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Abstract— Modern collaborative robotic applications require
robot motions that are predictable for human coworkers.
Therefore, trajectories often need to be planned in task space
rather than configuration space (C-space). While the interpo-
lation of translations in Euclidean space is straightforward,
the interpolation of rotations in SO(3) is more complex. Most
approaches originating from computer graphics do not exhibit
the often desired C2-continuity in robotics. Our main contri-
bution is a C2-continuous, zero-clamped interpolation scheme
for quaternions that computes a fast synchronized motion
given a set of waypoints. As a second contribution, we present
modifications to two state-of-the-art quaternion interpolation
schemes, Spherical Quadrangle Interpolation (SQUAD) and
Spherical Parabolic Blends (SPB), to enable them to compute
C2-continuous, zero-clamped trajectories. In experiments, we
demonstrate that for the time optimization of trajectories, our
approach is computationally efficient and at the same time
computes smooth trajectory profiles.

I. INTRODUCTION

Sampling-based planning algorithms, e.g. RRT, operate
in the robot’s configuration space (C-space) and are state-
of-the-art methods to compute robot motions in dynamic
environments. However, when robots share the work space
with human coworkers, the motions have to be predictable.
Further, many robotic automation solutions, e.g. welding,
define waypoints in Cartesian space. In these scenarios,
trajectory generation methods that interpolate task space
waypoints are applied and subsequent differential inverse
kinematics (IK) transform the trajectory to C-space. To limit
stress to the actuators, the Cartesian space trajectories have to
be C2-continuous and zero-clamped, i.e., with zero velocities
and accelerations at the first and last waypoints. Besides this
first objective of smoothness, time optimization is a second
objective to ensure short process times.

The translational part of Cartesian space trajectories and
C-space trajectories are both part of the linear Euclidean
space and various interpolation methods have been proposed
to compute C2-continuous, zero-clamped trajectories, e.g.
time-optimal cubic splines in [1]. The interpolation of the
rotational part, however, is more complex. Rotations in
Cartesian space are part of the nonlinear SO(3) group,
whose members are defined by a minimal representation with
three parameters. The four state-of-the-art representations
are: Euler angles, axis-angle, rotation matrices and unit
quaternions [2]. Euler angles and axis-angle suffer from
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Fig. 1. Schematic visualization of the SCB curve on the surface of the
four-dimensional hypersphere according to [5]. Orange lines show the linear
motion phase of SCB. Dark blue lines show the first half of the blend phase
and light blue lines show the second half. h⋆

3 indicate the time duration
of the motion phases around the third waypoint. Black crosses indicate the
orientation waypoints.

singularities [3]. Compared to rotation matrices with nine
parameters, unit quaternions are defined by four parameters.
Owing to their computational efficiency, quaternions are
often used, e.g. for the pose message type in ROS [4].

State-of-the-art interpolation methods for quaternions
were developed for computer graphics [6]. When applied
in robotics, these approaches lack smoothness, i.e. C2-
continuity and zero-clamped boundaries, which is required to
limit stress to the actuators. We propose a smooth interpola-
tion scheme for quaternions, Spherical Cubic Blends (SCB),
that computes a fast synchronized motion given a set of
quaternion waypoints. Further, we contribute modifications
to the state-of-the-art methods SQUAD [7] and SPB [8] that
enable them to plan C2-continuous zero-clamped trajectories.

