ xinterface + dinterface

Based on [PDSK05]

If dinterface = 0, the formula transforms to:
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w(xd) =

{
0 xd ≤ xinterface

1 xd > xinterface

The weight determines the impact of three-body forces on the total force and the impact
of the three-body potentials on the total potential energy. These are calculated according to
the formulas shown in chapter 2.4, but the indices need to be reversed.

4.2.2. Compile Option and Preprocessor Directives

In the file CMakeLists.txt, the option ADRES has been added. This value can either be set
to OFF or ON, and decides whether adaptive resolution is activated or not.

If the option’s value is ON, the string AdRes is passed to SimpleMD as compile definition
and the two new mappings, which will be described in chapter 4.2.4, are added to the source
files to compile. Otherwise, neither of this happens and the compilation proceeds as chosen
in MDBody.

In the MolecularDynamicsUserInput.h, the new global constant AD_RES is set to MD_YES,
which is defined as 1 or true, if the compile definition exists. Else, the constant is set to
MD_NO, which is defined as 0 or false.

This constant is used in preprocessor directives in a way, that the impact of the constant
MD_BODY is undone if adaptive resolution is activated. In that case both, the two-body and
three-body code, is compiled and used in the program. There are also some parts of the
code which should only be used if adaptive resolution is activated. Preprocessor directives
are used in this context as well. The use of directives in this case is shown in listing 4.2 and
can be compared to the use for three-body interactions shown in listing 4.1.

1 #i f (MDBODY == 2 | | AD RES == MD YES)
2 // two=body code
3 #endif
4 #i f (MDBODY == 3 | | AD RES == MD YES)
5 // three=body code
6 #endif
7
8 #i f (AD RES == MD YES)
9 // adapt ive r e s o l u t i o n code
10 #endif

Listing 4.2: Use of preprocessor directives for adaptive resolution.

4.2.3. Changes in Existing Classes

In this chapter, all necessary changes for adaptive resolution in the respective classes are
described. Preprocessor directives guarantee that all these changes only apply if the compile
option is set to ON.
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Molecule: The class Molecule was extended by the attributes twoBodyForce,
threeBodyForce, twoBodyPotentialEnergy, and threeBodyPotentialEnergy. They are
used to store the partial forces and energies. The existing fields are filled with the total
forces after their calculation. The latter two are not used in SimpleMD. Additionally, all
getter and setter methods for the new attributes have been added.

LennardJonesForceMapping, LennardJonesPotentialEnergyMapping,
AxilrodTellerForceMapping, and AxilrodTellerPotentialEnergyMapping: These classes
store the computed forces and energies in the respective new attributes of Molecule and no
longer in force or potentialEnergy.

DomainConfiguration: The three new attributes adResDimension, interfaceStart, and
interfaceLength, are created and getter methods are added. All these values are retrieved
during parsing of the subtag domain-configuration of the XML file.

MolecularDynamicsSimulation and BoundaryTreatment: In all places where force calcu-
lations occur, first the Lennard-Jones forces are calculated, using the
LinkedCellService’s method iterateCellPairs, then the Axilrod-Teller forces are calcu-
lated, using iterateCellTriplets.

MoleculeConfiguration: This class now parses both the Lennard-Jones parameters and
the Axilrod-Teller parameter, along with the remaining values in the subtag molecule-
configuration.

MolecularProperties and MolecularPropertiesService: Yet another constructor has been
added to the classes. The new constructor receives the values of all three parameters of the
Lennard-Jones and Axilrod-Teller potential (ϵ, σ, and ν) as input arguments.

LinkedCellService: Three new attributes have been added. The field adResDimension

stores the dimension for the adaptive resolution, threeBodyStart stores the coordinate in this
direction of the first cells which have to initiate three-body computations, and twoBodyEnd

stores the coordinate of the last cells that have to initiate two-body computations. The
fields are filled with the values during the initialization. The values for the latter two are
calculated in a way such that they correspond to the cells described in chapter 4.2.1. The
methods iterateCells and iterateCellTriplets now skip the handling of a cell if the
mapping, that should be applied is the respective force mapping, and the coordinate in the
adaptive resolution dimension is lower than threeBodyStart in iterateCellTriplets, or
higher than twoBodyEnd in iterateCellPairs.

4.2.4. New Cell Mappings

The simulation requires a new mapping, which weights the partial forces and sums them
up accordingly. A new mapping that computes the total potential energy from the partial
energies is added for completeness, although it is never used in SimpleMD. Both mappings
work on single molecules and thus could be cell mappings and molecule mappings likewise. We
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decided to implement them as cell mappings which are applied by the LinkedCellService’s
method iterateCells.

Computation of the Total Force

Figure 4.5.: Simplified class diagram of the ComputeTotalForceMapping.

The class ComputeTotalForceMapping has 4 attributes. The 3 fields, defining the interface
layer, are used for the calculation of the weight, which is described in chapter 4.2.1 and
executed by the method calculateWeight. This method receives the coordinate of the
handled molecule in the direction adaptive resolution is applied in, and returns the weight
w(xd). The vector zero contains, as the name suggests, the zero vector. It is used to reset
the partial forces after the computation of the total force by copying its values.

The only method with a function, apart from calculateWeight, is handleCell. It
iterates over all molecules, calculates their weights, and sums up the total force as described
in chapter 4.2.1. The total force is stored in the molecule’s field force and the fields for the
partial forces are reset in the end of the method execution.

Computation of the Total Potential Energy

The class ComputeTotalPotentialEnergy works similarly to the
ComputeTotalForceMapping. It calculates the weight according to the molecule’s position,
computes the total potential energy as described in chapter 4.2.1, and stores the total energy
in the attribute potentialEnergy before resetting the partial energies.

