
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Exploring Adaptive Resolution Simulation
for Large Scale Systems with ls1-Mardyn

Alex Hocks

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Exploring Adaptive Resolution Simulation for
Large Scale Systems with ls1-Mardyn

Evaluation von Simulationen mit Adaptiver
Auflösung bei Großsystemen mit ls1-Mardyn

Author: Alex Hocks

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Samuel Newcome, M.Sc.

Amartya Das Sharma, M.Sc.

Prof. Dr. rer. nat. habil. Philipp Neumann

Date: 16.08.2023

iv

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 16.08.2023 Alex Hocks

Acknowledgements

During my months of working on this thesis, I encountered some challenges, all of which
were resolved through the help of many people. I want to thank them sincerely for their
support.
First and foremost, I appreciate the opportunity Prof. Dr. Hans-Joachim Bungartz and
Prof. Dr. Philipp Neumann made possible for me to work on the joint project of the chair of
Scientific Computing and Computational Science at the Technical University of Munich and
the chair of High Performance Computing at the Helmut-Schmidt-Univerity in Hamburg.
I am grateful to my advisors, Samuel Newcome and Amartya Das Sharma, who provided
insight and valuable hints whenever I was uncertain and spent many hours in the weekly
meetings with me over the course of these months.
Most of my work would not have been possible without access to the supercomputers.
Therefore, I am glad to have been provided with the facilities at HSU and LRZ and the help
of their support team.
Finally, I thank my friends and family for their unwavering support, whether directly through
discussions or indirectly through giving me the ideal working environment.

vii

viii

Abstract

Molecular Dynamics (MD) simulations approximate the movement over time of all atoms
in a system of molecules. The computational effort of common approaches is proportional to
the number of molecules. As the systems of interest grow in size or in simulation duration,
computing resources become a limitation and must be used efficiently. The adaptive
resolution scheme (AdResS) is a technique to reduce computational complexity by allowing
the dynamic change of resolution during a simulation. In this thesis, we investigate a version
of AdResS, in which molecular representations are gained by experimental measurements and
not by RDF sampling. First, we discuss different weight functions. Then, we implement this
AdResS variation in an existing MD-Platform ls1-Mardyn and perform different benchmarks
to evaluate its accuracy and performance. We conclude that this method can achieve
acceptable accuracy whilst providing a speedup when used with appropriate parameters.

ix

x

Zusammenfassung

Molekulardynamik (MD) Simulationen stellen approximative Berechnungen der Bewe-
gung aller Atome innerhalb eines Systems an Molekülen im Verlauf der Zeit bereit. Der
Berechnungsaufwand gängiger Ansätze ist proportional zu der Anzahl an Molekülen. Mit der
wachsenden Größe und Simulationsdauer der gewünschten Systeme werden Rechenressourcen
mehr beansprucht und müssen somit effizient verwendet werden. Das adaptive Auflösungs
Schema (engl. AdResS) ist eine Methode, um die Berechnungskomplexität zu verringern,
indem das dynamische Ändern der Auflösung während der Simulation ermöglicht wird.
In dieser Arbeit untersuchen wir eine Variation von AdResS, in welcher die molekularen
Darstellungen durch experimentelle Messungen und nicht durch RDF Daten erzeugt werden.
Des weiteren implementieren wir AdResS in einer existierenden MD-Platform, ls1-Mardyn,
und führen unterschiedliche Tests durch zur Untersuchung dessen Genauigkeit und Leistung.
Es stellt sich heraus, dass diese Methode befriedigende Genauigkeit in Zusammenhang
mit einer Erhöhung der Leistung bereitstellen kann, wenn angemessene Parameter gewählt
werden.

xi

xii

Contents

Acknowledgements vii

Abstract ix

Zusammenfassung xi

I. Introduction and Background 1

1. Introduction 2

2. Molecular Dynamics Basics 3

3. Introduction to AdResS 5
3.1. Computational Model . 5

3.2. Coupling of Full Particle and Coarse Grain regions 7

3.3. Weight Function . 8

4. Related Work 12
4.1. Grand Canonical AdResS (GC-AdResS) . 12

4.2. Open Boundary MD . 12

4.3. Hamiltonian AdResS . 12

II. Implementation in ls1-Mardyn 13

5. ls1-Mardyn Architecture 14
5.1. Simulation . 14

5.2. Domain Decomposition . 15

5.3. Integrator . 15

5.4. Particle Container . 15

5.5. Cell Processor . 16

5.6. Pair Handler . 16

6. Particle Container Design 17
6.1. Approach: 1 Particle Container . 17

6.2. Approach: 3 Particle Container . 17

6.3. Evaluation . 18

xiii

7. AdResS Implementation 19
7.1. Data Representation . 19
7.2. Plugin . 20
7.3. Force Computation . 21

8. Accuracy and Performance 22
8.1. Benchmark Scenario . 22
8.2. Accuracy . 25
8.3. Performance . 34

8.3.1. Results on HSUper . 34
8.3.2. Results on CoolMuc 2 . 41
8.3.3. Conclusion of results . 43

9. Summary and Conclusion 44

III. Appendix 45

A. Using AdResS in ls1-Mardyn 46
A.1. Acquiring ls1-Mardyn . 46
A.2. Input Files . 46
A.3. Compiling ls1-Mardyn . 47
A.4. Manually Running Scenarios . 47

Bibliography 50

Part I.

Introduction and Background

1

1. Introduction

Molecular Dynamics (MD) simulations aim to approximate the movement over time of all
atoms in a system of molecules. By adhering to the laws of physics, natural behaviour should
be recreated, which presents an opportunity to gain information about the macroscopic
structure and interactions of molecules. This is useful for understanding bio-molecules or
the folding of proteins and is often accompanied by experiments to verify data. [6, 1] For
specific scenarios, no experiments can be conducted or are not viable, such as creating and
observing a mixture of supercritical fuel and oxygen. [7]

When performing any MD simulation, all molecules interact with each other. Therefore,
forces must be computed between all atoms of any given molecule interaction pair. Without
further optimisation, this leads to a quadratic growth of computations. Considering that,
firstly, simulations of, for example, the solvation of proteins in water can contain multiple
millions of molecules [3] and, secondly, simulations of long time scales are desired, the
resulting needed computational load is often very high. An example simulation of 10 million
molecules and 100,000 time-steps would take approximately one month on an Intel® i7
12700KF @ 5.0GHz. Therefore, these simulations are usually run on supercomputers, which
provide state-of-the-art facilities, such as fast memory on the order of terabytes, processors of
high core counts or optimal topologies with fast interconnect technologies. Regardless, there
are certain limitations in terms of simulation size or length. In some cases, the computational
effort can be reduced by compromising accuracy, such that the number of interactions is
linear in the number of molecules. However, that is not feasible for other scenarios, as
accuracy is so important that quantum mechanics is used to describe the system. But
because of this demand for accuracy, the workload is significantly higher. [2]

The Adaptive Resolution Scheme (AdResS) proposes a solution or compromise for such
and similar situations. AdResS allows for the dynamic change of resolution during a simula-
tion. Here, and in the rest of the thesis, resolution refers to the level of detail of a molecule.
A high-resolution representation is the most faithful to the original molecule’s structure and
a low-resolution representation simplifies the molecule, often to a single point in space. But
care has to be taken to not lose important details in the simpler version of the particle. By
doing so, simulations of even greater lengths or higher complexity are achievable. [10]

This thesis aims to explore an altered version of AdResS that does not enforce single
particle representations for the low-resolution molecules. Experiments in this thesis test if
this alteration impacts the level of accuracy. Additionally, we explore the implementation in
an existing large-scale MD-Platform, ls1-Mardyn, regarding implementational effort and
potential considerations. Finally, we analyse the performance of our implementation on
different supercomputers.

2

First, we discuss necessary background information about Molecular Dynamics and AdResS
in chapters 2 and 3. At the end of the introduction to AdResS, we also present different
weight function approaches. Afterwards, we briefly highlight other AdResS variations in
chapter 4. In the central part of the thesis, we first describe the architecture of our MD-
Platform, ls1-Mardyn, in chapter 5. Based on the architecture, our considered design and
accompanying decisions during the implementation process are highlighted in chapter 6.
Then the actual implementation is explained in chapter 7. As the last topic, we evaluate the
accuracy and performance of our AdResS implementation on different supercomputers, see
chapter 8.

2. Molecular Dynamics Basics

As molecular dynamics is classified by an N -body problem, a formal definition is given:
There exist N particles, with each having a position r, velocity v and mass m. For a particle
i ∈ 1, ..., N those are denoted by: ri, vi and mi. Let t0 be the starting time. The problem’s
objective is to find ri and vi for all bodies i across all time steps. This is done by computing
the interactions between all particles. The movement is governed by Newton’s equations of
motion:

dri
dt

= vi (2.1)

dvi
dt

= ai (2.2)

with ai being the acceleration of particle i. Due to the nature of these equations, an
approximating integration step is necessary, as we only consider discrete time steps. Following
Newton’s second law, the acceleration is acquired by:

ai =
Fi

mi
(2.3)

Fi is the acting force on particle i, which is composed of the contributions of the interactions
with all other particles j ̸= i:

Fi =
N∑

j=1,j ̸=i

Fij (2.4)

Fij depends on the application. As we consider molecular dynamics simulations, it is defined
as the negative derivative of a potential function U in regard to the distance rij between
particles i and j:

Fij = − dU

drij
(2.5)

The potential function describes the strength and kind of interaction between two particles.
Further detail are given in section 3.1. [16]

3

2. Molecular Dynamics Basics

A basic implementation for the main simulation loop, which adheres to the stated equations
for physical accuracy, requires the following steps:

1. Update the position of all molecules.

2. Compute the interactions between all molecules, i.e. for each molecule, calculate the
effect each other molecule has on it.