Robot manufacturers derive task space limits from a con-
servative estimation based on the joint actuators’ limits, and
they specify the maximum absolute angular velocity ωmax,
acceleration ω̇max and jerk ω̈max, e.g. in [9]. Note that we
focus on rotational trajectories only in the following. In the
experiments in Section IV, we use quintic spline interpola-
tion for the translational part of the trajectory. Further, we use
the Resolved Motion Rate Control (RMRC) [10] to compute
the control signals for the actuators in C-space. As RMRC is
able to propagate the degree of smoothness through the IK
computation, the resulting C-space trajectories maintain the
C2-continuity of the planned task space trajectories.
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II. RELATED WORK

Concerning the generation of smooth trajectories in SO(3)
as the first objective, [7] presents SLERP and SQUAD in
the context of computer graphics. SLERP keeps a constant
rotation axis in between the waypoints and computes discon-
tinuous velocity profiles when applied to multiple waypoints.
Therefore, in robotics, SLERP is generally combined with a
time scaling approach. SQUAD smoothly changes the rota-
tion axis and is preferred in robotics. However, the profiles
are not zero-clamped and SQUAD ensures C1-continuity only
in the case of equal time duration in between the waypoints.
SPB [8] enhances SLERP by a parabolic blending phase at
the waypoints such that the change of the rotation axis is
continuous. It is C1-continuous and ensures constant rotation
axes during most of the time. We propose SCB, that also
blends in between waypoints. However, in contrast to SPB,
SCB formulates blending on velocity and jerk level and
thus obtains smoother C2-continuous profiles. The idea to
connect constant velocity segments with blend phases stems
from the C-space method Linear Interpolation with Parabolic
Blends [11]. [12] proposes a method of smooth orientation
interpolation via element-wise quaternion interpolation and
re-normalization. [13] fits a quaternion B-Spline curve to the
waypoints by formulating a quadratic optimization problem.
While ensuring C2-continuity, both approaches do not con-
sider actuator limits which is required for time-optimized
motions, our second objective besides smoothness.

[14] proposes a time optimization approach in SO(3)
with efficient batch-wise optimization that derives ideas from
model predictive control. However, this method is unable to
maintain a constant axis of rotation in between waypoints.
In C-space, time optimization can be efficiently solved with
analytical gradient information and gradient-based optimiza-
tion. [15], [16], [17] derive analytical gradients for cubic
splines and B-splines. However, in SO(3) the derivation of
analytical gradient information is often not possible due to
the nonlinearity and one has to resort to numerical gradient
computation [18] or apply iterative methods that do not re-
quire gradient computation. Our approach is similar to [19], a
trajectory generator for quaternions that is also applicable for
translations. They exploit actuator limits for time-optimized
motions and at the same time ensure smooth trajectories.
Similar to them, we also divide the angular velocity profile
into three phases (see Fig. 1) and perform interpolation on
velocity level. Their approach is more generic, allows an
order of smoothness that is higher and selectable and they
further provide closed-form solutions to exactly hit actuator
limits while we iteratively converge towards the limits in case
they would be violated. However, in applications where C2-
continuity is sufficient, our formulation is more compact. The
approach in [19] requires point-to-point (PTP) trajectories as
inputs and interpolates between the deceleration and accel-
eration phases of two subsequent trajectories. Our approach
directly interpolates between two segments using constant
jerk. Further, we provide a benchmark with state-of-the-art
approaches and an evaluation on hardware.

III. PROPOSED METHOD

In this chapter, we propose SCB, a trajectory genera-
tion approach that ensures C2-continuous, zero-clamped and
time-optimized quaternion interpolation. Further, we propose
modifications of SQUAD and SPB to increase their smooth-
ness. Note that time-optimized means that with the given in-
terpolation scheme and boundary conditions a fast trajectory
is computed that exploits given actuator limits. However, this
is not a time-optimal trajectory that is commonly computed
with a bang-bang profile.

A. Spherical Cubic Blends

SCB translates the Parabolic Blends approach in C-
space [20] to SO(3). However, it blends waypoints on jerk
level rather than acceleration level to increase the trajectory’s
smoothness. In Euclidean space, the constant jerk values
during blending would result in cubic profiles on position
level. Therefore, we refer to it as Spherical Cubic Blending
although the time integration in SO(3) leads to a nonlinear
quaternion profile.