Both new classes require the fields for partial forces or potential energies in the class
Molecule. Since these attributes only exist if adaptive resolution is used, these two classes,
unlike the Lennard-Jones and Axilrod-Teller mappings, cannot be compiled if adaptive
resolution is switched off.
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In this chapter the performances of the extensions described in chapter 4 are analyzed. In
chapter 5.1, we investigate the scalability of the program for the shared memory paral-
lelization with OpenMP1 and for the distributed memory parallelization with MPI. For the
message-passing interface, Intel’s implementation2 is used. In chapter 5.2, the performances
of two-body interactions, three-body interactions, and three different cases of adaptive
resolution are compared.

All measurements were performed on CoolMUC-23, a Linux cluster segment of the Leibniz
Supercomputing Centre (LRZ)4, and on HSUper5, a HPC cluster hosted by the Container-
based High Performance Computing Center (CBRZ)6 at Helmut Schmidt University7.

CoolMUC-2 has 812 nodes, connected by a FDR14 Infiniband interconnect. Each node
consists of 28 Haswell-based cores with 2 hyperthreads. The system has a 64 bit address
space. The shared memory parallelization uses the OpenMP version 4.5 and the distribute
memory parallelization uses the Intel MPI 2019.12. The Makefile is created by CMake 3.21.4
and the program is compiled with gcc 11.2.0.

HSUper consists of 571 regular nodes, connected by a non-blocking NVIDIA InfiniBand
HDR100. Each node contains 2 Intel Icelake sockets, featuring 36 cores each. This yields a
total of 72 cores per node. Additionally, there are 5 fat memory nodes and 5 GPU nodes,
which were not used for the measurements. The parallelization used OpenMP 4.5 or Intel
MPI 2021.6, respectively. For compilation purposes, the CMake version 3.23.1 and the gcc
version 12.1.0 are used.

The measurement, based on the chrono library8, uses the std::chrono::high resolution clock.
The majority of the initialization and shutdown phases cannot be parallelized and might
affect the measurement result of short simulations. Hence, the measurement starts before
the first time step starts and is stopped after the last one is finished.

The measured simulations were based on a randomly generated checkpoint file. A Python
script creates the checkpoint file based on the XML it receives as input. It reads the
information about the domain offset, the domain size, and the number of molecules per

1https://www.openmp.org
2https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
3https://doku.lrz.de/coolmuc-2-11484376.html
4https://www.lrz.de
5https://www.hsu-hh.de/hpc/en/hsuper
6https://www.hsu-hh.de/hpc/en/cbrz
7https://www.hsu-hh.de
8https://en.cppreference.com/w/cpp/chrono
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direction. Based on this data, the molecules are placed randomly, to some extent, in the
domain. The script and its functionality is described in appendix B.

The majority of the measured cases yielded very consistent results among multiple
measurement executions. In appendix C, the consistency among the measured times is
analyzed and the method for extracting the wall times, used in the following chapters, is
described.

5.1. Scalability

All parameters that had the same values throughout all simulations are listed in table 5.1.
Most values, stored in the XML file and used for computations, have been normalized
according to the method described in [GZK07].

Parameter Normalized value Actual value

m 1 6.69 · 10−26kg = 39.948u
ϵ 1 1.65 · 10−21J = 120K·kB
σ 1 3.4 · 10−10m = 3.4Å
ν 1 1.00 · 10−16JÅ9

δt 0.00005 1.085 · 10−16s
number of time steps 200 200
rcutoff 2.2 7.48Å
size of a linked cell 2.5 in each direction 8.5Å in each direction

Table 5.1.: Parameters with the same values shared in all simulations. The parameters m, ϵ,
and σ are based on the molecular properties of argon. Source: [GZK07]

For convenience reasons, the value ν = 1 (1.00 · 10−16JÅ9) has been chosen. However,
according to multiple sources, like [AS22] and [AL22], the value 7.35 · 10−18JÅ9 is more
accurate for argon. After normalization, the value would be 0.0734. This discrepancy is
accepted because the purpose of the measurements is to assess the performance of the
program and not to run a realistic MD simulation. The relatively low value of 200 time
steps is acceptable because the execution times of the single time steps are consistent and
relatively equal.

In all adaptive resolution measurements, the scheme was applied in the z-dimension. The
size of the interface layer in all three versions of the adaptive resolution scheme, that were
measured, is 10% of the domain size. The interface regions are centered at 25%, 50%, and
75% of the domain, respectively. The legends of the diagrams show the percentages of the
sizes of the three regions of the domain in relation to the total domain size. The order of
the values is the percentage of the three-body area, followed by the interface layer and the
two-body region9, e.g. 70/10/20 means that the interface layer’s size is 10% of the domain
size and that it’s centered at 25% of the domain. However, these percentages only show
in which shares in the domain the respective partial forces are considered in the calcula-

9In the program, the order is the other way around.
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tion of the total force. It does not show, which shares are part of each type of force calculation.

Additionally, the VaryCheckpointMapping was not used in the measured simulations
because it randomly changes the molecules’ properties in the first time step and hence,
would make multiple results of the same measurement incomparable.

5.1.1. Shared Memory Parallelization

The initial setups and checkpoint files, especially the domain sizes and numbers of molecules,
differed between the measurements made on CoolMUC-2 and HSUper. Hence, in the mea-
surements on HSUper the start and end of the adaptive resolution interface layer is aligned
with the borders between the linked cells, whereas this is not the case for the measurements
on CoolMUC-2, which leads to a larger number of unnecessary force computations. Further
details on the exact numbers can be found in the respective parts.

Another difference between the clusters is the number of cores per node. All measurements
of the shared memory parallelization were performed on one node and used up to all of its
cores. The measurements were performed with 1, 2, 4, 8, 16, 28, 42, and 56 threads on
CoolMUC-2, and with 1, 2, 4, 8, 16, 32, 36, 54, and 72 threads on HSUper.

