
LieGrasPFormer: Point Transformer-based 6-DOF Grasp Detection
with Lie Algebra Grasp Representation

Jianjie Lin, Markus Rickert, and Alois Knoll

Abstract— With the significant advancements made in the
6-DOF Grasp learning network, grasp selection for unseen
objects has garnered much attention. However, most existing
approaches rely on complex sequence pipelines to generate
potential Grasp, which can be challenging to implement. In
this work, we propose an end-to-end grasp detection network
that can create a diverse and accurate 6-DOF grasp posture
based solely on pure point clouds. We utilize the hierarchical
PointNet++ with a skip-connection point transformer encoder
block to extract contextual local region point features, which
we refer to as LieGrasPFormer. This network can efficiently
generate a distribution of 6-DoF parallel-jaw grasps directly
from a pure point cloud. Moreover, we introduce two different
grasp detection loss functions, which give the neural network
the ability to generalize to unseen objects, such as generators.
These loss functions also enable a continuously differentiable
property for the network. We trained our LieGrasPFormer
using the synthesized grasp dataset ACRONYM, which contains
17 million parallel-jaw grasps, and found that it generalized well
with an actual scanned YCB dataset consisting of 77 objects.
Finally, we conducted experiments in the PyBullet simulator,
which showed that our proposed grasp detection network can
outperform most state-of-the-art approaches with respect to the
grasp success rate.

I. INTRODUCTION

Grasp detection is a critical task in robotic manipulation,
particularly in unstructured environments such as ware-
houses or households. Analytical-based grasp approaches can
achieve high grasp quality when provided with an accurate
object model [1]. However, they still face difficulties in gen-
eralizing to unseen objects, and most approaches are limited
to simulations. Data-driven approaches, especially machine-
learning tools, can complement analytical-based grasp ap-
proaches to significantly reduce the required amount of infor-
mation of object models. In recent work, grasped objects are
represented as RGB images, allowing convolutional-based
networks to generate grasp configurations. These works are
classified as 3/4-DOF (degree of freedom) grasping and
constrain the gripper vertically to the objects (top-down
grasp). This type of grasping can dramatically simplify
the pick and place task problem. However, the constraints
imposed by 3/4-DOF limit the potential for integrating
motion planning, where motion planning algorithms explore
all possible directions to generate a good motion trajectory.
This limitation has led researchers to study a more general
approach (6-DOF grasp) [2], [3], [4], [5], enabling grasping
in an arbitrary direction.

Jianjie Lin, Markus Rickert, Alois Knoll are with Robotics, Artificial
Intelligence and Real-time Systems, School of Computation, Informa-
tion and Technology, Technische Universität München, Munich, Germany
{jianjie.lin, rickert, knoll}@in.tum.de

The proposed approaches in [2], [3] sample the grasp
configuration in terms of the region of interest (ROI) and
evaluate each sampled grasp configuration separately. How-
ever, the entire process is time-consuming, as the number
of generated grasp configurations increases. In [5], [6], the
variational auto-encoder (VAE) approach with an evaluation
network is introduced for generating diverse grasp configu-
rations. This VAE replaces the heuristic geometry sampler
in [2], [3], significantly simplifying the generation process.
An evaluation network further refines the candidate grasp
configuration. We classify such approaches in [5], [6] as a
two-stage approach.

To simplify the grasp detection algorithm further, [7], [4],
[8] proposed a one-stage strategy that directly outputs the
grasp quality and grasp configuration simultaneously. The
proposed approaches in [7], [4] consider the grasp detec-
tion problem as a one-to-one pose regression, heuristically
selecting the ground truth grasp configurations. The coarse-
to-fine approach introduced in [8] takes a step further by
considering the grasp detection as a one-to-multiple pose
regression problem and requires manual quantization of the
grasp orientation for refinement.

In this work, we adopt the ”one-to-one grasp pose re-
gression” strategy proposed in [7], [4], as it allows for
refinement of the grasp orientation outside of the deep
learning framework. We assume that there is an infinite
number of grasp configurations that can successfully grasp
an object and that the similarity between a candidate grasp
configuration and the ground truth depends on the distance
between the two grasp points. Based on this assumption, we
propose a grasp quality loss function that follows a Gaussian
distribution.