3. Update the velocity of all molecules.

With no further optimizations, the complexity of the force computation is within O(N2).
One common optimization strategy is to introduce a cutoff radius rc. In that case, forces for
particles that are farther apart than rc are no longer computed. Examples are the Linked
Cells and Verlet Lists methods. In Linked Cells, the simulation domain is split into cells of
size rc. During force computation, only the forces between particles within rc with respect
to the currently handled particle i are computed. This leads to a complexity of O(N). In
Verlet Lists, every particle manages a list of neighbours within a ”skin thickness” rs. This
approach requires fewer comparisons for whether the distance is less than rc. In exchange,
it uses more memory for potentially higher performance. [5, 13, 16]

Figure 2.1.: ”Methods for short-range force calculation for the molecule in red. The molecules
in blue are the interaction neighbours of the molecule in red. The distance to
molecules in yellow is checked by the respective algorithms to determine whether
they are neighbours of the molecule in blue or not. Distances to molecules in
grey do not need to be checked by the respective algorithms. (a) Direct N 2
calculation. (b) Linked Cells method. (c) Verlet Lists method” [16]
Source: Tchipev 2020 [16]

4

3. Introduction to AdResS

Figure 3.1.: Molecular representation of a hypothetical tetrahedral molecule.
CG: left H: middle FP: right
Source: Praprotnik et al. 2005 [10]

AdResS is a method which allows the change of the resolution of molecules during the
simulation to reduce computational effort and thus increase performance. Fundamentally,
it uses two representations for one kind of molecule. The first reflects the molecule in full
or higher detail. It can contain all atoms but may also use functional groups or similar.
Therefore, we call it Full Particle (FP) in the remainder of the thesis. Its counterpart
has a lower resolution and can just be represented by a ball in the coarsest case. We call
this representation Coarse Grain (CG). An example is given by an imaginary tetrahedral
molecule, which has first an FP representation and then is simplified into a single CG sphere,
in figure 3.1. The overlay of the molecules in the middle of the figure is explained in section
3.2.

3.1. Computational Model

As defined in equation 2.5, forces are computed through a potential function. This means
that we do not model molecules as a spatial arrangement of atoms but rather represent them
by tuning the parameters of potential functions. The potentials we use are of two kinds.
The first is the Lennard-Jones (LJ) potential. It represents the mass-carrying component
and thus acts in short ranges repulsively and in long ranges as Van-der-Waals forces. The
other kind falls into the electrostatics category and models different charges. Using these
potentials we construct molecules as an arrangement of “sites”. Each site can exert either
an LJ or charge potential.

For Full Particle resolution, no simplification is performed. Therefore, all molecules are
represented by all of their atoms. These are represented through the use of multiple sites.
The form of Lennard-Jones potential we use is the 12-6 Lennard Jones potential defined by:

ULJ
ij = 4ϵij

((
σij
rij

)12

−
(
σij
rij

)6
)

(3.1)

5

3. Introduction to AdResS

rij denotes the distance of site i to site j. ϵ and σ describe the properties of the underlying
atom or molecule. Thus, sites of the same molecules have equal values for ϵ and σ. In order
to interact sites of different kinds, these values are mixed using the following rules:

ϵij =
√
ϵi · ϵj (3.2)

σij =
σi + σj

2
(3.3)

Figure 3.2.: Potential and resulting force functions for Lennard-Jones and Coulomb potential.
Source: Source: Tchipev 2020 [16]

The electrostatic potential models charges through the Coulomb potential. When viewing
two point charges i and j, their potential is given by:

U qq(rij) =
1

4πϵ0

qiqj
rij

(3.4)

qi and qj are the charge amounts of their respective sites. rij again denotes the distance and
ϵ0 represents the vacuum permittivity constant. When charges are placed close to each other,
their interaction with other charges can be simplified. Two charges of different polarity but
of the same magnitude can be merged into a dipole. Analogously two dipoles can be merged
into a quadrupole. The dipole-charge U qµ and dipole-dipole Uµµ interaction are given by:

U qµ(rij , ωj) =
1

4πϵ0

qiµj

r2ij
· f1(ωj) (3.5)

Uµµ(rij , ωi, ωj) =
1

4πϵ0

µiµj

r3ij
· f2(ωi, ωj) (3.6)

rij is the distance, µj the dipoles charge and f1, f2 dimensionless functions of the dipoles

6

3.2. Coupling of Full Particle and Coarse Grain regions

orientation angle ω. Following the same pattern, the interactions with quadrupoles Q are:

U qQ(rij , ωj) =
1

4πϵ0

qiQj

r3ij
· f3(ωj) (3.7)

UµQ(rij , ωi, ωj) =
1

4πϵ0

µiQj

r4ij
· f4(ωi, ωj) (3.8)

UQQ(rij , ωi, ωj) =
1

4πϵ0

QiQj

r5ij
· f5(ωi, ωj) (3.9)

with Q being the quadrupole charge. Molecules have their central position. Relative to that,
sites are placed at a fixed offset. Therefore, no intra-molecular forces are computed.

With the full-resolution model defined, we need to find a model for the Coarse Grained
representation. First, we present the method commonly used in literature to highlight the
difference in our approach.

In the papers by Praprotnik et al. [10, 11, 12], the Full Particle model is mapped to a
Coarse Grained one by aggregating all sites into a single one, with the mass being the sum
of all previous sites. Thereby, in their work they reduce the number of rotational DOF and
site-site interactions. A new pair potential for this Coarse Grain model is created in the next
step. This is done by generating the full-resolution model’s centre-of-mass radial distribution
function RDFc.m.. Then, the potential is obtained by computing the distribution’s mean
force PMF(r).

U c.m.(r) ≈ PMF(r) = −kBT log(gc.m.
ex (r)) (3.10)

gc.m.
ex (r) is the RDFc.m., kB the Boltzmann constant and T the temperature. The resulting
potential is, however, only accurate for low simulation densities. Therefore, the PMF is only
used as the starting potential and must be tuned until the RDF analysis and pressure of
the Full Particle and Coarse Grain simulation match. Further details are in the papers by
Praprotnik et al. [10].

For our Coarse Grain model, we allow multiple sites, thus not enforcing the usage of a
single site. To map the full-resolution model to a Coarse Grain model consisting of many
sites, we consult the MolMod database [15]. It contains models of various resolutions of
many molecules based on empirical data. Therefore, we do not find new pair potentials but
reuse the full-resolution potentials instead.

3.2. Coupling of Full Particle and Coarse Grain regions

When considering a scenario in which a Full Particle region is in direct contact with a Coarse
Grain region, this change of resolution creates an artificial boundary. This may lead to a
flux of molecules towards a particular direction or simulation failure because there is no
smooth transition from one molecular representation to another. To remedy that, a Hybrid
region (H) is introduced. In this area, molecules are simultaneously treated as a weighted
combination of Full Particle and Coarse Grain. The weight ranges between 0 and 1 and is

7

3. Introduction to AdResS

defined as maximal when the molecule of interest is in a Full Particle region. It is minimal
when the molecule is in a Coarse Grain region. [10]

Therefore, the force computation between two molecules α and β changes to:

Fαβ = w(rα)w(rβ) · FFP
αβ + (1− w(rα)w(rβ)) · FCG

αβ (3.11)

FX
αβ =

∑
i∈site(α)

∑
j∈site(β)

Fiαjβ (3.12)

with FX
αβ being the force between molecules α and β of resolution X, which is comprised of

the sum of all pairwise site-site interactions. [10, 17]

Other implementations of the adaptive resolution scheme remove the rotational information
for Coarse Grain and Hybrid molecules, as their CG representation consists of only a single
site. This requires that once molecules cross the Hybrid Coarse Grain boundary, the
rotational information must be reintroduced to maintain a constant level of latent heat. It
is done by selecting a random FP molecule and copying its rotation. However, we do not
remove the rotational DOF and thus omit this process. [12]

3.3. Weight Function

In literature, it is often not discussed how the actual molecule position correlates to the
respective weight. Therefore, we compared different kind of implementations: Euclid,
Manhattan, Component and Nearest. All versions first check if the point of interest is within
the Full Particle or Coarse Grain region and return the edge values 1 or 0. The differences
lie in the handling of points within the Hybrid region.
We define the simulation space as a cuboid in R3 in the first octant. A Full Particle region
is a cuboid of arbitrary dimensions, and the associated Hybrid region is also a cuboid. The
rest of the simulation domain is assumed to be of Coarse Grain resolution.

Figure 3.3.: Left: Region description for weight analysis. Yellow (Coarse Grain) Red (Hybrid)
Green (Full Particle).
Right: 2D representation of the intersection of a line from the centre to the point
of interest with the Hybrid and Full Particle borders for Euclid and Manhattan.