Strong Scaling on CoolMUC-2

For the strong scaling measurements on CoolMUC-2, the simulations had a domain size
of 47 (159.8Å), including 44 molecules, in each direction. This results in a total of 85,184
molecules, spread over 6,859 linked cells. All simulations worked with the same checkpoint
file and thus, the same distribution of molecules. Figure 5.1 shows the wall times of the runs
and figure 5.2 shows the speedup in comparison to the sequential execution time, as well as
the legend of all three figures.

1 2 4 8 16 28 42 56

200

500

1,000

2,000

4,000

Number of Threads

W
al
l
T
im

e
(T

n
)
in

se
co
n
d
s

(a) Three-body interactions and adaptive resolu-
tion

1 2 4 8 16 28 42 56

4

8

16

Number of Threads

W
al
l
T
im

e
(T

n
)
in

se
co
n
d
s

(b) Two-body interactions

Figure 5.1.: Strong scaling wall times of shared memory parallelization on CoolMUC-2.
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Figure 5.2.: Strong scaling speedup for shared memory parallelized three-body interactions,
two-body interactions and adaptive resolution cases on CoolMUC-2.

As can be seen, the three-body interactions scale best. Although they do not improve
ideally, their improvements up to 28 threads are consistent and acceptable. For more threads,
there are still improvements but these are significantly worse. The reason for this behavior
is that up to 28 threads, each thread can work on its own physical core. If there are more
threads, pairs of two threads have to share one core, which leads to less improvement than
if both threads had their own cores.

The speedup of the two-body interactions is lower and the drop in improvements happened
earlier because the domain of the measured simulation was too small. The additional
performance overhead for logistical purposes caused by the increasing number of threads is
noticeable because the total improvement is rather low due to the already low execution times.
In further measurements with larger domains and more molecules, higher improvements
were detected. These can be seen in appendix D. Running such larger simulations with
three-body interactions, however, is not feasible.

The adaptive resolution speedups get worse as the two-body volume of the domain gets
bigger. The reason for this can be seen in figure 5.1a. The more threads used, the closer the
execution times for adaptive resolution and three-body interactions get. This convergence
can be seen, especially, in the curve for the 20/10/70 case of adaptive resolutions. There is
no noticeable time improvement from increasing the number of threads from 1 to 2. This
phenomenon results from some threads having similar workloads as their counterparts in
three-body simulations. This is explained in more detail in chapter 5.2, as well as the
reason for the time improvement of adaptive resolution over three-body interactions when
hyperthreading is used.

44



5.1. Scalability

Strong Scaling on HSUper

The strong scaling measurements on HSUper were performed with simulations consisting
47 molecules, spread over a domain size of 50 (170Å), in each direction. Thus, the total
number of molecules is 103,823 and the number of linked cells is 8,000. Like on CoolMUC-2,
all simulations used the same checkpoint file. The wall times are shown in figure 5.3 and the
speedups in figure 5.4.
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Figure 5.3.: Strong scaling wall times of shared memory parallelization on HSUper.
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Figure 5.4.: Strong scaling speedup for shared memory parallelized three-body interactions,
two-body interactions and adaptive resolution cases on HSUper.

The graphs show similar results like for CoolMUC-2. Three-body interactions scale the
best here too. However, this time, there is no drop in improvements at a certain point
because no hyperthreading is performed on HSUper. Like previously described, two-body
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interactions perform so poorly, even to the extent that the run time with 72 threads was
higher than the time with 54 threads, because the domain and number of molecules is too
small. In further measurements with larger domains and a bigger number of molecules,
higher improvements were detected. The results of these measurements can be seen in
appendix D. Running these larger simulations with three-body interactions, however, is
not feasible. The convergence of the execution times of the adaptive resolution and the
three-body measurements can still be seen. Additionally, the performance improvement of
the three-body interactions reduces for the step from 54 to 72 threads. An explanation for
this behavior is the imprecision of the measured wall times for this step, which can be seen
in appendix C.

Weak Scaling

The weak scaling measurements on both clusters were performed with 4,700 molecules per
thread. The domain size and number of molecules of the z-dimension never changed to
guarantee an equal share of unnecessary force computations for all adaptive resolution cases
and all numbers of threads. The size in this direction is 50 (170Å) and the number of
molecules is 47. For 1 thread, the size in both of the remaining two directions is 11.25
(38.25Å), including 10 molecules.

When doubling the number of threads, the domain size and number of molecules in the
x-direction and y-direction doubles alternately as well. In the first two doubling steps, the
domain size doubles from 11.25 to 22.5. However, the number of linked cells only increases
from 5 to 9. This might result in faster execution times than in cases where the number of
linked cells also doubles.

On CoolMUC-2, when increasing the number of threads from 16 to 28, the number of
molecules is increased, accordingly, from 40 to 70. However, the domain size is increased
from 45 to 77.5 instead of 78.75. This happens to align the boundary and the linked cell
border. The effect of this discrepancy is that the mean distance between the molecule in this
direction is now approximately 1.1 instead of the prior value 1.25. This could lead to worse
performances due to additional force calculations because the neighbor’s neighbor-molecule
is now averagely 2.2 units away, and no longer 2.5, and, therefore, has a higher probability
of being within the cutoff radius of 2.2 units. The shortened mean distance in one direction
is kept for 42 and 56 threads.

The same applies to the measurements performed on HSUper with 36 or more threads. In
these cases the new mean distance is approximately 1.1, as well.

Figure 5.5 shows the wall times of the runs on CoolMUC-2 and figure 5.6 those of the
runs on HSUper. The weak scaling efficiencies can be seen in figures 5.7 and 5.8.
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Figure 5.5.: Weak scaling wall times of shared memory parallelization on CoolMUC-2.
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Figure 5.6.: Weak scaling wall times of shared memory parallelization on HSUper.
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Figure 5.7.: Weak scaling efficiency for shared memory parallelized three-body interactions,
two-body interactions and adaptive resolution cases on CoolMUC-2.
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Figure 5.8.: Weak scaling efficiency for shared memory parallelized three-body interactions,
two-body interactions and adaptive resolution cases on HSUper.