SCB defines the interpolation on angular velocity ω, ac-
celeration ω̇ and jerk ω̈ level. In contrast to that, the state-of-
the-art approaches in Section III-B, apart from [19], interpo-
late trajectories on orientation level. Interpolating on position
level is not a problem for translations. Positions are defined
in Euclidean space and the mapping between position and its
time derivatives is linear. Thus, interpolation characteristics
on position level, e.g. smoothness, also propagate to velocity,
acceleration and jerk level. Orientations, however, are defined
in the nonlinear SO(3), while ω, ω̇, ω̈ are defined in
Euclidean space. The mapping between quaternions q and ω,
ω̇, ω̈ is nonlinear. Thus, interpolation characteristics inherent
to interpolation schemes on orientation level do not propagate
to velocity, acceleration and jerk level. Therefore, the ω,
ω̇, ω̈ profiles of SQUAD and SPB in Section III-B are
not defined by smooth polynomials, which is a drawback
for control approaches that use IK on velocity-level. The
reference signals are of lower quality and induce vibrations
due to the acceleration discontinuities.

SCB interpolates in the Euclidean space of ω, ω̇, ω̈
and computes smooth and analytically described control
signals. The reference quaternions qk, required for drift and
error compensation on orientation level, are obtained by
integration. SCB uses two different motion phases: a linear
phase and a blend phase (see Fig. 1). In the linear phase,
the rotation axis and ω are constant, similar to SPB. The
blend phase interpolates between the angular velocities of
two subsequent linear phases using linear ω̇ profiles. There-
fore, the blend phase is divided into two halves, blend_1
and blend_2, with constant and opposite jerk at its limits.
Using this approach, one can show that the blend phases lie
symmetrically around the waypoints w.r.t. time. That is, after
half of the blend phases, the quaternion curve is closest to
the waypoints, but does not reach them.

Alg. 1 computes the containers that completely define a
SCB trajectory: Q, TbStart, Hb, Ωlin and Ω̈b. Note that the
quaternion waypoints in Q are already preprocessed such
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Algorithm 1 SCB Trajectory Generation
Input: Q, ωmax, ω̇max and ω̈max

Output: TbStart, Hb, Ωlin, Ω̈b

1: for i ∈ [1, n− 1] do
2: iqi+1 = 0q

−1
i ⊗ 0qi+1

3: Θi = abs(2 · acos(iai+1))
4: iei = sign(2 · acos(iai+1)) ivi+1

∥ivi+1∥
5: 0ēi = 0qi ⊗ iēi ⊗ 0q

−1
i

6: hlin,i =
Θi

ωmax

7: 0ωlin,i = 0ei · ωmax

8: end for
9: for i ∈ [1, n] do

10: hb,i = 2 ·
√

∥0ωlin,i+1−0ωlin,i∥
ω̈max

11: end for
12: while BLENDPHASESOVERLAP() or MAXACCLIMIT()

do
13: for i ∈ [1, n− 1] do
14: if BLENDPHASESOVERLAP() then
15: hlin,i ← 1.05 · hlin,i
16: 0ωlin,i = 0ei · Θi

hlin,i

17: end if
18: end for
19: for i ∈ [1, n] do
20: hb,i = 2 ·

√
∥0ωlin,i+1−0ωlin,i∥

ω̈max

21: 0ω̈b,i = 4 · 0ωlin,i+1−0ωlin,i

h2
b,i

22: end for
23: if MAXACCLIMIT() then
24: ω̈max ← 0.95 · ω̈max

25: end if
26: end while
27: TbStart ← COMPUTEBLENDSTARTTIMES(Hlin, Hb)

that the antipodal problem is resolved and iqi+1 defines the
shortest of the two possible rotation directions. TbStart =
{tbStart,i | i ∈ [1, n]} and Hb = {hb,i = hblend_1

i +
hblend_2
i | i ∈ [1, n]} contain the start times of the blend

phases and their duration, respectively. Ωlin = {ωlin,i | i ∈
[1, n−1]} and Ω̈b = {ω̈b,i | i ∈ [1, n]} are the constant angu-
lar velocities and jerks in the linear phases and blend phases,
respectively. Hlin are the linear phase duration. ⊗ denotes
the quaternion product and we divide a quaternion into its
real and imaginary part: 0qi = [ai, xi, yi, zi] = [ai,v

T
i ]. A

quaternion q formulates a rotation w.r.t. a specific frame Bi

and we denote this frame with a left subscript, e.g. iq. Note
that we plan all motions w.r.t. the robot’s base frame B0.