8

3.3. Weight Function

The handling of points R in Hybrid regions is done as follows. Our goal is to fit variations
of cosine functions, such that they are monotonous and begin with one at the Full Particle
region and end with zero at the Coarse Grain region. For Euclid, a line is created originating
at the centre C of the Full Particle region and its direction vector is given by the vector
from said centre point to the point of interest, RC. Next, the intersection points IFP , IH
of this line with the Full Particle and Hybrid resolution cuboid are computed. With these
points, we define the quarter period of the cosine function as the Euclidian distance between
IFP , IH and the measured parameter as the Euclidian distance between IFP , R:

b = euc(IFP , IH) (3.13)

d = euc(IFP , R) (3.14)

Thus, resulting in the final formula:

wEUC = cos2(
π

2b
d) (3.15)

wEUC(R) = cos2(
π

2b
euc(IFP , R)) (3.16)

The Manhattan version is identical in all aspects, apart from the used distance metric, which
is the Manhattan norm:

b = man(IFP , IH) (3.17)

wMAN (R) = cos2(
π

2b
man(IFP , R)) (3.18)

Figure 3.4.: Left: 2D distance description for Component version. In a 3-dimensional case,
d2 would be parallel to the vector, which is normal to the plane created by d0
and d1.
Right: Simplified visualization for Nearest using a 2D example. The Hybrid
region has rounded corners. b is the full length from P to the edge of the Hybrid
region and d is the distance from P to R.

The Component-based approach checks each component of the point of interest R indi-
vidually. If Ri is within a Hybrid region, then a cosine function is applied to the distance
R, which protrudes out of the Full Particle region defined by its bounding corners CL and

9

3. Introduction to AdResS

CH . The cosine quarter period length b is the width of the Hybrid region of the respective
dimension i. The total weight is the product of the contribution of each dimension.

bi = hybridi (3.19)

di = max(max(CLi −Ri, 0),max(ri − CHi, 0)) (3.20)

wi(R) =

cos(
π

2bi
di), if Ri in hybrid

1, otherwise
(3.21)

wCOM(R) =
2∏

i=0

wi(R) (3.22)

For the Nearest version, the Hybrid regions’ bounding box is reinterpreted as a box with
rounded corners and edges to reduce imbalances of the Hybrid width for these special cases.
First, the point of interest R is projected onto a point P on the surface of the Full Particle
regions’ box, defined by CL and CH , such that the distance RP = d is minimal. The cosine
quarter period length b depends on whether R is on a side, edge or corner of the Hybrid
regions’ box. Therefore, we mix the involved lengths of the Hybrid shell by taking the square
root of the sum of their square and use the resulting value as b.

bi =

{
hybrid2i , if Ri in hybrid

0, otherwise
(3.23)

b =

√√√√ 2∑
i=0

bi (3.24)

di = max(max(CLi −Ri, 0),max(ri − CHi, 0)) (3.25)

d =

√√√√ 2∑
i=0

di (3.26)

wNEA(R) =

{
cos2

(π

2b
d
)
, if d < b

0, otherwise
(3.27)

In order to find the best choice for the weight function, we created a scenario in which
Cyclohexane (C6H12) molecules in a domain of 200 × 200 × 200 are first equilibrated for
10,000 time-steps using only Full Particle resolution. Then the simulation was restarted while
using AdResS with the different weight functions. We also added one weight implementation
that emulates a missing weight function. It treats all Hybrid molecules as pure Coarse
Grain ones, thus introducing a harsh boundary between FP and CG. Each simulation ran
for 100,000 time-steps, and the end states are illustrated in figure 3.5.

10

3.3. Weight Function

Figure 3.5.: Comparison of the end state of a simulation with C6H12 using different weight
functions after 100,000 time steps. Description from top left to bottom right:
used weight function 1) Euclid 2) Manhattan 3) Component 4) Nearest 5) No
weight 6) No AdResS. Colour Description: green = Full Particle, pink = Hybrid,
yellow = Coarse Grain

It is worth mentioning that we encountered many thermostat warnings during the run with
no weight. This is most likely due to molecules changing the resolution in close proximity
without a smooth transition, therefore temporarily experiencing high forces. Molecules did
not go out of bounds. However, it is possible for this to happen in other scenarios. To
prevent that, it is necessary to use a weight function. All end states were analyzed regarding
density distribution with a tool discussed in section 8.2. With the resulting densities, we
computed the relative error against the reference run with no AdResS. This was done for
every sample point in the domain. We used the sum of the errors across the entire region
and the Full Particle region as a quality metric. The resulting errors are displayed in table
3.1. As the nearest weight function was the best in both cases, we used this in our further
studies.

Region EUC MAN COM NEA OFF

All 48313 62347 58146 45050 50729

FP -46.7940 -32.0643 -4.3000 -0.5000 -60.3488

Table 3.1.: Overview of the sum of relative error in either full domain or Full Particle region
for each implementation. The relative error is measured against the reference
implementation.

11

4. Related Work

4.1. Grand Canonical AdResS (GC-AdResS)

When using AdResS, differences in chemical potential often occur in the boundary region of
two different resolutions for a single molecule type, leading to an unexpected density change.
Such behaviour is observable in our tests in section 8.2. By introducing a position-dependent
thermodynamic force, which acts as a correction force to achieve a correct equilibrium state,
the simulation can be considered Grand Canonical in a thermodynamic sense. It can be
argued that the CG region acts as a buffer or reservoir with which the FP region exchanges
energy and particles. [9, 18]

4.2. Open Boundary MD

Open boundary simulations, in which domain bounds are not periodic, but the domain
exchanges molecules with a surrounding system, can be achieved using AdResS. The reasoning
behind this is that AdResS can gradually change resolutions and therefore introduce arbitrary
molecules, which do not exert high forces in the CG region. Furthermore, it can be viewed
as an alteration to GC-AdResS in which the GC region is given the role of an interface to
the outside buffer. This approach, OBMD, can be extended to fluid dynamics (CFD) in the
outer region, in which, e.g., Navier-Stokes equations define the movement of fluid. [9]

4.3. Hamiltonian AdResS

In common AdResS, Newton’s third law is enforced throughout the simulation. Assuming
a force-based approach, weights are applied to the interacting forces. This prevents the
formulation of an interpolation scheme for potential energy using a function depending on
the position. Therefore, the accuracy of the computed potential energy is reduced. One
mitigation method is using a global Hamiltonian function while relaxing the constraint. This
is known as H-AdResS. [9, 8, 4]

12

Part II.

Implementation in ls1-Mardyn

13

As the main topic of this thesis is the exploration of AdResS in ls1-Mardyn, this part
focuses on the implementation. First, we briefly introduce the architecture of ls1-Mardyn
and the relevant aspects regarding AdResS. Since we did not design ls1-Mardyn from the
ground up, design decisions about how to add this new feature need to be clarified. Then
we show our actual implementation and evaluate it considering accuracy and performance.
The evaluation uses different simulations, which are described in full detail.

Figure 4.1.: Simplified overview of ls1-Mardyn architecture as UML diagram.

5. ls1-Mardyn Architecture

Like the majority of MD-Simulation software, ls1-Mardyn has the following components:
Simulation, Particle Container and Integrator. Cell Processor and Pair Handler

are used for traversing all molecules and molecule pairs generically. In addition, an event
system for plugins is implemented, in which every plugin is notified at specific points during
each time step. A structural overview is given in the UML diagram in figure 4.1.

5.1. Simulation

The Simulation class is the main component that ties everything together. It manages
memory for most of the other components and primarily handles the simulation loop. In a
simplified view, the main loop first initialises the new time-step and all related events. Then

14

5.2. Domain Decomposition

the Particle Container is updated. This includes Domain Decomposition and optional
load rebalancing. Then all forces are computed. In the end, an integration step is performed,
and thermostats are applied. A more in-depth description of the simulation loop is shown in
figure 5.1.

Figure 5.1.: More detailed diagram of all steps within a single pass of the main simulation
loop. The parallelograms describe function calls from Simulation. The arrows
indicate with their position the time when an event is created in Simulation.
The hexagons are the receivers of the events.

5.2. Domain Decomposition

Because ls1-Mardyn can run on multiple nodes, the workload must be split across those.
This is done by Domain Decomposition by dividing the simulation space into smaller
chunks and letting each node simulate one of those subdomains. DomainDecompBase is
the general interface enabling this feature. Different options are selectable at runtime.
DomainDecomposition splits the simulation space equally and does not provide any load-
balancing functionality. GeneralDomainDecomposition splits the space according to the
timing information of each node using the ALL library in order to mitigate imbalances.
KDDecomposition rebalances by constructing a KD-Tree based on the molecule counts of
each node.

5.3. Integrator

To advance time in ls1-Mardyn, integrators are used. These update the velocity and position
of all molecules. The implemented Integrator is based on the leapfrog algorithm. Therefore,
the integrator needs to be called twice per simulation step, once in the beginning and once
after the force computation.

5.4. Particle Container

Molecules are stored in a Particle Container throughout the simulation. This interface
provides functionality for molecule insertion and extraction as well as general methods to
traverse the data structure. All implementations are assumed to split the domain into
cells, such as in the Linked Cells and Verlet Lists algorithm. Therefore, the interface

15

5. ls1-Mardyn Architecture

provides methods that traverse all cells based on the selected strategy and use the provided
Cell Processor to handle the individual cells and cell pairs. The implemented Particle

Containers are LinkedCells, which implements the algorithm of the same name, and the
AutoPas container, which can either use Linked Cells or Verlet Lists internally and also
change the traversal strategy during runtime for better performance.