In figures 5.5a and 5.6a, we can observe logarithmic increases in wall time for three-body
interactions and because of the convergence, for adaptive resolution as well. This results
in an exponential decrease in efficiency, which can be seen in figures 5.7 and 5.8. Due
to the convergence, the efficiency of the adaptive resolution cases is the lower, the larger
the two-body area is. The performance improvements on the CoolMUC-2 cluster, again,
significantly reduce for increases beyond 28 threads. This leads to a stronger increase in
wall time and a stronger decrease in efficiency.

The wall times for two-body interactions on both clusters increase logarithmically as
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well, although it does not appear that way from the graphs because of the shifted y-axes.
However, the increase is almost linearly. Thus, the efficiency continuously decreases and
falls below the efficiency of all other cases at some point, although the rate of decline is
lower than for the rest, for a low number of threads. The same behavior also occurs during
measurements with bigger domains and more molecules per thread.

5.1.2. Distributed Memory Parallelization

In contrast to the shared memory parallelization measurements, the wall times of distributed
parallelization were measured with the same domain sizes, numbers of molecules, and
numbers of processes on both clusters. The measurements were performed with 1, 2, 4, 8,
16, 32, 64, and 128 processes, distributed over up to 8 nodes on CoolMUC-2, to avoid hy-
perthreading, and over up to 4 nodes on HSUper, although only 2 would have been necessary.

SimpleMD allows for the specification on how the domain should be split among the
processes. The information about the number of processes per direction is passed in the
XML file. However, it is required that the number of linked cells in each direction is divisible
by the number of processes in this direction. Hence, the domain sizes and numbers of
molecules differ from the values used for shared memory parallelization.

The effect that the adaptive resolution times and those of the three-body interactions
converge, is avoided because in all simulations the domain was not divided in the dimension
the adaptive resolution scheme is applied in. Therefore, the number of processes is doubled
in the x-direction and y-direction alternately, up to 16 processes in the x-direction and 8
processes in the y-direction.

Strong Scaling

For the strong scaling measurements, the domain size was (80, 40, 50) (corresponding to
(272Å, 136Å, 170Å)), resulting in (32, 16, 20) linked cells per direction, including (75, 37, 47)
molecules per direction. This results in a total of 130,425 molecules, spread over 10,240
linked cells. Figure 5.9 shows the wall times on CoolMUC-2, figure 5.10 those on HSUper,
and figures 5.11 and 5.12 the speedups on the respective cluster.
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Figure 5.9.: Strong scaling wall times of distributed memory parallelization on CoolMUC-2.
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Figure 5.10.: Strong scaling wall times of distributed memory parallelization on HSUper.
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Figure 5.11.: Strong scaling speedup for distributed memory parallelized three-body interac-
tions, two-body interactions and adaptive resolution cases on CoolMUC-2.
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Figure 5.12.: Strong scaling speedup for distributed memory parallelized three-body interac-
tions, two-body interactions and adaptive resolution cases on HSUper.

As can be seen, on CoolMUC-2 consistent speedups can be achieved with distributed
memory parallelization. The performance deficits caused by the convergence and hyper-
threading do not occur here for the reasons stated before. Similar to the values of shared
memory parallelization, the performance drastically reduces for two-body interactions and a
bigger number of processes because the domain is too small and the communication overhead
is bigger than the performance improvement. For drastically larger domains two-body
interactions, have significantly higher speedups because the larger the domain, the lower
the difference between the perfect speedup and the actual speedup. Figures showing the
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improved performance with larger domains are in appendix D.

However, on HSUper, the total speedup is significantly lower than on CoolMUC-2, most
likely due to higher relative communication times. Additionally, the three-body interactions
and all adaptive resolution cases overperform in the measurements with 4 processes, and the
two-body interactions underperform with 2 processes. Unfortunately, the reason for these
under- and overperformances could not be determined.

Weak Scaling

The weak scaling measurements were performed with 6,768 molecules per process. Like
for shared memory parallelization, the number of molecules and the domain size of the
z-dimension never changed, as well as the number of processes in this direction. Like before,
the size in this direction is 50 (170Å) and the number of molecules is 47. The remaining two
dimensions start with a domain size of 12.5 (42.5Å), including 12 molecules, and 1 process
in each direction.

The number of processes are doubled alternately in the x-direction and y-direction. When
doubling the number of processes in one direction, the domain size and number of molecules,
in this direction, are doubled as well. Thus, each process works on a subdomain with the
size (12.5, 12.5, 50), containing initially an average of (12, 12, 47) molecules per direction.
This is a total of 500 linked cells per thread.

The first pair of figures below shows the wall times measured on CoolMUC-2, the second
pair shows the times on HSUper, and the remaining two figures portray the efficiencies on
the respective clusters.
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Figure 5.13.: Weak scaling wall times of distributed memory parallelization on CoolMUC-2.
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Figure 5.14.: Weak scaling wall times of distributed memory parallelization on HSUper.
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Figure 5.15.: Weak scaling efficiency for distributed memory parallelized three-body interac-
tions, two-body interactions and adaptive resolution cases on CoolMUC-2.
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Figure 5.16.: Weak scaling efficiency for distributed memory parallelized three-body interac-
tions, two-body interactions and adaptive resolution cases on HSUper.

In the figures, we can see logarithmic increases in all wall times. These lead to the
exponential decrease in efficiencies. Like in the strong scaling graphs, the overperformance
of the execution with three-body interactions and adaptive resolution, using 4 processes, and
the underperformance of two-body interactions with 2 processes on HSUper is detectable.
This results in a worse efficiency for the two-body case with 2 and 4 processes in comparison
to the respective values for three-body interactions and adaptive resolution. Otherwise,
the efficiency for three-body interactions, two-body interactions, and adaptive resolution
are similar. On CoolMUC-2, there is an excessive step in wall time, and therefore also in
efficiency, from 16 to 32 processes. This happens most likely due to the low execution times.
The majority of this time increase is caused by the increase in communication which is
necessary because, beginning at 32 processes, the processes are distributed across multiple
nodes, each containing 16 processes. However, this effect does not happen on HSUper.
Possible reasons are the higher execution times and the significantly lower efficiencies, and
most likely a significantly faster communication between the nodes.