Lines 3-5 in Alg. 1 compute the rotation axes 0ei and
angles Θi for the linear motion segments in between the
waypoints. We define Θi to be positive and select 0ei
accordingly. In the coordinate transformation in line 5,
iēi is a quaternion with iei as imaginary part and 0 as
real part. For the computation of the blend duration in
line 10, we add the zero-clamped boundary condition, i.e.
ωlin,0 = ωlin,n = 0. Line 12-26 is our iterative optimiza-
tion procedure: the robot moves with ωmax and ω̈max. In

case two blend phases overlap, the linear phase in be-
tween is extended (line 15), which is equivalent to a de-
crease of ωmax. Thereby, BLENDPHASESOVERLAP checks
0.5 · (hb,i + hb,i+1) < hlin,i for each segment. In case ω̇max

is violated during blending, ω̈max is reduced in line 24.
MAXACCLIMIT computes the maximum absolute angular
acceleration ∥0.5 · 0ω̈b,i · hb,i∥ in each blend phase. Based
on Hlin and Hb, COMPUTEBLENDSTARTTIMES computes
the starting times of the blend duration TbStart. To not
only blend the first and last waypoint in Q, but to hit
them, COMPUTEBLENDSTARTTIMES adds half of the first
and last blend phases to the corresponding linear phases:
hlin,1 ← hlin,1 + 0.5 · hb,1; hlin,n−1 ← hlin,n−1 + 0.5 · hb,n.

The new 0ωlin,i and 0ω̈b,i are computed in line 16 and 21
such that linear acceleration profiles result. The computed
trajectory respects ωmax, ω̇max and ω̈max at any time and Fig. 2
shows the resulting trajectory profiles for SCB for a motion
with six waypoints.

While Alg. 1 shows the offline computation of the tra-
jectory, Alg. 2 defines the online control function. Given an
arbitrary time tk, Alg. 2 computes the reference quaternion
qk, angular velocity ωk and angular acceleration ω̇k. To ob-
tain the quaternion profile, we integrate the angular velocity:

q(t) = exp
(
1

2

∫ t

0

ω(τ) dτ
)
⊗ q0 (1)

Note that exp(. . . ) in (1) forms a quaternion similar to iēi
in Alg. 1. The integration in (1) only holds for interpolations
with a constant rotation axis [21], which is not the case
for the blend phases. However, as the approximation error
is negligible for a limited number of waypoints, we favor
the analytic integration in (1) over a numeric integration.
For the experimental application scenario with six waypoints
in Section IV (see Fig. 3), we did a comparison of our
approximated analytic integration, line 6 and 11 in Alg. 2,
with a numeric integration of steps size 1.0 ms, which
corresponds to the real-time control cycle of our robot:
During the trajectory execution time of 2.53 s, the rotational
error increased over the waypoints and was biggest at the
last waypoint with 0.02 rad. For our application, in which we
only try to blend the waypoints, we consider this approxima-
tion error acceptable. For applications which demand higher
accuracy at the waypoints, blending might not be an option
anyhow. For applications with a lot more motion segments,
the integration error might accumulate too much and we
suggest numeric integration in these cases. Fig. 2 shows that
SCB with (1) blends the defined waypoints in Q with the
same accuracy as SPB.

Line 1 in Alg. 2 determines the motion segment that tk
is part of. We derived the boundary conditions for the three
segment types - blend_1, blend_2 and linear phase - and
provide the interpolation formula in Alg. 2.