Moreover, most related work represents the orientation
via Euler angles and subsequently converts it to a rotation
matrix, which can cause discontinuity. We address this issue
by using Lie algebra to represent a transformation matrix,
which enables us to integrate the rotation and translation loss
functions into one. We also generate diverse grasp configu-
rations by downsampling the point cloud into a predefined
number of points, considering each downsampled point as a
grasp point, and generating the grasp configuration based on
its corresponding grasp point.

Our proposed 6-DOF grasp detection algorithm follows
the deep learning framework and is trained with the synthetic
ACRONYM dataset [9]. We evaluate the algorithm with
the scanned YCB dataset [10], which contains partial point
clouds of various objects captured by a commodity depth
camera. We do not specify the object category for training,

LieGrasPFormer

Train Phase Inference Phase

LieGrasPFormer
Grasp Selection/

Refinement
Input

Fig. 1: The visualization of the overall network pipeline. On the left side, one object from ACRONYM [9] is randomly
chosen for training the LieGrasPFormer and outputs diverse grasp configurations and grasp quality for regressing. A point
cloud is taken for generating the grasping posture at the inference phase on the right side.

instead using the proposed network for the generalization of
unseen objects. We refer to the grasp network as LieGrasP-
Former for two reasons: first, we modify the hierarchically
PointNet++ with a stacked skip-connected point transformer
encoder as the backbone, and second, the proposed network
can directly output the Lie algebra vector for representing
the grasping posture.

During inference, we rank the grasp quality and select
the grasp configuration with the highest grasp quality as the
final candidate. We also follow the concept of GraspIt! [11]
by moving the potential grasp configuration in the approach
direction until the gripper contacts the object. The overall
structure of the network process is illustrated in Fig. 1.

II. RELATED WORK

Grasp selection or grasp estimation is the process of
estimating the grasp posture in the world coordinate system
based on input sensor data, which can be in the form of im-
ages or point clouds. There are two main categories of grasp
selection approaches: analytical-based and data-driven-based.
The analytical-based approach [12], [13] relies on precise
geometric and physical models of objects, typically available
in CAD, which may not be easily obtained in unknown
or complex environments. Additionally, surface properties
and friction parameters are important in analytical-based
approaches and pose additional challenges. Approaches, such
as the use of particle filters for surface parameter estimation,
have been proposed to address these challenges [14].

In previous work [1], the authors proposed a novel
approach that combines Gaussian Process Implicit Sur-
faces (GPIS) and Bayesian optimization to compute a grasp
configuration. This approach can model objects with noise
implicitly using GPIS. However, this approach is still limited
to simulations and can be error-prone and requiring CAD
model.

Deep learning has inspired researchers to utilize neural
network structures for grasp detection. There are two main
categories of deep learning-based grasp approaches: 2D pla-
nar grasp and 6-DOF grasp. In 2D planar grasp, researchers
use a five-dimensional vector to represent robotic grasps
posture, which are rectangles with position, orientation, and
size: (𝑥, 𝑦, 𝜃, ℎ,𝑤). In the deep learning framework, there
are typically three ways to obtain an oriented rectangle-
based grasp configuration: classification-based, regression-

based, and detection-based approaches. However, the 2D
planar grasp restricts the grasp in the top-down direction.

The 6-DOF grasp provides more possibilities to interact
with objects and considers the flexibility of the robotic
manipulator in an environment. Grasp Pose Detection (GPD),
proposed in [2], samples diverse candidate grasps around
the region of interest (ROI). The generated grasp posture is
then fed into an adopted CNN, which is classified from the
perspective of grasp score. PointNetGPD [3] considers 3D
geometry in a different way by taking the point cloud directly
as input for PointNet to learn a grasp quality network.
The geometry-based grasp sampler is critical for these two
approaches.

In [5], an adopted Variational Auto-Encoder (VAE) is
proposed to train a grasp sampler for generating diverse
sets of grasps, and the gradient of the evaluation network
is utilized to refine the generated grasp. Furthermore, an
improved version of 6-DOF GraspNet is proposed in [6]
by introducing a learned collision checker conditioned on
the gripper information and the raw point cloud of the
scene. Contact-GraspNet, introduced in [15], reduces the
dimensionality of grasp representation to 4-DOF to facilitate
the learning process.