5.2. Comparison of Three-Body Interactions, Two-Body
Interactions, and Adaptive Resolution

All results presented in this chapter are based on the measurements performed for the
analysis of scalability. For the respective setups and wall times refer to the descriptions and
figures in chapter 5.1.

In the following chapters, the execution times of two-body interactions, three-body
interactions, and the 3 adaptive resolution cases are compared and analyzed. Chapter 5.2.1
focuses on the measured times when distributed memory was applied and chapter 5.2.2 on
the results of shared memory parallelization.
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5.2.1. Distributed Memory Parallelization
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Figure 5.17.: Comparison of wall times for distributed memory parallelized three-body
interactions, two-body interactions, and adaptive resolution cases on CoolMUC-
2.
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Figure 5.18.: Comparison of wall times for distributed memory parallelized three-body
interactions, two-body interactions, and adaptive resolution cases on HSUper.

All figures above show the same behavior. In all cases the respective adaptive resolution
cases are approximately 1.2, 1.7, and 3 times faster than the three-body interactions. The
two-body interactions are approximately 190 times faster on CoolMUC-2 and roughly 180
times faster on HSUper.

Additionally, some phenomena, that have already been mentioned prior, can be seen
here as well. These are the lack of improvement for a high number of processes due to a
smaller domain (see figure 5.17a), the step from 16 to 32 processes (see figure 5.17b), and
the overperformance and underperformance on HSUper (see figure 5.18). Due to the step
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in weak scaling wall times on CoolMUC-2, the improvement of two-body interactions in
comparison to their three-body counterpart is reduced to a factor of approximately 155. The
reduced factor of improvement on HSUper, because of the overperformance of 4 processes
in all cases except the two-body interactions and the under performance of the two-body
interactions with 2 processes, is roughly 120.

The numbers show, that the run time of two-body force computations is really low in
comparison to the time three-body force calculations take. Thus, the time improvements
of the adaptive resolution cases approximately match the ratio of total cells to cells which
need to initiate three-body force computations. All adaptive resolution versions contain
20 planes of cells in the z-direction, in which the scheme is applied in. Out of those 20
cell-planes 17, 12, and 7 planes respectively need to initiate the computations. The ratios
20
17 ≈ 1.18, 20

12 ≈ 1.67, and 20
7 ≈ 2.86 approximately match the speedups, with respect to

slight measurement inaccuracies.

5.2.2. Shared Memory Parallelization
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Figure 5.19.: Comparison of wall times for shared memory parallelized three-body interac-
tions, two-body interactions, and adaptive resolution cases on CoolMUC-2.
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Figure 5.20.: Comparison of wall times for shared memory parallelized three-body interac-
tions, two-body interactions, and adaptive resolution cases on HSUper.

As can be seen in all figures above, the performances of all adaptive resolution cases and
three-body interactions converge for an increasing number of threads. The reason is that
OpenMP, when run on either of the clusters, by default uses static scheduling to distribute
the iterations among the threads. The loop executions get split into chunks of loop executions

threads
iterations and each thread gets assigned to one of these. [Boa15] However, the iteration in the
z-direction, in which the adaptive resolution scheme is applied in, is the top level iteration.
Thus, for a big number of threads, the chunks contain only cells in a smaller number of
different xy-planes along the z-axis. The larger the share of the domain that needs to initiate
three-body force calculations, the lower the minimum number of threads such that there is
at least one thread which has to initiate three-body interactions for all cells in its chunk.
If there is at least one such thread in each of the red-black traversal groups, this threads
works as long as any thread in the simulation with three-body interactions. Any other
thread finishing earlier has to wait for the three-body-like threads to finish. Thus, the adap-
tive resolution simulation takes as long as a three-body simulation if there are enough threads.

The two-body performances in the strong scaling measurements significantly reduces in
comparison to the three-body performances. The reason are the low execution times and the
relatively higher performance overhead for maintaining the threads. The performances in
comparison to three-body interactions in the weak scaling measurements first improve and
then drastically reduce. The reason, which has already been mentioned in chapter 5.1.1, is
that the efficiency of three-body interactions first drops steeper but then levels off, whereas
the efficiency of the two-body interactions proceeds to drop even further.

Figure 5.19 shows, that the simulations using only three-body interactions suffered most
from the performance deficits caused by hyperthreading. Two-body simulations achieve
short-term improvements against three-body interactions, the moment hyperthreads are
used, before following the old trend when the number of threads increases. The adaptive
resolution simulations can perform consistently better when hyperthreading is used because
some threads, as described before, may finish significantly faster than others. In that case

57



5. Performance

they do not require the computational power of a physical core and each of the threads still
computing can ideally work on one physical core alone.
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Future Work and Summary
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6. Future Work

This work focused on the extension for SimpleMD introducing Axilrod-Teller based three-
body interactions, and a simple adaptive resolution scheme involving these and the Lennard-
Jones based two-body interactions and analyzed the performance of these implementations.
Therefore, this chapter introduces further enhancements which would be subsequent addi-
tions based on the extensions, and shows options to further investigate some phenomena we
could observe during the performance analysis.

Currently, adaptive resolution can only be applied in one dimension. In this direction
the order of areas is defined as the two-body area followed by the interface layer and the
three-body region. The next enhancement step would be to grant the user the freedom to
switch the placement of the two-body and three-body areas in this direction. Additionally,
an implementation of the scheme for the remaining boundary types will be useful. Another
potential addition could be allowing the interface layer to be skew in the domain or even
to have any other form than a plane. However, such ideas, especially the latter one, are
complicated to implement.