5.5. Cell Processor

The Cell Processor interface allows for an initialisation and end step for each traver-
sal. During traversal methods that process cell pairs, single cells or similar ones are
called. ls1-Mardyn uses these Cell Processors in multiple ways. The main use case is
for force calculation. The LegacyCellProcessor, which does not use vectorization, the
VectorizedCellProcessor and VCP1CLJRMM are such examples. The latter also uses vector-
ization but is utilised in reduced memory consumption mode. However, Cell Processors

can also be used to gather auxiliary information like in the FlopCounter, ODFCellProcessor
or RDFCellProcessor.

5.6. Pair Handler

As the LegacyCellProcessor does not use vectorization, interactions of molecule pairs do
not directly use the backing data fields but rather the abstraction layer provided by the
Molecule interface. This is done by the PairHandler interface.

16

6. Particle Container Design

With ls1-Mardyn being a software many years in development with a large codebase, adding
AdResS required several design decisions. Critical factors were encapsulation, potential
performance, ease of implementation and invasiveness into existing code.

6.1. Approach: 1 Particle Container

The initial idea in this approach was to use a single particle container, use the existing
plugin support and not change any other code. We succeeded in doing so by writing a plugin
which follows the given procedure:

1. It is called the first time before force computation. During this step, all molecules are
traversed, and it is checked if the resolution of the molecule must be changed.

2. The second call occurs after the ls1-Mardyn native force components compute all forces.
The plugin then had to undo all computed forces, which involved Hybrid molecules,
because the native implementations were not aware of the AdResS molecule model
and weight functions.

3. As the next step, the plugin recomputed those interactions with respect to AdResS.

Since an AdResS-aware ParticlePairHandler was implemented for the next approach, we
decided to reuse it in this approach. This could only be done by setting the CellProcessor in
the Simulation object to a LegacyCellProcessor, which uses our ParticlePairHandler.
Due to the design choice of keeping changes to existing code at a minimum, this reassignment
must be done in the AdResS plugin. Therefore, a single setter for the CellProcessor was
added to the Simulation class. By doing so, all forces are already computed correctly
during the native ParticleContainer traversal, resulting in no further need for any force
computation in the plugin.

6.2. Approach: 3 Particle Container

The alternative was to use three particle containers, one for each AdResS resolution. Here,
molecules belonging to Full Particle, Hybrid and Coarse Grain resolution are in their
respective containers. This idea was pursued because, at the time of design, the initial
approach did not use the ParticlePairHandler and required the recomputation of forces.
We created the three-container approach to eliminate that and increase the ease of tracking
individual resolutions.
Major refactoring was necessary as ls1-Mardyn was not designed to use multiple Particle-
Containers:

17

6. Particle Container Design

1. For the force calculation, three CellProcessors and Integrators were created, one
for each container.

2. For the CellProcessors responsible for the Full Particle and Coarse Grain resolution,
we could reuse the VectorizedCellProcessor, as no information about AdResS is
needed for those molecules.

3. The Hybrid container required the development of a ParticlePairHandler, which
was used by a LegacyCellProcessor.

4. A plugin was still developed because AdResS functionality could be enabled or disabled
at runtime. The plugin handled the remaining interactions of molecules between the
different ParticleContainers. It also moved molecules between containers when the
molecule resolution changed.

6.3. Evaluation

The first approach was much easier to implement, as it did not require many changes to
existing code. Therefore, using one particle container is better regarding ease of implemen-
tation and invasiveness into existing code. Considering encapsulation, the first approach
only required the addition of a setter of the CellProcessor. However, the second approach
required many other changes, which made it worse in this aspect.

In our preliminary investigations, the three-container version was not faster than the
other approach in any scenario. The main reason for that is most likely the suboptimal
parallelization method used for the force computation in the plugin and the inherent overhead
of traversing the simulation domain multiple times. We picked a slicing approach to compute
forces in parallel for ease of implementation due to the lack of regional cell-based iteration
across ParticleContainers. Furthermore, moving data from one container to another also
decreased performance.

Additionally, scaling across multiple nodes was worse, as more overhead and communi-
cation were created due to the higher amount of containers. It should also be noted that
we achieved high but not complete physical correctness with three containers. We assume
that this is due to a bug in the code, which we could not find. Because ls1-Mardyn was not
designed to use three ParticleContainers, finding errors was very time-consuming. Hence
we decided to discontinue the three-container version and only work with the first approach.

18

7. AdResS Implementation

In the previous chapter, we discussed our approach and how it is designed. In the following
sections, implementational details are explained.

7.1. Data Representation

The adaptive resolution scheme requires information about the regions where a certain
resolution should be used and some method to represent the different molecule resolutions.
Regional data is stored in a vector of FPRegion objects. These represent a box for the
full-resolution region by storing the lower and upper bounds. Additionally, they contain
information on the width of the Hybrid region, which is a shell around the full-resolution
box. The size of the Hybrid shell may vary in each dimension. The FPRegion struct in
listing 7.1 also provides functions to compute intersections.

1 struct FPRegion {
2 // FP box
3 std : : array<double , 3> low ;
4 std : : array<double , 3> h igh ;
5 // H box
6 std : : array<double , 3> lowHybrid ;
7 std : : array<double , 3> highHybrid ;
8 // . . . methods
9 } ;

Listing 7.1: FPRegion struct.

For force and weight computation, we require some auxiliary functionality. This is described
in the following enumeration:

1. FPRegion::isInnerPoint checks if a provided point is within a specified box, defined
by its lower and upper bounds.

2. FPRegion::computeIntersection computes the intersection point of a line, whose
directional vector is defined by a provided point in 3D space and the centre of the
FPRegion box, with either the box that defines the full-resolution region or the outer
shell for the Hybrid region depending on the input parameter.

3. FPRegion::isRegionInBox checks if the box representing the Full Particle area is
entirely inside a provided box, defined by its lower and upper bounds.

4. As ls1-Mardyn uses periodic bounds, we need to handle that. Users need not consider
edge cases when specifying an FPRegion that crosses domain bounds in an input file.
That pushes the responsibility to the implementation. Therefore, FPRegion boxes wrap
around the simulation space when they cross domain bounds. To check whether a given
point is within either one of the boxes defined by an FPRegion object that is potentially

19

7. AdResS Implementation

wrapped around the simulation domain, FPRegion::isInnerPointDomain wraps the
region in all possible forms across domain bounds, computes the boundary coordinates
of all boxes created after wrapping and checks with FPRegion::isInnerPoint if the
provided point is within any of these boxes.

In ls1-Mardyn, all molecules are stored in the Particle Container. For higher memory
efficiency, the molecular structure and site information is not stored in every molecule but
instead in a global Component object, which all Molecule instances point to. Therefore, a
global vector contains one Component object for each molecule type. In our implementation
of AdResS, we reused this and did not implement a new Molecule class for the different
resolutions. Instead, we define a new Component for the three resolutions for each molecule
type. The resolution change is done by updating the Molecule object’s Component pointer.
The Component vector is indirectly owned by the Simulation object.

7.2. Plugin

The plugin class bundles all AdResS-related features together. It contains:

1. Pointer to the ParticlePairsHandler

2. Vector of all FPRegions

3. Pointer to the Particle Container

4. Pointer to the vector of all Component instances

5. Mapping from Component IDs to their respective resolution

6. Pointer to the globally valid Domain object

7. Buffer for macroscopic value computation

8. Pointer to the selected weight function

All weight functions are implemented in this class. The weight implementation is se-
lected while reading the simulation’s configuration file, and FPRegions are constructed
and stored in the buffer. During this step, the PairHandler, CellProcessor, and option-
ally DomainDecomposition are set accordingly. In later initialisation, the mapping from
Component ID to resolution is set up, and the remaining fields are initialised.

The event call beforeForces traverses all molecules and checks if their resolution has
changed. This check must be done at this event because, after earlier events, the Integrator
moves molecules, which can invalidate the current resolution. At later points, forces
are computed, which require the correct molecular representation. If a molecule moves,
the level of detail can change, which may require an update of the Component pointer.
AdResS::checkMoleculeLOD does this by comparing the molecules mapped Component ID
to a specified target resolution. A simple offset is computed to acquire the correct component
pointer as Components of the same molecule type are inserted into the global vector in the
order FP, H, CG.