In contrast to the two-stage approaches, a single-shot strat-
egy is proposed in [4] to regress the grasp configuration by
using PointNet++. With the same concept, PointNet++Grasp
is introduced in [7], which can directly predict the poses,
categories, and scores of all the grasps. These two approaches
consider grasp detection as a regression and classification
problem, reducing the diversity of grasp distribution.

III. ALGORITHM

A. Grasp Problem Formulation

The goal of LieGrasPFormer is to determine a set of
possible 6-DOF grasp configurations for picking up an object
using a parallel-jaw gripper from any direction, given the ob-
ject’s point cloud in Cartesian world coordinates. The grasp
configuration is denoted as 𝑔 = [𝑐,𝐓], as shown in Fig.3b.
The grasp quality is represented as 𝑐, and the grasp pose is
defined as a transformation matrix. Most grasp detection net-
works use a 6-dimensional vector (𝑥, 𝑦, 𝑧, 𝑟𝑥, 𝑟𝑦, 𝑟𝑧) ∈ ℝ6 to
represent the grasp pose, whereas in this work, we represent
the grasp transformation matrix using Lie algebra 𝔰𝔢(3) ∈
ℝ6. Therefore, the grasp configuration in this work is denoted
as 𝑔 = [𝑐, 𝐯], where 𝐯 = [𝐭T,𝛚T]T ∈ 6 is a 6-dimensional

vector of coordinates in the Lie algebra 𝔰𝔢(3). The 𝔰𝔢(3)
vector 𝐯 comprises two separate 3-dimensional vectors: 𝛚,
which determines the rotation, and 𝐭, which determines the
translation.

B. Network Structure Design

Similar to most deep learning-based grasp network struc-
tures, we utilize PointNet++ [16] as our primary frame-
work to extract point features. To enhance the capability
of PointNet++, we modify its set abstraction structure by
incorporating a skip-connection point transformer encoder
block [17]. The point transformer encoder [18], [19] has
been demonstrated to possess a strong ability to attend
to important features. Furthermore, the point transformer
encoder structure with a skip connection for aggregating
the feature can propagate larger gradients to initial layers,
allowing for faster learning in deeper networks. The main
advantage of using the hierarchically skip-connection trans-
former encoder is to learn an attention map between the point
feature after the furthest point sampling [16], which was
previously aggregated only using max pooling, neglecting
the geometric relationship within the features. Addition-
ally, the attention mechanism is shown to be permutation-
invariant and is therefore useful for point cloud applications.
We also follow the idea from [20], which replaces self-
attention with offset-attention to enhance the transformer
encoder. Offset-attention originates from Graph convolution
networks [21], which demonstrate the benefits of using a
Laplacian matrix 𝐋 = 𝐃 − 𝐄 to replace the adjacency
matrix 𝐄, where 𝐃 is the diagonal degree matrix. After
extracting the network’s primary skeleton, two additional
branches are deployed to compute grasp quality and grasp
configuration separately. These two branches consist of MLP
layers for regression. The grasp quality in the ground truth
is normalized between [0, 1]. We use the sigmoid operator
instead of softmax for regression, since softmax is suitable
for predicting probabilities. Finally, the network is fed a point
cloud of size ℝ2000×3 and predicts 256 grasp configurations
to ensure the inference fits in GPU memory.

C. Grasp Loss Design

We adopt the approach of [4] and treat grasp detection as
a regression task for both grasp pose and quality. In Fig. 2,
we show how we use two MLPs to predict the grasp quality
and configuration simultaneously.

1) Gaussian-based Grasp Quality Loss: We approach
the problem of predicting grasp quality as a regression
task. In [8], the authors used focal loss to compute the
classification loss by assigning each subsampled grasp point
with a predefined score, checking whether the grasp point is
enclosed by the gripper using the ground truth grasp posture.
In contrast, we consider the assignment of grasp quality
from a different perspective. We make the assumption that a
predicted grasp quality follows a Gaussian distribution. The
closer the predicted grasp configuration is to the assigned
ground truth grasp configuration, the higher the grasp quality.