Further possible extensions for SimpleMD are the implementations of new potentials.
These can cover long range forces and forces involving more than three particles. If there
are more potentials available, a further extension of the adaptive resolution scheme, which
includes more than two different potentials or lets the user chose the potentials, is possible.

In chapter 5.1.2, we determined the overperformance of three-body interactions and all
adaptive resolution cases with 4 processes, and the underperformance of two-body interac-
tions with 2 processes on HSUper. A deeper investigation is required to determine why this
phenomenon happens.

In the same chapter, we saw a step in execution times from 16 to 32 processes on
CoolMUC-2. We assume that the reason for this step is an increase in communication times
due to the use of multiple nodes. However, this assumption still needs to be proven or refuted.

In chapter 5.2.2, we saw and explained the convergence of three-body and adaptive
resolution wall times. There is a possibility for further analysis on how the execution times
behave when the scheme is applied in the other dimensions and how different OpenMD
scheduling modes affect the results.

In general, all measurements of the adaptive resolution times were performed with interface
layers of a length of 10% of the domain size. Further investigation is possible on how the
performance changes when the size of the interface layer differs.
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The aim of this thesis was to give an overview of the basic structure of molecular dynamics
simulations and to explain how SimpleMD is used to run MD simulations. Furthermore,
we presented the extensions for three-body interactions and adaptive resolution made in
SimpleMD, and analyzed their scalability and how they perform compared to each other.

We have presented the approach that SimpleMD uses to run a two-body simulation, based
on Lennard-Jones potentials, a linked cell method and a velocity Verlet time integration.
The simulation is executed in one central class, which uses configurations to parse the input
and set up the system. It operates via services that provide necessary functionality, especially
the ability to apply mappings to molecules and cells.

Additionally, we have explained how the three-body extension, based on the Axilrod-Teller
potential, uses the structures that were already present to integrate the additions. The
implementation was based on one new mapping, or rather two of which one is not used. It
required additional functions in existing classes to be able to utilize the new mapping and
transport the coefficient to the object.

The implementation of the simple adaptive resolution case made use of both the prior
existing two-body implementation and the three-body extension, to allow for simulations
which make use of both types of forces in distinct areas of the domain and offer a smooth
transition between these regions. The implementation was centered around another new
mapping, or, similar to the three-body extension, two of which one is not used. We showed
that each type of force only needs to be calculated in certain shares of the domain, which
leads to performance improvements. This extension, again, needed changes in existing
structures to utilize the new mapping and, especially, to store partial forces.

Besides, we discussed how preprocessor directives enabled the usage of only certain parts
of the code, depending on the choice of compile options. We showed that it is possible to
choose either of the two potentials as a basis for the force calculations, and to choose to
ignore the choice about the potential if adaptive resolution is enabled.

We examined that the parallelization of the simulation, in a shared and distributed
memory manner, resulted in consistent and satisfying performance improvements.

Moreover, we determined that the performance improvement of adaptive resolution over
three-body simulations is consistent and directly related to the share of the domain which has
to perform three-body force calculations. However, the performance improvement decreases
for an increasing number of threads when a shared memory parallelization is used because the
workload of single threads increasingly resembles the workload of its three-body counterpart.

61



7. Summary

Finally, we gave a brief outlook on possible further extensions of SimpleMD and future
research that can be conducted based on the extensions.
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A. Detailed Description of Simple MD

A.1. Structure

This chapter contains more detailed information about the structure and classes of SimpleMD.
Most of the aspects described in this chapter are copied from chapter 3.5, all pictures
are omitted. Since there would not be any further information about the subdirectories
configurations and services, these sections are omitted as well.

A.1.1. Main Directory

Main Methods: The main directory contains two files providing main methods. The main
method of main.cpp sets up, runs, and shuts down one MD simulation, whereas the
main method of main_multi.cpp does the same with multiple simulations at the same
time.

Constants: Global constants are defined in the files MolecularDynamicsDefinitions.h

and MolecularDynamicsUserInput.h. The latter file generates constants based on the
CMake compile options. These are used in preprocessor directives in entire SimpleMD.
The former file defines the number of neighbors of each linked cell depending on the
number of dimensions defined in the user input, the number π, a tolerance of 10−13,
and the boundary types, which all are used outside of preprocessor directives.

BoundaryTreatment: The class provides functions for filling and emptying ghost cells.
These are mainly used for periodic and parallel boundaries, and in distributed memory
parallelization. It enables sending molecules from one subdomain to another, and
for sending them from one side of the domain to the other if periodic boundaries are
used. However, the functionality of the BoundaryTreatment will not be described any
further because the focus of this thesis is set on reflecting boundaries. Furthermore, the
implementation of three-body interactions and the simple adaptive resolution scheme
happened on a cell-level and molecule-level and not on a (sub-)domain-level, where
the BoundaryTreatment operates.

MolecularProperties: The class stores the properties that all molecules have in common. It
contains the mass of the molecules, the Lennard-Jones parameters, the cutoff radius,
and Boltzmann’s constant.

Molecule: The class contains all properties that differ from molecule to molecule. These
are the position, the velocity, the forces of the current and previous time step, the
potential energy, and an id.

LinkedCell: This class provides the functionality to store molecules in a list, access this list
and iterate over it.
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MolecularDynamicsSimulation: This class runs the MD simulation. Its methods allow to
initialize the system, simulate one time step, run the entire simulation, and shut
down the system. During the initialization, it uses the functions of the directory
configurations and during each time step, it operates by using the services. The control
flow of SimpleMD is described in chapter 3.6.

A.1.2. Subdirectories

Cell Mappings

All cell mapping classes are structured similarly. They feature the methods
beginCellIteration and endCellIteration, setting up local attributes before the first
cell is handled and winding up everything after the last cell has been handled. However,
most of the times these methods serve no function. If they serve a function, it is often in the
context of file I/O for plotting or writing checkpoint files. Additionally, there are the two
methods handleCell and handleCellPair. They receive one or two cells respectively and
their indices, and apply the mapping to the molecules in these cells. The cell mappings are:

ComputeMeanVelocityMapping: This mapping computes the mean velocity of all molecules
in the local domain and writes it to a file if defined.