20

7.3. Force Computation

7.3. Force Computation

All forces are computed during the traversal of the Particle Container. As understanding
and reimplementing the VectorizedCellProcessor went beyond our scope, we reused the
LegacyCellProcessor. This, in turn, uses the AdResSForceAdapter, which implements
the ParticlePairsHandler interface, to compute forces between individual molecules. The
interface defines the functions: init, finish and processPair. The first two manage
buffers for multi-threading. The last is an adapter between the Cell Processor and
the internal implementation. The force computation is delegated to the respective back-
end, which depends on the type of molecules. Interacting molecule pairs without Hybrid
molecules can be handled by the native implementation. Pairs with Hybrid molecules
must be handled according to the AdResS force computation. If only one molecule is
Hybrid, then simplifications apply. We explain the functionality of these backends based on
AdResSForceAdapter::potForceFullHybrid as the other functions are either the native
implementation or minor variations of this function.
According to equation 3.12, all sites of full resolution interact with each other, resulting in
one part of the total force. This part must be multiplied by the product of the weights. The
analogue is true for the Coarse Grain sites, except for the inverted weight.
These exact steps are followed in the function. First, all LJ sites are processed. It is checked
if both sites are either full resolution or Coarse Grain (exclusive). Then the potential and
force between those two sites are computed. The appropriate weight is multiplied by the
partial force and potential depending on the resolution. This is done at this point, as the
cumulative force for one molecule is the sum of the forces of all sites. Therefore, the weight
factor can be distributed into each term. By doing so, we can reuse most of the code of the
native ParticlePairsHandler. Other site combinations are skipped. The same is done for
all polar site combinations. An example is given in listing 7.2.

1 wi = AdResS . weight (Mol1) ;
2 wj = AdResS . weight (Mol2) ;
3 for s i in 1 . . . Mol1 . s i t e s () do
4 for s j in 1 . . . Mol2 . s i t e s () do
5 i f Mol1 . s i t e (s i) . i sCoarseGra ined ()
6 xor Mol2 . s i t e (s j) . i sCoarseGra ined () then
7 sk ip
8 end i f
9 Force , Po t en t i a l = computePot (Mol1 , Mol2 , s i , s j) ;
10 i f Mol1 . s i t e (s i) . i sCoarseGra ined () then
11 Force ∗= 1 − wi ∗ wj ;
12 Poten t i a l ∗= 1 − wi ∗ wj ;
13 else
14 Force ∗= wi ∗ wj ;
15 Poten t i a l ∗= wi ∗ wj ;
16 end i f
17
18 Mol1 . addForce (Force , s i) ;
19 Mol2 . subForce (Force , s j) ;
20 end
21 end

Listing 7.2: Pseudo code for generic potential force calculation.

21

8. Accuracy and Performance

8.1. Benchmark Scenario

To evaluate our implementation in terms of accuracy and performance, we constructed
different benchmark scenarios focusing on different aspects. For all simulations, we used
an interface scenario of oxygen (O2) with either a larger cyclohexane (C6H12) or a smaller
methane (CH4) combustible molecule. This was based on the studies by Nitzke et al. [7].
This means all simulation domains have a similar structure. The left half of the domain is
filled with O2 and the right half with fuel. Properties such as domain size, Full Particle region
position and Hybrid dimensions vary between the different scenarios. In all configurations
for the molecular representation of C6H12, we used a 6-site model for FP and a single site
for CG. For CH4, we used the same single site model for CG and FP because the MolMod
database [15] did not contain alternatives. The O2 molecule contained five sites in FP and
three in CG. Based on these, we initialised all simulations according to the following steps:

1. Create a layer of O2 and the fuel in separate simulations.

2. Let those equilibrate in 10,000 time-steps only using Full Particle resolution.

3. The main configuration uses the two resulting phase-space files and merges them into
one larger simulation.

The runs to determine accuracy were set to 100,000 time-steps, whereas all others used
10,000 steps.

Scenario: BASE

We have two main kinds of scenarios. In the first (BASE), we created a cubic domain and
used molecule counts ranging from 4.0e+3 to 1.0e+8. We also matched the system’s pressure
to 5 MPa for C6O12 and 0.4 MPa for CH4.[7] As the number of molecules altered, the
domain size was adjusted such that the pressure remained approximately constant while
retaining a cubic shape. AdResS was set up such that in the middle of the domain, where
the different molecules interface, is a slice of width 40 as the Full Particle region. On the left
and right is a slice of width 40 for the Hybrid region. The remaining area of the domain is
Coarse Grain. Figure 8.1 gives an example demonstrating the proportions in x-Axis. These
simulations were run for accuracy and performance with fixed Full Particle and Hybrid
region width but with varying node counts.

22

8.1. Benchmark Scenario

Figure 8.1.: Schematic 2D representation of the BASE scenario. Blue represents the oxygen
and red the fuel. The dimensions are exaggerated for representation purposes.
This horizontal subsection of the cube should illustrate the general structure.
CG: Coarse Grain H: Hybrid FP: Full Particle

Scenario: HYBRID

To determine the effects of the Hybrid region on performance and accuracy, we created
another scenario (HYBRID) by changing the BASE run that had 1.0e+6 molecules. The
domain size and molecule densities are unchanged. The only variable is the width of the
Hybrid region. As before, we have a slice of width 40 in the middle as the Full Particle
region. The Hybrid slice’s width was set to 10% to 90% of the length of the distance from
the beginning of the simulation domain to the beginning of the FP region along the x-axis.
Therefore, the only changes occur in the AdResS configuration. This is shown in figure 8.2.

Figure 8.2.: Schematic 2D representation of the HYBRID scenario. Blue represents the
oxygen and red the fuel. The dimensions are for representation purposes. This
horizontal subsection of the cube should illustrate the general structure. The
maximum Hybrid length begins at the start of the domain and ends at the start
of the Full Particle region. The Hybrid size used for the individual simulations
ranges from 10% to 90% of that length. The remaining area on the outer sides
has Coarse Grain resolution. CG: Coarse Grain H: Hybrid FP: Full Particle

Scenario: XSCALE

The pressure was neglected in the second kind (XSCALE) but was still approximately
accurate as the initialisation density did not change. Here the focus was on the effects
of increasing the simulation domain while changing the proportion of Full Particle and
Hybrid regions to Coarse Grain regions. This was considered since the interface scenario
does not reflect a common use case regarding the proportion between CG and FP molecules.
Examples are simulations of solvation processes of proteins in water, in which the Full
Particle and Hybrid region are only a small fraction of the entire domain, while the majority

23

8. Accuracy and Performance

is Coarse Grain. [14, 9] The domain structure is similar to the prior simulations. In the
middle is the slice of width 40 as the Full Particle region, which is surrounded by slices of
equal size left and right as the Hybrid region. The changing property here is the size of the
Coarse Grain region, which ranges from 100 to 1,000 units on either side. This is shown in
figure 8.3.

Figure 8.3.: Schematic 2D representation of the XSCALE scenario. Blue should represent
the oxygen and red the fuel. The dimensions are for representation purposes.
Here the Coarse Grain region is scaled from 100 units up to 1,000. CG: Coarse
Grain H: Hybrid FP: Full Particle

24

8.2. Accuracy

8.2. Accuracy

We analysed the accuracy by generating output in the vtk format, on which we applied a
simplified RDF function. Our analysis program first splits the domain into bins. This can
be done along one or any selection of the dimensions. For the following accuracy analysis,
we split along the x-axis. Afterwards, the partial density of each molecule type is computed
for each bin by counting the respective molecule type count and then dividing by the bins’
volume. We did this analysis for each run, with and without AdResS. Afterwards, we
computed the difference between the AdResS bin densities to the reference.

First, we discuss the results of the BASE scenario. The densities of the CH4 runs are
displayed in figures 8.4, 8.5. In the runs, AdResS and Reference, with 4.0e+3 molecules, the
density distribution of both molecule types display a random behaviour with no discernible
pattern. With 1.60e+4 molecules, an interleaved cosine structure starts to appear. This
persists with higher numbers of molecules. Overall, the AdResS results are quite similar
to the reference ones. Especially the interface region, which was in full-resolution, seems
to follow the same trajectory. One issue is that for 2.56e+5 and 1.0e+6 molecules, the O2

density drops and rises rapidly precisely at the boundary point in the AdResS runs. This
behaviour can also be seen with a smaller amplitude in the reference’s density distribution
for 2.56e+5 molecules, which leads to the assumption, that such fast changes in curvature
in the reference density are exaggerated through our AdResS implementation in the Full
Particle region.

Figure 8.4.: Density distribution of CH4 runs with 4.0e+3 and 1.60e+4 molecules (ordered
top to bottom). Left column: AdResS, Right column: reference. Background:
Red = Coarse Grain, Green = Hybrid, Blue = Full Particle

25

8. Accuracy and Performance

Figure 8.5.: (Density distribution of CH4 runs with 6.40e+4 through 1.0e+6 molecules
(ordered top to bottom). Left column: AdResS, Right column: reference.
Background: Red = Coarse Grain, Green = Hybrid, Blue = Full Particle

The difference between the AdResS and reference data, displayed in figure 8.6, also
suggests that the accuracy increases with rising molecules count. For 4.0e+3 and 1.6e+4
molecules, the difference is in the same order of magnitude as the actual densities, indicating
a high deviation. However, starting with 6.40e+4 molecules, the difference becomes less
and for 1.0e+6 molecules, it is by one order of magnitude less in the Full Particle region.
We presume the relatively high accuracy is linked to the used molecule model, as the CH4

molecule was not affected by AdResS. At this point, it is worth mentioning that the empty
space in the difference graph of the 1.0e+6 run is due to the nature of our analysis. When
not both of the densities for a bin of the AdResS and reference run were non-zero, we
removed that data point.