To regress the point-wise 6-DoF grasp pose, we assume
that each point 𝑞 in the point set has its best grasp con-
figuration 𝑔 corresponding to the ground truth. Unlike most
existing works that consider the regression unique and fixed,
we use the Gaussian-distributed grasp quality to expand the
grasp configuration, allowing the predicted point to deviate
slightly from the ground truth. This point is denoted as the
grasp center 𝑔𝑡, as assumed in most works. We use the
𝑘-nearest neighbors (KNN) to find the nearest grasp point
inside the ground truth grasp point set for each selected point.
We can then compute the ground truth grasp quality at this
grasp point, which can be formulated as follows:

𝑐𝑗,𝑔 = exp(−
||𝐪𝑗 − 𝐪𝑔||2

𝛿2
) (1a)

𝐿score =
1
|𝑆|

∑

𝑗
||𝑐𝑗,𝑝 − 𝑐𝑗,𝑔||

2 , (1b)

We select a grasp point 𝐪𝐣 and find the corresponding ground
truth grasp point 𝐪𝐠 using the KNN. The computed grasp
quality at the grasp point 𝐪𝑗 is represented by the score 𝑐𝑗,𝑔 ,
while the predicted grasp quality from the network is denoted
by 𝑐𝑗,𝑝, the variable |𝑆| is the number of grasp configuration.
This process is simplified by using Gaussian distribution
quality assignment, which differs from the predefined param-
eter used in most other works to assign grasp success [5],
[6].

2) Lie Algebra Transformation Loss: The widely used 𝐿1
or 𝐿2 metrics for computing the distance between Euler
angles have been proven [4] to suffer from discontinuity and
ambiguity in deep learning applications. Two common ap-
proaches are typically employed to mitigate the discontinuity
when learning a rotation loss. The first one is to convert
the Euler angle into a rotation matrix and use the Frobenius
distance to obtain the loss, such as ||𝐈3×3−𝐑T𝐑||𝐹 . Another
approach utilizes normalized quaternions to represent a ro-
tation matrix. Both expressions are still discontinuous. The
rotation expression in [4] introduces a 6D representation of
the 3D rotation matrix to remedy the problem of disconti-
nuity, but this increases the complexity. Importantly, all ap-
proaches mentioned above consider rotation and translation
separately. For normal rotation classification, the separation
can simplify the loss function. However, in grasp planning,
the rotation matrix and translation vector should be coupled.
Therefore, we use Lie algebra to overcome the discontinuity
and ambiguity issue. We consider the grasped object to be
composed of a set of charts, and we define each grasp
configuration on one chart, as illustrated in Fig. 3d. Based on
the manifold theory, specifically Lie group theory, SE(3) is
a continuous group. Furthermore, SE(3) is a differentiable
manifold. Additional details on the benefits of using Lie
algebra to train an SE(3) neural network can be found in
SE(3)-TrackNet [22].

As shown in Section III-A, we use Lie algebra 𝔰𝔢(3) for
representing a transformation matrix with 𝐯 = [𝐭T,𝛚T]T ∈
6. According to the Lie algebra theory [23], [24], the
exponential map, which maps elements from the algebra

PointNet

Nx

En
co

d
er

En
co

d
er G

au
ss

ia
n

-
q

u
al

it
y-

N
et

Li
e

-T
ra

n
s-

N
et

Point Transformer
Encoder

Grasp quality

Grasp se(3)

Set Abstrac�onSampling & group

Fig. 2: Demonstration of the overall structure of LieGrasPFormer. The point cloud is first input into a PointNet++ for
extracting point features. The set abstraction module then provides these features to a skip-connected point transformers
encoder for learning semantic features with the multi-head attention mechanism. The final contextual global feature is then
separated into two MLP networks to learn the Lie algebra-based grasp representation and the Gaussian distributed-based
grasp quality.