Fig. 2 shows the constant ω̈ profile during the blend phases
that leads to linear profiles of ω̇ and quadratic profiles of ω.
Note that in contrast to SPB, the ω profile of SCB does not
show undesired bumps during blending (see Section III-B.2).
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Algorithm 2 SCB Online Control

Input: tk, Q, TbStart, Hb, Ωlin, Ω̈b

Output: qk, ωk, ω̇k

1: segment = determineSegmentType(tk)
2: if segment is blend_1 then
3: ∆t = tk − tbStart,i
4: 0ω̇k = 0ω̈b,i∆t

5: 0ωk = 0ωlin,i + 0ω̈b,i
∆t2

2

6: 0qk = exp
(
0ωlin,i

(
−hb,i

4 + ∆t
2

)
+ 0ω̈b,i

∆t3

12

)
⊗ 0qi

7: else if segment is blend_2 then
8: ∆t = tk − tbStart,i − 1

2hb,i

9: 0ω̇k = 0ω̈b,i

(
hb,i

2 −∆t
)

10: 0ωk = 0ωlin,i + 0ω̈b,i

(
h2
b,i

8 +
hb,i∆t

2 − ∆t2

2

)
11: 0qk = exp

(
0ωlin,i

∆t
2 + . . .

. . . 0ω̈b,i

(
h3
b,i

96 +
h2
b,i∆t

16 +
hb,i∆t2

8 − ∆t3

12

))
⊗ 0qi

12: else
13: ∆t = tk − tbStart,i − 1

2hb,i

14: 0ω̇k = 0
15: 0ωk = 0ωlin,i
16: 0qk = exp

(
0ωlin,i

∆t
2

)
⊗ 0qi

17: end if

Depending on the time parameterization, a great proportion
of the the motion takes place around a constant rotation axis,
similar to SPB.

B. C2-Continuous Zero-Clamped Trajectories with State-of-
the-Art Interpolation Schemes

In this section, we contribute modified versions of SQUAD
and SPB that we use in Section IV to benchmark SCB. We
refer to [5] and [8] for detailed derivations. However, their
versions lack smoothness, i.e. C2-continuity, and the SQUAD
derivation in [5] further lacks zero-clamped boundaries. We
propose the required modifications to resolve these draw-
backs as they have not been presented yet.

1) SQUAD: It is based on SLERP and, given n waypoints
qi and n − 1 segment duration hi, SQUAD uses (2) for
interpolation. In related work, u(t) is a linearly increasing
parameter with u(t0) = 0 and u(T ) = 1. In contrast
to SLERP, the rotation axis is not constant but smoothly
changes in between the waypoints (see Fig. 2).

SQUAD(qi, si, si+1, qi+1, u)) = . . .

SLERP (q̂i, ŝi, 2u(1− u)) = q̂i ⊗ (q̂−1
i ⊗ ŝi)

2u(1−u)

(2)
q̂i = SLERP (qi, qi+1, u) (3)
ŝi = SLERP (si, si+1, u) (4)

si = qi ⊗ exp

(
log(q−1

i ⊗ qi+1)

−2(1 + hi

hi−1
)

+
log(q−1

i ⊗ qi−1)

−2(1 + hi−1

hi
)

)
(5)

Our contributed modifications to SQUAD are the following
and we refer to this C2-continuous zero-clamped SQUAD

implementation as SQUAD_C2:

• To ensure a continuous change of the rotation axis,
SQUAD adds two inner control quaternions in each
motion segment, si and si+1, that are calculated such
that C1-continuity is achieved. However, the formula for
si in [5] ignores the time parameterization of the in-
terpolation parameter and ensures C1-continuity only in
case all motion segment duration hi are equal. With (5),
we provide the correct formula that respects different
hi. This allows to optimize the trajectory duration by
using different hi to exploit ωmax, ω̇max and ω̈max in each
motion segment.