26

8.2. Accuracy

Figure 8.6.: CH4: Difference of densities between AdResS and reference, computed at
positions where both inputs had densities not equal to zero. This was done to
see the error and not input data. Background: Red = Coarse Grain, Green =
Hybrid, Blue = Full Particle

The results of the C6H12 runs are displayed in figures 8.7 and 8.8. When comparing the
graphs for each molecule count, the accuracy increases with higher particle counts but starts
with significantly higher differences. The AdResS results show strong deviations from the
reference for lower molecule counts. The run with 4.0e+3 molecules has a “spiky” profile
in the reference. This is also reflected in the AdResS runs. However, the amplitude is
approximately twice as large. Similar to the CH4 run, the interleaved cosine structure starts
appearing in the reference run with 1.6e+4 molecules. However, this is not apparent while
using AdResS. To a certain extent, it only displays some correlation to the reference.
Additionally, the high peaks around the borders of the Full Particle region contribute to an
error high enough such that the density profile in the interface region is unusable. Starting
with 6.4e+4 molecules, the amplitude of the peaks is reduced far enough such that the

27

8. Accuracy and Performance

interface’s density profile is comparable. However, the same change in curvature in the
middle as the CH4 runs is observable. This trend continues with more molecules. As the
density profiles stabilize and show the interleaved sine-wave pattern for 6.4e+4, 2.56e+5,
and 1.0e+6 molecules, it becomes apparent that the interactions between CG C6H12 and
CG O2 result in a drop in the density of C6H12 in the CG region. In the FP region, the
interface density profile has higher similarity and follows the same trajectory. Only the
absolute density is slightly lower. This is likely due to the high differences in the C6H12

representation. We attribute the differences between AdResS and reference to dissimilar
molecular representations, even though those were taken from the MolMod database [15].

Figure 8.7.: Density distribution of C6H12 runs with 4.0e+3, 1.6e+4, and 6.40e+4 molecules
(ordered top to bottom). Left column: AdResS, Right column: reference.
Background: Red = Coarse Grain, Green = Hybrid, Blue = Full Particle

28

8.2. Accuracy

Figure 8.8.: Density distribution of C6H12 runs with 2.56e+5 and 1.0e+6 molecules. Left
column: AdResS, Right column: reference. Background: Red = Coarse Grain,
Green = Hybrid, Blue = Full Particle

The findings mentioned for the difference between AdResS and reference density for CH4

also apply to C6H12, as displayed in figures 8.9 and 8.10. Additionally, the “spikes” are also
visible in the C6H12 differences. Also problematic is that high differences exist precisely in
the Full Particle region. Therefore, without further adjustments, we conclude that it is not
viable to directly query the MolMod database [15] for different molecular representations
concerning large molecules. Either further tweaking is needed or the regular approach of
sampling a new potential function must be undertaken. This may work for small molecules
such as O2 or functional groups or similar size.

Figure 8.9.: C6H12: Difference of densities between AdResS and reference, computed at
positions where both inputs had densities not equal to zero. Background: Red
= Coarse Grain, Green = Hybrid, Blue = Full Particle

29

8. Accuracy and Performance

Figure 8.10.: C6H12: Difference of densities between AdResS and reference, computed at
positions where both inputs had densities not equal to zero. This was done to
see the error and not input data. Background: Red = Coarse Grain, Green =
Hybrid, Blue = Full Particle

Figure 8.11.: Density distribution of HYBRID C6H12 runs with 10% Hybrid width (ordered
top to bottom). Left column: AdResS, Right column: reference. Background:
Red = Coarse Grain, Green = Hybrid, Blue = Full Particle

30

8.2. Accuracy

Figure 8.12.: Density distribution of HYBRID C6H12 runs with 20% to 50% Hybrid width
(ordered top to bottom). Left column: AdResS, Right column: reference.
Background: Red = Coarse Grain, Green = Hybrid, Blue = Full Particle

31

8. Accuracy and Performance

Further insight into accuracy is given by checking the HYBRID runs, which are shown in
figures 8.11-8.14. Here we see the effects of the Hybrid width on accuracy. As the C6H12

BASE runs displayed higher differences, we only focus on the C6H12 HYBRID runs. The
graph with 10% H-width shares the highest similarities with the BASE scenario because
the width of the Hybrid region is very similar. For the runs with an H-width of 30 to 50,
the behaviour of the AdResS density distribution in the Full Particle region shares higher
similarities with the reference. The amplitude and intersection point are approximately the
same. In the Hybrid and Coarse Grain regions, the accuracy is lower. Especially when the
resolution changes, such as from FP to H and H to CG, there is a steep change in the density
despite the usage of a weight function, which should create a soft transition from one region
to another. This is prominent in the tall spike on the right of the fuel’s Hybrid region.

Figure 8.13.: Density distribution of HYBRID C6H12 runs with 60% to 80% Hybrid width
(ordered top to bottom). Left column: AdResS, Right column: reference.
Background: Red = Coarse Grain, Green = Hybrid, Blue = Full Particle

32

8.2. Accuracy

Figure 8.14.: Density distribution of HYBRID C6H12 runs with 90% Hybrid width. Left
column: AdResS, Right column: reference. Background: Red = Coarse Grain,
Green = Hybrid, Blue = Full Particle

Starting with a H-width of 50%, there are peaks in the interface point in the middle of
the domain. These become stronger for higher molecule counts. Up to an H-width of 60%,
the density distribution for AdResS in the Full Particle and Hybrid region are rounded and
follow the reference. However, after that, the graph of AdResS becomes more rectangular
and has a “spiky” profile on the right half.
Based on these findings, we conclude that there is an optimal width for the Hybrid region in
terms of accuracy. This presumably depends on the used molecules and must therefore be
first found experimentally. In our simulation, this optimum is at a Hybrid width of 40%
when we consider the similarity of AdResS to reference in the Full Particle and Hybrid
region.
Overall combining the results of both discussed scenarios we derive that our approach is
viable when an appropriate width for the Hybrid region is used and, secondly, the application
of AdResS only changes small molecules or functional groups of larger molecules.

33

8. Accuracy and Performance

8.3. Performance

As the first point, we must mention, for clarification purposes, that all AdResS simulations
used our implementation based on the LegacyCellProcessor, which does not use vectoriza-
tion. In contrast, all reference simulations were run using the VectorizedCellProcessor,
which uses SIMD. In the following, we analyse the speedup of our implementation while
changing different parameters. Here we check the results of all scenarios (BASE, HYBRID
and XSCALE). We ran the benchmarks on two supercomputers to see how our implementa-
tion performs on different hardware.
The first system is HSUper, located at HSU in Hamburg. It is based on the Intel Icelake
architecture and has up to 576 CPU oriented compute nodes. Each node has 256 GB of
RAM and two sockets, each containing an Intel® Xeon® Platinum 8360Y processor with 36
cores or 72 cores per node.1

The other system is CoolMUC-2, located at LRZ in Munich. Its architecture is older and is
based on Intel Haswell. It has in total 812 nodes with 64 GB of RAM each. Every node has
2 Intel® Xeon® E5-2697v3 processors with 14 cores or 28 cores per node.2

8.3.1. Results on HSUper

First, we analyse the strong scaling performance of the C6H12-BASE scenario. Initially, we
ran tests for C6H12 with molecule counts ranging from 4.0e+3 to 1.0e+6. The strong scaling
graphs are displayed in figures 8.15 and 8.16. As these did not saturate the computational
limits on HSUper, we added runs with 1.0e+7 and 1.0e+8 molecules. In the reference runs,
we can observe that for 4.0e+3 and 1.6e+4 molecules, scaling beyond one node retrieves
diminishing returns. This is due to the inadequate workload being distributed on many
processes, which increases the overhead. The graphs for 6.4e+4, 2.56e+5 and 1.0e+6
molecules rise linearly initially and then reach a plateau. In the beginning, the linear rise
is likely due to the big enough workload, such that distributing it on more processes fully
outweighs any overhead. Worth noting is that the performance does not drop significantly
when scaling far beyond the point, after which no further performance gain was achieved.
When the plateau is reached, the overhead dominates. We assume the speedup does not
drop for the node counts we used because the nodes are fast enough to compensate for the
extra overhead. However, it is probable that with higher node counts, the speed also drops.
The runs with 1.0e+7 and 1.0e+8 molecules scale approximately linearly. The linear scaling
should also end with higher node counts, but we did not run these tests. The highest reached
speedup was with 1.0e+8 molecules on 128 nodes with a factor of about 100. Additionally,
the achieved speedups were higher when the simulation contained more molecules because
each node had more work, which could run in parallel. The usage of AdResS did not change
this behaviour. Only the gaps between the graphs are slightly larger. We attribute these
minor changes to the change in the molecular model.

1https://www.hsu-hh.de/hpc/en/hsuper/
2https://doku.lrz.de/coolmuc-2-11484376.html

34

8.3. Performance

Figure 8.15.: Performance on HSUper: BASE scenario for C6H12 with 4.0e+3 to 1.0e+8
molecules on 1 to 128 nodes using AdResS

Figure 8.16.: Performance on HSUper: BASE scenario for C6H12 with 4.0e+3 to 1.0e+8
molecules on 1 to 128 nodes using reference implementation.