(a) (b)

(c) (d)

Fig. 3: Visualization of the parallel Franka Emika gripper
setting. (a) A simplified parallel gripper (blue line) with
its Franka Emika gripper collision mesh. (b) Franka Emika
grasp configuration with respect to the mug. (c) A set
of translation-shifted grasp configurations at different grasp
points with respect to the ground truth grasp posture. (d)
A grasp configuration chart defined on the mug with its
corresponding Lie algebra map.

to the manifold and determines the local structure of the
manifold, is used to express the transformation matrix as

𝑒𝐯 =
[

𝑒𝛚∧ , 𝑽 𝐭
𝟎, 1

]

, (2)

where 𝛚∧ is the skew-symmetric matrix of 𝛚, and

𝑒𝛚
∧
= 𝑰 + sin 𝜃

𝜃
𝛚∧ + 1 − cos 𝜃

𝜃2
(𝛚∧)2 (3a)

𝑽 = 𝑰3×3 +
1 − cos 𝜃

𝜃2
(𝛚∧) + 𝜃 − sin 𝜃

𝜃3
(𝛚∧)2 (3b)

The scale value 𝜃 is the norm of 𝛚. By using the
exponential map, we can easily convert the 6-dimensional
vector coordinate to SE(3). Similarly, using the logarithm
map with 𝛚 = (Log(𝐑))∨ and 𝐭 = 𝑽 −1trans, we can convert
SE(3) to 𝔰𝔢(3). The operator (∨) converts a skew-symmetric
matrix to a vector, which is the reciprocal of the operator (∧).
In this work, the proposed network produces a Lie algebra
𝔰𝔢(3) value for each selected grasp point, denoted as 𝐯𝑗,𝔰𝔢(3).
Using the same strategy introduced in Section III-C.1, we can
obtain the corresponding ground truth grasp configuration,
indicated as 𝐓𝑗,𝑔 . Additionally, we add the translation 𝐪𝑗−𝐪𝑔
to 𝐓𝑗,𝑔 , denoted as 𝐓𝑗,𝑔′ . (Fig. 3c). The logarithm map and
group operation are employed to define the geodesic distance
as Euclidean norm by

𝑝
(

M1,M2
)

= ‖

‖

‖

log
(

M−1
1 M2

)

‖

‖

‖

(4)

where 𝑀𝑖 ∈ Lie group, defined on a differentiable manifold.
The sum of the squared geodesic distance, is given as

𝐿 =
𝑁
∑

𝑖=1
𝜌2

(

𝜷
(

𝑓𝑖
)

,M𝑖
)

. (5)

The Baker-Campbell-Hausdorff (BCH) formula formulate
the logarithm log

(

𝑒M1𝑒M2
)

as a Lie algebra element using
only Lie bracket for noncommutative Lie groups. A first
order approximation to the BCH [25] is

log
(

𝑒M1𝑒M2
)

= M1 +M2 +
1
2
[

M1,M2
]

+ 𝑂
(

M2
1,M

2
2
)

(6)

where M1 and M2 are m1 = log
(

M1
)

and m2 = log
(

M2
)

,
respectively. The geodesic distance can be approximated
by [25]

𝜌
(

M1,M2
)

= ‖

‖

‖

log
(

M−1
1 M2

)

‖

‖

‖

= ‖

‖

‖

log
(

𝑒−m1𝑒m2
)

‖

‖

‖

= ‖

‖

‖

m2 − m1 + 0.5
[

−m1, m2
]

+ 𝑂
(

m2
1, m2

2
)

‖

‖

‖

≈ ‖

‖

m2 − m1
‖

‖

(7)
The approximation is sufficient for regression as long as the
training samples lie in a small neighborhood of the identity.

Therefore, the sum of squared geodesic distance can be
represented as follows:

𝐿se(3) ≈
𝑁
∑

𝑖=1

‖

‖

‖

log
(

M𝑖
)

− log
(

𝛽
(

𝑓𝑖
))

‖

‖

‖

2

= 1
|𝑆|

𝑗
∑

0

‖

‖

‖

𝐯𝑗,𝔰𝔢(3) − Log(𝐓𝑗,𝑔′)
‖

‖

‖

2
(8)

It can be easily proven that if 𝐯𝑗,𝔰𝔢(3) is equal to Log(𝐓𝑗,𝑔′),
the predicted grasp configuration is aligned to ground truth.