ComputeTemperatureMapping: This mapping uses the mean velocity to calculate the
temperature of the subdomain. Both this and the ComputeMeanVelocityMapping are
not relevant for the functionality of the simulation, instead they create statistical
values.

DeleteMoleculesMapping: Molecules that left the local domain during one time step are
no longer used because they moved to another subdomain or left the simulation.
This mapping, therefore, deletes all molecules from both, the passed cell and the
MoleculeService. It is used for ghost cells after the force calculations in distributed
memory parallelization simulations.

EmptyLinkedListMapping: After the last cell mapping has been applied in a time step, this
mapping is used to remove all molecules from each cell because, after time integration,
they might belong in another cell.

LennardJonesForceMapping: This mapping computes the Lennard-Jones forces, as de-
scribed in chapter 3.3.1 for all molecule-pairs in one cell if handleCell is called, and
for all molecule-pairs with one molecule being located in each of the two cells if
handleCellPair is executed. The forces are added to or subtracted from the force
buffer of the molecules. Additionally, if handleCell is called, constant external forces
are added to the force buffer of each molecule. The external forces are added by the
ExternalForceService, which is mentioned in chapter 3.5.2.

LennardJonesPotentialEnergyMapping: The mapping works like the force mapping. It
calculates the potentials and adds them to the attribute or subtracts them from it.
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ResetPotentialEnergyMapping: The potential energy attributes of all molecules in the cell
are set to 0. Both this and the LennardJonesPotentialEnergyMapping are never
used in a SimpleMD simulation.

VaryCheckpointMapping: This mapping is used every 500 time steps. It calculates the
mean velocity of all molecules in a cell and sets the velocities of all molecules to a
random value close to the mean velocity.

The remaining mappings are the CopyMoleculesMapping, copying all molecules to a list,
the ProfilePlotterMapping and RDFMapping, used for statistical purposes, and the
CollectMoleculesMapping, ParallelBoundaryEmptyCellsMapping,
PeriodicAndParallelBoundaryFillCellsMapping, and
PeriodicBoundaryEmptyCellsMapping, used in distributed memory parallelization
and simulations with parallel or periodic boundaries.

Molecule Mappings

Like the cell mappings, all molecule mappings have a similar structure. This structure
contains the methods beginMoleculeIteration and endMoleculeIteration, which serve
the same purpose as their equivalents in the cell mappings, and handleMolecule which
applies the mapping to a passed molecule. The molecule mappings are:

ComputeMeanVelocityMapping: This mapping has the same purpose as its equivalent in
the cell mappings.

SetMeanVelocityMapping: Forces the molecules in the subdomain to have a chosen mean
velocity by adding the difference between the old average velocity and the desired one
to all molecules. Both mean velocity molecule mappings are never used in a SimpleMD
simulation.

InitialPositionAndForceUpdate: The mapping replaces the time integration in the initial
time step. Its functionality is described in chapter 3.3.2. After the calculation it stores
the force calculated in the initial time step in the buffer for the force of the previous
time step and resets the force buffer to 0.

UpdateLinkedCellListMapping: This mapping sorts the molecules into the linked cells
according to the coordinates. It is used at the end of every time step.

VelocityStoermerVerletMapping: This mapping applies the time integration as described
in chapters 2.2 and 3.3.2. Similar to the InitialPositionAndForceUpdate, the force
of the current time step is stored in forceOld and the buffer force is reset to 0.

The remaining molecule mappings are the Adios2Writer, the VTKMoleculeWriter, and the
WriteCheckPointMapping. As the name suggests, all these mappings write different
types of checkpoint files.
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A.2. Control Flow

A.2.1. Initialization

The main method receives one input argument, the XML file. First, an object of the
class MolecularDynamicsConfiguration is instantiated and, thus, objects of all other
configuration classes as well. This object parses the XML tag molecular-dynamics. This
tag contains all subtags and key-value-pairs needed for SimpleMD. Then, an instance of
MolecularDynamicsSimulation is created. This object received the instance of the config-
uration. Finally, the method initServices of the MolecularDynamicsSimulation object
is called.

During the execution of initServices, firstly all objects of the service classes are created
by passing them the values extracted from the XML file by the configuration objects. The
MoleculeService can either get the information about all molecules from a checkpoint file
if one has been specified in the subtag domain-configuration, or otherwise it generates the
molecules according to the values of molecules-per-direction. After that, all mappings are
created. Necessary values, again, have been extracted from the input file.

In the final step of initServices, the molecules are sorted into linked cells and the force
computation happens. After the forces of all molecules have been calculated, the molecules
are removed from their cells, the special version of the time integration in the initial step is
executed, and the molecules are put back into (potentially new) cells.

A.2.2. Time Step

After initServices is finished, the main method calls simulateOneTimestep of the
MolecularDynamicsSimulation as many times as the number of time steps, defined in
the XML file, requires. The method runSimulation can be executed as well, as it also
executes the same loop.