35

8. Accuracy and Performance

When comparing the MUPS of using AdResS to the reference, runs with lower molecule
counts see a drop in performance, such as with 4.0e+3 and 1.6e+4 molecules. In this case,
the introduction of AdResS increased the overhead. In combination with the reduction of
total needed force computations, this led to worse strong scaling behaviour. All other runs
achieved a maximum speedup of 1.4. As mentioned, we added the simulations with 1.0e+7
and 1.0e+8 molecules because the computational limits were not saturated. This, in turn,
was done because we saw higher speedup on our private machines. However, as observable
in figure 8.17, this had no impact on HSUper. We assume that the overall small speedup
is because the reference used the AVX512 instruction set and thus had a higher baseline
performance.

The simulations with CH4 have similar strong scaling properties as the C6H12 runs be-
cause the number of molecules did not change, which is the primary influences on the amount
of work. However, the speedup of AdResS compared to the reference has its maximum at
1.2 but is, in most cases, around or less than one due to the reduction of total site-site
interactions. This is shown in figures 8.18 and 8.19.

Figure 8.17.: Speedup achieved using AdResS compared to Reference in BASE scenario
using 4.0e+3 to 1.0e+8 molecules for C6H12

36

8.3. Performance

Figure 8.18.: Performance on HSUper: BASE scenario for CH4 with 4.0e+3 to 1.0e+8
molecules on 1 to 128 nodes. Top: AdResS Bottom: reference)

37

8. Accuracy and Performance

Figure 8.19.: Speedup achieved using AdResS compared to Reference in BASE scenario
using 4.0e+3 to 1.0e+8 molecules with CH4.

To wrap up the finding of our BASE scenario, we conclude that in terms of performance,
this scenario was not optimal and that our AdResS approach did not yield significant
improvements.

Next, we analyse the performance of the HYBRID scenario. We created this scenario
to examine if the width of the Hybrid region has an impact on accuracy. According to our
findings, this is indeed the case. Therefore, we also analyse the performance here to see how
high the tradeoff between accuracy and speed is. According to the speed data of the C6H12

and CH4 run, which is displayed in figure 8.20, the performance impact follows expectations.
The smaller the Hybrid region, the higher the performance because the CG region is larger.
This leads to fewer site-site interactions and, therefore, fewer computations are needed.
However, further increments do not affect performance much more once a specific width
is reached. The difference between C6H12 and CH4 is that the gaps between the different
Hybrid sizes are smaller, likely due to less total workload for CH4.

38

8.3. Performance

Figure 8.20.: MUPS achieved of using AdResS in the HYBRID scenario for different Hybrid
widths ranging from 10% to 90%. Top: C6H12 Bottom: CH4

39

8. Accuracy and Performance

Figure 8.21.: MUPS achieved using AdResS in the XSCALE scenario for different Coarse
Grain region sizes ranging from 100 to 1000 units. Top: C6H12 Bottom: CH4

40

8.3. Performance

The remaining scenario is XSCALE. As this represents a more natural use case of AdResS,
the resulting speedups may better reflect the actual performance gain. We omit the strong
scaling here since it was highlighted in the other simulations in great detail. Therefore,
we only check the performance gain using AdResS compared to the reference. Overall,
the performance is higher with larger Coarse Grain regions. In the case of C6H12, the
highest achieved speedup was around a factor of 1.55 on 80 nodes. We explain this higher
performance by having reduced the amount of work on each node by a higher constant
factor. As the force computation’s complexity is linear in the number of molecules, this
results in good scaling and higher performance. The performance of AdResS drops below
the reference only when the CG region is not large enough. In the case of CH4, the prior
speedup of 1.2 was not even reached, and in general, it performed worse. We assume this is
the case because adding more CH4 molecules does not increase the workload enough, as the
Coarse Grain and Full Particle representations use the same molecular representation.

8.3.2. Results on CoolMuc 2

In the results for CoolMuc 2, we only present the performance of the BASE simulation
using 2.56e+5 and 1.0e+6 molecules because all other aspects are more algorithm dependent,
and our intention is not to benchmark the systems, but only the implementation. In the
strong scaling graph of the AdResS runs, which are displayed in figure 8.22, the speedups
rise approximately linearly, then reach their respective peaks and drop down again. This
behaviour is also observable for the reference runs. The linear scaling and peak explanation
is analogous to the one for HSUper. The now visible drop in speedup is probably due to
CoolMuc 2 being an older system, such that it could not compensate for the extra overhead.
However on this system, the reference run achieves the higher maximum speedup of a factor
of about 180, whereas the AdResS run only achieved about 130. These highest speedups were
both produced by the runs with 1.0e+6 molecules with C6H12 at 48 nodes. The maximum
speedup of the AdResS run is lower than the reference because the AdResS run had a higher
base performance on a single node.

The comparison of the AdResS performance to the reference in figure 8.23 shows that
only the run with 1.0e+6 molecules with C6H12 maintained a speedup of a factor greater
than 1. It also had the highest speedup of about factor 2 with a single node. The higher
maximum speedup in comparison to HSUper is probably due to CoolMuc 2 only using
AVX2. Since this run had the most computational work we assume that AdResS introduced
a higher overhead than performance gain for the other runs. The speedups of the CH4 runs,
which are in the beginning all about factor 1, also support this assumption because here,
AdResS did not alter the workload a lot. On the other hand, both C6H12 runs have positive
speedups for small node counts. Here the workload was reduced by a constant factor.

41

8. Accuracy and Performance

Figure 8.22.: Performance on CoolMuc 2: BASE scenario for CH4 and C6H12 with 2.56e+5
and 1.0e+6 molecules on 1 to 64 nodes. Top: AdResS Bottom: reference)

42

8.3. Performance

Figure 8.23.: Speedup achieved using AdResS compared to Reference in BASE scenario
using 2.56e+5 and 1.0e+6 molecules with CH4 and C6H12.

8.3.3. Conclusion of results

Taking all findings into consideration, we conclude that the following aspects should be
considered when using this kind of AdResS:

1. The Hybrid width influences accuracy and performance. But accuracy should be the
higher priority since the wrong choice of Hybrid width leads to unusable results in
most cases.

2. Changing the representation of small molecules does not yield significant performance
improvements. However, drastically altering the model of large molecules leads to
lower accuracy. Therefore, exchanging functional groups of larger molecules may be
the better option.

3. The total achievable maximum speedup depends on the underlying system architecture.
Older systems may profit more from using AdResS.

43

9. Summary and Conclusion

This thesis described a possible alternative to the common AdResS approach. Instead of
using a single site for the CG representation, which requires generating a new potential
function through RDF sampling, we proposed reusing the same potential functions from the
FP representation. The Coarse Graining process also allows for multi-site representations.
To find approximately matching molecular representations for the FP and CG model, we
queried the MolMod database [15], which contains experimentally generated molecular
models. Additionally, we created different weight functions and checked which was the most
accurate. Our tests found our Nearest approach, which treats the Hybrid region as a box
with rounded corners and edges, to be the best option.

Afterwards, we implemented this in an existing MD-platform, ls1-Mardyn, and described
our software and the inherent design choices. Due to the complexity of ls1-Mardyn, we
opted for the solution which required the least rewriting effort of the methods explored.
To determine the accuracy and performance of our AdResS approach, we created different
benchmark scenarios and ran them on two supercomputers. The results show that the
accuracy increases when the simulation contains more molecules. Furthermore, the impact
on accuracy seems to be inversely scaling with the molecule size. The apparent problem is
that the molecular representations do not match fully, which leads to perturbed densities
in the transition regions between different resolutions. The Hybrid region size also affects
accuracy. An appropriate choice can minimise the error in the FP region.
The strong scaling behaviour is not significantly affected by AdResS. We observed that
the performance gain was higher when the simulation contained more and larger molecules.
Larger Hybrid region sizes reduce the simulation speed, but once a certain size is reached,
the growth in speed reduction is limited.

Overall, we conclude that this AdResS approach can be a viable strategy, but it has
its limitations. Due to the trade-off between accuracy and performance, we suggest only
changing the representation of functional groups of large molecules. Additionally, finding
the optimal Hybrid region size should not be omitted. Because of this, further work is
necessary. The Hybrid size may be generalized, or more empirical data can be generated.
As our implementation did not generate high performance gains, this is an opportunity for
future work to either create a vectorized version or extend the simulation to use three-body
potentials. Using AdResS in the later example would reduce the computational complexity
significantly.

44

Part III.

Appendix

45

A. Using AdResS in ls1-Mardyn

A.1. Acquiring ls1-Mardyn

The repository is publicly available at https://github.com/ls1mardyn/ls1-mardyn. Since
most of our input or configuration files are too large, we refer to the repository using relative
paths or names.
The commit-id of our latest version is: 1d3a058e70cdfa86ab3b0baf12fc2916a8885535
Our main implementation can be found in the branch ”adress-1-particle-container”. The
other version, which may still contain bugs, is in the branch ”adress-3-particle-container”.
The repositories main structure is as follows:

1. /src : source code of ls1-Mardyn

2. /examples : many examples ready-to-run

3. /tools/VTKAnalysis : our vtk-file analysis tool

A.2. Input Files

All AdResS-related configuration files are located in /examples/AdResS. The scenario used
during the weight function analysis is in /examples/AdResS/WeightComp. All other scenar-
ios are in /examples/AdResS/BlockInterface.