3) Grasp Planning Loss: Finally, we combine the grasp
quality and transformation loss using weighting coefficients
to create a grasp loss

𝐿total = 𝑤1𝐿score +𝑤2𝐿𝔰𝔢(3) . (9)

D. Grasp Configuration Selection and Refinement

LieGrasPFormer generates various grasp configurations
during the inference phase by feeding a point cloud obtained
via a sensor. In order to eliminate all infeasible grasps,
we perform collision checking [26]. We then arrange the
grasp qualities in descending order, as higher quality grasps
provide more reliable grasping of the object. Finally, we
select the grasp configuration with the highest grasp quality.
Our grasp configuration is independent of the parallel gripper
used. Therefore, during the inference phase, we need to
adjust the grasp configuration based on the chosen gripper
setting. In this work, we use the Franka Emika Panda gripper
to evaluate the grasp. The simplified version of the gripper is
shown in blue in Fig. 3a, while the collision mesh is shown
in gray. As stated in [9], the predicted grasp configuration
is known as the pre-grasp, which can result in a stable
grasp when the fingers are closed. To improve the grasp
configuration, we can further refine it based on the pre-
grasp by approaching the gripper in the direction of the
approach direction. The grasp approach direction is defined
as the direction along the gripper handle, as illustrated in
Fig. 6. The approaching process ends when the gripper makes
contact with the object. For more information about this
approach strategy, please refer to Graspit! platform [11].

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Grasping Data Set: We use the large-scale grasp
dataset ACRONYM [9], [15] for training and evaluate it us-
ing the YCB dataset [10]. ACRONYM is a grasp dataset for
robot grasp planning based on the physics simulation FleX,
containing 17.7 million parallel-jaw grasps spanning 8,872
objects from 262 different categories, each labeled with the
grasp result obtained from a physics simulator. The objects in
the ACRONYM dataset [9] are from ShapeNetSem [27] and
are assumed to have uniform density and identical friction.
We extend the ACRONYM dataset by assigning each grasp
configuration with a deterministic grasp point. In contrast
to most state-of-the-art approaches that train and evaluate
the network on the same dataset, we evaluate the network
using the YCB dataset. The YCB dataset includes objects

from daily life with different shapes, sizes, textures, weights,
and rigidities, aiming to evaluate the generalization of the
proposed grasp detection network.

2) Grasping Tasks: The experimental environment is set
up inside PyBullet [28], which includes a Franka Emika
robotic manipulator, a Franka Emika parallel gripper, a
table, objects to grasp, and a depth camera. To ensure the
reachability of the robotic manipulator, we randomly place
a single YCB object on the table. We use a depth camera
to extract the point cloud by applying the projection and
view matrices. The experiments are performed in two steps.
First, we infer the grasp configuration by feeding the point
cloud, and then we apply inverse kinematics to obtain the
joint values for the robotic manipulator. Finally, we close
the fingers to grasp the object.

3) Baselines: We compare our approach to two state-
of-the-art, open-sourced baselines: GPD [2] and PointNet-
GPD [3]. GPD uses a geometry sampler to evaluate many
grasp candidates, while PointNetGPD replaces the geometry
sampler with PointNet++ to learn a grasp quality network.
We adopt the default network settings from the original
papers.

B. Quantitative Results
We present the success rate results of our grasp gener-

ation method in Table I, which indicates the percentage of
successful grasps for single-object grasping. The experiments
involve randomly translating and rotating each object in the
z orientation. We use a range of objects with varying sizes,
from big components like the pudding box to small objects
like the plum. We trained our network using the ACRONYM
data set and evaluated it with the entire YCB data set. We
have summarized some of the results in Table I. Based on
these results, we can conclude that our approach can be
applied to previously unseen objects that are not included
in the ACRONYM data set.

C. Qualitative Results
In this section, we present the results obtained from

our proposed LieGrasPFormer. The results are illustrated
qualitatively in Fig.4. LieGrasPFormer generates 256 grasp
configurations and their corresponding grasp qualities, where
the number 256 is a hyperparameter that can be changed
based on the available GPU memory. Subsequently, the
generated grasps undergo collision checking, and the grasp
configurations that are collision-free with high grasp quality
are selected for grasp refinement. In the grasp refinement
phase, the object is assumed to be placed on a table. We also
demonstrate the results in a PyBullet environment (Fig. 5)
with different initial robot joint configurations. The execution
of a grasp configuration involves two steps. In the first step,
we select the collision-free grasp configuration with the high-
est grasp quality from our LieGrasPFormer. Then, an inverse
kinematics solver is applied to obtain the joint configuration.
Based on the qualitative results shown in Fig. 4 and 5, we can
conclude that our proposed LieGrasPFormer can generate
diverse grasp configurations to satisfy various initial grasp
configurations, enabling the application of motion planning.