• The approach in [5] does not ensure zero-clamped
boundaries. We introduce two additional virtual way-
points qvirt

1 and qvirt
n−1 after the first and second-

last waypoint: Q = [q1,q
virt
1 ,q2, . . . ,q

virt
n−1,qn]. Set-

ting the two virtual waypoints qvirt
1 = q1 and qvirt

n−1 =
qn ensures zero-clamped boundary constraints on ve-
locity level.

• The two modifications above enable SQUAD to be
C1-continuous with zero-clamped boundaries on veloc-
ity level. To eliminate the discontinuities in ω̇(t), we
use a piecewise quintic polynomial interpolation for
u(t) instead of the linear interpolation. This allows
ü(t) = 0 to be set at the waypoints, which removes
the discontinuities in the angular acceleration profile
and defines two boundary conditions for the quintic
polynomials that are defined by six unknowns. Reaching
the waypoints and setting u̇(t) = 0 at the waypoints
defines the other four unknowns. Note that using cubic
instead of quinitic polynomials with boundary condi-
tions only for u̇(t) is not sufficient for C2-continuous
rotational trajectory profiles due to the chain rule when
deriving ω̇(t) and ω̈(t). A fifth order polynomial inter-
polation is thus the minimal interpolation order for u(t)
that results in C2-continuity.

Fig. 2 shows the rotation axis and the trajectory profiles
for SQUAD and SQUAD_C2. Note that SQUAD already
includes our first two modifications to achieve C1-continuity
and zero-clamped boundaries on velocity level. Adding the
two virtual waypoints leads to accelerating and decelerating
motion phases around a constant rotation axes at the first and
last waypoint with zero-clamped angular velocities. Note that
the discontinuous change of the rotation axes for SQUAD
and SQUAD_C2 in these two motion phases is due to a
change of the rotation direction at zero angular velocity
and thus does not result in a discontinuity. Apart from
these two motion phases, SQUAD and SQUAD_C2 smoothly
change the rotation axis over the entire motion segments and
thus do not provide segments with constant rotation axis,
which is in contrast to SCB and SPB. However, as opposed
to SCB and SPB, SQUAD and SQUAD_C2 pass through
the defined waypoints. In contrast to SQUAD, SQUAD_C2
computes C2-continuous trajectories with zero acceleration at
start and goal. The increased smoothness comes with higher
oscillating ω profiles and further, stops at the waypoints, i.e.
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Fig. 2. Simulated trajectory profiles for the rotation axis, q, ω, ω̇ and
ω̈ for a path with six waypoints. For better readability, we only show the
quaternions’ real part and only the y- and z-component for the rotation axis
and time derivatives, respectively. Black crosses in the quaternion profile
mark the defined waypoints and yellow crosses mark the virtual waypoints
of SQUAD and SQUAD_C2. The same segment duration hi in between the
waypoints are defined for all methods. Note that the blending phases for
SCB, SPB and SPB_C2 in the q(t) profile are short and thus their profiles
are quite close to the intermediate waypoints, i.e. the black crosses, however,
on a closer look, they do not reach them.

ω = 0 and ω̇ = 0.
2) SPB: It focuses on applications that demand con-

stant rotation axes and is proposed in [8]. SPB modifies
SQUAD and uses quadratic blending for u(t). This ensures
a quick and smooth change of the rotation axis and zero-
clamped boundaries. However, the trajectory profiles are only
C1-continuous. Further, ω shows undesired bumps during
blending (see Fig. 2). To obtain C2-continuous trajectory
profiles, we use quintic blending of u(t) instead of quadratic
blending. Similar to SQUAD_C2, a quintic interpolation of
u(t) allows ü(t) = 0 to be set at the bounds. Fig. 2
compares SPB and our modified version that we refer to as
SPB_C2. Both smoothly change the rotation axis and have
zero-clamped boundaries up to acceleration level. SPB and
SPB_C2 show a similar change of rotation axis and similar
quaternion profiles. However, in contrast to SPB, SPB_C2 is
C2-continuous. Both methods suffer from the bumps within

the ω profile during blending.
Unlike SQUAD and SPB, where discontinuities in acceler-

ation cause infinite jerk values as seen in Fig. 2, SQUAD_C2
and SPB_C2 avoid this problem due to their increased degree
of continuity.