The weight analysis is organised in 6 main configuration files, config0.xml to config6.xml.
To run these, the initialisation run in ./init must first be started, and afterwards, the results
must be copied back into the /WeightComp folder.

The BASE, HYBRID and XSCALE scenarios are in the /BlockInterface folder. Since
all of those contain many different runs, we created bash scripts to automate the bench-
marking process.

1. make inputs.sh : Goes through all subfolders and creates the BASE and HYBRID
scenarios configuration files to equilibrate the simulations. It also generates SBATCH
commands for systems which use SLURM. However, those need to be adapted to the
local system. When called with the CLEAN=1 parameter, those temporary files are
deleted.

2. make final runs.sh : Creates the final run configuration files for the BASE and HYBRID
scenarios in all subfolders. When called with COPY=1 it copies all result files from
equilibration into the correct folders. SBATCH commands are also created.

3. make xs.sh : Creates in the xScale subfolder the configuration files for the XSCALE
scenario to equilibrate the simulations. It also generates SBATCH commands for

46

https://github.com/ls1mardyn/ls1-mardyn

A.3. Compiling ls1-Mardyn

systems which use SLURM. However, those need to be adapted to the local system.
When called with the CLEAN=1 parameter, those temporary files are deleted.

4. make final runs xs.sh : Creates in the xScale subfolder the final run configuration files
for the XSCALE scenario. When called with COPY=1 it copies all result files from
equilibration into the correct folders. SBATCH commands are also created.

5. sbatch q.sh : Runs the specified SBATCH commands. Parameters: INIT BASE=1
starts the equilibration of the BASE and HYBRID scenarios. BENCH=1 starts the
final runs of BASE. BENCH H starts the final runs of HYBRID. INIT XS=1 starts
the equilibration of XSCALE. BENCH XS=1 starts the final runs of XSCALE.

The files ./BlockInterface/components C6H12.xml and ./BlockInterface/components CH4.xml
contain the component information for the BASE, HYBRID and XSCALE scenarios.

A.3. Compiling ls1-Mardyn

The regular compilation instructions apply in our main implementation (1 Particle Container).
In the other version, only one additional definition is passed to the compiler. Therefore, we
include this definition regardless to compile both versions equally. To fully reproduce our
results and analysis, VTK support is required. Therefore, we describe the full compilation
process here.

Required dependencies and programs:

1. gcc or alternative (we tested with gcc11)

2. MPI support - for example mpich

3. cmake - version 3.11 or newer

4. libxerces - only for VTK support

Compilation steps:

1. cd into the root directory of the cloned repository

2. mkdir build && cd build

3. cmake .. -DCMAKE BUILD TYPE=Release -DENABLE MPI=true
-DENABLE VTK:BOOL=ON -DOPENMP:BOOL=ON
-DENABLE ADRESS:BOOL=ON -DENABLE UNIT TESTS:BOOL=OFF
-DENABLE ADIOS2:BOOL=OFF

4. make MarDyn -j (N CPU*1.5)

A.4. Manually Running Scenarios

After successful compilation ls1-Mardyn can now be executed. To run any previously men-
tioned configuration files, ls1-Mardyn must be called with the input file as the argument:
./MarDyn ./../../examples/config.xml.

47

List of Figures

2.1. Methods of Force Computation . 4

3.1. Molecular Representation of Tetrahedral Molecule 5
3.2. Potential Functions . 6
3.3. Weight Function: Overview and Euclid/Manhattan 8
3.4. Weight Function: Component and Nearest 9
3.5. Comparison of Simulations Using Different Weight Functions 11

4.1. ls1-Mardyn Simple Class Diagram . 14

5.1. Main Loop Dataflow Diagram . 15

8.1. Scenario BASE Overview . 23
8.2. Scenario HYBRID Overview . 23
8.3. Scenario XSCALE Overview . 24
8.4. Accuracy CH4 4k-16k . 25
8.5. Accuracy CH4 64k-1024k . 26
8.6. Accuracy CH4 delta . 27
8.7. Accuracy C6H12 4k-64k . 28
8.8. Accuracy C6H12 256k-1024k . 29
8.9. Accuracy C6H12 delta 4k-16k . 29
8.10. Accuracy C6H12 delta 64k-1024k . 30
8.11. Accuracy Hybrid 10 . 30
8.12. Accuracy Hybrid 20-50 . 31
8.13. Accuracy Hybrid 60-80 . 32
8.14. Accuracy Hybrid 90 . 33
8.15. Performance HSU BASE C6H12 AdResS . 35
8.16. Performance HSU BASE C6H12 Reference 35
8.17. Performance HSU BASE C6H12 ADR to REF Comparison 36
8.18. Performance HSU BASE CH4 . 37
8.19. Performance HSU BASE CH4 ADR to REF Comparison 38
8.20. Performance HSU HYBRID . 39
8.21. Performance HSU XSCALE . 40
8.22. Performance CM2 BASE . 42
8.23. Performance CM2 BASE ADR to REF Comparison 43

48

List of Tables

3.1. Overview of the sum of relative error in either full domain or Full Particle
region for each implementation. The relative error is measured against the
reference implementation. 11

49

Bibliography

[1] Computational soft matter: from synthetic polymers to proteins. lect: Lecture notes.
No. 23 in NIC series. NIC.

[2] Agarwal, A., and Delle Site, L. Path integral molecular dynamics within the
grand canonical-like adaptive resolution technique: Simulation of liquid water. 094102.

[3] Cortes-Huerto, R., Praprotnik, M., Kremer, K., and Delle Site, L. From
adaptive resolution to molecular dynamics of open systems. 189.

[4] Delle Site, L. Some fundamental problems for an energy-conserving adaptive-
resolution molecular dynamics scheme. 047701.

[5] Gratl, F. A., Seckler, S., Tchipev, N., Bungartz, H.-J., and Neumann, P.
AutoPas: Auto-tuning for particle simulations. In 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 748–757.

[6] Hollingsworth, S. A., and Dror, R. O. Molecular dynamics simulation for all.
1129–1143.

[7] Nitzke, I., Stierle, R., Stephan, S., Pfitzner, M., Gross, J., and Vrabec, J.
Phase equilibria and interface properties of hydrocarbon propellant–oxygen mixtures in
the transcritical regime. 032117.

[8] Potestio, R., Fritsch, S., Español, P., Delgado-Buscalioni, R., Kremer,
K., Everaers, R., and Donadio, D. Hamiltonian adaptive resolution simulation for
molecular liquids. 108301.

[9] Praprotnik, M., Cortes-Huerto, R., Potestio, R., and Delle Site, L. Adap-
tive resolution molecular dynamics technique. In Handbook of Materials Modeling,
W. Andreoni and S. Yip, Eds. Springer International Publishing, pp. 1443–1457.

[10] Praprotnik, M., Delle Site, L., and Kremer, K. Adaptive resolution molecular-
dynamics simulation: Changing the degrees of freedom on the fly. 224106.

[11] Praprotnik, M., Delle Site, L., and Kremer, K. A macromolecule in a solvent:
Adaptive resolution molecular dynamics simulation. 134902.

[12] Praprotnik, M., Site, L. D., and Kremer, K. Multiscale simulation of soft matter:
From scale bridging to adaptive resolution. 545–571.

[13] Seckler, S., Gratl, F., Heinen, M., Vrabec, J., Bungartz, H.-J., and Neu-
mann, P. AutoPas in ls1 mardyn: Massively parallel particle simulations with node-level
auto-tuning. 101296.

50

Bibliography

[14] Shadrack Jabes, B., Klein, R., and Delle Site, L. Structural locality and early
stage of aggregation of micelles in water: An adaptive resolution molecular dynamics
study. 1800025.

[15] Stephan, S., Horsch, M. T., Vrabec, J., and Hasse, H. Molmod – an open
access database of force fields for molecular simulations of fluids. Molecular Simulation
45, 10 (2019), 806–814.

[16] Tchipev, N. P. Algorithmic and implementational optimizations of molecular dynamics
simulations for process engineering.

[17] Wang, H., and Agarwal, A. Adaptive resolution simulation in equilibrium and
beyond. 2269–2287.

[18] Wang, H., Hartmann, C., Schütte, C., and Delle Site, L. Grand-canonical-like
molecular-dynamics simulations by using an adaptive-resolution technique. 011018.

51

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction and Background
	Introduction
	Molecular Dynamics Basics
	Introduction to AdResS
	Computational Model
	Coupling of Full Particle and Coarse Grain regions
	Weight Function

	Related Work
	Grand Canonical AdResS (GC-AdResS)
	Open Boundary MD
	Hamiltonian AdResS

	Implementation in ls1-Mardyn
	ls1-Mardyn Architecture
	Simulation
	Domain Decomposition
	Integrator
	Particle Container
	Cell Processor
	Pair Handler

	Particle Container Design
	Approach: 1 Particle Container
	Approach: 3 Particle Container
	Evaluation

	AdResS Implementation
	Data Representation
	Plugin
	Force Computation

	Accuracy and Performance
	Benchmark Scenario
	Accuracy
	Performance
	Results on HSUper
	Results on CoolMuc 2
	Conclusion of results

	Summary and Conclusion

	Appendix
	Using AdResS in ls1-Mardyn
	Acquiring ls1-Mardyn
	Input Files
	Compiling ls1-Mardyn
	Manually Running Scenarios

	Bibliography