(a) (b) (c) (d)

Fig. 4: Visualization of results from the network after collision checking. The blue lines are the grasp configurations generated
by the LieGrasPFormer. The meshes are some examples from the YCB data set.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: The PyBullet simulation platform is used to simulate grasping objects, which involves two steps. First, LieGrasPFormer
generates a grasp configuration at the palm with respect to the point cloud. Then, the end effector of a robotic manipulator is
aligned with the palm pose of the grasp configuration. An inverse kinematics solver is used to compute the joint configuration,
and finally, a point-to-point motion is executed to grasp the object. The first column demonstrates the initial setting in the
scenario. The second column shows the chosen grasp configuration. The last column demonstrates the solution obtained by
using inverse kinematics to approach the object.

TABLE I: Results (in %) of a single object grasping experiment. Success is defined as at least one feasible grasp configuration
for each object. Our LieGrasPFormer can outperform other state-of-the-art approaches.

Method Avg. tomato soup can pudding box potted meat can orange plum scissors e-cups

GPD [2] 86.3 81.6 92.9 78.8 74.8 92.6 97.7 85.8
PointNetGPD [3] 86.0 75.0 94.1 68.6 80.1 94.3 98.4 90.8
LieGrasPFormer (Ours) 94.8 90.0 100.0 96.3 92.3 98.0 100.0 96.8

TABLE II: Ablation study of skip-connection transformer encoder in LieGrasPFormer (in %).

Method Avg. tomato soup can pudding box potted meat can orange plum scissors e-cups

LieGrasPFormer (without transformer) 92.7 85.3 100.0 92.3 85.3 93.0 100.0 92.8
LieGrasPFormer 94.8 90.0 100.0 96.3 92.3 98.0 100.0 96.8

Fig. 6: Depicting the refinement process of our proposed
grasping algorithm. The generated grasp pose is visualized as
it moves in the direction of the gripper approach until it meets
the predefined contact condition, resulting in a successful
grasp.

D. Ablation Study

The skip-connection point transformer encoder block is
integrated into the PointNet++ structure for extracting more
attractive features for grasping. This section aims to study
the effect of the transformer encoder block by using pure
PointNet++ as the main skeleton. We compare the results
in Table II. The results show that the introduced modifica-
tion of PointNet++ can help the LieGrasPFormer improve
performance by extracting more valuable features.

V. CONCLUSION

This work proposes a new grasp detection neural network
based on PointNet++ with a hierarchically skip-connection
transformer encoder. Two different grasp loss functions, a
Gaussian distribution-based quality score loss and a grasp
Transform Loss in terms of Lie algebra, are introduced for
remedying the discontinuity problem due to rotation loss in
form of Euler angles and quality score loss in form of an
indicator function. Our network is trained with the synthetic
data set ACRONYM [9] and also works well in the real-
world YCB data set. Furthermore, the experimental results
show that our framework can detect diverse grasps with a
higher convergence on the ground truth grasps and that it
can generalize to unknown objects, as the YCB data set [10]
is different from ACRONYM [9].

REFERENCES

[1] J. Lin, M. Rickert, and A. Knoll, “Grasp planning for flexible pro-
duction with small lot sizes using Gaussian process implicit surfaces
and Bayesian optimization,” in Proceedings of the IEEE International
Conference on Automation Science and Engineering, 2021.

[2] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose
detection in point clouds,” The International Journal of Robotics
Research, 2017.

[3] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun,
and J. Zhang, “PointNetGPD: Detecting grasp configurations from
point sets,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2019.

[4] Y. Qin, R. Chen, H. Zhu, M. Song, J. Xu, and H. Su, “S4G: Amodal
single-view single-shot SE(3) grasp detection in cluttered scenes,” in
Proceedings of the Conference on Robot Learning, ser. Proceedings
of Machine Learning Research, L. P. Kaelbling, D. Kragic, and
K. Sugiura, Eds., 2020.