IV. RESULTS

Section III compared the qualitative trajectory profiles
of SCB, SPB_C2 and SQUAD_C2. This section applies
the three methods in experiments on a FRANKA EMIKA
robot [22] in an application that targets time-optimized
motions. Therefore, we integrated the proposed methods
in our C++ planning framework. SCB inherently computes
fast, C2-continuous and zero-clamped motions by exploiting
ωmax, ω̇max and ω̈max. To obtain time-optimized motions with
SQUAD_C2 or SPB_C2, the nonlinear optimization given
in (6) needs to be solved. hi are the segment duration in
between the waypoints.

min
h

T (h) =

N−1∑
i=1

hi (6)

∥ω(ti)∥ ≤ ωmax ; ∥ω̇(ti)∥ ≤ ω̇max ; ∥ω̈(ti)∥ ≤ ω̈max

(7)

As stated in Section III, SQUAD_C2 and SPB_C2 interpo-
late on orientation level. Due to the nonlinearity in SO(3),
there are no analytical expressions for the extreme values
in ω(t), ω̇(t) and ω̈(t). Thus, to respect the actuator limits
in (7), the trajectory is discretized into time steps ti that
are checked for constraint violations. This is a drawback of
SQUAD_C2 and SPB_C2 compared to SCB, as the solution
of the discretized nonlinear optimization without analytical
gradients is computationally more expensive than our itera-
tive approach in Alg. 1.

The test scenario defines the same waypoints as in Fig. 2.
To solve (6) without gradient information, we use COBYLA,
a local derivative-free optimization algorithm implemented
in the open-source library NLopt [23]. To provide a fair
benchmark, we did a parameter study for SQUAD_C2 and
SPB_C2 and set the maximum number of iterations to
150, which showed a good trade-off between optimality
and computation time. The discretization for solving (7)
was set to 0.025 s. We define the symmetrical actuator
limits ωmax = 2.0 rad/s, ω̇max = 20.0 rad/s2 and ω̈max =
5000.0 rad/s3. For the initial guess, we define constant
velocity motions between the waypoints with 50 % of ωmax.
For SPB_C2, the initial blend phases are set to 30 % of the
linear phases. For SQUAD_C2, the two additional waypoints
are set 0.5 s after and before the first and last waypoint
respectively. We use the open-source library broccoli [24]
to implement spline interpolations and quaternion algebra.
The computation runs on a 64-bit Ubuntu 18.04 operated
computer with 32 GB RAM and with a 12-core Intel i7-
7800K CPU running at 3.7 GHz.

Fig. 3 shows the measured trajectory profiles and Table I
compares the interpolation methods w.r.t. computation time
Tcomp, trajectory duration T , qualitative smoothness based
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TABLE I
BENCHMARK OF QUATERNION INTERPOLATION METHODS

T opt
comp [ms] T traj

comp [µs] T [s] Smooth Hit
SPB_C2 80.2 ± 2.4 8.1 ± 6.1 2.94 • no
SQUAD_C2 83.5 ± 1.1 30.0 ± 12.4 6.47 • • • yes
SCB 7.9 ± 2.2 94.5 ± 33.2 2.59 • • no

on the profiles and if the defined waypoints are hit. Although
the problem formulation and the solver are deterministic,
the computation time on the computer hardware is not due
to other programs executing, operating system settings etc.
Therefore, the computation times are averaged over ten
runs and the mean value and the standard deviation are
given. To consider the decoupled optimization and trajec-
tory computation of SQUAD_C2 and SPB_C2, we distin-
guish between T opt

comp and T traj
comp. The video of the exper-

iment is given as supplementary material and available at:
https://youtu.be/x2iKmf4R28M. It shows the robot motions
that correspond to the profiles in Fig. 3. We use quintic spline
interpolation for the translational part of the trajectory, which
is a planar square with a side length of 0.02 m, and we use
RMRC for the differential IK.