During one time step, first, the BoundaryTreatment prepares the ghost cells, prior to the
force calculation. For the force computations, the simulation object calls iterateCellPairs
of the LinkedCellService and passes the instance of the LennardJonesForceMapping,
created in the initialization. Then, mappings for statistical purposes, plotting, and writ-
ing checkpoint files are applied. In certain intervals the order of the molecules in the
MoleculeService gets changed, to improve the efficiency. In usually much larger intervals,
the VaryCheckpointMapping gets applied. In the end, all molecules are removed from the
linked cells, before executing the time integration and putting them back into the linked cells.
For all molecule mappings, including the time integration, the method handleMolecules of
the MoleculeService is called and the instance of the mapping is passed as input argument.
After the conclusion of one time step, the main method calls the method again, until all
time steps have been simulated.
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A.2.3. Shutdown

In the end the method shutdownServices is called on the instance of
MolecularDynamicsSimulation. This method, first, calls shutdown on all services which
store objects in a data structure, like the LinkedCellService and the MoleculeService.
This method deletes all stored objects and sets up an empty version of the used data
structure. Finally, the destructors of all by the MolecularDynamicsSimulation initialized
objects are executed with the delete operator. The MolecularDynamicsSimulation object
and all instances of the configuration classes are deleted when the program terminates.
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B. Creation of Checkpoint Files

Algorithm 2: createCheckpointFile

Input: XML file
Output: none, checkpoint file is created

1 Function createCheckpointFile(xdomain, ddomain, n):
// Create checkpoint file, write total number of molecules and

number of dimensions in it

2 chunkSize←


ddomain,x

nx
ddomain,y

ny
ddomain,z

nz


3 for k ← xdomain,z to xdomain,z + ddomain,z stepsize chunkSizez do
4 for j ← xdomain,y to xdomain,y + ddomain,y stepsize chunkSizey do
5 for i ← xdomain,x to xdomain,x + ddomain,x stepsize chunkSizex do

// The chunk starts at

 i
j
k

 and ends at i
j
k

+ chunkSize.

6 xmolecule ← random, uniformly distributed point, with each
coordinate in the inner 40% of the chunk in the respective direction

7 vmolecule ← random velocity in each dimension, distributed according
to Gaussian distribution with µ = 0 and σ = 1

// Write xmolecule and vmolecule (and 0 as force) to the

checkpoint file

// Close checkpoint file

Figure B.1.: The algorithm used for the creation of checkpoint files in the corresponding
Python script. Reading the XML file is omitted. Instead the domain offset
xdomain, domain size ddomain, and number of molecules per direction n are
treated as input arguments. The checkpoint file is created and given the name,
defined in the XML file. The current force of each molecule is set to 0 because
it is never used.

The molecules are distributed in a grid-like structure and within the center of their chunk
to guarantee a minimal distance between them. If two molecules were too close, the forces
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B. Creation of Checkpoint Files

of these molecules get very big. This leads to too high velocities and possibly a position,
that is so far outside of the domain that after one reflection the molecule is still outside of
the domain but on the opposite side. This case is not expected by SimpleMD and would
lead to a termination of the program.

70



C. Consistency of the Measured Times

In this chapter, the consistency of the measured wall times is analyzed. Each of the wall
times of all three-body interaction cases presented in chapter 5.1 (shared and distributed
memory parallelization, all different numbers of processes, and on both clusters) has been
measured 10 times. The arithmetic mean of all values except the lowest and highest has
been used for the analysis in the chapters 5.1 and 5.2. All values’ deviation from the mean
value are shown and discussed below. The values for all adaptive resolution and two-body
interaction cases have been determined similarly but with less measurements.
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Figure C.1.: Wall time deviations from the mean value of three-body interactions, performed
with shared memory parallelization on CoolMUC-2.
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Figure C.2.: Wall time deviations from the mean value of three-body interactions, performed
with distributed memory parallelization on CoolMUC-2. For strong scaling
with 1 process, the value +99.25% does not fit in the figure.

The figures show, that measured times of shared memory parallelization are very precise.
Almost all measured times are within a deviation of 1% from the mean value. Bigger
deviations occur quite rarely. However, if 28 threads are used, the measured times do not
concentrate around the mean value, like seen in all other cases. Fortunately, the deviations
in that case are relatively low, although they are larger than with any other number of threads.

On the other hand, most times measured using distributed memory parallelization are
within a deviation of 3% from the mean value. However, measurement results outside this
3% margin occur quite frequently. The more processes are used, the more inconsistent are
the measured times.
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(b) Weak scaling

Figure C.3.: Wall time deviations from the mean value of three-body interactions, performed
with shared memory parallelization on HSUper. For weak scaling with 72
threads, the value −36.58% does not fit in the figure.
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Figure C.4.: Wall time deviations from the mean value of three-body interactions, performed
with distributed memory parallelization on HSUper.

As can be seen, the measurements of the shared memory parallelization are very precise
except for 72 threads. Most values are really close to the mean wall time and the deviation of
the actual times is normally within 2%, and for the vast majority even within 1%. The proba-
bility of high deviations is quite low. However, if the simulation is measured with 72 threads,
similar to measurements on CoolMUC-2 with 28 threads, no concentration of measurement re-
sults can be detected. The measured times are distributed among a pretty large time interval.

The measurements of the distributed memory parallelization are not quite as precise as the
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C. Consistency of the Measured Times

ones for shared memory parallelization but they are nevertheless acceptable. Concentrations
of measurement results around the mean value are present for all numbers of processes. The
deviation of the majority of the times from the mean value is below 3% for low numbers of
processes and gets lower when the number of processes increases. Single results with high
deviations seem to occur for all numbers of processes sometimes, but still significantly less
frequently than on CoolMUC-2.

74



D. Additional Measurements with Larger
Domains
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Figure D.1.: Strong scaling wall time and speedup of shared memory parallelization on
CoolMUC-2 with two-body interactions. The domain size was (200, 200, 50)
and the number of molecules was (188, 188, 47).
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Figure D.2.: Strong scaling wall time and speedup of shared memory parallelization on
HSUper with two-body interactions. The domain size was (90, 100, 50) and
the number of molecules was (80, 90, 47).
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Figure D.3.: Strong scaling wall time and speedup of distributed memory parallelization on
CoolMUC-2 with two-body interactions. The domain size was (200, 200, 50)
and the number of molecules was (188, 188, 47).
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Figure D.4.: Strong scaling wall time and speedup of distributed memory parallelization on
HSUper with two-body interactions. The domain size was (200, 200, 50) and
the number of molecules was (188, 188, 47).
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