[5] A. Mousavian, C. Eppner, and D. Fox, “6-DOF GraspNet: Variational
grasp generation for object manipulation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019.

[6] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-
DOF grasping for target-driven object manipulation in clutter,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2020.

[7] P. Ni, W. Zhang, X. Zhu, and Q. Cao, “PointNet++ grasping: Learning
an end-to-end spatial grasp generation algorithm from sparse point
clouds,” arXiv:2003.09644 [cs.RO], 2020.

[8] K.-Y. Jeng, Y.-C. Liu, Z. Y. Liu, J.-W. Wang, Y.-L. Chang, H.-T. Su,
and W. H. Hsu, “GDN: A coarse-to-fine (C2F) representation for end-
to-end 6-DoF grasp detection,” arXiv:2010.10695 [cs.RO], 2020.

[9] C. Eppner, A. Mousavian, and D. Fox, “ACRONYM: A large-scale
grasp dataset based on simulation,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2021.

[10] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “Benchmarking in manipulation research: Using the Yale-
CMU-Berkeley object and model set,” IEEE Robotics Automation
Magazine, vol. 22, no. 3, 2015.

[11] A. Miller and P. Allen, “Graspit! a versatile simulator for robotic
grasping,” IEEE Robotics & Automation Magazine, 2004.

[12] V.-D. Nguyen, “Constructing force-closure grasps,” in Proceedings of
the IEEE International Conference on Robotics and Automation, 1986.

[13] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2000.

[14] L. Zhang and J. C. Trinkle, “The application of particle filtering to
grasping acquisition with visual occlusion and tactile sensing,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2012.

[15] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
GraspNet: Efficient 6-DoF grasp generation in cluttered scenes,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2021.

[16] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
hierarchical feature learning on point sets in a metric space,” in
Proceedings of the International Conference on Neural Information
Processing Systems, 2017.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the International Conference on Neural Information
Processing Systems, 2017.

[18] J. Lin, M. Rickert, A. Perzylo, and A. Knoll, “PCTMA-Net: Point
cloud transformer with morphing atlas-based point generation network
for dense point cloud completion,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2021.

[19] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point transformer,”
arXiv:2012.09164 [cs.CV], 2020.

[20] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu,
“PCT: Point cloud transformer,” Computational Visual Media, vol. 7,
2021.

[21] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in Proceedings of the
International Conference on Learning Representations, 2014.

[22] B. Wen, C. Mitash, B. Ren, and K. E. Bekris, “se(3)-TrackNet: Data-
driven 6D pose tracking by calibrating image residuals in synthetic
domains,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2020.

[23] J. M. Selig, “Lie groups and lie algebras in robotics,” in Computational
Noncommutative Algebra and Applications, ser. NATO Science Series
II: Mathematics, Physics and Chemistry, J. Byrnes, Ed. Springer,
2004, vol. 136, pp. 101–125.

[24] J. L. Blanco Claraco, “A tutorial on SE(3) transformation parameter-
izations and on-manifold optimization,” University of Malaga, Tech.
Rep. 012010, Sept. 2010.

[25] F. M. Porikli, “Regression on lie groups and its application to affine
motion tracking,” 2016.

[26] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2012.

[27] M. Savva, A. X. Chang, and P. Hanrahan, “Semantically-enriched 3D
models for common-sense knowledge,” in Proceedings of the CVPR
Workshop on Functionality, Physics, Intentionality and Causality,
2015.

[28] E. Coumans and Y. Bai, “PyBullet, a Python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org, 2016–2021.

http://pybullet.org
http://pybullet.org

	Introduction
	Related Work
	Algorithm
	Grasp Problem Formulation
	Network Structure Design
	Grasp Loss Design
	Gaussian-based Grasp Quality Loss
	Lie Algebra Transformation Loss
	Grasp Planning Loss

	Grasp Configuration Selection and Refinement

	Experimental Results
	Experimental Settings
	Grasping Data Set
	Grasping Tasks
	Baselines

	Quantitative Results
	Qualitative Results
	Ablation Study

	Conclusion
	References