All three methods compute C2-continuous profiles that
can be tracked accurately by the robot, which is shown
by the good fit of continuous lines and dashed lines in
Fig. 3. Minor drawbacks w.r.t. the tracking accuracy of ω
are visible for SPB_C2 due to the bumps in the profile. In
contrast to SCB and SPB_C2, SQUAD_C2 hits the defined
waypoints and provides the highest smoothness. However,
the lack of constant velocity phases leads to the longest
overall trajectory duration T . This is due to ωmax being
only exploited for certain segments at a single time point.
SCB and SPB_C2 both exploit ωmax and ω̇max in each of the
motion segments. However, the bumps within the ω profile
of SPB_C2 lead to a less smooth profile and further prevent
the exploitation of ωmax throughout the whole linear phase.
Therefore, T is longer for SPB_C2 compared to SCB. SCB
shows a good trade-off between time optimization and a
smooth trajectory profile. Note that for the defined scenario,
there were no overlaps during the blend phases and thus
ωmax = 2.0 rad/s was not modified during the optimization
iterations (line 15 in Alg. 1). However, the acceleration limits
were violated during the iterations, and thus ω̈max was scaled
from originally 5000.0 rad/s3 to 101.38 rad/s3 according
to line 24 in Alg. 1. The time optimization for SPB_C2
and SQUAD_C2 dominates the total computation time and
is magnitudes higher than for the iterative approach of SCB.

V. CONCLUSIONS

We propose SCB, a computationally efficient trajectory
generation algorithm for the time-optimized interpolation
of quaternions. Additionally, we contribute modifications
to the state-of-the-art methods SQUAD and SPB such that
their trajectory profiles are C2-continuous and zero-clamped,
yielding SQUAD_C2 and SPB_C2. We benchmark SCB
with SQUAD_C2 and SPB_C2: SCB achieves time opti-

Fig. 3. Measured trajectory profiles for q, ω, ω̇ and ω̈ for a path with
six waypoints. For better readability, we only show the quaternions’ a- and
y-components and only the x-component for the time derivatives. Black
crosses in the quaternion profile mark the defined waypoints and yellow
crosses mark the virtual waypoints of SQUAD_C2. The red patches visualize
the symmetrically defined actuator limits. The light blue line indicates the
computed absolute values ∥ω∥, ∥ω̇∥, ∥ω̈∥ for SCB. Within the q and
ω profiles, the dashed lines indicate the desired trajectory profile. The
continuous lines show the profile executed by the robot. The acceleration
profile is computed with the filtered velocity profile. The jerk profile is
plotted with the computed reference values to avoid a second derivation of
the noisy velocity measurements.

mization with lower computational cost and further com-
putes smoother trajectory profiles than SPB_C2. SQUAD
and SPB interpolate on orientation level and thus, due to
the nonlinearity of SO(3), compute less smooth profiles.
For both, an additional quintic time interpolation for the
underlying control parameter needs to be implemented to
achieve C2-continuity and zero-clamped boundaries. Further,
analytical gradient information cannot be derived, which pre-
vents efficient analytical gradient-based time optimization.
In contrast to other approaches, SCB can also be applied
to translations and the modifications are straightforward.
SCB cannot be applied to applications in which the end
effector needs to pass through given waypoints as they are
only blended, not hit. Further, SCB, as presented here, is
not applicable to applications with translational motion only,
i.e. when two adjacent quaternions are the same as Alg. 1
would fail. However, catching this case and adding a motion
segment with no rotation would be straightforward.
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